1
|
Lisboa F, Kassiano W, Stavinski N, Costa B, Kunevaliki G, Francsuel J, Tricoli I, Prado A, Cyrino LT, A S Carneiro M, Lima L, Castro-E-Souza P, Cavalcante EF, Achour A, Cyrino ES. Effects of static stretching and specific warm-up on the repetition performance in upper- and lower-limb exercises in resistance-trained older women. Aging Clin Exp Res 2024; 37:14. [PMID: 39725788 DOI: 10.1007/s40520-024-02880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/04/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Preparation methods are often used to improve performance (e.g., number of repetitions) within the resistance training session. However, there is still no consensus in the scientific literature on whether there is a superior preparation method for improving performance, particularly in older adults. METHODS We compared the effects of preparation by specific warm-up (SW), static stretching (SS), and control condition (CC) on the total number of repetitions in four exercises: leg extension, triceps pushdown, seated leg curl, and preacher curl. Fifty-seven older women (≥ 60 years) performed the experimental protocols (SW and SS) and the CC in a cross-over and counterbalanced design. Following the preparation protocol, the main exercises were performed in two sets until volitional concentric failure, with a two-minute rest interval between sets and 2-3 min between exercises. The main outcome was the total number of repetitions. RESULTS The SS improved performance compared to the SW and the CC in the leg extension and seated leg curl resistance exercises. In contrast, the SW impaired performance compared to the SS and CC in the triceps pushdown and preacher curl exercises. CONCLUSION Our results suggest that SS may improve performance in lower-limb exercises, while the SW appears to negatively affect performance in upper-limb exercises in resistance-trained older women.
Collapse
Affiliation(s)
- Felipe Lisboa
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, State University of Londrina, Rodovia Celso Garcia, km 380, Londrina, 86057-970, Brazil.
| | - Witalo Kassiano
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, State University of Londrina, Rodovia Celso Garcia, km 380, Londrina, 86057-970, Brazil
| | - Natã Stavinski
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, State University of Londrina, Rodovia Celso Garcia, km 380, Londrina, 86057-970, Brazil
| | - Bruna Costa
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, State University of Londrina, Rodovia Celso Garcia, km 380, Londrina, 86057-970, Brazil
| | - Gabriel Kunevaliki
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, State University of Londrina, Rodovia Celso Garcia, km 380, Londrina, 86057-970, Brazil
| | - Jarlisson Francsuel
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, State University of Londrina, Rodovia Celso Garcia, km 380, Londrina, 86057-970, Brazil
| | - Ian Tricoli
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, State University of Londrina, Rodovia Celso Garcia, km 380, Londrina, 86057-970, Brazil
| | - Aline Prado
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, State University of Londrina, Rodovia Celso Garcia, km 380, Londrina, 86057-970, Brazil
| | - Leticia T Cyrino
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, State University of Londrina, Rodovia Celso Garcia, km 380, Londrina, 86057-970, Brazil
| | - Marcelo A S Carneiro
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, State University of Londrina, Rodovia Celso Garcia, km 380, Londrina, 86057-970, Brazil
| | - Luis Lima
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, State University of Londrina, Rodovia Celso Garcia, km 380, Londrina, 86057-970, Brazil
| | - Pâmela Castro-E-Souza
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, State University of Londrina, Rodovia Celso Garcia, km 380, Londrina, 86057-970, Brazil
| | - Edilaine F Cavalcante
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, State University of Londrina, Rodovia Celso Garcia, km 380, Londrina, 86057-970, Brazil
| | - Abdallah Achour
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, State University of Londrina, Rodovia Celso Garcia, km 380, Londrina, 86057-970, Brazil
| | - Edilson S Cyrino
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, State University of Londrina, Rodovia Celso Garcia, km 380, Londrina, 86057-970, Brazil
| |
Collapse
|
2
|
Li M, Kim Y, Guo W, Fan P, Wang J, Kim S. Effects of Conditioning Contractions on Lower-Body Explosive Force Post-Static Stretching. Int J Sports Med 2024; 45:1040-1046. [PMID: 38914131 DOI: 10.1055/a-2351-8735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The present study assessed the impacts of two distinct protocols, static stretching (StS, 4 sets of 30 seconds) and static stretching combined with conditioning contractions (10 repetitive drop jumps) (SC), on neuromuscular response and rate of force development (RFD) in the lower limbs during squat jumps (SJs) at varying initial knee-joint angles (60°,90°,120°). Twelve participants completed three randomized experimental trials (no intervention, StS intervention, and SC intervention). Except for the intervention segments, each trial included standardized warm-ups and SJs at three different angles. Data were collected using a 3-dimensional injury motion capture system, an electromyography (EMG) recording system, and a force platform. The collected EMG data were subjected to amplitude calculations, while force-time data were used for RFD computation. Neither StS nor SC significantly impacted the average or peak EMG amplitudes of the five muscles examined (p>0.05). However, at an initial knee-joint angle of 120°, the StS group demonstrated significantly lower RFD values at three distinct phases (0-50 ms, 50-100 ms, and 0-peakforce) compared to those seen in the SC and control groups (p<0.05). For activities starting with a knee-joint angle of 120°, it is recommended to either avoid StS or combine it with ten repetitive drop jumps to mitigate any potential negative impact on explosiveness.
Collapse
Affiliation(s)
- Ming Li
- Physical Education, Yantai University, Yantai, Shandong, China
| | - Youngsuk Kim
- Physical Education, Jeonbuk National University, Jeonju, Korea (the Republic of)
| | - Weishuai Guo
- Physical Education, Jeonbuk National University, Jeonju, Korea (the Republic of)
| | - Penglei Fan
- Physical Education, Jeonbuk National University, Jeonju, Korea (the Republic of)
| | - Junsig Wang
- Sports Medicine, Kyung Hee University, Yongin, Korea (the Republic of)
| | - Sukwon Kim
- Physical Education, Jeonbuk National University, Jeonju, Korea (the Republic of)
| |
Collapse
|
3
|
Li M, Kim Y, Kim S. Optimizing Acute Static Stretching Protocols: Balancing Range of Motion and Strength Performance. Curr Sports Med Rep 2024; 23:363-365. [PMID: 39499003 DOI: 10.1249/jsr.0000000000001204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Affiliation(s)
- Ming Li
- College of Education and Sports Sciences, Yangtze University, Jingzhou, CHINA
| | | | | |
Collapse
|
4
|
Warneke K, Lohmann LH. Revisiting the stretch-induced force deficit: A systematic review with multilevel meta-analysis of acute effects. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:805-819. [PMID: 38735533 PMCID: PMC11336295 DOI: 10.1016/j.jshs.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/24/2024] [Accepted: 04/04/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND When recommending avoidance of static stretching prior to athletic performance, authors and practitioners commonly refer to available systematic reviews. However, effect sizes (ES) in previous reviews were extracted in major part from studies lacking control conditions and/or pre-post testing designs. Also, currently available reviews conducted calculations without accounting for multiple study outcomes, with ES: -0.03 to 0.10, which would commonly be classified as trivial. METHODS Since new meta-analytical software and controlled research articles have appeared since 2013, we revisited the available literatures and performed a multilevel meta-analysis using robust variance estimation of controlled pre-post trials to provide updated evidence. Furthermore, previous research described reduced electromyography activity-also attributable to fatiguing training routines-as being responsible for decreased subsequent performance. The second part of this study opposed stretching and alternative interventions sufficient to induce general fatigue to examine whether static stretching induces higher performance losses compared to other exercise routines. RESULTS Including 83 studies with more than 400 ES from 2012 participants, our results indicate a significant, small ES for a static stretch-induced maximal strength loss (ES = -0.21, p = 0.003), with high magnitude ES (ES = -0.84, p = 0.004) for stretching durations ≥60 s per bout when compared to passive controls. When opposed to active controls, the maximal strength loss ranges between ES: -0.17 to -0.28, p < 0.001 and 0.040 with mostly no to small heterogeneity. However, stretching did not negatively influence athletic performance in general (when compared to both passive and active controls); in fact, a positive effect on subsequent jumping performance (ES = 0.15, p = 0.006) was found in adults. CONCLUSION Regarding strength testing of isolated muscles (e.g., leg extensions or calf raises), our results confirm previous findings. Nevertheless, since no (or even positive) effects could be found for athletic performance, our results do not support previous recommendations to exclude static stretching from warm-up routines prior to, for example, jumping or sprinting.
Collapse
Affiliation(s)
- Konstantin Warneke
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz 8010, Austria; Institute of Sport Science, Alpen-Adria University of Klagenfurt, Klagenfurt am Wörthersee 9020, Austria.
| | - Lars Hubertus Lohmann
- Institute of Human Movement and Exercise Physiology, University of Jena, Jena 07749, Germany
| |
Collapse
|
5
|
Thomas E, Scardina A, Patti A, Izzicupo P, Nakamura M, Konrad A, Campa F, Bellafiore M, Bianco A. Acute local and non-local morphological, sensory and fluid responses to stretching and foam rolling in young females. Heliyon 2024; 10:e39023. [PMID: 39640605 PMCID: PMC11620026 DOI: 10.1016/j.heliyon.2024.e39023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 12/07/2024] Open
Abstract
Background This study aimed to compare and examine the local and non-local effects of a foam rolling (FR) and static stretching (SS) intervention applied to the plantar flexor (PF). Methods Fourteen female participants were investigated. Each participant underwent three conditions in a random order at least 48h apart and at the same time of the day: Control (CC), SS, and FR. Each condition was performed unilaterally in the dominant PF for 4 sets (apart from CC). SS was performed for 30 s. The FR included 30 rolls (15 in each direction) over a period of 30 s. A rest of 30 s was provided between each set for all conditions. Outcome variables were ankle dorsiflexion range of movement (ROM), tissue hardness, localized bioimpedance analysis at 50 kHz (L-BIA), and pain pressure thresholds (PPT). Tissue hardness, L-BIA, and PPT were measured in the lower leg and thigh. Measures were assessed pre (T0), immediately post (T1), and 10-min after (T2) the intervention. Results No differences were found for time for the CC or between the T0 of each condition. Concerning the lower leg, ROM improved for SS and FR from T0 to T1 while returning to baseline in T2. A significant increase in PPT was observed only for SS in T1. L-BIA showed a significant increase for both phase angle and impedance only for FR in T1. Tissue hardness did not change for any group at any time-point. Concerning the thigh, no measure at any time point showed significant differences. Conclusion Both, FR and SS were able to acutely improve ankle ROM. The observed changes were probably caused by a change in viscoelastic properties and local pain perception, without any variation in tissue morphology. FR was the only intervention to improve the intracellular-to-extracellular ratio and decrease fluids. Non-local effects were not observed.
Collapse
Affiliation(s)
- Ewan Thomas
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Antonino Scardina
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Antonino Patti
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Pascal Izzicupo
- Department of Medicine and Aging Science, “G. D'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Masatoshi Nakamura
- Faculty of Rehabilitation Sciences, Nishi Kyushu University, Kanzaki, Saga, Japan
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - Francesco Campa
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Marianna Bellafiore
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| |
Collapse
|
6
|
Maras G, Arikan H, Citaker S. Comparison of the effects of 4-week instrument assisted soft tissue mobilization and static stretching on strength, ROM, flexibility, and painthreshold in hamstring muscle shortness. J Bodyw Mov Ther 2024; 40:575-583. [PMID: 39593646 DOI: 10.1016/j.jbmt.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 11/28/2024]
Affiliation(s)
- Gokhan Maras
- Amasya University, Department of Physical Therapy and Rehabilitation, Amasya, Turkey.
| | - Halime Arikan
- Gaziosmanpasa University, Department of Physical Therapy and Rehabilitation, Tokat, Turkey
| | - Seyit Citaker
- Gazi University, Department of Physical Therapy and Rehabilitation, Ankara, Turkey
| |
Collapse
|
7
|
Cogley D, Byrne P, Halstead J, Coyle C. Responses to a combined dynamic stretching and antagonist static stretching warm-up protocol on isokinetic leg extension performance. Sports Biomech 2024; 23:1455-1470. [PMID: 34263693 DOI: 10.1080/14763141.2021.1944290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/11/2021] [Indexed: 10/20/2022]
Abstract
Antagonist static-stretching and dynamic-stretching are both effective at improving muscular performance. The purpose of this study was to investigate responses to a dynamic stretching warm-up protocol, a static-stretching warm-up protocol and a combined dynamic-stretching and antagonist static stretching warm-up protocol on isokinetic leg extension performance. Twelve participants completed a baseline (PRE) isokinetic knee-extension test at 60°.s-1 and 300°.s-1, following a 5 min warm-up on a cycle ergometer. Subsequently, participants completed the following warm-up protocols randomly over a three-week period: dynamic-stretching (DS); antagonist muscle static-stretching (AMSS) and dynamic followed by antagonist muscle static-stretching (DS-AMSS). A repeated measures analysis of variance (ANOVA) was conducted to determine where significant differences existed for peak torque, total work, average power, time-to-peak-torque and relative peak torque between warm-up protocols. DS-AMSS facilitated a significantly higher peak torque and total work compared to PRE, DS and AMSS at 60°.s-1 and 300°.s-1 P < 0.05, respectively). DS-AMSS caused significantly greater relative peak torque than PRE for 60°.s-1 and 300°.s-1 (P < 0.05). DS-AMSS resulted in significantly reduced time-to-peak-torque and increased average power at 60°.s-1 compared to PRE, DS and AMSS (P < 0.05). DS-AMSS and AMSS resulted in a significant reduction in time-to-peak-torque and increased average power compared to the PRE and DS (P < 0.05) at 300°.s-1.
Collapse
Affiliation(s)
- David Cogley
- Department of Science and Health, Institute of Technology Carlow, Carlow, Ireland
- Department of Research and Development, Ultimate Performance Personal Training Limited, Manchester, UK
| | - Paul Byrne
- Department of Science and Health, Institute of Technology Carlow, Carlow, Ireland
| | - Joseph Halstead
- Department of Research and Development, Ultimate Performance Personal Training Limited, Manchester, UK
| | - Colin Coyle
- Department of Science and Health, Institute of Technology Carlow, Carlow, Ireland
| |
Collapse
|
8
|
Arntz F, Markov A, Schoenfeld BJ, Behrens M, Behm DG, Prieske O, Negra Y, Chaabene H. Chronic Effects of Static Stretching Exercises on Skeletal Muscle Hypertrophy in Healthy Individuals: A Systematic Review and Multilevel Meta-Analysis. SPORTS MEDICINE - OPEN 2024; 10:106. [PMID: 39340744 PMCID: PMC11438763 DOI: 10.1186/s40798-024-00772-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND The chronic effect of static stretching (SS) on muscle hypertrophy is still unclear. This study aimed to examine the chronic effects of SS exercises on skeletal muscle hypertrophy in healthy individuals. METHODS A systematic literature search was conducted in the PubMed, Web of Science, Cochrane Library, and SPORTDiscus databases up to July 2023. Included studies examined chronic effects of SS exercise compared to an active/passive control group or the contralateral leg (i.e., utilizing between- or within-study designs, respectively) and assessed at least one outcome of skeletal muscle hypertrophy in healthy individuals with no age restriction. RESULTS Twenty-five studies met the inclusion criteria. Overall, findings indicated an unclear effect of chronic SS exercises on skeletal muscle hypertrophy with a trivial point estimate (standardised mean difference [SMD] = 0.118 [95% prediction interval [95% PI] = - 0.233 to 0.469; p = 0.017]) and low heterogeneity (I2 = 24%). Subgroup analyses revealed that trained individuals (β = 0.424; 95% PI = 0.095 to 0.753) displayed larger effects compared to recreationally trained (β = 0.115; 95% PI = - 0.195 to 0.425) and sedentary individuals (β = - 0.081; 95% PI = - 0.399 to 0.236). Subanalysis suggested the potential for greater skeletal muscle hypertrophy in samples with higher percentages of females (β = 0.003, [95% confidence interval [95% CI] = - 0.000 to 0.005]). However, the practical significance of this finding is questionable. Furthermore, a greater variety of stretching exercises elicited larger increases in muscle hypertrophy (β = 0.069, [95% CI = 0.041 to 0.097]). Longer durations of single stretching exercises (β = 0.006, [95% CI = 0.002 to 0.010]), time under stretching per session (β = 0.006, [95% CI = 0.003 to 0.009]), per week (β = 0.001, [95% CI = 0.000 to 0.001]) and in total (β = 0.008, [95% CI = 0.003 to 0.013]) induced larger muscle hypertrophy. Regarding joint range of motion, there was a clear positive effect with a moderate point estimate (β = 0.698; 95% PI = 0.147 to 1.249; p < 0.001) and moderate heterogeneity (I2 = 43%). Moreover, findings indicated no significant association between the gains in joint range of motion and the increase in muscle hypertrophy (β = 0.036, [95% CI = - 0.123 to 0.196]; p = 0.638). CONCLUSIONS This study revealed an overall unclear chronic effect of SS on skeletal muscle hypertrophy, although interpretation across the range of PI suggests a potential modest beneficial effect. Subgroup analysis indicated larger stretching-induced muscle gains in trained individuals, a more varied selection of SS exercises, longer mean duration of single stretching exercise, increased time under SS per session, week, and in total, and possibly in samples with a higher proportion of females. From a practical perspective, it appears that SS exercises may not be highly effective in promoting skeletal muscle hypertrophy unless a higher duration of training is utilized. PROSPERO registration number: CRD42022331762.
Collapse
Affiliation(s)
- Fabian Arntz
- Department of Social- and Preventive Medicine, Research Focus Cognition Sciences, University of Potsdam, Am Neuen Palais 10, Building 12, 14469, Potsdam, Germany
| | - Adrian Markov
- Faculty of Human Sciences, Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, 14469, Potsdam, Germany
| | - Brad J Schoenfeld
- Department of Exercise Science and Recreation, CUNY Lehman College, Bronx, NY, USA
| | - Martin Behrens
- Division of Research Methods and Analysis in Sports Science, University of Applied Sciences for Sport and Management Potsdam, Olympischer Weg 7, 14471, Potsdam, Germany
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Olaf Prieske
- Division of Exercise and Movement, University of Applied Sciences for Sport and Management Potsdam, Olympischer Weg 7, 14471, Potsdam, Germany
| | - Yassine Negra
- Higher Institute of Sport and Physical Education of Ksar Saïd, University of "La Manouba", Manouba, Tunisia
- Research Laboratory (LR23JS01) «Sport Performance, Health and Society», Tunis, Tunisia
| | - Helmi Chaabene
- Department of Sport Science, Chair for Health and Physical Activity, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany.
- Institut Supérieur de Sport et de l'Education Physique du Kef, Université de Jandouba, 7100, Le Kef, Tunisia.
| |
Collapse
|
9
|
Philpott EJ, Bahrami M, Sardroodian M, Behm DG. The Effects of High-Intensity, Short-Duration and Low-Intensity, Long-Duration Hamstrings Static Stretching on Contralateral Limb Performance. Sports (Basel) 2024; 12:257. [PMID: 39330734 PMCID: PMC11435762 DOI: 10.3390/sports12090257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
INTRODUCTION Increases in contralateral range of motion (ROM) have been shown following acute high-intensity and high-duration static stretching (SS) with no significant change in contralateral force, power, and muscle activation. There are currently no studies comparing the effects of a high-intensity, short-duration (HISD) or low-intensity, long-duration (LILD) SS on contralateral performance. PURPOSE The aim of this study was to examine how HISD and LILD SS of the dominant leg hamstrings influence contralateral limb performance. METHODS Sixteen trained participants (eight females, eight males) completed three SS interventions of the dominant leg hamstrings; (1) HISD (6 × 10 s at maximal point of discomfort), (2) LILD (6 × 30 s at initial point of discomfort), and (3) control. Dominant and non-dominant ROM, maximal voluntary isometric contraction (MVIC) forces, muscle activation (electromyography (EMG)), and unilateral CMJ and DJ heights were recorded pre-test and 1 min post-test. RESULTS There were no significant contralateral ROM or performance changes. Following the HISD condition, the post-test ROM for the stretched leg (110.6 ± 12.6°) exceeded the pre-test (106.0 ± 9.0°) by a small magnitude effect of 4.2% (p = 0.008, d = 0.42). With LILD, the stretched leg post-test (112.2 ± 16.5°) exceeded (2.6%, p = 0.06, d = 0.18) the pre-test ROM (109.3 ± 16.2°) by a non-significant, trivial magnitude. There were large magnitude impairments, evidenced by main effects for testing time for force, instantaneous strength, and associated EMG. A significant ROM interaction (p = 0.02) showed that with LILD, the stretched leg significantly (p = 0.05) exceeded the contralateral leg by 13.4% post-test. CONCLUSIONS The results showing no significant increase in contralateral ROM with either HISD or LILD SS, suggesting the interventions may not have been effective in promoting crossover effects.
Collapse
Affiliation(s)
- Emily J Philpott
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Mohammadmahdi Bahrami
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Mahta Sardroodian
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
10
|
Shea A, Bahrami M, Sardroodian M, Behm DG. The Effects of Static Stretching 2-Hours Prior to a Traditional Warm-Up on Performance. J Sports Sci Med 2024; 23:663-671. [PMID: 39228774 PMCID: PMC11366838 DOI: 10.52082/jssm.2024.663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024]
Abstract
Whereas prolonged static stretching (SS: >60-seconds per muscle) can increase range of motion (ROM) for up to 2-hours, it can also decrease maximal voluntary isometric contraction (MVIC) forces, countermovement (CMJ) and drop jump (DJ) heights, and muscle activation immediately after the stretching exercise. When an appropriate SS duration (<60-seconds per muscle) is incorporated into a dynamic warm-up, performance decrements are often trivial. However, there is a lack of studies that observed the effects of extensive SS (180-seconds) 2-hours prior to a dynamic warm-up. The objective was to investigate ROM and performance effects of prolonged SS, 2-hours prior to a traditional warm-up. This study investigated 9 female and 8 male healthy recreationally active, young adult participants on the effects of prolonged SS (180-seconds per muscle) of the quadriceps and hamstrings, 2-hours before a traditional warm-up compared to an active control condition on hip flexion ROM, knee extension and flexion MVIC forces, CMJ, DJ, and quadriceps and hamstrings electromyography (EMG). There were no significant changes in knee flexion/extension MVIC forces, EMG, CMJ, or DJ height. However, there was significant, small magnitude (p = 0.002) greater post-warm-up left hip flexion ROM (115.4° ± 17.2) than pre-SS (108.9° ± 17.13, Effect size [ES]: 0.28) and control post-warm-up (p = 0.05, ES: 0.31, 109.5° ± 20.55). Similarly, right hip flexion ROM (117.2° ± 16.5) also demonstrated significant small magnitude (p = 0.003) greater than the pre-SS (112.4° ± 18.4, ES: 0.22) and control post-warm-up (p = 0.046, ES: 0.33, 110.8° ± 20.5). Additionally, significant, large magnitude greater hip flexion ROM was observed with the women vs. men (ES: 1.29 - 1.34). Significant hip flexion ROM increases were not accompanied by significant changes in knee flexion/extension MVIC forces, EMG, or jump heights, suggesting that extensive SS can positively impact ROM without performance deficits when followed by a traditional warm-up, 2-hours after SS.
Collapse
Affiliation(s)
- Ashley Shea
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Mohammadmahdi Bahrami
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Mahta Sardroodian
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
11
|
Rodrigues E, Pontes AR, Brochado G, Bessa I, Carvalho P, Crasto C. Immediate effects of Global Active Stretching on strength and flexibility: Randomised Controlled Trial. SOUTH AFRICAN JOURNAL OF SPORTS MEDICINE 2024; 36:v36i1a16618. [PMID: 39234297 PMCID: PMC11374315 DOI: 10.17159/2078-516x/2024/v36i1a16618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Background Global Active Stretching is a relatively recent yet little studied stretching method. It differs from the most popular methods by targeting muscle chains and integrating stretching with muscle contractions, which may eventually avoid the post-stretching reduction of strength that occurs in other methods. Objectives To verify the immediate effects of Global Active Stretching on muscle strength and flexibility in individuals with short hamstrings. Methods A single-blind randomised controlled trial was carried out on 30 volunteers with more than 20° in the active knee extension test, randomly assigned to three groups: the experimental group (Global Active Stretching exercise); the placebo group (Global Active Stretching initial position without stretching); and the control group (lying down). The active knee extension and fingertip-to-floor tests assessed hamstring and posterior chain flexibility. Hamstring and quadriceps strength were assessed using the peak torque evaluation in the Biodex System 4PRO®. Assessments took place before and immediately after the 15-minute intervention. The ANOVA and the paired t test were used (α = 0.05). Results The experimental group had a significant increase in flexibility in both the fingertip-to-floor test (8.3 cm) and the active knee extension test (6.3°) when compared to the placebo and control groups (p < 0.05), while no differences in strength were observed (p > 0.05). Conclusion Global Active Stretching immediately increased hamstring flexibility without significantly reducing muscle strength. Thus, individuals seeking to enhance their short-term flexibility can benefit from this programme in a single session without compromising performance.
Collapse
Affiliation(s)
- E Rodrigues
- Center for Rehabilitation Research (CIR), Escola Superior de Saúde, Politécnico do Porto, Rua Dr. António Bernardino de Almeida, nº 400 4200-072 Porto, Portugal
| | - A R Pontes
- Ministério da Educação - Agrupamento de Escolas de Alfena, Valongo, Portugal
| | - G Brochado
- Escola Superior de Tecnologias de Saúde do Tâmega e Sousa, Paredes, Portugal
| | - I Bessa
- Center for Rehabilitation Research (CIR), Escola Superior de Saúde, Politécnico do Porto, Rua Dr. António Bernardino de Almeida, nº 400 4200-072 Porto, Portugal
| | - P Carvalho
- Center for Translational Health and Medical Biotechnology Research (TBIO) - RISE - Health Research Network, Escola Superior de Saúde, Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - C Crasto
- Center for Rehabilitation Research (CIR), Escola Superior de Saúde, Politécnico do Porto, Rua Dr. António Bernardino de Almeida, nº 400 4200-072 Porto, Portugal
- Escola Superior de Saúde de Santa Maria, Porto, Portugal
| |
Collapse
|
12
|
Trovato B, Sortino M, Petrigna L, Roggio F, Musumeci G. The influence of static and dynamic warm-up on knee temperature: infrared thermography insights before and after a change of direction exercise. Front Physiol 2024; 15:1393804. [PMID: 39148745 PMCID: PMC11324587 DOI: 10.3389/fphys.2024.1393804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Infrared thermography is gaining attention in the field of sports medicine and performance. This study investigated the effects of static and dynamic warm-ups and a 90° change of direction (COD) exercise on the thermal response of the knee. Methods Thermograms were collected using the FlIR E54 Imaging Camera from 85 healthy young adults, 46 men and 39 women, aged 20-31 years. The participants were divided in two groups, static and dynamic warm-up. Four thermograms were taken: baseline (T0), warm-up (T1), COD (T2), and rest (T3). Four regions of interest (ROIs) of the knee were analyzed: anterior upper half (AUH), anterior lower half (ALH), posterior upper half (PUH), and posterior lower half (PLH). Mixed ANOVA with the Bonferroni-Holm test and independent t-test were used for pairwise comparison and to spot differences between the right and left knees at T1 and T2 and at T0 between men and women, respectively. Results The mixed ANOVA was significant for time points (p< 0.001) in all the ROIs and for the stretching/temperature interaction with different levels of significance. The t-test results for the right and left knees at T1 and T2 were not significant. The temperature in the static warm-up group followed a decrease at T1, a subsequent decrease at T2, and a recovery similar to the baseline at T3, in the ALH in men and women and in the PUH only in men. Conclusion Static stretching was more suitable for preparing the knee for the COD exercise than the dynamic one in terms of the thermal response.
Collapse
Affiliation(s)
- Bruno Trovato
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Catania, Italy
| | - Martina Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Catania, Italy
| | - Luca Petrigna
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Catania, Italy
| | - Federico Roggio
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Catania, Italy
- Research Center on Motor Activities (CRAM), University of Catania, Catania, Italy
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, United States
| |
Collapse
|
13
|
Warneke K, Plöschberger G, Lohmann LH, Lichtenstein E, Jochum D, Siegel SD, Zech A, Behm DG. Foam rolling and stretching do not provide superior acute flexibility and stiffness improvements compared to any other warm-up intervention: A systematic review with meta-analysis. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:509-520. [PMID: 38244921 PMCID: PMC11184403 DOI: 10.1016/j.jshs.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/16/2023] [Accepted: 12/28/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Acute improvement in range of motion (ROM) is a widely reported effect of stretching and foam rolling, which is commonly explained by changes in pain threshold and/or musculotendinous stiffness. Interestingly, these effects were also reported in response to various other active and passive interventions that induce responses such as enhanced muscle temperature. Therefore, we hypothesized that acute ROM enhancements could be induced by a wide variety of interventions other than stretching or foam rolling that promote an increase in muscle temperature. METHODS After a systematic search in PubMed, Web of Science, and SPORTDiscus databases, 38 studies comparing the effects of stretching and foam rolling with several other interventions on ROM and passive properties were included. These studies had 1134 participants in total, and the data analysis resulted in 140 effect sizes (ESs). ES calculations were performed using robust variance estimation model with R-package. RESULTS Study quality of the included studies was classified as fair (PEDro score = 4.58) with low to moderate certainty of evidence. Results showed no significant differences in ROM (ES = 0.01, p = 0.88), stiffness (ES = 0.09, p = 0.67), or passive peak torque (ES = -0.30, p = 0.14) between stretching or foam rolling and the other identified activities. Funnel plots revealed no publication bias. CONCLUSION Based on current literature, our results challenge the established view on stretching and foam rolling as a recommended component of warm-up programs. The lack of significant difference between interventions suggests there is no need to emphasize stretching or foam rolling to induce acute ROM, passive peak torque increases, or stiffness reductions.
Collapse
Affiliation(s)
- Konstantin Warneke
- Institute of Sport Science, University of Klagenfurt, Klagenfurt am Wörthersee 9020, Austria.
| | - Gerit Plöschberger
- Institute of Sport Science, University of Klagenfurt, Klagenfurt am Wörthersee 9020, Austria
| | - Lars H Lohmann
- Department of Human Motion Science and Exercise Physiology, Friedrich Schiller University, Jena 07749, Germany
| | - Eric Lichtenstein
- Department Sport, Exercise and Health, University of Basel, Basel 4052, Switzerland
| | - Daniel Jochum
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Stanislav D Siegel
- Department of Human Motion Science and Exercise Physiology, Friedrich Schiller University, Jena 07749, Germany
| | - Astrid Zech
- Department of Human Motion Science and Exercise Physiology, Friedrich Schiller University, Jena 07749, Germany
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. Johns, NL A1C 5S7, Canada
| |
Collapse
|
14
|
Afonso J, Andrade R, Rocha-Rodrigues S, Nakamura FY, Sarmento H, Freitas SR, Silva AF, Laporta L, Abarghoueinejad M, Akyildiz Z, Chen R, Pizarro A, Ramirez-Campillo R, Clemente FM. What We Do Not Know About Stretching in Healthy Athletes: A Scoping Review with Evidence Gap Map from 300 Trials. Sports Med 2024; 54:1517-1551. [PMID: 38457105 PMCID: PMC11239752 DOI: 10.1007/s40279-024-02002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Stretching has garnered significant attention in sports sciences, resulting in numerous studies. However, there is no comprehensive overview on investigation of stretching in healthy athletes. OBJECTIVES To perform a systematic scoping review with an evidence gap map of stretching studies in healthy athletes, identify current gaps in the literature, and provide stakeholders with priorities for future research. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 and PRISMA-ScR guidelines were followed. We included studies comprising healthy athletes exposed to acute and/or chronic stretching interventions. Six databases were searched (CINAHL, EMBASE, PubMed, Scopus, SPORTDiscus, and Web of Science) until 1 January 2023. The relevant data were narratively synthesized; quantitative data summaries were provided for key data items. An evidence gap map was developed to offer an overview of the existing research and relevant gaps. RESULTS Of ~ 220,000 screened records, we included 300 trials involving 7080 athletes [mostly males (~ 65% versus ~ 20% female, and ~ 15% unreported) under 36 years of age; tiers 2 and 3 of the Participant Classification Framework] across 43 sports. Sports requiring extreme range of motion (e.g., gymnastics) were underrepresented. Most trials assessed the acute effects of stretching, with chronic effects being scrutinized in less than 20% of trials. Chronic interventions averaged 7.4 ± 5.1 weeks and never exceeded 6 months. Most trials (~ 85%) implemented stretching within the warm-up, with other application timings (e.g., post-exercise) being under-researched. Most trials examined static active stretching (62.3%), followed by dynamic stretching (38.3%) and proprioceptive neuromuscular facilitation (PNF) stretching (12.0%), with scarce research on alternative methods (e.g., ballistic stretching). Comparators were mostly limited to passive controls, with ~ 25% of trials including active controls (e.g., strength training). The lower limbs were primarily targeted by interventions (~ 75%). Reporting of dose was heterogeneous in style (e.g., 10 repetitions versus 10 s for dynamic stretching) and completeness of information (i.e., with disparities in the comprehensiveness of the provided information). Most trials (~ 90%) reported performance-related outcomes (mainly strength/power and range of motion); sport-specific outcomes were collected in less than 15% of trials. Biomechanical, physiological, and neural/psychological outcomes were assessed sparsely and heterogeneously; only five trials investigated injury-related outcomes. CONCLUSIONS There is room for improvement, with many areas of research on stretching being underexplored and others currently too heterogeneous for reliable comparisons between studies. There is limited representation of elite-level athletes (~ 5% tier 4 and no tier 5) and underpowered sample sizes (≤ 20 participants). Research was biased toward adult male athletes of sports not requiring extreme ranges of motion, and mostly assessed the acute effects of static active stretching and dynamic stretching during the warm-up. Dose-response relationships remain largely underexplored. Outcomes were mostly limited to general performance testing. Injury prevention and other effects of stretching remain poorly investigated. These relevant research gaps should be prioritized by funding policies. REGISTRATION OSF project ( https://osf.io/6auyj/ ) and registration ( https://osf.io/gu8ya ).
Collapse
Affiliation(s)
- José Afonso
- Faculty of Sport, Centre of Research, Education, Innovation, and Intervention in Sport (CIFI2D), University of Porto, Porto, Portugal.
| | - Renato Andrade
- Clínica Espregueira-FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
- Porto Biomechanics Laboratory (LABIOMEP), University of Porto, Porto, Portugal
| | - Sílvia Rocha-Rodrigues
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Alvares, 4900-347, Viana do Castelo, Portugal
- Tumour and Microenvironment Interactions Group, INEB-Institute of Biomedical Engineering, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-153, Porto, Portugal
- Sport Physical Activity and Health Research & Innovation Center, 4900-347, Viana do Castelo, Portugal
| | - Fábio Yuzo Nakamura
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Maia, Maia, Portugal
| | - Hugo Sarmento
- University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF), Faculty of Sport Sciences and Physical Education, Coimbra, Portugal
| | - Sandro R Freitas
- Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada, Portugal
| | - Ana Filipa Silva
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Alvares, 4900-347, Viana do Castelo, Portugal
- Sport Physical Activity and Health Research & Innovation Center, 4900-347, Viana do Castelo, Portugal
| | - Lorenzo Laporta
- Núcleo de Estudos em Performance Analysis Esportiva (NEPAE/UFSM), Universidade Federal de Santa Maria, Avenida Roraima, nº 1000, Cidade Universitária, Bairro Camobi, Santa Maria, RS, CEP: 97105-900, Brazil
| | | | - Zeki Akyildiz
- Sports Science Faculty, Department of Coaching Education, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Rongzhi Chen
- Faculty of Sport, Centre of Research, Education, Innovation, and Intervention in Sport (CIFI2D), University of Porto, Porto, Portugal
| | - Andreia Pizarro
- Faculty of Sport, Research Center in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Rua das Taipas, 135, 4050-600, Porto, Portugal
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy. Faculty of Rehabilitation Sciences, Universidad Andres Bello, 7591538, Santiago, Chile
| | - Filipe Manuel Clemente
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Alvares, 4900-347, Viana do Castelo, Portugal
- Sport Physical Activity and Health Research & Innovation Center, 4900-347, Viana do Castelo, Portugal
- Gdańsk University of Physical Education and Sport, 80-336, Gdańsk, Poland
| |
Collapse
|
15
|
Warneke K, Turau K, Lohmann LH, Hillebrecht M, Behm DG, Konrad A, Schmidt T. Resistance Training Causes the Stretch-Induced Force Deficit-A Randomized Cross-Over Study. Sports (Basel) 2024; 12:145. [PMID: 38921839 PMCID: PMC11209436 DOI: 10.3390/sports12060145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
PURPOSE Stretch-induced force deficit suggests an acute stretch-specific strength capacity loss, which is commonly attributed to EMG reductions. Since those deficits could also be attributed to general fatigue induced by overloading the muscle, this study aimed to compare stretching with an exhausting calf raise programme to compare strength and stretching responses. METHOD This study included 16 participants with different, high-duration calf muscle stretching effects (10, 20, 30 min of stretching) with resistance training (RT) (3 × 12 repetitions) performed until muscle failure, by using a cross-over study design with pre-post comparisons. Strength was tested via isometric plantar flexor diagnostics, while flexibility was assessed using the knee-to-wall test (KtW) and an isolated goniometer test. RESULTS Using a three-way ANOVA, RT strength decreases were greater compared to 10 and 20 min of stretching (p = 0.01-0.02), but similar to those of 30 min of stretching. ROM in the KtW showed no specific stretch-induced increases, while only the stretching conditions enhanced isolated tested ROM (p < 0.001-0.008). No RT-related isolated ROM increases were observed. CONCLUSIONS The results showed both interventions had similar effects on strength and ROM in the calf muscles. More holistic explanatory approaches such as fatigue and warm-up are discussed in the manuscript and call for further research.
Collapse
Affiliation(s)
- Konstantin Warneke
- Institute of Human Movement Science and Exercise, University of Graz, 8010 Graz, Austria;
- Institute of Sport Science, Alpen-Adria University Klagenfurt, 9020 Klagenfurt am Wörthersee, Austria
| | - Katharina Turau
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany; (K.T.); (T.S.)
| | - Lars Hubertus Lohmann
- University Sport Center, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany; (L.H.L.); (M.H.)
- Institute of Human Movement Science and Exercise Physiology, Friedrich-Schiller University Jena, 07743 Jena, Germany
| | - Martin Hillebrecht
- University Sport Center, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany; (L.H.L.); (M.H.)
| | - David G. Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, P.O. Box 4200, St. John’s, NL A1C 5S7, Canada;
| | - Andreas Konrad
- Institute of Human Movement Science and Exercise, University of Graz, 8010 Graz, Austria;
| | - Tobias Schmidt
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany; (K.T.); (T.S.)
| |
Collapse
|
16
|
Dos Reis AL, Oliveira LS, da Silva APM, Barbosa B, de Oliveira LC, de Oliveira RG. Acute effect of static stretching and pilates stretching on the concentric muscle strength of the knee extensors and flexors. J Bodyw Mov Ther 2024; 38:554-561. [PMID: 38763608 DOI: 10.1016/j.jbmt.2024.03.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION The effects of stretching exercises on muscle strength have been widely researched in the literature, however, there are no studies investigating the effects of Pilates stretching. OBJECTIVE To compare the effects of static stretching and Pilates stretching on the concentric muscle strength of the knee extensors and flexors. METHOD 102 trained young adults were randomized into three groups: static stretching (n = 33); Pilates stretching (n = 34); control (n = 35). Isokinetic evaluation of the knee extensor and flexor muscles was performed at 60°/s and 180°/s, pre and post acute intervention with stretching. Interventions in the static stretching and Pilates stretching groups occurred in 3 sets x 30 s for each body region considered (a-knee extensor muscles; b-knee flexor muscles). The control group did not perform any intervention. RESULTS No difference (p > 0.05) was observed between the groups after the intervention. There was only a significant intragroup improvement for the control group on the isokinetic muscle strength of the knee flexors at 180°/s, with a moderate effect size, considering the entire sample (p = 0.040; d = 0.42) and when considering only male gender (p = 0.010; d = 0.60). CONCLUSION Static stretching or Pilates stretching performed as a warm-up did not impair or enhance the concentric muscle strength performance of the knee extensors and flexors. In this way, both forms of stretching can be considered as preparatory exercises before muscle strength training.
Collapse
Affiliation(s)
- Alex Lopes Dos Reis
- Postgraduate Program in Human Movement Sciences, Health Sciences Center, Universidade Estadual Do Norte Do Paraná (UENP), Jacarezinho, Paraná, Brazil
| | - Letícia Siqueira Oliveira
- Postgraduate Program in Human Movement Sciences, Health Sciences Center, Universidade Estadual Do Norte Do Paraná (UENP), Jacarezinho, Paraná, Brazil
| | - Amanda Priscila Moreno da Silva
- Postgraduate Program in Human Movement Sciences, Health Sciences Center, Universidade Estadual Do Norte Do Paraná (UENP), Jacarezinho, Paraná, Brazil
| | - Bianca Barbosa
- Postgraduate Program in Human Movement Sciences, Health Sciences Center, Universidade Estadual Do Norte Do Paraná (UENP), Jacarezinho, Paraná, Brazil
| | - Laís Campos de Oliveira
- Postgraduate Program in Human Movement Sciences, Health Sciences Center, Universidade Estadual Do Norte Do Paraná (UENP), Jacarezinho, Paraná, Brazil
| | - Raphael Gonçalves de Oliveira
- Postgraduate Program in Human Movement Sciences, Health Sciences Center, Universidade Estadual Do Norte Do Paraná (UENP), Jacarezinho, Paraná, Brazil.
| |
Collapse
|
17
|
Yu W, Feng D, Zhong Y, Luo X, Xu Q, Yu J. Examining the Influence of Warm-Up Static and Dynamic Stretching, as well as Post-Activation Potentiation Effects, on the Acute Enhancement of Gymnastic Performance: A Systematic Review with Meta-Analysis. J Sports Sci Med 2024; 23:156-176. [PMID: 38455430 PMCID: PMC10915619 DOI: 10.52082/jssm.2024.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024]
Abstract
The primary objective of this systematic review with meta-analysis is to methodically discern and compare the impact of diverse warm-up strategies, including both static and dynamic stretching, as well as post-activation potentiation techniques, on the immediate performance of gymnasts. Adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, this paper evaluated studies that examined the gymnasts' performance after different warm-up strategies namely stretching (static [SS] or dynamic), vibration platforms (VP) or post-activation, in comparison to control conditions (e.g., mixed warm-up routines; no warm-up). The principal outcomes were centered on technical performance metrics (e.g., split, gymnastic jumps) and physical performance metrics (e.g., squat jump, countermovement jump, drop jump, balance, range of motion). Methodological assessments of the included studies were conducted using the Downs and Black Checklist. From the initial search across PubMed, Scopus, and the Web of Science databases, a total of 591 titles were retrieved, and 19 articles were ultimately incorporated in the analysis. The results revealed a non-significant differences (p > 0.05) between the SS condition and control conditions in squat jump performance, countermovement jump and gymnastic technical performance (e.g., split; split jump). Despite the difference in warm-up strategies and outcomes analyzed, the results suggest that there is no significant impairment of lower-limb power after SS. Additionally, technical elements dependent on flexibility appear to be enhanced by SS. Conversely, dynamic stretching and VP seem to be more effective for augmenting power-related and dynamic performance in gymnasts.
Collapse
Affiliation(s)
- Wenlu Yu
- Chengdu University, Chengdu, China
| | - DeSen Feng
- ChengDu Sports University, Chengdu, China
| | - Ya Zhong
- The Affiliated Elementary School of Chengdu University, Chengdu, China
| | | | - Qi Xu
- Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | | |
Collapse
|
18
|
Herrera E, Osorio-Fuentealba C. Impact of warm-up methods on strength-speed for sprinters in athletics: a mini review. Front Sports Act Living 2024; 6:1360414. [PMID: 38476581 PMCID: PMC10927743 DOI: 10.3389/fspor.2024.1360414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
In athletics, achieving peak performance during competitions is crucial. Warm-up strategies play a crucial role in optimizing the strength-speed performance of sprinters in athletics, especially tailored to the physiological demands of speed events. The need to balance flexibility, prevent injuries, and enhance power output makes the selection of an effective warm-up protocol essential. This narrative review examines different warm-up methods used by athletes and their effects on strength-speed in sprinters in athletics. The main findings indicate that Foam Rolling (FR), Isometric Exercises and Pre-Competitive Massages have no significant effects on sprint performance. Static stretching and prolonged Pre-Competitive Massages have negative impacts on strength and power. The Vibration Platform enhances step length, step rate and running velocity, jump height and total number of jumps performed in a 30-s period in non-experienced sprinters. Eccentric Exercise increases vertical force, Post-Activation Potentiation (PAP) demonstrates a reduction in 100-meter time and short-term improvement in vertical and horizontal jumps. Blood Flow Restriction (BFR) significantly improving jump height and flight time. Various warm-up methods have been identified, some focusing on flexibility, others potentially detrimental, and some enhancing strength and power. Implementing effective warm-ups, particularly those promoting strength and power, poses a challenge for coaches seeking reliable alternatives to boost performance.
Collapse
Affiliation(s)
- Eduardo Herrera
- Programa de Magíster en Ciencias Aplicadas al Movimiento y la Cognición Humana, Departamento de Kinesiología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Cesar Osorio-Fuentealba
- Programa de Magíster en Ciencias Aplicadas al Movimiento y la Cognición Humana, Departamento de Kinesiología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
- Núcleo de Bienestar y Desarrollo Humano (NUBIDEH), Centro de Investigación en Educación (CIE-UMCE), Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| |
Collapse
|
19
|
Oba K, Kyotani N, Tanaka M, Komatsuzaki M, Kasahara S, Ogasawara K, Samukawa M. Acute effects of static and dynamic stretching for ankle plantar flexors on postural control during the single-leg standing task. Sports Biomech 2023:1-11. [PMID: 38151982 DOI: 10.1080/14763141.2023.2298967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Static stretching (SS) and dynamic stretching (DS) are widely used as warm-ups before sports. However, whether stretching affects postural control remains unclear. We compared the effects of SS and DS on the plantar flexors and postural control during single-leg standing. Fifteen healthy young participants performed SS, DS, or no stretching (control). The stretch condition consisted of four sets lasting 30 s each. The control condition was a rest with standing for 210 s. Center of pressure (COP) displacement was measured using a force plate before and after each intervention to assess postural control during the single-leg standing task. The COP area, COP velocity, and anteroposterior (COPAP) and mediolateral (COPML) range were calculated. DS significantly decreased in the COPML range (21.5 ± 4.1 to 19.0 ± 2.5 mm; P = 0.02), COP velocity (33.8 ± 7.6 to 29.8 ± 6.5 mm/s; P < 0.01), and COP area (498.6 ± 148.3 to 393.3 ± 101.1 mm2; P < 0.01), whereas SS did not change in the COP parameters (COP area 457.2 ± 108.3 to 477.8 ± 106.1 mm2, P = .49; COP velocity 31.2 ± 4.2 to 30.7 ± 5.8 mm/s, P = 0.60; COPAP 25.4 ± 3.1 to 25.3 ± 3.2 mm, P = 0.02; COPML 20.7 ± 3.3 to 21.1 ± 2.5 mm, P = 0.94). Therefore, DS of the plantar flexors enhances postural control during single-leg standing and may be effective for both injury prevention and performance enhancement.
Collapse
Affiliation(s)
- Kensuke Oba
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Department of Rehabilitation, Hitsujigaoka Hospital, Sapporo, Japan
| | - Naoto Kyotani
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Minori Tanaka
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Miho Komatsuzaki
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | | | | | - Mina Samukawa
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
20
|
Behm DG, Alizadeh S, Daneshjoo A, Anvar SH, Graham A, Zahiri A, Goudini R, Edwards C, Culleton R, Scharf C, Konrad A. Acute Effects of Various Stretching Techniques on Range of Motion: A Systematic Review with Meta-Analysis. SPORTS MEDICINE - OPEN 2023; 9:107. [PMID: 37962709 PMCID: PMC10645614 DOI: 10.1186/s40798-023-00652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/22/2023] [Indexed: 11/15/2023]
Abstract
Background Although stretching can acutely increase joint range of motion (ROM), there are a variety of factors which could influence the extent of stretch-induced flexibility such as participant characteristics, stretching intensities, durations, type (technique), and muscle or joint tested. Objective The objective of this systematic review and meta-analysis was to investigate the acute effects of stretching on ROM including moderating variables such as muscles tested, stretch techniques, intensity, sex, and trained state. Methods A random-effect meta-analysis was performed from 47 eligible studies (110 effect sizes). A mixed-effect meta-analysis subgroup analysis was also performed on the moderating variables. A meta-regression was also performed between age and stretch duration. GRADE analysis was used to assess the quality of evidence obtained from this meta-analysis. Results The meta-analysis revealed a small ROM standard mean difference in favor of an acute bout of stretching compared to non-active control condition (ES = −0.555; Z = −8.939; CI (95%) −0.677 to −0.434; p < 0.001; I2 = 33.32). While there were ROM increases with sit and reach (P = 0.038), hamstrings (P < 0.001), and triceps surae (P = 0.002) tests, there was no change with the hip adductor test (P = 0.403). Further subgroup analyses revealed no significant difference in stretch intensity (P = 0.76), trained state (P = 0.99), stretching techniques (P = 0.72), and sex (P = 0.89). Finally, meta-regression showed no relationship between the ROM standard mean differences to age (R2 = −0.03; P = 0.56) and stretch duration (R 2 = 0.00; P = 0.39), respectively. GRADE analysis indicated that we can be moderately confident in the effect estimates. Conclusion A single bout of stretching can be considered effective for providing acute small magnitude ROM improvements for most ROM tests, which are not significantly affected by stretch intensity, participants’ trained state, stretching techniques, and sex. Supplementary Information The online version contains supplementary material available at 10.1186/s40798-023-00652-x. The meta-analysis on joint range of motion (ROM) increases revealed a small effect size in favor of an acute bout of stretching compared to the control condition. Subgroup analysis revealed a significant increase in ROM with sit and reach, hamstrings, and triceps surae tests, but no improvement with the hip adductor tests. Whereas all moderating variables presented significant increases in ROM, further subgroup analyses revealed no significant difference in ROM gains with the stretch intensity, trained state of the participants, stretching techniques, and sex. A meta-regression showed no relationship between the effect sizes to age and stretch duration, respectively.
Collapse
Affiliation(s)
- David George Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| | - Shahab Alizadeh
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Abdolhamid Daneshjoo
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
- Department of Sport Injuries and Corrective Exercises, Faculty of Sport Sciences, Shahid Bahonar University of Kerman, Kerman, 76169-13439, Iran
| | - Saman Hadjizadeh Anvar
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Andrew Graham
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Ali Zahiri
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Reza Goudini
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Chris Edwards
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Robyn Culleton
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Carina Scharf
- Institute of Human Movement Science, Sport and Health, Graz University, Mozartgasse 14, 8010, Graz, Austria
| | - Andreas Konrad
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
- Institute of Human Movement Science, Sport and Health, Graz University, Mozartgasse 14, 8010, Graz, Austria.
| |
Collapse
|
21
|
Delaire L, Courtay A, Humblot J, Aubertin-Leheudre M, Mourey F, Racine AN, Gilbert T, Niasse-Sy Z, Bonnefoy M. Implementation and Core Components of a Multimodal Program including Exercise and Nutrition in Prevention and Treatment of Frailty in Community-Dwelling Older Adults: A Narrative Review. Nutrients 2023; 15:4100. [PMID: 37836384 PMCID: PMC10574358 DOI: 10.3390/nu15194100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Increasing disability-free life expectancy is a crucial issue to optimize active ageing and to reduce the burden of evitable medical costs. One of the main challenges is to develop pragmatic and personalized prevention strategies in order to prevent frailty, counteract adverse outcomes such as falls and mobility disability, and to improve quality of life. Strong evidence reports the effectiveness of exercise interventions to improve various physical parameters and muscle function that are cornerstones of frailty. Other findings also suggest that the interactions between nutrition and physical exercise with or without health behavior promotion prevent the development of frailty. Multimodal programs, including structured exercise, adequate dietary intervention and health behavior promotion, appear increasingly consensual. However, in order for implementation in real-life settings, some pitfalls need to be addressed. In this perspective, structuring and tailoring feasible, acceptable and sustainable interventions to optimize exercise training responses are essential conditions to warrant short, medium and long-term individual benefits. The different components of exercise programs appear to be fairly consensual and effective. However, specific composition of the programs proposed (frequency, intensity, type, time, volume and progressiveness) have to be tailored to individual characteristics and objectives in order to improve exercise responses. The intervention approaches, behavioral strategies and indications for these programs also need to be refined and framed. The main objective of this work is to guide the actions of healthcare professionals and enable them to widely and effectively implement multimodal programs including exercise, nutrition and behavioral strategies in real-life settings.
Collapse
Affiliation(s)
- Leo Delaire
- Service de Médecine du Vieillissement, Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France; (A.C.); (J.H.); (T.G.); (Z.N.-S.); (M.B.)
- Programme «Bien sur ses Jambes», Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
| | - Aymeric Courtay
- Service de Médecine du Vieillissement, Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France; (A.C.); (J.H.); (T.G.); (Z.N.-S.); (M.B.)
- Programme «Bien sur ses Jambes», Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
| | - Joannès Humblot
- Service de Médecine du Vieillissement, Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France; (A.C.); (J.H.); (T.G.); (Z.N.-S.); (M.B.)
- Programme «Bien sur ses Jambes», Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
| | - Mylène Aubertin-Leheudre
- Centre de Recherche de L’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC H3W 1W5, Canada;
- Groupe de Recherche en Activité Physique Adaptée, Département des Sciences de l’Activité Physique, Université du Québec à Montréal (UQÀM), Montréal, QC H2L 2C4, Canada
| | - France Mourey
- Laboratoire CAPS (Cognition, Action, et Plasticité Sensorimotrice), Inserm U1093, UFR STAPS, Université de Bourgogne, Campus Universitaire, BP 27877, 21078 Dijon, France;
| | | | - Thomas Gilbert
- Service de Médecine du Vieillissement, Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France; (A.C.); (J.H.); (T.G.); (Z.N.-S.); (M.B.)
- Programme «Bien sur ses Jambes», Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- RESHAPE Research on Healthcare Professionals and Performance, Inserm U1290, Université Claude Bernard Lyon 1, 69008 Lyon, France
| | - Zeinabou Niasse-Sy
- Service de Médecine du Vieillissement, Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France; (A.C.); (J.H.); (T.G.); (Z.N.-S.); (M.B.)
- Programme «Bien sur ses Jambes», Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
| | - Marc Bonnefoy
- Service de Médecine du Vieillissement, Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France; (A.C.); (J.H.); (T.G.); (Z.N.-S.); (M.B.)
- Programme «Bien sur ses Jambes», Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Inserm U1060-CarMeN, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| |
Collapse
|
22
|
Ltifi MA, Jlid MC, Coquart J, Maffulli N, van den Tillaar R, Aouadi R. Acute Effect of Four Stretching Protocols on Change of Direction in U-17 Male Soccer Players. Sports (Basel) 2023; 11:165. [PMID: 37755842 PMCID: PMC10535123 DOI: 10.3390/sports11090165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND The ability to rapidly change direction while sprinting is a desirable athletic skill in soccer. Enhancing change of direction (COD) performance depends almost exclusively on specific training, with stretching traditionally considered one such intervention. However, the comparative impact of diverse stretching methods on COD in soccer players remains an area of interest. Therefore, this study aimed to compare the effects of different stretching methods on COD ability in soccer players. METHODS Twelve male soccer players playing in the national championship football division II (age: 16.3 ± 0.3 years, height: 1.81 ± 0.10 m, body mass: 67.7 ± 7.2 kg) were tested for COD performance (i.e., Illinois agility test) after (1) control condition (20 min general warm-up without stretching), (2) static stretching, (3) dynamic stretching, (4) combined static-dynamic stretching, and (5) combined dynamic-static stretching. The duration of stretching intervention was approximately 6 min for static and dynamic stretching and 12 min for both the combined stretching conditions. The experimental sessions were separated by 72 h. RESULTS COD improved after dynamic stretching when compared to any other condition (p: 0.03-0.002; ηp2: 0.56-0.73), except for the control condition (p = 0.146; ηp2 = 0.18). In contrast, static stretching induced a detrimental effect on COD when compared only to the dynamic stretching condition (p < 0.01; ES = 1.35). CONCLUSION Dynamic stretching exercises used by male soccer players in the warm-up improved COD. Other forms of stretching exercises, particularly static stretching, negatively impacted the COD performance. Therefore, coaches can consider integrating dynamic stretching protocols tailored to the athletes' specific needs. Moreover, extending the investigation to encompass a wider range of athletes, including different age groups and genders, would enhance the applicability and generalization of the findings.
Collapse
Affiliation(s)
- Mohamed Amine Ltifi
- Higher Institute of Sport and Physical Education of Ksar Said, Manouba 2010, Tunisia; (M.A.L.); (M.C.J.); (R.A.)
- Research Laboratory (LR23JS01) “Sport Performance, Health & Society” Higher Institute of Sport and Physical Education of Ksar Said, University of Manouba, Manouba 2010, Tunisia
| | - Mohamed Chedly Jlid
- Higher Institute of Sport and Physical Education of Ksar Said, Manouba 2010, Tunisia; (M.A.L.); (M.C.J.); (R.A.)
- Research Laboratory (LR23JS01) “Sport Performance, Health & Society” Higher Institute of Sport and Physical Education of Ksar Said, University of Manouba, Manouba 2010, Tunisia
| | - Jérémy Coquart
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, ULR 7369-URePSSS-Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, BP 10665-62030 Arras, France;
| | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, Università of Rome ‘La Sapienza’, 00185 Rome, Italy;
| | - Roland van den Tillaar
- Department for Sports Science and Physical Education, Nord University, 7600 Levanger, Norway
| | - Ridha Aouadi
- Higher Institute of Sport and Physical Education of Ksar Said, Manouba 2010, Tunisia; (M.A.L.); (M.C.J.); (R.A.)
- Research Laboratory (LR23JS01) “Sport Performance, Health & Society” Higher Institute of Sport and Physical Education of Ksar Said, University of Manouba, Manouba 2010, Tunisia
| |
Collapse
|
23
|
Kannas TM, Stefanis G, Kousinas A, Chalatzoglidis G, Arabatzi F. Vertical Jumping Performance: Recording the Effects of Proprioceptive Neuromuscular Facilitation Stretching at Different Plantar Flexor Lengths. Cureus 2023; 15:e43346. [PMID: 37701015 PMCID: PMC10495032 DOI: 10.7759/cureus.43346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
INTRODUCTION Flexibility seems to be an essential part of both the training and rehabilitation processes. Several stretching techniques have been used to improve the range of motion (ROM) of the joints with the proprioceptive neuromuscular facilitation (PNF) method being the most effective one. Although plantar flexors are ideal to compare the acute effects of synergistic muscle groups on performance, it is not clear whether the PNF stretch at different muscle lengths could result in different alterations. MATERIAL AND METHODS Sixteen male students randomly performed 2 levels of stretching (PNF with bended knees, or PNFshort, and with extended knee, or PNFlong) and 3 types of jumps, separated by 48 hours (7 sessions in total). Jumping parameters were recorded by a force plate, and the final jumping height (H) and ground reaction forces (Fz) were analyzed. Furthermore, the ROM of the ankle joint was recorded before, right after, and 15 minutes after the stretches. Results: The ankle joint's ROM joint was increased after both interventions. No significant changes were found in the jumping height of all jumps. The Fz, during the squat jump (SJ) and countermovement jump (CMJ), were increased after PNFshort. Similarly, a significant increase was found in Fz in drop jumps (DJ) right after the PNFshort. CONCLUSION Our findings demonstrated that PNF stretches of different lengths could potentially alter the stretch-shortening cycle's performance, possibly leading to a non-optimal muscle-tendon interaction.
Collapse
Affiliation(s)
- Theodoros M Kannas
- Laboratory of Neuromechanics, Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, Serres, Thessaloniki, GRC
| | - Georgios Stefanis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, Serres, Thessaloniki, GRC
| | - Apostolis Kousinas
- Laboratory of Neuromechanics, Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, Serres, Thessaloniki, GRC
| | - Georgios Chalatzoglidis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, Serres, Thessaloniki, GRC
| | - Fotini Arabatzi
- Laboratory of Neuromechanics, Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, Serres, GRC
| |
Collapse
|
24
|
Cai P, Liu L, Li H. Dynamic and static stretching on hamstring flexibility and stiffness: A systematic review and meta-analysis. Heliyon 2023; 9:e18795. [PMID: 37560703 PMCID: PMC10407730 DOI: 10.1016/j.heliyon.2023.e18795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
INTRODUCTION Hamstring injuries are one of the most common types of damage in sports. Insufficient flexibility and high stiffness are important reasons for it. Stretching is often used in warm-up activities before exercises to increase flexibility, among which dynamic stretching (DS) and static stretching (SS) are the most widely used. The effects of these two stretching techniques on the flexibility or stiffness of the hamstring still need to be clarified. OBJECTIVE This study aimed to compare the short-term, medium-term, and long-term effects of DS and SS on improving hamstring flexibility and stiffness via a meta-analysis of RCTs. METHODS RCTs were identified from PubMed, Cochrane Library, Web of Science, and PEDro from inception to July 28, 2022. The methodological quality was evaluated using the PEDro scale. The mean difference and 95% confidence interval of the outcome variables before and after stretching were calculated and the extracted data were quantitatively processed using a random or fixed effects model. RESULTS A total of 27 RCTs and 606 participants were included. In terms of improving the ROM of the hamstring, there was no significant difference in the acute (MD, -0.70, 95% CI, -1.54 to 0.14; Z = 1.63, P > 0.05) and sub-acute effects (MD, 1.71, 95% CI, -2.80 to 6.22; Z = 0.74, P > 0.05) between a single bout of SS and DS, while the acute (MD, -5.13, 95% CI, -7.65 to -2.61; Z = 3.99, P < 0.05) and sub-acute effects (MD, -5.30, 95% CI, -6.33 to -4.27; Z = 10.04, P < 0.05) of multiple bouts of SS was superior to DS; There was no significant difference in the medium-term effect between the two stretching techniques (MD, 3.48, 95% CI, -2.57 to 9.53; Z = 1.13, P > 0.05), but the long-term effect of SS was better than DS (MD, - 10.40, 95% CI, -10.97 to -9.83; Z = 35.57, P < 0.05). Regarding the length of the hamstring, the acute (MD, -0.41, 95% CI, -1.09 to 0.26; Z = 1.20, P > 0.05) and sub-acute effects (MD, -0.73, 95% CI, -1.69 to 0.22; Z = 1.51, P > 0.05) of a single bout of DS and SS were similar. Two studies have compared the effects on hamstring stiffness, with one showing similar effects, and the other showed that DS was superior to SS. One study showed no difference in the magnitude of change in improving passive torque. No studies explored the effect of DS and SS on hamstring myofascial length. Only one study demonstrated no significant difference in hamstring thickness. CONCLUSIONS A single bout of DS and SS have similar short-term effects in improving hamstring ROM and length, while multiple bouts of SS can significantly improve hamstring ROM compared to DS. DS and SS showed similar effects on hamstring myofascial length.
Collapse
Affiliation(s)
- Peng Cai
- Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Lewen Liu
- Faculty of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Hai Li
- Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
25
|
Pethick J, Moran J, Behm DG. Prolonged static stretching increases the magnitude and decreases the complexity of knee extensor muscle force fluctuations. PLoS One 2023; 18:e0288167. [PMID: 37478104 PMCID: PMC10361527 DOI: 10.1371/journal.pone.0288167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/21/2023] [Indexed: 07/23/2023] Open
Abstract
Static stretching decreases maximal muscle force generation in a dose-response manner, but its effects on the generation of task-relevant and precise levels of submaximal force, i.e. force control, is unclear. We investigated the effect of acute static stretching on knee extensor force control, quantified according to both the magnitude and complexity of force fluctuations. Twelve healthy participants performed a series of isometric knee extensor maximal voluntary contractions (MVCs) and targeted intermittent submaximal contractions at 25, 50 and 75% MVC (3 x 6 seconds contraction separated by 4 seconds rest, with 60 seconds rest between each intensity) prior to, and immediately after, one of four continuous static stretch conditions: 1) no stretch; 2) 30-second stretch; 3) 60-second stretch; 4) 120-second stretch. The magnitude of force fluctuations was quantified using the standard deviation (SD) and coefficient of variation (CV), while the complexity of fluctuations was quantified using approximate entropy (ApEn) and detrended fluctuation analysis (DFA) α. These measures were calculated using the steadiest 5 seconds of the targeted submaximal contractions at each intensity (i.e., that with the lowest SD). Significant decreases in MVC were evident following the 30, 60 and 120-second stretch conditions (all P < 0.001), with a significant correlation observed between stretch duration and the magnitude of decrease in MVC (r = -0.58, P < 0.001). The 120-second stretch resulted in significant increases in SD at 50% MVC (P = 0.007) and CV at 50% (P = 0.009) and 75% MVC (P = 0.005), and a significant decrease in ApEn at 75% MVC (P < 0.001). These results indicate that the negative effects of prolonged static stretching extend beyond maximal force generation tasks to those involving generation of precise levels of force during moderate- to high-intensity submaximal contractions.
Collapse
Affiliation(s)
- Jamie Pethick
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, Essex, United Kingdom
| | - Jason Moran
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, Essex, United Kingdom
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
26
|
Behm DG, Alizadeh S, Daneshjoo A, Konrad A. Potential Effects of Dynamic Stretching on Injury Incidence of Athletes: A Narrative Review of Risk Factors. Sports Med 2023; 53:1359-1373. [PMID: 37162736 PMCID: PMC10289929 DOI: 10.1007/s40279-023-01847-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2023] [Indexed: 05/11/2023]
Abstract
The use of dynamic stretching as a replacement for static stretching in the warm-up is widespread based on the reports of static stretching-induced performance impairments. While acute and chronic static stretching has been reported to reduce musculotendinous injuries, especially with explosive and change of direction actions, the influence of dynamic stretching on injury incidence lacks a similar volume of literature for acute and chronic responses. It was the objective of this narrative review to examine the acute and training effects of dynamic stretching on injury incidence and possible moderating variables such as dynamic stretching effects on range of motion, strength, balance, proprioception, muscle morphology, and psycho-physiological responses. One study demonstrated no significant difference regarding injury incidence when comparing a dynamic stretching-only group versus a combined dynamic stretching plus static stretching group. The only other study examined functional dynamic stretching training with injured dancers and reported improved ankle joint stability. However, several studies have shown that dynamic activity with some dynamic stretching exercises within a warm-up consistently demonstrates positive effects on injury incidence. Regarding moderating variables, while there is evidence that an acute bout of dynamic stretching can enhance range of motion, the acute and training effects of dynamic stretching on strength, balance, proprioception, and musculotendinous stiffness/compliance are less clear. The acute effects of dynamic stretching on thixotropic effects and psycho-physiological responses could be beneficial for injury reduction. However, the overall conflicting studies and a lack of substantial literature compared with SS effects points to a need for more extensive studies in this area.
Collapse
Affiliation(s)
- David G. Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7 Canada
| | - Shahab Alizadeh
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7 Canada
| | - Abdolhamid Daneshjoo
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7 Canada
- Department of Sport Injuries and Corrective Exercises, Faculty of Sport Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Andreas Konrad
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7 Canada
- Institute of Human Movement Science, Sport and Health, Graz University, Graz, Austria
| |
Collapse
|
27
|
Warneke K, Aragão-Santos JC, Alizadeh S, Bahrami M, Anvar SH, Konrad A, Behm DG. Are Acute Effects of Foam-Rolling Attributed to Dynamic Warm Up Effects? A Comparative Study. J Sports Sci Med 2023; 22:180-188. [PMID: 37293416 PMCID: PMC10244996 DOI: 10.52082/jssm.2023.180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/09/2023] [Indexed: 03/22/2023]
Abstract
Over the last decade, acute increases in range of motion (ROM) in response to foam rolling (FR) have been frequently reported. Compared to stretching, FR-induced ROM increases were not typically accompanied by a performance (e.g., force, power, endurance) deficit. Consequently, the inclusion of FR in warm-up routines was frequently recommended, especially since literature pointed out non-local ROM increases after FR. However, to attribute ROM increases to FR it must be ensured that such adaptations do not occur as a result of simple warm-up effects, as significant increases in ROM can also be assumed as a result of active warm-up routines. To answer this research question, 20 participants were recruited using a cross-over design. They performed 4x45 seconds hamstrings rolling under two conditions; FR, and sham rolling (SR) using a roller board to imitate the foam rolling movement without the pressure of the foam rolling. They were also tested in a control condition. Effects on ROM were tested under passive, active dynamic as well as ballistic conditions. Moreover, to examine non-local effects the knee to wall test (KtW) was used. Results showed that both interventions provided significant, moderate to large magnitude increases in passive hamstrings ROM and KtW respectively, compared to the control condition (p = 0.007-0.041, d = 0.62-0.77 and p = 0.002-0.006, d = 0.79-0.88, respectively). However, the ROM increases were not significantly different between the FR and the SR condition (p = 0.801, d = 0.156 and p = 0.933, d = 0.09, respectively). No significant changes could be obtained under the active dynamic (p = 0.65) while there was a significant decrease in the ballistic testing condition with a time effect (p < 0.001). Thus, it can be assumed that potential acute increases in ROM cannot be exclusively attributed to FR. It is therefore speculated that warm up effects could be responsible independent of FR or imitating the rolling movement, which indicates there is no additive effect of FR or SR to the dynamic or ballistic range of motion.
Collapse
Affiliation(s)
- Konstantin Warneke
- Institute for Exercise, Sport and Health, Leuphana University, Lüneburg, Germany
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - José Carlos Aragão-Santos
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
- Health Sciences Graduate Program, Federal University of Sergipe, São Cristóvão, Brazil
| | - Shahab Alizadeh
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
- Department for Kinesiology, University of Calgary, Canada
| | - Mahdi Bahrami
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Saman Hadjizadeh Anvar
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
28
|
Pessoa D, Penfold H, Pegado S, Gonçalves M, Brandão J, Willardson J, Miranda H. Effect of Static Stretching on Agonists, Antagonists, and Agonist-Antagonist Combination on Total Training Volume. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2023; 16:665-675. [PMID: 37621382 PMCID: PMC10446949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The purpose of this study was to examine the effects of static stretching (SS) of agonists and antagonists between sets on the total training volume (TTV) performed across multiple sets for the leg extension exercise. Twelve male subjects with experience in resistance training (RT) participated in this study. Subjects performed 10 repetition maximum (10RM) test and retest trials for the leg extension exercise. Four different protocols were randomly applied as follows: quadriceps stretching (AG); hamstrings stretching (AN); quadriceps and hamstrings stretching (AGN); and traditional control without stretching (TR). Significant differences (p≤0.05) were observed in the TTV between the AG (4855.42 ± 1279.38 kg) and AN (6002.08 ± 1805.18 kg), AGN (5977.50 ± 1778.49 kg), and TR (6206.04 ± 1796.15 kg) protocols. These results suggest that when practicing inter-set SS, it should be done for antagonist rather than agonist muscles when the intent is to maximize TTV.
Collapse
Affiliation(s)
- Diego Pessoa
- School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, BRAZIL
- Lato Sensu Postgraduate Program in Strength Training, Federal University of Rio de Janeiro, Rio de Janeiro, BRAZIL
| | - Henrique Penfold
- School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, BRAZIL
- Lato Sensu Postgraduate Program in Strength Training, Federal University of Rio de Janeiro, Rio de Janeiro, BRAZIL
| | - Sincler Pegado
- School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, BRAZIL
- Lato Sensu Postgraduate Program in Strength Training, Federal University of Rio de Janeiro, Rio de Janeiro, BRAZIL
| | - Michel Gonçalves
- School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, BRAZIL
- Lato Sensu Postgraduate Program in Strength Training, Federal University of Rio de Janeiro, Rio de Janeiro, BRAZIL
- LADTEF - Performance, Training, and Physical Exercise Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, BRAZIL
- CCFEx - Brazilian Army Physical Training Center, Rio de Janeiro, BRAZIL
| | - Juliana Brandão
- Sport and Exercise Laboratory, State University of Rio de Janeiro, Rio de Janeiro, BRAZIL
- Lato Sensu Postgraduate Program in Sport and Exercise Science, Physical Education and Sport Institute, State University of Rio de Janeiro, Rio de Janeiro, BRAZIL
| | - Jeffrey Willardson
- Department of Health and Human Performance, Montana State University-Billings, Billings, MT, USA
| | - Humberto Miranda
- School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, BRAZIL
- Lato Sensu Postgraduate Program in Strength Training, Federal University of Rio de Janeiro, Rio de Janeiro, BRAZIL
- LADTEF - Performance, Training, and Physical Exercise Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, BRAZIL
| |
Collapse
|
29
|
Bittmann FN, Dech S, Schaefer LV. How to Confuse Motor Control: Passive Muscle Shortening after Contraction in Lengthened Position Reduces the Muscular Holding Stability in the Sense of Adaptive Force. Life (Basel) 2023; 13:life13040911. [PMID: 37109439 PMCID: PMC10143964 DOI: 10.3390/life13040911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Adaptation to external forces relies on a well-functioning proprioceptive system including muscle spindle afferents. Muscle length and tension control in reaction to external forces is most important regarding the Adaptive Force (AF). This study investigated the effect of different procedures, which are assumed to influence the function of muscle spindles, on the AF. Elbow flexors of 12 healthy participants (n = 19 limbs) were assessed by an objectified manual muscle test (MMT) with different procedures: regular MMT, MMT after precontraction (self-estimated 20% MVIC) in lengthened position with passive return to test position (CL), and MMT after CL with a second precontraction in test position (CL-CT). During regular MMTs, muscles maintained their length up to 99.7% ± 1.0% of the maximal AF (AFmax). After CL, muscles started to lengthen at 53.0% ± 22.5% of AFmax. For CL-CT, muscles were again able to maintain the static position up to 98.3% ± 5.5% of AFmax. AFisomax differed highly significantly between CL vs. CL-CT and regular MMT. CL was assumed to generate a slack of muscle spindles, which led to a substantial reduction of the holding capacity. This was immediately erased by a precontraction in the test position. The results substantiate that muscle spindle sensitivity seems to play an important role for neuromuscular functioning and musculoskeletal stability.
Collapse
Affiliation(s)
- Frank N. Bittmann
- Regulative Physiology and Prevention, Department Sports and Health Sciences, University of Potsdam, 14476 Potsdam, Germany
| | - Silas Dech
- Regulative Physiology and Prevention, Department Sports and Health Sciences, University of Potsdam, 14476 Potsdam, Germany
- Sports Education, Department Sports and Health Sciences, University of Potsdam, 14476 Potsdam, Germany
| | - Laura V. Schaefer
- Regulative Physiology and Prevention, Department Sports and Health Sciences, University of Potsdam, 14476 Potsdam, Germany
- Sports Education, Department Sports and Health Sciences, University of Potsdam, 14476 Potsdam, Germany
- Correspondence:
| |
Collapse
|
30
|
Lévenéz M, Moeremans M, Booghs C, Vigouroux F, Leveque C, Hemelryck W, Balestra C. Architectural and Mechanical Changes after Five Weeks of Intermittent Static Stretch Training on the Medial Gastrocnemius Muscle of Active Adults. Sports (Basel) 2023; 11:sports11040073. [PMID: 37104147 PMCID: PMC10144030 DOI: 10.3390/sports11040073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
We investigated the effects of intermittent long-term stretch training (5 weeks) on the architectural and mechanical properties of the muscle–tendon unit (MTU) in healthy humans. MTU’s viscoelastic and architectural properties in the human medial gastrocnemius (MG) muscle and the contribution of muscle and tendon structures to the MTU lengthening were analyzed. Ten healthy volunteers participated in the study (four females and six males). The passive stretch of the plantar flexor muscles was achieved from 0° (neutral ankle position) to 25° of dorsiflexion. Measurements were obtained during a single passive stretch before and after the completion of the stretching protocol. During the stretch, the architectural parameters of the MG muscle were measured via ultrasonography, and the passive torque was recorded by means of a strain-gauge transducer. Repeated-measure ANOVA was applied for all parameters. When expressed as a percentage for all dorsiflexion angles, the relative torque values decreased (p < 0.001). In the same way, architectural parameters (pennation angle and fascicle length) were compared for covariance and showed a significant difference between the slopes (ANCOVA p < 0.0001 and p < 0.001, respectively) suggesting a modification in the mechanical behavior after stretch training. Furthermore, the values for passive stiffness decreased (p < 0.05). The maximum ankle range of motion (ROM) (p < 0.01) and the maximum passive torque (p < 0.05) increased. Lastly, the contribution of the free tendon increased more than fascicle elongation to the total lengthening of the MTU (ANCOVA p < 0.001). Our results suggest that five weeks of intermittent static stretch training significantly change the behavior of the MTU. Specifically, it can increase flexibility and increase tendon contribution during MTU lengthening.
Collapse
Affiliation(s)
- Morgan Lévenéz
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Matthieu Moeremans
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Cédric Booghs
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Florent Vigouroux
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Clément Leveque
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Walter Hemelryck
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussel, 1090 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- Correspondence:
| |
Collapse
|
31
|
Kurt C, Gürol B, Nebioğlu İÖ. Effects of traditional stretching versus self-myofascial release warm-up on physical performance in well-trained female athletes. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2023; 23:61-71. [PMID: 36856101 PMCID: PMC9976183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
OBJECTIVE The purpose of this study was to compare the acute effects of self-myofascial release (SMR) versus traditional stretching used as a part of warm-up on physical performance in well-trained female athletes. METHODS Twenty-three participants (age, 21.8±1.73 years; experience in sport, 114.8±30.5 months) were recruited. Isokinetic peak torque and muscle endurance ratio were measured during knee extension and flexion at 60°/s and 180°/s. Jump height, reactive strength index, and leg stiffness were measured using a jump mat during a counter-movement jump. Hamstring flexibility was measured using a sit-and-reach test. Three interventions were performed by all athletes randomly within 72 hours intervals. RESULTS The jump height and hamstring flexibility test scores improved significantly more after dynamic stretching (DS) as compared to SMR and static stretching (SS). The DS and SMR exercises were more effective than the SS exercises in terms of right and left knee muscle isokinetic strength both at 60°/s, and 180°/s. With regard to keeping muscular endurance ratio (%), SS exercises were found more effective than DS and SMR exercises for only the right knee at 180°/s, but not left knee muscle. CONCLUSION Dynamic stretching and SMR showed better flexibility, strength, and jump performance than SS. Trainers and players may replace SS with DS and SMR to acutely improve muscle power, strength, and flexibility.
Collapse
Affiliation(s)
- Cem Kurt
- Kirkpinar Sport Sciences Faculty, Trakya University, Turkey
| | - Barış Gürol
- Sport Sciences Faculty, Eskişehir Technical University, Turkey
| | | |
Collapse
|
32
|
Alizadeh S, Daneshjoo A, Zahiri A, Anvar SH, Goudini R, Hicks JP, Konrad A, Behm DG. Resistance Training Induces Improvements in Range of Motion: A Systematic Review and Meta-Analysis. Sports Med 2023; 53:707-722. [PMID: 36622555 PMCID: PMC9935664 DOI: 10.1007/s40279-022-01804-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Although it is known that resistance training can be as effective as stretch training to increase joint range of motion, to date no comprehensive meta-analysis has investigated the effects of resistance training on range of motion with all its potential affecting variables. OBJECTIVE The objective of this systematic review with meta-analysis was to evaluate the effect of chronic resistance training on range of motion compared either to a control condition or stretch training or to a combination of resistance training and stretch training to stretch training, while assessing moderating variables. DESIGN For the main analysis, a random-effect meta-analysis was used and for the subgroup analysis a mixed-effect model was implemented. Whilst subgroup analyses included sex and participants' activity levels, meta-regression included age, frequency, and duration of resistance training. DATA SOURCES Following the systematic search in four databases (PubMed, Scopus, SPORTDiscus, and Web of Science) and reference lists, 55 studies were found to be eligible. ELIGIBILITY CRITERIA Controlled or randomized controlled trials that separately compared the training effects of resistance training exercises with either a control group, stretching group, or combined stretch and resistance training group on range of motion in healthy participants. RESULTS Resistance training increased range of motion (effect size [ES] = 0.73; p < 0.001) with the exception of no significant range of motion improvement with resistance training using only body mass. There were no significant differences between resistance training versus stretch training (ES = 0.08; p = 0.79) or between resistance training and stretch training versus stretch training alone (ES = - 0.001; p = 0.99). Although "trained or active people" increased range of motion (ES = 0.43; p < 0.001) "untrained and sedentary" individuals had significantly (p = 0.005) higher magnitude range of motion changes (ES = 1.042; p < 0.001). There were no detected differences between sex and contraction type. Meta-regression showed no effect of age, training duration, or frequency. CONCLUSIONS As resistance training with external loads can improve range of motion, stretching prior to or after resistance training may not be necessary to enhance flexibility.
Collapse
Affiliation(s)
- Shahab Alizadeh
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| | - Abdolhamid Daneshjoo
- Department of Sport Injuries, Physical Education and Sport Sciences Faculty, Shahid Bahonar University, Kerman, Iran
| | - Ali Zahiri
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| | - Saman Hadjizadeh Anvar
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| | - Reza Goudini
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| | - Jared P Hicks
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| | - Andreas Konrad
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada.,Institute of Human Movement Science, Sport and Health, Graz University, Graz, Austria.,Technical University of Munich, Munich, Germany
| | - David George Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
33
|
Thomas E, Ficarra S, Nunes JP, Paoli A, Bellafiore M, Palma A, Bianco A. Does Stretching Training Influence Muscular Strength? A Systematic Review With Meta-Analysis and Meta-Regression. J Strength Cond Res 2022; 37:1145-1156. [PMID: 36525533 DOI: 10.1519/jsc.0000000000004400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ABSTRACT Thomas, E, Ficarra, S, Nunes, JP, Paoli, A, Bellafiore, M, Palma, A, and Bianco, A. Does stretching training influence muscular strength? A systematic review with meta-analysis and meta-regression. J Strength Cond Res 37(5): 1145-1156, 2023-The aim of this study was to review articles that performed stretching training and evaluated the effects on muscular strength. Literature search was performed using 3 databases. Studies were included if they compared the effects on strength following stretching training vs. a nontraining control group or stretching training combined with resistance training (RT) vs. an RT-only group, after at least 4 weeks of intervention. The meta-analyses were performed using a random-effect model with Hedges' g effect size (ES). A total of 35 studies ( n = 1,179 subjects) were included in this review. The interventions lasted for a mean period of 8 weeks (range, 4-24 weeks), 3-4 days per week, applying approximately 4 sets of stretching of approximately 1-minute duration. The meta-analysis for the stretching vs. nontraining control group showed a significant small effect on improving dynamic (k = 14; ES = 0.33; p = 0.007) but not isometric strength (k = 8; ES = 0.10; p = 0.377), following static stretching programs (k = 17; ES = 0.28; p = 0.006). When stretching was added to RT interventions, the main analysis indicated no significant effect (k = 17; ES = -0.15; p = 0.136); however, moderator analysis indicated that performing stretching before RT sessions has a small but negative effect (k = 7; ES = -0.43; p = 0.014); the meta-regression revealed a significant negative association with study length (β = -0.100; p = 0.004). Chronic static stretching programs increase dynamic muscular strength to a small magnitude. Performing stretching before RT and for a prolonged time (>8 weeks) can blunt the strength gains to a small-to-moderate magnitude. Performing stretching in sessions distant from RT sessions might be a strategy to not hinder strength development.
Collapse
Affiliation(s)
- Ewan Thomas
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Salvatore Ficarra
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - João Pedro Nunes
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, Brazil; and
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marianna Bellafiore
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Antonio Palma
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| |
Collapse
|
34
|
Schoenfeld BJ, Wackerhage H, De Souza E. Inter-set stretch: A potential time-efficient strategy for enhancing skeletal muscle adaptations. Front Sports Act Living 2022; 4:1035190. [PMID: 36457663 PMCID: PMC9706104 DOI: 10.3389/fspor.2022.1035190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/02/2022] [Indexed: 08/10/2023] Open
Abstract
Time is considered a primary barrier to exercise adherence. Therefore, developing time-efficient resistance training (RT) strategies that optimize muscular adaptations is of primary interest to practitioners. A novel approach to the problem involves combining intensive stretch protocols with RT. Conceivably, integrating stretch into the inter-set period may provide an added stimulus for muscle growth without increasing session duration. Mechanistically, stretch can regulate anabolic signaling via both active and passive force sensors. Emerging evidence indicates that both lengthening contractions against a high load as well as passive stretch can acutely activate anabolic intracellular signaling pathways involved in muscle hypertrophy. Although longitudinal research investigating the effects of stretching between RT sets is limited, some evidence suggests it may in fact enhance hypertrophic adaptations. Accordingly, the purpose of this paper is threefold: (1) to review how the active force of a muscle contraction and the force of a passive stretched are sensed; (2) to present evidence for the effectiveness of RT with inter-set stretch for muscle hypertrophy (3) to provide practical recommendations for application of inter-set stretch in program design as well as directions for future research.
Collapse
Affiliation(s)
- Brad J. Schoenfeld
- Department of Exercise Science and Recreation, Lehman College, Bronx, NY, United States
| | - Henning Wackerhage
- Department of Sport and Exercise Sciences, Technical University of Munich, Munich, Germany
| | - Eduardo De Souza
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, FL, United States
| |
Collapse
|
35
|
Warneke K, Wohlann T, Lohmann LH, Wirth K, Schiemann S. Acute effects of long-lasting stretching and strength training on maximal strength and flexibility in the calf muscle. GERMAN JOURNAL OF EXERCISE AND SPORT RESEARCH 2022. [DOI: 10.1007/s12662-022-00854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe so-called “stretch-induced force deficit” is known from a large amount of research. There are many theories trying to explain the stretch-induced force deficit and increases in the range of motion (ROM) which all offer a stretch training-specific explanation. However, when performing a commonly used strength training session, a reduced maximum strength (MSt) capacity can be assumed as well. Based on this, the aim of the study is to investigate the tension-induced force deficit due to a suprathreshold strength or stretching training stimulus. Therefore, 71 participants (age: 24.1 ± 4.2 years, height: 176.3 ± 5.7 cm, weight: 74.1 ± 7.5 kg) were divided into three groups: static stretching group (SST), strength training group (STR), and control group (CG). To investigate possible mechanical tension-induced force deficits, SST performed a long-lasting static stretching intervention for 1 h using an orthosis, while STR executed a common strength training intervention (5 × 12 repetition) for the plantar flexors. The results show a significant reduction of measured MSt as well as increased ROM for both SST and STR following the interventions. Consequently, we found similar acute effects of stretching and strength training regarding MSt and flexibility. We conclude that the decreased MSt capacities can possibly be attributed to mechanical tension-induced damage of the muscle that is not linked to a specific training method. The improvements in flexibility found in both intervention groups might be attributed to warm up effects when inducing high mechanical tension to large ankle joint angles.
Collapse
|
36
|
Hernandez-Martinez J, Castillo-Cerda M, Vera-Assaoka T, Carter-Truillier B, Herrera-Valenzuela T, Guzmán-Muñoz E, Branco BHM, Jofré-Saldía E, Valdés-Badilla P. Warm-Up and Handgrip Strength in Physically Inactive Chilean Older Females According to Baseline Nutritional Status. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13335. [PMID: 36293916 PMCID: PMC9602643 DOI: 10.3390/ijerph192013335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
This study aims to analyze the effect of different types of warm-ups on handgrip strength (HGS) in physically inactive older females. Secondarily, it aims to compare HGS according to their baseline nutritional status. A randomized crossover trial study was conducted with 44 physically inactive older females distributed into normal weight (n = 12, BMI = 23.9 ± 3.2 kg/m2), overweight (n =16, BMI = 27 ± 4.7 kg/m2) and obese (n = 16, BMI = 31.6 ± 5.3 kg/m2), who participated in three warm-up conditions (static stretching condition, SSC; elastic band condition, EBC; and therapeutic compression ball condition, TCBC) and one control condition (CC, no warm-up). All participants performed the four randomized conditions with recovery within 72 h. A significant decrease (p < 0.05) in HGS for the dominant and non-dominant hands was observed when comparing SSC vs. CC. In contrast, comparing the warm-up conditions according to the baseline nutritional status, statistically significant differences (p < 0.05) were only reported in the obese group in the dominant and non-dominant hand in favor of CC concerning SSC. In conclusion, warm-up with static flexibility led to a decrease in HGS in physically inactive older females. Only the obese group exhibited this result when analyzed by nutritional status.
Collapse
Affiliation(s)
- Jordan Hernandez-Martinez
- Programa de Investigación en Deporte, Sociedad y Buen Vivir, Universidad de los Lagos, Osorno 5290000, Chile
- Department of Physical Activity Sciences, Universidad de Los Lagos, Osorno 5290000, Chile
| | - María Castillo-Cerda
- Department of Physical Activity Sciences, Universidad de Los Lagos, Osorno 5290000, Chile
| | - Tiago Vera-Assaoka
- Programa de Investigación en Deporte, Sociedad y Buen Vivir, Universidad de los Lagos, Osorno 5290000, Chile
| | - Bastian Carter-Truillier
- Programa de Investigación en Deporte, Sociedad y Buen Vivir, Universidad de los Lagos, Osorno 5290000, Chile
- Department of Education, Universidad de Los Lagos, Osorno 5290000, Chile
- Faculty of Education, Universidad Católica de Temuco, Temuco 4810302, Chile
| | - Tomás Herrera-Valenzuela
- Department of Physical Activity, Sports and Health Sciences, Faculty of Medical Sciences, Universidad de Santiago de Chile (USACH), Santiago 8370003, Chile
| | - Eduardo Guzmán-Muñoz
- School of Kinesiology, Faculty of Health, Universidad Santo Tomás, Talca 3530000, Chile
| | | | - Emilio Jofré-Saldía
- Facultad de Educación y Ciencias Sociales, Instituto del Deporte y Bienestar, Universidad Andres Bello, Las Condes, Santiago 7550000, Chile
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile
| | - Pablo Valdés-Badilla
- Department of Physical Activity Sciences, Faculty of Education Sciences, Universidad Católica del Maule, Talca 3530000, Chile
- Sports Coach Career, School of Education, Universidad Viña del Mar, Viña del Mar 2520000, Chile
| |
Collapse
|
37
|
Azar NR. Injury Prevention Considerations for Drum Kit Performance. Front Psychol 2022; 13:883279. [PMID: 35619779 PMCID: PMC9128529 DOI: 10.3389/fpsyg.2022.883279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
For any skilled performer to deliver their optimal performance, preparation must extend beyond task-specific skill development to include psychological skills training, physical conditioning, and injury prevention. The keynote lecture upon which this article is based (delivered at the International Symposium on Performance Science 2021) explored current research that demonstrates the importance of physical conditioning and injury prevention for drummers (i.e., percussionists who play the drum kit). Early results revealed that professional drummers' heart rates during live performances can reach similar levels to those of other professional athletes during competitions. They also established that playing-related musculoskeletal disorders (PRMDs) are very common in drummers, particularly those affecting the upper limbs such as tendinitis and carpal tunnel syndrome. Evidence from laboratory-based studies supports non-neutral postures, repetitive movements, and exposure to hand-arm vibration as risk factors for the development of these injuries in drummers. Embedding injury prevention education within drum kit curricula is a promising strategy for reducing the rates at which drummers report experiencing PRMDs, and the barriers and facilitators that drum kit educators encounter when attempting to do so are currently under investigation. When drummers include both physical conditioning and injury prevention within their overall preparation regimen, they will maximize their potential to deliver their peak performance.
Collapse
Affiliation(s)
- Nadia R Azar
- Department of Kinesiology, Drummer Mechanics and Ergonomics Research (DRUMMER) Laboratory, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
38
|
Hu CF, Chen CPC, Tsui PH, Chen CN, Hsu CC. Stretch-Induced Healing of Injured Muscles Is Associated With Myogenesis and Decreased Fibrosis. Am J Sports Med 2022; 50:1679-1686. [PMID: 35315294 DOI: 10.1177/03635465221083995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Alghouth therapeutic stretching exercise has been applied to accelerate the healing of injured skeletal muscles, mechanisms behind the mechanical stretch-induced muscle recovery remain unclear. PURPOSE To examine stretch-associated antifibrotic and myogenic responses in injured muscles and to evaluate the feasibility of the ultrasonic Nakagami parametric index (NPI) in assessing muscle morphology during recovery. STUDY DESIGN Controlled laboratory study. METHODS Skeletal muscle fibrosis was induced in the right hind legs of 48 rats by making a posterior transverse incision in the gastrocnemius muscle; the left hind legs remained intact as a comparative normal reference. After surgery, the 48 rats were randomly divided into the stretch (S) and control (C) groups. The S group received stretching interventions on the injured hind leg from week 3 to week 7 after surgery, while the C group did not receive stretching throughout the study period. The muscle fibrosis percentage and the ultrasonic NPI were examined sequentially after surgery. Relative expressions of myogenesis-related proteins, including myoblast determination protein 1 (MyoD), myogenin, and embryonic myosin heavy chain (MHCemb), were also evaluated during the follow-up. RESULTS Mean fibrosis percentages in the injured hind leg were approximately 25% at week 3 in both groups, but they were significantly decreased by approximately 20% from week 4 to the end of the follow-up in the S group only (all, P < .05). Upon injury, the NPI values of injured hind legs in both groups dramatically dropped. Within the S group, stretching increased the NPI values of injured hind legs, which approached those of control hind legs at weeks 6 and 7. The highest MyoD, myogenin, and MHCemb levels were observed at week 6 in both groups. The NPI values corresponded to the MyoD expression in the S group during the follow-up. CONCLUSION Stretching induced a decrease in muscle fibrosis and an increase in myogenesis in injured muscles. The NPI values correspond to the myogenesis process. CLINICAL RELEVANCE The NPI may be capable of continuously monitoring the injured skeletal muscle morphology during the healing process in clinical settings.
Collapse
Affiliation(s)
- Ching-Fang Hu
- Department of Physical Medicine and Rehabilitation, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Carl Pai-Chu Chen
- Department of Physical Medicine and Rehabilitation, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Hsiang Tsui
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chiao-Nan Chen
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Chin Hsu
- Department of Physical Medicine and Rehabilitation, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
39
|
Acute Effects of Soleus Stretching on Ankle Flexibility, Dynamic Balance and Speed Performances in Soccer Players. BIOLOGY 2022; 11:biology11030374. [PMID: 35336748 PMCID: PMC8945810 DOI: 10.3390/biology11030374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 11/17/2022]
Abstract
Most dynamic stretching protocols include the gastrocnemius muscle, but soleus stretches are often neglected, which is the key powerful muscle for the push-off (concentric) of all speed movements. The purpose of this study was to examine whether the added soleus stretch in a regular stretching protocol would have greater benefits for ankle flexibility, dynamic balance and functional performance. Fourteen healthy male soccer players received each of the stretching conditions (regular stretching only (Regular), regular stretching with soleus stretching (Soleus) and no stretching (Control)) randomly on different training days, with two-day separation. The ankle flexibility, standing heel-lift balance and speed performances were assessed following each stretching intervention. The active dynamic stretches were performed for 30 s with three repetitions on each of the three (Regular) and four (Soleus) muscles. One-way ANOVA with repeated measures (or the Friedman non-parametric test) was performed to determine any significant effect with alpha = 0.05. Our findings revealed that both the Regular and Soleus stretching groups showed an increased active range of ankle motion compared to the no-stretching control (Ps < 0.05). In the heel raise balance test, both stretching groups experienced a significant increase in maximum plantarflexion strength as well as resultant anterior−posterior and medial−lateral CoP excursions compared to the no-stretching control (Ps < 0.05). In the sprinting tasks, both the Soleus and Regular stretching groups induced faster linear and curved running times (Ps < 0.05). When comparing the two stretching groups, Soleus stretching led to better ankle flexibility, maximum plantarflexion strength and curved running time (Ps < 0.05). Thus, added stretches on the soleus muscles can provide further benefits to speed performances in soccer.
Collapse
|
40
|
Association between static stretching load and changes in the flexibility of the hamstrings. Sci Rep 2021; 11:21778. [PMID: 34741110 PMCID: PMC8571324 DOI: 10.1038/s41598-021-01274-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/25/2021] [Indexed: 11/09/2022] Open
Abstract
The purpose of the present study was to examine the association between static stretching load and changes in the flexibility of the hamstrings. Twelve healthy men received static stretching for 60 s at two different intensities based on the point of discomfort (100%POD and 120%POD intensity), in random order. To assess the flexibility of the hamstrings, the knee extension range of motion (ROM). Passive torque at end ROM, and muscle–tendon unit stiffness were measured before and after stretching. The static stretching load was calculated from the passive torque throughout static stretching. The knee extension ROM and passive torque at end ROM increased in both intensities (p < 0.01). The muscle–tendon unit stiffness decreased only in the 120%POD (p < 0.01). There were significant correlations between the static stretching load and the relative changes in the knee extension ROM (r = 0.56, p < 0.01) and muscle–tendon unit stiffness (r = − 0.76, p < 0.01). The results suggested that the static stretching load had significant effects on changes in the knee extension ROM and muscle–tendon unit stiffness of the hamstrings, and high-intensity static stretching was useful for improving the flexibility of the hamstrings because of its high static stretching load.
Collapse
|
41
|
Time course of changes in the range of motion and muscle-tendon unit stiffness of the hamstrings after two different intensities of static stretching. PLoS One 2021; 16:e0257367. [PMID: 34520498 PMCID: PMC8439484 DOI: 10.1371/journal.pone.0257367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives The purpose of this study was to examine the time course of changes in the range of motion and muscle-tendon unit stiffness of the hamstrings after two different intensities of static stretching. Methods Fourteen healthy men (20.9 ± 0.7 years, 169.1 ± 7.5cm, 61.6 ± 6.5kg) received static stretching for 60 seconds at two different intensities based on the point of discomfort (100%POD and 120%POD) of each participant, in random order. To evaluate the time course of changes in the flexibility of the hamstrings, the knee extension range of motion (ROM), passive torque at end ROM, and muscle-tendon unit stiffness were measured pre-stretching, post-stretching, and at both 10 and 20 minutes after static stretching. Results For both intensities, ROM and passive torque at pre-stretching were significantly smaller than those at post-stretching (p < 0.01 in both intensities), 10 minutes (p < 0.01 in both intensities), and 20 minutes (p < 0.01 in both intensities). The muscle-tendon unit stiffness at pre-stretching was significantly higher than that at post-stretching (p < 0.01), 10 minutes (p < 0.01), and 20 minutes (p < 0.01) only in the 120%POD, but it showed no change in the 100%POD. Conclusion The results showed that ROM and passive torque increased in both intensities, and the effects continued for at least 20 minutes after stretching regardless of stretching intensity. However, the muscle-tendon unit stiffness of the hamstrings decreased only after static stretching at the intensity of 120%POD, and the effects continued for at least 20 minutes after stretching.
Collapse
|
42
|
The Effect of Static and Dynamic Stretching during Warm-Up on Running Economy and Perception of Effort in Recreational Endurance Runners. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168386. [PMID: 34444136 PMCID: PMC8391672 DOI: 10.3390/ijerph18168386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022]
Abstract
This randomized crossover counterbalanced study investigated, in recreational runners, the acute effects of pre-exercise stretching on physiological and metabolic responses, endurance performance, and perception of effort. Eight male endurance runners (age 36 ± 11 years) performed three running-until-exhaustion tests, preceded by three warm-ups, including the following different stretching protocols: static (SS), dynamic (DS), and no-stretching (NS). During the SS and DS sessions, the warm-up consisted of 10 min of running plus 5 min of SS or DS, respectively, while during the NS session, the warm-up consisted of 15 min of running. Physiological and metabolic responses, and endurance running performance parameters, were evaluated. The perception of effort was derived from the rating of perceived exertion (RPE). Running economy significantly improved after SS (p < 0.05) and DS (p < 0.01), and RPE values were significantly lower in SS (p < 0.05) and DS (p < 0.01), compared to NS. No differences in physiological and metabolic responses among the sessions were found. This study showed that including SS and DS within the warm-up ameliorated running economy and decreased the perception of effort during a running-until-exhaustion test, highlighting the benefits of stretching on endurance performance. These results should encourage recreational runners to insert stretching during warm-up, to optimize the running energy costs, reducing the perception of effort and making the training sessions more enjoyable.
Collapse
|
43
|
Osama M. Effects of autogenic and reciprocal inhibition muscle energy techniques on isometric muscle strength in neck pain: A randomized controlled trial. J Back Musculoskelet Rehabil 2021; 34:555-564. [PMID: 33523036 DOI: 10.3233/bmr-200002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Neck is one of the most common sites of musculoskeletal symptoms, and muscle shortening and weakness is observed to be a common cause of neck pain and disability. OBJECTIVE To compare the immediate and short term effects of static stretching (SS), autogenic inhibition (AI) and reciprocal inhibition (RI) muscle energy techniques (MET) on isometric muscle strength in the management of mechanical neck pain. METHODS A randomized controlled trial was conducted on 78 participants with neck pain randomly allocated to SS, AI-MET and RI-MET groups. All the participants received Trans Cutaneous Electrical Nerve Stimulation (TENS), hot pack and unilateral postero-anterior glide, followed by 3-5 repetitions of either SS, AI-MET or RI-MET for five consecutive sessions. Numeric pain rating scale (NPRS) and Modified Sphygmomanometer Dynamometry (MSD) were used as outcome measurement tools. One way ANOVA and repeated measures ANOVA were used for inter-group and intra-group comparison. RESULT In terms of MSD scores, a significant difference (p< 0.05) was observed between the groups. Both AI-MET and RI-MET were found to be comparatively more effective than SS, however AI-MET was found to be the most effective. CONCLUSION AI-MET is more effective than SS and RI-MET in terms of improving isometric muscle strength in patients with mechanical neck pain.
Collapse
|
44
|
Mazzo MR, Weinman LE, Giustino V, Mclagan B, Maldonado J, Enoka RM. Changes in neural drive to calf muscles during steady submaximal contractions after repeated static stretches. J Physiol 2021; 599:4321-4336. [PMID: 34292610 DOI: 10.1113/jp281875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/19/2021] [Indexed: 01/27/2023] Open
Abstract
KEY POINTS Repeated static-stretching interventions consistently increase the range of motion about a joint and decrease total joint stiffness, but findings on the changes in muscle and connective-tissue properties are mixed. The influence of these stretch-induced changes on muscle function at submaximal forces is unknown. To address this gap in knowledge, the changes in neural drive to the plantar flexor muscles after a static-stretch intervention were estimated. Neural drive to the plantar flexor muscles during a low-force contraction increased after repeated static stretches. These findings suggest that adjustments in motor unit activity are necessary at low forces to accommodate reductions in the force-generating and transmission capabilities of the muscle-tendon unit after repeated static stretches of the calf muscles. ABSTRACT Static stretching decreases stiffness about a joint, but its influence on muscle-tendon unit function and muscle activation is unclear. We investigated the influence of three static stretches on changes in neural drive to the plantar flexor muscles, both after a stretch intervention and after a set of maximal voluntary contractions (MVCs). Estimates of neural drive were obtained during submaximal isometric contractions by decomposing high-density electromyographic signals into the activity of individual motor units from medial gastrocnemius, lateral gastrocnemius and soleus. Motor units were matched across contractions and an estimate of neural drive to the plantar flexors was calculated by normalizing the cumulative spike train to the number of active motor units (normalized neural drive). Mean discharge rate increased after the stretch intervention during the 10% MVC task for all recorded motor units and those matched across conditions (all, P = 0.0046; matched only, P = 0.002), recruitment threshold decreased for motor units matched across contractions (P = 0.022), and discharge rate at recruitment was elevated (P = 0.004). Similarly, the estimate of normalized neural drive was significantly greater after the stretch intervention at 10% MVC torque (P = 0.029), but not at 35% MVC torque. The adjustments in motor unit activity required to complete the 10% MVC task after stretch may have been partially attenuated by a set of plantar flexor MVCs. The increase in neural drive required to produce low plantar-flexion torques after repeated static stretches of the calf muscles suggests stretch-induced changes in muscle and connective tissue properties.
Collapse
Affiliation(s)
- Melissa R Mazzo
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Logan E Weinman
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Valerio Giustino
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Bailey Mclagan
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - John Maldonado
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
45
|
de Aquino Resende M, Aidar FJ, Vasconcelos Resende RB, Reis GC, de Oliveira Barros L, de Matos DG, Marçal AC, de Almeida-Neto PF, Díaz-de-Durana AL, Merino-Fernández M, Vilaça-Alves J, de Araújo Tinoco Cabral BG, Neves EB, Reis VM, Clemente FM, Garrido ND. Are Strength Indicators and Skin Temperature Affected by the Type of Warm-Up in Paralympic Powerlifting Athletes? Healthcare (Basel) 2021; 9:923. [PMID: 34442060 PMCID: PMC8392281 DOI: 10.3390/healthcare9080923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022] Open
Abstract
(1) Background: the present study aimed to evaluate the effect of different types of warm-ups on the strength and skin temperature of Paralympic powerlifting athletes. (2) Methods: the participants were 15 male Paralympic powerlifting athletes. The effects of three different types of warm-up (without warm-up (WW), traditional warm-up (TW), or stretching warm-up (SW)) were analyzed on static and dynamic strength tests as well as in the skin temperature, which was monitored by thermal imaging. (3) Results: no differences in the dynamic and static indicators of the force were shown in relation to the different types of warm-ups. No significant differences were found in relation to peak torque (p = 0.055, F = 4.560, η2p = 0.246 medium effect), and one-repetition maximum (p = 0.139, F = 3.191, η2p = 0.186, medium effect) between the different types of warm-ups. In the thermographic analysis, there was a significant difference only in the pectoral muscle clavicular portion between the TW (33.04 ± 0.71 °C) and the WW (32.51 ± 0.74 °C) (p = 0.038). The TW method also presented slightly higher values than the SW and WW in the pectoral muscles sternal portion and the deltoid anterior portion, but with p-value > 0.05. (4) Conclusions: the types of warm-ups studied do not seem to interfere with the performance of Paralympic Powerlifting athletes. However, the thermal images showed that traditional warm-up best meets the objectives expected for this preparation phase.
Collapse
Affiliation(s)
- Marcelo de Aquino Resende
- Department of Physical Education, Tiradentes University (UNIT), Aracaju 49010-390, Brazil; (M.d.A.R.); (R.B.V.R.); (G.C.R.)
| | - Felipe J. Aidar
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS), Federal University of Sergipe (UFS), Sao Cristovao 49100-000, Brazil; (F.J.A.); (L.d.O.B.); (D.G.d.M.); (A.C.M.)
- Program of Physical Education, Federal University of Sergipe (UFS), Sao Cristovao 49100-000, Brazil
- Program of Physiological Science, Federal University of Sergipe (UFS), Sao Cristovao 49100-000, Brazil
- Department of Physical Education, Federal University of Sergipe (UFS), Sao Cristovao 49100-000, Brazil
| | | | - Gracielle Costa Reis
- Department of Physical Education, Tiradentes University (UNIT), Aracaju 49010-390, Brazil; (M.d.A.R.); (R.B.V.R.); (G.C.R.)
| | - Layanne de Oliveira Barros
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS), Federal University of Sergipe (UFS), Sao Cristovao 49100-000, Brazil; (F.J.A.); (L.d.O.B.); (D.G.d.M.); (A.C.M.)
| | - Dihogo Gama de Matos
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS), Federal University of Sergipe (UFS), Sao Cristovao 49100-000, Brazil; (F.J.A.); (L.d.O.B.); (D.G.d.M.); (A.C.M.)
- Cardiovascular & Physiology of Exercise Laboratory, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Anderson Carlos Marçal
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS), Federal University of Sergipe (UFS), Sao Cristovao 49100-000, Brazil; (F.J.A.); (L.d.O.B.); (D.G.d.M.); (A.C.M.)
- Program of Physical Education, Federal University of Sergipe (UFS), Sao Cristovao 49100-000, Brazil
| | - Paulo Francisco de Almeida-Neto
- Department of Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Brazil; (P.F.d.A.-N.); (B.G.d.A.T.C.)
| | - Alfonso López Díaz-de-Durana
- Sports Department, Physical Activity and Sports Faculty-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - María Merino-Fernández
- Faculty of Health Sciences, Universidad Francisco de Vitoria (UFV), 28223 Madrid, Spain;
| | - José Vilaça-Alves
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), Trás os Montes and Alto Douro University, 5001-801 Vila Real, Portugal; (J.V.-A.); (V.M.R.)
| | | | - Eduardo Borba Neves
- Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba 80230-901, Brazil;
| | - Victor Machado Reis
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), Trás os Montes and Alto Douro University, 5001-801 Vila Real, Portugal; (J.V.-A.); (V.M.R.)
| | - Filipe Manuel Clemente
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal;
- Instituto de Telecomunicações, Delegação da Coilhã, 1049-001 Lisboa, Portugal
| | - Nuno Domingos Garrido
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), Trás os Montes and Alto Douro University, 5001-801 Vila Real, Portugal; (J.V.-A.); (V.M.R.)
| |
Collapse
|
46
|
Takeuchi K, Sato S, Kiyono R, Yahata K, Murakami Y, Sanuki F, Yoshida R, Nakamura M. High-Intensity Static Stretching in Quadriceps Is Affected More by Its Intensity Than Its Duration. Front Physiol 2021; 12:709655. [PMID: 34290625 PMCID: PMC8287525 DOI: 10.3389/fphys.2021.709655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
A previous study reported that 3-min of high-intensity static stretching at an intensity of 120% of range of motion (ROM) did not change the muscle stiffness of the rectus femoris, because of the overly high stress of the stretching. The purpose of this study was to examine the effects of high-intensity static stretching of a shorter duration or lower intensity on the flexibility of the rectus femoris than that of the previous study. Two experiments were conducted (Experiment 1 and 2). In Experiment 1, eleven healthy men underwent static stretching at the intensity of 120% of ROM for two different durations (1 and 3 min). In Experiment 2, fifteen healthy men underwent 3-min of static stretching at the intensity of 110% of ROM. The shear elastic modulus of the quadriceps were measured. In Experiment 1, ROM increased in both interventions (p < 0.01), but the shear elastic modulus of the rectus femoris was not changed. In Experiment 2, ROM significantly increased (p < 0.01), and the shear elastic modulus of the rectus femoris significantly decreased (p < 0.05). It was suggested that the stretching intensity (110%) is more important than stretching duration to decrease the muscle stiffness of the rectus femoris.
Collapse
Affiliation(s)
- Kosuke Takeuchi
- Department of Physical Therapy, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Shigeru Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Ryosuke Kiyono
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Kaoru Yahata
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Yuta Murakami
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Futaba Sanuki
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Riku Yoshida
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Masatoshi Nakamura
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
47
|
Iversen VM, Norum M, Schoenfeld BJ, Fimland MS. No Time to Lift? Designing Time-Efficient Training Programs for Strength and Hypertrophy: A Narrative Review. Sports Med 2021; 51:2079-2095. [PMID: 34125411 PMCID: PMC8449772 DOI: 10.1007/s40279-021-01490-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 02/02/2023]
Abstract
Abstract Lack of time is among the more commonly reported barriers for abstention from exercise programs. The aim of this review was to determine how strength training can be most effectively carried out in a time-efficient manner by critically evaluating research on acute training variables, advanced training techniques, and the need for warm-up and stretching. When programming strength training for optimum time-efficiency we recommend prioritizing bilateral, multi-joint exercises that include full dynamic movements (i.e. both eccentric and concentric muscle actions), and to perform a minimum of one leg pressing exercise (e.g. squats), one upper-body pulling exercise (e.g. pull-up) and one upper-body pushing exercise (e.g. bench press). Exercises can be performed with machines and/or free weights based on training goals, availability, and personal preferences. Weekly training volume is more important than training frequency and we recommend performing a minimum of 4 weekly sets per muscle group using a 6–15 RM loading range (15–40 repetitions can be used if training is performed to volitional failure). Advanced training techniques, such as supersets, drop sets and rest-pause training roughly halves training time compared to traditional training, while maintaining training volume. However, these methods are probably better at inducing hypertrophy than muscular strength, and more research is needed on longitudinal training effects. Finally, we advise restricting the warm-up to exercise-specific warm-ups, and only prioritize stretching if the goal of training is to increase flexibility. This review shows how acute training variables can be manipulated, and how specific training techniques can be used to optimize the training response: time ratio in regard to improvements in strength and hypertrophy. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Vegard M Iversen
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway. .,Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Martin Norum
- Independent Researcher, Norum Helse AS, Oslo, Norway
| | | | - Marius S Fimland
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Unicare Helsefort Rehabilitation Centre, Rissa, Norway
| |
Collapse
|
48
|
Takeuchi K, Akizuki K, Nakamura M. The acute effects of high-intensity jack-knife stretching on the flexibility of the hamstrings. Sci Rep 2021; 11:12115. [PMID: 34108556 PMCID: PMC8190268 DOI: 10.1038/s41598-021-91645-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
The purpose of the present study was to examine the acute effects of high-intensity jack-knife stretching for 60 s on flexibility of the hamstrings. Twelve healthy participants underwent jack-knife stretching for 60 s (3 repetitions of 20 s stretching with 30 s intervals) at two different intensities based on the point of discomfort (POD and PODmax). To examine any change in flexibility, knee extension range of motion (ROM), passive torque at end ROM, and muscle-tendon unit stiffness were measured before and after stretching. To evaluate hamstrings pain, a numerical rating scale (NRS) was described. The knee extension ROM (p < 0.01) and passive torque at end ROM (p < 0.05) were significantly increased at both intensities. The muscle-tendon unit stiffness was significantly decreased in PODmax intensity (p < 0.01), but there was no change in POD intensity (p = 0.18). The median values of NRS during the stretching were 0 and 6-7 in POD and PODmax intensity, respectively, although it was 0 immediately after the stretching protocol in both intensities. These data suggested that high-intensity jack-knife stretching is an effective and safe method to decrease muscle-tendon unit stiffness of the hamstrings.
Collapse
Affiliation(s)
- Kosuke Takeuchi
- Department of Physical Therapy, Kobe International University, Kobe, Hyogo, Japan.
| | - Kazunori Akizuki
- Department of Physical Therapy, Kobe International University, Kobe, Hyogo, Japan
| | - Masatoshi Nakamura
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Niigata, Japan
| |
Collapse
|
49
|
A Survey on Stretching Practices in Women and Men from Various Sports or Physical Activity Programs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18083928. [PMID: 33918033 PMCID: PMC8068839 DOI: 10.3390/ijerph18083928] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Recommendations for prescribing stretching exercises are regularly updated. It appears that coaches progressively follow the published guidelines, but the real stretching practices of athletes are unknown. The present study aimed to investigate stretching practices in individuals from various sports or physical activity programs. A survey was completed online to determine some general aspects of stretching practices. The survey consisted of 32 multiple-choice or open-ended questions to illustrate the general practices of stretching, experiences and reasons for stretching. In total, 3546 questionnaires were analyzed (47.3% women and 52.7% men). Respondents practiced at the national/international level (25.2%), regional level (29.8%), or recreationally (44.9%). Most respondents (89.3%) used stretching for recovery (74.9%) or gains of flexibility (57.2%). Stretching was generally performed after training (72.4%). The respondents also indicated they performed stretching as a pre-exercise routine (for warm-up: 49.9%). Static stretching was primarily used (88.2%) but when applied for warm-up reasons, respondents mostly indicated performing dynamic stretching (86.2%). Only 37.1% of the respondents indicated being supervised. Finally, some gender and practice level differences were noticed. The present survey revealed that the stretching practices were only partly in agreement with recent evidence-based recommendations. The present survey also pointed out the need to improve the supervision of stretching exercises.
Collapse
|
50
|
Behm DG, Alizadeh S, Drury B, Granacher U, Moran J. Non-local acute stretching effects on strength performance in healthy young adults. Eur J Appl Physiol 2021; 121:1517-1529. [PMID: 33715049 DOI: 10.1007/s00421-021-04657-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/01/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Static stretching (SS) can impair performance and increase range of motion of a non-exercised or non-stretched muscle, respectively. An underdeveloped research area is the effect of unilateral stretching on non-local force output. OBJECTIVE The objective of this review was to describe the effects of unilateral SS on contralateral, non-stretched, muscle force and identify gaps in the literature. METHODS A systematic literature search following preferred reporting items for systematic review and meta-analyses Protocols guidelines was performed according to prescribed inclusion and exclusion criteria. Weighted means and ranges highlighted the non-local force output response to unilateral stretching. The physiotherapy evidence database scale was used to assess study risk of bias and methodological quality. RESULTS Unilateral stretching protocols from six studies involved 6.3 ± 2 repetitions of 36.3 ± 7.4 s with 19.3 ± 5.7 s recovery between stretches. The mean stretch-induced force deficits exhibited small magnitude effect sizes for both the stretched (-6.7 ± 7.1%, d = -0.35: 0.01 to -1.8) and contralateral, non-stretched, muscles (-4.0 ± 4.9%, d = , 0.22: 0.08 to 1.1). Control measures exhibited trivial deficits. CONCLUSION The limited literature examining non-local effects of prolonged SS revealed that both the stretched and contralateral, non-stretched, limbs of young adults demonstrate small magnitude force deficits. However, the frequency of studies with these effects were similar with three measures demonstrating deficits, and four measures showing trivial changes. These results highlight the possible global (non-local) effects of prolonged SS. Further research should investigate effects of lower intensity stretching, upper versus lower body stretching, different age groups, incorporate full warm-ups, and identify predominant mechanisms among others.
Collapse
Affiliation(s)
- David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's,, Newfoundland and Labrador, Canada.
| | - Shahab Alizadeh
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's,, Newfoundland and Labrador, Canada
| | - Ben Drury
- Department of Applied Sport Sciences, Hartpury University, Gloucester, UK
| | - Urs Granacher
- Division of Training and Movement Science, University of Potsdam, Potsdam, Germany
| | - Jason Moran
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Essex, UK
| |
Collapse
|