1
|
Panda SS, Biswal BK. The phytochemical plumbagin: mechanism behind its "pleiotropic" nature and potential as an anticancer treatment. Arch Toxicol 2024; 98:3585-3601. [PMID: 39271481 DOI: 10.1007/s00204-024-03861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Chemotherapeutics are most often used to treat cancer, but side effects, drug resistance, and toxicity often compromise their effectiveness. In contrast, phytocompound plumbagin possesses a distinct pleiotropic nature, targeting multiple signaling pathways, such as ROS generation, cell death, cellular proliferation, metastasis, and drug resistance, and is shown to enhance the efficacy of chemotherapeutic drugs. Plumbagin has been shown to act synergistically with various chemotherapeutic drugs and enhance their efficacy in drug-resistant cancers. The pleiotropic nature is believed to be due to plumbagin's unique structure, which contains a naphthoquinone ring and a hydroxyl group responsible for plumbagin's various biological responses. Despite limitations such as restricted bioavailability and delivery, recent developments aim to address these challenges and harness the potential of plumbagin as an anticancer therapeutics. This review delves into the structural aspect of the plumbagin molecule contributing to its pleiotropic nature, explores the diverse mechanism that it targets, and discusses emerging strategies to overcome its limitations.
Collapse
Affiliation(s)
- Shikshya Swarupa Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Bijesh Kumar Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
2
|
Chaudhuri RH. The role of amino acids in skeletal muscle health and sarcopenia: A narrative review. J Biomed Res 2024; 38:1-14. [PMID: 39433511 DOI: 10.7555/jbr.38.20240167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
The skeletal muscle is the largest organ present inside the body and is responsible for mechanical activities like maintaining posture, movement, respiratory function, and support for the health and functioning of other systems of the body. Skeletal muscle atrophy is a condition associated with a reduction in muscle size, strength, and activity, which leads to an increased dependency on movement, an increased risk of falls, and a reduced quality of life. Various conditions like osteoarthritis, osteoporosis, and fractures are directly associated with an increased muscle atrophy. Additionally, numerous risk factors, like aging, malnutrition, physical inactivity, and certain disease conditions, through distinct pathways negatively affect skeletal muscle health and lead to muscle atrophy. Among the various determinants of the overall muscle health, the rate of muscle protein synthesis and degradation is an important parameter that eventually alters the fate of overall muscle health. In conditions of excessive skeletal muscle atrophy, including sarcopenia, the rate of muscle protein degradation usually exceeds the rate of protein synthesis. The availability of amino acids in the systemic circulation is a crucial step for muscle protein synthesis. The current review aimed to consolidate the existing evidence of amino acids, highlight their mechanisms of action, and assess their roles and effectiveness in enhancing skeletal muscle health.
Collapse
Affiliation(s)
- Ramendu Hom Chaudhuri
- Department of Orthopaedics, Sri Aurobindo Seva Kendra, Jodhpur Park, Kolkata, West Bengal 700068, India
| |
Collapse
|
3
|
Aminuddin A, Ng PY, Leong CO, Makpol S, Chua EW. Potential role of heteroplasmic mitochondrial DNA mutations in modulating the subtype-specific adaptation of oral squamous cell carcinoma to cisplatin therapy. Discov Oncol 2024; 15:573. [PMID: 39425872 PMCID: PMC11490477 DOI: 10.1007/s12672-024-01445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Cancer cells are constantly evolving to adapt to environmental changes, particularly during exposure to drug treatment. In this work, we aimed to characterize genetic and epigenetic changes in mitochondrial DNA (mtDNA) that may increase the resistance of oral squamous cell carcinoma (OSCC) to cisplatin. We first derived drug-resistant cells from two human OSCC cell lines, namely SAS and H103, by continual cisplatin treatments for about 4 months. To determine mtDNA changes induced by cisplatin, we performed nanopore sequencing and quantitative polymerase chain reaction analysis of mtDNA extracted from the cells pre- and post-treatment. We also assessed the mitochondrial functions of the cells and their capacity to generate intracellular reactive oxygen species (ROS). We found that in the cisplatin-resistant cells derived from SAS, there was a reduction in mtDNA content and significant enrichment of a m.3910G > C mutation in the MT-ND1 gene. However, such changes were not detected in cisplatin-resistant H103 cells. The cisplatin treatment also altered methylation patterns in both SAS and H103 cells and decreased their sensitivity to ROS-induced cytotoxicity. We suggest that the sequence alterations and epigenetic changes in mtDNA and the reduction in mtDNA content could be key drivers of cisplatin resistance in OSCC. These mtDNA alterations may participate in cellular adaptation that serves as a response to adverse changes in the environment, particularly exposure to cytotoxic agents. Importantly, the observed mtDNA changes may be influenced by the distinct genetic landscapes of various cancer subtypes. Overall, this study reveals significant insights into cisplatin resistance driven by complex mtDNA dynamics, particularly in OSCC. This underscores the need for targeted therapies tailored to the genetic profiles of individual OSCC patients to improve disease prognosis.
Collapse
Affiliation(s)
- Amnani Aminuddin
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Pei Yuen Ng
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chee Onn Leong
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
- AGTC Genomics, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Eng Wee Chua
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Payasi A, Yadav MK, Chaudhary S, Aggarwal A. Evaluating nephrotoxicity reduction in a novel polymyxin B formulation: insights from a 3D kidney-on-a-chip model. Antimicrob Agents Chemother 2024; 68:e0021924. [PMID: 39225483 PMCID: PMC11459911 DOI: 10.1128/aac.00219-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
This study aimed to assess the nephrotoxicity associated with VRP-034 (novel formulation of polymyxin B [PMB]) compared to marketed PMB in a three-dimensional (3D) kidney-on-a-chip model. To model the human kidney proximal tubule for analysis, tubular structures were established using 23 triple-channel chips seeded with RPTEC/hTERT1 cells. These cells were exposed to VRP-034 or PMB at seven concentrations (1-200 µM) over 12, 24, and 48 h. A suite of novel kidney injury biomarkers, cell health, and inflammatory markers were quantitatively assessed in the effluent. Additionally, caspase and cytochrome C levels were measured, and cell viability was evaluated using calcein AM and ethidium homodimer-1 (EthD-1). Exposure to marketed PMB resulted in significantly elevated levels (P < 0.05) of four key biomarkers (KIM-1, cystatin C, clusterin, and OPN) compared to VRP-034, particularly at clinically relevant concentrations of ≥10 µM. At 25 µM, all biomarkers demonstrated a significant increase (P < 0.05) with marketed PMB exposure compared to VRP-034. Inflammatory markers (interleukin-6 and interleukin-8) increased significantly (P < 0.05) with marketed PMB at concentrations of ≥5 µM, relative to VRP-034. VRP-034 displayed superior cell health outcomes, exhibiting lower lactate dehydrogenase release, while ATP levels remained comparable. Morphological analysis revealed that marketed PMB induced more severe damage, disrupting tubular integrity. Both treatments activated cytochrome C, caspase-3, caspase-8, caspase-9, and caspase-12 in a concentration-dependent manner; however, caspase activation was significantly reduced (P < 0.05) with VRP-034. This study demonstrates that VRP-034 significantly reduces nephrotoxicity compared to marketed PMB within a 3D microphysiological system, suggesting its potential to enable the use of full therapeutic doses of PMB with an improved safety profile, addressing the need for less nephrotoxic polymyxin antibiotics.
Collapse
Affiliation(s)
- Anurag Payasi
- Department of Cell Culture, Venus Medicine Research Centre, Baddi, Himachal Pradesh, India
| | - Manoj Kumar Yadav
- Department of Cell Culture, Venus Medicine Research Centre, Baddi, Himachal Pradesh, India
| | | | - Anmol Aggarwal
- Department of Pipeline Strategy, Venus Medicine Research Centre, Baddi, Himachal Pradesh, India
| |
Collapse
|
5
|
Krishnamurthy HK, Pereira M, Rajavelu I, Jayaraman V, Krishna K, Wang T, Bei K, Rajasekaran JJ. Oxidative stress: fundamentals and advances in quantification techniques. Front Chem 2024; 12:1470458. [PMID: 39435263 PMCID: PMC11491411 DOI: 10.3389/fchem.2024.1470458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024] Open
Abstract
Oxidative species, generated endogenously via metabolism or from exogenous sources, play crucial roles in the body. At low levels, these species support immune functions by participating in phagocytosis. They also aid in cellular signaling and contribute to vasomodulation. However, when the levels of oxidative species exceed the body's antioxidant capacity to neutralize them, oxidative stress occurs. This stress can damage cellular macromolecules such as lipids, DNA, RNA, and proteins, driving the pathogenesis of diseases and aging through the progressive deterioration of physiological functions and cellular structures. Therefore, the body's ability to manage oxidative stress and maintain it at optimal levels is essential for overall health. Understanding the fundamentals of oxidative stress, along with its reliable quantification, can enable consistency and comparability in clinical practice across various diseases. While direct quantification of oxidant species in the body would be ideal for assessing oxidative stress, it is not feasible due to their high reactivity, short half-life, and the challenges of quantification using conventional techniques. Alternatively, quantifying lipid peroxidation, damage products of nucleic acids and proteins, as well as endogenous and exogenous antioxidants, serves as appropriate markers for indicating the degree of oxidative stress in the body. Along with the conventional oxidative stress markers, this review also discusses the role of novel markers, focusing on their biological samples and detection techniques. Effective quantification of oxidative stress may enhance the understanding of this phenomenon, aiding in the maintenance of cellular integrity, prevention of age-associated diseases, and promotion of longevity.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianhao Wang
- Vibrant Sciences LLC., Santa Clara, CA, United States
| | - Kang Bei
- Vibrant Sciences LLC., Santa Clara, CA, United States
| | | |
Collapse
|
6
|
Delgado Y, Torres-Sanchez A, Perez D, Torres G, Estrada S, Ortiz Alvelo N, Vega J, Santos L, Torres A, Madera BA, Ferrer-Acosta Y. Deferasirox's Anti-Chemoresistance and Anti-Metastatic Effect on Non-Small Cell Lung Carcinoma. Biomedicines 2024; 12:2272. [PMID: 39457585 PMCID: PMC11505511 DOI: 10.3390/biomedicines12102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Clinically approved iron chelators, originally designed to address iron overload disorders, have emerged as potential anticancer agents. Deferasirox (Def), a tridentate iron chelator, has demonstrated antiproliferative effects in cancer. Background/Objectives: This study aims to elucidate the mechanism of action of Def and its impact on non-small cell lung carcinoma (NSCLC). Methods: NSCLC A549 cells were treated with Def to assess cytotoxicity, the effect on nuclear and mitochondrial pathways, and iron-containing proteins and genes to evaluate anti-metastasis and chemoresistance. A lung carcinoma mouse model was used for in vivo studies. Results: Our findings revealed that Def induced cytotoxicity, effectively chelated intracellular iron, and triggered apoptosis through the increase in phosphatidylserine externalization and caspase 3 activity. Additionally, Def caused G0/G1 cell cycle arrest by downregulating the ribonucleotide reductase catalytic subunit. Furthermore, Def perturbed mitochondrial function by promoting the production of reactive oxygen species and the inhibition of glutathione as a measurement of ferroptosis activation. Def demonstrated inhibitory effects on cell migration in scratch assays, which was supported by the upregulation of n-myc downstream-regulated gene 1 and downregulation of the epidermal growth factor receptor protein. Also, Def downregulated one of the main markers of chemoresistance, the ABCB1 gene. In vivo experiments using a lung carcinoma mouse model showed that Def treatment did not affect the animal's body weight and showed a significant decrease in tumor growth. Conclusions: This investigation lays the groundwork for unraveling Def action's molecular targets and mechanisms in lung carcinoma, particularly within iron-related pathways, pointing out its anti-metastasis and anti-chemoresistance effect.
Collapse
Affiliation(s)
- Yamixa Delgado
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00725, USA; (D.P.); (G.T.); (N.O.A.); (J.V.); (A.T.)
| | - Anamaris Torres-Sanchez
- Biology Department, University of Puerto Rico-Rio Piedras, San Juan, PR 00925, USA; (A.T.-S.); (S.E.)
| | - Daraishka Perez
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00725, USA; (D.P.); (G.T.); (N.O.A.); (J.V.); (A.T.)
| | - Grace Torres
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00725, USA; (D.P.); (G.T.); (N.O.A.); (J.V.); (A.T.)
| | - Sthephanie Estrada
- Biology Department, University of Puerto Rico-Rio Piedras, San Juan, PR 00925, USA; (A.T.-S.); (S.E.)
| | - Natalia Ortiz Alvelo
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00725, USA; (D.P.); (G.T.); (N.O.A.); (J.V.); (A.T.)
| | - Jaisy Vega
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00725, USA; (D.P.); (G.T.); (N.O.A.); (J.V.); (A.T.)
| | - Laurie Santos
- Biomedical Graduate Program, Universidad Central del Caribe, Bayamón, PR 00960, USA;
| | - Aracelis Torres
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00725, USA; (D.P.); (G.T.); (N.O.A.); (J.V.); (A.T.)
| | - Bismark A. Madera
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA;
| | - Yancy Ferrer-Acosta
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA;
| |
Collapse
|
7
|
Cao Y, Tan YJ, Huang D. Molecular Mechanism of 5,6-Dihydroxyflavone in Suppressing LPS-Induced Inflammation and Oxidative Stress. Int J Mol Sci 2024; 25:10694. [PMID: 39409020 PMCID: PMC11477439 DOI: 10.3390/ijms251910694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
5,6-dihydroxyflavone (5,6-DHF), a flavonoid that possesses potential anti-inflammatory and antioxidant activities owing to its special catechol motif on the A ring. However, its function and mechanism of action against inflammation and cellular oxidative stress have not been elucidated. In the current study, 5,6-DHF was observed inhibiting lipopolysaccharide (LPS)-induced nitric oxide (NO) and cytoplasmic reactive oxygen species (ROS) production with the IC50 of 11.55 ± 0.64 μM and 0.8310 ± 0.633 μM in murine macrophages, respectively. Meanwhile, 5,6-DHF suppressed the overexpression of pro-inflammatory mediators such as proteins and cytokines and eradicated the accumulation of mitochondrial ROS (mtROS). The blockage of the activation of cell surface toll-like receptor 4 (TLR4), impediment of the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 from the mitogen-activated protein kinases (MAPK) pathway, Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) from the JAK-STAT pathway, and p65 from nuclear factor-κB (NF-κB) pathways were involved in the process of 5,6-DHF suppressing inflammation. Furthermore, 5,6-DHF acted as a cellular ROS scavenger and heme-oxygenase 1 (HO-1) inducer in relieving cellular oxidative stress. Importantly, 5,6-DHF exerted more potent anti-inflammatory activity than its close structural relatives, such as baicalein and chrysin. Overall, our findings pave the road for further research on 5,6-DHF in animal models.
Collapse
Affiliation(s)
- Yujia Cao
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore;
| | - Yee-Joo Tan
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore;
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, China
| |
Collapse
|
8
|
Sharma A, Virmani T, Kumar G, Sharma A, Virmani R, Gugulothu D, Singh K, Misra SK, Pathak K, Chitranshi N, Coutinho HDM, Jain D. Mitochondrial signaling pathways and their role in cancer drug resistance. Cell Signal 2024; 122:111329. [PMID: 39098704 DOI: 10.1016/j.cellsig.2024.111329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Mitochondria, traditionally known as cellular powerhouses, now emerge as critical signaling centers influencing cancer progression and drug resistance. The review highlights the role that apoptotic signaling, DNA mutations, mitochondrial dynamics and metabolism play in the development of resistance mechanisms and the advancement of cancer. Targeted approaches are discussed, with an emphasis on managing mitophagy, fusion, and fission of the mitochondria to make resistant cancer cells more susceptible to traditional treatments. Additionally, metabolic reprogramming can be used to effectively target metabolic enzymes such GLUT1, HKII, PDK, and PKM2 in order to avoid resistance mechanisms. Although there are potential possibilities for therapy, the complex structure of mitochondria and their subtle role in tumor development hamper clinical translation. Novel targeted medicines are put forth, providing fresh insights on combating drug resistance in cancer. The study also emphasizes the significance of glutamine metabolism, mitochondrial respiratory complexes, and apoptotic pathways as potential targets to improve treatment effectiveness against drug-resistant cancers. Combining complementary and nanoparticle-based techniques to target mitochondria has demonstrated encouraging results in the treatment of cancer, opening doors to reduce resistance and enable individualized treatment plans catered to the unique characteristics of each patient. Suggesting innovative approaches such as drug repositioning and mitochondrial drug delivery to enhance the efficacy of mitochondria-targeting therapies, presenting a pathway for advancements in cancer treatment. This thorough investigation is a major step forward in the treatment of cancer and has the potential to influence clinical practice and enhance patient outcomes.
Collapse
Affiliation(s)
- Ashwani Sharma
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India.
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India.
| | - Anjali Sharma
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India
| | - Reshu Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India.
| | - Dalapathi Gugulothu
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Shashi Kiran Misra
- School of Pharmaceutical Sciences, CSJM University Kanpur, Kanpur 208024, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, India
| | - Nitin Chitranshi
- Macquarie Medical School, Macquarie University, New South Wales, Australia; School of Science and Technology, the University of New England, Armidale, New South Wales, Australia.
| | | | - Divya Jain
- Department of Microbiology, School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
9
|
Kireev V, Bespalova I, Prokopiuk V, Maksimchuk P, Hubenko K, Grygorova G, Demchenko L, Onishchenko A, Tryfonyuk L, Tomchuk O, Tkachenko A, Yefimova S. Oxidative stress-modifying effects of TiO 2nanoparticles with varying content of Ti 3+(Ti 2+) ions. NANOTECHNOLOGY 2024; 35:505701. [PMID: 39315467 DOI: 10.1088/1361-6528/ad7e31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Nanoparticles (NPs) with reactive oxygen species (ROS)-regulating ability have recently attracted great attention as promising agents for nanomedicine. In the present study, we have analyzed the effects of TiO2defect structure related to the presence of stoichiometric (Ti4+) and non-stoichiometric (Ti3+and Ti2+) titanium ions in the crystal lattice and TiO2NPs aggregation ability on H2O2- and tert-butyl hydroperoxide (tBOOH)-induced ROS production in L929 cells. Synthesized TiO2-A, TiO2-B, and TiO2-C NPs with varying Ti3+(Ti2+) content were characterized by x-ray powder diffraction, transmission electron microscopy, small-angle x-ray scattering, x-ray photoelectron spectroscopy, and optical spectroscopy methods. Given the role of ROS-mediated toxicity for metal oxide NPs, L929 cell viability and changes in the intracellular ROS levels in H2O2- and tBOOH-treated L929 cells incubated with TiO2NPs have been evaluated. Our research shows that both the amount of non-stoichiometric Ti3+and Ti2+ions in the crystal lattice of TiO2NPs and NPs aggregative behavior affect their catalytic activity, in particular, H2O2decomposition and, consequently, the efficiency of aggravating H2O2- and tBOOH-induced oxidative damage to L929 cells. TiO2-A NPs reveal the strongest H2O2decomposition activity aligning with their less pronounced additional effects on H2O2-treated L929 cells due to the highest amount of Ti3+(Ti2+) ions. TiO2-C NPs with smaller amounts of Ti3+ions and a tendency to aggregate in water solutions show lower antioxidant activity and, consequently, some elevation of the level of ROS in H2O2/tBOOH-treated L929 cells. Our findings suggest that synthesized TiO2NPs capable of enhancing ROS generation at concentrations non-toxic for normal cells, which should be further investigated to assess their possible application in nanomedicine as ROS-regulating pharmaceutical agents.
Collapse
Affiliation(s)
- Viktor Kireev
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky ave., 61072 Kharkiv, Ukraine
| | - Iryna Bespalova
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky ave., 61072 Kharkiv, Ukraine
| | - Volodymyr Prokopiuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavskaya St,, 61015 Kharkiv, Ukraine
| | - Pavel Maksimchuk
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky ave., 61072 Kharkiv, Ukraine
| | - Kateryna Hubenko
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky ave., 61072 Kharkiv, Ukraine
- Leibniz Institute for Solid State and Materials Research Dresden, Helmholtz Straße 20, 01069 Dresden, Germany
| | - Ganna Grygorova
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky ave., 61072 Kharkiv, Ukraine
| | - Lesya Demchenko
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweeden
- National Technical University of Ukraine 'Igor Sikorsky Kyiv Polytechnic Institute', 37 Beresteisky ave., Kyiv, Ukraine
| | - Anatolii Onishchenko
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavskaya St,, 61015 Kharkiv, Ukraine
| | - Liliya Tryfonyuk
- Institute of Health, National University of Water and Environmental Engineering, Rivne, Ukraine
| | - Oleksandr Tomchuk
- Rutherford Appleton Laboratory, ISIS Neutron and Muon Source, Harwell Oxford, Didcot OX11 0QX, United Kingdom
- The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, Kraków 31-342, Poland
| | - Anton Tkachenko
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavskaya St,, 61015 Kharkiv, Ukraine
| | - Svitlana Yefimova
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky ave., 61072 Kharkiv, Ukraine
| |
Collapse
|
10
|
Suganuma T, Hassan H, Gogol M, Workman JL. C G composition in transposon-derived genes is increased in FXD with perturbed immune system. NAR MOLECULAR MEDICINE 2024; 1:ugae015. [PMID: 39465205 PMCID: PMC11500580 DOI: 10.1093/narmme/ugae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Increasing incidence of Fragile X disorders (FXD) and of immune-mediated disorders in FXD suggests that additional factors besides FMR1 mutations contribute to the pathogenesis. Here, we discovered that the expression levels or splicing of specific transposon element (TE)-derived genes, regulating purine metabolism and immune responses against viral infections are altered in FXD. These genes include HLA genes clustered in chr6p21.3 and viral responsive genes in chr5q15. Remarkably, these TE-derived genes contain a low A T/C G suggesting base substitutions of A T to C G. The TE-derived genes with changed expression levels contained a higher content of 5'-CG-3' dinucleotides in FXD compared to healthy donors. This resembles the genomes of some RNA viruses, which maintain high contents of CG dinucleotides to sustain their latent infection exploiting antiviral responses. Thus, past viral infections may have persisted as TEs, provoking immune-mediated disorders in FXD.
Collapse
Affiliation(s)
- Tamaki Suganuma
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Huzaifa Hassan
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Madelaine Gogol
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| |
Collapse
|
11
|
Subhash S, Vijayvargiya S, Parmar A, Sandhu J, Simmons J, Raina R. Reactive Oxygen Species in Cystic Kidney Disease. Antioxidants (Basel) 2024; 13:1186. [PMID: 39456439 PMCID: PMC11504974 DOI: 10.3390/antiox13101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Polycystic kidney disease (PKD) is a rare but significant renal condition with major implications for global acute and chronic patient care. Oxidative stress and reactive oxygen species (ROS) can significantly alter its pathophysiology, clinical outcomes, and treatment, contributing to negative outcomes, including hypertension, chronic kidney disease, and kidney failure. Inflammation from ROS and existing cysts propagate the generation and accumulation of ROS, exacerbating kidney injury, pro-fibrotic signaling cascades, and interstitial fibrosis. Early identification and prevention of oxidative stress and ROS can contribute to reduced cystic kidney disease progression and improved longitudinal patient outcomes. Increased research regarding biomarkers, the pathophysiology of oxidative stress, and novel therapeutic interventions alongside the creation of comprehensive guidelines establishing methods of assessment, monitoring, and intervention for oxidative stress in cystic kidney disease patients is imperative to standardize clinical practice and improve patient outcomes. The integration of artificial intelligence (AI), genetic editing, and genome sequencing could further improve the early detection and management of cystic kidney disease and mitigate adverse patient outcomes. In this review, we aim to comprehensively assess the multifactorial role of ROS in cystic kidney disease, analyzing its pathophysiology, clinical outcomes, treatment interventions, clinical trials, animal models, and future directions for patient care.
Collapse
Affiliation(s)
- Sanat Subhash
- Department of Internal Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (S.S.); (J.S.)
| | - Sonya Vijayvargiya
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Aetan Parmar
- Akron Nephrology Associates, Cleveland Clinic Akron General Medical Center, Akron, OH 44307, USA; (A.P.); (J.S.)
| | - Jazlyn Sandhu
- Akron Nephrology Associates, Cleveland Clinic Akron General Medical Center, Akron, OH 44307, USA; (A.P.); (J.S.)
| | - Jabrina Simmons
- Department of Internal Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (S.S.); (J.S.)
| | - Rupesh Raina
- Akron Nephrology Associates, Cleveland Clinic Akron General Medical Center, Akron, OH 44307, USA; (A.P.); (J.S.)
| |
Collapse
|
12
|
Sun L, Liu J, He Z, Du R. Plant-Derived as Alternatives to Animal-Derived Bioactive Peptides: A Review of the Preparation, Bioactivities, Structure-Activity Relationships, and Applications in Chronic Diseases. Nutrients 2024; 16:3277. [PMID: 39408244 PMCID: PMC11479132 DOI: 10.3390/nu16193277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: At present, a large number of bioactive peptides have been found from plant sources with potential applications for the prevention of chronic diseases. By promoting plant-derived bioactive peptides (PDBPs), we can reduce dependence on animals, reduce greenhouse gas emissions, and protect the ecological environment. Methods: In this review, we summarize recent advances in sustainably sourced PDBPs in terms of preparation methods, biological activity, structure-activity relationships, and their use in chronic diseases. Results: Firstly, the current preparation methods of PDBPs were summarized, and the advantages and disadvantages of enzymatic method and microbial fermentation method were introduced. Secondly, the biological activities of PDBPs that have been explored are summarized, including antioxidant, antibacterial, anticancer and antihypertensive activities. Finally, based on the biological activity, the structure-activity relationship of PDBPs and its application in chronic diseases were discussed. All these provide the foundation for the development of PDBPs. However, the study of PDBPs still has some limitations. Conclusions: Overall, PDBPs is a good candidate for the prevention and treatment of chronic diseases in humans. This work provides important information for exploring the source of PDBPs, optimizing its biological activity, and accurately designing functional foods or drugs.
Collapse
Affiliation(s)
- Li Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (L.S.); (J.L.)
| | - Jinze Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (L.S.); (J.L.)
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (L.S.); (J.L.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (L.S.); (J.L.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
| |
Collapse
|
13
|
Wang XL, Li L, Meng X. Interplay between the Redox System and Renal Tubular Transport. Antioxidants (Basel) 2024; 13:1156. [PMID: 39456410 PMCID: PMC11505102 DOI: 10.3390/antiox13101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
The kidney plays a critical role in maintaining the homeostasis of body fluid by filtration of metabolic wastes and reabsorption of nutrients. Due to the overload, a vast of energy is required through aerobic metabolism, which inevitably leads to the generation of reactive oxygen species (ROS) in the kidney. Under unstressed conditions, ROS are counteracted by antioxidant systems and maintained at low levels, which are involved in signal transduction and physiological processes. Accumulating evidence indicates that the reduction-oxidation (redox) system interacts with renal tubular transport. Redox imbalance or dysfunction of tubular transport leads to renal disease. Here, we discuss the ROS and antioxidant systems in the kidney and outline the metabolic dysfunction that is a common feature of renal disease. Importantly, we describe the key molecules involved in renal tubular transport and their relationship to the redox system and, finally, summarize the impact of their dysregulation on the pathogenesis and progression of acute and chronic kidney disease.
Collapse
Affiliation(s)
- Xiao-Lan Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Lianjian Li
- Department of Vascular Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Hubei Academy of Chinese Medicine, Wuhan 430061, China;
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
14
|
Wu Y, Xu Y, Deng H, Sun J, Li X, Tang J. Poricoic acid a ameliorates high glucose-induced podocyte injury by regulating the AMPKα/FUNDC1 pathway. Mol Biol Rep 2024; 51:1003. [PMID: 39305364 DOI: 10.1007/s11033-024-09921-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Poricoic acid A (PAA), a major triterpenoid component of Poria cocos with anti-tumor, anti-fibrotic, anti-inflammatory, and immune-regulating activities, has been shown to induce podocyte autophagy in diabetic kidney disease (DKD) by downregulating FUN14 domain containing 1 (FUNDC1). This study aimed to identify the role of adenosine monophosphate-activated protein kinase alpha (AMPKα) in PAA-mediated phosphorylation of FUNDC1 in podocyte injury occurring in the pathogenesis of DKD. METHODS AND RESULTS A cellular model of renal podocyte injury was established by culturing MPC5 cells under high-glucose (HG) conditions. MPC5 cells were subjected to transfection with small interfering RNA (siRNA) targeting AMPKα or siRNA targeting FUNDC1, an AMPKα activator, or PAA. PAA treatment induced the phosphorylation of AMPKα in HG-cultured podocytes. AMPKα activation was implicated in the inhibitory effect of PAA on FUNDC phosphorylation in HG-cultured podocytes. Treatment targeting the AMPKα activator also significantly augmented proliferation, migration, mitochondrial membrane potential, and autophagy levels, while reducing apoptosis levels, inhibiting oxidative stress, and suppressing the release of proinflammatory factors in HG-cultured MPC5 cells. In contrast, insufficient expression of AMPKα reversed the effects of PAA on the proliferation, migration, and apoptosis of podocytes and further exacerbated the reduction of phosphorylated FUNDC1 expression in podocytes under HG conditions. CONCLUSIONS AMPKα is involved in the regulation of FUNDC1 phosphorylation by PAA in HG-induced podocyte injury. Furthermore, the AMPKα/FUNDC1 pathway plays a crucial regulatory role in HG-induced podocyte injury. These findings support AMPKα, FUNDC1, and the AMPKα/FUNDC1 pathway as targets for PAA intervention.
Collapse
Affiliation(s)
- Yuwen Wu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, No.167 Donghu Road, Wuhan, 430071, Hubei, China.
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, No.167 Donghu Road, Wuhan, 430071, Hubei, China
| | - Haohua Deng
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, No.167 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jiazhong Sun
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, No.167 Donghu Road, Wuhan, 430071, Hubei, China
| | - Xin Li
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, No.167 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jun Tang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, No.167 Donghu Road, Wuhan, 430071, Hubei, China
| |
Collapse
|
15
|
Lee KCY, Williams AL, Wang L, Xie G, Jia W, Fujimoto A, Gerschenson M, Shohet RV. PKM2 regulates metabolic flux and oxidative stress in the murine heart. Physiol Rep 2024; 12:e70040. [PMID: 39256891 PMCID: PMC11387154 DOI: 10.14814/phy2.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
Cardiac metabolism ensures a continuous ATP supply, primarily using fatty acids in a healthy state and favoring glucose in pathological conditions. Pyruvate kinase muscle (PKM) controls the final step of glycolysis, with PKM1 being the main isoform in the heart. PKM2, elevated in various heart diseases, has been suggested to play a protective role in cardiac stress, but its function in basal cardiac metabolism remains unclear. We examined hearts from global PKM2 knockout (PKM2-/-) mice and found reduced intracellular glucose. Isotopic tracing of U-13C glucose revealed a shift to biosynthetic pathways in PKM2-/- cardiomyocytes. Total ATP content was two-thirds lower in PKM2-/- hearts, and functional analysis indicated reduced mitochondrial oxygen consumption. Total reactive oxygen species (ROS) and mitochondrial superoxide were also increased in PKM2-/- cardiomyocytes. Intriguingly, PKM2-/- hearts had preserved ejection fraction compared to controls. Mechanistically, increased calcium/calmodulin-dependent kinase II activity and phospholamban phosphorylation may contribute to higher sarcoendoplasmic reticulum calcium ATPase 2 pump activity in PKM2-/- hearts. Loss of PKM2 led to altered glucose metabolism, diminished mitochondrial function, and increased ROS in cardiomyocytes. These data suggest that cardiac PKM2 acts as an important rheostat to maintain ATP levels while limiting oxidative stress. Although loss of PKM2 did not impair baseline contractility, its absence may make hearts more sensitive to environmental stress or injury.
Collapse
Affiliation(s)
- Katie C. Y. Lee
- Department of Medicine, John A. Burns School of MedicineUniversity of HawaiiHonoluluHawaiiUSA
- Department of Cell and Molecular Biology, John A. Burns School of MedicineUniversity of HawaiiHonoluluHawaiiUSA
| | - Allison L. Williams
- Department of Medicine, John A. Burns School of MedicineUniversity of HawaiiHonoluluHawaiiUSA
| | - Lu Wang
- University of Hawaii Cancer CenterHonoluluHawaiiUSA
| | - Guoxiang Xie
- University of Hawaii Cancer CenterHonoluluHawaiiUSA
| | - Wei Jia
- University of Hawaii Cancer CenterHonoluluHawaiiUSA
| | - Anastasia Fujimoto
- Department of Cell and Molecular Biology, John A. Burns School of MedicineUniversity of HawaiiHonoluluHawaiiUSA
| | - Mariana Gerschenson
- Department of Cell and Molecular Biology, John A. Burns School of MedicineUniversity of HawaiiHonoluluHawaiiUSA
| | - Ralph V. Shohet
- Department of Medicine, John A. Burns School of MedicineUniversity of HawaiiHonoluluHawaiiUSA
| |
Collapse
|
16
|
Qaed E, Almaamari A, Almoiliqy M, Alyafeai E, Sultan M, Aldahmash W, Mahyoub MA, Tang Z. Phosphocreatine attenuates doxorubicin-induced nephrotoxicity through inhibition of apoptosis, and restore mitochondrial function via activation of Nrf2 and PGC-1α pathways. Chem Biol Interact 2024; 400:111147. [PMID: 39043266 DOI: 10.1016/j.cbi.2024.111147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
Doxorubicin (DOX), a chemotherapy drug widely recognized for its efficacy in cancer treatment, unfortunately, has significant nephrotoxic effects leading to kidney damage. This study explores the nephroprotective potential of Phosphocreatine (PCr) in rats, specifically examining its influence on Nrf2 (Nuclear factor erythroid 2-related factor 2) and PGC-1α (Peroxisome proliferator-activated receptor gamma coactivator 1-alpha) pathways, its role in apoptosis inhibition, and effectiveness in preserving mitochondrial function. The research employed in vivo experiments in rats, focusing on PCr's capacity to protect renal function against doxorubicin-induced damage. The study entailed evaluating Nrf2 and PGC-1α pathway activation, apoptosis rates, and mitochondrial health in renal tissues. A significant aspect of this research was the use of high-resolution respirometry (HRR) to assess the function of isolated kidney mitochondria, providing in-depth insights into mitochondrial bioenergetics and respiratory efficiency under the influence of PCr and doxorubicin. Results demonstrated that PCr treatment significantly enhanced the activation of Nrf2 and PGC-1α pathways, reduced apoptosis, and preserved mitochondrial structure in doxorubicin-affected kidneys. Observations included upregulated expression of Nrf2 and PGC-1α target genes, stabilization of mitochondrial membranes, and a notable improvement in cellular antioxidant defense, evidenced by the activities of enzymes like superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA) This study positions phosphocreatine as a promising agent in mitigating doxorubicin-induced kidney damage in rats. The findings, particularly the insights from HRR on isolated kidney mitochondria, highlight PCr's potential in enhancing mitochondrial function and reducing nephrotoxic side effects of chemotherapy. These encouraging results pave the way for further research into PCr's applications in cancer treatment, aiming to improve patient outcomes by managing chemotherapy-related renal injuries.
Collapse
Affiliation(s)
- Eskandar Qaed
- Collage of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Ahmed Almaamari
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Marwan Almoiliqy
- Collage of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China
| | - Eman Alyafeai
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Marwa Sultan
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Waleed Aldahmash
- Zoology Department, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mueataz A Mahyoub
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zeyao Tang
- Collage of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China.
| |
Collapse
|
17
|
Ding Z, Shao G, Li M. Regulatory Mechanism of Autophagy in Premature Ovarian Failure. Cell Biochem Funct 2024; 42:e4122. [PMID: 39256962 DOI: 10.1002/cbf.4122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Premature ovarian failure (POF) is intricately linked to cellular fates such as senescence, apoptosis, and impaired granulosa cell (GC) differentiation, each of which contributes to ovarian dysfunction and follicular depletion. Autophagy is essential in preventing POF by maintaining cellular homeostasis through the degradation and recycling of damaged organelles and proteins, thereby preserving ovarian function and preventing follicular depletion. Recent studies have revealed that the targeted regulation and disruption of autophagy through various molecular mechanisms ultimately lead to the pathogenesis of POF. In this review, we provide a comprehensive analysis of the disruption in regulatory mechanisms of autophagy contributing to POF. Specifically, we elucidate the molecular mechanisms that can be targeted to restore autophagy homeostasis, offering therapeutic potential for the treatment of POF.
Collapse
Affiliation(s)
- Ziwen Ding
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Genbao Shao
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Mingyang Li
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
18
|
Huang J, Hao J, Wang P, Xu Y. The Role of Mitochondrial Dysfunction in CKD-Related Vascular Calcification: From Mechanisms to Therapeutics. Kidney Int Rep 2024; 9:2596-2607. [PMID: 39291213 PMCID: PMC11403042 DOI: 10.1016/j.ekir.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 09/19/2024] Open
Abstract
Vascular calcification (VC) is a common complication of chronic kidney disease (CKD) and is closely associated with cardiovascular events. The transdifferentiation of vascular smooth muscles (VSMCs) into an osteogenic phenotype is hypothesized to be the primary cause underlying VC. However, there is currently no effective clinical treatment for VC. Growing evidence suggests that mitochondrial dysfunction accelerates the osteogenic differentiation of VSMCs and VC via multiple mechanisms. Therefore, elucidating the relationship between the osteogenic differentiation of VSMCs and mitochondrial dysfunction may assist in improving VC-related adverse clinical outcomes in patients with CKD. This review aimed to summarize the role of mitochondrial biogenesis, mitochondrial dynamics, mitophagy, and metabolic reprogramming, as well as mitochondria-associated oxidative stress (OS) and senescence in VC in patients with CKD to offer valuable insights into the clinical treatment of VC.
Collapse
Affiliation(s)
- Junmin Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Junfeng Hao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Peng Wang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yongzhi Xu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
19
|
Ashique S, Mishra N, Mantry S, Garg A, Kumar N, Gupta M, Kar SK, Islam A, Mohanto S, Subramaniyan V. Crosstalk between ROS-inflammatory gene expression axis in the progression of lung disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03392-1. [PMID: 39196392 DOI: 10.1007/s00210-024-03392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
A significant number of deaths and disabilities worldwide are brought on by inflammatory lung diseases. Many inflammatory lung disorders, including chronic respiratory emphysema, resistant asthma, resistance to steroids, and coronavirus-infected lung infections, have severe variants for which there are no viable treatments; as a result, new treatment alternatives are needed. Here, we emphasize how oxidative imbalance contributes to the emergence of provocative lung problems that are challenging to treat. Endogenic antioxidant systems are not enough to avert free radical-mediated damage due to the induced overproduction of ROS. Pro-inflammatory mediators are then produced due to intracellular signaling events, which can harm the tissue and worsen the inflammatory response. Overproduction of ROS causes oxidative stress, which causes lung damage and various disease conditions. Invasive microorganisms or hazardous substances that are inhaled repeatedly can cause an excessive amount of ROS to be produced. By starting signal transduction pathways, increased ROS generation during inflammation may cause recurrent DNA damage and apoptosis and activate proto-oncogenes. This review provides information about new targets for conducting research in related domains or target factors to prevent, control, or treat such inflammatory oxidative stress-induced inflammatory lung disorders.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, 713212, India.
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, MP, 474005, India
| | - Shubhrajit Mantry
- Department of Pharmaceutics, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, 483001, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to Be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Sanjeeb Kumar Kar
- Department of Pharmaceutical Chemistry, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
20
|
Santiago MJ, Chinnapaiyan S, Panda K, Rahman MS, Ghorai S, Lucas JH, Black SM, Rahman I, Unwalla HJ. MicroRNA mediated suppression of airway lactoperoxidase by TGF-β1 and cigarette smoke promotes airway inflammation. J Inflamm (Lond) 2024; 21:31. [PMID: 39192275 DOI: 10.1186/s12950-024-00405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Transforming Growth Factor Beta1 (TGF-β1) signaling is upregulated in Chronic Obstructive Pulmonary disease (COPD), smokers, and people living with HIV. Cigarette smoking and HIV are also independent risk factors for COPD. Chronic inflammation is a hallmark of COPD. However, the underlying mechanisms remain unknown. Previous research has suggested that TGF-β1 alters the airway epithelial microRNAome and transcriptome, potentially contributing to lung inflammation. The Lactoperoxidase (LPO) system is an integral component of innate immunity within the airway. LPO plays a crucial role in host defense by catalyzing the oxidation of thiocyanate to hypothiocyanite in the presence of hydrogen peroxide (H2O2), generating a potent antibacterial and antiviral agent. Additionally, the LPO system potentially aids in maintaining cellular redox balance by reducing the levels of H2O2, thus mitigating oxidative stress within the airway epithelium. LPO dysfunction can impair immune responses and exacerbate inflammatory processes in respiratory diseases.In this study, primary bronchial epithelial cells and bronchial cell lines were treated with TGF-β1 and exposed to cigarette smoke to characterize the effect of these factors on LPO and their downstream effects. RT-qPCR and Western Blot were applied to quantify mRNA and proteins' expression. The levels of H2O2 were detected using the Amplex Red Assay. Magnetofection and transfection were applied to probe the effect of miR-449b-5p. Staining procedures using the MitoTracker Green and C12FDG dyes were used to establish mitochondria mass and senescence. The levels of pro-inflammatory cytokines were measured via Luminex assays.We found that TGF-β1 and cigarette smoke suppressed airway LPO expression, increasing H2O2 levels. This increase in H2O2 had downstream effects on mitochondrial homeostasis, epithelial cellular senescence, and the pro-inflammatory cytokine response. We demonstrate for the first time that airway LPO is regulated by TGF-β1-induced miRNA-mediated post-transcriptional silencing through miR-449b-5p in the lungs. Further, we identify and validate miR-449-5p as the candidate miRNA upregulated by TGF-β1, which is involved in LPO suppression. This paper demonstrates a new mechanism by which TGF-β1 can lead to altered redox status in the airway.
Collapse
Grants
- HL147715, HL158316, HL167655,HL60190, HL137282, HL134610, HL146369 and R03DA057162-02 NIH HHS
- HL147715, HL158316, HL167655,HL60190, HL137282, HL134610, HL146369 and R03DA057162-02 NIH HHS
- HL147715, HL158316, HL167655,HL60190, HL137282, HL134610, HL146369 and R03DA057162-02 NIH HHS
- HL147715, HL158316, HL167655,HL60190, HL137282, HL134610, HL146369 and R03DA057162-02 NIH HHS
- 21K09 Florida Department of Health
Collapse
Affiliation(s)
- Maria J Santiago
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Srinivasan Chinnapaiyan
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Kingshuk Panda
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Md Sohanur Rahman
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Suvankar Ghorai
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Joseph H Lucas
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Stephen M Black
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St Lucie, FL, 34987, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Hoshang J Unwalla
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.
| |
Collapse
|
21
|
Tang S, Fuß A, Fattahi Z, Culmsee C. Drp1 depletion protects against ferroptotic cell death by preserving mitochondrial integrity and redox homeostasis. Cell Death Dis 2024; 15:626. [PMID: 39191736 DOI: 10.1038/s41419-024-07015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Mitochondria are highly dynamic organelles which undergo constant fusion and fission as part of the mitochondrial quality control. In genetic diseases and age-related neurodegenerative disorders, altered mitochondrial fission-fusion dynamics have been linked to impaired mitochondrial quality control, disrupted organelle integrity and function, thereby promoting neural dysfunction and death. The key enzyme regulating mitochondrial fission is the GTPase Dynamin-related Protein 1 (Drp1), which is also considered as a key player in mitochondrial pathways of regulated cell death. In particular, increasing evidence suggests a role for impaired mitochondrial dynamics and integrity in ferroptosis, which is an iron-dependent oxidative cell death pathway with relevance in neurodegeneration. In this study, we demonstrate that CRISPR/Cas9-mediated genetic depletion of Drp1 exerted protective effects against oxidative cell death by ferroptosis through preserved mitochondrial integrity and maintained redox homeostasis. Knockout of Drp1 resulted in mitochondrial elongation, attenuated ferroptosis-mediated impairment of mitochondrial membrane potential, and stabilized iron trafficking and intracellular iron storage. In addition, Drp1 deficiency exerted metabolic effects, with reduced basal and maximal mitochondrial respiration and a metabolic shift towards glycolysis. These metabolic effects further alleviated the mitochondrial contribution to detrimental ROS production thereby significantly enhancing neural cell resilience against ferroptosis. Taken together, this study highlights the key role of Drp1 in mitochondrial pathways of ferroptosis and expose the regulator of mitochondrial dynamics as a potential therapeutic target in neurological diseases involving oxidative dysregulation.
Collapse
Affiliation(s)
- Stephan Tang
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
- Marburg Center of Mind, Brain and Behavior-CMBB, Marburg, Germany
| | - Anneke Fuß
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
- Marburg Center of Mind, Brain and Behavior-CMBB, Marburg, Germany
- Institute of Reconstructive Neurobiology, Neurodevelopmental Genetics, University Bonn, LIFE & BRAIN Center, Bonn, Germany
| | - Zohreh Fattahi
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
- Marburg Center of Mind, Brain and Behavior-CMBB, Marburg, Germany
| | - Carsten Culmsee
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany.
- Marburg Center of Mind, Brain and Behavior-CMBB, Marburg, Germany.
| |
Collapse
|
22
|
Xu L, Meng L, Xiang W, Wang X, Yang J, Shu C, Zhao XH, Rong Z, Ye Y. Prohibitin 2 confers NADPH oxidase 1-mediated cytosolic oxidative signaling to promote gastric cancer progression by ERK activation. Free Radic Biol Med 2024; 224:130-143. [PMID: 39182738 DOI: 10.1016/j.freeradbiomed.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Oxidative signaling plays a dual role in tumor initiation and progression to malignancy; however, the regulatory mechanisms of oxidative stress in gastric cancer remain to be explored. In this study, we discovered that Prohibitin 2 (PHB2) specifically regulates cytosolic reactive oxygen species production in gastric cancer and facilitates its malignant progression. Previously, we found that PHB2 is upregulated in gastric cancer, correlating with increased tumorigenicity of gastric cancer cells and poor patient prognosis. Here, we discovered that PHB2 expression correlates with the activation of the ERK/MAPK cascade, positively regulating the top gene NADPH oxidase 1 (NOX1) within this pathway. Further mechanistic investigation reveals that PHB2 enhances NOX1 transcription by interacting with the transcription factor C/EBP-beta and promoting its translocation into the nucleus, resulting in elevated intracellular oxidative signaling driven by NOX1, which subsequently activates ERK. Therefore, we propose that targeting PHB2-C/EBP-beta-NOX1-mediated cytosolic oxidative stress could offer a promising therapeutic avenue for combating gastric cancer malignant progression.
Collapse
Affiliation(s)
- Liang Xu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Li Meng
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; Department of Prenatal Diagnostic Center, People's Hospital of Puyang, Puyang, 457001, China
| | - Wanying Xiang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xinyue Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jiezhen Yang
- Department of Pathology, Zhongshan Hospital (Xiamen Branch), Fudan University, Xiamen, 361015, China
| | - Chang Shu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiao Hong Zhao
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Ziye Rong
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Yan Ye
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
23
|
Bannon ST, Decker ST, Erol ME, Fan R, Huang YT, Chung S, Layec G. Mitochondrial free radicals contribute to cigarette smoke condensate-induced impairment of oxidative phosphorylation in the skeletal muscle in situ. Free Radic Biol Med 2024; 224:325-334. [PMID: 39178923 DOI: 10.1016/j.freeradbiomed.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Oxidative stress plays a critical role in cellular dysfunction associated with cigarette smoke exposure and aging. Some chemicals from tobacco smoke have the potential to amplify mitochondrial ROS (mROS) production, which, in turn, may impair mitochondrial respiratory function. Accordingly, the present study tested the hypothesis that a mitochondria-targeted antioxidant (MitoTEMPO, MT) would attenuate the inhibitory effects of cigarette smoke on skeletal muscle respiratory capacity of middle-aged mice. Specifically, mitochondrial oxidative phosphorylation was assessed using high-resolution respirometry in permeabilized fibers from the fast-twitch gastrocnemius muscle of middle-aged C57Bl/6J mice. Before the assessment of respiration, tissues were incubated for 1hr with a control buffer (CON), cigarette smoke condensate (2 % dilution, SMOKE), or MitoTEMPO (10 μM) combined with cigarette smoke condensate (MT + SMOKE). Cigarette smoke condensate (CSC) decreased maximal-ADP stimulated respiration (CON: 60 ± 15 pmolO2.s-1.mg-1 and SMOKE: 33 ± 8 pmolO2.s-1.mg-1; p = 0.0001), and this effect was attenuated by MT (MT + SMOKE: 41 ± 7 pmolO2.s-1.mg-1; p = 0.02 with SMOKE). Complex-I specific respiration was inhibited by CSC, with no significant effect of MT (p = 0.35). Unlike CON, the addition of glutamate (ΔGlutamate) had an additive effect on respiration in fibers exposed to CSC (CON: 0.9 ± 1.1 pmolO2.s-1.mg-1 and SMOKE: 5.4 ± 3.7 pmolO2.s-1.mg-1; p = 0.008) and MT (MT + SMOKE: 8.2 ± 3.8 pmolO2.s-1.mg-1; p ≤ 0.01). Complex-II specific respiration was inhibited by CSC but was partially restored by MT (p = 0.04 with SMOKE). Maximal uncoupled respiration induced by FCCP was inhibited by CSC, with no significant effect of MT. These findings underscore that mROS contributes to cigarette smoke condensate-induced inhibition of mitochondrial respiration in fast-twitch gastrocnemius muscle fibers of middle-aged mice thus providing a potential target for therapeutic treatment of smoke-related diseases. In addition, this study revealed that CSC largely impaired muscle respiratory capacity by decreasing metabolic flux through mitochondrial pyruvate transporter (MPC) and/or the enzymes upstream of α-ketoglutarate in the Krebs cycle.
Collapse
Affiliation(s)
- Sean T Bannon
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA
| | - Stephen T Decker
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; Diabetes and Metabolism Research Center, University of Utah, UT, USA
| | - Muhammet Enes Erol
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; School of Health and Kinesiology, University of Nebraska Omaha, NE, USA
| | - Rong Fan
- Department of Nutrition, University of Massachusetts Amherst, MA, USA
| | - Yu-Ting Huang
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA
| | - Soonkyu Chung
- Department of Nutrition, University of Massachusetts Amherst, MA, USA
| | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; School of Health and Kinesiology, University of Nebraska Omaha, NE, USA.
| |
Collapse
|
24
|
Mohamed Yusoff AA, Mohd Khair SZN. Unraveling mitochondrial dysfunction: comprehensive perspectives on its impact on neurodegenerative diseases. Rev Neurosci 2024:revneuro-2024-0080. [PMID: 39174305 DOI: 10.1515/revneuro-2024-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024]
Abstract
Neurodegenerative diseases represent a significant challenge to modern medicine, with their complex etiology and progressive nature posing hurdles to effective treatment strategies. Among the various contributing factors, mitochondrial dysfunction has emerged as a pivotal player in the pathogenesis of several neurodegenerative disorders. This review paper provides a comprehensive overview of how mitochondrial impairment contributes to the development of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, driven by bioenergetic defects, biogenesis impairment, alterations in mitochondrial dynamics (such as fusion or fission), disruptions in calcium buffering, lipid metabolism dysregulation and mitophagy dysfunction. It also covers current therapeutic interventions targeting mitochondrial dysfunction in these diseases.
Collapse
Affiliation(s)
- Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
25
|
Shoudho K, Uddin S, Rumon MMH, Shakil MS. Influence of Physicochemical Properties of Iron Oxide Nanoparticles on Their Antibacterial Activity. ACS OMEGA 2024; 9:33303-33334. [PMID: 39130596 PMCID: PMC11308002 DOI: 10.1021/acsomega.4c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
The increasing occurrence of infectious diseases caused by antimicrobial resistance organisms urged the necessity to develop more potent, selective, and safe antimicrobial agents. The unique magnetic and tunable properties of iron oxide nanoparticles (IONPs) make them a promising candidate for different theragnostic applications, including antimicrobial agents. Though IONPs act as a nonspecific antimicrobial agent, their antimicrobial activities are directly or indirectly linked with their synthesis methods, synthesizing precursors, size, shapes, concentration, and surface modifications. Alteration of these parameters could accelerate or decelerate the production of reactive oxygen species (ROS). An increase in ROS role production disrupts bacterial cell walls, cell membranes, alters major biomolecules (e.g., lipids, proteins, nucleic acids), and affects metabolic processes (e.g., Krebs cycle, fatty acid synthesis, ATP synthesis, glycolysis, and mitophagy). In this review, we will investigate the antibacterial activity of bare and surface-modified IONPs and the influence of physiochemical parameters on their antibacterial activity. Additionally, we will report the potential mechanism of IONPs' action in driving this antimicrobial activity.
Collapse
Affiliation(s)
- Kishan
Nandi Shoudho
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
- Department
of Chemical Engineering, Bangladesh University
of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Shihab Uddin
- Department
of Bioengineering, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Kingdom
of Saudi Arabia
| | - Md Mahamudul Hasan Rumon
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
| | - Md Salman Shakil
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
| |
Collapse
|
26
|
Gadhave DG, Sugandhi VV, Jha SK, Nangare SN, Gupta G, Singh SK, Dua K, Cho H, Hansbro PM, Paudel KR. Neurodegenerative disorders: Mechanisms of degeneration and therapeutic approaches with their clinical relevance. Ageing Res Rev 2024; 99:102357. [PMID: 38830548 DOI: 10.1016/j.arr.2024.102357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Neurodegenerative disorders (NDs) are expected to pose a significant challenge for both medicine and public health in the upcoming years due to global demographic changes. NDs are mainly represented by degeneration/loss of neurons, which is primarily accountable for severe mental illness. This neuronal degeneration leads to many neuropsychiatric problems and permanent disability in an individual. Moreover, the tight junction of the brain, blood-brain barrier (BBB)has a protective feature, functioning as a biological barrier that can prevent medicines, toxins, and foreign substances from entering the brain. However, delivering any medicinal agent to the brain in NDs (i.e., Multiple sclerosis, Alzheimer's, Parkinson's, etc.) is enormously challenging. There are many approved therapies to address NDs, but most of them only help treat the associated manifestations. The available therapies have failed to control the progression of NDs due to certain factors, i.e., BBB and drug-associated undesirable effects. NDs have extremely complex pathology, with many pathogenic mechanisms involved in the initiation and progression; thereby, a limited survival rate has been observed in ND patients. Hence, understanding the exact mechanism behind NDs is crucial to developing alternative approaches for improving ND patients' survival rates. Thus, the present review sheds light on different cellular mechanisms involved in NDs and novel therapeutic approaches with their clinical relevance, which will assist researchers in developing alternate strategies to address the limitations of conventional ND therapies. The current work offers the scope into the near future to improve the therapeutic approach of NDs.
Collapse
Affiliation(s)
- Dnyandev G Gadhave
- Department of Pharmaceutics, Dattakala Shikshan Sanstha's, Dattakala College of Pharmacy (Affiliated to Savitribai Phule Pune University), Swami Chincholi, Daund, Pune, Maharashtra 413130, India; College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Vrashabh V Sugandhi
- Department of Pharmaceutics, Dattakala Shikshan Sanstha's, Dattakala College of Pharmacy (Affiliated to Savitribai Phule Pune University), Swami Chincholi, Daund, Pune, Maharashtra 413130, India; College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Sopan N Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun
| | - Hyunah Cho
- College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute and University of Technology Sydney, Sydney 2007, Australia.
| | - Keshav Raj Paudel
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun; Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute and University of Technology Sydney, Sydney 2007, Australia.
| |
Collapse
|
27
|
Choi EH, Kim MH, Park SJ. Targeting Mitochondrial Dysfunction and Reactive Oxygen Species for Neurodegenerative Disease Treatment. Int J Mol Sci 2024; 25:7952. [PMID: 39063194 PMCID: PMC11277296 DOI: 10.3390/ijms25147952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases, and they affect millions of people worldwide, particularly older individuals. Therefore, there is a clear need to develop novel drug targets for the treatment of age-related neurodegenerative diseases. Emerging evidence suggests that mitochondrial dysfunction and reactive oxygen species (ROS) generation play central roles in the onset and progression of neurodegenerative diseases. Mitochondria are key regulators of respiratory function, cellular energy adenosine triphosphate production, and the maintenance of cellular redox homeostasis, which are essential for cell survival. Mitochondrial morphology and function are tightly regulated by maintaining a balance among mitochondrial fission, fusion, biogenesis, and mitophagy. In this review, we provide an overview of the main functions of mitochondria, with a focus on recent progress highlighting the critical role of ROS-induced oxidative stress, dysregulated mitochondrial dynamics, mitochondrial apoptosis, mitochondria-associated inflammation, and impaired mitochondrial function in the pathogenesis of age-related neurodegenerative diseases, such as AD and PD. We also discuss the potential of mitochondrial fusion and biogenesis enhancers, mitochondrial fission inhibitors, and mitochondria-targeted antioxidants as novel drugs for the treatment of these diseases.
Collapse
Affiliation(s)
| | | | - Sun-Ji Park
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea; (E.-H.C.); (M.-H.K.)
| |
Collapse
|
28
|
Liang Y, Kaushal D, Wilson RB. Cellular Senescence and Extracellular Vesicles in the Pathogenesis and Treatment of Obesity-A Narrative Review. Int J Mol Sci 2024; 25:7943. [PMID: 39063184 PMCID: PMC11276987 DOI: 10.3390/ijms25147943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
This narrative review explores the pathophysiology of obesity, cellular senescence, and exosome release. When exposed to excessive nutrients, adipocytes develop mitochondrial dysfunction and generate reactive oxygen species with DNA damage. This triggers adipocyte hypertrophy and hypoxia, inhibition of adiponectin secretion and adipogenesis, increased endoplasmic reticulum stress and maladaptive unfolded protein response, metaflammation, and polarization of macrophages. Such feed-forward cycles are not resolved by antioxidant systems, heat shock response pathways, or DNA repair mechanisms, resulting in transmissible cellular senescence via autocrine, paracrine, and endocrine signaling. Senescence can thus affect preadipocytes, mature adipocytes, tissue macrophages and lymphocytes, hepatocytes, vascular endothelium, pancreatic β cells, myocytes, hypothalamic nuclei, and renal podocytes. The senescence-associated secretory phenotype is closely related to visceral adipose tissue expansion and metaflammation; inhibition of SIRT-1, adiponectin, and autophagy; and increased release of exosomes, exosomal micro-RNAs, pro-inflammatory adipokines, and saturated free fatty acids. The resulting hypernefemia, insulin resistance, and diminished fatty acid β-oxidation lead to lipotoxicity and progressive obesity, metabolic syndrome, and physical and cognitive functional decline. Weight cycling is related to continuing immunosenescence and exposure to palmitate. Cellular senescence, exosome release, and the transmissible senescence-associated secretory phenotype contribute to obesity and metabolic syndrome. Targeted therapies have interrelated and synergistic effects on cellular senescence, obesity, and premature aging.
Collapse
Affiliation(s)
- Yicong Liang
- Bankstown Hospital, University of New South Wales, Sydney, NSW 2560, Australia;
| | - Devesh Kaushal
- Campbelltown Hospital, Western Sydney University, Sydney, NSW 2560, Australia;
| | - Robert Beaumont Wilson
- School of Clinical Medicine, University of New South Wales, High St., Kensington, Sydney, NSW 2052, Australia
| |
Collapse
|
29
|
Martín-Pérez J, Villacorta A, Banaei G, Morataya-Reyes M, Tavakolpournegari A, Marcos R, Hernández A, García-Rodriguez A. Hazard assessment of nanoplastics is driven by their surface-functionalization. Effects in human-derived primary endothelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173236. [PMID: 38761522 DOI: 10.1016/j.scitotenv.2024.173236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/14/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
During plastic waste degradation into micro/nanoplastics (MNPLs) their physicochemical characteristics including surface properties (charge, functionalization, biocorona, etc.) can change, potentially affecting their biological effects. This paper focuses on the surface functionalization of MNPLs to determine if it has a direct impact on the toxicokinetic and toxicodynamic interactions in human umbilical vein endothelial cells (HUVECs), at different exposure times. Pristine polystyrene nanoplastics (PS-NPLs), as well as their carboxylated (PS-C-NPLs) and aminated (PS-A-NPLs) forms, all around 50 nm, were used in a wide battery of toxicological assays. These assays encompassed evaluations on cell viability, cell internalization, induction of intracellular reactive oxygen species (iROS), and genotoxicity. The experiments were conducted at a concentration of 100 μg/mL, chosen to ensure a high internalization rate across all treatments while maintaining a sub-toxic concentration. Our results show that all PS-NPLs are internalized by HUVECs, but the internalization dynamic depends on the particle's functionalization. PS-NPLs and PS-C-NPLs internalization modify the morphology of the cell increasing its inner complexity/granularity. Regarding cell toxicity, only PS-A-NPLs reduced cell viability. Intracellular ROS was induced by the three different PS-NPLs but at different time points. Genotoxic damage was induced by the three PS-NPLs at short exposures (2 h), but not for PS-C-NPLs at 24 h. Overall, this study suggests that the toxicological effects of PSNPLs on HUVEC cells are surface-dependent, highlighting the relevance of using human-derived primary cells as a target.
Collapse
Affiliation(s)
- Joan Martín-Pérez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Aliro Villacorta
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | - Gooya Banaei
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Michelle Morataya-Reyes
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain.
| | - Alba García-Rodriguez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain.
| |
Collapse
|
30
|
Jacobs S, Payne C, Shaboodien S, Kgatla T, Pretorius A, Jumaar C, Maarman G, Sanni O. Pulmonary hypertension and the potential of 'drug' repurposing: A case for African medicinal plants. Afr J Thorac Crit Care Med 2024; 30:e1352. [PMID: 39171151 PMCID: PMC11334905 DOI: 10.7196/ajtccm.2024.v30i2.1352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/25/2024] [Indexed: 08/23/2024] Open
Abstract
Abstract Pulmonary hypertension (PH) is a haemodynamic disorder in which elevated blood pressure in the pulmonary circulation is caused by abnormal vascular tone. Despite advances in treatment, PH mortality remains high, and drug repurposing has been proposed as a mitigating approach. This article reviews the studies that have investigated drug repurposing as a viable option for PH. We provide an overview of PH and highlight pharmaceutical drugs with repurposing potential, based on limited evidence of their mechanisms of action. Moreover, studies have demonstrated the benefits of medicinal plants in PH, most of which are of Indian or Asian origin. Africa is a rich source of many medicinal plants that have been scientifically proven to counteract myriad pathologies. When perusing these studies, one will notice that some African medicinal plants can counteract the molecular pathways (e.g. proliferation, vasoconstriction, inflammation, oxidative stress and mitochondrial dysfunction) that are also involved in the pathogenesis of PH. We review the actions of these plants with actions applicable to PH and highlight that they could be repurposed as adjunct PH therapies. However, these plants have either never been tested in PH, or there is little evidence of their actions against PH. We therefore encourage caution, as more research is needed to study these plants further in experimental models of PH while acknowledging that the outcomes of such proof of-concept studies may not always yield promising findings. Regardless, this article aims to stimulate future research that could make timely contributions to the field. Study synopsis What the study adds. Pulmonary hypertension (PH) remains a fatal disease, and 80% of the patients live in developing countries where resources are scarce and specialised therapies are often unavailable. Drug repurposing is a viable option to try to improve treatment outcomes.Implications of the findings. We propose that another form of 'drug' repurposing is the use of medicinal plants, many of which have demonstrated benefits against pathological processes that are also key in PH, e.g. apoptosis, tumour-like growth of cells, proliferation, oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- S Jacobs
- Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - C Payne
- Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - S Shaboodien
- Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - T Kgatla
- Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - A Pretorius
- Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - C Jumaar
- Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - G Maarman
- Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - O Sanni
- Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
31
|
Kayalar O, Bayrak BB, Yildirim M, Yanardag R, Oztay F. Retinoic acid reduces kidney injury by regulating oxidative stress, NRF-2, and apoptosis in hyperoxic mice. Cell Biochem Funct 2024; 42:e4094. [PMID: 39001564 DOI: 10.1002/cbf.4094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/19/2024]
Abstract
Nuclear factor-erythroid-2-related factor-2 (NRF-2) is a cellular resistance protein to oxidants. We investigated the effect of exogenous all-trans retinoic acid (ATRA) on the antioxidant system and NRF-2 in mice kidneys under hyperoxia-induced oxidative stress. Mice were divided into four groups. Daily, two groups were given either peanut-oil/dimethyl sulfoxide (PoDMSO) mixture or 50 mg/kg ATRA. Oxidative stress was induced by hyperoxia in the remaining groups. They were treated with PoDMSO or ATRA as described above, following hyperoxia (100% oxygen) for 72 h. NRF-2 and active-caspase-3 levels, lipid peroxidation (LPO), activities of antioxidant enzymes, xanthine oxidase (XO), paraoxonase1 (PON1), lactate dehydrogenase (LDH), tissue factor (TF), and prolidase were assayed in kidneys. Hyperoxia causes kidney damage induced by oxidative stress and apoptosis. Increased LPO, LDH, TF, and XO activities and decreased PON1 and prolidase activities contributed to kidney damage in hyperoxic mice. After hyperoxia, increases in the activities of antioxidant enzymes and NRF-2 level could not prevent this damage. ATRA attenuated damage via its oxidative stress-lowering effect. The decreased LDH and TF activities increased PON1 and prolidase activities, and normalized antioxidant statuses are indicators of the positive effects of ATRA. We recommend that ATRA can be used as a renoprotective agent against oxidative stress induced-kidney damage.
Collapse
Affiliation(s)
- Ozgecan Kayalar
- Department of Biology, Molecular Biology Division, Science Faculty, Istanbul University, Istanbul, Turkey
- School of Medicine, Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Bertan Boran Bayrak
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Merve Yildirim
- Department of Biology, Molecular Biology Division, Science Faculty, Istanbul University, Istanbul, Turkey
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Fusun Oztay
- Department of Biology, Molecular Biology Division, Science Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
32
|
Agrawal M, Saxena AK, Agrawal SK. Vallaris solanacea induces mitochondrial mediated apoptosis in HL-60 human promyelocytic leukemia cells. Food Chem Toxicol 2024; 189:114743. [PMID: 38763500 DOI: 10.1016/j.fct.2024.114743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
In the present study, the apoptosis-inducing potential of a chloroform fraction from an alcoholic extract of Vallaris solanacea aerial parts (VS) was examined using human promyelocytic leukemia HL-60 cells. We discovered a concentration and time-dependent decrease in cell growth using MTT assay. Scanning electron micrographs and fluorescence microscopy were used to observe several well-documented morphological and nuclear alterations, such as reduction in cell size, chromatin condensation, fragmentation, and the creation of cell surface blebs. A considerable rise in the Sub-G0 population was revealed by cell cycle analysis. Additionally, a dose-dependent rise in cells positive for Annexin V was observed. DCFH-DA test on VS-treated HL-60 cells showed an increase in endogenous ROS generation of up to 4.3 fold. Additionally, suppression in Bcl-2 levels and increased mitochondrial membrane depolarization in treated cells were also associated with a rise in cytosolic cytochrome-c levels that was consequently followed by the activation of the caspase cascade. Further, the DNA fragmentation assay exhibited a typical ladder formation at 25 μg/ml, which became prominent in a concentration-dependent manner. Our study revealed that VS has apoptosis-inducing potential towards HL-60 cells in vitro and is an effective candidate for further anti-cancer studies.
Collapse
Affiliation(s)
- Madhunika Agrawal
- Cellsinvitro Lifesciences Pvt. Ltd., SAS Nagar (Mohali), 140308, Punjab, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180016, India
| | - A K Saxena
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180016, India
| | - Satyam Kumar Agrawal
- Centre for in Vitro Studies and Translational Research, Chitkara School of Health Sciences, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
33
|
Zheng CM, Hou YC, Liao MT, Tsai KW, Hu WC, Yeh CC, Lu KC. Potential role of molecular hydrogen therapy on oxidative stress and redox signaling in chronic kidney disease. Biomed Pharmacother 2024; 176:116802. [PMID: 38795643 DOI: 10.1016/j.biopha.2024.116802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Oxidative stress plays a key role in chronic kidney disease (CKD) development and progression, inducing kidney cell damage, inflammation, and fibrosis. However, effective therapeutic interventions to slow down CKD advancement are currently lacking. The multifaceted pharmacological effects of molecular hydrogen (H2) have made it a promising therapeutic avenue. H2 is capable of capturing harmful •OH and ONOO- while maintaining the crucial reactive oxygen species (ROS) involved in cellular signaling. The NRF2-KEAP1 system, which manages cell redox balance, could be used to treat CKD. H2 activates this pathway, fortifying antioxidant defenses and scavenging ROS to counteract oxidative stress. H2 can improve NRF2 signaling by using the Wnt/β-catenin pathway and indirectly activate NRF2-KEAP1 in mitochondria. Additionally, H2 modulates NF-κB activity by regulating cellular redox status, inhibiting MAPK pathways, and maintaining Trx levels. Treatment with H2 also attenuates HIF signaling by neutralizing ROS while indirectly bolstering HIF-1α function. Furthermore, H2 affects FOXO factors and enhances the activity of antioxidant enzymes. Despite the encouraging results of bench studies, clinical trials are still limited and require further investigation. The focus of this review is on hydrogen's role in treating renal diseases, with a specific focus on oxidative stress and redox signaling regulation, and it discusses its potential clinical applications.
Collapse
Affiliation(s)
- Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City 11031, Taiwan; TMU Research Centre of Urology and Kidney, Taipei Medical University, New Taipei City 11031, Taiwan
| | - Yi-Chou Hou
- Division of Nephrology, Department of Internal Medicine, Cardinal-Tien Hospital, School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan City, Taiwan; Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Wang Tsai
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Wan-Chung Hu
- Department of Clinical Pathology, Taipei Tzu Chi Hospital, Buddhist Medical Tzu Chi Foundation, New Taipei City 23142, Taiwan
| | - Chien-Chih Yeh
- Division of colon and Rectal Surgery, Department of Surgery, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan; National Defense Medical Center, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 24352, Taiwan.
| |
Collapse
|
34
|
Zhang Y, Yu C, Li X. Kidney Aging and Chronic Kidney Disease. Int J Mol Sci 2024; 25:6585. [PMID: 38928291 PMCID: PMC11204319 DOI: 10.3390/ijms25126585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The process of aging inevitably leads to an increase in age-related comorbidities, including chronic kidney disease (CKD). In many aspects, CKD can be considered a state of accelerated and premature aging. Aging kidney and CKD have numerous common characteristic features, ranging from pathological presentation and clinical manifestation to underlying mechanisms. The shared mechanisms underlying the process of kidney aging and the development of CKD include the increase in cellular senescence, the decrease in autophagy, mitochondrial dysfunction, and the alterations of epigenetic regulation, suggesting the existence of potential therapeutic targets that are applicable to both conditions. In this review, we provide a comprehensive overview of the common characteristics between aging kidney and CKD, encompassing morphological changes, functional alterations, and recent advancements in understanding the underlying mechanisms. Moreover, we discuss potential therapeutic strategies for targeting senescent cells in both the aging process and CKD.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chen Yu
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China;
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
35
|
Zhang X, Li G, Chen H, Nie XW, Bian JS. Targeting NKAα1 to treat Parkinson's disease through inhibition of mitophagy-dependent ferroptosis. Free Radic Biol Med 2024; 218:190-204. [PMID: 38574977 DOI: 10.1016/j.freeradbiomed.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Dysfunction of the Na+/K+-ATPase (NKA) has been documented in various neurodegenerative diseases, yet the specific role of NKAα1 in Parkinson's disease (PD) remains incompletely understood. In this investigation, we utilized NKAα1 haploinsufficiency (NKAα1+/-) mice to probe the influence of NKAα1 on dopaminergic (DA) neurodegeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our findings reveal that NKAα1+/- mice displayed a heightened loss of DA neurons and more pronounced motor dysfunction compared to the control group when exposed to MPTP. Intriguingly, this phenomenon coincided with the activation of ferroptosis and impaired mitophagy both in vivo and in vitro. To scrutinize the role and underlying mechanism of NKAα1 in PD, we employed DR-Ab, an antibody targeting the DR-region of the NKA α subunit. Our study demonstrates that the administration of DR-Ab effectively reinstated the membrane abundance of NKAα1, thereby mitigating MPTP-induced DA neuron loss and subsequent improvement in behavioral deficit. Mechanistically, DR-Ab heightened the formation of the surface NKAα1/SLC7A11 complex, inhibiting SLC7A11-dependent ferroptosis. Moreover, DR-Ab disrupted the cytosolic interaction between NKAα1 and Parkin, facilitating the translocation of Parkin to mitochondria and enhancing the process of mitophagy. In conclusion, this study establishes NKAα1 as a key regulator of ferroptosis and mitophagy, identifying its DR-region as a promising therapeutic target for PD.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Guanghong Li
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Hanbin Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xiao-Wei Nie
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (the First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, 518055, China.
| | - Jin-Song Bian
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
36
|
Liu YC, Tseng YH, Kuan YH, Wang LY, Huang SE, Tsai SP, Yeh JL, Hsu JH. Proteasome inhibitor bortezomib prevents proliferation and migration of pulmonary arterial smooth muscle cells. Kaohsiung J Med Sci 2024; 40:542-552. [PMID: 38682650 DOI: 10.1002/kjm2.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
Pulmonary vascular remodeling is a key pathological process of pulmonary arterial hypertension (PAH), characterized by uncontrolled proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs). Bortezomib (BTZ) is the first Food and Drug Administration (FDA)-approved proteasome inhibitor for multiple myeloma treatment. Recently, there is emerging evidence showing its effect on reversing PAH, although its mechanisms are not well understood. In this study, anti-proliferative and anti-migratory effects of BTZ on PASMCs were first examined by different inducers such as fetal bovine serum (FBS), angiotensin II (Ang II) and platelet-derived growth factor (PDGF)-BB, while potential mechanisms including cellular reactive oxygen species (ROS) and mitochondrial ROS were then investigated; finally, signal transduction of ERK and Akt was examined. Our results showed that BTZ attenuated FBS-, Ang II- and PDGF-BB-induced proliferation and migration, with associated decreased cellular ROS production and mitochondrial ROS production. In addition, the phosphorylation of ERK and Akt induced by Ang II and PDGF-BB was also inhibited by BTZ treatment. This study indicates that BTZ can prevent proliferation and migration of PASMCs, which are possibly mediated by decreased ROS production and down-regulation of ERK and Akt. Thus, proteasome inhibition can be a novel pharmacological target in the management of PAH.
Collapse
Affiliation(s)
- Yi-Ching Liu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hsin Tseng
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hsin Kuan
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Lin-Yen Wang
- Department of Pediatrics, Chi-Mei Medical Center, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Childhood Education and Nursery, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Shang-En Huang
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Siao-Ping Tsai
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jwu-Lai Yeh
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jong-Hau Hsu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
37
|
Qureshi IZ, Razzaq A, Naz SS. Testing of acute and sub-acute toxicity profile of novel naproxen sodium nanoformulation in male and female mice. Regul Toxicol Pharmacol 2024; 150:105650. [PMID: 38782233 DOI: 10.1016/j.yrtph.2024.105650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Nanodrugs offer promising alternatives to conventionally used over the counter drugs. Compared to its free form, therapeutic benefits, and gastric tissue safety of naproxen sodium nanoformulation (NpNF) were recently demonstrated. Essential regulatory safety data for this formulation are, however, not available. To address this, male and female BALB/c mice were subjected to acute and 14-day repeated-oral dose assessments. Our data indicate that NpNF was well tolerated up to 2000 mg/kg b.w. A 14-day subacute toxicity testing revealed that the oral administration of low dose (30 mg/kg) NpNF did not produce any adverse effects on blood profile and serum biochemical parameters. Levels of oxidative stress markers and antioxidant enzymes neared normal. Histology of selected tissues also showed no evidence of toxicity. In contrast, a ten-fold increase in NpNF dosage (300 mg/kg), demonstrated, irrespective of gender, mild to moderate toxicity (p < 0.05) in the brain, stomach, and heart tissues, while ROS, LPO, CAT, SOD, POD, and GSH levels remained unaffected in the liver, kidney, spleen, testis, and seminal vesicles. No effect on serum biochemical parameters, overall indicated a no-observed-adverse-effect level (NOAEL) is 300 mg/kg. Further increase in dosage (1000 mg/kg) significantly altered all parameters demonstrating that high dose is toxic.
Collapse
Affiliation(s)
- Irfan Zia Qureshi
- Laboratory of Animal and Human Physiology, Department of Zoology (Animal Sciences), Faculty of Biological Sciences, Quaid-a-Azam University, Islamabad, 45320, Pakistan.
| | - Ayesha Razzaq
- Laboratory of Animal and Human Physiology, Department of Zoology (Animal Sciences), Faculty of Biological Sciences, Quaid-a-Azam University, Islamabad, 45320, Pakistan
| | - Syeda Sohaila Naz
- Nanosciences and Technology Department, National Centre for Physics, Quaid-a- Azam University Campus, Islamabad, 44000, Pakistan
| |
Collapse
|
38
|
Jia X, Zhu L, Zhu Q, Zhang J. The role of mitochondrial dysfunction in kidney injury and disease. Autoimmun Rev 2024; 23:103576. [PMID: 38909720 DOI: 10.1016/j.autrev.2024.103576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Mitochondria are the main sites of aerobic respiration in the cell and mainly provide energy for the organism, and play key roles in adenosine triphosphate (ATP) synthesis, metabolic regulation, and cell differentiation and death. Mitochondrial dysfunction has been identified as a contributing factor to a variety of diseases. The kidney is rich in mitochondria to meet energy needs, and stable mitochondrial structure and function are essential for normal kidney function. Recently, many studies have shown a link between mitochondrial dysfunction and kidney disease, maintaining mitochondrial homeostasis has become an important target for kidney therapy. In this review, we integrate the role of mitochondrial dysfunction in different kidney diseases, and specifically elaborate the mechanism of mitochondrial reactive oxygen species (mtROS), autophagy and ferroptosis involved in the occurrence and development of kidney diseases, providing insights for improved treatment of kidney diseases.
Collapse
Affiliation(s)
- Xueqian Jia
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Lifu Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Qixing Zhu
- Institute of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China.
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; The Center for Scientific Research, Anhui Medical University, Hefei, PR China.
| |
Collapse
|
39
|
Batheja S, Gupta S, Tejavath KK, Gupta U. TPP-based conjugates: potential targeting ligands. Drug Discov Today 2024; 29:103983. [PMID: 38641237 DOI: 10.1016/j.drudis.2024.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Mitochondria are one of the major sources of energy as well as regulators of cancer cell metabolism. Thus, they are potential targets for the effective treatment and management of cancer. Research has explored triphenylphosphonium (TPP) derivatives as potent cancer-targeting ligands because of their lipophilic nature and mitochondrial affinity. In this review, we summarize the utility of TPP-based conjugates targeting mitochondria in different types of cancer and other diseases, such as neurodegenerative and cardiovascular disorders. Such conjugates offer versatile therapeutic potential by modulating membrane potential, influencing reactive oxygen species (ROS) production, and coupling of molecular modifications (such as ATP metabolism and energy metabolism). Thus, we highlight TPP conjugates as promising mitochondria-targeting agents for use in targeted drug delivery systems.
Collapse
Affiliation(s)
- Sanya Batheja
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India
| | - Shruti Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India
| | - Kiran Kumar Tejavath
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India; Department of Biochemistry, All India Institute of Medical Sciences, BIBINAGAR, Hyderabad Metropolitan Region (HMR), Telangana 508126, India.
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India.
| |
Collapse
|
40
|
Erdos T, Masuda M, Venketaraman V. Glutathione in HIV-Associated Neurocognitive Disorders. Curr Issues Mol Biol 2024; 46:5530-5549. [PMID: 38921002 PMCID: PMC11202908 DOI: 10.3390/cimb46060330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
A large portion of patients with Human Immunodeficiency Virus (HIV) have neurologic sequelae. Those with better-controlled HIV via antiretroviral therapies generally have less severe neurologic symptoms. However, for many patients, antiretrovirals do not adequately resolve symptoms. Since much of the pathogenesis of HIV/AIDS (Autoimmune Deficiency Syndrome) involves oxidative stress either directly, through viral interaction, or indirectly, through inflammatory mechanisms, we have reviewed relevant trials of glutathione supplementation in each of the HIV-associated neurocognitive diseases and have found disease-specific results. For diseases for which trials have not been completed, predicted responses to glutathione supplementation are made based on relevant mechanisms seen in the literature. It is not sufficient to conclude that all HIV-associated neurocognitive disorders (HAND) will benefit from the antioxidant effects of glutathione supplementation. The potential effects of glutathione supplementation in patients with HAND are likely to differ based on the specific HIV-associated neurocognitive disease.
Collapse
Affiliation(s)
| | | | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (T.E.); (M.M.)
| |
Collapse
|
41
|
Zhang YY, Jin PP, Guo DZ, Bian D. Modified Zhenwu Tang delays chronic renal failure progression by modulating oxidative stress and hypoxic responses in renal proximal tubular epithelial cells. Heliyon 2024; 10:e31265. [PMID: 38803876 PMCID: PMC11128522 DOI: 10.1016/j.heliyon.2024.e31265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Background Tubulointerstitial fibrosis (TIF) is a critical pathological feature of chronic renal failure (CRF), with oxidative stress (OS) and hypoxic responses in renal proximal tubular epithelial cells playing pivotal roles in disease progression. This study explores the effects of Modified Zhenwu Tang (MZWT) on these processes, aiming to uncover its potential mechanisms in slowing CRF progression. Methods We used adenine (Ade) to induce CRF in rats, which were then treated with benazepril hydrochloride (Lotensin) and MZWT for 8 weeks. Assessments included liver and renal function, electrolytes, blood lipids, renal tissue pathology, OS levels, the hypoxia-inducible factor (HIF) pathway, inflammatory markers, and other relevant indicators. In vitro, human renal cortical proximal tubular epithelial cells were subjected to hypoxia and lipopolysaccharide for 72 h, with concurrent treatment using MZWT, FM19G11, and N-acetyl-l-cysteine. Measurements taken included reactive oxygen species (ROS), HIF pathway activity, inflammatory markers, and other relevant indicators. Results Ade treatment induced significant disruptions in renal function, blood lipids, electrolytes, and tubulointerstitial architecture, alongside heightened OS, HIF pathway activation, and inflammatory responses in rats. In vivo, MZWT effectively ameliorated proteinuria, renal dysfunction, lipid and electrolyte imbalances, and renal tissue damage; it also suppressed OS, HIF pathway activation, epithelial-mesenchymal transition (EMT) in proximal tubular epithelial cells, and reduced the production of inflammatory cytokines and collagen fibers. In vitro findings demonstrated that MZWT decreased apoptosis, reduced ROS production, curbed OS, HIF pathway activation, and EMT in proximal tubular epithelial cells, and diminished the output of inflammatory cytokines and collagen. Conclusion OS and hypoxic responses significantly contribute to TIF development. MZWT mitigates these responses in renal proximal tubular epithelial cells, thereby delaying the progression of CRF.
Collapse
Affiliation(s)
- Yuan-yuan Zhang
- Graduate School, Hebei University of Chinese Medicine, Hebei, Shijiazhuang, 050000, China
| | - Pei-pei Jin
- Hebei Yiling Hospital, Hebei, Shijiazhuang, 050000, China
| | - Deng-zhou Guo
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Chang'an District, Zhongshan East Road 389, 050011, China
| | - Dong Bian
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Chang'an District, Zhongshan East Road 389, 050011, China
| |
Collapse
|
42
|
Kanchan S, Marwaha D, Tomar B, Agrawal S, Mishra S, Kapoor R, Sushma, Jha G, Sharma D, Bhatta RS, Mishra PR, Rath SK. Nanocarrier - Mediated Salinomycin Delivery Induces Apoptosis and Alters EMT Phenomenon in Prostate Adenocarcinoma. AAPS PharmSciTech 2024; 25:104. [PMID: 38724836 DOI: 10.1208/s12249-024-02817-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 09/05/2024] Open
Abstract
Salinomycin (Sal) has been recently discovered as a novel chemotherapeutic agent against various cancers including prostate cancer which is one of the most commonly diagnosed cancers affecting male populations worldwide. Herein we designed salinomycin nanocarrier (Sal-NPs) to extend its systemic circulation and to increase its anticancer potential. Prepared nanoform showed high encapsulation and sustained release profile for salinomycin. The present study elucidated the cytotoxicity and mechanism of apoptotic cell death of Sal-NPs against prostate cancer both in vitro and in vivo. At all measured concentrations, Sal-NPs showed more significant cytotoxicity to DU145 and PC3 cells than Sal alone. This effect was mediated by apoptosis, as confirmed by ROS generation, loss of MMP and cell cycle arrest at the G1 phase in both cells. Sal-NPs efficiently inhibited migration of PC3 and DU145 cells via effectively downregulating the epithelial mesenchymal transition. Also, the results confirmed that Sal-NPs can effectively inhibit the induction of Prostate adenocarcinoma in male Wistar rats. Sal-NPs treatment exhibited a decrease in tumour sizes, a reduction in prostate weight, and an increase in body weight, which suggests that Sal-NPs is more effective than salinomycin alone. Our results suggest that the molecular mechanism underlying the Sal-NPs anticancer effect may lead to the development of a potential therapeutic strategy for treating prostate adenocarcinoma.
Collapse
Affiliation(s)
- Sonam Kanchan
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhawna Tomar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sristi Agrawal
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sakshi Mishra
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Radhika Kapoor
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sushma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Gaurav Jha
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Divyansh Sharma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rabi Sankar Bhatta
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Srikanta Kumar Rath
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
43
|
Tang Y, Liu T, Sun S, Peng Y, Huang X, Wang S, Zhou Z. Role and Mechanism of Growth Differentiation Factor 15 in Chronic Kidney Disease. J Inflamm Res 2024; 17:2861-2871. [PMID: 38741613 PMCID: PMC11090192 DOI: 10.2147/jir.s451398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
GDF-15 is an essential member of the transforming growth factor-beta superfamily. Its functions mainly involve in tissue injury, inflammation, fibrosis, regulation of appetite and weight, development of tumor, and cardiovascular disease. GDF-15 is involved in various signaling pathways, such as MAPK pathway, PI3K/AKT pathway, STAT3 pathway, RET pathway, and SMAD pathway. In addition, several factors such as p53, ROS, and TNF-α participate the regulation of GDF-15. However, the specific mechanism of these factors regulating GDF-15 is still unclear and more research is needed to explore them. GDF-15 mainly improves the function of kidneys in CKD and plays an important role in the prediction of CKD progression and cardiovascular complications. In addition, the role of GDF-15 in the kidney may be related to the SMAD and MAPK pathways. However, the specific mechanism of these pathways remains unclear. Accordingly, more research on the specific mechanism of GDF-15 affecting kidney disease is needed in the future. In conclusion, GDF-15 may be a therapeutic target for kidney disease.
Collapse
Affiliation(s)
- Yifang Tang
- Department of Nephrology, the First Affiliated Hospital, Kunming Medical University, Kunming, People’s Republic of China
| | - Tao Liu
- Organ Transplantation Center, the First Affiliated Hospital, Kunming Medical University, Kunming, People’s Republic of China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People’s Republic of China
| | - Youbo Peng
- Department of Nephrology, the First Affiliated Hospital, Kunming Medical University, Kunming, People’s Republic of China
| | - Xiaoxiao Huang
- Department of Nephrology, Xishuangbanna Dai Autonomous Prefecture People’s Hospital, Xishuangbanna, People’s Republic of China
| | - Shuangquan Wang
- Department of Nephrology, Xishuangbanna Dai Autonomous Prefecture People’s Hospital, Xishuangbanna, People’s Republic of China
| | - Zhu Zhou
- Department of Nephrology, the First Affiliated Hospital, Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
44
|
Long X, Liu M, Nan Y, Chen Q, Xiao Z, Xiang Y, Ying X, Sun J, Huang Q, Ai K. Revitalizing Ancient Mitochondria with Nano-Strategies: Mitochondria-Remedying Nanodrugs Concentrate on Disease Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308239. [PMID: 38224339 DOI: 10.1002/adma.202308239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Mitochondria, widely known as the energy factories of eukaryotic cells, have a myriad of vital functions across diverse cellular processes. Dysfunctions within mitochondria serve as catalysts for various diseases, prompting widespread cellular demise. Mounting research on remedying damaged mitochondria indicates that mitochondria constitute a valuable target for therapeutic intervention against diseases. But the less clinical practice and lower recovery rate imply the limitation of traditional drugs, which need a further breakthrough. Nanotechnology has approached favorable regiospecific biodistribution and high efficacy by capitalizing on excellent nanomaterials and targeting drug delivery. Mitochondria-remedying nanodrugs have achieved ideal therapeutic effects. This review elucidates the significance of mitochondria in various cells and organs, while also compiling mortality data for related diseases. Correspondingly, nanodrug-mediate therapeutic strategies and applicable mitochondria-remedying nanodrugs in disease are detailed, with a full understanding of the roles of mitochondria dysfunction and the advantages of nanodrugs. In addition, the future challenges and directions are widely discussed. In conclusion, this review provides comprehensive insights into the design and development of mitochondria-remedying nanodrugs, aiming to help scientists who desire to extend their research fields and engage in this interdisciplinary subject.
Collapse
Affiliation(s)
- Xingyu Long
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
| | - Min Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, 750002, P. R. China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Yuting Xiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Xiaohong Ying
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Jian Sun
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, P. R. China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China
| |
Collapse
|
45
|
Zhao Y, Wang X, He M, Zeng G, Xu Z, Zhang L, Kang Y, Xue P. Vacancy-Rich Bismuth-Based Nanosheets for Mitochondrial Destruction via CO Poisoning, Ca 2+ Dyshomeostasis, and Oxidative Damage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307404. [PMID: 38054772 DOI: 10.1002/smll.202307404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/02/2023] [Indexed: 12/07/2023]
Abstract
Mitochondria are core regulators of tumor cell homeostasis, and their damage has become an arresting therapeutic modality against cancer. Despite the development of many mitochondrial-targeted pharmaceutical agents, the exploration of more powerful and multifunctional medications is still underway. Herein, oxygen vacancy-rich BiO2-x wrapped with CaCO3 (named BiO2-x@CaCO3/PEG, BCP) is developed for full-fledged attack on mitochondrial function. After endocytosis of BCP by tumor cells, the CaCO3 shell can be decomposed in the acidic lysosomal compartment, leading to immediate Ca2+ release and CO2 production in the cytoplasm. Near-infrared irradiation enhances the adsorption of CO2 onto BiO2-x defects, which enables highly efficient photocatalysis of CO2-to-CO. Meanwhile, such BiO2-x nanosheets possess catalase-, peroxidase- and oxidase-like catalytic activities under acidic pH conditions, allowing hypoxia relief and the accumulation of diverse reactive oxygen species (ROS) in the tumor microenvironment. Ca2+ overload-induced ion dyshomeostasis, CO-mediated respiratory chain poisoning, ROS-triggered oxidative stress aggravation, and cytosolic hyperoxia can cause severe mitochondrial disorders, which further lead to type I cell death in carcinoma. Not only does BCP cause irreversible apoptosis, but immunogenic cell death is simultaneously triggered to activate antitumor immunity for metastasis inhibition. Collectively, this platform promises high benefits in malignant tumor therapy and may expand the medical applications of bismuth-based nanoagents.
Collapse
Affiliation(s)
- Yinmin Zhao
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Xiaoqin Wang
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Mengting He
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Guicheng Zeng
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Lei Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Yuejun Kang
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
- Yibin Academy of Southwest University, Yibin, 644000, China
| | - Peng Xue
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
- Yibin Academy of Southwest University, Yibin, 644000, China
| |
Collapse
|
46
|
D’Apolito E, Sisalli MJ, Tufano M, Annunziato L, Scorziello A. Oxidative Metabolism in Brain Ischemia and Preconditioning: Two Sides of the Same Coin. Antioxidants (Basel) 2024; 13:547. [PMID: 38790652 PMCID: PMC11117774 DOI: 10.3390/antiox13050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Brain ischemia is one of the major causes of chronic disability and death worldwide. It is related to insufficient blood supply to cerebral tissue, which induces irreversible or reversible intracellular effects depending on the time and intensity of the ischemic event. Indeed, neuronal function may be restored in some conditions, such as transient ischemic attack (TIA), which may be responsible for protecting against a subsequent lethal ischemic insult. It is well known that the brain requires high levels of oxygen and glucose to ensure cellular metabolism and energy production and that damage caused by oxygen impairment is tightly related to the brain's low antioxidant capacity. Oxygen is a key player in mitochondrial oxidative phosphorylation (OXPHOS), during which reactive oxygen species (ROS) synthesis can occur as a physiological side-product of the process. Indeed, besides producing adenosine triphosphate (ATP) under normal physiological conditions, mitochondria are the primary source of ROS within the cell. This is because, in 0.2-2% of cases, the escape of electrons from complex I (NADPH-dehydrogenase) and III of the electron transport chain occurring in mitochondria during ATP synthesis leads to the production of the superoxide radical anion (O2•-), which exerts detrimental intracellular effects owing to its high molecular instability. Along with ROS, reactive nitrosative species (RNS) also contribute to the production of free radicals. When the accumulation of ROS and RNS occurs, it can cause membrane lipid peroxidation and DNA damage. Here, we describe the intracellular pathways activated in brain tissue after a lethal/sub lethal ischemic event like stroke or ischemic tolerance, respectively, highlighting the important role played by oxidative stress and mitochondrial dysfunction in the onset of the two different ischemic conditions.
Collapse
Affiliation(s)
- Elena D’Apolito
- Division of Pharmacology, Department of Neuroscience Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Napoli, Italy; (E.D.); (M.T.)
| | - Maria Josè Sisalli
- Department of Translational Medicine, Federico II University of Naples, 80131 Napoli, Italy;
| | - Michele Tufano
- Division of Pharmacology, Department of Neuroscience Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Napoli, Italy; (E.D.); (M.T.)
| | | | - Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Napoli, Italy; (E.D.); (M.T.)
| |
Collapse
|
47
|
Baysal M, Karaduman AB, Korkut Çelikateş B, Atlı-Eklioğlu Ö, Ilgın S. Assessment of the toxicity of different antiretroviral drugs and their combinations on Sertoli and Leydig cells. Drug Chem Toxicol 2024:1-9. [PMID: 38647040 DOI: 10.1080/01480545.2024.2336506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
The human immunodeficiency virus continues to pose a significant global public health challenge, affecting millions of individuals. The current treatment strategy has incorporated the utilization of combinations of antiretroviral drugs. The administration of these drugs is associated with many deleterious consequences on several physiological systems, notably the reproductive system. This study aimed to assess the toxic effects of abacavir sulfate, ritonavir, nevirapine, and zidovudine, as well as their combinations, on TM3 Leydig and TM4 Sertoli cells. The cell viability was gauged using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) and neutral red uptake (NRU) assays. Reactive oxygen species (ROS) production was assessed via the 2',7'-dichlorofluorescein diacetate (DCFDA) test, and DNA damage was determined using the comet assay. Results indicated cytotoxic effects at low drug concentrations, both individually and combined. The administration of drugs, individually and in combination, resulted in the production of ROS and caused damage to the DNA at the tested concentrations. In conclusion, the results of this study suggest that the administration of antiretroviral drugs can lead to testicular toxicity by promoting the generation of ROS and DNA damage. Furthermore, it should be noted that the toxicity of antiretroviral drug combinations was shown to be higher compared to that of individual drugs.
Collapse
Affiliation(s)
- Merve Baysal
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Abdullah Burak Karaduman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Büşra Korkut Çelikateş
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Özlem Atlı-Eklioğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Sinem Ilgın
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
48
|
El Brouzi MY, Lamtai M, Zghari O, El Hamzaoui A, Rezqaoui A, Hadch Z, Fath N, Ouichou A, El Hessni A, Mesfioui A. Melatonin is a Neuroprotective and Antioxidant Agent against Neurotoxicity Induced by an Intrahippocampal Injection of Nickel in Rats. Neurotox Res 2024; 42:24. [PMID: 38598025 DOI: 10.1007/s12640-024-00700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/27/2024] [Accepted: 03/16/2024] [Indexed: 04/11/2024]
Abstract
The investigation into the hippocampal function and its response to heavy metal exposure is crucial for understanding the mechanisms underlying neurotoxicity, this can potentially inform strategies for mitigating the adverse effects associated with heavy metal exposure. Melatonin is an essential neuromodulator known for its efficacy as an antioxidant. In this study, we aimed to determine whether melatonin could protect against Nickel (Ni) neurotoxicity. To achieve this, we performed an intracerebral injection of Ni (300 µM NiCl2) into the right hippocampus of male Wistar rats, followed by melatonin treatment. Based on neurobehavioral and neurobiochemical assessments, our results demonstrate that melatonin efficiently enhances Ni-induced behavioral dysfunction and cognitive impairment. Specifically, melatonin treatment positively influences anxious behavior, significantly reduces immobility time in the forced swim test (FST), and improves learning and spatial memory abilities. Moreover, neurobiochemical assays revealed that melatonin treatment modulates the Ni-induced alterations in oxidative stress balance by increasing antioxidant enzyme activities, such as superoxide dismutase (SOD) and catalase (CAT). Additionally, we observed that melatonin significantly attenuated the increased levels of lipid peroxidation (LPO) and nitric oxide (NO). In conclusion, the data from this study suggests that melatonin attenuates oxidative stress, which is the primary mechanism responsible for Ni-induced neurotoxicity. Considering that the hippocampus is the main structure involved in the pathology associated with heavy metal intoxication, such as Ni, these findings underscore the potential therapeutic efficacy of melatonin in mitigating heavy metal-induced brain damage.
Collapse
Affiliation(s)
- Mohamed Yassine El Brouzi
- Laboratory of Biology and Health, Neuro-Immunology and Behavior Unit, Faculty of Science, Ibn Tofail University, Kénitra, Morocco.
| | - Mouloud Lamtai
- Laboratory of Biology and Health, Neuro-Immunology and Behavior Unit, Faculty of Science, Ibn Tofail University, Kénitra, Morocco
| | - Oussama Zghari
- Laboratory of Biology and Health, Neuro-Immunology and Behavior Unit, Faculty of Science, Ibn Tofail University, Kénitra, Morocco
| | - Abdelghafour El Hamzaoui
- Laboratory of Biology and Health, Neuro-Immunology and Behavior Unit, Faculty of Science, Ibn Tofail University, Kénitra, Morocco
| | - Ayoub Rezqaoui
- Laboratory of Biology and Health, Neuro-Immunology and Behavior Unit, Faculty of Science, Ibn Tofail University, Kénitra, Morocco
| | - Zahra Hadch
- Laboratory of Biology and Health, Neuro-Immunology and Behavior Unit, Faculty of Science, Ibn Tofail University, Kénitra, Morocco
| | - Nada Fath
- Compared Anatomy Unit, School of Veterinary Medicine, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
| | - Ali Ouichou
- Laboratory of Biology and Health, Neuro-Immunology and Behavior Unit, Faculty of Science, Ibn Tofail University, Kénitra, Morocco
| | - Aboubaker El Hessni
- Laboratory of Biology and Health, Neuro-Immunology and Behavior Unit, Faculty of Science, Ibn Tofail University, Kénitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Neuro-Immunology and Behavior Unit, Faculty of Science, Ibn Tofail University, Kénitra, Morocco
| |
Collapse
|
49
|
Kang JW, He JP, Liu YN, Zhang Y, Song SS, Xu QX, Wei SW, Lu L, Meng XQ, Xu L, Guo B, Su RW. Aberrant activated Notch1 promotes prostate enlargement driven by androgen signaling via disrupting mitochondrial function in mouse. Cell Mol Life Sci 2024; 81:155. [PMID: 38538986 PMCID: PMC10973062 DOI: 10.1007/s00018-024-05143-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 04/02/2024]
Abstract
The prostate is a vital accessory gonad in the mammalian male reproductive system. With the ever-increasing proportion of the population over 60 years of age worldwide, the incidence of prostate diseases, such as benign prostatic hyperplasia (BPH) and prostate cancer (PCa), is on the rise and is gradually becoming a significant medical problem globally. The notch signaling pathway is essential in regulating prostate early development. However, the potential regulatory mechanism of Notch signaling in prostatic enlargement and hyperplasia remains unclear. In this study, we proved that overactivation of Notch1 signaling in mouse prostatic epithelial cells (OEx) led to prostatic enlargement via enhancing proliferation and inhibiting apoptosis of prostatic epithelial cells. Further study showed that N1ICD/RBPJ directly up-regulated the androgen receptor (AR) and enhanced prostatic sensitivity to androgens. Hyper-proliferation was not found in orchidectomized OEx mice without androgen supply but was observed after Dihydrotestosterone (DHT) supplementation. Our data showed that the number of mitochondrion in prostatic epithelial cells of OEx mice was increased, but the mitochondrial function was impaired, and the essential activity of the mitochondrial respiratory electron transport chain was significantly weakened. Disordered mitochondrial number and metabolic function further resulted in excessive accumulation of reactive oxygen species (ROS). Importantly, anti-oxidant N-Acetyl-L-Cysteine (NAC) therapy could alleviate prostatic hyperplasia caused by the over-activation of Notch1 signaling. Furthermore, we observed the incremental Notch signaling activity in progenitor-like club cells in the scRNA-seq data set of human BPH patients. Moreover, the increased number of TROP2+ progenitors and Club cells was also confirmed in our OEx mice. In conclusion, our study revealed that over-activated Notch1 signaling induces prostatic enlargement by increasing androgen receptor sensitivity, disrupting cellular mitochondrial metabolism, increasing ROS, and a higher number of progenitor cells, all of which can be effectively rescued by NAC treatment.
Collapse
Affiliation(s)
- Jin-Wen Kang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Jia-Peng He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Ying-Nan Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yu Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Shan-Shan Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Qi-Xin Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Shu-Wen Wei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Lei Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Xiang-Qi Meng
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Lin Xu
- College of Sports and Human Science, Harbin Sport University, Harbin, PR China.
| | - Bin Guo
- College of Veterinary Medicine, Jilin University, Changchun, PR China.
| | - Ren-Wei Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China.
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, PR China.
| |
Collapse
|
50
|
Bao J, Wang J, Chen S, Liu S, Wang Z, Zhang W, Zhao C, Sha Y, Yang X, Li Y, Zhong Y, Bai F. Coordination Self-Assembled AuTPyP-Cu Metal-Organic Framework Nanosheets with pH/Ultrasound Dual-Responsiveness for Synergistically Triggering Cuproptosis-Augmented Chemotherapy. ACS NANO 2024; 18:9100-9113. [PMID: 38478044 DOI: 10.1021/acsnano.3c13225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Reactive oxygen species (ROS) mediated tumor cell death is a powerful anticancer strategy. Cuproptosis is a copper-dependent and ROS-mediated prospective tumor therapy strategy. However, the complex tumor microenvironment (TME), low tumor specificity, poor therapy efficiency, and lack of imaging capability impair the therapy output of current cuproptosis drugs. Herein, we designed a dual-responsive two-dimensional metal-organic framework (2D MOF) nanotheranostic via a coordination self-assembly strategy using Au(III) tetra-(4-pyridyl) porphine (AuTPyP) as the ligand and copper ions (Cu2+) as nodes. The dual-stimulus combined with the protonation of the pyridyl group in AuTPyP and deep-penetration ultrasound (US) together triggered the controlled release in an acidic TME. The ultrathin structure (3.0 nm) of nanotheranostics promoted the release process. The released Cu2+ was reduced to Cu+ by depleting the overexpressed glutathione (GSH) in the tumor, which not only activated the Ferredoxin 1 (FDX1)-mediated cuproptosis but also catalyzed the overexpressed hydrogen peroxide (H2O2) in the tumor into reactive oxygen species via Fenton-like reaction. Simultaneously, the released AuTPyP could specifically bind with thioredoxin reductase and activate the redox imbalance of tumor cells. These together selectively induced significant mitochondrial vacuoles and prominent tumor cell death but did not damage the normal cells. The fluorescence and magnetic resonance imaging (MRI) results verified this nanotheranostic could target the HeLa tumor to greatly promote the self-enhanced effect of chemotherapy/cuproptosis and tumor inhibition efficiency. The work helped to elucidate the controlled assembly of multiresponsive nanotheranostics and the high-specificity ROS regulation for application in anticancer therapy.
Collapse
Affiliation(s)
- Jianshuai Bao
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Jiefei Wang
- International Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Sudi Chen
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Shiqi Liu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Zhen Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Weiwei Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Chenhui Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Yuling Sha
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Xiaoyan Yang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Yusen Li
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Yong Zhong
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Feng Bai
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|