1
|
Chen M, Zhang S, Huang X, Zhang D, Zhu D, Ouyang C, Li Y. The protective effects and mechanism of myricetin in liver diseases (Review). Mol Med Rep 2025; 31:87. [PMID: 39917997 PMCID: PMC11811602 DOI: 10.3892/mmr.2025.13452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Liver diseases have become one of the significant threats to global health. However, there is a lack of effective targeted therapeutic drugs in this field and the existing drugs used for liver disease treatment usually have side‑effects. Traditional Chinese medicine (TCM) has the distinctive advantages of multi‑target and low side‑effects. As a flavonoid with various pharmacological activities such as anti‑tumour, anti‑oxidant, anti‑inflammatory and anti‑bacterial, the TCM myricetin has been widely used in liver disease research. The present work focuses on the role and molecular mechanism of myricetin in liver diseases such as acute liver injury, fatty liver, liver fibrosis and hepatocellular carcinoma. It is a promising reference for further research and application of myricetin in the treatment of liver diseases.
Collapse
Affiliation(s)
- Mi Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Shengnan Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
- School of Resources and Environmental Science and Engineering, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Xingqiong Huang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Dandan Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Changhan Ouyang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yankun Li
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
2
|
Barbier-Torres L, Luque-Urbano M, Chhimwal J, Robinson AE, Fernández-Ramos D, Lopitz-Otsoa F, Van Eyk JE, Millet O, Mato JM, Lu SC. Fructose-induced progression of steatohepatitis involves disrupting aldolase B-AMPK signaling in methionine adenosyltransferase 1A deficient mice. Metabolism 2025; 165:156154. [PMID: 39922455 DOI: 10.1016/j.metabol.2025.156154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/23/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
OBJECTIVE Aldolases (ALDO) are sensors that regulate AMPK via binding to fructose 1,6-biphosphate (FBP), an intermediate of glucose and fructose metabolism. Fructose consumption is linked to metabolic dysfunction-associated steatotic liver disease (MASLD) progression but whether ALDO-AMPK signaling is involved is unknown. Methionine adenosyltransferase alpha 1 (Mat1a) knockout (KO) mice have low hepatic S-adenosylmethionine (SAMe) level and spontaneously develop steatohepatitis. ALDOB methylation has not been reported and here we investigated whether SAMe level regulates ALDOB and ALDOB-AMPK signaling and whether fructose feeding accelerates MASLD progression by disrupting ALDOB-AMPK signaling. METHODS Mass spectrometry identified ALDOB methylation sites and recombinant in vitro approaches assessed how methylation at those sites affects ALDOB oligomerization and activity. Primary hepatocytes cultured with high/low glucose and/or fructose and wild type (WT) and Mat1a KO mice fed with a high-fructose diet examined AMPK-ALDOB signaling and MASLD progression. RESULTS In Mat1a KO livers ALDOB R173 is hypomethylated while ALDOB activity is enhanced. Recombinant ALDOB is methylated at R173 and R304 by protein arginine methyltransferase 1. Low hepatic SAMe level results in hypomethylated ALDOB, which favors the tetrameric form that has higher enzymatic activity, and higher capacity to signal to activate AMPK. Fructose, independently of glucose levels, inhibited AMPK activity and induced lipid accumulation in hepatocytes. Mat1a KO mice have hyperactivated AMPK and fructose feeding inhibits it, enhancing the accumulation of fat in the liver and the progression of MASLD. CONCLUSION Hepatic SAMe levels regulate ALDOB oligomeric state and enzymatic activity impacting on AMPK signaling and fructose-induced MASLD progression.
Collapse
Affiliation(s)
- Lucía Barbier-Torres
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - María Luque-Urbano
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Jyoti Chhimwal
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aaron E Robinson
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - David Fernández-Ramos
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Fernando Lopitz-Otsoa
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Oscar Millet
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain.
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
3
|
Li Z, Zheng G, Fang C, Mei J, Liang H, Yang L. Comparation of brain-targeting chitosan/sodium tripolyphosphate and ovalbumin/sodium carboxymethylcellulose nanoparticles on dihydromyricetin delivery and cognitive impairment in obesity-related Alzheimer's disease. Int J Biol Macromol 2025; 306:141517. [PMID: 40020826 DOI: 10.1016/j.ijbiomac.2025.141517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/02/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The brain-gut axis plays an important role in regulating cognitive ability in obesity-related Alzheimer's disease (AD). In this study, we aimed to investigate the correlation between the barrier penetration ability of the DMY nanodelivery system in vivo and the regulation of the gut-brain axis to alleviate cognitive impairment. Brain-targeted peptide (TGN: TGNYKALHPHNG) and DMY loaded chitosan (CS)/sodium tripolyphosphate (TPP) nanoparticles (TGN-DMY-CS/TPP-NPs) and ovalbumin (OVA)/sodium carboxymethylcellulose (CMC) nanoparticles (TGN-DMY-OVA/CMC-NPs) were prepared. TGN-DMY-CS/TPP-NPs demonstrated superior mucus penetration and BBB targeting ability compared to TGN-DMY-OVA/CMC-NPs, while the latter showed notable intestinal accumulation. TGN-DMY-CS/TPP-NPs treatment significantly increased the relative abundance of Alistipes and Rikenellaceae_RC9_gut_group, and TGN-DMY-OVA/CMC-NPs treatment obviously enhanced the relative abundance of Lactobacillus. Furthermore, both nanoparticles alleviated lipid metabolism disorder, oxidative stress, and inflammation in the liver, reduced oxidative stress and neuroinflammation in the brain, inhibited neuronal apoptosis, and enhanced mitochondrial biogenesis and synaptic plasticity in obesity-related AD mice. Despite different mucus penetration and biodistribution, their similar efficacy in improving obesity-related AD is attributed to the gut-brain bidirectional connection.
Collapse
Affiliation(s)
- Zhiwei Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chaoping Fang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jingtao Mei
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Hanji Liang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Licong Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
4
|
Xiaojuan W, Abu Bakar MH, Liqun S, Kassim MA, Shariff KA, Karunakaran T. Targeting Metabolic Diseases with Celastrol: A Comprehensive Review of Anti-Inflammatory Mechanisms and Therapeutic Potential. JOURNAL OF ETHNOPHARMACOLOGY 2025:119560. [PMID: 40015541 DOI: 10.1016/j.jep.2025.119560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/15/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygium wilfordii is a traditional Chinese medicine used to treat rheumatic diseases, with properties such as clearing heat, detoxifying, dispelling wind, and relieving pain. In recent years, its active compound, celastrol, garnered significant attention for its potential therapeutic effects on metabolic diseases. Celastrol exhibits bioactivities such as regulating metabolic functions and anti-inflammatory effects, positioning it as a promising candidate for the treatment of obesity, diabetes, atherosclerosis (AS), and non-alcoholic fatty liver disease (NAFLD). AIM OF THE REVIEW This review aims to explore the pharmacological mechanisms of celastrol in metabolic diseases, focusing on its anti-inflammatory mechanisms and metabolic regulation effects, providing theoretical support for further investigation of its therapeutic potential in metabolic diseases. METHODS Literature was retrieved from PubMed, Web of Science, Scopus, Cochrane, and Google Scholar. This review primarily focuses on anti-inflammatory mechanisms of celastrol, its metabolic regulation, and toxicity studies, by systematically analyzing its effects in obesity, diabetes, AS, and NAFLD, providing scientific evidence for its potential clinical applications. RESULTS Celastrol regulates multiple signaling pathways, particularly inhibiting NF-κB and activating AMPK, reducing the production of pro-inflammatory cytokines and improving insulin sensitivity, enhancing its therapeutic potential in metabolic diseases. Additionally, celastrol regulates adipogenesis and energy metabolism by influencing key transcription factors such as PPARγ and SREBP-1c. Numerous studies highlight its role in alleviating oxidative stress and improving mitochondrial function, further enhancing its metabolic benefits. CONCLUSION In summary, celastrol holds great promise as a multi-target therapeutic agent for metabolic diseases, offering anti-inflammatory, metabolic regulatory, and antioxidative benefits. Despite these, challenges remain for the clinical application of celastrol due to its poor bioavailability and potential toxicity. Advanced formulation strategies and targeted delivery systems are urgently needed to overcome challenges related to bioavailability and clinical translation.
Collapse
Affiliation(s)
- Wang Xiaojuan
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia; Department of Pharmacy, Taishan Vocational College of Nursing, 271099, Tai'an, Shandong, China
| | - Mohamad Hafizi Abu Bakar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia.
| | - Song Liqun
- Department of Pharmacy, Taishan Vocational College of Nursing, 271099, Tai'an, Shandong, China
| | - Mohd Asyraf Kassim
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia
| | - Khairul Anuar Shariff
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300, Penang, Malaysia
| | | |
Collapse
|
5
|
Felicianna, Lo EKK, Chen C, Ismaiah MJ, Zhang F, Leung HKM, El-Nezami H. Alpha-aminobutyric Acid Ameliorates Diet-induced Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) Progression in Mice via Enhancing AMPK/SIRT1 Pathway and Modulating the Gut-Liver Axis. J Nutr Biochem 2025:109885. [PMID: 40015656 DOI: 10.1016/j.jnutbio.2025.109885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/12/2024] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
Alpha-aminobutyric acid (ABA) is a non-proteinogenic amino acid, a metabolite which could be generated from the metabolism of methionine, threonine, serine and glycine or as a gut-microbiome-derived metabolite. Changes in ABA levels have been embroiled in metabolic dysfunction-associated steatotic liver disease (MASLD) intervention studies, but their relation to MASLD pathogenesis remains unclear. Hence, this present study aimed to investigate the effect of oral ABA supplementation on the progression of a high fat/high cholesterol diet (HFD) induced MASLD mice model. ABA was found to remodel the gut microbiome composition and ameliorate MASLD parameters in HFD-fed mice. ABA mitigated HFD-induced gain in liver weight, hepatic steatosis, insulin resistance, serum and hepatic triglyceride levels, and liver cholesterol levels. Modulation of lipid metabolism was observed in the liver, in which expression of proteins and/or genes involved in de novo lipogenesis were suppressed, while those involved in fatty acid oxidation and autophagy were upregulated together with cellular antioxidant capacity, in addition to the enhancement of the AMPK/SIRT1 pathway. ABA reshaped the gut composition by enriching nine bacterial species, including Helicobacter hepaticus, Desulfovibrio sp. G11, Parabacteroides distasonis, and Bacteroides fragilis, while diminishing the abundance of 16 species, which included four Helicobacter species. KEGG pathway analysis of microbial functions found that ABA impeded secondary bile acid biosynthesis - which was reflected in the faecal BA composition analysis. Notably, ABA also inhibited ileal FXR-Fgf15 signalling, allowing for increased hepatic Cyp7a1 expression to eliminate cholesterol buildup in the liver. Overall, our findings indicate that ABA could be used as a promising therapeutic approach for the intervention of MASLD.
Collapse
Affiliation(s)
- Felicianna
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Emily Kwun Kwan Lo
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Congjia Chen
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Marsena Jasiel Ismaiah
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Fangfei Zhang
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Hoi Kit Matthew Leung
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Hani El-Nezami
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China; Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland.
| |
Collapse
|
6
|
Song L, Huang Y, Liu L, Chang X, Hu L, Wang G, Xu L, Zhang T, Wang Y, Xiao Y, Yang H, Ran S, Shi Q, Wang T, Shi M, Zhou Y, Guo B. Meteorin-like alleviates hepatic steatosis by regulating hepatic triglyceride secretion and fatty acid oxidation. Cell Rep 2025; 44:115246. [PMID: 39918960 DOI: 10.1016/j.celrep.2025.115246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/29/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025] Open
Abstract
Amid a rising prevalence of non-alcoholic fatty liver disease (NAFLD), there is still an unmet need to better treat it. We identified a secreted factor, Meteorin-like (Metrnl), with decreased levels in livers with hepatic steatosis. Notably, recombinant Metrnl ameliorated hepatic steatosis in NAFLD mouse models. Mechanistically, Metrnl exerted dual effects by promoting triglyceride (TG) transportation by the phosphatidylinositol 3-kinase (PI3K)/Akt/Sp1/cytidylyltransferase α (CCTα) axis, thereby increasing the biosynthesis of phosphatidylcholine (PC) to facilitate TG secretion from the liver while facilitating AMP-activated protein kinase (AMPK)-dependent fatty acid oxidation (FAO). Exogenous injection of cytidine diphosphocholine (CDP)-choline, the production of CCTα, to increase PC synthesis, was shown to restore the inhibition of TG secretion in hepatic Metrnl-deficient (LKO-Met) mice. Combining CDP-choline and an AMPK activator was sufficient to rescue hepatic steatosis in LKO-Met mice. Collectively, these findings reveal unexpected roles of Metrnl as a factor in PC biosynthesis, TG secretion, and FAO, suggesting potential therapeutic application for NAFLD.
Collapse
Affiliation(s)
- Lingyu Song
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Yali Huang
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Lu Liu
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Xuebing Chang
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Laying Hu
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Guifang Wang
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Lifen Xu
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Tian Zhang
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Yuanyuan Wang
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Ying Xiao
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Hong Yang
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Suye Ran
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Qing Shi
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Tuanlao Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361005, Fujian, China
| | - Mingjun Shi
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China.
| | - Yuxia Zhou
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China.
| | - Bing Guo
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases and Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Gui'an New Area, 561113, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Gui'an New Area, 561113, Guizhou, China.
| |
Collapse
|
7
|
Lin YL, Sutopo CCY, Kao YF, Tseng JK, Chen YC. Modulatory Effects of Ophiocordyceps sinensis Mycelia on Hepatosteatosis Development in a High-Fat Dietary Habit. ENVIRONMENTAL TOXICOLOGY 2025. [PMID: 39980443 DOI: 10.1002/tox.24499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/21/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
The global rise in obesity is closely associated with the increasing prevalence of nonalcoholic fatty liver disease (NAFLD) and metabolic syndromes, posing significant health challenges. This study explored the ameliorative effects of Ophiocordyceps sinensis mycelia (TCM-NA01 formula: 1.4 mg adenosine and 55.2 mg polysaccharide/capsule) on hepatosteatosis development in a high-fat diet (HFD)-fed mice. TCM-NA01 supplementation significantly reduced (p < 0.05) body weight, adipose tissue, serum triglyceride (TG)/cholesterol (TC), aspartate aminotransferase (AST), and alanine aminotransferase (ALT), liver TG/TC levels in HFD-fed mice. Increased (p < 0.05) fecal-lipid and bile-acid outputs were observed. Apparent reductions in lipid-droplet and steatosis scores (p < 0.05) in the HFD-fed mice supplemented with TCM-NA01. Furthermore, TCM-NA01 modulated lipid metabolism by decreasing fatty acid synthesis and promoting fatty acid β-oxidation. TCM-NA01 also enhanced liver antioxidant capacity and decreased proinflammatory cytokines (p < 0.05). These findings underscore the potential of O. sinensis mycelia as a nutraceutical agent for alleviating hepatosteatosis, liver oxidative stress, and chronic inflammation, offering a promising strategy for the management of obesity and NAFLD.
Collapse
Affiliation(s)
- Yi-Ling Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei City, Taiwan
- Undergraduate and Graduate Programs of Nutrition Science, National Taiwan Normal University, Taipei City, Taiwan
| | | | - Yi-Feng Kao
- Seafood Technology Division, Fisheries Research Institute, Ministry of Agriculture, Keelung City, Taiwan
| | - Jung-Kai Tseng
- Department of Optometry, Asia University, Taichung, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei City, Taiwan
- Master Program in Global Agriculture Technology and Genomic Science, International College, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
8
|
Zhang F, Yue K, Sun S, Lu S, Jia G, Zha Y, Zhang S, Chou CJ, Liao C, Li X, Duan Y. Targeting Histone Deacetylase 11 with a Highly Selective Inhibitor for the Treatment of MASLD. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2412903. [PMID: 39976110 DOI: 10.1002/advs.202412903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/26/2025] [Indexed: 02/21/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents the most prevalent chronic liver disorder globally. Due to its intricate pathogenesis and the current lack of efficacious pharmacological interventions, there is a pressing need to discover novel therapeutic targets and agents for MASLD treatment. Herein, it is found that histone deacetylase 11 (HDAC11), a subtype of HDAC family, is markedly overexpressed in both in vitro and in vivo models of MASLD. Furthermore, the knockdown of HDAC11 is observed to mitigate lipid accumulation in hepatic cells. A highly selective HDAC11 inhibitor, B6, which exhibits favorable pharmacokinetic property and liver distribution, is further designed and synthesized. Integrating RNA-seq data with in vivo and in vitro experiments, B6 is found to inhibit de novo lipogenesis (DNL) and promote fatty acid oxidation, thus mitigating hepatic lipid accumulation and pathological symptoms in MASLD mice. Further omics analysis and experiments reveal that B6 enhances the phosphorylation of AMPKα1 at Thr172 through the inhibition of HDAC11, consequently modulating DNL and fatty acid oxidation in the liver. In summary, this study identifies HDAC11 as a potential therapeutic target in MASLD and reports the discovery of a highly selective HDAC11 inhibitor with favorable drug-like properties for the treatment of MASLD.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230031, China
| | - Kairui Yue
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Simin Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Shengyuan Lu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230031, China
| | - Geng Jia
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yang Zha
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230031, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230031, China
| | - C James Chou
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Chenzhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230031, China
| | - Xiaoyang Li
- Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong, 266071, China
| | - Yajun Duan
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|
9
|
Lee HL, Kim JM, Go MJ, Lee HS, Kim JH, Kim IY, Seong GS, Heo HJ. Fermented Protaetia brevitarsis Larvae Alleviates High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in C57BL/6 Mice via Regulation of Lipid Accumulation and Inflammation. J Microbiol Biotechnol 2025; 35:e2409025. [PMID: 39947694 DOI: 10.4014/jmb.2409.09025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 03/06/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD), characterized by hepatic steatosis and hepatitis, is the most frequently encountered complication of type 2 diabetes mellitus (T2DM). Due to its hepatoprotective, anti-obesity, antioxidant, and anti-inflammatory effects, Protaetia brevitarsis (P. brevitarsis) larvae have been used as traditional medicine to treat liver diseases since ancient times. Therefore, this study was conducted to confirm the positive effect of fermented P. brevitarsis larvae (FPB) on NAFLD. The results showed that high-fat diet (HFD)-induced dysglycemia was improved by treatment with FPB as determined by testing for fasting blood glucose and oral glucose tolerance. The weight of liver and white adipose tissue and the levels of serum lipid, hepatotoxicity, and nephrotoxicity indicators were reduced by FPB. In addition, oxidative stress and mitochondrial dysfunction caused by HFD were improved by FPB. In a similar manner, HFD-induced hepatic steatosis was prevented by FPB through regulation of the AMP-activated protein kinase pathway and serum lipid profile. HFD-induced hepatitis and apoptosis were ameliorated by FPB via the nuclear factor-kappa B pathway and the B-cell lymphoma 2 protein family. In conclusion, this study suggests the potential for application of FPB as a prophylactic agent for treatment of NAFLD through suppression of lipid accumulation and inflammation in the liver.
Collapse
Affiliation(s)
- Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Han Su Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ju Hui Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - In Young Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Geum-Su Seong
- Korea Food Research Institute (KFRI), Wanju Zipcode, Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
10
|
Nawaz H, Lee H, Kang S, Kim H, Kim W, Go GW. Alternate-day fasting enhanced weight loss and metabolic benefits over pair-fed calorie restriction in obese mice. Obesity (Silver Spring) 2025. [PMID: 39905657 DOI: 10.1002/oby.24211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 02/06/2025]
Abstract
OBJECTIVE Both alternate-day fasting (ADF) and calorie restriction (CR) are effective weight loss strategies. However, most individuals find it difficult to adhere to CR. Furthermore, CR can induce an excessive loss of not only fat but also muscle mass. This study aimed to compare the effects of ADF and pair-feeding (PF) CR on metabolic pathways underlying obesity in mice with high-fat diet (HFD)-induced obesity. METHODS Male C57BL/6N Tac mice (n = 10 per group) were fed an HFD for 8 weeks to establish a diet-induced obesity model. Mice were then continued on the HFD with either alternate-day access to food or PF for the next 8 weeks. We measured body weight, adiposity, plasma biomarkers, and molecular mechanisms involving lipolysis and autophagy. RESULTS Both ADF and PF resulted in comparable weight and fat loss. Compared with PF, ADF showed a significant reduction in liver weight and hepatic triglyceride levels. ADF significantly increased plasma ketone body levels and white adipose tissue lipolysis. Compared with PF, ADF tended to activate autophagy elongation and autophagosome formation, which were insignificant. CONCLUSIONS These findings indicated that ADF is a promising intervention for metabolic diseases, potentially due to its superior efficacy in promoting ketogenesis and lipolysis compared with PF.
Collapse
Affiliation(s)
- Hadia Nawaz
- Department of Food and Nutrition, Hanyang University, Seoul, Republic of Korea
| | - Haneul Lee
- Department of Food and Nutrition, Hanyang University, Seoul, Republic of Korea
| | - Sumin Kang
- Department of Food and Nutrition, Hanyang University, Seoul, Republic of Korea
| | - Hayoon Kim
- Department of Food and Nutrition, Hanyang University, Seoul, Republic of Korea
| | - Wooki Kim
- Department of Food and Nutrition, Yonsei University, Seoul, Republic of Korea
| | - Gwang-Woong Go
- Department of Food and Nutrition, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Wu M, Li K, Wu J, Ding X, Ma X, Wang W, Xiao W. Ginsenoside Rg1: A bioactive therapeutic agent for diverse liver diseases. Pharmacol Res 2025; 212:107571. [PMID: 39756553 DOI: 10.1016/j.phrs.2024.107571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/10/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Diverse liver diseases are characterised by late diagnosis and rapid progression and have become one of the major threats to human health. To delay the transition from benign tissue lesions to a substantial organ injury, scientists have gradually applied natural compounds derived from plants as a complementary therapy in the field of hepatology. Ginseng (Panax ginseng C. A. Meyer) is a tonic traditional Chinese herbal medicine, and natural products, including ginsenoside Rg1 (G-Rg1), which is a kind of 20(S)-protopanaxatriol saponin with a relatively high biological activity, can be isolated from the roots or stems of ginseng. Given these information, this review aimed to summarise and discuss the metabolic mechanisms of G-Rg1 in the regulation of diverse liver diseases and the measures to improve its bioavailability. As a kind of monomer in Chinese medicine with multitarget pharmacological effects, G-Rg1 can provide significant therapeutic benefits in the alleviation of alcoholic liver disease, nonalcoholic fatty liver disease, liver fibrosis, viral hepatitis, etc., which mainly rely on the inhibition of apoptosis, strengthening endogenous anti-inflammatory and antioxidant mechanisms, activation of immune responses and regulation of efflux transport signals, to improve pathological changes in the liver caused by lipid deposition, inflammation, oxidative stress, accumulation of hepatotoxic product, etc. However, the poor bioavailability of G-Rg1 must be overcome to improve its clinical application value. In summary, focusing on the hepatoprotective benefits of G-Rg1 will provide new insights into the development of natural Chinese medicine resources and their pharmaceutical products to target the treatment of liver diseases.
Collapse
Affiliation(s)
- Mingyu Wu
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Ke Li
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Jiabin Wu
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Xianyi Ding
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Xiaotong Ma
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Wenhong Wang
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; Biomedical Research Institute, Hunan University of Medicine, Huaihua 418000, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
12
|
Zhang L, Zheng Y, Shao M, Chen A, Liu M, Sun W, Li T, Fang Y, Dong Y, Zhao S, Luo H, Feng J, Wang Q, Li L, Zheng Y. AlphaFold-based AI docking reveals AMPK/SIRT1-TFEB pathway modulation by traditional Chinese medicine in metabolic-associated fatty liver disease. Pharmacol Res 2025; 212:107617. [PMID: 39832686 DOI: 10.1016/j.phrs.2025.107617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic, progressive disorder characterized by hepatic steatosis and excessive lipid accumulation. Its high global adult prevalence (approximately 50.7 %) is a significant concern worldwide. However, FDA-approved therapeutic drugs remains lacking. Qigui Jiangzhi Formula (QGJZF) shows promise in treating MAFLD by effectively decreasing lipid levels and improving hepatic steatosis, however its mechanisms remain unclear. This study investigated QGJZF's effects in high-fat diet-induced zebrafish and golden hamsters, and in palmitate (PA) and oleic acid (OA) - induced HepG2 cells, using the SymMap database to identify potential targets and pathways of QGJZF in MAFLD and AlphaFold algorithms to predict protein structures. In vivo, QGJZF significantly alleviated hepatic lipid deposition. Intriguingly, QGJZF decreased lipid droplets and its levels are negative correlated with the numbers of autolysosomes, indicating that QGJZF's mechanism of ameliorating liver lipid deposition may be related to the regulation of autophagy. QGJZF upregulated the expressions of phosphorylated -Adenosine 5'-monophosphate (AMP) - activated protein kinase (p-AMPK), Sirtuin deacetylase 1 (SIRT1) and Transcription factor EB (TFEB), accompanied by the changes in autophagy-related proteins. In vitro, QGJZF inhibited the lipid deposition in PA/OA-stimulated HepG2 cells, and its effect was blocked by an autophagy inhibitor Baf-A1, which was mediated through upregulation of TFEB and its mediated autophagy-lysosomal pathway. Moreover, cotreatment with AMPK inhibitor Compound C, the regulation of QGJZF on TFEB, SIRT1, autophagy-related protein levels, and lipid deposition were reversed. Network pharmacology identified the PRKAA2 (AMPK) and SIRT1 as key hub targets. Futher analysis of their structures using AlphaFold3 algorithms, yielded high-ranking scores of 0.97 and 0.93, respectively. Liquid chromatography-mass spectrometry combined with molecular docking expounded its five compounds in QGJZF binding to AMPK protein. These findings suggest that QGJZF as a therapeutic agent in augmenting autophagy-facilitated lipid clearance for the management of MAFLD via AMPK/SIRT1-TFEB axis.
Collapse
Affiliation(s)
- Lulu Zhang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, China
| | - Yi Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingyan Shao
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Aiping Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Meiyi Liu
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenlong Sun
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Tianxing Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yini Fang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Dong
- Monitoning and Statistical Research Center, National Administration of Traditional Chinese Medicine, Beijing 100600, China
| | - Shipeng Zhao
- Graduate School of China Academy of Chinese Medical Sciences, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hui Luo
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Juan Feng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China.
| | - Qi Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
13
|
Katoch S, Chhimwal J, Singh D, Kumar D, Patial V. Picrosides-rich fraction from Picrorhiza kurroa attenuates steatohepatitis in zebrafish and mice by modulating lipid metabolism and inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156368. [PMID: 39827774 DOI: 10.1016/j.phymed.2025.156368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/23/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) has become a serious public health concern with high global prevalence. The lack of safe and efficient treatment for the condition demands exploring new therapeutic solutions. PURPOSE In the present study, we investigated the protective efficacy of picrosides-rich fraction (PF) from Picrorhiza kurroa against steatohepatitis and revealed the molecular mechanism of action. METHODS PF was prepared and characterized using UPLC analysis. Initially, the efficacy of PF was studied on the zebrafish model of NASH. Further, a Methionine and Choline-Deficient (MCD) diet-induced NASH model in mice was employed to evaluate the hepatoprotective efficacy of PF by utilizing biochemical, histopathological and molecular studies. RESULTS The UPLC analysis revealed the presence of 29.11% and 29.86% picroside I and II in the PF, respectively. In the zebrafish model of NASH, PF treatment reduced the hepatic lipid accumulation and modulated the expressions of lipogenic, inflammatory, oxidative, and cellular stress genes. Further, in MCD diet-induced NASH in mice, PF treatment showed a significant improvement in body weights and serum liver injury markers. Reduced degenerative changes and fibrous tissue was observed in the PF-treated groups. The downregulated expression of Srebp1c, Cd36, Fas, Chrebp, Pparγ, and Hnf4α showed anti-lipogenic potential of PF treatment. NASH development followed oxidative stress, mitochondrial dysfunction, and inflammation in the liver of mice. However, PF treatment encouraged mitochondrial biogenesis by upregulating Pgc1α, Tfam, and Nrf2 expressions. The elevated levels of NFκB, TNFα, IL6, TGFβ, and αSMA were also restored by PF, advocating its anti-inflammatory and anti-fibrogenic effect. CONCLUSION The present study revealed that PF ameliorate the progression of NASH by increasing mitochondrial biogenesis and decreasing lipogenesis, hepatic inflammation, and fibrosis.
Collapse
Affiliation(s)
- Swati Katoch
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Jyoti Chhimwal
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Dinesh Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
14
|
Yoshimura Y, Matsui T, Kaneko N, Kobayashi I. Digestion and absorption of triacetin, a short-chain triacylglycerol. Lipids 2025. [PMID: 39891375 DOI: 10.1002/lipd.12433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Triacylglycerol (TG) is categorized into long-, medium-, and short-chain TG (SCTG). While the digestion of long- and medium-chain TG is well established, the process for SCTG remains unclear. This study investigated SCTG digestion by administering 2 mmol of triacetin to rats and analyzing acetin, acetic acid, and glycerol levels in the portal blood and small intestine. Triacetin was fully degraded in the upper gastrointestinal tract and absorbed as acetic acid and glycerol. Glycerol influx into the liver promoted gluconeogenesis, while acetate activated AMPK, resulting in the suppression of fatty acid synthesis-related genes and the upregulation of fatty acid β-oxidation-related genes. These findings demonstrate that triacetin not only serves as a substrate for energy metabolism but also regulates hepatic gene expression, highlighting its dual role as both a metabolic substrate and signaling molecule. Triacetin thus shows potential as a dietary modulator for improving metabolic health.
Collapse
Affiliation(s)
| | - Tomoka Matsui
- Department of Nutrition, Kobe Gakuin University, Kobe City, Japan
| | - Nagisa Kaneko
- Department of Nutrition, Kobe Gakuin University, Kobe City, Japan
| | - Ikuha Kobayashi
- Department of Nutrition, Kobe Gakuin University, Kobe City, Japan
| |
Collapse
|
15
|
Kim S, Han HJ, Rho H, Kang S, Mukherjee S, Kim J, Kim D, Ko HW, Lim SM, Im SS, Chung JY, Song J. Ebastine-mediated destabilization of E3 ligase MKRN1 protects against metabolic dysfunction-associated steatohepatitis. Cell Mol Life Sci 2025; 82:66. [PMID: 39888429 PMCID: PMC11785899 DOI: 10.1007/s00018-024-05535-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/08/2024] [Accepted: 11/29/2024] [Indexed: 02/01/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic condition encompassing metabolic dysfunction-associated steatotic liver (MASL) and metabolic dysfunction-associated steatohepatitis (MASH), which can progress to fibrosis, cirrhosis, or hepatocellular carcinoma (HCC). The heterogeneous and complex nature of MASLD complicates optimal drug development. Ebastine, an antihistamine, exhibits antitumor activity in various types of cancer. However, its effects on MASH remain unexplored. In the present study, we identified ebastine as a potential treatment for MASH. Our results indicated that ebastine acts as a novel MKRN1 inhibitor by promoting MKRN1 destabilization through self-ubiquitination, leading to AMP-activated protein kinase (AMPK) activation. Ebastine appeared to bind to the C-terminal domain of MKRN1, particularly at residues R298 and K360. Notably, Mkrn1 knockout (KO) mice demonstrated resistance to MASH, including obesity, steatosis, inflammation, and fibrosis under high-fat-high-fructose diet (HFHFD) conditions. Additionally, liver-specific Mkrn1 knockdown using AAV8 alleviated MASH symptoms in HFHFD-fed mice, implicating MKRN1 as a potential therapeutic target. Consistent with these findings, treatment with ebastine significantly reduced the risk of MASH in HFHFD-fed mice, with a decrease in MKRN1 expression and an increase in AMPK activity. Our study suggests that ebastine binds to MKRN1, promoting its destabilization and subsequent degradation by stimulating its ubiquitination. This enhances AMPK stability and activity, suppressing lipid accumulation, inflammation, and fibrosis. Moreover, the knockout of Mkrn1 mice decreased the risk of MASH, suggesting that ebastine could be a promising therapeutic agent for the treatment of MASH.
Collapse
Affiliation(s)
- Seungyeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyun-Ji Han
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyunjin Rho
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Subin Kang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sulagna Mukherjee
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Jiwoo Kim
- Therapeutics & Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Doyoun Kim
- Therapeutics & Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
- Medicinal Chemistry and Pharmacology, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 07292, Republic of Korea
| | - Hyuk Wan Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Department of Biochemistry, College of Life Science and Technology, Institute for Bio-medical Convergence Science and Technology, Yonsei University, Seoul, Republic of Korea
| | - Sang Min Lim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 07292, Republic of Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Joon-Yong Chung
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- Department of Biochemistry, College of Life Science and Technology, Institute for Bio-medical Convergence Science and Technology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Cai F, Huang M, Liu W, Wan X, Qiu K, Xu X. Dietary addition of compound organic acids improves the growth performance, carcass trait, and body health of broilers. Front Nutr 2025; 12:1536606. [PMID: 39935581 PMCID: PMC11810740 DOI: 10.3389/fnut.2025.1536606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025] Open
Abstract
Introduction The poultry industry constantly seeks strategies to enhance broiler growth performance and overall health. Organic acidifiers, including L-lactic acid, L-malic acid, and acetic acid, have gained attention as potential feed additives to improve animal production by modulating gut health, enhancing nutrient absorption, and supporting immune function. Despite their promising effects in other animal species, the impact of this novel compound organic acidifier on broiler performance, metabolism, and immune response has not been fully elucidated. This study aims to evaluate the effects of this compound acidifier on growth performance, serum lipid profile, antioxidant status, and immune parameters in broilers, providing insights into its potential benefits as a dietary supplement for broiler health and productivity. Methods A total of 240 broilers were randomly divided into four groups: a control group and three treatment groups receiving 0.25%, 0.5%, or 1.0% acidifier, with six replicates of ten birds each. Over a 6-week period, various parameters were measured, including serum triglycerides, high-density lipoproteins, lysozyme, immunoglobulins (IgA, IgM), superoxide dismutase (SOD) activity, IL-2, TNF-α, and gene expressions related to lipid metabolism. Results Over a 6-week period, the acidifier decreased serum triglycerides and high-density lipoproteins while also enhancing growth performance. Additionally, it raised the serum levels of lysozyme, IgA, IgM, and the SOD. Additionally, IL-2 and TNF-α concentrations in the jejunum mucosa decreased. The acidifier upregulated PPARα, AMPK, FABP1 and MTTP expressions, and downregulated APOB100. Overall, the acidifier effectively improved broiler growth performance during the early development phase primarily by enhancing hepatic lipid metabolism, antioxidant capacity, and immune function. Conclusion These results suggest that the acidifier may accelerate liver lipid metabolism in broilers by modulating the gene expression profiles involved in lipid metabolism.
Collapse
Affiliation(s)
- Fang Cai
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Meiping Huang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Wei Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Xiaoling Wan
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Kai Qiu
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
17
|
Shi Q, Ran S, Song L, Yang H, Wang W, Liu H, Liu Q. NLRP6 overexpression improves nonalcoholic fatty liver disease by promoting lipid oxidation and decomposition in hepatocytes through the AMPK/CPT1A/PGC1A pathway. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2025; 45:118-125. [PMID: 39819720 PMCID: PMC11744278 DOI: 10.12122/j.issn.1673-4254.2025.01.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Indexed: 01/19/2025]
Abstract
OBJECTIVES To investigate the regulatory role of nucleotide-bound oligomerized domain-like receptor containing pyrin-domain protein 6 (NLRP6) in liver lipid metabolism and non-alcoholic fatty liver disease (NAFLD). METHODS Mouse models with high-fat diet (HFD) feeding for 16 weeks (n=6) or with methionine choline-deficient diet (MCD) feeding for 8 weeks (n=6) were examined for the development of NAFLD using HE and oil red O staining, and hepatic expressions of NLRP6 were detected with RT-qPCR, Western blotting, and immunohistochemical staining. Cultured human hepatocytes (LO2 cells) with adenovirus-mediated NLRP6 overexpression or knock-down were treated with palmitic acid (PA) in the presence or absence of compound C (an AMPK inhibitor), and the changes in cellular lipid metabolism were examined by measuring triglyceride, ATP and β-hydroxybutyrate levels and using oil red staining, RT-qPCR, and Western blotting. RESULTS HFD and MCD feeding both resulted in the development of NAFLD in mice, which showed significantly decreased NLRP6 expression in the liver. In PA-treated LO2 cells, NLRP6 overexpression significantly decreased cellular TG content and lipid deposition, while NLRP6 knockdown caused the opposite effects. NLRP6 overexpression in PA-treated LO2 cells also increased mRNA and protein expressions of PGC1A and CPT1A, levels of ATP and β-hydroxybutyrate, and the phosphorylation level of AMPK pathway; the oxidative decomposition of lipids induced by Ad-NLRP6 was inhibited by the use of AMPK inhibitors. CONCLUSIONS NLRP6 overexpression promotes lipid oxidation and decomposition through AMPK/CPT1A/PGC1A to alleviate lipid deposition in hepatocytes.
Collapse
Affiliation(s)
- Qing Shi
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Suye Ran
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Lingyu Song
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Hong Yang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Wenjuan Wang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Hanlin Liu
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Qi Liu
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| |
Collapse
|
18
|
Li C, Wang F, Mao Y, Ma Y, Guo Y. Multi-omics reveals the mechanism of Trimethylamine N-oxide derived from gut microbiota inducing liver fatty of dairy cows. BMC Genomics 2025; 26:10. [PMID: 39762777 PMCID: PMC11702196 DOI: 10.1186/s12864-024-11067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO) is a metabolite produced by gut microbiota, and its potential impact on lipid metabolism in mammals has garnered widespread attention in the scientific community. Bovine fatty liver disease, a metabolic disorder that severely affects the health and productivity of dairy cows, poses a significant economic burden on the global dairy industry. However, the specific role and pathogenesis of TMAO in bovine fatty liver disease remain unclear, limiting our understanding and treatment of the condition. This study aims to construct a bovine fatty liver cell model using an integrated approach that combines transcriptomic, proteomic, and metabolomic data. The objective is to investigate the impact of TMAO on lipid metabolism at the molecular level and explore its potential regulatory mechanisms. RESULTS We established an in vitro bovine fatty liver cell model and conducted a comprehensive analysis of cells treated with TMAO using high-throughput omics sequencing technologies. Bioinformatics methods were employed to delve into the regulatory effects on lipid metabolism, and several key genes were validated through RT-qPCR. Treatment with TMAO significantly affected 4790 genes, 397 proteins, and 137 metabolites. KEGG enrichment analysis revealed that the significantly altered molecules were primarily involved in pathways related to the pathology of fatty liver disease, such as metabolic pathways, insulin resistance, hepatitis B, and the AMPK signaling pathway. Moreover, through joint analysis, we further uncovered that the interaction between TMAO-mediated AMPK signaling and oxidative phosphorylation pathways might be a key mechanism promoting lipid accumulation in the liver. CONCLUSIONS Our study provides new insights into the role of TMAO in the pathogenesis of bovine fatty liver disease and offers a scientific basis for developing more effective treatment strategies.
Collapse
Affiliation(s)
- Chenlei Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Feifei Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yongxia Mao
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yanfen Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yansheng Guo
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
19
|
Bishr A, El-Mokadem BM, Gomaa AA. Canagliflozin alleviates acetaminophen-induced renal and hepatic injury in mice by modulating the p-GSK3β/Fyn-kinase/Nrf-2 and p-AMPK-α/STAT-3/SOCS-3 pathways. Sci Rep 2025; 15:729. [PMID: 39753621 PMCID: PMC11699121 DOI: 10.1038/s41598-024-82163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025] Open
Abstract
Despite the fact that canagliflozin (Cana), a sodium-glucose cotransporter 2 inhibitor, is an anti-diabetic medication with additional effects on the kidney, there is limited experimental data to deliberate its hepato-reno-protective potentiality. Acetaminophen (APAP) overdose remains one of the prominent contributors to hepato-renal damage. AIM Our study assessed the novel effect of Cana against APAP-induced toxicities. MAIN METHODS mice were randomized into five groups: negative control, Cana25, APAP, Cana10 + APAP, and Cana25 + APAP. Cana was given for 5 days; a single dose of APAP was injected on the 6th day, followed by the scarification of animals 24 h later. KEY FINDINGS Pre-treatment with Cana ameliorated hepatic and renal functions, whereas, on the molecular levels, Cana promoted hepatic/renal P-AMP-activated protein kinase-α/ protein kinase B (p-Akt)/Glycogen synthase kinase (p-GSK3β) protein expression. Alternatively, Cana dampened the expression of STAT-3 and Fyn-kinase genes with a subsequent increase in the contents of suppressor of cytokine signaling (SOCS)-3 and also boosted the contents of the nuclear factor erythroid related factor 2 (Nrf-2)/heme oxygenase (HO)-1/ NADPH quinone oxidoreductase (NQO)-1 axis. The crosstalk between these paths ameliorated the APAP-induced hepatorenal structural alterations. SIGNIFICANCE Cana hepatorenal protective impact was provoked partly through modulating p-AMPK-α /SOCS-3/STAT-3 and GSK3β/Fyn-kinase signaling for its anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Abeer Bishr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt.
| | - Bassant M El-Mokadem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Chinese University, Cairo, Egypt
| | - Asmaa A Gomaa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| |
Collapse
|
20
|
Singh LK, Pandey R, Siddiqi NJ, Sharma B. Molecular Mechanisms of Phthalate-Induced Hepatic Injury and Amelioration by Plant-Based Principles. TOXICS 2025; 13:32. [PMID: 39853030 PMCID: PMC11768991 DOI: 10.3390/toxics13010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025]
Abstract
Phthalates are the emerging environmental toxicants derived from phthalic acid and its constituents, which are moderately present in plastics and many personal care products. Phthalate exposure occurs through various environmental factors, including air, water, and soil, with absorption facilitated via ingestion, inhalation, and dermal contact. Upon exposure, phthalates become bioavailable within the biological systems and undergo biotransformation and detoxification processes in the liver. The physicochemical properties of phthalates indicate their lipophilicity, environmental persistence, and bioaccumulation potential, influencing their absorption, distribution, and hepatic biotransformation. The prolonged exposure to phthalates adversely influences the biological redox system by altering the levels of the enzymatic and non-enzymatic antioxidants, molecular signaling pathways, and causing hepatic pathogenesis. The strategies to combat phthalate-induced toxicity include avoiding exposure to these compounds and using plant-based bioactive molecules such as polyphenols, which possess therapeutic potential as antioxidants, suppress inflammatory cascades, prevent oxidative damage, and stabilize cellular integrity. This review presents a comprehensive and updated account of the chemical, biochemical, immunological, and toxicological properties of phthalates, along with novel plant-based therapeutic strategies to mitigate the phthalate-induced adverse effects on living systems.
Collapse
Affiliation(s)
- Lalit Kumar Singh
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India;
| | - Rashmi Pandey
- Department of Biochemistry, Government Medical College, Haridwar 247667, Uttarakhand, India
| | - Nikhat Jamal Siddiqi
- Department of Internal Surgical Nursing, College of Nursing, King Saud University, Riyadh 11421, Saudi Arabia
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India;
| |
Collapse
|
21
|
Tang M, Wang X, Wang S, Xing C, Xu Q, Mu Y, Wu X, Zhao ZA, Li F. 10-Hydroxy-2-decenoic acid attenuates nonalcoholic fatty liver disease by activating AMPK-α signaling pathway. Biochem Pharmacol 2025; 231:116648. [PMID: 39581533 DOI: 10.1016/j.bcp.2024.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/01/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) originates from metabolic dysfunctions, is one of the most commonly encountered liver disorders worldwide, characterized by ectopic lipid deposition within hepatocytes, accompanied by hepatocellular injury and necroinflammation. Currently, NAFLD has very few treatment options. Purified from royal jelly, 10-hydroxy-2-decenoic acid (10-HDA) is the primary bioactive ingredient with a series of beneficial effects against various metabolic diseases. Herein, we investigated the effects of 10-HDA in methionine and choline deficiency (MCD) diet induced NAFLD model and free fatty acids (FFAs) induced lipid-laden hepatocyte model and explored the underlying mechanisms. In the mice fed with MCD diet, 10-HDA treatment significantly reduced hepatic steatosis, hepatocellular injury, apoptosis, inflammatory response and fibrosis. In vitro, 10-HDA treatment reduced lipid accumulation and apoptosis in hepatocytes induced by FFAs. Mechanistically, 10-HDA therapy restored AMPK-α phosphorylation, leading to the phosphorylation and inactivation acetyl-CoA carboxylase (ACC). Consequently, this increased the expression of carnitine palmitoyl transferase 1α(CPT1α), and peroxisome proliferators-activated receptors α (PPARα), and lowered the expression of cleavage forms of sterol regulatory element binding protein-1 (SREBP-1) and fatty acid synthetase (FASN). Furthermore, pretreating the cells with the AMPK-α inhibitor, compound C, greatly eliminated these beneficial effects of 10-HDA. Additionally, molecular docking analysis indicated that 10-HDA bound the domain of AMPK-α1 subunit. Based on these findings, 10-HDA suppresses hepatic lipogenesis via AMPK-α-dependent suppression of the ACC pathway, thus inhibiting hepatocellular injury, apoptosis, inflammatory response and fibrosis. 10-HDA may represent a promising candidate drug for the treatment of NAFLD.
Collapse
Affiliation(s)
- Minyi Tang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinzi Wang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuai Wang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Chaofeng Xing
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Southern Medical University, Foshan 528308, China
| | - Qihua Xu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
| | - Yunping Mu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoli Wu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zijian Allan Zhao
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Southern Medical University, Foshan 528308, China.
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
22
|
Jiang J, Sun C, Wang G, Xu Q, Bian Y, Li J, Li J, Ding R, Lin H, Tian W, Chen H. C-13 Norisoprenoids and Eudesmanoids from Nelumbo nucifera Gaertn. Regulate the Lipid Metabolism via the AMPK/ACC/SREBP-1c Signaling Pathway. Chem Biodivers 2025; 22:e202401778. [PMID: 39474994 DOI: 10.1002/cbdv.202401778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/04/2024] [Indexed: 01/19/2025]
Abstract
Lotustine A (1), an undescribed C-13 norisoprenoid, along with 22 known analogues and two eudesmanoids, were isolated from the aerial parts of Nelumbo nucifera Gaertn. Among them, compounds 2, 15, 17, 21, 22, 24, 25 were isolated from N. nucifera leaves for the first time. Their structures, including absolute configurations, were elucidated by nuclear magnetic resonance, mass spectroscopy, and the modified Mosher's method. Compound 1 is the first example of C-13 norisoprenoid with a terminal double bond between C-5 and C-13. Moreover, the lipid-lowering activities of the isolates were evaluated, and the results showed that 2, 24 and 25 could remarkably decrease the levels of both total cholesterol and triglyceride in free fatty acids induced HepG2 cells at the concentration of 20 μM. The oil red staining assay further demonstrated the lipid-lowering effects of 2, 24 and 25. The western blot results indicated that compounds 2, 24 and 25 could regulate the lipid metabolism via the activation of the AMPK/ACC/SREBP-1c signaling pathway.
Collapse
Affiliation(s)
- Jian Jiang
- Chen Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Cuiling Sun
- Chen Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Guanghui Wang
- Chen Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Qinnan Xu
- Chen Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Yuting Bian
- Chen Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Jie Li
- Chen Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Jingdian Li
- Chen Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Rong Ding
- Chen Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Houwen Lin
- Chen Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
- State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Wenjing Tian
- Chen Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Haifeng Chen
- Chen Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
| |
Collapse
|
23
|
Hamamah S, Iatcu OC, Covasa M. Dietary Influences on Gut Microbiota and Their Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Nutrients 2024; 17:143. [PMID: 39796579 PMCID: PMC11722922 DOI: 10.3390/nu17010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major contributor to liver-related morbidity, cardiovascular disease, and metabolic complications. Lifestyle interventions, including diet and exercise, are first line in treating MASLD. Dietary approaches such as the low-glycemic-index Mediterranean diet, the ketogenic diet, intermittent fasting, and high fiber diets have demonstrated potential in addressing the metabolic dysfunction underlying this condition. The development and progression of MASLD are closely associated with taxonomic shifts in gut microbial communities, a relationship well-documented in the literature. Given the importance of diet as a primary treatment for MASLD, it is important to understand how gut microbiota and their metabolic byproducts mediate favorable outcomes induced by healthy dietary patterns. Conversely, microbiota changes conferred by unhealthy dietary patterns such as the Western diet may induce dysbiosis and influence steatotic liver disease through promoting hepatic inflammation, up-regulating lipogenesis, dysregulating bile acid metabolism, increasing insulin resistance, and causing oxidative damage in hepatocytes. Although emerging evidence has identified links between diet, microbiota, and development of MASLD, significant gaps remain in understanding specific microbial roles, metabolite pathways, host interactions, and causal relationships. Therefore, this review aims to provide mechanistic insights into the role of microbiota-mediated processes through the analysis of both healthy and unhealthy dietary patterns and their contribution to MASLD pathophysiology. By better elucidating the interplay between dietary nutrients, microbiota-mediated processes, and the onset and progression of steatotic liver disease, this work aims to identify new opportunities for targeted dietary interventions to treat MASLD efficiently.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| | - Mihai Covasa
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| |
Collapse
|
24
|
Sadri M, Shafaghat Z, Roozbehani M, Hoseinzadeh A, Mohammadi F, Arab FL, Minaeian S, Fard SR, Faraji F. Effects of Probiotics on Liver Diseases: Current In Vitro and In Vivo Studies. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10431-z. [PMID: 39739162 DOI: 10.1007/s12602-024-10431-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/02/2025]
Abstract
Various types of liver or hepatic diseases cause the death of about 2 million people worldwide every year, of which 1 million die from the complications of cirrhosis and another million from hepatocellular carcinoma and viral hepatitis. Currently, the second most common solid organ transplant is the liver, and the current rate represents less than 10% of global transplant requests. Hence, finding new approaches to treat and prevent liver diseases is essential. In liver diseases, the interaction between the liver, gut, and immune system is crucial, and probiotics positively affect the human microbiota. Probiotics are a non-toxic and biosafe alternative to synthetic chemical compounds. Health promotion by lowering cholesterol levels, stimulating host immunity, the natural gut microbiota, and other functions are some of the activities of probiotics, and their metabolites, including bacteriocins, can exert antimicrobial effects against a broad range of pathogenic bacteria. The present review discusses the available data on the results of preclinical and clinical studies on the effects of probiotic administration on different types of liver diseases.
Collapse
Affiliation(s)
- Maryam Sadri
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Mona Roozbehani
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Akram Hoseinzadeh
- Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Mohammadi
- Department of Immunology, School of Medicine, Mashhad University of Medicine Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Department of Immunology, School of Medicine, Mashhad University of Medicine Sciences, Mashhad, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran
| | - Soheil Rahmani Fard
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Cheng H, Wu J, Peng H, Li J, Liu Z, Wang X, Zhang K, Xie L. Epigenetic Modulation with 5-Aza-CdR Prevents Metabolic-Associated Fatty Liver Disease Promoted by Maternal Overnutrition. Nutrients 2024; 17:106. [PMID: 39796540 PMCID: PMC11722594 DOI: 10.3390/nu17010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES This study builds on previous findings from mouse models, which showed that maternal overnutrition induced by a high-fat diet (HFD) promotes metabolic-associated fatty liver disease (MAFLD) in offspring, linked to global DNA hypermethylation. We explored whether epigenetic modulation with 5-Aza-CdR, a DNA methylation inhibitor, could prevent MAFLD in offspring exposed to maternal overnutrition. METHODS The offspring mice from dams of maternal overnutrition were fed either a chow diet or a high-fat diet (HFD) for 10 weeks. These mice were randomly divided into two groups: HFD, and AZA + HFD. Mice assigned to the AZA group were given 5-Aza-CdR during the last three weeks. RESULTS Our findings show that 5-Aza-CdR treatment in HFD-fed offspring effectively countered weight gain, improved glucose regulation, and minimized hepatic fat buildup along with serum lipid imbalances. Additionally, it boosted AMPK signaling and raised PPAR-α expression, pointing to enhanced fatty acid oxidation. We also detected an increase in JNK signaling, affecting the gene expression associated with cell death and proliferation. Notably, treated mice displayed more hepatic inflammation than the HFD group alone, suggesting a complex, dual impact on MAFLD management. Significant apoptotic and inflammatory gene changes were identified, along with corresponding differentially methylated regions triggered by 5-Aza-CdR, marking potential therapeutic targets. CONCLUSIONS 5-Aza-CdR was shown to mitigate MAFLD features in offspring of maternal overnutrition by reversing DNA hypermethylation and improving metabolic pathways, though its dual impact on inflammation highlights the need for further research to optimize its therapeutic potential.
Collapse
Affiliation(s)
- Henghui Cheng
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (H.C.); (H.P.); (Z.L.); (X.W.)
| | - Jie Wu
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA; (J.W.); (J.L.)
| | - Hui Peng
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (H.C.); (H.P.); (Z.L.); (X.W.)
| | - Jiangyuan Li
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA; (J.W.); (J.L.)
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - Zhimin Liu
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (H.C.); (H.P.); (Z.L.); (X.W.)
| | - Xian Wang
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (H.C.); (H.P.); (Z.L.); (X.W.)
| | - Ke Zhang
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (H.C.); (H.P.); (Z.L.); (X.W.)
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA; (J.W.); (J.L.)
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (H.C.); (H.P.); (Z.L.); (X.W.)
| |
Collapse
|
26
|
Elshaer A, Lizaola-Mayo BC. Evaluating the Role of Aspirin in Liver Disease: Efficacy, Safety, Potential Benefits and Risks. Life (Basel) 2024; 14:1701. [PMID: 39768407 PMCID: PMC11679757 DOI: 10.3390/life14121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
The rise in liver disease incidence and prevalence has led to increasing morbidity and mortality worldwide. Persistent hepatic inflammation drives disease progression by increasing fibrosis, advancing to cirrhosis, and potentially developing into hepatocellular carcinoma (HCC). Addressing these complications is essential to reduce liver-related mortality. Recent studies suggest that non-steroidal anti-inflammatory drugs, particularly aspirin, may play a beneficial role in managing liver disease. Aspirin's anti-inflammatory and chemoprotective effects contribute to slowing disease progression and reducing the risks associated with chronic liver disease (CLD). This review highlights the current literature on the effects of aspirin in CLD, with a focus on patients with metabolic-associated steatotic liver disease (MASLD) and hepatitis B and C. We will examine aspirin's potential ability to mitigate fibrosis, reduce the incidence of HCC, and lower liver-related mortality. Additionally, we will discuss its potential side effects and safety considerations, particularly in the context of liver disease, where there is an increased risk of bleeding.
Collapse
Affiliation(s)
- Amani Elshaer
- Department of Internal Medicine, Mayo Clinic, Phoenix, AZ 85054, USA;
| | - Blanca C. Lizaola-Mayo
- Division of Gastroenterology, Hepatology and Transplant Hepatology, Mayo Clinic, Phoenix, AZ 85054, USA
| |
Collapse
|
27
|
Wang C, Feng X, Li W, Chen L, Wang X, Lan Y, Tang R, Jiang T, Zheng L, Liu G. Apigenin as an emerging hepatoprotective agent: current status and future perspectives. Front Pharmacol 2024; 15:1508060. [PMID: 39749193 PMCID: PMC11693974 DOI: 10.3389/fphar.2024.1508060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
Apigenin (C15H10O5, API) is a natural flavonoid widely found in vegetables, fruits, and plants such as celery, oranges, and chamomile. In recent years, API has attracted considerable attention as a dietary supplement due to its low toxicity, non-mutagenic properties and remarkable therapeutic efficacy in various diseases. In particular, evidence from a large number of preclinical studies suggests that API has promising effects in the prevention and treatment of a variety of liver diseases, including multifactorial liver injury, non-alcoholic fatty liver disease/non-alcoholic steatohepatitis, liver fibrosis and liver cancer. This paper provides a comprehensive review of the progress of research into the therapeutic applications of API in liver diseases as of August 2024, based on literature retrieved from databases such as Web of Science, PubMed, CNKI, Google Scholar and ScienceDirect. The hepatoprotective effects of API involve multiple molecular mechanisms, including inhibition of inflammation, alleviation of hepatic oxidative stress, amelioration of insulin resistance, promotion of fatty acid oxidation, inhibition of liver cancer cell proliferation and differentiation, and induction of tumour cell apoptosis. More importantly, signaling pathways such as Nrf2, NF-κB, PI3K/Akt/mTOR, NLRP3, Wnt/β-catenin, TGF-β1/Smad3, AMPK/SREBP, PPARα/γ, MAPKs, and Caspases are identified as key targets through which API exerts its beneficial effects in various liver diseases. Studies on its toxicity and pharmacokinetics indicate that API has low toxicity, is slowly metabolized and excreted in vivo, and has low oral bioavailability. In addition, the paper summarises and discusses the sources, physicochemical properties, new dosage forms, and current challenges and opportunities of API, with the aim of providing direction and rationale for the further development and clinical application of API in the food, pharmaceutical and nutraceutical fields.
Collapse
Affiliation(s)
- Cheng Wang
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaoli Feng
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wen Li
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Li Chen
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xinming Wang
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yimiao Lan
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Rong Tang
- College of Foreign Languages and Cultures, Sichuan University, Chengdu, China
| | - Ting Jiang
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Lingli Zheng
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Gang Liu
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
28
|
Qu K, Shi M, Chen L, Liu Y, Yao X, Li X, Tan B, Xie S. Residual levels of dietary deltamethrin interfere with growth and intestinal health in Litopenaeus vannamei. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117376. [PMID: 39612679 DOI: 10.1016/j.ecoenv.2024.117376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/24/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
To date, few study explored the damage of chronic dietary exposure to the lipophilic pesticide deltamethrin (DM) in aquatic animals, and it remains unclear whether its toxicity and residue levels would be affected by dietary lipid levels. Therefore, the present study aimed to elucidate the interactions between dietary lipid levels and DM levels in the Pacific white shrimp, focusing on growth performance, antioxidant capacity, and intestinal microbiota. DM has excellent insecticidal activity and has been used worldwide. Previous research has shown that environmental DM poses toxicity risks to aquatic animals. Six different diets were formulated to feed shrimp for 6 weeks with two lipid levels (6.96 %, 10.88 %) and three DM levels (0.2 mg·kg-1, 1 mg·kg-1, 5 mg·kg-1), namely LF0.2, LF1, LF5, HF0.2, HF1, HF5, respectively. Each diet was assigned to three net cages with a total of 18 cages (40 shrimp per tank, average weight (0.382±0.001 g), of which 0.2 mg·kg-1, are grouped in environmental DM control groups. The growth of shrimp was reduced as the dietary DM levels increased. When shrimp were fed a diet containing a high dose of DM, a reduction in their antioxidant capacity was also observed. Enzyme activity and gene expression related to lipid metabolism in hepatopancreas and hemolymph indicated a significant interaction between dietary lipid levels and DM in the lipid metabolism of shrimp. The terms of detoxification-related genes (gst, sult, cyp1a1) were upregulated in shrimp fed the high-dose DM. Additionally, the presence of DM in the diet severely harmed the hepatopancreas and intestinal histological morphology. DM in the diet increased the susceptibility of shrimp to pathogens and induced intestine microbiota dysbiosis, disrupting the balance of inter-species interactions. DM was not detected in the muscle and hepatopancreas of the shrimp after six weeks of exposure. In conclusion, the presence of DM in feed reduced the growth performance and antioxidant capacity of shrimp, damaging intestinal health. DM was rapidly metabolized by shrimp.
Collapse
Affiliation(s)
- Kangyuan Qu
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Menglin Shi
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Liutong Chen
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yucheng Liu
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xinzhou Yao
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoyue Li
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Beiping Tan
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Province Research Center for Accurate Nutrition and High-Efficiency Feeding of Aquatic Animals, Zhanjiang 524088, China; Key Laboratory of Aquatic Feed Science and Technology for Livestock and Poultry in Southern China, under the Ministry of Agriculture, Zhanjiang 524088, China
| | - Shiwei Xie
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Province Research Center for Accurate Nutrition and High-Efficiency Feeding of Aquatic Animals, Zhanjiang 524088, China; Key Laboratory of Aquatic Feed Science and Technology for Livestock and Poultry in Southern China, under the Ministry of Agriculture, Zhanjiang 524088, China.
| |
Collapse
|
29
|
Geng R, Guo J, Lao Y, Kang SG, Huang K, Tong T. Chronic UVB exposure induces hepatic injury in mice: Mechanistic insights from integrated multi-omics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124933. [PMID: 39265770 DOI: 10.1016/j.envpol.2024.124933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/28/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
Chronic UVB exposure poses a significant threat to both skin and visceral health. In recent years, the adverse role of chronic UVB exposure in liver health has been suggested but not fully elucidated. This study aims to comprehensively investigate the effects of chronic UVB exposure on liver health in male SKH-1 hairless mice and clarify potential mechanisms through multi-omics approaches. The findings suggested that 10-week chronic skin exposure to UVB not only triggers hepatic inflammation and oxidative stress but also, more importantly, results in lipid metabolism abnormalities in the liver. Hepatic transcriptomic analysis revealed significant alterations in various signaling pathways and physiological processes associated with inflammation, oxidative stress, and lipid metabolism. Further lipidomic analysis illustrated significant changes in the metabolism of glycerolipids, sphingolipids, and glycerophospholipids in the liver following chronic UVB exposure. The 16S rRNA sequencing analysis indicated that chronic UVB exposure disrupts the structure and function of the microbiota. In search of potential mechanisms used by the microbiome to regulate the hepatic disease morphology, we filtered mouse fecal supernatants and cultured the supernatants with HepG2 cells. Fecal supernatant from UVB-exposed mice induced increased secretion of the inflammatory cytokine IL-8, accumulation of MDA, reduced SOD activity, and decreased lipid content in normal hepatic cells. In summary, skin chronic exposure to UVB induces multiple liver injuries and gut microbiota dysbiosis in mice and gut microbiota metabolites may be one of the contributing factors to hepatic injury caused by chronic UVB exposure. These discoveries deepen the comprehension of the health risks associated with chronic UVB exposure.
Collapse
Affiliation(s)
- Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China; Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Jingya Guo
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China; Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Yujie Lao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China; Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Seong-Gook Kang
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun, 58554, Republic of Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China; Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China; Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China.
| |
Collapse
|
30
|
Wan W, Wei R, Xu B, Cao H, Zhi Y, Guo F, Liu H, Li B, Wu J, Gao Y, Zhang K. Qiwei Jinggan Ling regulates oxidative stress and lipid metabolism in alcoholic liver disease by activating AMPK. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156125. [PMID: 39388920 DOI: 10.1016/j.phymed.2024.156125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Alcoholic liver disease (ALD) is a severe public health concern worldwide and there is still a lack of effective treatments. Qiwei Jinggan Ling (QJL) has protective effects against various liver injuries, but its pharmacological action on ALD has received little attention. PURPOSE To investigate the effect and mechanism of QJL on ALD in vivo and in vitro. METHODS In vivo, an ALD mouse model was established by alcohol combined with a high-fat diet (HFD) and treated with QJL. Biochemical indicators, HE staining, and Oil Red O staining were employed to assess hepatic oxidative stress, steatosis, and alcohol metabolism. RNA sequencing analysis was performed, and the results were verified by qRT-PCR and Western blot to elucidate the hepatoprotective mechanism of QJL. In vitro, HepG2 cells were co-stimulated with NaOA (sodium oleate) and EtOH (ethanol), followed by intervention with Compound C (CC, AMPK inhibitor) and QJL-containing serum. Oil Red O, BODIPY (boron-dipyrromethene), and ROS (reactive oxygen species) staining were applied to validate the efficacy and mechanism of QJL-containing serum. The expression of AMP-activated protein kinase (AMPK) pathway-related factors was analyzed through qRT-PCR and Western blot for additional corroboration. Moreover, the key pharmacodynamic components of QJL were identified by UPLC-MS/MS and molecular docking. RESULTS In vivo, QJL ameliorated liver structural disorders, steatosis, oxidative stress, and impaired alcohol metabolism, as indicated by biochemical indicators and histopathological assays. RNA sequencing analysis revealed that QJL reversed the expression of genes related to alcohol metabolism, fatty acid metabolism, and cholesterol metabolism. The results of qRT-PCR and Western blot were in line with those of RNA sequencing. Furthermore, it was discovered that QJL significantly upregulated the expression of p-AMPK and downregulated the expression of sterol regulatory element binding transcription factor 1 (SREBP-1c). In vitro, biochemical indicators and staining assays demonstrated that QJL-containing serum inhibited lipid accumulation and oxidative stress. The qRT-PCR and Western blot analysis revealed that QJL-containing serum markedly enhanced the expression of p-AMPK and carnitine palmitoyltransferase 1a (Cpt1a), while suppressing the expression of SREBP-1c, fatty acid synthase (Fasn), and acetyl-coenzyme A carboxylase 1 (ACC-1). However, CC inhibited the above pharmacological activities of QJL-containing serum. Additionally, (2S)-Liquiritigenin, Glycyrrhetinate, Isovitexin, Taxifolin, and Yohimbine were proved to be the key active components of QJL. CONCLUSION QJL had the potential to be a therapeutic drug for ALD by activating the AMPK pathway, thereby regulating lipid metabolism and inhibiting oxidative stress.
Collapse
Affiliation(s)
- Weimin Wan
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Riming Wei
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Baoling Xu
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China; Department of Emergency, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, Guangxi, China
| | - Houkang Cao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Yueping Zhi
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Fengyue Guo
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Haiping Liu
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Bo Li
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Jianzhao Wu
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Ya Gao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Kefeng Zhang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China.
| |
Collapse
|
31
|
Liang X, Shan T, Zheng X, Zhang Z, Fan Y, Zhang H, Zhang L, Liang H. Study on the Regulatory Mechanism of Niacin Combined with B. animalis F1-7 in Alleviating Alcoholic Fatty Liver Disease by Up-Regulating GPR109A. Nutrients 2024; 16:4170. [PMID: 39683563 DOI: 10.3390/nu16234170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND This study aimed to investigate the effects of niacin combined with B. animalis F1-7 on the improvement of alcoholic fatty liver disease (AFLD) in mice and its potential regulatory mechanism. METHODS A total of 75 8-week-old male C57BL/6N mice were acclimated for one week and randomly divided into five groups: control group, alcohol model group (AFLD), niacin intervention group (NA), B. animalis F1-7 intervention group (F1-7), and niacin combined with B. animalis F1-7 intervention group (NF). The experiment lasted for 8 weeks. RESULTS The results showed that all intervention groups could effectively reduce the serum lipid levels and inflammatory response of mice induced by alcohol to varying degrees. The immunofluorescence analysis showed that the GPR109A in the liver and intestine of the NF group was significantly enhanced compared with the other groups. Niacin combined with B. animalis F1-7 better restored the gut microbiota. Meanwhile, each intervention group could increase their levels of SCFAs. Among them, the combination group increased the levels of acetic acid and butyric acid more significantly than the other two groups. The Spearman's correlation analysis of gut microbiota and SCFAs showed that Norank_f_Eubacterium_coprostanoligenes_group, Allobaculum, and Akkermansia were positively correlated with changes in SCFAs, while Coriobacteriaceae_UCG-002, Romboutsia, and Clostridium_sensu_stricro_1 were negatively correlated. CONCLUSIONS Niacin combined with B. animalis F1-7 better regulated the gut microbial balance and increased the SCFAs in mice with alcoholic steatohepatitis. The mechanism was related to the activation of the target GPR109A, which regulates the key proteins involved in lipid synthesis and β-oxidation to improve lipid metabolic disorders.
Collapse
Affiliation(s)
- Xi Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Tianhu Shan
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xiumei Zheng
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zhe Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yanping Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
32
|
Karimzadeh K, Unniappan S, Zahmatkesh A. Spirulina platensis Peptide-Loaded Nanoliposomes Alleviate Hepatic Lipid Accumulation in Male Wistar Rats by Influencing Redox Homeostasis and Lipid Metabolism via the AMPK Signaling Pathway. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05089-w. [PMID: 39601973 DOI: 10.1007/s12010-024-05089-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Spirulina platensis low-molecular-weight peptides (SP) have been reported to exhibit antioxidant and hepatoprotective properties. However, the limited bioavailability and solubility of SPs limit their potential applications. In this study, to examine the potential anti-obesity effects and underlying mechanisms of SPs, high-fat diet-induced non-alcoholic fatty liver disease (NAFLD) model rats were treated with SPs and SP-loaded nanoliposomes. Furthermore, hepatic biochemical parameters, inflammatory markers, histopathological changes, and genes involved in AMPK signaling were analyzed. SP-loaded nanoliposomes demonstrated a spherical shape with slower and sustained SP release. SP and SP-loaded nanoliposomes mitigated hepatic damage by lowering serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and increasing hepatic antioxidant enzymes, which are manifested in improving histopathological findings. In addition, notably, SP-loaded nanoliposomes downregulated lipogenic fatty acid synthase (FAS) and sterol regulatory element-binding protein-1c (SREBP-1c) in the liver. Meanwhile, an upregulation of phosphorylated AMP-activated protein kinase (P-AMPK), lipid acid oxidation-related genes carnitine palmitoyltransferase-1 (CPT-1), and peroxisome proliferator-activated receptor alpha (PPAR-α) was found in the rat liver. This data implies that SP and SP-loaded nanoliposomes exhibit protective potential in rats against the HFD-induced NAFLD, which is mediated through the activation of the AMPK signaling pathway.
Collapse
Affiliation(s)
- Katayoon Karimzadeh
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada.
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada.
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Asgar Zahmatkesh
- Aquaculture Department, Gilan Agricultural and Natural Resources Research and Education Center, AREEO, Rasht, Iran
| |
Collapse
|
33
|
Li T, Feng Y, Liu Y, Wang H. The role of organic anion transport peptides in cyclophosphamide-induced hepatotoxicity in high-fat diet mice. Life Sci 2024; 359:123239. [PMID: 39566716 DOI: 10.1016/j.lfs.2024.123239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Clinically, patients with lipid metabolism disorders caused by factors such as high-fat diet (HFD) developed severer liver damage and lipid metabolism disorders after treatment with cyclophosphamide (CTX). This can lead to elevated levels of inflammatory cytokines, which in turn lead to changes in levels of various liver and kidney transporters, to increase drug accumulation, which may be a way to exacerbate liver injury. The role of organic anion transport peptides (OATPs), an important uptake transporter, in the transport process of CTX and in the aggravation of liver injury induced by CTX in HFD mice is unclear. The aim of this study was to characterize the hepatotoxicity and lipid metabolism disorders of HFD mice exposed to CTX and to investigate the possible mechanism from the perspective of drug in vivo process and transporter regulation. It has been verified that CTX induced severer liver injury in HFD mice compared with the control group, accompanied with upregulated Interleukin-1β (IL-1β) expression and down-regulated OATPs expression in liver and renal, and increased blood CTX concentration. This suggested that the down-regulation of OATPs involved in IL-1β may play an important role in HFD-CTX-induced liver injury, and then experiments in Hep G2 cells was used to validate the hypothesis. Pharmacokinetic and primary hepatocyte uptake experiments confirmed that OATPs may be an important factor involved in the in vivo process of CTX. In summary, this study demonstrated that HFD mice exhibited severer liver toxicity after exposure to CTX, which may be caused by the disorder of lipid levels and the up-regulation of inflammatory factors, and then the downregulation of liver and renal OATPs to increase the accumulation of CTX in vivo. These findings suggest that IL-1β and OATPs may be involved in the interactive regulation of CTX accumulation and endogenous lipid disturbance, and play very important role in the aggravation of liver injury induced by CTX in HFD mice.
Collapse
Affiliation(s)
- Tianyi Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Yuhao Feng
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Yan Liu
- Department of Pharmacy, Weifang People's Hospital, Weifang, Shandong, China
| | - Haina Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
34
|
Zhang X, Ye M, Ge Y, Xiao C, Cui K, You Q, Jiang Z, Guo X. A Spatiotemporally Controlled and Mitochondria-Targeted Prodrug of Hydrogen Sulfide Enables Mild Mitochondrial Uncoupling for the Prevention of Lipid Deposition. J Med Chem 2024; 67:19188-19199. [PMID: 39441124 DOI: 10.1021/acs.jmedchem.4c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Mild mitochondrial uncoupling offers therapeutic benefits for various diseases like obesity by regulating cellular energy metabolism. However, effective chemical intervention tools for inducing mild mitochondria-targeted uncoupling are limited. Herein, we have developed a mitochondria-targeted H2S prodrug M1 with a unique property of on-demand photoactivated generation of H2S accompanied by self-reporting fluorescence for real-time tracking. Upon photoirradiation, M1 decomposes in mitochondria to generate H2S and a turn-on fluorescent coumarin derivative for the visualization and quantification of H2S. M1 is confirmed to induce reactive oxygen species (ROS)-dependent mild mitochondrial uncoupling, activating mitochondria-associated adenosine monophosphate-activated protein kinase (AMPK) to suppress palmitic acid (PA)-induced lipid deposition in hepatocytes. The uncoupling functions induced by M1 are strictly controlled in mitochondria, representing a fresh strategy to prevent lipid deposition and improve metabolic syndrome by increasing cellular energy expenditure.
Collapse
Affiliation(s)
- Xian Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Mengjie Ye
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxin Ge
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Can Xiao
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Keni Cui
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
35
|
Liu L, Sun W, Tang X, Zhen D, Guan C, Fu S, Liu J. Chiglitazar attenuates high-fat diet-induced nonalcoholic fatty liver disease by modulating multiple pathways in mice. Mol Cell Endocrinol 2024; 593:112337. [PMID: 39098464 DOI: 10.1016/j.mce.2024.112337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/06/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide; however, effective intervention strategies for NAFLD are still unavailable. The present study sought to investigate the efficacy of chiglitazar, a pan-PPAR agonist, in protecting against NAFLD in mice and its underlying molecular mechanism. Male C57BL/6 J mice were fed a high-fat diet (HFD) for 8 weeks to generate NAFLD and the HFD was continued for an additional 10 weeks in the absence or presence of 5 mg/kg/d or 10 mg/kg/d chiglitazar by gavage. Chiglitazar significantly improved dyslipidemia and insulin resistance, ameliorated hepatic steatosis and reduced liver inflammation and oxidative stress in NAFLD mice. RNA-seq revealed that chiglitazar alleviated HFD-induced NAFLD in mice through multiple pathways, including fatty acid metabolism regulation, insulin signaling pathway, and AMPK signaling pathway. This study demonstrated the potential therapeutic effect of chiglitazar on NAFLD. Chiglitazar ameliorated NAFLD by modulating multiple pathways.
Collapse
Affiliation(s)
- Lijuan Liu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Weiming Sun
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xulei Tang
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Donghu Zhen
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Conghui Guan
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Songbo Fu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Jinjin Liu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| |
Collapse
|
36
|
Lv R, Cao H, Zhong M, Wu J, Lin S, Li B, Chen D, Zhang Z, Zhang K, Gao Y. Polygala fallax Hemsl polysaccharides alleviated alcoholic fatty liver disease by modifying lipid metabolism via AMPK. Int J Biol Macromol 2024; 279:135565. [PMID: 39270893 DOI: 10.1016/j.ijbiomac.2024.135565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Alcoholic fatty liver disease (AFLD) is characterized by excessive lipid accumulation in the liver. This study aimed to investigate the protective effects and mechanisms of Polygala fallax Hemsl polysaccharides (PFPs) on AFLD. PFPs were purified and structurally characterized. An AFLD model was established in mice using alcohol and a high-fat diet. A significant reduction in hepatic steatosis was observed following PFPs treatment, evidenced by decreased fat deposition in liver tissues. Additionally, PFPs reduced various liver injury markers, increased levels of antioxidant enzymes, and improved significantly liver function. RNA sequencing revealed that PFPs improved lipid and CYP450 metabolic pathway abnormalities in AFLD mice. Furthermore, PFPs activated the AMPK pathway, reducing lipid accumulation and enhancing lipid metabolism. A HepG2 cell model treated with ethanol and oleic acid showed significant biochemical improvements with PFPs pretreatment, including reduced lipid accumulation and lower reactive oxygen species (ROS) levels. To further elucidate the AMPK and PFPs correlation in AFLD, an AMPK inhibitor (compound C) was used. In vitro and in vivo qRT-PCR and Western blot results confirmed that PFPs protected against AFLD by activating AMPK phosphorylation, regulating lipid synthesis, and inhibiting lipid accumulation. PFPs also modulated CYP2E1 and oxidative stress-related gene expression, affecting liver metabolism.
Collapse
Affiliation(s)
- Rui Lv
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Houkang Cao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Mingli Zhong
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Jianzhao Wu
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Shiyuan Lin
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Bo Li
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Dongyu Chen
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Zhiyuan Zhang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Kefeng Zhang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Diabetic Systems Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541100, China.
| | - Ya Gao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
37
|
Hu C, Dou W, Ma X, An Y, Wang D, Ma Y. AMP-activated protein kinase mediates (-)-epigallocatechin-3-gallate (EGCG) to promote lipid synthesis in mastitis cows. Anim Biotechnol 2024; 35:2381080. [PMID: 39087503 DOI: 10.1080/10495398.2024.2381080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Mastitis, a serious threat to the health and milk production function of dairy cows decreases milk quality. Blood from three healthy cows and three mastitis cows were collected in this study and their transcriptome was sequenced using the Illumina HiSeq platform. Differentially expressed genes (DEGs) were screened according to the |log2FoldChange| > 1 and P-value < 0.05 criteria. Pathway enrichment and functional annotation were performed through KEGG and GO analyses. Finally, the mechanism of the AMP-activated protein kinase (AMPK) mediation of (-)-epigallocatechin-3-gallate (EGCG) to promote lipid metabolism in mastitis cows was analyzed in bovine mammary epithelial cells (BMECs). Transcriptome analysis revealed a total of 825 DEGs, with 474 genes showing increased expression and 351 genes showing decreased expression. The KEGG analysis of DEGs revealed that they were mainly linked to tumour necrosis factor, nuclear factor-κB signalling pathway, and lipid metabolism-related signalling pathway, whereas GO functional annotation found that DEGs were enriched in threonine and methionine kinase activity, cellular metabolic processes, and cytoplasm. AMPK expression, which is involved in several lipid metabolism pathways, was downregulated in mastitis cows. The results of in vitro experiments showed that the inhibition of AMPK promoted the expression of lipid synthesis genes in lipopolysaccharide-induced BMECs and that EGCG could promote lipid synthesis by decreasing the expression of AMPK and downregulating the expression of inflammatory factors in inflammatory BMECs. In conclusion, our study demonstrated that AMPK mediated EGCG to inhabit of inflammatory responses and promote of lipid synthesis in inflammatory BMECs.
Collapse
Affiliation(s)
- Chunli Hu
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Wenli Dou
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Xuehu Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yanhao An
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Dezhi Wang
- Ningxia Borui Ruminant Nutrition Research Center Co., Ltd, Yinchuan, China
| | - Yanfen Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
38
|
Ho PY, Lin PX, Koh YC, Lin WS, Tang KL, Chen YH, Weerawatanakorn M, Pan MH. Exploring the Effects of Whole Food-Based Dragon Fruit on Metabolic Disorders in High-Fat Diet-Induced Mice. Mol Nutr Food Res 2024; 68:e2400604. [PMID: 39363653 DOI: 10.1002/mnfr.202400604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Indexed: 10/05/2024]
Abstract
SCOPE Metabolic syndrome (MetS) significantly contributes to premature mortality, with obesity being a major risk factor. Dragon fruit, cultivated globally, exhibits bioactivity in preventing obesity-related diseases. Traditional studies using organic solvents for extraction do not align with actual consumption patterns. METHOD AND RESULTS This study evaluates whole red dragon fruit's effectiveness in ameliorating metabolic disorders using a high-fat diet-induced obesity model in mice for 20 weeks. The experimental groups include the supernatant (RS), precipitate (RP), and pomace (PO) of red dragon fruit juice, compared to the supernatant of white dragon fruit juice (WS). The study finds that dragon fruit extracts reduced adipose tissue weight, body fat percentage, pro-inflammatory cytokines, and improved blood lipid profiles. RP is the most effective, reducing body weight by 4.33 g, improving lipid metabolism and glucose homeostasis, and altering gut microbiota to enhance beneficial bacteria and short-chain fatty acids. RP's efficacy in preventing MetS and obesity is attributed to its bioactive components. CONCLUSION These findings advocate for using whole fruits in developing functional products, amplifying the agricultural economic value of red dragon fruit.
Collapse
Affiliation(s)
- Pin-Yu Ho
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan, ROC
| | - Pin-Xuan Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan, ROC
| | - Yen-Chun Koh
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan, ROC
| | - Wei-Sheng Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan, ROC
- Department of Food Science, National Quemoy University, Quemoy County, 89250, Taiwan, ROC
| | - Kai-Liang Tang
- Taichung District Agricultural Research and Extension station, Ministry of Agriculture, Songhuai Road, Dacun Township, Changhua County, 515008, Taiwan, ROC
| | - Yu-Hsin Chen
- Taichung District Agricultural Research and Extension station, Ministry of Agriculture, Songhuai Road, Dacun Township, Changhua County, 515008, Taiwan, ROC
| | - Monthana Weerawatanakorn
- Department of Agro-Industry, Naresuan University, 99 Moo 9, Thapho, Muang, Phitsanulok, 65000, Thailand
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan, ROC
- Department of Public Health, China Medical University, Taichung, 40402, Taiwan, ROC
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, 41354, Taiwan, ROC
| |
Collapse
|
39
|
Giannotti L, Stanca E, Di Chiara Stanca B, Spedicato F, Massaro M, Quarta S, Del Rio D, Mena P, Siculella L, Damiano F. Coffee Bioactive N-Methylpyridinium: Unveiling Its Antilipogenic Effects by Targeting De Novo Lipogenesis in Human Hepatocytes. Mol Nutr Food Res 2024; 68:e2400338. [PMID: 39370560 DOI: 10.1002/mnfr.202400338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/09/2024] [Indexed: 10/08/2024]
Abstract
SCOPE Type 2 diabetes and nonalcoholic fatty liver diseases (NAFLDs) are promoted by insulin resistance (IR), which alters lipid homeostasis in the liver. This study aims to investigate the effect of N-methylpyridinium (NMP), a bioactive alkaloid of coffee brew, on lipid metabolism in hepatocytes. METHODS AND RESULTS The effect of NMP in modulating lipid metabolism is evaluated at physiological concentrations in a diabetes cell model represented by HepG2 cells cultured in a high-glucose medium. Hyperglycemia triggers lipid droplet accumulation in cells and enhances the lipogenic gene expression, which is transactivated by sterol regulatory element binding protein-1 (SREBP-1). Lipid droplet accumulation alters the redox status and endoplasmic reticulum (ER) stress, leading to the activation of the unfolded protein response and antioxidative pathways by X-Box Binding Protein 1(XBP-1)/eukaryotic Initiation Factor 2 alpha (eIF2α) Protein Kinase RNA-Like ER Kinase and nuclear factor erythroid 2-related factor 2 (NRF2), respectively. NMP induces the phosphorylation of AMP-dependent protein kinase (AMPK) and acetyl-CoA carboxylase α (ACACA), and improves the redox status and ER homeostasis, essential steps to reduce lipogenesis and lipid droplet accumulation. CONCLUSION These results suggest that NMP may be beneficial for the management of T2D and NAFLD by ameliorating the cell oxidative and ER homeostasis and lipid metabolism.
Collapse
Affiliation(s)
- Laura Giannotti
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| | - Eleonora Stanca
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| | | | - Francesco Spedicato
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Lecce, 73100, Italy
| | - Stefano Quarta
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Lecce, 73100, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, 43125, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, 43125, Italy
| | - Luisa Siculella
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| | - Fabrizio Damiano
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| |
Collapse
|
40
|
Niu T, Wang J, Xun L, Zheng B, Deng Z, Chen Z, Jia K, Zhao P, Zhao Q. Deciphering the impact and mechanism of total flavonoids from Cortex Juglandis Mandshuricae on alcoholic fatty liver employing LC-MS/MS, network pharmacology analysis and in vitro validation. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1248:124334. [PMID: 39514994 DOI: 10.1016/j.jchromb.2024.124334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/01/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
The Cortex Juglandis Mandshuricae (CJM) has the efficacy of penetrating the liver meridian, removing heat and dampness, and alleviating the liver, which corresponds to the pathogenesis of alcoholic fatty liver disease (AFLD) with damp heat accumulation. Modern research has shown that total flavonoids from Cortex Juglandis Mandshuricae (TFC) have hepatoprotective, antioxidant and antitumour pharmacological effects. However, there is no any investigation on the mechanism of TFC improving AFLD. In this work, a valid strategy combining UPLC-Q-Exactive Orbitrap-MS, network pharmacology and in vitro cellular experimental validation is proposed to predict the targets and pathways of TFC to ameliorate AFLD and to explore its mechanism of action. As a result, 26 flavonoids and 182 targets linked to TFC and AFLD were identified. These compounds realize their critical targets via various signaling pathways and perform multiple biological functions on the basis of the constructed compound-disease target networks. In vitro experiments demonstrated TFC had a protective impact on ethanol-treated L02 cells to a certain extent and could diminished lipid accretion. In addition, RT-qPCR and western blot results illustrated that TFC could regulate the expression of PPARα, CPT-1, SREBP-1c and FAS, and inhibit alcohol-induced lipid accumulation in L02 cells thereby alleviating AFLD. The present study further provides experimental justification for TFC to ameliorate AFLD in practical applications.
Collapse
Affiliation(s)
- Tianmei Niu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Jiaxin Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Liying Xun
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Bingqing Zheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Zhipeng Deng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Zhi Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Kaijie Jia
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Pan Zhao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China.
| | - Qitao Zhao
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China.
| |
Collapse
|
41
|
Lai HH, Jeng KS, Huang CT, Chu AJ, Her GM. Heightened TPD52 linked to metabolic dysfunction and associated abnormalities in zebrafish. Arch Biochem Biophys 2024; 761:110166. [PMID: 39349129 DOI: 10.1016/j.abb.2024.110166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
The tumor protein D52 (TPD52) gene encodes a proto-oncogene protein associated with various medical conditions, including breast and prostate cancers. It plays a role in multiple biological pathways such as cell growth, differentiation, and apoptosis. The function of TPD52 in lipid droplet biosynthesis has been investigated in vitro. However, its precise role in lipid metabolism in animal models is not fully understood. To investigate the functions of TPD52 in vivo, we performed a conditional TPD52 protein expression analysis using a Tet-off transgenic system to establish conditionally expressed Tpd52 transgenic zebrafish. The effect of Tpd52 on lipogenesis was assessed using various methods, including whole-mount Oil Red O staining, histological examination, and measurement of inflammatory markers and potential targets using real-time quantitative polymerase chain reaction and immunoblotting in Tpd52 fish. Zebrafish with increased Tpd52 levels exhibited notable weight gain and the enlargement of fat deposits, which were mainly attributed to an increase in the volume of adipocytes. Moreover, Tpd52 overexpression was correlated with the triggering of the adipocyte differentiation signaling pathway. During adipocytic differentiation in response to nutrient status, our observations revealed adipogenesis, nonalcoholic fatty liver disease, and metabolic cardiomyopathy (MCM) in Tpd52 transgenic zebrafish. To gain a deeper understanding of the contribution of these proteins to the regulation of cellular growth, we investigated the expression of their corresponding genes and proteins in zebrafish. In the present study, the activated protein kinase pathway was identified as the primary target of TPD52. Adult Tpd52 zebrafish showed increased lipid accumulation, resulting in the development of visceral obesity, nonalcoholic fatty liver disease, and MCM. These findings strongly suggest that TPD52 actively contributes to adipose tissue expansion and its subsequent effects. This investigation provides compelling evidence that Tpd52 facilitates adipocyte development and related metabolic comorbidities in zebrafish.
Collapse
Affiliation(s)
- Hsin-Hung Lai
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Kuo-Shyang Jeng
- Division of General Surgery, Far Eastern Memorial Hospital, New Taipei, 220, Taiwan
| | - Chung-Tsui Huang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Far Eastern Memorial Hospital, New Taipei, 220, Taiwan
| | - An-Ju Chu
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Guor Mour Her
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
42
|
Yang LC, Lee YT, Kumaran A, Huang SQ, Su CH, Wu DR, Yen TH, Chiu CH. Target and non-target analysis with molecular network strategies for identifying potential index compounds from Momordica charantia L. for alleviating non-alcoholic fatty liver. INDUSTRIAL CROPS AND PRODUCTS 2024; 219:119014. [DOI: 10.1016/j.indcrop.2024.119014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
|
43
|
Villasís-Keever MÁ, Zurita-Cruz JN, Nava-Sánchez K, Barradas-Vázquez AS, López-Beltrán AL, Espíritu-Díaz ME, Delgadillo-Ruano MA. [Comparison of serum uric acid and liver enzyme levels in adolescents with obesity and with metabolic syndrome]. NUTR HOSP 2024; 41:933-938. [PMID: 38896119 DOI: 10.20960/nh.05137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Introduction Introduction: a relationship has been observed between elevated levels of liver enzymes and uric acid with the presence of metabolic syndrome (MS) in the pediatric population. Objective: to compare serum liver enzyme and uric acid levels between adolescents with and without MS. Methods: a cross-sectional study was carried out in adolescents with obesity between 10 and 18 years old. Somatometric data, serum insulin, lipid profile, uric acid levels and liver enzymes (aspartate aminotransferase [AST], alanine aminotransferase [ALT] and gamma-glutamyl transferase [GGT]) were analyzed. Statistical analysis: Student's t test or the Chi-square test was used to evaluate differences between groups. Results: a total of 1095 adolescents with obesity were included (444 with MS and 651 without MS). The group with MS had a higher BMI (with MS 2.28 vs without MS 2.11 p < 0.001), with no difference in body fat (42.9 % vs 42.9 %, p = 0.978). The MS group had significantly higher levels of AST (34.4 vs. 29.5, p = 0.013), ALT (42.2 vs. 34.6, p = 0.003), and uric acid (6.17 vs. 5.74, p = 0.002). comparison to the group without MS. The proportion of ALT (40.5 % vs 29.5 %, p = 0.029) and altered uric acid (58.1 % vs. 45.6 %, p = 0.019) was higher in the MS group. Conclusions: serum levels of ALT, AST and uric acid in adolescents with obesity and MS were higher compared to those without MS. Altered ALT was a risk factor for SM.
Collapse
Affiliation(s)
- Miguel Ángel Villasís-Keever
- Unidad de Investigación en Análisis y Síntesis de la Evidencia. Centro Médico Nacional Siglo XXI. Instituto Mexicano del Seguro Social (IMSS)
| | - Jessie Nallely Zurita-Cruz
- Facultad de Medicina. Universidad Nacional Autónoma de México. Hospital Infantil de México Federico Gómez
| | - Karla Nava-Sánchez
- Facultad de Medicina. Universidad Nacional Autónoma de Mexico. Hospital Infantil de Mexico Federico Gómez
| | - Aly Sugei Barradas-Vázquez
- Unidad de Investigación en Análisis y Síntesis de la Evidencia. Centro Médico Nacional Siglo XXI. Instituto Mexicano del Seguro Social
| | - Ana Laura López-Beltrán
- Servicio de Endocrinología Pediátrica, UMAE. Hospital de Pediatría. Centro Médico Nacional de Occidente. Instituto Mexicano del Seguro Social
| | - Mireya Elizabeth Espíritu-Díaz
- Servicio de Endocrinología Pediátrica, UMAE. Hospital de Pediatría. Centro Médico Nacional de Occidente. Instituto Mexicano del Seguro Social
| | - Martha Alicia Delgadillo-Ruano
- Servicio de Endocrinología Pediátrica, UMAE. Hospital de Pediatría. Centro Médico Nacional de Occidente. Instituto Mexicano del Seguro Social
| |
Collapse
|
44
|
Zheng DX, Hou Q, Xue TT, Gao X, Geng RY, Wen LM, Wang Z, Yin Q, Yin HL, Hu JP, Yang JH. Efficacy and mechanism of action of Yanxiao Di'naer formula for non-alcoholic steatohepatitis treatment based on metabolomics and RNA sequencing. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118487. [PMID: 38925322 DOI: 10.1016/j.jep.2024.118487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide. Nonalcoholic steatohepatitis (NASH) is a crucial component of this disease spectrum. The Yanxiao Di'naer formula (YXDNE) is an Uyghur medical extract that has been used in folk medicine to treat hepatitis for a long time. However, the role and mechanism of action of YXDNE in NASH treatment remains unclear. OBJECTIVE The objective of this study was to assess the effectiveness of YXDNE in treating NASH induced by injections of carbon tetrachloride combined with a high-fat high-cholesterol diet (HFHCD), and to clarify the underlying mechanisms. METHODS The compounds in the YXDNE extract were analysed for classification and proportions using ultra-performance liquid chromatography-mass spectrometry. The efficacy of YXDNE in treating abnormal lipid metabolism was evaluated in L02 cells in vitro. In addition, a C57BL/6 mouse model of NASH was established to evaluate the therapeutic efficacy of YXDNE in vivo. Metabolomics and RNA sequencing were used to analyse the therapeutic effects of YXDNE on the liver. The corresponding signalling pathways were found to target AMPKα1, PPARα, and NF-κB. The efficacy of YXDNE was validated using inhibitors or silencing RNA (siRNA) against AMPKα1 and PPARα. RESULTS This study confirmed that YXDNE treatment ameliorated NASH in a murine model of this disease. Metabolomics analysis suggested that YXDNE efficacy was associated with fatty acid catabolism and AMPK signalling pathways. RNA sequencing results showed that YXDNE efficacy in treating NASH was highly correlated with the AMPK, PPARα and NF-κB pathways. Both in vitro and in vivo experimental data demonstrated that YXDNE affected the expression of p-AMPKα1, PPARα, p-NF-κB, IκB, and p-IκB. The efficacy of YXDNE in treating NASH in vitro was cancelled when AMPK was inhibited with Compound C or PPARα was modulated via siRNA. CONCLUSIONS YXDNE may have a therapeutic effect on abnormal lipid metabolism in L02 cells and in a murine model of NASH by affecting the AMPKα1/PPARα/NF-κB signalling pathway. Therefore, YXDNE has the potential for clinical application in the prevention and treatment of NASH.
Collapse
Affiliation(s)
- Dong-Xuan Zheng
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China.
| | - Qiang Hou
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China.
| | - Tao-Tao Xue
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China.
| | - Xiang Gao
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China.
| | - Ruo-Yu Geng
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China.
| | - Li-Mei Wen
- Department of Pharmacy, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, China.
| | - Zhi Wang
- Department of Pharmacy, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, China.
| | - Qiang Yin
- Xinjiang Uygur Pharmaceutical Co., LTD., Urumqi, Xinjiang, China.
| | - Hai-Long Yin
- Xinjiang Uygur Pharmaceutical Co., LTD., Urumqi, Xinjiang, China.
| | - Jun-Ping Hu
- Department of Pharmacy, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, China.
| | - Jian-Hua Yang
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China; Department of Pharmacy, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, China.
| |
Collapse
|
45
|
Eid N, Bhatnagar P, Chan LL, Garcia-Macia M. Suppression of hepatic steatosis in non-alcoholic steatohepatitis model by modified Xiaoyao San formula: Evidence, mechanisms and perspective. World J Hepatol 2024; 16:1388-1392. [DOI: 10.4254/wjh.v16.i10.1388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 11/22/2024] Open
Abstract
In this letter, we comment on a recent publication by Mei et al, in the World Journal of Hepatology, investigating the hepatoprotective effects of the modified Xiaoyao San (MXS) formula in a male rat model of non-alcoholic steatohepatitis (NASH). The authors found that MXS treatment mitigated hepatic steatosis and inflammation in the NASH model, as evidenced by the reduction in lipid droplets (LDs), fibrosis markers and lipogenic factors. Interestingly, these hepatoprotective effects were associated with androgen upregulation (based on metabolomics analysis of male steroid hormone metabolites), adenosine 5’-monophosphate-activated protein kinase (AMPK) activation, and restoration of phosphatase and tensin homolog (PTEN) expression. However, the authors did not clearly discuss the relationships between MXS-induced hepatic steatosis reduction in the NASH model, and androgen upregulation, AMPK activation, and restoration of PTEN expression. This editorial emphasizes the reported mechanisms and explains how they act or interact with each other to reduce hepatic steatosis and inflammation in the NASH model. As a perspective, we propose additional mechanisms (such as autophagy/lipophagy activation in hepatocytes) for the clearance of LDs and suppression of hepatic steatosis by MXS in the NASH model. A proper understanding of the mechanisms of MXS-induced reduction of hepatic steatosis might help in the treatment of NASH and related diseases.
Collapse
Affiliation(s)
- Nabil Eid
- Department of Anatomy, Division of Human Biology, School of Medicine, IMU University, Kuala Lumpur 57000, Malaysia
| | - Payal Bhatnagar
- Department of Pharmaceutical Technology, School of pharmacy, IMU University, Kuala Lumpur 57000, Malaysia
| | - Li-Li Chan
- Department of Pathology and Pharmacology, School of Medicine, IMU University, Kuala Lumpur 57000, Malaysia
| | - Marina Garcia-Macia
- Institute of Functional Biology and Genomics, Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca 37007, Spain
| |
Collapse
|
46
|
Eid N, Bhatnagar P, Chan LL, Garcia-Macia M. Suppression of hepatic steatosis in non-alcoholic steatohepatitis model by modified Xiaoyao San formula: Evidence, mechanisms and perspective. World J Hepatol 2024; 16:1208-1212. [PMID: 39474573 PMCID: PMC11514612 DOI: 10.4254/wjh.v16.i10.1208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
In this letter, we comment on a recent publication by Mei et al, in the World Journal of Hepatology, investigating the hepatoprotective effects of the modified Xiaoyao San (MXS) formula in a male rat model of non-alcoholic steatohepatitis (NASH). The authors found that MXS treatment mitigated hepatic steatosis and inflammation in the NASH model, as evidenced by the reduction in lipid droplets (LDs), fibrosis markers and lipogenic factors. Interestingly, these hepatoprotective effects were associated with androgen upregulation (based on metabolomics analysis of male steroid hormone metabolites), adenosine 5’-monophosphate-activated protein kinase (AMPK) activation, and restoration of phosphatase and tensin homolog (PTEN) expression. However, the authors did not clearly discuss the relationships between MXS-induced hepatic steatosis reduction in the NASH model, and androgen upregulation, AMPK activation, and restoration of PTEN expression. This editorial emphasizes the reported mechanisms and explains how they act or interact with each other to reduce hepatic steatosis and inflammation in the NASH model. As a perspective, we propose additional mechanisms (such as autophagy/lipophagy activation in hepatocytes) for the clearance of LDs and suppression of hepatic steatosis by MXS in the NASH model. A proper understanding of the mechanisms of MXS-induced reduction of hepatic steatosis might help in the treatment of NASH and related diseases.
Collapse
Affiliation(s)
- Nabil Eid
- Department of Anatomy, Division of Human Biology, School of Medicine, IMU University, Kuala Lumpur 57000, Malaysia
| | - Payal Bhatnagar
- Department of Pharmaceutical Technology, School of pharmacy, IMU University, Kuala Lumpur 57000, Malaysia
| | - Li-Li Chan
- Department of Pathology and Pharmacology, School of Medicine, IMU University, Kuala Lumpur 57000, Malaysia
| | - Marina Garcia-Macia
- Institute of Functional Biology and Genomics, Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca 37007, Spain
| |
Collapse
|
47
|
Lee Y, Choi D, Park J, Kim JG, Choi T, Youn D. The Effects of Warm Acupuncture on the Expression of AMPK in High-Fat Diet-Induced MAFLD Rats. Curr Issues Mol Biol 2024; 46:11580-11592. [PMID: 39451567 PMCID: PMC11506734 DOI: 10.3390/cimb46100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
This study investigated the effects of acupuncture and warm acupuncture on the expression and mechanism of the AMP-activated protein kinase (AMPK) signalling pathway associated with lipid accumulation in the liver tissue of rats with metabolic dysfunction-associated fatty liver disease (MAFLD) induced by a high-fat diet. Sprague-Dawley rats were categorised into four groups: control (CON), untreated MAFLD (MAFLD), and two MAFLD groups treated with acupuncture (ACU) and warm acupuncture (WA). The treatment groups underwent 16 application sessions over 8 weeks at the SP9 and BL18 acupoints. We measured the expression levels of AMPK, sterol regulatory element-binding protein1 (SREBP1), acetyl-coenzyme A carboxylase (ACC), peroxisome proliferator-activated receptorα (PPARα), carnitine palmitoyltransferase1 (CPT1), and CPT2. AMPK was activated in both ACU and WA groups. WA downregulated both SREBP1 and ACC expression at the protein level, whereas the acupuncture treatment downregulated SREBP1 expression. Additionally, WA selectively induced the activation of signalling pathways related to AMPK, PPARα, CPT1, and CPT2 at the mRNA level. Histological observations confirmed that fat accumulation was reduced in both the ACU and the WA groups compared to the MAFLD group. The WA treatment-promoted amelioration of HFD-induced MAFLD may be related to the activation of the AMPK/SREBP1/ACC pathway in the liver.
Collapse
Affiliation(s)
- Yumi Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (Y.L.); (J.P.); (J.G.K.)
| | - Donghee Choi
- Department of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea;
| | - Junghye Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (Y.L.); (J.P.); (J.G.K.)
| | - Jae Gwan Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (Y.L.); (J.P.); (J.G.K.)
| | - Taejin Choi
- DongHaeng Convalescent Hospital, Gwangju 61251, Republic of Korea;
| | - Daehwan Youn
- Department of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea;
| |
Collapse
|
48
|
Gao J, Ma L, Yin J, Li T, Yin Y, Chen Y. Canola Oil Ameliorates Obesity by Suppressing Lipogenesis and Reprogramming the Gut Microbiota in Mice via the AMPK Pathway. Nutrients 2024; 16:3379. [PMID: 39408346 PMCID: PMC11478415 DOI: 10.3390/nu16193379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND obesity is a worldwide problem that seriously endangers human health. Canola oil (Col) has been reported to regulate hepatic steatosis by influencing oxidative stress and lipid metabolism in Kunming mice. However, whether Col exhibits an anti-obesity effect by altering the gut microbiota remains unknown. METHODS in this study, we observed that a high-fat diet increased lipogenesis and gut microbiota disorder in C57BL/6J male mice, while the administration of Col suppressed lipogenesis and improved gut microbiota disorder. RESULTS the results show that Col markedly reduced the final body weight and subcutaneous adipose tissue of C57BL/6J male mice fed a high-fat diet (HFD) after 6 weeks of administration. However, although Col did not effectively increase the serum concentration of HDL, we found that treatment with Col notably inhibited the low-density lipoprotein (LDL), total cholesterol (TC), and triglycerides (TGs) in HFD mice. Furthermore, Col ameliorated obesity in the liver compared to mice that were only fed a high-fat diet. We also found that Col significantly inhibited the relative expression of sterol regulatory element binding protein (SREBP1/2), peroxisome proliferator-activated receptor γ (PPARγ), and insulin-induced genes (Insig1/2) that proved to be closely associated with lipogenesis in HFD mice. In addition, the concentration of acetic acid was significantly increased in Col-treatment HFD mice. Further, we noted that Col contributed to the reprogramming of the intestinal microbiota. The relative abundances of Akkermansia, Dubosiella, and Alistipes were enhanced under treatment with Col in HFD mice. The results also imply that Col markedly elevated the phosphorylation level of the AMP-activated protein kinase (AMPK) pathway in HFD mice. CONCLUSIONS the results of our study show that Col ameliorates obesity and suppresses lipogenesis in HFD mice. The underlying mechanisms are possibly associated with the reprogramming of the gut microbiota, in particular, the acetic acid-mediated increased expression of Alistipes via the AMPK signaling pathway.
Collapse
Affiliation(s)
- Jing Gao
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (J.G.); (L.M.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410004, China
- Yuelushan Laboratory, Changsha 410004, China
| | - Li Ma
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (J.G.); (L.M.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410004, China
- Yuelushan Laboratory, Changsha 410004, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410127, China;
| | - Tiejun Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Chinese Academy of Sciences, Changsha 410125, China;
| | - Yulong Yin
- Yuelushan Laboratory, Changsha 410004, China
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410127, China;
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Chinese Academy of Sciences, Changsha 410125, China;
| | - Yongzhong Chen
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (J.G.); (L.M.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410004, China
- Yuelushan Laboratory, Changsha 410004, China
| |
Collapse
|
49
|
Wu Y, Liu W, Jiang Y, Lv H, Lu Y, Zhang Y, Wang S. Long-Term Casein-Bound Lactulosyllysine Consumption Induced Nonobese Nonalcoholic Fatty Liver Disease by Promoting Carbonyl Glycation in the Liver of C57BL/6 Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39356723 DOI: 10.1021/acs.jafc.4c05588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Lactulosyllysine (LL) is abundant in thermally processed dairy products, with its concentration increasing in response to more intense heat treatment. However, there are limited studies on the potential harmful effects of LL on human health. This study investigated the negative impact of casein-bound LL on liver health by feeding healthy C57BL/6 mice diets containing varying levels of casein-bound LL. After 16 weeks of LL diet administration, mice exhibited a nonobese nonalcoholic fatty liver disease (NONAFLD) phenotype, characterized by reduced body weight gain, hypolipidemia, and intrahepatic lipid accumulation. Nontarget metabolomic analysis showed that casein-bound LL induced alterations in plasma levels of compounds associated with lipid degradation. Mechanistically, casein-bound LL may impair the function of 5'-adenosine monophosphate-activated protein kinase and apolipoprotein B100 by inducing dicarbonyl stress, thereby promoting carbonyl glycation in the liver. Consequently, the long-term consumption of LL-rich dairy products may be a contributing factor to the risk of developing NONAFLD.
Collapse
Affiliation(s)
- Yuekun Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Weiye Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yu Jiang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yingshuang Lu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
50
|
Mandal AK, Sahoo A, Almalki WH, Almujri SS, Alhamyani A, Aodah A, Alruwaili NK, Abdul Kadir SZBS, Mandal RK, Almalki RA, Lal JA, Rahman M. Phytoactives for Obesity Management: Integrating Nanomedicine for Its Effective Delivery. Nutr Rev 2024:nuae136. [PMID: 39331591 DOI: 10.1093/nutrit/nuae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Obesity is a global health concern that requires urgent investigation and management. While synthetic anti-obesity medications are available, they come with a high risk of side-effects and variability in their efficacy. Therefore, natural compounds are increasingly being used to treat obesity worldwide. The proposition that naturally occurring compounds, mainly polyphenols, can be effective and safer for obesity management through food and nutrient fortification is strongly supported by extensive experimental research. This review focuses on the pathogenesis of obesity while reviewing the efficacy of an array of phytoactives used for obesity treatment. It details mechanisms such as enzyme inhibition, energy expenditure, appetite suppression, adipocyte differentiation, lipid metabolism, and modulation of gut microbiota. Comprehensive in vitro, in vivo, and preclinical studies underscore the promise of phytoactives in combating obesity, which have been thoroughly reviewed. However, challenges, such as poor bioavailability and metabolism, limit their potential. Advances in nanomedicines may overcome these constraints, offering a new avenue for enhancing the efficacy of phytoactives. Nonetheless, rigorous and targeted clinical trials are essential before applying phytoactives as a primary treatment for obesity.
Collapse
Affiliation(s)
- Ashok Kumar Mandal
- Department of Pharmacology, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Ankit Sahoo
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Abdulrahman Alhamyani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| | - Alhussain Aodah
- College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakakah 72341, Saudi Arabia
| | | | | | - Rami A Almalki
- Clinical Pharmacy Unit, Pharmaceutical Care Department, King Faisal Hospital, Makkah Health Cluster, Makkah 24382, Saudi Arabia
| | - Jonathan A Lal
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology, and Sciences, Prayagraj, Uttar Pradesh 211007, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| |
Collapse
|