1
|
Dempsey M, Thavarajah D. Low molecular weight carbohydrates and abiotic stress tolerance in lentil ( Lens culinaris Medikus): a review. FRONTIERS IN PLANT SCIENCE 2024; 15:1408252. [PMID: 39421141 PMCID: PMC11484031 DOI: 10.3389/fpls.2024.1408252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
Lentil (Lens culinaris Medikus) is a nutrient-rich, cool-season food legume that is high in protein, prebiotic carbohydrates, vitamins, and minerals. It is a staple food in many parts of the world, but crop performance is threatened by climate change, where increased temperatures and less predictable precipitation can reduce yield and nutritional quality. One mechanism that many plant species use to mitigate heat and drought stress is the production of disaccharides, oligosaccharides and sugar alcohols, collectively referred to as low molecular weight carbohydrates (LMWCs). Recent evidence indicates that lentil may also employ this mechanism - especially raffinose family oligosaccharides and sugar alcohols - and that these may be suitable targets for genomic-assisted breeding to improve crop tolerance to heat and drought stress. While the genes responsible for LMWC biosynthesis in lentil have not been fully elucidated, single nucleotide polymorphisms and putative genes underlying biosynthesis of LMWCs have been identified. Yet, more work is needed to confirm gene identity, function, and response to abiotic stress. This review i) summarizes the diverse evidence for how LMWCs are utilized to improve abiotic stress tolerance, ii) highlights current knowledge of genes that control LMWC biosynthesis in lentil, and iii) explores how LMWCs can be targeted using diverse genomic resources and markers to accelerate lentil breeding efforts for improved stress tolerance.
Collapse
Affiliation(s)
| | - Dil Thavarajah
- Plant and Environmental Sciences, Pulse Quality and Nutritional Breeding, Biosystems Research Complex, Clemson University, Clemson, SC, United States
| |
Collapse
|
2
|
Wang N, Feng S, Ma X, Chen Q, Liu C, Qi Z. Meta-Analysis and Multiomics of a Chromosome Segment Substitution Line Reveal Candidate Genes Associated with Seed Hardness in Soybean. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16840-16854. [PMID: 37821458 DOI: 10.1021/acs.jafc.3c03950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Soybean seed hardness is a key trait that influences planting, nutritional quality, and postharvest processing, but its genetic and molecular mechanisms remain to be clarified. We used meta-analysis to detect 17 meta-quantitative trait locus (QTLs) for soybean seed hardness. We then identified a hard-seeded chromosome segment substitution line, R75, with fragments introduced from hard-seeded wild germplasm in four of the meta-QTL intervals. Observations of the seed coat ultrastructure revealed thicker palisade tissue in R75 than in its soft-seeded recurrent parent. Transcriptomics and proteomics of R75 and its recurrent parent revealed multiple candidate genes associated with seed hardness. Fifty-seven were located on homozygous introduced fragments, 26 in meta-QTL intervals, and one in both (Glyma.02G268600). Five initial candidates were selected for KASP marker development on the basis of their predicted functions and nonsynonymous SNPs. The selection efficiency of the markers was as high as 90% for nonhard lines and 43% for hard lines in the chromosome segment substitution line (CSSL) population.
Collapse
Affiliation(s)
- Ning Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, People's Republic of China
| | - Shaowei Feng
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, People's Republic of China
| | - Xuntong Ma
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, People's Republic of China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, People's Republic of China
| | - Chunyan Liu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, People's Republic of China
| | - Zhaoming Qi
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, People's Republic of China
| |
Collapse
|
3
|
Xue P, Sun Y, Hu D, Zhang J, Wan X. Genome-wide characterization of DcHsp90 gene family in carnation (Dianthus caryophyllus L.) and functional analysis of DcHsp90-6 in heat tolerance. PROTOPLASMA 2023; 260:807-819. [PMID: 36264387 DOI: 10.1007/s00709-022-01815-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Plant heat shock protein 90 (Hsp90) participates in various physiological processes including protein folding, degradation, and signal transduction. However, the DcHsp90 gene family in carnation (Dianthus caryophyllus L.) has not been systematically analyzed. We thoroughly examined and comprehensively analyzed the carnation DcHsp90 gene family in this study and discovered 9 DcHsp90 genes. Based on the phylogenetic examination, DcHsp90 proteins may be divided into two groups. DcHsp90 structural features were similar but varied between groups. Promoter analysis revealed the presence of many cis-acting elements, most of which were connected to growth and development, hormones, and stress. DcHsp90 genes may play distinct functions in heat stress response, according to gene expression analyses. The DcHsp90-6 was isolated, and its role in the reaction to heat stress was studied. Thermotolerance and superoxide dismutase activity in transgenic seedlings were enhanced by Arabidopsis overexpression of DcHsp90-6. After heat stress, transgenic plants' electrolyte leakage and malondialdehyde levels were much lower than wild-type plants. Furthermore, overexpression of DcHsp90-6 altered the expressions of stress-responsive genes such as AtHsp101, AtHsp90, AtGolS1, AtRS4/5, and AtHsfB1. This study provides comprehensive information on the DcHsp90 gene family and suggests that overexpressed DcHsp90-6 positively regulates thermotolerance highlighting the adaptation mechanism of carnation under heat stress.
Collapse
Affiliation(s)
- Pengcheng Xue
- College of Landscape and Forestry, Qingdao Agricultural University, No. 100 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Yuying Sun
- College of Landscape and Forestry, Qingdao Agricultural University, No. 100 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Diandian Hu
- College of Landscape and Forestry, Qingdao Agricultural University, No. 100 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Junwei Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Xueli Wan
- College of Landscape and Forestry, Qingdao Agricultural University, No. 100 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Sun WT, Cheng SC, Chao YT, Lin SY, Yang TT, Ho YP, Shih MC, Ko SS. Sugars and sucrose transporters in pollinia of Phalaenopsis aphrodite (Orchidaceae). JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2556-2571. [PMID: 36656734 DOI: 10.1093/jxb/erad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/19/2023] [Indexed: 06/06/2023]
Abstract
The pollen grains of Phalaenopsis orchids are clumped tightly together, packed in pollen dispersal units called pollinia. In this study, the morphology, cytology, biochemistry, and sucrose transporters in pollinia of Phalaenopsis orchids were investigated. Histochemical detection was used to characterize the distribution of sugars and callose at the different development stages of pollinia. Ultra-performance liquid chromatography-high resolution-tandem mass spectrometry data indicated that P. aphrodite accumulated abundant saccharides such as sucrose, galactinol, myo-inositol, and glucose, and trace amounts of raffinose and trehalose in mature pollinia. We found that galactinol synthase (PAXXG304680) and trehalose-6-phosphate phosphatase (PAXXG016120) genes were preferentially expressed in mature pollinia. The P. aphrodite genome was identified as having 11 sucrose transporters (SUTs). Our qRT-PCR confirmed that two SUTs (PAXXG030250 and PAXXG195390) were preferentially expressed in the pollinia. Pollinia germinated in pollen germination media (PGM) supplemented with 10% sucrose showed increased callose production and enhanced pollinia germination, but there was no callose or germination in PGM without sucrose. We show that P. aphrodite accumulates high levels of sugars in mature pollinia, providing nutrients and enhanced SUT gene expression for pollinia germination and tube growth.
Collapse
Affiliation(s)
- Wan-Ting Sun
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, 711, Taiwan
| | - Sy-Chyi Cheng
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, 711, Taiwan
| | - Ya-Ting Chao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Shu-Yao Lin
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, 711, Taiwan
| | - Ting-Ting Yang
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, 711, Taiwan
| | - Yi-Ping Ho
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, 711, Taiwan
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Swee-Suak Ko
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, 711, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| |
Collapse
|
5
|
Liu Y, Li T, Zhang C, Zhang W, Deng N, Dirk LMA, Downie AB, Zhao T. Raffinose positively regulates maize drought tolerance by reducing leaf transpiration. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:55-67. [PMID: 36703577 DOI: 10.1111/tpj.16116] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Drought stress is one of the major constraints of global crop production. Raffinose, a non-reducing trisaccharide, has been considered to regulate positively the plant drought stress tolerance; however, evidence that augmenting raffinose production in leaves results in enhanced plant drought stress tolerance is lacking. The biochemical mechanism through which raffinose might act to mitigate plant drought stress remains unidentified. ZmRAFS encodes Zea mays RAFFINOSE SYNTHASE, a key enzyme that transfers galactose from the galactoside galactinol to sucrose for raffinose production. Overexpression of ZmRAFS in maize increased the RAFS protein and the raffinose content and decreased the water loss of leaves and enhanced plant drought stress tolerance. The biomass of the ZmRAFS overexpressing plants was similar to that of non-transgenic control plants when grown under optimal conditions, but was significantly greater than that of non-transgenic plants when grown under drought stress conditions. In contrast, the percentage of water loss of the detached leaves from two independent zmrafs mutant lines, incapable of synthesizing raffinose, was greater than that from null segregant controls and this phenomenon was partially rescued by supplementation of raffinose to detached zmrafs leaves. In addition, while there were differences in water loss among different maize lines, there was no difference in stomata density or aperture. Taken together, our work demonstrated that overexpression of the ZmRAFS gene in maize, in contrast to Arabidopsis, increased the raffinose content in leaves, assisted the leaf to retain water, and enhanced the plant drought stress tolerance without causing a detectable growth penalty.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Chunxia Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenli Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Nan Deng
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Lynnette M A Dirk
- Department of Horticulture, Seed Biology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - A Bruce Downie
- Department of Horticulture, Seed Biology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Tianyong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
6
|
Chang B, Zhao L, Feng Z, Wei F, Zhang Y, Zhang Y, Huo P, Cheng Y, Zhou J, Feng H. Galactosyltransferase GhRFS6 interacting with GhOPR9 involved in defense against Verticillium wilt in cotton. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111582. [PMID: 36632889 DOI: 10.1016/j.plantsci.2022.111582] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/23/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
The soil-borne fungus Verticillium dahliae causes Verticillium wilt (VW), one of the most devastating diseases of cotton. In a previous study showed that GhOPR9 played a positive role in resistance of cotton to VW through the regulation of the Jasmonic acid (JA) pathway. Furtherly, we also found that GhOPR9 interacted with a sucrose galactosyltransferase GhRFS6. Raffinose synthase (RFS) plays a key role in plant innate immunity, including the abiotic stress of drought, darkness. However, there were few reports on the effects of RFS on biotic stress. In this study, we verified the function of GhRFS6 to VW. The expression analysis showed that the GhRFS6 may be regulated by various stresses, and it was upregulated under Vd076 and Vd991 pressures. Inhibition of GhRFS6 expression, hydrogen peroxide (H2O2) content, lignin content, cell wall thickness and a series of defense responses were decreased, and the resistance of cotton to V. dahliae was decreased. In addition, this study showed that GhRFS6 has glycosyltransferase activity and can participate in the regulation of α-galactosidase activity and raffinose and inositol synthesis. And that galactose was accumulated in cotton roots after GhRFS6 silencing, which is beneficial for the colonization and growth of V. dahliae. Furthermore, overexpression of GhRFS6 in Arabidopsis thaliana enhanced plant resistance to V. dahliae. In GUS staining, the promoter expression position of GhRFS6 was also altered after V. dahliae infection. Meanwhile, GhRFS6 has also been shown to resist VW through the regulation of the JA pathway. These results suggest that GhRFS6 is a potential molecular target for improving cotton resistance to VW.
Collapse
Affiliation(s)
- Baiyang Chang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Feng Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yihao Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Peng Huo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yong Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Jinglong Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China.
| | - Hongjie Feng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China.
| |
Collapse
|
7
|
Teper‐Bamnolker P, Roitman M, Katar O, Peleg N, Aruchamy K, Suher S, Doron‐Faigenboim A, Leibman D, Omid A, Belausov E, Andersson M, Olsson N, Fält A, Volpin H, Hofvander P, Gal‐On A, Eshel D. An alternative pathway to plant cold tolerance in the absence of vacuolar invertase activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:327-341. [PMID: 36448213 PMCID: PMC10107833 DOI: 10.1111/tpj.16049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 11/10/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
To cope with cold stress, plants have developed antioxidation strategies combined with osmoprotection by sugars. In potato (Solanum tuberosum) tubers, which are swollen stems, exposure to cold stress induces starch degradation and sucrose synthesis. Vacuolar acid invertase (VInv) activity is a significant part of the cold-induced sweetening (CIS) response, by rapidly cleaving sucrose into hexoses and increasing osmoprotection. To discover alternative plant tissue pathways for coping with cold stress, we produced VInv-knockout lines in two cultivars. Genome editing of VInv in 'Désirée' and 'Brooke' was done using stable and transient expression of CRISPR/Cas9 components, respectively. After storage at 4°C, sugar analysis indicated that the knockout lines showed low levels of CIS and maintained low acid invertase activity in storage. Surprisingly, the tuber parenchyma of vinv lines exhibited significantly reduced lipid peroxidation and reduced H2 O2 levels. Furthermore, whole plants of vinv lines exposed to cold stress without irrigation showed normal vigor, in contrast to WT plants, which wilted. Transcriptome analysis of vinv lines revealed upregulation of an osmoprotectant pathway and ethylene-related genes during cold temperature exposure. Accordingly, higher expression of antioxidant-related genes was detected after exposure to short and long cold storage. Sugar measurements showed an elevation of an alternative pathway in the absence of VInv activity, raising the raffinose pathway with increasing levels of myo-inositol content as a cold tolerance response.
Collapse
Affiliation(s)
- Paula Teper‐Bamnolker
- Department of Postharvest Science, Agricultural Research Organization (ARO)The Volcani InstituteRishon LeZionIsrael
| | - Marina Roitman
- Department of Postharvest Science, Agricultural Research Organization (ARO)The Volcani InstituteRishon LeZionIsrael
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in AgricultureThe Hebrew University of JerusalemRehovot76100Israel
| | - Omri Katar
- Department of Postharvest Science, Agricultural Research Organization (ARO)The Volcani InstituteRishon LeZionIsrael
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in AgricultureThe Hebrew University of JerusalemRehovot76100Israel
| | - Noam Peleg
- Department of Postharvest Science, Agricultural Research Organization (ARO)The Volcani InstituteRishon LeZionIsrael
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in AgricultureThe Hebrew University of JerusalemRehovot76100Israel
| | - Kalaivani Aruchamy
- Department of Postharvest Science, Agricultural Research Organization (ARO)The Volcani InstituteRishon LeZionIsrael
| | - Shlomit Suher
- Department of Postharvest Science, Agricultural Research Organization (ARO)The Volcani InstituteRishon LeZionIsrael
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in AgricultureThe Hebrew University of JerusalemRehovot76100Israel
| | - Adi Doron‐Faigenboim
- Institute of Plant Sciences, Agricultural Research Organization (ARO)The Volcani InstituteRishon LeZionIsrael
| | - Diana Leibman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)The Volcani InstituteRishon LeZionIsrael
| | - Ayelet Omid
- Danziger Innovations LimitedMishmar HashivaIsrael
| | - Eduard Belausov
- Department of Ornamental Horticulture, Agricultural Research Organization (ARO)The Volcani InstituteRishon LeZionIsrael
| | - Mariette Andersson
- Department of Plant BreedingSwedish University of Agricultural SciencesAlnarpSweden
| | - Niklas Olsson
- Department of Plant BreedingSwedish University of Agricultural SciencesAlnarpSweden
| | - Ann‐Sofie Fält
- Department of Plant BreedingSwedish University of Agricultural SciencesAlnarpSweden
| | - Hanne Volpin
- Danziger Innovations LimitedMishmar HashivaIsrael
| | - Per Hofvander
- Department of Plant BreedingSwedish University of Agricultural SciencesAlnarpSweden
| | - Amit Gal‐On
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)The Volcani InstituteRishon LeZionIsrael
| | - Dani Eshel
- Department of Postharvest Science, Agricultural Research Organization (ARO)The Volcani InstituteRishon LeZionIsrael
| |
Collapse
|
8
|
McKinley BA, Thakran M, Zemelis-Durfee S, Huang X, Brandizzi F, Rooney WL, Mansfield SD, Mullet JE. Transcriptional regulation of the raffinose family oligosaccharides pathway in Sorghum bicolor reveals potential roles in leaf sucrose transport and stem sucrose accumulation. FRONTIERS IN PLANT SCIENCE 2022; 13:1062264. [PMID: 36570942 PMCID: PMC9785717 DOI: 10.3389/fpls.2022.1062264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Bioenergy sorghum hybrids are being developed with enhanced drought tolerance and high levels of stem sugars. Raffinose family oligosaccharides (RFOs) contribute to plant environmental stress tolerance, sugar storage, transport, and signaling. To better understand the role of RFOs in sorghum, genes involved in myo-inositol and RFO metabolism were identified and relative transcript abundance analyzed during development. Genes involved in RFO biosynthesis (SbMIPS1, SbInsPase, SbGolS1, SbRS) were more highly expressed in leaves compared to stems and roots, with peak expression early in the morning in leaves. SbGolS, SbRS, SbAGA1 and SbAGA2 were also expressed at high levels in the leaf collar and leaf sheath. In leaf blades, genes involved in myo-inositol biosynthesis (SbMIPS1, SbInsPase) were expressed in bundle sheath cells, whereas genes involved in galactinol and raffinose synthesis (SbGolS1, SbRS) were expressed in mesophyll cells. Furthermore, SbAGA1 and SbAGA2, genes that encode neutral-alkaline alpha-galactosidases that hydrolyze raffinose, were differentially expressed in minor vein bundle sheath cells and major vein and mid-rib vascular and xylem parenchyma. This suggests that raffinose synthesized from sucrose and galactinol in mesophyll cells diffuses into vascular bundles where hydrolysis releases sucrose for long distance phloem transport. Increased expression (>20-fold) of SbAGA1 and SbAGA2 in stem storage pith parenchyma of sweet sorghum between floral initiation and grain maturity, and higher expression in sweet sorghum compared to grain sorghum, indicates these genes may play a key role in non-structural carbohydrate accumulation in stems.
Collapse
Affiliation(s)
- Brian A. McKinley
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Manish Thakran
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Starla Zemelis-Durfee
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, United States
| | - Xinyi Huang
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, United States
| | - William L. Rooney
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Shawn D. Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - John E. Mullet
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
9
|
Yang J, Ling C, Liu Y, Zhang H, Hussain Q, Lyu S, Wang S, Liu Y. Genome-Wide Expression Profiling Analysis of Kiwifruit GolS and RFS Genes and Identification of AcRFS4 Function in Raffinose Accumulation. Int J Mol Sci 2022; 23:ijms23168836. [PMID: 36012101 PMCID: PMC9408211 DOI: 10.3390/ijms23168836] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
The raffinose synthetase (RFS) and galactinol synthase (GolS) are two critical enzymes for raffinose biosynthesis, which play an important role in modulating plant growth and in response to a variety of biotic or abiotic stresses. Here, we comprehensively analyzed the RFS and GolS gene families and their involvement in abiotic and biotic stresses responses at the genome-wide scale in kiwifruit. A total of 22 GolS and 24 RFS genes were identified in Actinidia chinensis and Actinidia eriantha genomes. Phylogenetic analysis showed that the GolS and RFS genes were clustered into four and six groups, respectively. Transcriptomic analysis revealed that abiotic stresses strongly induced some crucial genes members including AcGolS1/2/4/8 and AcRFS2/4/8/11 and their expression levels were further confirmed by qRT-PCR. The GUS staining of AcRFS4Pro::GUS transgenic plants revealed that the transcriptionlevel of AcRFS4 was significantly increased by salt stress. Overexpression of AcRFS4 in Arabidopsis demonstrated that this gene enhanced the raffinose accumulation and the tolerance to salt stress. The co-expression networks analysis of hub transcription factors targeting key AcRFS4 genes indicated that there was a strong correlation between AcNAC30 and AcRFS4 expression under salt stress. Furthermore, the yeast one-hybrid assays showed that AcNAC30 could bind the AcRFS4 promoter directly. These results may provide insights into the evolutionary and functional mechanisms of GolS and RFS genes in kiwifruit.
Collapse
Affiliation(s)
- Jun Yang
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Chengcheng Ling
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Yunyan Liu
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Huamin Zhang
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China
| | - Shiheng Lyu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China
| | - Songhu Wang
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
- Correspondence: (S.W.); (Y.L.)
| | - Yongsheng Liu
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
- Correspondence: (S.W.); (Y.L.)
| |
Collapse
|
10
|
de Koning R, Kiekens R, Toili MEM, Angenon G. Identification and Expression Analysis of the Genes Involved in the Raffinose Family Oligosaccharides Pathway of Phaseolus vulgaris and Glycine max. PLANTS (BASEL, SWITZERLAND) 2021; 10:1465. [PMID: 34371668 PMCID: PMC8309293 DOI: 10.3390/plants10071465] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022]
Abstract
Raffinose family oligosaccharides (RFO) play an important role in plants but are also considered to be antinutritional factors. A profound understanding of the galactinol and RFO biosynthetic gene families and the expression patterns of the individual genes is a prerequisite for the sustainable reduction of the RFO content in the seeds, without compromising normal plant development and functioning. In this paper, an overview of the annotation and genetic structure of all galactinol- and RFO biosynthesis genes is given for soybean and common bean. In common bean, three galactinol synthase genes, two raffinose synthase genes and one stachyose synthase gene were identified for the first time. To discover the expression patterns of these genes in different tissues, two expression atlases have been created through re-analysis of publicly available RNA-seq data. De novo expression analysis through an RNA-seq study during seed development of three varieties of common bean gave more insight into the expression patterns of these genes during the seed development. The results of the expression analysis suggest that different classes of galactinol- and RFO synthase genes have tissue-specific expression patterns in soybean and common bean. With the obtained knowledge, important galactinol- and RFO synthase genes that specifically play a key role in the accumulation of RFOs in the seeds are identified. These candidate genes may play a pivotal role in reducing the RFO content in the seeds of important legumes which could improve the nutritional quality of these beans and would solve the discomforts associated with their consumption.
Collapse
Affiliation(s)
- Ramon de Koning
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.d.K.); (R.K.); (M.E.M.T.)
| | - Raphaël Kiekens
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.d.K.); (R.K.); (M.E.M.T.)
| | - Mary Esther Muyoka Toili
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.d.K.); (R.K.); (M.E.M.T.)
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Juja 01001, Kiambu County, Kenya
| | - Geert Angenon
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.d.K.); (R.K.); (M.E.M.T.)
| |
Collapse
|
11
|
Cui R, Wang X, Malik WA, Lu X, Chen X, Wang D, Wang J, Wang S, Chen C, Guo L, Chen Q, Ye W. Genome-wide identification and expression analysis of Raffinose synthetase family in cotton. BMC Bioinformatics 2021; 22:356. [PMID: 34187353 PMCID: PMC8243485 DOI: 10.1186/s12859-021-04276-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 06/17/2021] [Indexed: 11/27/2022] Open
Abstract
Background The Raffinose synthetase (RAFS) genes superfamily is critical for the synthesis of raffinose, which accumulates in plant leaves under abiotic stress. However, it remains unclear whether RAFS contributes to resistance to abiotic stress in plants, specifically in the Gossypium species. Results In this study, we identified 74 RAFS genes from G. hirsutum, G. barbadense, G. arboreum and G. raimondii by using a series of bioinformatic methods. Phylogenetic analysis showed that the RAFS gene family in the four Gossypium species could be divided into four major clades; the relatively uniform distribution of the gene number in each species ranged from 12 to 25 based on species ploidy, most likely resulting from an ancient whole-genome polyploidization. Gene motif analysis showed that the RAFS gene structure was relatively conservative. Promoter analysis for cis-regulatory elements showed that some RAFS genes might be regulated by gibberellins and abscisic acid, which might influence their expression levels. Moreover, we further examined the functions of RAFS under cold, heat, salt and drought stress conditions, based on the expression profile and co-expression network of RAFS genes in Gossypium species. Transcriptome analysis suggested that RAFS genes in clade III are highly expressed in organs such as seed, root, cotyledon, ovule and fiber, and under abiotic stress in particular, indicating the involvement of genes belonging to clade III in resistance to abiotic stress. Gene co-expressed network analysis showed that GhRFS2A-GhRFS6A, GhRFS6D, GhRFS7D and GhRFS8A-GhRFS11A were key genes, with high expression levels under salt, drought, cold and heat stress. Conclusion The findings may provide insights into the evolutionary relationships and expression patterns of RAFS genes in Gossypium species and a theoretical basis for the identification of stress resistance materials in cotton. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04276-4.
Collapse
Affiliation(s)
- Ruifeng Cui
- College of Agriculture / Xinjiang Agricultural University / Xinjiang Research Base, State Key Laboratory of Cotton Biology, Urumqi, 830052, Xinjiang, China.,State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.,College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Xiaoge Wang
- State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Waqar Afzal Malik
- State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xuke Lu
- State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiugui Chen
- State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Delong Wang
- State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Junjuan Wang
- State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shuai Wang
- State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Chao Chen
- State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lixue Guo
- State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Quanjia Chen
- College of Agriculture / Xinjiang Agricultural University / Xinjiang Research Base, State Key Laboratory of Cotton Biology, Urumqi, 830052, Xinjiang, China.
| | - Wuwei Ye
- College of Agriculture / Xinjiang Agricultural University / Xinjiang Research Base, State Key Laboratory of Cotton Biology, Urumqi, 830052, Xinjiang, China. .,State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
12
|
Li T, Zhang Y, Liu Y, Li X, Hao G, Han Q, Dirk LMA, Downie AB, Ruan YL, Wang J, Wang G, Zhao T. Raffinose synthase enhances drought tolerance through raffinose synthesis or galactinol hydrolysis in maize and Arabidopsis plants. J Biol Chem 2020; 295:8064-8077. [PMID: 32366461 DOI: 10.1074/jbc.ra120.013948] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 04/29/2020] [Indexed: 11/06/2022] Open
Abstract
Raffinose and its precursor galactinol accumulate in plant leaves during abiotic stress. RAFFINOSE SYNTHASE (RAFS) catalyzes raffinose formation by transferring a galactosyl group of galactinol to sucrose. However, whether RAFS contributes to plant drought tolerance and, if so, by what mechanism remains unclear. In this study, we report that expression of RAFS from maize (or corn, Zea mays) (ZmRAFS) is induced by drought, heat, cold, and salinity stresses. We found that zmrafs mutant maize plants completely lack raffinose and hyper-accumulate galactinol and are more sensitive to drought stress than the corresponding null-segregant (NS) plants. This indicated that ZmRAFS and its product raffinose contribute to plant drought tolerance. ZmRAFS overexpression in Arabidopsis enhanced drought stress tolerance by increasing myo-inositol levels via ZmRAFS-mediated galactinol hydrolysis in the leaves due to sucrose insufficiency in leaf cells and also enhanced raffinose synthesis in the seeds. Supplementation of sucrose to detached leaves converted ZmRAFS from hydrolyzing galactinol to synthesizing raffinose. Taken together, we demonstrate that ZmRAFS enhances plant drought tolerance through either raffinose synthesis or galactinol hydrolysis, depending on sucrose availability in plant cells. These results provide new avenues to improve plant drought stress tolerance through manipulation of the raffinose anabolic pathway.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.,The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China.,State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yumin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.,The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.,The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xudong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.,The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Guanglong Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.,The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Qinghui Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.,The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Lynnette M A Dirk
- Department of Horticulture, Seed Biology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - A Bruce Downie
- Department of Horticulture, Seed Biology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Yong-Ling Ruan
- Australia-China Research Centre for Crop Improvement and School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Jianmin Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guoying Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianyong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China .,The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
13
|
Multi-enzyme systems and recombinant cells for synthesis of valuable saccharides: Advances and perspectives. Biotechnol Adv 2019; 37:107406. [DOI: 10.1016/j.biotechadv.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/30/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023]
|
14
|
Biosynthesis of Raffinose and Stachyose from Sucrose via an In Vitro Multienzyme System. Appl Environ Microbiol 2019; 85:AEM.02306-18. [PMID: 30389762 DOI: 10.1128/aem.02306-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/28/2018] [Indexed: 01/09/2023] Open
Abstract
Herein, we present a biocatalytic method to produce raffinose and stachyose using sucrose as the substrate. An in vitro multienzyme system was developed using five enzymes, namely, sucrose synthase (SUS), UDP-glucose 4-epimerase (GalE), galactinol synthase (GS), raffinose synthase (RS), and stachyose synthase (STS), and two intermedia, namely, UDP and inositol, which can be recycled. This reaction system produced 11.1 mM raffinose using purified enzymes under optimal reaction conditions and substrate concentrations. Thereafter, a stepwise cascade reaction strategy was employed to circumvent the instability of RS and STS in this system, and a 4.2-fold increase in raffinose production was observed. The enzymatic cascade reactions were then conducted using cell extracts to avoid the need for enzyme purification and supplementation with UDP. Such modification further increased raffinose production to 86.6 mM and enabled the synthesis of 61.1 mM stachyose. The UDP turnover number reached 337. Finally, inositol in the reaction system was recycled five times, and 255.8 mM raffinose (128.9 g/liter) was obtained.IMPORTANCE Soybean oligosaccharides (SBOS) have elicited considerable attention because of their potential applications in the pharmaceutical, cosmetics, and food industries. This study demonstrates an alternative method to produce raffinose and stachyose, which are the major bioactive components of SBOS, from sucrose via an in vitro enzyme system. High concentrations of galactinol, raffinose, and stachyose were synthesized with the aid of a stepwise cascade reaction process, which can successfully address the issue of mismatched enzyme characteristics of an in vitro metabolic engineering platform. The biocatalytic approach presented in this work may enable the synthesis of other valuable galactosyl oligosaccharides, such as verbascose and higher homologs, which are difficult to obtain through plant extraction.
Collapse
|
15
|
Jing Y, Lang S, Wang D, Xue H, Wang XF. Functional characterization of galactinol synthase and raffinose synthase in desiccation tolerance acquisition in developing Arabidopsis seeds. JOURNAL OF PLANT PHYSIOLOGY 2018; 230:109-121. [PMID: 30368031 DOI: 10.1016/j.jplph.2018.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 05/27/2023]
Abstract
Raffinose family oligosaccharides (RFOs) accumulate during seed development, and have been thought to be associated with the acquisition of desiccation tolerance (DT) by seeds. Here, comprehensive approaches were adopted to evaluate the changes of DT in developing Arabidopsis seeds of wild type, overexpression (OX-AtGS1/GS2/RS5), and mutant lines by manipulating the expression levels of the GALACTINOL SYNTHASE (GS) and RAFFINOSE SYNTHASE (RS) genes. Our results indicate that seeds of the double mutant (gs1, gs2) and rs5 delayed the timing of DT acquisition as compared to wild type. Subsequent detection confirmed that seeds from OX-AtGS1/GS2 plants with high levels of galactinol, raffinose, and stachyose, and OX-AtRS5 plants possess more raffinose and stachyose but less galactinol compared to wild type. These lines all showed greater germination percentage and shorter time to 50% germination after desiccation treatment at 11 and 15 days after flower (DAF). Further analysis revealed that the role of RFOs is time limited and mainly affects the middle stage (9-16 DAF) of seed development by enhancing seed viability and the ratio of GSH to GSSH in cells, but there is no significant difference in DT of mature seeds. In addition, RFOs could reduce damage to seeds caused by oxidative stress. We conclude that GALACTINOL SYNTHASE and RAFFINOSE SYNTHASE play important roles in DT acquisition during Arabidopsis seed development, and that galactinol and RFOs are crucial protective compounds in the response of seeds to desiccation stress.
Collapse
Affiliation(s)
- Yin Jing
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China
| | - Sirui Lang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China
| | - Dongmei Wang
- Key Laboratory of Soil and Water Conservation and Desertification Combating, Ministry of Education, School of Soil and Water Conservation, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China
| | - Hua Xue
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China.
| | - Xiao-Feng Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China.
| |
Collapse
|
16
|
You J, Wang Y, Zhang Y, Dossa K, Li D, Zhou R, Wang L, Zhang X. Genome-wide identification and expression analyses of genes involved in raffinose accumulation in sesame. Sci Rep 2018. [PMID: 29531231 PMCID: PMC5847563 DOI: 10.1038/s41598-018-22585-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sesame (Sesamum indicum L.) is an important oilseed crop. However, multiple abiotic stresses severely affect sesame growth and production. Raffinose family oligosaccharides (RFOs), such as raffinose and stachyose, play an important role in desiccation tolerance of plants and developing seeds. In the present study, three types of key enzymes, galactinol synthase (GolS), raffinose synthase (RafS) and stachyose synthase (StaS), responsible for the biosynthesis of RFOs were identified at the genome-wide scale in sesame. A total of 7 SiGolS and 15 SiRS genes were identified in the sesame genome. Transcriptome analyses showed that SiGolS and SiRS genes exhibited distinct expression profiles in different tissues and seed developmental stages. Comparative expression analyses under various abiotic stresses indicated that most of SiGolS and SiRS genes were significantly regulated by drought, osmotic, salt, and waterlogging stresses, but slightly affected by cold stress. The up-regulation of several SiGolS and SiRS genes by multiple abiotic stresses suggested their active implication in sesame abiotic stress responses. Taken together, these results shed light on the RFOs-mediated abiotic stress resistance in sesame and provide a useful framework for improving abiotic stress resistance of sesame through genetic engineering.
Collapse
Affiliation(s)
- Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yanyan Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yujuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.,Special Economic Crop Research Center of Shandon Academy of Agricultural Sciences, Shandong Cotton Research Center, Jinan, 250100, China
| | - Komivi Dossa
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.,Centre d'Etudes Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS), BP 3320 Route de Khombole, Thiès, Senegal
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
17
|
Moghaddam SM, Brick MA, Echeverria D, Thompson HJ, Brick LA, Lee R, Mamidi S, McClean PE. Genetic Architecture of Dietary Fiber and Oligosaccharide Content in a Middle American Panel of Edible Dry Bean. THE PLANT GENOME 2018; 11:170074. [PMID: 29505640 DOI: 10.3835/plantgenome2017.08.0074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Common bean ( L.) is the most consumed edible grain legume worldwide and contains a wide range of nutrients for human health including dietary fiber. Diets high in beans are associated with lower rates of chronic diseases such as obesity and type 2 diabetes, and the content of dietary fibers varies among different market classes of dry bean. In this study, we evaluated the dietary fiber content in a Middle American diversity panel (MDP) of common bean and evaluated the genetic architecture of the various dietary fiber components. The dietary fiber components included insoluble and soluble dietary fibers as well as the antinutritional raffinose family of oligosaccharides (RFOs; raffinose, stachyose, and verbascose). All variables measured differed among market classes and entries. Colored bean seeds had higher levels of insoluble dietary fibers with the black market class showing also the highest raffinose and stachyose content. Cultivars and lines released since 1997 had higher insoluble dietary fibers and RFO content in race Durango. Higher levels of RFOs were also observed in cultivars with type II growth habit that was a recent breeding target in Durango race germplasm. Candidate genes for dietary fiber traits, especially homologs to two main genes in the RFO biosynthesis pathway, were identified. The knowledge of diversity of dietary fibers in the MDP accompanied with the identification of candidate genes could effectively improve dietary fiber components in common bean.
Collapse
|
18
|
Farcuh M, Li B, Rivero RM, Shlizerman L, Sadka A, Blumwald E. Sugar metabolism reprogramming in a non-climacteric bud mutant of a climacteric plum fruit during development on the tree. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5813-5828. [PMID: 29186495 PMCID: PMC5854140 DOI: 10.1093/jxb/erx391] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/06/2017] [Indexed: 05/08/2023]
Abstract
We investigated sugar metabolism in leaves and fruits of two Japanese plum (Prunus salicina Lindl.) cultivars, the climacteric Santa Rosa and its bud sport mutant the non-climacteric Sweet Miriam, during development on the tree. We previously characterized differences between the two cultivars. Here, we identified key sugar metabolic pathways. Pearson coefficient correlations of metabolomics and transcriptomic data and weighted gene co-expression network analysis (WGCNA) of RNA sequencing (RNA-Seq) data allowed the identification of 11 key sugar metabolism-associated genes: sucrose synthase, sucrose phosphate synthase, cytosolic invertase, vacuolar invertase, invertase inhibitor, α-galactosidase, β-galactosidase, galactokinase, trehalase, galactinol synthase, and raffinose synthase. These pathways were further assessed and validated through the biochemical characterization of the gene products and with metabolite analysis. Our results demonstrated the reprogramming of sugar metabolism in both leaves and fruits in the non-climacteric plum, which displayed a shift towards increased sorbitol synthesis. Climacteric and non-climacteric fruits showed differences in their UDP-galactose metabolism towards the production of galactose and raffinose, respectively. The higher content of galactinol, myo-inositol, raffinose, and trehalose in the non-climacteric fruits could improve the ability of the fruits to cope with the oxidative processes associated with fruit ripening. Overall, our results support a relationship between sugar metabolism, ethylene, and ripening behavior.
Collapse
Affiliation(s)
| | - Bosheng Li
- Department of Plant Sciences, University of California, USA
| | | | | | - Avi Sadka
- Department of Fruit Tree Sciences, ARO, Israel
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, USA
- Correspondence:
| |
Collapse
|
19
|
Li T, Zhang Y, Wang D, Liu Y, Dirk LMA, Goodman J, Downie AB, Wang J, Wang G, Zhao T. Regulation of Seed Vigor by Manipulation of Raffinose Family Oligosaccharides in Maize and Arabidopsis thaliana. MOLECULAR PLANT 2017; 10:1540-1555. [PMID: 29122666 DOI: 10.1016/j.molp.2017.10.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 05/28/2023]
Abstract
Raffinose family oligosaccharides (RFOs) accumulate in seeds during maturation desiccation in many plant species. However, it remains unclear whether RFOs have a role in establishing seed vigor. GALACTINOL SYNTHASE (GOLS), RAFFINOSE SYNTHASE (RS), and STACHYOSE SYNTHASE (STS) are the enzymes responsible for RFO biosynthesis in plants. Interestingly, only raffinose is detected in maize seeds, and a unique maize RS gene (ZmRS) was identified. In this study, we found that two independent mutator (Mu)-interrupted zmrs lines, containing no raffinose but hyperaccumulating galactinol, have significantly reduced seed vigor, compared with null segregant controls. Unlike maize, Arabidopsis thaliana seeds contain several RFOs (raffinose, stachyose, and verbascose). Manipulation of A. thaliana RFO content by overexpressing ZmGOLS2, ZmRS, or AtSTS demonstrated that co-overexpression of ZmGOLS2 and ZmRS, or overexpression of ZmGOLS2 alone, significantly increased the total content of RFOs and enhanced Arabidopsis seed vigor. Surprisingly, while overexpression of ZmRS increased seed raffinose content, its overexpression dramatically decreased seed vigor and reduced the seed amounts of galactinol, stachyose, and verbascose. In contrast, the atrs5 mutant seeds are similar to those of the wild type with regard to seed vigor and RFO content, except for stachyose, which accumulated in atrs5 seeds. Total RFOs, RFO/sucrose ratio, but not absolute individual RFO amounts, positively correlated with A. thaliana seed vigor, to which stachyose and verbascose contribute more than raffinose. Taken together, these results provide new insights into regulatory mechanisms of seed vigor and reveal distinct requirement for RFOs in modulating seed vigor in a monocot and a dicot.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yumin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lynnette M A Dirk
- Department of Horticulture, Seed Biology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Jack Goodman
- Department of Plant and Soil Sciences, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - A Bruce Downie
- Department of Horticulture, Seed Biology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Jianmin Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guoying Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Tianyong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
20
|
Gangl R, Tenhaken R. Raffinose Family Oligosaccharides Act As Galactose Stores in Seeds and Are Required for Rapid Germination of Arabidopsis in the Dark. FRONTIERS IN PLANT SCIENCE 2016; 7:1115. [PMID: 27507985 PMCID: PMC4960254 DOI: 10.3389/fpls.2016.01115] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/13/2016] [Indexed: 05/25/2023]
Abstract
Raffinose synthase 5 (AtRS5, At5g40390) was characterized from Arabidopsis as a recombinant enzyme. It has a far higher affinity for the substrates galactinol and sucrose than any other raffinose synthase previously reported. In addition raffinose synthase 5 is also working as a galactosylhydrolase, degrading galactinol, and raffinose under certain conditions. Together with raffinose synthase 4, which is predominantly a stachyose synthase, both enzymes contribute to the raffinose family oligosaccharide (RFO) accumulation in seeds. A double knockout in raffinose synthase 4 and raffinose synthase 5 (ΔAtRS4,5) was generated, which is devoid of RFOs in seeds. Unstressed leaves of 4 week old ΔAtRS4,5 plants showed drastically 23.8-fold increased concentrations of galactinol. Unexpectedly, raffinose appeared again in drought stressed ΔAtRS4,5 plants, but not under other abiotic stress conditions. Drought stress leads to novel transcripts of raffinose synthase 6 suggesting that this isoform is a further stress inducible raffinose synthase in Arabidopsis. ΔAtRS4,5 seeds showed a 5 days delayed germination phenotype in darkness and an elevated expression of the transcription factor phytochrome interacting factor 1 (AtPIF1) target gene AtPIF6, being a repressor of germination. This prolonged dormancy is not seen during germination in the light. Exogenous galactose partially promotes germination of ΔAtRS4,5 seeds in the dark suggesting that RFOs act as a galactose store and repress AtPIF6 transcripts.
Collapse
Affiliation(s)
| | - Raimund Tenhaken
- Department of Cell Biology, Division of Plant Physiology, University of SalzburgSalzburg, Austria
| |
Collapse
|