1
|
Dowell JA, Bowsher AW, Jamshad A, Shah R, Burke JM, Donovan LA, Mason CM. Historic breeding practices contribute to germplasm divergence in leaf specialized metabolism and ecophysiology in cultivated sunflower (Helianthus annuus). AMERICAN JOURNAL OF BOTANY 2024; 111:e16420. [PMID: 39483110 DOI: 10.1002/ajb2.16420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 11/03/2024]
Abstract
PREMISE The use of hybrid breeding systems to increase crop yields has been the cornerstone of modern agriculture and is exemplified in the breeding and improvement of cultivated sunflower (Helianthus annuus). However, it is poorly understood what effect supporting separate breeding pools in such systems, combined with continued selection for yield, may have on leaf ecophysiology and specialized metabolite variation. METHODS We analyzed 288 lines of cultivated H. annuus to examine the genomic basis of several specialized metabolites and agronomically important traits across major heterotic groups. RESULTS Heterotic group identity supports phenotypic divergences between fertility restoring and cytoplasmic male-sterility maintainer lines in leaf ecophysiology and specialized metabolism. However, the divergence is not associated with physical linkage to nuclear genes that support current hybrid breeding practices in cultivated H. annuus. Additionally, we identified four genomic regions associated with leaf ecophysiology and specialized metabolism that colocalize with previously identified QTLs for quantitative self-compatibility traits and with S-protein homolog (SPH) proteins, a recently discovered family of proteins associated with self-incompatibility and self/nonself recognition in Papaver rhoeas (common poppy) with suggested conserved downstream mechanisms among eudicots. CONCLUSIONS Further work is necessary to confirm the self-incompatibility mechanisms in cultivated H. annuus and their relationship to the integrative and polygenic architecture of leaf ecophysiology and specialized metabolism in cultivated sunflower. However, because self-compatibility is a derived quantitative trait in cultivated H. annuus, trait linkage to divergent phenotypic traits may have partially arisen as a potential unintended consequence of historical breeding practices and selection for yield.
Collapse
Affiliation(s)
- Jordan A Dowell
- Department of Biological Sciences, Louisiana State University, Baton Rouge, 70802, LA, USA
- Department of Biology, University of Central Florida, Orlando, 32816, FL, USA
| | - Alan W Bowsher
- Department of Plant Biology, University of Georgia, Athens, 30602, GA, USA
| | - Amna Jamshad
- Department of Plant Biology, University of Georgia, Athens, 30602, GA, USA
| | - Rahul Shah
- Department of Medicine, Vanderbilt University Medical Center, Nashville, 37232, TN, USA
| | - John M Burke
- Department of Plant Biology, University of Georgia, Athens, 30602, GA, USA
- The Plant Center, University of Georgia, Athens, 30602, GA, USA
| | - Lisa A Donovan
- Department of Plant Biology, University of Georgia, Athens, 30602, GA, USA
| | - Chase M Mason
- Department of Biology, University of Central Florida, Orlando, 32816, FL, USA
- Department of Plant Biology, University of Georgia, Athens, 30602, GA, USA
- Department of Biology, University of British Columbia Okanagan, Kelowna, B.C. 9 V1V1V7, Canada
| |
Collapse
|
2
|
Yu Y, Yang J, Zhang J, Rieseberg LH, Zhao J. Genomic Insights into Disease Resistance in Sunflower ( Helianthus annuus): Identifying Key Regions and Candidate Genes for Verticillium dahliae Resistance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2582. [PMID: 39339557 PMCID: PMC11434647 DOI: 10.3390/plants13182582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Sunflower (Helianthus annuus) is a globally significant field crop, and disease resistance is crucial for ensuring yield stability and crop quality. Verticillium dahliae is a notorious soilborne pathogen that causes Verticillium Wilt (VW) and threatens sunflower production worldwide. In this study, we conducted a comprehensive assessment of sunflower resistance to V. dahliae across 231 sunflower cultivar lines, from the Sunflower Association Mapping (SAM) population. We employed EMMAX and ridge regression best linear unbiased prediction (rrBLUP) and identified 148 quantitative trait loci (QTLs) and 23 putative genes associated with V. dahliae resistance, including receptor like kinases, cell wall modification, transcriptional regulation, plant stress signalling and defense regulation genes. Our enrichment and quantitative real-time PCR validation results highlight the importance of membrane vesicle trafficking in the sunflower immune system for efficient signaling and defense upon activation by V. dahliae. This study also reveals the polygenic architecture of V. dahliae resistance in sunflowers and provides insights for breeding sunflower cultivars resistant to VW. This research contributes to ongoing efforts to enhance crop resilience and reduce yield losses due to VW, ultimately benefiting sunflower growers and the agricultural sector.
Collapse
Affiliation(s)
- Yue Yu
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jianfeng Yang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Jian Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jun Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010010, China
| |
Collapse
|
3
|
Tong Y, Xue J, Li Q, Zhang L. A generalist regulator: MYB transcription factors regulate the biosynthesis of active compounds in medicinal plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4729-4744. [PMID: 38767602 DOI: 10.1093/jxb/erae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
Medicinal plants are rich in a variety of secondary metabolites with therapeutic value. However, the yields of these metabolites are generally very low, making their extraction both time-consuming and labour-intensive. Transcription factor-targeted secondary metabolic engineering can efficiently regulate the biosynthesis and accumulation of secondary metabolites in medicinal plants. v-Myb avian myeloblastosis viral oncogene homolog (MYB) transcription factors are involved in regulating various morphological and developmental processes, responses to stress, and the biosynthesis of secondary metabolites in plants. This review discusses the biological functions and transcription regulation mechanisms of MYB transcription factors and summarizes research progress concerning MYB transcription factors involved in the biosynthesis of representative active components. In the transcriptional regulatory network, MYB transcription factors regulate multiple synthase genes to mediate the biosynthesis of active compounds. This work will serve as a reference for an in-depth analysis of the MYB transcription factor family in medicinal plants.
Collapse
Affiliation(s)
- Yuqing Tong
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Jianping Xue
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Qizhang Li
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Lei Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
4
|
Weerawanich K, Sirikantaramas S. Unveiling phenylpropanoid regulation: the role of DzMYB activator and repressor in durian (Durio zibethinus) fruit. PLANT CELL REPORTS 2024; 43:179. [PMID: 38913159 DOI: 10.1007/s00299-024-03267-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
KEY MESSAGE DzMYB2 functions as an MYB activator, while DzMYB3 acts as an MYB repressor. They bind to promoters, interact with DzbHLH1, and influence phenolic contents, revealing their roles in phenylpropanoid regulation in durian pulps. Durian fruit has a high nutritional value attributed to its enriched bioactive compounds, including phenolics, carotenoids, and vitamins. While various transcription factors (TFs) regulate phenylpropanoid biosynthesis, MYB (v-myb avian myeloblastosis viral oncogene homolog) TFs have emerged as pivotal players in regulating key genes within this pathway. This study aimed to identify additional candidate MYB TFs from the transcriptome database of the Monthong cultivar at five developmental/postharvest ripening stages. Candidate transcriptional activators were discerned among MYBs upregulated during the ripe stage based on the positive correlation observed between flavonoid biosynthetic genes and flavonoid contents in ripe durian pulps. Conversely, MYBs downregulated during the ripe stage were considered candidate repressors. This study focused on a candidate MYB activator (DzMYB2) and a candidate MYB repressor (DzMYB3) for functional characterization. LC-MS/MS analysis using Nicotiana benthamiana leaves transiently expressing DzMYB2 revealed increased phenolic compound contents compared with those in leaves expressing green fluorescence protein controls, while those transiently expressing DzMYB3 showed decreased phenolic compound contents. Furthermore, it was demonstrated that DzMYB2 controls phenylpropanoid biosynthesis in durian by regulating the promoters of various biosynthetic genes, including phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), and dihydroflavonol reductase (DFR). Meanwhile, DzMYB3 regulates the promoters of PAL, 4-coumaroyl-CoA ligase (4CL), CHS, and CHI, resulting in the activation and repression of gene expression. Moreover, it was discovered that DzMYB2 and DzMYB3 could bind to another TF, DzbHLH1, in the regulation of flavonoid biosynthesis. These findings enhance our understanding of the pivotal role of MYB proteins in regulating the phenylpropanoid pathway in durian pulps.
Collapse
Affiliation(s)
- Kamonwan Weerawanich
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supaart Sirikantaramas
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Omics Sciences and Bioinformatics Center, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Zhao X, Feng Y, Ke D, Teng Y, Yuan Z. Comparative transcriptomic and metabolomic profiles reveal fruit peel color variation in two red pomegranate cultivars. PLANT MOLECULAR BIOLOGY 2024; 114:51. [PMID: 38691187 DOI: 10.1007/s11103-024-01446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/23/2024] [Indexed: 05/03/2024]
Abstract
Pomegranate (Punica granatum L.) which belongs to family Lythraceae, is one of the most important fruit crops of many tropical and subtropical regions. A high variability in fruit color is observed among different pomegranate accessions, which arises from the qualitative and quantitative differences in anthocyanins. However, the mechanism of fruit color variation is still not fully elucidated. In the present study, we investigated the red color mutation between a red-skinned pomegranate 'Hongbaoshi' and a purple-red-skinned cultivar 'Moshiliu', by using transcriptomic and metabolomic approaches. A total of 51 anthocyanins were identified from fruit peels, among which 3-glucoside and 3,5-diglucoside of cyanidin (Cy), delphinidin (Dp), and pelargonidin (Pg) were dominant. High proportion of Pg in early stages of 'Hongbaoshi' but high Dp in late stages of 'Moshiliu' were characterized. The unique high levels of Cy and Dp anthocyanins accumulating from early developmental stages accounted for the purple-red phenotype of 'Moshiliu'. Transcriptomic analysis revealed an early down-regulated and late up-regulated of anthocyanin-related structure genes in 'Moshiliu' compared with 'Hongbaoshi'. Alao, ANR was specially expressed in 'Hongbaoshi', with extremely low expression levels in 'Moshiliu'. For transcription factors R2R3-MYB, the profiles demonstrated a much higher transcription levels of three subgroup (SG) 5 MYBs and a sharp decrease in expression of SG6 MYB LOC116202527 in high-anthocyanin 'Moshiliu'. SG4 MYBs exhibited two entirely different patterns, LOC116203744 and LOC116212505 were down-regulated whereas LOC116205515 and LOC116212778 were up-regulated in 'Moshiliu' pomegranate. The results indicate that specific SG members of the MYB family might promote the peel coloration in different manners and play important roles in color mutation in pomegranate.
Collapse
Affiliation(s)
- Xueqing Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yingyi Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Ding Ke
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yingfen Teng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhaohe Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
6
|
Gong J, Wang Y, Xue C, Wu L, Sheng S, Wang M, Peng J, Cao S. Regulation of blue infertile flower pigmentation by WD40 transcription factor HmWDR68 in Hydrangea macrophylla 'forever summer'. Mol Biol Rep 2024; 51:328. [PMID: 38393428 DOI: 10.1007/s11033-024-09287-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND WD40 transcription factors are crucial in plant growth and developmental, significantly impacting plant growth regulation. This study investigates the WD40 transcription factor HmWDR68's role in developing the distinctive blue infertile flower colors in Hydrangea macrophylla 'Forever Summer'. METHODS AND RESULTS The HmWDR68 gene was isolated by PCR, revealing an open reading frame of 1026 base pairs, which encodes 341 amino acids. Characterized by four WD40 motifs, HmWDR68 is a member of the WD40 family. Phylogenetic analysis indicates that HmWDR68 shares high homology with PsWD40 in Camellia sinensis and CsWD40 in Paeonia suffruticosa, both of which are integral in anthocyanin synthesis regulation. Quantitative real-time PCR (qRT-PCR) analysis demonstrated that HmWDR68 expression in the blue infertile flowers of 'Forever Summer' hydrangea was significantly higher compared to other tissues and organs. Additionally, in various hydrangea varieties with differently colored infertile flowers, HmWDR68 expression was markedly elevated in comparison to other hydrangea varieties, correlating with the development of blue infertile flowers. Pearson correlation analysis revealed a significant association between HmWDR68 expression and the concentration of delphinidin 3-O-glucoside, as well as key genes involved in anthocyanin biosynthesis (HmF3H, HmC3'5'H, HmDFR, and HmANS) in the blue infertile flowers of 'Forever Summer' hydrangea (P < 0.01). CONCLUSION These findings suggest HmWDR68 may specifically regulate blue infertile flower formation in hydrangea by enhancing delphinidin-3-O-glucoside synthesis, modulating expression of HmF3H, HmC3'5'H, HmDFR and HmANS. This study provides insights into HmWDR68's role in hydrangea's blue flowers development, offering a foundation for further research in this field.
Collapse
Affiliation(s)
- Jingyi Gong
- College of Life Science and Technology, Central South University of Forestry & Technology, Changsha, Hunan, 410004, China
| | - Yu Wang
- College of Forestry, Central South University of Forestry & Technology, Changsha, Hunan, 410004, China
| | - Chao Xue
- College of Life Science and Technology, Central South University of Forestry & Technology, Changsha, Hunan, 410004, China
| | - Linshi Wu
- Hunan Botanical Garden, Changsha, Hunan, 410000, China
| | - Song Sheng
- College of Forestry, Central South University of Forestry & Technology, Changsha, Hunan, 410004, China
| | - Meng Wang
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650000, China
| | - Jiqing Peng
- College of Life Science and Technology, Central South University of Forestry & Technology, Changsha, Hunan, 410004, China.
| | - Shoujin Cao
- College of Forestry, Central South University of Forestry & Technology, Changsha, Hunan, 410004, China.
| |
Collapse
|
7
|
Sun J, Wang Y, Zhang X, Cheng Z, Song Y, Li H, Wang N, Liu S, Cao Z, Li H, Zheng W, Duan C, Cao Y. Transcriptomic and Metabolomic Analyses Reveal the Role of Phenylalanine Metabolism in the Maize Response to Stalk Rot Caused by Fusarium proliferatum. Int J Mol Sci 2024; 25:1492. [PMID: 38338769 PMCID: PMC10855574 DOI: 10.3390/ijms25031492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Stalk rot is a prevalent disease of maize (Zea mays L.) that severely affects maize yield and quality worldwide. The ascomycete fungus Fusarium spp. is the most common pathogen of maize stalk rot. At present, the molecular mechanism of Fusarium proliferation during the maize stalk infection that causes maize stalk rot has rarely been reported. In this study, we investigated the response of maize to F. proliferatum infestation by analyzing the phenotypic, transcriptomic, and metabolomic data of inbred lines ZC17 (resistant) and CH72 (susceptible) with different levels of resistance to stalk rot. Physiological and phenotypic results showed that the infection CH72 was significantly more severe than ZC17 after inoculation. Transcriptome analysis showed that after inoculation, the number of differentially expressed genes (DEGs) was higher in CH72 than in ZC17. Nearly half of these DEGs showed the same expression trend in the two inbred lines. Functional annotation and enrichment analyses indicated that the major pathways enriched for DEGs and DEMs included the biosynthesis of plant secondary metabolites, phenylalanine metabolism, biosynthesis of plant hormones, and plant-pathogen interactions. The comprehensive analysis of transcriptome and metabolome data indicated that phenylalanine metabolism and the phenylalanine, tyrosine, and tryptophan biosynthesis pathways played a crucial role in maize resistance to F. proliferatum infection. In addition, a transcription factor (TF) analysis of the DEGs showed that several TF families, including MYB, bHLH, NAC, and WRKY, were significantly activated after inoculation, suggesting that these TFs play important roles in the molecular regulatory network of maize disease resistance. The findings of this study provide valuable insights into the molecular basis of the response of maize to Fusarium proliferatum infection and highlight the importance of combining multiple approaches, such as phenotyping, transcriptomics, and metabolomics, to gain a comprehensive understanding of plant-pathogen interactions.
Collapse
Affiliation(s)
- Jianjun Sun
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yanzhao Wang
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xingrui Zhang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zeqiang Cheng
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yinghui Song
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Huimin Li
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Na Wang
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Shen Liu
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Zijia Cao
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Hongxia Li
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Wanying Zheng
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Canxing Duan
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanyong Cao
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| |
Collapse
|
8
|
Soto-Cardinault C, Childs KL, Góngora-Castillo E. Network Analysis of Publicly Available RNA-seq Provides Insights into the Molecular Mechanisms of Plant Defense against Multiple Fungal Pathogens in Arabidopsis thaliana. Genes (Basel) 2023; 14:2223. [PMID: 38137044 PMCID: PMC10743233 DOI: 10.3390/genes14122223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Fungal pathogens can have devastating effects on global crop production, leading to annual economic losses ranging from 10% to 23%. In light of climate change-related challenges, researchers anticipate an increase in fungal infections as a result of shifting environmental conditions. However, plants have developed intricate molecular mechanisms for effective defense against fungal attacks. Understanding these mechanisms is essential to the development of new strategies for protecting crops from multiple fungi threats. Public omics databases provide valuable resources for research on plant-pathogen interactions; however, integrating data from different studies can be challenging due to experimental variation. In this study, we aimed to identify the core genes that defend against the pathogenic fungi Colletotrichum higginsianum and Botrytis cinerea in Arabidopsis thaliana. Using a custom framework to control batch effects and construct Gene Co-expression Networks in publicly available RNA-seq dataset from infected A. thaliana plants, we successfully identified a gene module that was responsive to both pathogens. We also performed gene annotation to reveal the roles of previously unknown protein-coding genes in plant defenses against fungal infections. This research demonstrates the potential of publicly available RNA-seq data for identifying the core genes involved in defending against multiple fungal pathogens.
Collapse
Affiliation(s)
- Cynthia Soto-Cardinault
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida 97205, Mexico;
| | - Kevin L. Childs
- Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA;
| | - Elsa Góngora-Castillo
- CONAHCYT-Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida 97205, Mexico
| |
Collapse
|
9
|
Xiong H, Chen Y, Pan YB, Wang J, Lu W, Shi A. A genome-wide association study and genomic prediction for Phakopsora pachyrhizi resistance in soybean. FRONTIERS IN PLANT SCIENCE 2023; 14:1179357. [PMID: 37313252 PMCID: PMC10258334 DOI: 10.3389/fpls.2023.1179357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/25/2023] [Indexed: 06/15/2023]
Abstract
Soybean brown rust (SBR), caused by Phakopsora pachyrhizi, is a devastating fungal disease that threatens global soybean production. This study conducted a genome-wide association study (GWAS) with seven models on a panel of 3,082 soybean accessions to identify the markers associated with SBR resistance by 30,314 high quality single nucleotide polymorphism (SNPs). Then five genomic selection (GS) models, including Ridge regression best linear unbiased predictor (rrBLUP), Genomic best linear unbiased predictor (gBLUP), Bayesian least absolute shrinkage and selection operator (Bayesian LASSO), Random Forest (RF), and Support vector machines (SVM), were used to predict breeding values of SBR resistance using whole genome SNP sets and GWAS-based marker sets. Four SNPs, namely Gm18_57,223,391 (LOD = 2.69), Gm16_29,491,946 (LOD = 3.86), Gm06_45,035,185 (LOD = 4.74), and Gm18_51,994,200 (LOD = 3.60), were located near the reported P. pachyrhizi R genes, Rpp1, Rpp2, Rpp3, and Rpp4, respectively. Other significant SNPs, including Gm02_7,235,181 (LOD = 7.91), Gm02_7234594 (LOD = 7.61), Gm03_38,913,029 (LOD = 6.85), Gm04_46,003,059 (LOD = 6.03), Gm09_1,951,644 (LOD = 10.07), Gm10_39,142,024 (LOD = 7.12), Gm12_28,136,735 (LOD = 7.03), Gm13_16,350,701(LOD = 5.63), Gm14_6,185,611 (LOD = 5.51), and Gm19_44,734,953 (LOD = 6.02), were associated with abundant disease resistance genes, such as Glyma.02G084100, Glyma.03G175300, Glyma.04g189500, Glyma.09G023800, Glyma.12G160400, Glyma.13G064500, Glyma.14g073300, and Glyma.19G190200. The annotations of these genes included but not limited to: LRR class gene, cytochrome 450, cell wall structure, RCC1, NAC, ABC transporter, F-box domain, etc. The GWAS based markers showed more accuracies in genomic prediction than the whole genome SNPs, and Bayesian LASSO model was the ideal model in SBR resistance prediction with 44.5% ~ 60.4% accuracies. This study aids breeders in predicting selection accuracy of complex traits such as disease resistance and can shorten the soybean breeding cycle by the identified markers.
Collapse
Affiliation(s)
- Haizheng Xiong
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Yilin Chen
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Yong-Bao Pan
- Sugarcane Research Unit, Untied State Department of Agriculture – Agriculture Research Service (USDA-ARS), Houma, LA, United States
| | - Jinshe Wang
- Henan Academy of Crops Molecular Breeding, National Centre for Plant Breeding, Zhengzhou, China
| | - Weiguo Lu
- Henan Academy of Crops Molecular Breeding, National Centre for Plant Breeding, Zhengzhou, China
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
10
|
Zhang L, Li S, Shan C, Liu Y, Zhang Y, Ye L, Lin Y, Xiong G, Ma J, Adnan M, Shi X, Sun X, Kuang W, Cui R. Integrated transcriptome and metabolome analysis revealed that flavonoids enhanced the resistance of Oryza sativa against Meloidogyne graminicola. FRONTIERS IN PLANT SCIENCE 2023; 14:1137299. [PMID: 37063174 PMCID: PMC10102519 DOI: 10.3389/fpls.2023.1137299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Rice is a crucial food crop worldwide, but its yield and quality are significantly affected by Meloidogyne graminicola is a root knot nematode. No rice variety is entirely immune to this nematode disease in agricultural production. Thus, the fundamental strategy to combat this disease is to utilize rice resistance genes. In this study, we conducted transcriptome and metabolome analyses on two rice varieties, ZH11 and IR64. The results indicated that ZH11 showed stronger resistance than IR64. Transcriptome analysis revealed that the change in gene expression in ZH11 was more substantial than that in IR64 after M. graminicola infection. Moreover, GO and KEGG enrichment analysis of the upregulated genes in ZH11 showed that they were primarily associated with rice cell wall construction, carbohydrate metabolism, and secondary metabolism relating to disease resistance, which effectively enhanced the resistance of ZH11. However, in rice IR64, the number of genes enriched in disease resistance pathways was significantly lower than that in ZH11, which further explained susceptibility to IR64. Metabolome analysis revealed that the metabolites detected in ZH11 were enriched in flavonoid metabolism and the pentose phosphate pathway, compared to IR64, after M. graminicola infection. The comprehensive analysis of transcriptome and metabolome data indicated that flavonoid metabolism plays a crucial role in rice resistance to M. graminicola infection. The content of kaempferin, apigenin, and quercetin in ZH11 significantly increased after M. graminicola infection, and the expression of genes involved in the synthetic pathway of flavonoids also significantly increased in ZH11. Our study provides theoretical guidance for the precise analysis of rice resistance and disease resistance breeding in further research.
Collapse
Affiliation(s)
- Lianhu Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Songyan Li
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Chonglei Shan
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Yankun Liu
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Yifan Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Lifang Ye
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Yachun Lin
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Guihong Xiong
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Jian Ma
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Muhammad Adnan
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xugen Shi
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Xiaotang Sun
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
| | - Weigang Kuang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Ruqiang Cui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
11
|
Alkaloid production and response to natural adverse conditions in Peganum harmala: in silico transcriptome analyses. BIOTECHNOLOGIA 2022; 103:355-384. [PMID: 36685700 PMCID: PMC9837557 DOI: 10.5114/bta.2022.120706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 07/25/2022] [Accepted: 09/16/2022] [Indexed: 01/06/2023] Open
Abstract
Peganum harmala is a valuable wild plant that grows and survives under adverse conditions and produces pharmaceutical alkaloid metabolites. Using different assemblers to develop a transcriptome improves the quality of assembled transcriptome. In this study, a concrete and accurate method for detecting stress-responsive transcripts by comparing stress-related gene ontology (GO) terms and public domains was designed. An integrated transcriptome for P. harmala including 42 656 coding sequences was created by merging de novo assembled transcriptomes. Around 35 000 transcripts were annotated with more than 90% resemblance to three closely related species of Citrus, which confirmed the robustness of the assembled transcriptome; 4853 stress-responsive transcripts were identified. CYP82 involved in alkaloid biosynthesis showed a higher number of transcripts in P. harmala than in other plants, indicating its diverse alkaloid biosynthesis attributes. Transcription factors (TFs) and regulatory elements with 3887 transcripts comprised 9% of the transcriptome. Among the TFs of the integrated transcriptome, cystein2/histidine2 (C2H2) and WD40 repeat families were the most abundant. The Kyoto Encyclopedia of Genes and Genomes (KEGG) MAPK (mitogen-activated protein kinase) signaling map and the plant hormone signal transduction map showed the highest assigned genes to these pathways, suggesting their potential stress resistance. The P. harmala whole-transcriptome survey provides important resources and paves the way for functional and comparative genomic studies on this plant to discover stress-tolerance-related markers and response mechanisms in stress physiology, phytochemistry, ecology, biodiversity, and evolution. P. harmala can be a potential model for studying adverse environmental cues and metabolite biosynthesis and a major source for the production of various alkaloids.
Collapse
|
12
|
Peniche-Pavía HA, Guzmán TJ, Magaña-Cerino JM, Gurrola-Díaz CM, Tiessen A. Maize Flavonoid Biosynthesis, Regulation, and Human Health Relevance: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165166. [PMID: 36014406 PMCID: PMC9413827 DOI: 10.3390/molecules27165166] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
Maize is one of the most important crops for human and animal consumption and contains a chemical arsenal essential for survival: flavonoids. Moreover, flavonoids are well known for their beneficial effects on human health. In this review, we decided to organize the information about maize flavonoids into three sections. In the first section, we include updated information about the enzymatic pathway of maize flavonoids. We describe a total of twenty-one genes for the flavonoid pathway of maize. The first three genes participate in the general phenylpropanoid pathway. Four genes are common biosynthetic early genes for flavonoids, and fourteen are specific genes for the flavonoid subgroups, the anthocyanins, and flavone C-glycosides. The second section explains the tissue accumulation and regulation of flavonoids by environmental factors affecting the expression of the MYB-bHLH-WD40 (MBW) transcriptional complex. The study of transcription factors of the MBW complex is fundamental for understanding how the flavonoid profiles generate a palette of colors in the plant tissues. Finally, we also include an update of the biological activities of C3G, the major maize anthocyanin, including anticancer, antidiabetic, and antioxidant effects, among others. This review intends to disclose and integrate the existing knowledge regarding maize flavonoid pigmentation and its relevance in the human health sector.
Collapse
Affiliation(s)
- Héctor A. Peniche-Pavía
- Departamento de Bioquímica y Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Irapuato, Libramiento Norte Km. 9.6, Irapuato 36824, Guanajuato, Mexico
| | - Tereso J. Guzmán
- Department of Pharmacology, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Jesús M. Magaña-Cerino
- División Académica de Ciencias de la Salud, Centro de Investigación y Posgrado, Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez Magaña 2838-A, Col. Tamulté de las Barrancas, Villahermosa 86150, Tabasco, Mexico
| | - Carmen M. Gurrola-Díaz
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Enfermedades Crónico Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Universidad de Guadalajara, C. Sierra Mojada 950. Col. Independencia, Guadalajara 44340, Jalisco, Mexico
- Correspondence: ; Tel.: +52-33-10585200 (ext. 33930)
| | - Axel Tiessen
- Departamento de Bioquímica y Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Irapuato, Libramiento Norte Km. 9.6, Irapuato 36824, Guanajuato, Mexico
| |
Collapse
|
13
|
Arabidopsis RBV is a conserved WD40 repeat protein that promotes microRNA biogenesis and ARGONAUTE1 loading. Nat Commun 2022; 13:1217. [PMID: 35260568 PMCID: PMC8904849 DOI: 10.1038/s41467-022-28872-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in gene expression regulation through RNA cleavage or translation repression. Here, we report the identification of an evolutionarily conserved WD40 domain protein as a player in miRNA biogenesis in Arabidopsis thaliana. A mutation in the REDUCTION IN BLEACHED VEIN AREA (RBV) gene encoding a WD40 domain protein led to the suppression of leaf bleaching caused by an artificial miRNA; the mutation also led to a global reduction in the accumulation of endogenous miRNAs. The nuclear protein RBV promotes the transcription of MIR genes into pri-miRNAs by enhancing the occupancy of RNA polymerase II (Pol II) at MIR gene promoters. RBV also promotes the loading of miRNAs into AGO1. In addition, RNA-seq revealed a global splicing defect in the mutant. Thus, this evolutionarily conserved, nuclear WD40 domain protein acts in miRNA biogenesis and RNA splicing. MicroRNAs regulate gene expression through RNA cleavage or translation repression. Here the authors show that RBV, an evolutionarily conserved WD40 domain protein, acts to promote MIR transcription, pri-miRNA processing and miRNA loading into AGO1.
Collapse
|
14
|
Allen JR, Wilkinson EG, Strader LC. Creativity comes from interactions: modules of protein interactions in plants. FEBS J 2022; 289:1492-1514. [PMID: 33774929 PMCID: PMC8476656 DOI: 10.1111/febs.15847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/06/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023]
Abstract
Protein interactions are the foundation of cell biology. For robust signal transduction to occur, proteins interact selectively and modulate their behavior to direct specific biological outcomes. Frequently, modular protein interaction domains are central to these processes. Some of these domains bind proteins bearing post-translational modifications, such as phosphorylation, whereas other domains recognize and bind to specific amino acid motifs. Other modules act as diverse protein interaction scaffolds or can be multifunctional, forming head-to-head homodimers and binding specific peptide sequences or membrane phospholipids. Additionally, the so-called head-to-tail oligomerization domains (SAM, DIX, and PB1) can form extended polymers to regulate diverse aspects of biology. Although the mechanism and structures of these domains are diverse, they are united by their modularity. Together, these domains are versatile and facilitate the evolution of complex protein interaction networks. In this review, we will highlight the role of select modular protein interaction domains in various aspects of plant biology.
Collapse
Affiliation(s)
- Jeffrey R. Allen
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| | - Edward G. Wilkinson
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| | - Lucia C. Strader
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
15
|
Chakraborty A, Mahajan S, Jaiswal SK, Sharma VK. Genome sequencing of turmeric provides evolutionary insights into its medicinal properties. Commun Biol 2021; 4:1193. [PMID: 34654884 PMCID: PMC8521574 DOI: 10.1038/s42003-021-02720-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
Curcuma longa, or turmeric, is traditionally known for its immense medicinal properties and has diverse therapeutic applications. However, the absence of a reference genome sequence is a limiting factor in understanding the genomic basis of the origin of its medicinal properties. In this study, we present the draft genome sequence of C. longa, belonging to Zingiberaceae plant family, constructed using 10x Genomics linked reads and Oxford Nanopore long reads. For comprehensive gene set prediction and for insights into its gene expression, transcriptome sequencing of leaf tissue was also performed. The draft genome assembly had a size of 1.02 Gbp with ~70% repetitive sequences, and contained 50,401 coding gene sequences. The phylogenetic position of C. longa was resolved through a comprehensive genome-wide analysis including 16 other plant species. Using 5,388 orthogroups, the comparative evolutionary analysis performed across 17 species including C. longa revealed evolution in genes associated with secondary metabolism, plant phytohormones signaling, and various biotic and abiotic stress tolerance responses. These mechanisms are crucial for perennial and rhizomatous plants such as C. longa for defense and environmental stress tolerance via production of secondary metabolites, which are associated with the wide range of medicinal properties in C. longa.
Collapse
Affiliation(s)
- Abhisek Chakraborty
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Shruti Mahajan
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Shubham K Jaiswal
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Vineet K Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India.
| |
Collapse
|
16
|
Wang Y, Tian H, Wang W, Wang X, Zheng K, Hussain S, Lin R, Wang T, Wang S. The Carboxyl-Terminus of TRANSPARENT TESTA GLABRA1 Is Critical for Its Functions in Arabidopsis. Int J Mol Sci 2021; 22:ijms221810039. [PMID: 34576199 PMCID: PMC8467004 DOI: 10.3390/ijms221810039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022] Open
Abstract
The Arabidopsis WD40 repeat protein TRANSPARENT TESTA GLABRA1 (TTG1) regulates cell fate determination, including trichome initiation and root hair formation, as well as secondary metabolism such as flavonoid biosynthesis and seed coat mucilage production. TTG1 regulates different processes via regulating the expression of its downstream target genes by forming MYB-bHLH-WD40 (MBW) activator complexes with different R2R3 MYB and bHLH transcription factors. Here, we report the identification of the carboxyl (C)-terminus as a critical domain for TTG1′s functions in Arabidopsis. We found that the ttg1Δ15aa mutant shows pleiotropic phenotypes identical to a TTG1 loss-of-function mutant. Gene sequencing indicates that a single nucleotide substitution in TTG1 led to a premature stop at the W327 residue, leading to the production of a truncated TTG1 protein with a deletion of the last 15 C-terminal amino acids. The expression of TTG1 under the control of its native promoter fully restored the ttg1Δ15aa mutant phenotypes. Consistent with these observations, the expression levels of TTG1 downstream genes such as GLABRA2 (GL2) and CAPRICE (CPC) were reduced in the ttg1Δ15aa mutant. Assays in Arabidopsis protoplast show that TTG1Δ15aa failed to interact with the bHLH transcription factor GL3, and the deletion of the last 3 C-terminal amino acids or the 339L amino acid alone fully abolished the interaction of TTG1 with GL3. Furthermore, the expression of TTG1Δ3aa under the control of TTG1 native promoter failed to restore the ttg1Δ15aa mutant phenotypes. Taken together, our results suggest that the C-terminal domain of TTG1 is required for its proper function in Arabidopsis.
Collapse
Affiliation(s)
- Yating Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (Y.W.); (W.W.); (X.W.)
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (H.T.); (K.Z.); (S.H.); (R.L.); (T.W.)
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (H.T.); (K.Z.); (S.H.); (R.L.); (T.W.)
| | - Wei Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (Y.W.); (W.W.); (X.W.)
| | - Xutong Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (Y.W.); (W.W.); (X.W.)
| | - Kaijie Zheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (H.T.); (K.Z.); (S.H.); (R.L.); (T.W.)
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Saddam Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (H.T.); (K.Z.); (S.H.); (R.L.); (T.W.)
| | - Rao Lin
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (H.T.); (K.Z.); (S.H.); (R.L.); (T.W.)
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (H.T.); (K.Z.); (S.H.); (R.L.); (T.W.)
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (Y.W.); (W.W.); (X.W.)
- Correspondence:
| |
Collapse
|
17
|
Tan L, Salih H, Htet NNW, Azeem F, Zhan R. Genomic analysis of WD40 protein family in the mango reveals a TTG1 protein enhances root growth and abiotic tolerance in Arabidopsis. Sci Rep 2021; 11:2266. [PMID: 33500544 PMCID: PMC7838414 DOI: 10.1038/s41598-021-81969-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023] Open
Abstract
WD40 domain-containing proteins constitute one of the most abundant protein families in all higher plants and play vital roles in the regulation of plant growth and developmental processes. To date, WD40 protein members have been identified in several plant species, but no report is available on the WD40 protein family in mango (Mangifera indica L.). In this study, a total of 315 WD40 protein members were identified in mango and further divided into 11 subgroups according to the phylogenetic tree. Here, we reported mango TRANSPARENT TESTA GLABRA 1 (MiTTG1) protein as a novel factor that functions in the regulation of Arabidopsis root growth and development. Bimolecular fluorescence complementation (BiFC) assay in tobacco leaves revealed that MiTTG1 protein physically interacts with MiMYB0, MiTT8 and MibHLH1, implying the formation of a new ternary regulatory complex (MYB-bHLH-WD40) in mango. Furthermore, the MiTTG1 transgenic lines were more adapted to abiotic stresses (mannitol, salt and drought stress) in terms of promoted root hairs and root lengths. Together, our findings indicated that MiTTG1 functions as a novel factor to modulate protein-protein interactions and enhance the plants abilities to adjust different abiotic stress responses.
Collapse
Affiliation(s)
- Lin Tan
- grid.453499.60000 0000 9835 1415Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 Hainan China
| | - Haron Salih
- grid.453499.60000 0000 9835 1415Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 Hainan China ,grid.442436.30000 0004 0447 7877Crop Sciences, Faculty of Agriculture, Zalingei University, Central Darfur, Sudan
| | - Nwe Ni Win Htet
- grid.453499.60000 0000 9835 1415Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 Hainan China ,Microbiology Laboratory, Biotechnology Research Department, Kyaukse, 05151 Myanmar
| | - Farrukh Azeem
- grid.453499.60000 0000 9835 1415Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 Hainan China
| | - Rulin Zhan
- grid.453499.60000 0000 9835 1415Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 Hainan China
| |
Collapse
|
18
|
Liu C, Yu Q, Li Z, Jin X, Xing W. Metabolic and transcriptomic analysis related to flavonoid biosynthesis during the color formation of Michelia crassipes tepal. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:938-951. [PMID: 32961471 DOI: 10.1016/j.plaphy.2020.06.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 05/02/2023]
Abstract
Michelia crassipes is the only plant with purple flowers amongst Michelia species, and its tepals exhibit an obvious color change from green to purple. In this study, a combination of metabolic and transcriptomic analyses was conducted at three stages of tepals in Michelia crassipes: green tepal, purple spot-containing tepal, and totally purple tepal. Several classes of flavonoid compounds were detected and cyanidin 3-rutinoside and delphinidin 3-glucoside were the major anthocyanins underlying the purple color formation, along with co-pigmentation of flavone compounds represented by luteolin derivatives and flavonol compounds represented by kaempferol and quercetin derivatives. Transcriptome analysis revealed up-regulation of genes encoding enzymes involved in the conversion of phenylpropanoid for flavonoid biosynthesis in Stage 1 vs. Stage 2, whereas up-regulation of most flavonoid biosynthesis genes was observed in Stage 1 vs. Stage 3. MYB, bHLH, and WD40 isoforms, as well as other classes of transcriptional factors, also exhibited differential expression. In addition, differentially expressed genes putatively related to the transport of flavonoids were also identified. The results of the current study provide insight into the regulatory mechanism underlying the color transition from green to purple in Michelia crassipes tepals and describe a complicated network involving PAL, transporter genes, and transcription factors, specifically responsible for the emergence of purple color in Stage 1 vs. Stage 2.
Collapse
Affiliation(s)
- Caixian Liu
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Qiuxiu Yu
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Zeqing Li
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Xiaoling Jin
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Wen Xing
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| |
Collapse
|
19
|
Imamura T, Yasui Y, Koga H, Takagi H, Abe A, Nishizawa K, Mizuno N, Ohki S, Mizukoshi H, Mori M. A novel WD40-repeat protein involved in formation of epidermal bladder cells in the halophyte quinoa. Commun Biol 2020; 3:513. [PMID: 32943738 PMCID: PMC7498606 DOI: 10.1038/s42003-020-01249-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 08/25/2020] [Indexed: 12/19/2022] Open
Abstract
Halophytes are plants that grow in high-salt environments and form characteristic epidermal bladder cells (EBCs) that are important for saline tolerance. To date, however, little has been revealed about the formation of these structures. To determine the genetic basis for their formation, we applied ethylmethanesulfonate mutagenesis and obtained two mutants with reduced levels of EBCs (rebc) and abnormal chloroplasts. In silico subtraction experiments revealed that the rebc phenotype was caused by mutation of REBC, which encodes a WD40 protein that localizes to the nucleus and chloroplasts. Phylogenetic and transformant analyses revealed that the REBC protein differs from TTG1, a WD40 protein involved in trichome formation. Furthermore, rebc mutants displayed damage to their shoot apices under abiotic stress, suggesting that EBCs may protect the shoot apex from such stress. These findings will help clarify the mechanisms underlying EBC formation and function.
Collapse
Affiliation(s)
- Tomohiro Imamura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 308-1, Nonoichi, Ishikawa, 921-8836, Japan.
| | - Yasuo Yasui
- Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Hironori Koga
- Department of Bioproduction Science, Ishikawa Prefectural University, 308-1, Nonoichi, Ishikawa, 921-8836, Japan
| | - Hiroki Takagi
- Department of Bioproduction Science, Ishikawa Prefectural University, 308-1, Nonoichi, Ishikawa, 921-8836, Japan
| | - Akira Abe
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan
| | - Kanako Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 308-1, Nonoichi, Ishikawa, 921-8836, Japan
| | - Nobuyuki Mizuno
- Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Shinya Ohki
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi-Shi, Ishikawa, 923-1292, Japan
| | - Hiroharu Mizukoshi
- Technology Development Group, Actree Co., 375 Misumimachi, Hakusan, Ishikawa, 924-0053, Japan
| | - Masashi Mori
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 308-1, Nonoichi, Ishikawa, 921-8836, Japan.
| |
Collapse
|
20
|
TRANSPARENT TESTA GLABRA1, a Key Regulator in Plants with Multiple Roles and Multiple Function Mechanisms. Int J Mol Sci 2020; 21:ijms21144881. [PMID: 32664363 PMCID: PMC7402295 DOI: 10.3390/ijms21144881] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 01/01/2023] Open
Abstract
TRANSPARENT TESTA GLABRA1 (TTG1) is a WD40 repeat protein. The phenotypes caused by loss-of-function of TTG1 were observed about half a century ago, but the TTG1 gene was identified only about twenty years ago. Since then, TTG1 has been found to be a plant-specific regulator with multiple roles and multiple functional mechanisms. TTG1 is involved in the regulation of cell fate determination, secondary metabolisms, accumulation of seed storage reserves, plant responses to biotic and abiotic stresses, and flowering time in plants. In some processes, TTG1 may directly or indirectly regulate the expression of downstream target genes via forming transcription activator complexes with R2R3 MYB and bHLH transcription factors. Whereas in other processes, TTG1 may function alone or interact with other proteins to regulate downstream target genes. On the other hand, the studies on the regulation of TTG1 are very limited. So far, only the B3-domain family transcription factor FUSCA3 (FUS3) has been found to regulate the expression of TTG1, phosphorylation of TTG1 affects its interaction with bHLH transcription factor TT2, and TTG1 proteins can be targeted for degradation by the 26S proteasome. Here, we provide an overview of TTG1, including the identification of TTG1, the functions of TTG1, the possible function mechanisms of TTG1, and the regulation of TTG1. We also proposed potential research directions that may shed new light on the regulation and functional mechanisms of TTG1 in plants.
Collapse
|
21
|
Castro Aviles A, Alan Harrison S, Joseph Arceneaux K, Brown-Guidera G, Esten Mason R, Baisakh N. Identification of QTLs for Resistance to Fusarium Head Blight Using a Doubled Haploid Population Derived from Southeastern United States Soft Red Winter Wheat Varieties AGS 2060 and AGS 2035. Genes (Basel) 2020; 11:genes11060699. [PMID: 32630440 PMCID: PMC7349885 DOI: 10.3390/genes11060699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Fusarium head blight (FHB), caused primarily by the fungus Fusarium graminearum, is one of the most damaging diseases of wheat, causing significant loss of yield and quality worldwide. Warm and wet conditions during flowering, a lack of resistant wheat varieties, and high inoculum pressure from corn stubble contribute to frequent FHB epidemics in the southern United States. The soft red winter wheat variety AGS 2060 is moderately susceptible (as opposed to susceptible) to FHB and regularly found in pedigrees of resistant breeding lines. AGS 2060 does not carry any known resistance genes or quantitative trait loci (QTL). A QTL mapping study was conducted to determine the location and genetic effect of its resistance using a doubled haploid mapping population produced from a cross between wheat varieties AGS 2060 and AGS 2035 (FHB susceptible). The population was genotyped using the Illumina iSelect single nucleotide polymorphism (SNP) array for wheat and phenotyped in Baton Rouge and Winnsboro, Louisiana and Newport, Arkansas in 2018 and 2019. The effect of genotype was significant for Fusarium damaged kernels (FDK) and deoxynivalenol (DON) content across all locations and years, indicating genetic variation in the population. The study detected 13 QTLs (one each on chromosome 1A, 1B, 1D, 2A, 2B, 6A, 6B, 7A, and 7B, and two each on 5A and 5B) responsible for the reduction of FDK and/or DON. Of these, nine QTLs for FHB resistance were identified in Winnsboro, Louisiana, in 2019. QTLs on chromosomes 2A and 7A could be valuable sources of resistance to both DON and FDK over several environments and were likely the best candidates for use in marker-assisted selection. Consistently expressed QTLs on chromosomes 5A, 6B, and 7A were potentially newly identified sources of resistance to FHB in soft red winter wheat.
Collapse
Affiliation(s)
- Alejandro Castro Aviles
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (A.C.A.); (S.A.H.); (K.J.A.)
| | - Stephen Alan Harrison
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (A.C.A.); (S.A.H.); (K.J.A.)
| | - Kelly Joseph Arceneaux
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (A.C.A.); (S.A.H.); (K.J.A.)
| | | | - Richard Esten Mason
- Crop, Soil and Environmental Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Niranjan Baisakh
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (A.C.A.); (S.A.H.); (K.J.A.)
- Correspondence:
| |
Collapse
|
22
|
Wang C, Guo H, He X, Zhang S, Wang J, Wang L, Guo D, Guo X. Scaffold protein GhMORG1 enhances the resistance of cotton to Fusarium oxysporum by facilitating the MKK6-MPK4 cascade. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1421-1433. [PMID: 31794094 PMCID: PMC7206998 DOI: 10.1111/pbi.13307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 05/24/2023]
Abstract
In eukaryotes, MAPK scaffold proteins are crucial for regulating the function of MAPK cascades. However, only a few MAPK scaffold proteins have been reported in plants, and the molecular mechanism through which scaffold proteins regulate the function of the MAPK cascade remains poorly understood. Here, we identified GhMORG1, a GhMKK6-GhMPK4 cascade scaffold protein that positively regulates the resistance of cotton to Fusarium oxysporum. GhMORG1 interacted with GhMKK6 and GhMPK4, and the overexpression of GhMORG1 in cotton protoplasts dramatically increased the activity of the GhMKK6-GhMPK4 cascade. Quantitative phosphoproteomics was used to clarify the mechanism of GhMORG1 in regulating disease resistance, and thirty-two proteins were considered as the putative substrates of the GhMORG1-dependent GhMKK6-GhMPK4 cascade. These putative substrates were involved in multiple disease resistance processes, such as cellular amino acid metabolic processes, calcium ion binding and RNA binding. The kinase assays verified that most of the putative substrates were phosphorylated by the GhMKK6-GhMPK4 cascade. For functional analysis, nine putative substrates were silenced in cotton, respectively. The resistance of cotton to F. oxysporum was decreased in the substrate-silenced cottons. These results suggest that GhMORG1 regulates several different disease resistance processes by facilitating the phosphorylation of GhMKK6-GhMPK4 cascade substrates. Taken together, these findings reveal a new plant MAPK scaffold protein and provide insights into the mechanism of plant resistance to pathogens.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianChina
| | - Hongbin Guo
- Statistics DepartmentUniversity of AucklandAucklandNew Zealand
| | - Xiaowen He
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianChina
| | - Shuxin Zhang
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianChina
| | - Jiayu Wang
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianChina
| | - Lijun Wang
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianChina
| | - Dezheng Guo
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianChina
| | - Xingqi Guo
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianChina
| |
Collapse
|
23
|
Li SF, Allen PJ, Napoli RS, Browne RG, Pham H, Parish RW. MYB-bHLH-TTG1 Regulates Arabidopsis Seed Coat Biosynthesis Pathways Directly and Indirectly via Multiple Tiers of Transcription Factors. PLANT & CELL PHYSIOLOGY 2020; 61:1005-1018. [PMID: 32154880 DOI: 10.1093/pcp/pcaa027] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
MYB-bHLH-WDR (MBW) transcription factor (TF) complexes regulate Arabidopsis seed coat development including mucilage and tannin biosynthesis. The R2R3 MYBs MYB5, MYB23 and TRANSPARENT TESTA2 (TT2) participate in the MBW complexes with the WD-repeat protein TRANSPARENT TESTA GLABRA1 (TTG1). These complexes regulate GLABRA2 (GL2) and TTG2 expression in developing seeds. Microarray transcriptome analysis of ttg1-1- and wild-type (Ler) developing seeds identified 246 TTG1-regulated genes, which include all known metabolic genes of the tannin biosynthetic pathway. The first detailed TTG1-dependent metabolic pathways could be proposed for the biosynthesis of mucilage, jasmonic acid (JA) and cuticle including wax ester in developing seeds. We also assigned many known and previously uncharacterized genes to the activation/inactivation of hormones, plant immunity and nutrient transport. The promoters of six cuticle pathway genes were active in developing seeds. Expression of 11 genes was determined in the developing seeds of the combinatorial mutants of MYB5, MYB23 and TT2, and in the combinatorial mutants of GL2, HOMEODOMAIN GLABROUS2 (HDG2) and TTG2. These six TFs positively co-regulated the expression of four repressor genes while three of the six TFs repressed the wax biosynthesis genes examined, suggesting that the three TFs upregulate the expression of these repressor genes, which, in turn, repress the wax biosynthesis genes. Chromatin immunoprecipitation analysis identified 21 genes directly regulated by MYB5 including GL2, HDG2, TTG2, four repressor genes and various metabolic genes. We propose a multi-tiered regulatory mechanism by which MBWs regulate tannin, mucilage, JA and cuticle biosynthetic pathways.
Collapse
Affiliation(s)
- Song Feng Li
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBioscience, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
| | - Patrick J Allen
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBioscience, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
| | - Ross S Napoli
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBioscience, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
| | - Richard G Browne
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBioscience, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
| | - Hanh Pham
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBioscience, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
| | - Roger W Parish
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBioscience, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
| |
Collapse
|
24
|
Long Y, Schiefelbein J. Novel TTG1 Mutants Modify Root-Hair Pattern Formation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:383. [PMID: 32318087 PMCID: PMC7154166 DOI: 10.3389/fpls.2020.00383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
The patterning of root-hair and non-hair epidermal cells in the Arabidopsis root is governed by a network of transcriptional regulators. The central MYB-bHLH-WD40 (MBW) transcriptional complex includes the WD40-repeat protein TRANSPARENT TESTA GLABRA1 (TTG1). To clarify the role of TTG1, we describe the identification and analysis of two new ttg1 mutants. Each of these mutants contains a single nucleotide change in the TTG1 gene, which causes a single amino-acid substitution in the predicted TTG1 protein and alters root-hair pattern formation. Surprisingly, these new ttg1 mutants exhibit decreased root-hair formation, particularly in the caprice (cpc) mutant background, rather than increased root-hair formation as reported for strong ttg1 mutants. We show that the unique phenotype of these mutants is due to differential effects of the altered TTG1 proteins on target gene expression, associated with a weakened ability to interact with its GLABRA3 bHLH partner. These findings demonstrate the crucial role of TTG1 for the appropriate balance of target gene activation to achieve the proper pattern of epidermal cell types during Arabidopsis root development.
Collapse
Affiliation(s)
- Yun Long
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
25
|
Chen ML, Becraft ED, Pachiadaki M, Brown JM, Jarett JK, Gasol JM, Ravin NV, Moser DP, Nunoura T, Herndl GJ, Woyke T, Stepanauskas R. Hiding in Plain Sight: The Globally Distributed Bacterial Candidate Phylum PAUC34f. Front Microbiol 2020; 11:376. [PMID: 32226422 PMCID: PMC7081726 DOI: 10.3389/fmicb.2020.00376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/20/2020] [Indexed: 12/31/2022] Open
Abstract
Bacterial candidate phylum PAUC34f was originally discovered in marine sponges and is widely considered to be composed of sponge symbionts. Here, we report 21 single amplified genomes (SAGs) of PAUC34f from a variety of environments, including the dark ocean, lake sediments, and a terrestrial aquifer. The diverse origins of the SAGs and the results of metagenome fragment recruitment suggest that some PAUC34f lineages represent relatively abundant, free-living cells in environments other than sponge microbiomes, including the deep ocean. Both phylogenetic and biogeographic patterns, as well as genome content analyses suggest that PAUC34f associations with hosts evolved independently multiple times, while free-living lineages of PAUC34f are distinct and relatively abundant in a wide range of environments.
Collapse
Affiliation(s)
- Michael L. Chen
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
- Department of Biology, Williams College, Williamstown, MA, United States
| | - Eric D. Becraft
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
- Department of Biology, University of North Alabama, Florence, AL, United States
| | - Maria Pachiadaki
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Julia M. Brown
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Jessica K. Jarett
- U.S. Department of Energy Joint Genome Institute, Berkeley, CA, United States
| | - Josep M. Gasol
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, WA, Australia
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Duane P. Moser
- Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, NV, United States
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Gerhard J. Herndl
- Department of Limnology and Bio-Oceanography, University of Vienna, Vienna, Austria
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, Netherlands
| | - Tanja Woyke
- U.S. Department of Energy Joint Genome Institute, Berkeley, CA, United States
| | | |
Collapse
|
26
|
Jiang N, Lee YS, Mukundi E, Gomez-Cano F, Rivero L, Grotewold E. Diversity of genetic lesions characterizes new Arabidopsis flavonoid pigment mutant alleles from T-DNA collections. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110335. [PMID: 31928687 DOI: 10.1016/j.plantsci.2019.110335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 05/22/2023]
Abstract
The visual phenotypes afforded by flavonoid pigments have provided invaluable tools for modern genetics. Many Arabidopsis transparent testa (tt) mutants lacking the characteristic proanthocyanidin (PA) seed coat pigmentation and often failing to accumulate anthocyanins in vegetative tissues have been characterized. These mutants have significantly contributed to our understanding of flavonoid biosynthesis, regulation, and transport. A comprehensive screening for tt mutants in available large T-DNA collection lines resulted in the identification of 16 independent lines lacking PAs and anthocyanins, or with seed coat pigmentation clearly distinct from wild type. Segregation analyses and the characterization of second alleles in the genes disrupted by the indexed T-DNA insertions demonstrated that all the lines contained at least one additional mutation responsible for the tt phenotypes. Using a combination of RNA-Seq and whole genome re-sequencing and confirmed through complementation, we show here that these mutations correspond to novel alleles of ttg1 (two alleles), tt3 (two alleles), tt5 (two alleles), ban (two alleles), tt1 (two alleles), and tt8 (six alleles), which harbored additional T-DNA insertions, indels, missense mutations, and large genomic deletion. Several of the identified alleles offer interesting perspectives on flavonoid biosynthesis and regulation.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Yun Sun Lee
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Eric Mukundi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Fabio Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Luz Rivero
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA.
| |
Collapse
|
27
|
Paffendorf BAM, Qassrawi R, Meys AM, Trimborn L, Schrader A. TRANSPARENT TESTA GLABRA 1 participates in flowering time regulation in Arabidopsis thaliana. PeerJ 2020; 8:e8303. [PMID: 31998554 PMCID: PMC6977477 DOI: 10.7717/peerj.8303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
Pleiotropic regulatory factors mediate concerted responses of the plant’s trait network to endogenous and exogenous cues. TRANSPARENT TESTA GLABRA 1 (TTG1) is such a factor that has been predominantly described as a regulator of early developmental traits. Although its closest homologs LIGHT-REGULATED WD1 (LWD1) and LWD2 affect photoperiodic flowering, a role of TTG1 in flowering time regulation has not been reported. Here we reveal that TTG1 is a regulator of flowering time in Arabidopsis thaliana and changes transcript levels of different targets within the flowering time regulatory pathway. TTG1 mutants flower early and TTG1 overexpression lines flower late at long-day conditions. Consistently, TTG1 can suppress the transcript levels of the floral integrators FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CO1 and can act as an activator of circadian clock components. Moreover, TTG1 might form feedback loops at the protein level. The TTG1 protein interacts with PSEUDO RESPONSE REGULATOR (PRR)s and basic HELIX-LOOP-HELIX 92 (bHLH92) in yeast. In planta, the respective pairs exhibit interesting patterns of localization including a recruitment of TTG1 by PRR5 to subnuclear foci. This mechanism proposes additional layers of regulation by TTG1 and might aid to specify the function of bHLH92. Within another branch of the pathway, TTG1 can elevate FLOWERING LOCUS C (FLC) transcript levels. FLC mediates signals from the vernalization, ambient temperature and autonomous pathway and the circadian clock is pivotal for the plant to synchronize with diurnal cycles of environmental stimuli like light and temperature. Our results suggest an unexpected positioning of TTG1 upstream of FLC and upstream of the circadian clock. In this light, this points to an adaptive value of the role of TTG1 in respect to flowering time regulation.
Collapse
Affiliation(s)
| | - Rawan Qassrawi
- Botanical Institute, Department of Biology, University of Cologne, Cologne, Germany
| | - Andrea M Meys
- Botanical Institute, Department of Biology, University of Cologne, Cologne, Germany
| | - Laura Trimborn
- Botanical Institute, Department of Biology, University of Cologne, Cologne, Germany
| | - Andrea Schrader
- Botanical Institute, Department of Biology, University of Cologne, Cologne, Germany.,RWTH Aachen University, Institute for Biology I, Aachen, Germany
| |
Collapse
|
28
|
Li W, Zhao D, Dong J, Kong X, Zhang Q, Li T, Meng Y, Shan W. AtRTP5 negatively regulates plant resistance to Phytophthora pathogens by modulating the biosynthesis of endogenous jasmonic acid and salicylic acid. MOLECULAR PLANT PATHOLOGY 2020; 21:95-108. [PMID: 31701600 PMCID: PMC6913198 DOI: 10.1111/mpp.12883] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plants have evolved powerful immune systems to recognize pathogens and avoid invasions, but the genetic basis of plant susceptibility is less well-studied, especially to oomycetes, which cause disastrous diseases in many ornamental plants and food crops. In this research, we identified a negative regulator of plant immunity to the oomycete Phytophthora parasitica, AtRTP5 (Arabidopsis thaliana Resistant to Phytophthora 5), which encodes a WD40 repeat domain-containing protein. The AtRTP5 protein, which was tagged with green fluorescent protein (GFP), is localized in the nucleus and plasma membrane. Both the A. thaliana T-DNA insertion rtp5 mutants and the Nicotiana benthamiana RTP5 (NbRTP5) silencing plants showed enhanced resistance to P. parasitica, while overexpression of AtRTP5 rendered plants more susceptible. The transcriptomic analysis showed that mutation of AtRTP5 suppressed the biosynthesis of endogenous jasmonic acid (JA) and JA-dependent responses. In contrast, salicylic acid (SA) biosynthesis and SA-dependent responses were activated in the T-DNA insertion mutant rtp5-3. These results show that AtRTP5 acts as a conserved negative regulator of plant immunity to Phytophthora pathogens by interfering with JA and SA signalling pathways.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Dan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Jingwen Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Xianglan Kong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Qiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Tingting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
29
|
Thole V, Bassard JE, Ramírez-González R, Trick M, Ghasemi Afshar B, Breitel D, Hill L, Foito A, Shepherd L, Freitag S, Nunes dos Santos C, Menezes R, Bañados P, Naesby M, Wang L, Sorokin A, Tikhonova O, Shelenga T, Stewart D, Vain P, Martin C. RNA-seq, de novo transcriptome assembly and flavonoid gene analysis in 13 wild and cultivated berry fruit species with high content of phenolics. BMC Genomics 2019; 20:995. [PMID: 31856735 PMCID: PMC6924045 DOI: 10.1186/s12864-019-6183-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Flavonoids are produced in all flowering plants in a wide range of tissues including in berry fruits. These compounds are of considerable interest for their biological activities, health benefits and potential pharmacological applications. However, transcriptomic and genomic resources for wild and cultivated berry fruit species are often limited, despite their value in underpinning the in-depth study of metabolic pathways, fruit ripening as well as in the identification of genotypes rich in bioactive compounds. RESULTS To access the genetic diversity of wild and cultivated berry fruit species that accumulate high levels of phenolic compounds in their fleshy berry(-like) fruits, we selected 13 species from Europe, South America and Asia representing eight genera, seven families and seven orders within three clades of the kingdom Plantae. RNA from either ripe fruits (ten species) or three ripening stages (two species) as well as leaf RNA (one species) were used to construct, assemble and analyse de novo transcriptomes. The transcriptome sequences are deposited in the BacHBerryGEN database (http://jicbio.nbi.ac.uk/berries) and were used, as a proof of concept, via its BLAST portal (http://jicbio.nbi.ac.uk/berries/blast.html) to identify candidate genes involved in the biosynthesis of phenylpropanoid compounds. Genes encoding regulatory proteins of the anthocyanin biosynthetic pathway (MYB and basic helix-loop-helix (bHLH) transcription factors and WD40 repeat proteins) were isolated using the transcriptomic resources of wild blackberry (Rubus genevieri) and cultivated red raspberry (Rubus idaeus cv. Prestige) and were shown to activate anthocyanin synthesis in Nicotiana benthamiana. Expression patterns of candidate flavonoid gene transcripts were also studied across three fruit developmental stages via the BacHBerryEXP gene expression browser (http://www.bachberryexp.com) in R. genevieri and R. idaeus cv. Prestige. CONCLUSIONS We report a transcriptome resource that includes data for a wide range of berry(-like) fruit species that has been developed for gene identification and functional analysis to assist in berry fruit improvement. These resources will enable investigations of metabolic processes in berries beyond the phenylpropanoid biosynthetic pathway analysed in this study. The RNA-seq data will be useful for studies of berry fruit development and to select wild plant species useful for plant breeding purposes.
Collapse
Affiliation(s)
- Vera Thole
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Jean-Etienne Bassard
- Department of Plant and Environmental Science, University of Copenhagen, 1871 Frederiksberg, Denmark
- Present address: Institute of Plant Molecular Biology, CNRS, University of Strasbourg, 12 Rue General Zimmer, 67084 Strasbourg, France
| | | | - Martin Trick
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Bijan Ghasemi Afshar
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Dario Breitel
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
- Present address: Tropic Biosciences UK LTD, Norwich Research Park, Norwich, NR4 7UG UK
| | - Lionel Hill
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | | | | | - Sabine Freitag
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA UK
| | - Cláudia Nunes dos Santos
- Instituto de Biologia Experimental e Tecnológica, Av. República, Qta. do Marquês, 2780-157 Oeiras, Portugal
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Rua Câmara Pestana 6, 1150-082 Lisbon, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Regina Menezes
- Instituto de Biologia Experimental e Tecnológica, Av. República, Qta. do Marquês, 2780-157 Oeiras, Portugal
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Rua Câmara Pestana 6, 1150-082 Lisbon, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Pilar Bañados
- Facultad De Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna Ote, 4860 Macul, Chile
| | | | - Liangsheng Wang
- Institute of Botany, The Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093 China
| | - Artem Sorokin
- Fruit Crops Genetic Resources Department, N. I. Vavilov Research Institute of Plant Industry, B. Morskaya Street 42-44, St. Petersburg, 190000 Russia
| | - Olga Tikhonova
- Fruit Crops Genetic Resources Department, N. I. Vavilov Research Institute of Plant Industry, B. Morskaya Street 42-44, St. Petersburg, 190000 Russia
| | - Tatiana Shelenga
- Fruit Crops Genetic Resources Department, N. I. Vavilov Research Institute of Plant Industry, B. Morskaya Street 42-44, St. Petersburg, 190000 Russia
| | - Derek Stewart
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA UK
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
| | - Philippe Vain
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Cathie Martin
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| |
Collapse
|
30
|
Nguyen CT, Tran GB, Nguyen NH. The MYB-bHLH-WDR interferers (MBWi) epigenetically suppress the MBW's targets. Biol Cell 2019; 111:284-291. [PMID: 31591728 DOI: 10.1111/boc.201900069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
Abstract
Active repressors have been evidenced to function in different plant growth and development programs including hormonal signalling pathways. In Arabidopsis, the MYB-bHLH-WDR (MBW) complex is known to regulate different phenotypic traits such as anthocyanin biosynthesis, seed coat colour, trichome and root hair patterning. A number of transcription factors have been identified to play a negative role in the regulation of these traits via the interruption of MBW formation and function. Since these transcription factors work to interfere with the MBW complex, this review suggests their general name as MBW interferers (MBWi). Recent studies have shed light on the molecular mechanism of these MBWi and this review is aiming to provide a precise view of these MBWi. Moreover, from these, a new characteristic of active repressors is also updated.
Collapse
Affiliation(s)
- Cuong Thach Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Gia-Buu Tran
- Department of Biotechnology, Institute of Biotechnology and Food-technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
| |
Collapse
|
31
|
Mohler V, Stadlmeier M. Dynamic QTL for adult plant resistance to powdery mildew in common wheat (Triticum aestivum L.). J Appl Genet 2019; 60:291-300. [PMID: 31506777 DOI: 10.1007/s13353-019-00518-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 01/21/2023]
Abstract
Agriculture will benefit from a rigorous characterization of genes for adult plant resistance (APR) since this gene class was recognized to provide more durable protection from plant diseases. The present study reports the identification of APR loci to powdery mildew in German winter wheat cultivars Cortez and Atlantis. Cortez was previously shown to carry all-stage resistance gene Pm3e. To avoid interference of Pm3e in APR studies, line 6037 that lacked Pm3e but showed field resistance from doubled-haploid (DH) population Atlantis/Cortez was used in two backcrosses to Atlantis for the establishment of DH population 6037/Atlantis//Atlantis. APR was assessed in the greenhouse 10, 15, and 20 days after inoculation (dai) from the 4-leaf stage onwards and combined with single-nucleotide polymorphism data in a genome-wide association study (GWAS) and a linkage map-based quantitative trait loci (QTL) analysis. In GWAS, two QTL were detected: one on chromosome 1BL 10 dai, the other on chromosome 2BL 20 dai. In conventional QTL analysis, both QTL were detected with all three disease ratings: the QTL on chromosome 1BL explained a maximum of 35.2% of the phenotypic variation 10 dai, whereas the QTL on chromosome 2BL explained a maximum of 43.5% of the phenotypic variation 20 dai. Compared with GWAS, linkage map-based QTL analysis allowed following the dynamics of QTL action. The two large-effect QTL for APR to powdery mildew with dynamic gene action can be useful for the enhancement of wheat germplasm.
Collapse
Affiliation(s)
- Volker Mohler
- Institute for Crop Science and Plant Breeding, Bavarian State Research Center for Agriculture (LfL), Am Gereuth 6, 85354, Freising, Germany.
| | - Melanie Stadlmeier
- Institute for Crop Science and Plant Breeding, Bavarian State Research Center for Agriculture (LfL), Am Gereuth 6, 85354, Freising, Germany
| |
Collapse
|
32
|
Grativol C, Thiebaut F, Sangi S, Montessoro P, Santos WDS, Hemerly AS, Ferreira PC. A miniature inverted-repeat transposable element, AddIn-MITE, located inside a WD40 gene is conserved in Andropogoneae grasses. PeerJ 2019; 7:e6080. [PMID: 30648010 PMCID: PMC6331000 DOI: 10.7717/peerj.6080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 11/07/2018] [Indexed: 11/25/2022] Open
Abstract
Miniature inverted-repeat transposable elements (MITEs) have been associated with genic regions in plant genomes and may play important roles in the regulation of nearby genes via recruitment of small RNAs (sRNA) to the MITEs loci. We identified eight families of MITEs in the sugarcane genome assembly with MITE-Hunter pipeline. These sequences were found to be upstream, downstream or inserted into 67 genic regions in the genome. The position of the most abundant MITE (Stowaway-like) in genic regions, which we call AddIn-MITE, was confirmed in a WD40 gene. The analysis of four monocot species showed conservation of the AddIn-MITE sequence, with a large number of copies in their genomes. We also investigated the conservation of the AddIn-MITE’ position in the WD40 genes from sorghum, maize and, in sugarcane cultivars and wild Saccharum species. In all analyzed plants, AddIn-MITE has located in WD40 intronic region. Furthermore, the role of AddIn-MITE-related sRNA in WD40 genic region was investigated. We found sRNAs preferentially mapped to the AddIn-MITE than to other regions in the WD40 gene in sugarcane. In addition, the analysis of the small RNA distribution patterns in the WD40 gene and the structure of AddIn-MITE, suggests that the MITE region is a proto-miRNA locus in sugarcane. Together, these data provide insights into the AddIn-MITE role in Andropogoneae grasses.
Collapse
Affiliation(s)
- Clicia Grativol
- Laboratório de Química e Função de Proteínas e Peptídeos/Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Flavia Thiebaut
- Laboratório de Biologia Molecular de Plantas/Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sara Sangi
- Laboratório de Química e Função de Proteínas e Peptídeos/Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Patricia Montessoro
- Laboratório de Biologia Molecular de Plantas/Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Walaci da Silva Santos
- Laboratório de Química e Função de Proteínas e Peptídeos/Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Adriana S. Hemerly
- Laboratório de Biologia Molecular de Plantas/Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo C.G. Ferreira
- Laboratório de Biologia Molecular de Plantas/Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Tahir J, Hoyte S, Bassett H, Brendolise C, Chatterjee A, Templeton K, Deng C, Crowhurst R, Montefiori M, Morgan E, Wotton A, Funnell K, Wiedow C, Knaebel M, Hedderley D, Vanneste J, McCallum J, Hoeata K, Nath A, Chagné D, Gea L, Gardiner SE. Multiple quantitative trait loci contribute to resistance to bacterial canker incited by Pseudomonas syringae pv. actinidiae in kiwifruit ( Actinidia chinensis). HORTICULTURE RESEARCH 2019; 6:101. [PMID: 31645956 PMCID: PMC6804790 DOI: 10.1038/s41438-019-0184-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 05/10/2023]
Abstract
Pseudomonas syringae pv. actinidiae (Psa) biovar 3, a virulent, canker-inducing pathogen is an economic threat to the kiwifruit (Actinidia spp.) industry worldwide. The commercially grown diploid (2×) A. chinensis var. chinensis is more susceptible to Psa than tetraploid and hexaploid kiwifruit. However information on the genetic loci modulating Psa resistance in kiwifruit is not available. Here we report mapping of quantitative trait loci (QTLs) regulating resistance to Psa in a diploid kiwifruit population, derived from a cross between an elite Psa-susceptible 'Hort16A' and a resistant male breeding parent P1. Using high-density genetic maps and intensive phenotyping, we identified a single QTL for Psa resistance on Linkage Group (LG) 27 of 'Hort16A' revealing 16-19% phenotypic variance and candidate alleles for susceptibility and resistance at this loci. In addition, six minor QTLs were identified in P1 on distinct LGs, exerting 4-9% variance. Resistance in the F1 population is improved by additive effects from 'Hort16A' and P1 QTLs providing evidence that divergent genetic pathways interact to combat the virulent Psa strain. Two different bioassays further identified new QTLs for tissue-specific responses to Psa. The genetic marker at LG27 QTL was further verified for association with Psa resistance in diploid Actinidia chinensis populations. Transcriptome analysis of Psa-resistant and susceptible genotypes in field revealed hallmarks of basal defense and provided candidate RNA-biomarkers for screening for Psa resistance in greenhouse conditions.
Collapse
Affiliation(s)
- Jibran Tahir
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Stephen Hoyte
- The New Zealand Institute for Plant Food Research Limited, Hamilton, New Zealand
| | - Heather Bassett
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Cyril Brendolise
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92–169, Auckland, 1025 New Zealand
| | - Abhishek Chatterjee
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92–169, Auckland, 1025 New Zealand
| | - Kerry Templeton
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92–169, Auckland, 1025 New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92–169, Auckland, 1025 New Zealand
| | - Ross Crowhurst
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92–169, Auckland, 1025 New Zealand
| | | | - Ed Morgan
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Andrew Wotton
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Keith Funnell
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Claudia Wiedow
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Mareike Knaebel
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Duncan Hedderley
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Joel Vanneste
- The New Zealand Institute for Plant Food Research Limited, Hamilton, New Zealand
| | - John McCallum
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - Kirsten Hoeata
- The New Zealand Institute for Plant and Food Research Limited, 412 No 1 Road, RD2, Te Puke, 3182 New Zealand
| | - Amardeep Nath
- The New Zealand Institute for Plant and Food Research Limited, 412 No 1 Road, RD2, Te Puke, 3182 New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Luis Gea
- The New Zealand Institute for Plant and Food Research Limited, 412 No 1 Road, RD2, Te Puke, 3182 New Zealand
| | - Susan E. Gardiner
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| |
Collapse
|
34
|
Liu J, Zhi P, Wang X, Fan Q, Chang C. Wheat WD40-repeat protein TaHOS15 functions in a histone deacetylase complex to fine-tune defense responses to Blumeria graminis f.sp. tritici. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:255-268. [PMID: 30204899 DOI: 10.1093/jxb/ery330] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/10/2018] [Indexed: 05/23/2023]
Abstract
Powdery mildew caused by Blumeria graminis f.sp. tritici (Bgt) seriously threatens the production of common wheat (Triticum aestivum). In eukaryotes, WD40-repeat (WDR) proteins usually participate in assembling protein complexes involved in a wide range of cellular processes, including defense responses. However, the potential function of WDR proteins in regulating crop resistance to biotrophic fungal pathogens, such as Bgt, remains unclear. In this study, we isolated TaHOS15, encoding a WDR protein, from the Bgt-susceptible wheat cultivar Jing411 and demonstrated that knockdown of TaHOS15 expression using virus- or transient-induced gene-silencing attenuated wheat susceptibility to Bgt. Biochemical and molecular-biological assays revealed that TaHOS15 interacts with TaHDA6, a wheat homolog of Arabidopsis histone deacetylase AtHDA6, to constitute a transcriptional repressor complex. We determined the role of TaHOS15, which might act as an adaptor protein recruiting TaHDA6 to the chromatin of wheat defense-related genes including TaPR1, TaPR2, TaPR5, and TaWRKY45, where they repress histone acetylation. Reduced TaHOS15 or TaHDA6 transcript levels led to decreased susceptibility to Bgt together with enhanced defense-related transcription under Bgt infection. Collectively, these results demonstrate that TaHOS15 functions in a histone deacetylase complex with TaHDA6 to fine-tune the defense response to Bgt in common wheat.
Collapse
Affiliation(s)
- Jiao Liu
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Pengfei Zhi
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Xiaoyu Wang
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Qingxin Fan
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
35
|
Ma YJ, Duan HR, Zhang F, Li Y, Yang HS, Tian FP, Zhou XH, Wang CM, Ma R. Transcriptomic analysis of Lycium ruthenicum Murr. during fruit ripening provides insight into structural and regulatory genes in the anthocyanin biosynthetic pathway. PLoS One 2018; 13:e0208627. [PMID: 30532153 PMCID: PMC6285980 DOI: 10.1371/journal.pone.0208627] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/20/2018] [Indexed: 02/04/2023] Open
Abstract
Fruit development in Lycium ruthenicum Murr. involves a succession of physiological and biochemical changes reflecting the transcriptional modulation of thousands of genes. Although recent studies have investigated the dynamic transcriptomic responses during fruit ripening in L. ruthenicum, most have been limited in scope, and thus systematic data representing the structural genes and transcription factors involved in anthocyanin biosynthesis are lacking. In this study, the transcriptomes of three ripening stages associated with anthocyanin accumulation, including S1 (green ripeness stage), S2 (skin color change) and S3 (complete ripeness stage) in L. ruthenicum were investigated using Illumina sequencing. Of a total of 43,573 assembled unigenes, 12,734 were differentially expressed during fruit ripening in L. ruthenicum. Twenty-five significantly differentially expressed structural genes (including PAL, C4H, 4CL, CHS, CHI, F3H, F3'H, F3'5'H, DFR, ANS and UFGT) were identified that might be associated with anthocyanin biosynthesis. Additionally, several transcription factors, including MYB, bHLH, WD40, NAC, WRKY, bZIP and MADS, were correlated with the structural genes, implying their important interaction with anthocyanin biosynthesis-related genes. Our findings provide insight into anthocyanin biosynthesis and regulation patterns in L. ruthenicum and offer a systematic basis for elucidating the molecular mechanisms governing anthocyanin biosynthesis in L. ruthenicum.
Collapse
Affiliation(s)
- Yan-Jun Ma
- College of Forestry, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Hui-Rong Duan
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Feng Zhang
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yi Li
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Hong-Shan Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fu-Ping Tian
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xue-Hui Zhou
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chun-Mei Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Rui Ma
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
36
|
Hu R, Xiao J, Gu T, Yu X, Zhang Y, Chang J, Yang G, He G. Genome-wide identification and analysis of WD40 proteins in wheat (Triticum aestivum L.). BMC Genomics 2018; 19:803. [PMID: 30400808 PMCID: PMC6219084 DOI: 10.1186/s12864-018-5157-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/10/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND WD40 domains are abundant in eukaryotes, and they are essential subunits of large multiprotein complexes, which serve as scaffolds. WD40 proteins participate in various cellular processes, such as histone modification, transcription regulation, and signal transduction. WD40 proteins are regarded as crucial regulators of plant development processes. However, the systematic identification and analysis of WD40 proteins have yet to be reported in wheat. RESULTS In this study, a total of 743 WD40 proteins were identified in wheat, and they were grouped into 5 clusters and 11 subfamilies. Their gene structures, chromosomal locations, and evolutionary relationships were analyzed. Among them, 39 and 46 pairs of TaWD40s were distinguished as tandem duplication and segmental duplication genes. The 123 OsWD40s were identified to exhibit synteny with TaWD40s. TaWD40s showed the specific characteristics at the reproductive developmental stage, and numerous TaWD40s were involved in responses to stresses, including cold, heat, drought, and powdery mildew infection pathogen, based on the result of RNA-seq data analysis. The expression profiles of some TaWD40s in wheat seed development were confirmed through qRT-PCR technique. CONCLUSION In this study, 743 TaWD40s were identified from the wheat genome. As the main driving force of evolution, duplication events were observed, and homologous recombination was another driving force of evolution. The expression profiles of TaWD40s revealed their importance for the growth and development of wheat and their response to biotic and abiotic stresses. Our study also provided important information for further functional characterization of some WD40 proteins in wheat.
Collapse
Affiliation(s)
- Rui Hu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jie Xiao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Ting Gu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xiaofen Yu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yang Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| |
Collapse
|
37
|
Li S, Wu Y, Kuang J, Wang H, Du T, Huang Y, Zhang Y, Cao X, Wang Z. SmMYB111 Is a Key Factor to Phenolic Acid Biosynthesis and Interacts with Both SmTTG1 and SmbHLH51 in Salvia miltiorrhiza. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8069-8078. [PMID: 30001627 DOI: 10.1021/acs.jafc.8b02548] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transcription factors that include myeloblastosis (MYB), basic helix-loop-helix (bHLH), and tryptophan-aspartic acid (WD)-repeat protein often form a ternary complex to regulate the phenylpropanoid pathway. However, only a few MYB and bHLH members involved in the biosynthesis of salvianolic acid B (Sal B) have been reported, and little is known about Sal B pathway regulation by the WD40 protein transparent testa glabra 1 (TTG1)-dependent transcriptional complexes in Salvia miltiorrhiza. We isolated SmTTG1 from that species for detailed functional characterization. Enhanced or reduced expression of SmTTG1 was achieved by gain- or loss-of-function assays, respectively, revealing that SmTTG1 is necessary for Sal B biosynthesis. Interaction partners of the SmTTG1 protein were screened by yeast two-hybrid (Y2H) assays with the cDNA library of S. miltiorrhiza. A new R2R3-MYB transcription factor, SmMYB111, was found through this screening. Transgenic plants overexpressing or showing reduced expression of SmMYB111 upregulated or deregulated, respectively, the yields of Sal B. Both Y2H and bimolecular fluorescent complementation experiments demonstrated that SmMYB111 interacts with SmTTG1 and SmbHLH51, a positive regulator of the phenolic acid pathway. Our data verified the function of SmTTG1 and SmMYB111 in regulating phenolic acid biosynthesis in S. miltiorrhiza. Furthermore, ours is the first report of the potential ternary transcription complex SmTTG1-SmMYB111-SmbHLH51, which is involved in the production of Sal B in that species.
Collapse
Affiliation(s)
- Shasha Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry , Shaanxi Normal University , Xi'an , Shaanxi 710062 , People's Republic of China
| | - Yucui Wu
- School of Landscape and Ecological Engineering , Hebei University of Engineering , Handan , Hebei 056038 , People's Republic of China
| | - Jing Kuang
- Ningxia Polytechnic , Yinchuan , Ningxia 750001 , People's Republic of China
| | - Huaiqin Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry , Shaanxi Normal University , Xi'an , Shaanxi 710062 , People's Republic of China
| | - Tangzhi Du
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry , Shaanxi Normal University , Xi'an , Shaanxi 710062 , People's Republic of China
| | - Yaya Huang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry , Shaanxi Normal University , Xi'an , Shaanxi 710062 , People's Republic of China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry , Shaanxi Normal University , Xi'an , Shaanxi 710062 , People's Republic of China
| | - Xiaoyan Cao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry , Shaanxi Normal University , Xi'an , Shaanxi 710062 , People's Republic of China
| | - Zhezhi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry , Shaanxi Normal University , Xi'an , Shaanxi 710062 , People's Republic of China
| |
Collapse
|
38
|
Govender N, Senan S, Mohamed-Hussein ZA, Wickneswari R. A gene co-expression network model identifies yield-related vicinity networks in Jatropha curcas shoot system. Sci Rep 2018; 8:9211. [PMID: 29907786 PMCID: PMC6003958 DOI: 10.1038/s41598-018-27493-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/04/2018] [Indexed: 11/18/2022] Open
Abstract
The plant shoot system consists of reproductive organs such as inflorescences, buds and fruits, and the vegetative leaves and stems. In this study, the reproductive part of the Jatropha curcas shoot system, which includes the aerial shoots, shoots bearing the inflorescence and inflorescence were investigated in regard to gene-to-gene interactions underpinning yield-related biological processes. An RNA-seq based sequencing of shoot tissues performed on an Illumina HiSeq. 2500 platform generated 18 transcriptomes. Using the reference genome-based mapping approach, a total of 64 361 genes was identified in all samples and the data was annotated against the non-redundant database by the BLAST2GO Pro. Suite. After removing the outlier genes and samples, a total of 12 734 genes across 17 samples were subjected to gene co-expression network construction using petal, an R library. A gene co-expression network model built with scale-free and small-world properties extracted four vicinity networks (VNs) with putative involvement in yield-related biological processes as follow; heat stress tolerance, floral and shoot meristem differentiation, biosynthesis of chlorophyll molecules and laticifers, cell wall metabolism and epigenetic regulations. Our VNs revealed putative key players that could be adapted in breeding strategies for J. curcas shoot system improvements.
Collapse
Affiliation(s)
- Nisha Govender
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
- Center for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Siju Senan
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Zeti-Azura Mohamed-Hussein
- Center for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Ratnam Wickneswari
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| |
Collapse
|
39
|
Zhang B, Schrader A. TRANSPARENT TESTA GLABRA 1-Dependent Regulation of Flavonoid Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2017; 6:E65. [PMID: 29261137 PMCID: PMC5750641 DOI: 10.3390/plants6040065] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/02/2017] [Accepted: 12/16/2017] [Indexed: 12/25/2022]
Abstract
The flavonoid composition of various tissues throughout plant development is of biological relevance and particular interest for breeding. Arabidopsis thaliana TRANSPARENT TESTA GLABRA 1 (AtTTG1) is an essential regulator of late structural genes in flavonoid biosynthesis. Here, we provide a review of the regulation of the pathway's core enzymes through AtTTG1-containing R2R3-MYELOBLASTOSIS-basic HELIX-LOOP-HELIX-WD40 repeat (MBW(AtTTG1)) complexes embedded in an evolutionary context. We present a comprehensive collection of A. thalianattg1 mutants and AtTTG1 orthologs. A plethora of MBW(AtTTG1) mechanisms in regulating the five major TTG1-dependent traits is highlighted.
Collapse
Affiliation(s)
- Bipei Zhang
- Botanical Institute, University of Cologne, Zuelpicher Str 47B, 50674 Cologne, Germany.
| | - Andrea Schrader
- Botanical Institute, University of Cologne, Zuelpicher Str 47B, 50674 Cologne, Germany.
| |
Collapse
|
40
|
Jain BP, Pandey S, Saleem N, Tanti GK, Mishra S, Goswami SK. SG2NA is a regulator of endoplasmic reticulum (ER) homeostasis as its depletion leads to ER stress. Cell Stress Chaperones 2017; 22:853-866. [PMID: 28634818 PMCID: PMC5655373 DOI: 10.1007/s12192-017-0816-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 01/24/2023] Open
Abstract
SG2NA belongs to a three-member striatin subfamily of WD40 repeat superfamily of proteins. It has multiple protein-protein interaction domains involved in assembling supramolecular signaling complexes. Earlier, we had demonstrated that there are at least five variants of SG2NA generated by alternative splicing, intron retention, and RNA editing. Such versatile and dynamic mode of regulation implicates it in tissue development. In order to shed light on its role in cell physiology, total proteome analysis was performed in NIH3T3 cells depleted of 78 kDa SG2NA, the only isoform expressing therein. A number of ER stress markers were among those modulated after knockdown of SG2NA. In cells treated with the ER stressors thapsigargin and tunicamycin, expression of SG2NA was increased at both mRNA and protein levels. The increased level of SG2NA was primarily in the mitochondria and the microsomes. A mouse injected with thapsigargin also had an increase in SG2NA in the liver but not in the brain. Cell cycle analysis suggested that while loss of SG2NA reduces the level of cyclin D1 and retains a population of cells in the G1 phase, concurrent ER stress facilitates their exit from G1 and traverse through subsequent phases with concomitant cell death. Thus, SG2NA is a component of intrinsic regulatory pathways that maintains ER homeostasis.
Collapse
Affiliation(s)
- Buddhi Prakash Jain
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University Bihar, Motihari, 845401, India
| | - Shweta Pandey
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Nikhat Saleem
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Goutam K Tanti
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
- Neuro-Kopf-Zentrum, Department of Neurology, Klinikumrechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str.22, 81675, Muenchen, Germany
| | - Shalini Mishra
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, New Delhi, -110054, India
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
| |
Collapse
|
41
|
Tan CT, Yu H, Yang Y, Xu X, Chen M, Rudd JC, Xue Q, Ibrahim AMH, Garza L, Wang S, Sorrells ME, Liu S. Development and validation of KASP markers for the greenbug resistance gene Gb7 and the Hessian fly resistance gene H32 in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1867-1884. [PMID: 28624908 DOI: 10.1007/s00122-017-2930-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/30/2017] [Indexed: 05/19/2023]
Abstract
Greenbug and Hessian fly are important pests that decrease wheat production worldwide. We developed and validated breeder-friendly KASP markers for marker-assisted breeding to increase selection efficiency. Greenbug (Schizaphis graminum Rondani) and Hessian fly [Mayetiola destructor (Say)] are two major destructive insect pests of wheat (Triticum aestivum L.) throughout wheat production regions in the USA and worldwide. Greenbug and Hessian fly infestation can significantly reduce grain yield and quality. Breeding for resistance to these two pests using marker-assisted selection (MAS) is the most economical strategy to minimize losses. In this study, doubled haploid lines from the Synthetic W7984 × Opata M85 wheat reference population were used to construct linkage maps for the greenbug resistance gene Gb7 and the Hessian fly resistance gene H32 with genotyping-by-sequencing (GBS) and 90K array-based single nucleotide polymorphism (SNP) marker data. Flanking markers were closely linked to Gb7 and H32 and were located on chromosome 7DL and 3DL, respectively. Gb7-linked markers (synopGBS773 and synopGBS1141) and H32-linked markers (synopGBS901 and IWB65911) were converted into Kompetitive Allele Specific PCR (KASP) assays for MAS in wheat breeding. In addition, comparative mapping identified syntenic regions in Brachypodium distachyon, rice (Oryza sativa), and sorghum (Sorghum bicolor) for Gb7 and H32 that can be used for fine mapping and map-based cloning of the genes. The KASP markers developed in this study are the first set of SNPs tightly linked to Gb7 and H32 and will be very useful for MAS in wheat breeding programs and future genetic studies of greenbug and Hessian fly resistance.
Collapse
Affiliation(s)
- Chor-Tee Tan
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
| | - Hangjin Yu
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
| | - Yan Yang
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
- Department of Soil and Crop Science, Texas A&M University, College Station, TX, 77843, USA
| | - Xiangyang Xu
- USDA-ARS Wheat, Peanut and Other Field Crop Research Unit, Stillwater, OK, 74075, USA
| | - Mingshun Chen
- USDA-ARS and Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jackie C Rudd
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
| | - Qingwu Xue
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
| | - Amir M H Ibrahim
- Department of Soil and Crop Science, Texas A&M University, College Station, TX, 77843, USA
| | - Lisa Garza
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
| | - Shichen Wang
- Genomic and Bioinformatics Services, Texas A&M AgriLife Research, College Station, TX, 77845, USA
| | - Mark E Sorrells
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Shuyu Liu
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA.
| |
Collapse
|
42
|
Lloyd A, Brockman A, Aguirre L, Campbell A, Bean A, Cantero A, Gonzalez A. Advances in the MYB-bHLH-WD Repeat (MBW) Pigment Regulatory Model: Addition of a WRKY Factor and Co-option of an Anthocyanin MYB for Betalain Regulation. PLANT & CELL PHYSIOLOGY 2017; 58:1431-1441. [PMID: 28575507 PMCID: PMC5914458 DOI: 10.1093/pcp/pcx075] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/11/2017] [Indexed: 05/19/2023]
Abstract
Flavonoids are secondary metabolites derived from the general phenylpropanoid pathway and are widespread throughout the plant kingdom. The functions of flavonoids are diverse, including defense against phytopathogens, protection against UV light damage and oxidative stress, regulation of auxin transport and allelopathy. One of the most conspicuous functions of flavonoids has long attracted the attention of pollinators and scientist alike: the vivid shades of red, pink, orange, blue and purple on display in the flowers of angiosperms. Thus, flavonoid pigments have perhaps been the most intensely studied phenylpropanoids. From Mendel to McClintock and up to the present, studies centered on flavonoid pigments have resulted in some of the most important scientific discoveries of the last 150 years, including the first examples of transcriptional regulation in plants. Here we focus on the highly conserved MYB-bHLH-WD repeat (MBW) transcriptional complex model for the regulation of the flavonoid pigment pathway. We will survey the history of the MBW model spanning the last three decades, highlighting the major findings that have contributed to our current understanding. In particular, recent discoveries regarding WRKY protein control of the flavonoid pigment pathway and its relationship to the MBW complex will be emphasized. In addition, we will discuss recent findings about the regulation of the beet betalain pigment pathway, and how a MYB member of the MBW complex was co-opted to regulate this chemically unrelated but functionally equivalent pathway.
Collapse
Affiliation(s)
- Alan Lloyd
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Austen Brockman
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lyndsey Aguirre
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Annabelle Campbell
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Alex Bean
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Araceli Cantero
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Antonio Gonzalez
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
43
|
Tock AJ, Fourie D, Walley PG, Holub EB, Soler A, Cichy KA, Pastor-Corrales MA, Song Q, Porch TG, Hart JP, Vasconcellos RCC, Vicente JG, Barker GC, Miklas PN. Genome-Wide Linkage and Association Mapping of Halo Blight Resistance in Common Bean to Race 6 of the Globally Important Bacterial Pathogen. FRONTIERS IN PLANT SCIENCE 2017; 8:1170. [PMID: 28736566 PMCID: PMC5500643 DOI: 10.3389/fpls.2017.01170] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/19/2017] [Indexed: 05/11/2023]
Abstract
Pseudomonas syringae pv. phaseolicola (Psph) Race 6 is a globally prevalent and broadly virulent bacterial pathogen with devastating impact causing halo blight of common bean (Phaseolus vulgaris L.). Common bean lines PI 150414 and CAL 143 are known sources of resistance against this pathogen. We constructed high-resolution linkage maps for three recombinant inbred populations to map resistance to Psph Race 6 derived from the two common bean lines. This was complemented with a genome-wide association study (GWAS) of Race 6 resistance in an Andean Diversity Panel of common bean. Race 6 resistance from PI 150414 maps to a single major-effect quantitative trait locus (QTL; HB4.2) on chromosome Pv04 and confers broad-spectrum resistance to eight other races of the pathogen. Resistance segregating in a Rojo × CAL 143 population maps to five chromosome arms and includes HB4.2. GWAS detected one QTL (HB5.1) on chromosome Pv05 for resistance to Race 6 with significant influence on seed yield. The same HB5.1 QTL, found in both Canadian Wonder × PI 150414 and Rojo × CAL 143 populations, was effective against Race 6 but lacks broad resistance. This study provides evidence for marker-assisted breeding for more durable halo blight control in common bean by combining alleles of race-nonspecific resistance (HB4.2 from PI 150414) and race-specific resistance (HB5.1 from cv. Rojo).
Collapse
Affiliation(s)
- Andrew J. Tock
- School of Life Sciences, Faculty of Science, University of WarwickWellesbourne, United Kingdom
- Department of Plant Sciences, Faculty of Biology, University of CambridgeCambridge, United Kingdom
| | - Deidré Fourie
- ARC-Grain Crops InstitutePotchefstroom, South Africa
| | - Peter G. Walley
- Functional and Comparative Genomics, Institute of Integrative Biology, University of LiverpoolLiverpool, United Kingdom
| | - Eric B. Holub
- School of Life Sciences, Faculty of Science, University of WarwickWellesbourne, United Kingdom
| | - Alvaro Soler
- Grain Legume Genetics and Physiology Research Unit, Agricultural Research Service, US Department of AgricultureProsser, WA, United States
| | - Karen A. Cichy
- Sugarbeet and Bean Research Unit, Agricultural Research Service, US Department of AgricultureEast Lansing, MI, United States
| | - Marcial A. Pastor-Corrales
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, US Department of AgricultureBeltsville, MD, United States
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, US Department of AgricultureBeltsville, MD, United States
| | - Timothy G. Porch
- Tropical Agriculture Research Station, Agricultural Research Service, US Department of AgricultureMayagüez, Puerto Rico
| | - John P. Hart
- Tropical Agriculture Research Station, Agricultural Research Service, US Department of AgricultureMayagüez, Puerto Rico
| | | | - Joana G. Vicente
- School of Life Sciences, Faculty of Science, University of WarwickWellesbourne, United Kingdom
| | - Guy C. Barker
- School of Life Sciences, Faculty of Science, University of WarwickWellesbourne, United Kingdom
| | - Phillip N. Miklas
- Grain Legume Genetics and Physiology Research Unit, Agricultural Research Service, US Department of AgricultureProsser, WA, United States
| |
Collapse
|
44
|
Response of microRNAs to cold treatment in the young spikes of common wheat. BMC Genomics 2017; 18:212. [PMID: 28241738 PMCID: PMC5330121 DOI: 10.1186/s12864-017-3556-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 02/03/2017] [Indexed: 12/04/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a class of small non-coding RNAs that play important roles in biotic and abiotic stresses by regulating their target genes. For common wheat, spring frost damage frequently occurs, especially when low temperature coincides with plants at early floral organ differentiation, which may result in significant yield loss. Up to date, the role of miRNAs in wheat response to frost stress is not well understood. Results We report here the sequencing of small RNA transcriptomes from the young spikes that were treated with cold stress and the comparative analysis with those of the control. A total of 192 conserved miRNAs from 105 families and nine novel miRNAs were identified. Among them, 34 conserved and five novel miRNAs were differentially expressed between the cold-stressed samples and the controls. The expression patterns of 18 miRNAs were further validated by quantitative real time polymerase chain reaction (qRT-PCR). Moreover, nearly half of the miRNAs were cross inducible by biotic and abiotic stresses when compared with previously published work. Target genes were predicted and validated by degradome sequencing. Gene Ontology (GO) enrichment analysis showed that the target genes of differentially expressed miRNAs were enriched for response to the stimulus, regulation of transcription, and ion transport functions. Since many targets of differentially expressed miRNAs were transcription factors that are associated with floral development such as ARF, SPB (Squamosa Promoter Binding like protein), MADS-box (MCM1, AG, DEFA and SRF), MYB, SPX (SYG1, Pho81 and XPR1), TCP (TEOSINTE BRANCHED, Cycloidea and PCF), and PPR (PentatricoPeptide Repeat) genes, cold-altered miRNA expression may cause abnormal reproductive organ development. Conclusion Analysis of small RNA transcriptomes and their target genes provide new insight into miRNA regulation in developing wheat inflorescences under cold stress. MiRNAs provide another layer of gene regulation in cold stress response that can be genetically manipulated to reduce yield loss in wheat. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3556-2) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Aamir M, Singh VK, Meena M, Upadhyay RS, Gupta VK, Singh S. Structural and Functional Insights into WRKY3 and WRKY4 Transcription Factors to Unravel the WRKY-DNA (W-Box) Complex Interaction in Tomato ( Solanum lycopersicum L.). A Computational Approach. FRONTIERS IN PLANT SCIENCE 2017; 8:819. [PMID: 28611792 PMCID: PMC5447077 DOI: 10.3389/fpls.2017.00819] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/01/2017] [Indexed: 05/20/2023]
Abstract
The WRKY transcription factors (TFs), play crucial role in plant defense response against various abiotic and biotic stresses. The role of WRKY3 and WRKY4 genes in plant defense response against necrotrophic pathogens is well-reported. However, their functional annotation in tomato is largely unknown. In the present work, we have characterized the structural and functional attributes of the two identified tomato WRKY transcription factors, WRKY3 (SlWRKY3), and WRKY4 (SlWRKY4) using computational approaches. Arabidopsis WRKY3 (AtWRKY3: NP_178433) and WRKY4 (AtWRKY4: NP_172849) protein sequences were retrieved from TAIR database and protein BLAST was done for finding their sequential homologs in tomato. Sequence alignment, phylogenetic classification, and motif composition analysis revealed the remarkable sequential variation between, these two WRKYs. The tomato WRKY3 and WRKY4 clusters with Solanum pennellii showing the monophyletic origin and evolution from their wild homolog. The functional domain region responsible for sequence specific DNA-binding occupied in both proteins were modeled [using AtWRKY4 (PDB ID:1WJ2) and AtWRKY1 (PDBID:2AYD) as template protein structures] through homology modeling using Discovery Studio 3.0. The generated models were further evaluated for their accuracy and reliability based on qualitative and quantitative parameters. The modeled proteins were found to satisfy all the crucial energy parameters and showed acceptable Ramachandran statistics when compared to the experimentally resolved NMR solution structures and/or X-Ray diffracted crystal structures (templates). The superimposition of the functional WRKY domains from SlWRKY3 and SlWRKY4 revealed remarkable structural similarity. The sequence specific DNA binding for two WRKYs was explored through DNA-protein interaction using Hex Docking server. The interaction studies found that SlWRKY4 binds with the W-box DNA through WRKYGQK with Tyr408, Arg409, and Lys419 with the initial flanking sequences also get involved in binding. In contrast, the SlWRKY3 made interaction with RKYGQK along with the residues from zinc finger motifs. Protein-protein interactions studies were done using STRING version 10.0 to explore all the possible protein partners involved in associative functional interaction networks. The Gene ontology enrichment analysis revealed the functional dimension and characterized the identified WRKYs based on their functional annotation.
Collapse
Affiliation(s)
- Mohd Aamir
- Department of Botany, Centre for Advanced Study, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Vinay K. Singh
- Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Mukesh Meena
- Department of Botany, Centre for Advanced Study, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Ram S. Upadhyay
- Department of Botany, Centre for Advanced Study, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Vijai K. Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of TechnologyTallinn, Estonia
| | - Surendra Singh
- Department of Botany, Centre for Advanced Study, Institute of Science, Banaras Hindu UniversityVaranasi, India
- *Correspondence: Surendra Singh
| |
Collapse
|
46
|
Persi E, Wolf YI, Koonin EV. Positive and strongly relaxed purifying selection drive the evolution of repeats in proteins. Nat Commun 2016; 7:13570. [PMID: 27857066 PMCID: PMC5120217 DOI: 10.1038/ncomms13570] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/17/2016] [Indexed: 01/21/2023] Open
Abstract
Protein repeats are considered hotspots of protein evolution, associated with acquisition of new functions and novel phenotypic traits, including disease. Paradoxically, however, repeats are often strongly conserved through long spans of evolution. To resolve this conundrum, it is necessary to directly compare paralogous (horizontal) evolution of repeats within proteins with their orthologous (vertical) evolution through speciation. Here we develop a rigorous methodology to identify highly periodic repeats with significant sequence similarity, for which evolutionary rates and selection (dN/dS) can be estimated, and systematically characterize their evolution. We show that horizontal evolution of repeats is markedly accelerated compared with their divergence from orthologues in closely related species. This observation is universal across the diversity of life forms and implies a biphasic evolutionary regime whereby new copies experience rapid functional divergence under combined effects of strongly relaxed purifying selection and positive selection, followed by fixation and conservation of each individual repeat.
Collapse
Affiliation(s)
- Erez Persi
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
47
|
Roles of Rack1 Proteins in Fungal Pathogenesis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4130376. [PMID: 27656651 PMCID: PMC5021465 DOI: 10.1155/2016/4130376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/16/2016] [Indexed: 01/21/2023]
Abstract
Pathogenic fungi cause diseases on various organisms. Despite their differences in life cycles, fungal pathogens use well-conserved proteins and pathways to regulate developmental and infection processes. In this review, we focus on Rack1, a multifaceted scaffolding protein involved in various biological processes. Rack1 is well conserved in eukaryotes and plays important roles in fungi, though limited studies have been conducted. To accelerate the study of Rack1 proteins in fungi, we review the functions of Rack1 proteins in model and pathogenic fungi and summarize recent progress on how Rack1 proteins are involved in fungal pathogenesis.
Collapse
|