1
|
Salomón RL, Camarero JJ. Stem Growth and Dehydration Responses of Mediterranean Tree Species to Atmospheric and Soil Drought. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39363554 DOI: 10.1111/pce.15177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/21/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024]
Abstract
Stem growth responses to soil and atmospheric drought are critical to forecasting the tree carbon sink strength. Yet, responses of drought-prone forests remain uncertain despite global aridification trends. Stem diameter variations at an hourly resolution were monitored in five Mediterranean tree species from a mesic and a xeric site for 6 and 12 years. Stem growth and dehydration responses to soil (REW) and atmospheric (VPD) drought were explored at different timescales. Annually, growth was determined by the number of growing days and hours. Seasonally, growth was bimodal (autumn growth ≈ 8%-18% of annual growth), varying among species and sites across the hydrometeorological space, while dehydration consistently responded to REW. Sub-daily, substantial growth occurred during daytime, with nighttime-to-daytime ratios ranging between 1.2 and 3.5 (Arbutus unedo ≈ Quercus faginea < Quercus ilex < Pinus halepensis in the mesic site, and Juniperus thurifera < P. halepensis in the xeric site). Overall, time windows favourable for growth were limited by soil (rather than atmospheric) drought, modulating annual and seasonal growth in Mediterranean species, and stems maintained non-negligible growth during daytime. These patterns contrast with observations from wetter or cooler biomes, demonstrating the growth plasticity of drought-prone species to more arid climate conditions.
Collapse
Affiliation(s)
- Roberto L Salomón
- Departamento de Sistemas y Recursos Naturales, Research Group FORESCENT, Universidad Politécnica de Madrid, Madrid, Spain
| | | |
Collapse
|
2
|
Yang H, Dai L, Liu M, Fan X, Lu L, Guo B, Wang Z, Wang L. Integrative analysis of transcriptome and metabolome reveals how ethylene increases natural rubber yield in Hevea brasiliensis. FRONTIERS IN PLANT SCIENCE 2024; 15:1444693. [PMID: 39290731 PMCID: PMC11405334 DOI: 10.3389/fpls.2024.1444693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
Hevea brasiliensis is an important cash crop with the product named natural rubber (NR) for markets. Ethylene (ET) is the most effective yield stimulant in NR production but the molecular mechanism remains incomplete. Here, latex properties analysis, transcriptome analysis, and metabolic profiling were performed to investigate the mechanism of NR yield increase in four consecutive tappings after ET stimulation. The results revealed that sucrose and inorganic phosphate content correlated positively with dry-rubber yield and were induced upon ET stimulation. Stimulation with ET also led to significant changes in gene expression and metabolite content. Genes involved in phytohormone biosynthesis and general signal transduction as well as 51 transcription factors potentially involved in the ET response were also identified. Additionally, KEGG annotation of differentially accumulated metabolites suggested that metabolites involved in secondary metabolites, amino-acid biosynthesis, ABC transporters, and galactose metabolism were accumulated in response to ET. Integrative analysis of the data collected by transcriptomics and metabolomics identified those differentially expressed genes and differentially accumulated metabolites are mainly involved in amino-acid biosynthesis and carbohydrate metabolism. Correlation analysis of genes and metabolites showed a strong correlation between amino-acid biosynthesis during ET stimulation. These findings provide new insights into the molecular mechanism underlying the ET-induced increase in rubber yield and further our understanding of the regulatory mechanism of ethylene signaling in rubber biosynthesis.
Collapse
Affiliation(s)
- Hong Yang
- Rubber Research Institute, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Longjun Dai
- Rubber Research Institute, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Mingyang Liu
- Rubber Research Institute, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Xiaokang Fan
- Rubber Research Institute, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Liangruinan Lu
- Rubber Research Institute, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Bingbing Guo
- Rubber Research Institute, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Zhenhui Wang
- Rubber Research Institute, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Lifeng Wang
- Rubber Research Institute, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| |
Collapse
|
3
|
Tian M, Salmon Y, Lintunen A, Oren R, Hölttä T. Seasonal dynamics and punctuated carbon sink reduction suggest photosynthetic capacity of boreal silver birch is reduced by the accumulation of hexose. THE NEW PHYTOLOGIST 2024; 243:894-908. [PMID: 38853424 DOI: 10.1111/nph.19883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
The 'assimilates inhibition hypothesis' posits that accumulation of nonstructural carbohydrates (NSCs) in leaves reduces leaf net photosynthetic rate, thus internally regulating photosynthesis. Experimental work provides equivocal support mostly under controlled conditions without identifying a particular NSC as involved in the regulation. We combined 3-yr in situ leaf gas exchange observations (natural dynamics) in the upper crown of mature Betula pendula simultaneously with measurements of concentrations of sucrose, hexoses (glucose and fructose), and starch, and similar measurements during several one-day shoot girdling (perturbation dynamics). Leaf water potential and water and nitrogen content were measured to account for their possible contribution to photosynthesis regulation. Leaf photosynthetic capacity (A/Ci) was temporally negatively correlated with NSC accumulation under both natural and perturbation states. For developed leaves, leaf hexose concentration explained A/Ci variation better than environmental variables (temperature history and daylength); the opposite was observed for developing leaves. The weaker correlations between NSCs and A/Ci in developing leaves may reflect their strong internal sink strength for carbohydrates. By contrast, the strong decline in photosynthetic capacity with NSCs accumulation in mature leaves, observed most clearly with hexose, and even more tightly with its constituents, provides support for the role of assimilates in regulating photosynthesis under natural conditions.
Collapse
Affiliation(s)
- Manqing Tian
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, PO Box 27, Helsinki, 00014, Finland
| | - Yann Salmon
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, PO Box 27, Helsinki, 00014, Finland
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, PO Box 64, Helsinki, 00014, Finland
| | - Anna Lintunen
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, PO Box 27, Helsinki, 00014, Finland
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, PO Box 64, Helsinki, 00014, Finland
| | - Ram Oren
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, PO Box 27, Helsinki, 00014, Finland
- Nicholas School of the Environment and Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Teemu Hölttä
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, PO Box 27, Helsinki, 00014, Finland
| |
Collapse
|
4
|
Zhang P, Ding J, Wang Q, McDowell NG, Kong D, Tong Y, Yin H. Contrasting coordination of non-structural carbohydrates with leaf and root economic strategies of alpine coniferous forests. THE NEW PHYTOLOGIST 2024; 243:580-590. [PMID: 38488228 DOI: 10.1111/nph.19678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/20/2024] [Indexed: 06/21/2024]
Abstract
Non-structural carbohydrates (NSCs), as the labile fraction and dominant carbon currency, are essential mediators of plant adaptation to environments. However, whether and how NSC coordinates with plant economic strategy frameworks, particularly the well-recognized leaf economics spectrums (LES) and root economics space (RES), remains unclear. We examined the relationships between NSC and key plant economics traits in leaves and fine roots across 90 alpine coniferous populations on the Tibetan Plateau, China. We observed contrasting coordination of NSC with economics traits in leaves and roots. Leaf total NSC and soluble sugar aligned with the leaf economic spectrum, conveying a trade-off between growth and storage in leaves. However, NSC in roots was independent of the root economic spectrum, but highly coordinated with root foraging, with more starch and less sugar in forage-efficient, thinner roots. Further, NSC-trait coordination in leaves and roots was, respectively, driven by local temperature and precipitation. These findings highlight distinct roles of NSC in shaping the above- and belowground multidimensional economics trait space, and NSC-based carbon economics provides a mechanistic understanding of how plants adapt to heterogeneous habitats and respond to environmental changes.
Collapse
Affiliation(s)
- Peipei Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Junxiang Ding
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450052, China
| | - Qitong Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Nate G McDowell
- Biological Sciences Division, Pacific Northwest National Lab, PO Box 999, Richland, WA, 99352, USA
| | - Deliang Kong
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yindong Tong
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Huajun Yin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
5
|
Jupa R, Rosell JA, Pittermann J. Bark structure is coordinated with xylem hydraulic properties in branches of five Cupressaceae species. PLANT, CELL & ENVIRONMENT 2024; 47:1439-1451. [PMID: 38234202 DOI: 10.1111/pce.14824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
The properties of bark and xylem contribute to tree growth and survival under drought and other types of stress conditions. However, little is known about the functional coordination of the xylem and bark despite the influence of selection on both structures in response to drought. To this end, we examined relationships between proportions of bark components (i.e. thicknesses of tissues outside the vascular cambium) and xylem transport properties in juvenile branches of five Cupressaceae species, focusing on transport efficiency and safety from hydraulic failure via drought-induced embolism. Both xylem efficiency and safety were correlated with multiple bark traits, suggesting that xylem transport and bark properties are coordinated. Specifically, xylem transport efficiency was greater in species with thicker secondary phloem, greater phloem-to-xylem thickness ratio and phloem-to-xylem cell number ratio. In contrast, species with thicker bark, living cortex and dead bark tissues were more resistant to embolism. Thicker phellem layers were associated with lower embolism resistance. Results of this study point to an important connection between xylem transport efficiency and phloem characteristics, which are shaped by the activity of vascular cambium. The link between bark and embolism resistance affirms the importance of both tissues to drought tolerance.
Collapse
Affiliation(s)
- Radek Jupa
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Julieta A Rosell
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jarmila Pittermann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
6
|
He Y, Yu M, Ding G, Zhang F. Precipitation pattern changed the content of non-structural carbohydrates components in different organs of Artemisia ordosica. BMC PLANT BIOLOGY 2023; 23:505. [PMID: 37864141 PMCID: PMC10589927 DOI: 10.1186/s12870-023-04512-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Non-structural carbohydrates (NSC) play a significant role in plant growth and defense and are an important component of carbon cycling in desert ecosystems. However, regarding global change scenarios, it remains unclear how NSCs in desert plants respond to changing precipitation patterns. [Methods] Three precipitation levels (natural precipitation, a 30% reduction in precipitation, and a 30% increase in precipitation) and two precipitation intervals levels (5 and 15 d) were simulated to study NSC (soluble sugar and starch) responses in the dominant shrub Artemisia ordosica. RESULTS Precipitation level and interval interact to affect the NSC (both soluble sugar and starch components) content of A. ordosica. The effect of precipitation on NSC content and its components depended on extended precipitation interval. With lower precipitation and extended interval, soluble sugar content in roots increased and starch content decreased, indicating that A. ordosica adapts to external environmental changes by hydrolyzing root starch into soluble sugars. At 5 d interval, lower precipitation increased the NSC content of stems and especially roots. CONCLUSIONS A. ordosica follows the "preferential allocation principle" to preferentially transport NSC to growing organs, which is an adaptive strategy to maintain a healthy physiological metabolism under drought conditions. The findings help understand the adaptation and survival mechanisms of desert vegetation under the changing precipitation patterns and are important in exploring the impact of carbon cycling in desert systems under global environmental change.
Collapse
Affiliation(s)
- Yingying He
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 750021, China
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Minghan Yu
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China.
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China.
| | - Guodong Ding
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Fuchong Zhang
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
7
|
Vuerich M, Petrussa E, Boscutti F, Braidot E, Filippi A, Petruzzellis F, Tomasella M, Tromba G, Pizzuto M, Nardini A, Secchi F, Casolo V. Contrasting Responses of Two Grapevine Cultivars to Drought: The Role of Non-structural Carbohydrates in Xylem Hydraulic Recovery. PLANT & CELL PHYSIOLOGY 2023; 64:920-932. [PMID: 37384580 DOI: 10.1093/pcp/pcad066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Xylem embolism is one of the possible outcomes of decreasing xylem pressure when plants face drought. Recent studies have proposed a role for non-structural carbohydrates (NSCs) in osmotic pressure generation, required for refilling embolized conduits. Potted cuttings of grapevine Grenache and Barbera, selected for their adaptation to different climatic conditions, were subjected to a drought stress followed by re-irrigation. Stem embolism rate and its recovery were monitored in vivo by X-ray micro-computed tomography (micro-CT). The same plants were further analyzed for xylem conduit dimension and NSC content. Both cultivars significantly decreased Ψpd in response to drought and recovered from xylem embolism after re-irrigation. However, although the mean vessel diameter was similar between the cultivars, Barbera was more prone to embolism. Surprisingly, vessel diameter was apparently reduced during recovery in this cultivar. Hydraulic recovery was linked to sugar content in both cultivars, showing a positive relationship between soluble NSCs and the degree of xylem embolism. However, when starch and sucrose concentrations were considered separately, the relationships showed cultivar-specific and contrasting trends. We showed that the two cultivars adopted different NSC-use strategies in response to drought, suggesting two possible scenarios driving conduit refilling. In Grenache, sucrose accumulation seems to be directly linked to embolism formation and possibly sustains refilling. In Barbera, maltose/maltodextrins could be involved in a conduit recovery strategy via the formation of cell-wall hydrogels, likely responsible for the reduction of conduit lumen detected by micro-CT.
Collapse
Affiliation(s)
- Marco Vuerich
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Via delle Scienze 91, Udine 33100, Italy
| | - Elisa Petrussa
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Via delle Scienze 91, Udine 33100, Italy
| | - Francesco Boscutti
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Via delle Scienze 91, Udine 33100, Italy
| | - Enrico Braidot
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Via delle Scienze 91, Udine 33100, Italy
| | - Antonio Filippi
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Via delle Scienze 91, Udine 33100, Italy
- Dipartimento di Area Medica, Università di Udine, Piazzale Kolbe 4, Udine 33100, Italy
| | - Francesco Petruzzellis
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| | - Martina Tomasella
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| | - Giuliana Tromba
- Elettra-Sincrotrone Trieste, Area Science Park, Basovizza, Trieste 34149, Italy
| | - Mauro Pizzuto
- Vivai Cooperativi Rauscedo, Via Udine, 39, Rauscedo (PN) 33095, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| | - Francesca Secchi
- Dipartimento di Scienze Agrarie, Forestali, Alimentari (DISAFA), Università di Torino, Largo Paolo Braccini 2, Grugliasco (TO) 10095, Italy
| | - Valentino Casolo
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Via delle Scienze 91, Udine 33100, Italy
| |
Collapse
|
8
|
Blumstein M, Gersony J, Martínez-Vilalta J, Sala A. Global variation in nonstructural carbohydrate stores in response to climate. GLOBAL CHANGE BIOLOGY 2023; 29:1854-1869. [PMID: 36583374 DOI: 10.1111/gcb.16573] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/26/2022] [Indexed: 05/28/2023]
Abstract
Woody plant species store nonstructural carbohydrates (NSCs) for many functions. While known to buffer against fluctuations in photosynthetic supply, such as at night, NSC stores are also thought to buffer against environmental extremes, such as drought or freezing temperatures by serving as either back-up energy reserves or osmolytes. However, a clear picture of how NSCs are shaped by climate is still lacking. Here, we update and leverage a unique global database of seasonal NSC storage measurements to examine whether maximum total NSC stores and the amount of soluble sugars are associated with clinal patterns in low temperatures or aridity, indicating they may confer a benefit under freezing or drought conditions. We examine patterns using the average climate at each study site and the unique climatic conditions at the time and place in which the sample was taken. Altogether, our results support the idea that NSC stores act as critical osmolytes. Soluble Sugars increase with both colder and drier conditions in aboveground tissues, indicating they can plastically increase a plants' tolerance of cold or arid conditions. However, maximum total NSCs increased, rather than decreased, with average site temperature and had no relationship to average site aridity. This result suggests that the total amount of NSC a plant stores may be more strongly determined by its capacity to assimilate carbon than by environmental stress. Thus, NSCs are unlikely to serve as reservoir of energy. This study is the most comprehensive synthesis to date of global NSC variation in relation to climate and supports the idea that NSC stores likely serve as buffers against environmental stress. By clarifying their role in cold and drought tolerance, we improve our ability to predict plant response to environment.
Collapse
Affiliation(s)
- Meghan Blumstein
- Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jessica Gersony
- Department of Natural Resources, University of New Hampshire, Durham, New Hampshire, USA
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Jordi Martínez-Vilalta
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
9
|
Kabeya D, Han Q. Seasonal patterns of sugar components and their functions in branches of
Fagus crenata
in association with three reproduction events. Ecol Res 2022. [DOI: 10.1111/1440-1703.12370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Daisuke Kabeya
- Department of Plant Ecology Forestry and Forest Products Research Institute (FFPRI) Tsukuba Japan
| | - Qingmin Han
- Department of Plant Ecology Forestry and Forest Products Research Institute (FFPRI) Tsukuba Japan
| |
Collapse
|
10
|
Cramer JF, Miller ET, Ko MC, Liang Q, Cockburn G, Nakagita T, Cardinale M, Fusani L, Toda Y, Baldwin MW. A single residue confers selective loss of sugar sensing in wrynecks. Curr Biol 2022; 32:4270-4278.e5. [PMID: 35985327 DOI: 10.1016/j.cub.2022.07.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/01/2022] [Accepted: 07/21/2022] [Indexed: 12/14/2022]
Abstract
Sensory receptors evolve, and changes to their response profiles can directly impact sensory perception and affect diverse behaviors, from mate choice to foraging decisions.1-3 Although receptor sensitivities can be highly contingent on changes occurring early in a lineage's evolutionary history,4 subsequent shifts in a species' behavior and ecology may exert selective pressure to modify and even reverse sensory receptor capabilities.5-7 Neither the extent to which sensory reversion occurs nor the mechanisms underlying such shifts is well understood. Using receptor profiling and behavioral tests, we uncover both an early gain and an unexpected subsequent loss of sugar sensing in woodpeckers, a primarily insectivorous family of landbirds.8,9 Our analyses show that, similar to hummingbirds10 and songbirds,4 the ancestors of woodpeckers repurposed their T1R1-T1R3 savory receptor to detect sugars. Importantly, whereas woodpeckers seem to have broadly retained this ability, our experiments demonstrate that wrynecks (an enigmatic ant-eating group sister to all other woodpeckers) selectively lost sugar sensing through a novel mechanism involving a single amino acid change in the T1R3 transmembrane domain. The identification of this molecular microswitch responsible for a sensory shift in taste receptors provides an example of the molecular basis of a sensory reversion in vertebrates and offers novel insights into structure-function relationships during sensory receptor evolution.
Collapse
Affiliation(s)
- Julia F Cramer
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - Eliot T Miller
- Macaulay Library, Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| | - Meng-Ching Ko
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - Qiaoyi Liang
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - Glenn Cockburn
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - Tomoya Nakagita
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan; Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Massimiliano Cardinale
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, 453 30 Lysekil, Sweden
| | - Leonida Fusani
- Austrian Ornithological Centre, Konrad-Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, 1160 Wien, Austria; Department of Behavioural and Cognitive Biology, University of Vienna, 1160 Wien, Austria
| | - Yasuka Toda
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Maude W Baldwin
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany.
| |
Collapse
|
11
|
Oberleitner F, Hartmann H, Hasibeder R, Huang J, Losso A, Mayr S, Oberhuber W, Wieser G, Bahn M. Amplifying effects of recurrent drought on the dynamics of tree growth and water use in a subalpine forest. PLANT, CELL & ENVIRONMENT 2022; 45:2617-2635. [PMID: 35610775 DOI: 10.1111/pce.14369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/16/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Despite recent advances in our understanding of drought impacts on tree functioning, we lack knowledge about the dynamic responses of mature trees to recurrent drought stress. At a subalpine forest site, we assessed the effects of three years of recurrent experimental summer drought on tree growth and water relations of Larix decidua Mill. and Picea abies (L. Karst.), two common European conifers representative for contrasting water-use strategies. We combined dendrometer and xylem sap flow measurements with analyses of xylem anatomy and non-structural carbohydrates and their carbon-isotope composition. Recurrent drought increased the effects of soil moisture limitation on growth and xylogenesis, and to a lesser extent on xylem sap flow. P. abies showed stronger growth responses to recurrent drought, reduced starch concentrations in branches and increased water-use efficiency when compared to L. decidua. Despite comparatively larger maximum tree water deficits than in P. abies, xylem formation of L. decidua was less affected by drought, suggesting a stronger capacity of rehydration or lower cambial turgor thresholds for growth. Our study shows that recurrent drought progressively increases impacts on mature trees of both species, which suggests that in a future climate increasing drought frequency could impose strong legacies on carbon and water dynamics of treeline species.
Collapse
Affiliation(s)
| | - Henrik Hartmann
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Roland Hasibeder
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Jianbei Huang
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Adriano Losso
- Department of Botany, University of Innsbruck, Innsbruck, Austria
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Walter Oberhuber
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Gerhard Wieser
- Department of Botany, University of Innsbruck, Innsbruck, Austria
- Department of Alpine Timberline Ecophysiology, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Innsbruck, Austria
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Changes in the Differentiation Program of Birch Cambial Derivatives following Trunk Girdling. FORESTS 2022. [DOI: 10.3390/f13081171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The mechanisms regulating the tree trunk radial growth can be studied in original experiments. One technique for studying cambium activity (the meristem involved in radial growth) under conditions of an increased photoassimilate level is trunk girdling. We girdled the trunks of 17- to 22-year-old silver birch plants (Betula pendula Roth var. pendula) during the active growth period and collected xylem and phloem samples at two height levels (1 cm and 35 cm) above girdle, 10, 20, and 30 days after girdling. We investigated the changes that occurred at the anatomical level, as well as the activities of sucrose-metabolizing enzymes and antioxidant-system enzymes and the expression of genes that encode proteins involved in sucrose and auxin transport and metabolism. A moderate increase in photoassimilates (35 cm above the girdle) resulted in a change in the ratio of phloem to xylem increments and an increase in the proportion of parenchyma in the conducting tissues. The increase of photoassimilates above the level at which they can be used in the processes of normal tissue growth and development (1 cm above the girdle) led to xylogenesis suppression and the stimulation of phloem formation, a significant increase in the parenchyma proportion in the conducting tissues, and formation of large sclereid complexes. The differentiation of parenchyma and sclereid cells coincided with biochemical and molecular markers of abnormal conducting tissue formation in Karelian birch, which are also characterized by high proportions of parenchyma and sclereid near the cambium. The results obtained are important in understanding the cambium responses to the photoassimilate distribution changes and estimating tree productivity and survival under changing environmental conditions.
Collapse
|
13
|
Liang G, Li Y, Wang P, Jiao S, Wang H, Mao J, Chen B. VaAPL1 Promotes Starch Synthesis to Constantly Contribute to Soluble Sugar Accumulation, Improving Low Temperature Tolerance in Arabidopsis and Tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:920424. [PMID: 35812933 PMCID: PMC9257282 DOI: 10.3389/fpls.2022.920424] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/02/2022] [Indexed: 05/30/2023]
Abstract
ADP-glucose pyrophosphorylase (AGPase) is a key rate-limiting enzyme involved in starch synthesis. APL1, an AGPase large subunit, plays an important role in the growth and development of grapes; however, its function in withstanding low temperature (LT) remains elusive. Hence, VaAPL1 was cloned from Vitis amurensis (Zuoshan I), and its function was characterized. The gene was highly expressed in the phloem of V. amurensis during winter dormancy (0, -5, and - 10°C). Phylogenetic relationships demonstrated that VaAPL1 was closely genetic related to SlAPL1 (from Solanum lycopersicum), and clustered into I group. Further, VaAPL1 was ectopically expressed in Arabidopsis thaliana (ecotype Columbia, Col) and tomato ("Micro-Tom" tomato) to characterize its function under LT. Compared with Col, the average survival rate of VaAPL1-overexpressing A. thaliana exceeded 75.47% after freezing treatment. Moreover, reactive oxygen species (ROS) content decreased in VaAPL1-overexpressing A. thaliana and tomato plants under LT stress. The activities of AGPase, and starch contents in VaAPL1-overexpressing A. thaliana were higher than in Col after LT stress. The contents of sucrose and glucose were accumulated in overexpressing plants compared with wild-type at 0 h and 24 h after LT stress. Transcriptome sequencing of overexpressing tomato plants revealed involvement in sugar metabolism and the hormone signal pathway, and Ca2+ signaling pathway-related genes were up-regulated. Hence, these results suggest that overexpression of VaAPL1 not only ensured sufficient starch converting into soluble sugars to maintain cell osmotic potential and provided energy, but also indirectly activated signal pathways involved in LT to enhance plant tolerance.
Collapse
|
14
|
Suwanchaikasem P, Idnurm A, Selby-Pham J, Walker R, Boughton BA. Root-TRAPR: a modular plant growth device to visualize root development and monitor growth parameters, as applied to an elicitor response of Cannabis sativa. PLANT METHODS 2022; 18:46. [PMID: 35397608 PMCID: PMC8994333 DOI: 10.1186/s13007-022-00875-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/14/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND Plant growth devices, for example, rhizoponics, rhizoboxes, and ecosystem fabrication (EcoFAB), have been developed to facilitate studies of plant root morphology and plant-microbe interactions in controlled laboratory settings. However, several of these designs are suitable only for studying small model plants such as Arabidopsis thaliana and Brachypodium distachyon and therefore require modification to be extended to larger plant species like crop plants. In addition, specific tools and technical skills needed for fabricating these devices may not be available to researchers. Hence, this study aimed to establish an alternative protocol to generate a larger, modular and reusable plant growth device based on different available resources. RESULTS Root-TRAPR (Root-Transparent, Reusable, Affordable three-dimensional Printed Rhizo-hydroponic) system was successfully developed. It consists of two main parts, an internal root growth chamber and an external structural frame. The internal root growth chamber comprises a polydimethylsiloxane (PDMS) gasket, microscope slide and acrylic sheet, while the external frame is printed from a three-dimensional (3D) printer and secured with nylon screws. To test the efficiency and applicability of the system, industrial hemp (Cannabis sativa) was grown with or without exposure to chitosan, a well-known plant elicitor used for stimulating plant defense. Plant root morphology was detected in the system, and plant tissues were easily collected and processed to examine plant biological responses. Upon chitosan treatment, chitinase and peroxidase activities increased in root tissues (1.7- and 2.3-fold, respectively) and exudates (7.2- and 21.6-fold, respectively). In addition, root to shoot ratio of phytohormone contents were increased in response to chitosan. Within 2 weeks of observation, hemp plants exhibited dwarf growth in the Root-TRAPR system, easing plant handling and allowing increased replication under limited growing space. CONCLUSION The Root-TRAPR system facilitates the exploration of root morphology and root exudate of C. sativa under controlled conditions and at a smaller scale. The device is easy to fabricate and applicable for investigating plant responses toward elicitor challenge. In addition, this fabrication protocol is adaptable to study other plants and can be applied to investigate plant physiology in different biological contexts, such as plant responses against biotic and abiotic stresses.
Collapse
Affiliation(s)
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Jamie Selby-Pham
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia
- Nutrifield Pty Ltd, Melbourne, VIC, 3020, Australia
| | - Robert Walker
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Berin A Boughton
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia
- Australian National Phenome Centre, Murdoch University, Perth, WA, 6150, Australia
| |
Collapse
|
15
|
Peltier DMP, Guo J, Nguyen P, Bangs M, Wilson M, Samuels-Crow K, Yocom LL, Liu Y, Fell MK, Shaw JD, Auty D, Schwalm C, Anderegg WRL, Koch GW, Litvak ME, Ogle K. Temperature memory and non-structural carbohydrates mediate legacies of a hot drought in trees across the southwestern USA. TREE PHYSIOLOGY 2022; 42:71-85. [PMID: 34302167 DOI: 10.1093/treephys/tpab091] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Trees are long-lived organisms that integrate climate conditions across years or decades to produce secondary growth. This integration process is sometimes referred to as 'climatic memory.' While widely perceived, the physiological processes underlying this temporal integration, such as the storage and remobilization of non-structural carbohydrates (NSC), are rarely explicitly studied. This is perhaps most apparent when considering drought legacies (perturbed post-drought growth responses to climate), and the physiological mechanisms underlying these lagged responses to climatic extremes. Yet, drought legacies are likely to become more common if warming climate brings more frequent drought. To quantify the linkages between drought legacies, climate memory and NSC, we measured tree growth (via tree ring widths) and NSC concentrations in three dominant species across the southwestern USA. We analyzed these data with a hierarchical mixed effects model to evaluate the time-scales of influence of past climate (memory) on tree growth. We then evaluated the role of climate memory and the degree to which variation in NSC concentrations were related to forward-predicted growth during the hot 2011-2012 drought and subsequent 4-year recovery period. Populus tremuloides exhibited longer climatic memory compared to either Pinus edulis or Juniperus osteosperma, but following the 2011-2012 drought, P. tremuloides trees with relatively longer memory of temperature conditions showed larger (more negative) drought legacies. Conversely, Pinus edulis trees with longer temperature memory had smaller (less negative) drought legacies. For both species, higher NSC concentrations followed more negative (larger) drought legacies, though the relevant NSC fraction differed between P. tremuloides and P. edulis. Our results suggest that differences in tree NSC are also imprinted upon tree growth responses to climate across long time scales, which also underlie tree resilience to increasingly frequent drought events under climate change.
Collapse
Affiliation(s)
- Drew M P Peltier
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Jessica Guo
- Communications and Cyber Technologies, University of Arizona, Tucson, AZ 85721, USA
| | - Phiyen Nguyen
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Michael Bangs
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Michelle Wilson
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Kimberly Samuels-Crow
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Larissa L Yocom
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Yao Liu
- Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Michael K Fell
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - John D Shaw
- USDA Forest Service, Rocky Mountain Research Station, Ogden, UT 84401, USA
| | - David Auty
- School of Forestry, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Christopher Schwalm
- Woods Hole Research Center, Falmouth, MA 02540, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - William R L Anderegg
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - George W Koch
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Marcy E Litvak
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Kiona Ogle
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
16
|
Schoonmaker AL, Hillabrand RM, Lieffers VJ, Chow PS, Landhäusser SM. Seasonal dynamics of non-structural carbon pools and their relationship to growth in two boreal conifer tree species. TREE PHYSIOLOGY 2021; 41:1563-1582. [PMID: 33554258 DOI: 10.1093/treephys/tpab013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
In an attempt to comprehensively study the dynamics of non-structural carbon compounds (NCCs), we measured the seasonal changes of soluble sugars, starch, lipids and sugar alcohols in the leaves, branches, stem and roots of the fast-growing Pinus contorta (Loudon) (pine) and slow-growing Picea glauca (Moench) Voss (spruce) trees growing in a boreal climate. In addition to measuring the seasonal concentrations of these compounds, the relative contribution of these compounds to the total NCC pool within the organs of trees (~8 m tall) was estimated and compared across different phenological and growth stages. Both species showed large seasonal shifts from starch to sugars from spring to fall in nearly all organs and tissues; most likely an adaptation to the cold winters. For both species, the total fluctuation of sugar + starch across the year (i.e., the difference between the minimum and maximum observed across collection times) was estimated to be between 1.6 and 1.8 kg for all NCCs. The fluctuation, however, was 1.40 times greater than the minimum reserves in pine, while only 0.72 times the minimum reserves in spruce. By tissue type, NCC fluctuations were greatest in the roots of both species. Roots showed a large build-up of reserves in late spring, but these reserves were depleted over summer and fall. Storage reserves in needles and branches declined over the summer, and this decline may be linked to the sink strength of the stem during diameter growth. Some notable highlights of this holistic study: a late winter build-up of sugars in the stem xylem of both species, but especially spruce; and an increase in sugar alcohols in the bark of spruce in very late winter, which could indicate mobilization to support early growth in spring and high lipid reserves in the bark of pine, which appeared not to be impacted by seasonal changes between summer and winter. Collectively, these observations point toward a more conservative NCC reserve strategy in spruce compared with pine, which is consistent with its stress tolerance and greater longevity.
Collapse
Affiliation(s)
- A L Schoonmaker
- Department of Renewable Resources, University of Alberta, Edmonton, Canada
- Centre for Boreal Research, Northern Alberta Institute of Technology, 8102 99 avenue, Peace River, AB T8S1R2, Canada
| | - R M Hillabrand
- Department of Renewable Resources, University of Alberta, Edmonton, Canada
| | - V J Lieffers
- Department of Renewable Resources, University of Alberta, Edmonton, Canada
| | - P S Chow
- Department of Renewable Resources, University of Alberta, Edmonton, Canada
| | - S M Landhäusser
- Department of Renewable Resources, University of Alberta, Edmonton, Canada
| |
Collapse
|
17
|
Dobbert S, Pape R, Löffler J. Contrasting growth response of evergreen and deciduous arctic‐alpine shrub species to climate variability. Ecosphere 2021. [DOI: 10.1002/ecs2.3688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Svenja Dobbert
- Department of Geography University of Bonn Meckenheimer Allee 166 Bonn D‐53115 Germany
| | - Roland Pape
- Department of Natural Sciences and Environmental Health University of South‐Eastern Norway Gullbringvegen 36 Bø N‐3800 Norway
| | - Jörg Löffler
- Department of Geography University of Bonn Meckenheimer Allee 166 Bonn D‐53115 Germany
| |
Collapse
|
18
|
Long RW, Dudley TL, D'Antonio CM, Grady KC, Bush SE, Hultine KR. Spenders versus savers: Climate‐induced carbon allocation trade‐offs in a recently introduced woody plant. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Randall W. Long
- Department of Ecology, Evolution and Marine Biology University of California‐Santa Barbara Santa Barbara CA USA
| | - Tom L. Dudley
- Marine Science Institute University of California‐Santa Barbara Santa Barbara CA USA
| | - Carla M. D'Antonio
- Department of Ecology, Evolution and Marine Biology University of California‐Santa Barbara Santa Barbara CA USA
| | - Kevin C. Grady
- School of Forestry Northern Arizona University Flagstaff AZ USA
| | - Susan E. Bush
- Department of Research, Conservation and Collections Desert Botanical Garden Phoenix AZ USA
| | - Kevin R. Hultine
- Department of Research, Conservation and Collections Desert Botanical Garden Phoenix AZ USA
| |
Collapse
|
19
|
Epron D, Kamakura M, Azuma W, Dannoura M, Kosugi Y. Diurnal variations in the thickness of the inner bark of tree trunks in relation to xylem water potential and phloem turgor. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2021; 2:112-124. [PMID: 37283860 PMCID: PMC10168075 DOI: 10.1002/pei3.10045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 06/08/2023]
Abstract
The inner bark plays important roles in tree stems, including radial exchange of water with the xylem and translocation of carbohydrates. Both processes affect the water content and the thickness of the inner bark on a diurnal basis. For the first time, we simultaneously measured the diurnal variations in the inner bark thickness of hinoki cypress (Chamaecyparis obtusa) by using point dendrometers and those of local xylem potential by using stem psychrometers located next to the dendrometers to determine how these variations were related to each other, to phloem turgor and carbohydrate transport. We also estimated the axial hydrostatic pressure gradient by measuring the osmolality of the sap extracted from the inner bark. The inner bark shrunk during the day and swelled during the night with an amplitude related to day-to-day and seasonal variations in climate. The relationship between changes in xylem water potential and inner bark thickness exhibited a hysteresis loop during the day with a median lag of 2 h. A phloem turgor-related signal can be retrieved from the diurnal variations in the inner bark thickness, which was higher at the upper than at the lower position along the trunk. However, a downward hydrostatic pressure gradient was only observed at dawn, suggesting diurnal variations in the phloem sap flow velocity.
Collapse
Affiliation(s)
- Daniel Epron
- Graduate School of AgricultureKyoto UniversityKyotoJapan
- AgroParisTechINRAEUMR SILVAUniversité de LorraineNancyFrance
| | - Mai Kamakura
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Wakana Azuma
- Graduate School of Agricultural ScienceKobe UniversityKobeJapan
| | | | - Yoshiko Kosugi
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| |
Collapse
|
20
|
Herrera-Ramírez D, Sierra CA, Römermann C, Muhr J, Trumbore S, Silvério D, Brando PM, Hartmann H. Starch and lipid storage strategies in tropical trees relate to growth and mortality. THE NEW PHYTOLOGIST 2021; 230:139-154. [PMID: 33507548 DOI: 10.1111/nph.17239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Non-structural carbon (NSC) storage (i.e. starch, soluble sugras and lipids) in tree stems play important roles in metabolism and growth. Their spatial distribution in wood may explain species-specific differences in carbon storage dynamics, growth and survival. However, quantitative information on the spatial distribution of starch and lipids in wood is sparse due to methodological limitations. Here we assessed differences in wood NSC and lipid storage between tropical tree species with different growth and mortality rates and contrasting functional types. We measured starch and soluble sugars in wood cores up to 4 cm deep into the stem using standard chemical quantification methods and histological slices stained with Lugol's iodine. We also detected neutral lipids using histological slices stained with Oil-Red-O. The histological method allowed us to group individuals into two categories according to their starch storage strategy: fiber-storing trees and parenchyma-storing trees. The first group had a bigger starch pool, slower growth and lower mortality rates than the second group. Lipid storage was found in wood parenchyma in five species and was related to low mortality rates. The quantification of the spatial distribution of starch and lipids in wood improves our understanding of NSC dynamics in trees and reveals additional dimensions of tree growth and survival strategies.
Collapse
Affiliation(s)
| | - Carlos A Sierra
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str 10, Jena, 07745, Germany
| | - Christine Römermann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, D-04103, Germany
- Department of Bioclimatology, Georg August University Göttingen, Büsgenweg 2, Göttingen, 37077, Germany
| | - Jan Muhr
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str 10, Jena, 07745, Germany
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Philosophenweg 16, Jena, 07743, Germany
| | - Susan Trumbore
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str 10, Jena, 07745, Germany
| | - Divino Silvério
- Department of Biology, Universidade Federal Rural da Amazônia - UFRA, Capitão Poço, Pará, 68650-000, Brazil
| | - Paulo M Brando
- Department of Earth System Science, University of California, Irvine, CA, 92697, USA
- Instituto de Pesquisa Ambiental da Amazônia, Brasília, DF, 70863-520, Brazil
- Woodwell Climate Research Center, Falmouth, MA, 02540, USA
| | - Henrik Hartmann
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str 10, Jena, 07745, Germany
| |
Collapse
|
21
|
Mullin M, Klutsch JG, Cale JA, Hussain A, Zhao S, Whitehouse C, Erbilgin N. Primary and Secondary Metabolite Profiles of Lodgepole Pine Trees Change with Elevation, but Not with Latitude. J Chem Ecol 2021; 47:280-293. [PMID: 33651224 DOI: 10.1007/s10886-021-01249-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/17/2020] [Accepted: 01/15/2021] [Indexed: 12/01/2022]
Abstract
Climate change has a large influence on plant functional and phenotypic traits including plant primary and secondary metabolites. One well-established approach to investigating the variation in plant metabolites involves studying plant populations along elevation and latitude gradients. We considered how two space-for-time climate change gradients (elevation and latitude) influence carbohydrate reserves (soluble sugars, starches) and secondary metabolites (monoterpenes, diterpene resin acids) of lodgepole pine trees in western Canada. We were particularly interested in the relationship of terpenes and carbohydrates with a wide range of tree, site, and climatic factors. We found that only elevation had a strong influence on the expression of both terpenes and carbohydrates of trees. Specifically, as elevation increased, concentrations of monoterpenes and diterpenes generally increased and soluble sugars (glucose, sucrose, total sugars) decreased. In contrast, latitude had no impact on either of terpenes or carbohydrates. Furthermore, we found a positive relationship between concentrations of starch and total terpenes and diterpenes in the elevation study; whereas neither starches nor sugars were correlated to terpenes in the latitude study. Similarly, both terpenes and carbohydrates had a much greater number of significant correlations to site characteristics such as slope, basal area index, and sand basal area, in the elevational than in the latitude study. Overall, these results support the conclusion that both biotic and abiotic factors likely drive the patterns of primary and secondary metabolite profiles of lodgepole pine along geographical gradients. Also, presence of a positive relationship between terpenes and starches suggests an interaction between primary ad secondary metabolites of lodgepole pine trees.
Collapse
Affiliation(s)
- Melanie Mullin
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - J G Klutsch
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - J A Cale
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - A Hussain
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - S Zhao
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - C Whitehouse
- Alberta Agriculture and Forestry, 9920 108 Street, Edmonton, Alberta, T5K 2M4, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada.
| |
Collapse
|
22
|
Peters RL, Steppe K, Cuny HE, De Pauw DJW, Frank DC, Schaub M, Rathgeber CBK, Cabon A, Fonti P. Turgor - a limiting factor for radial growth in mature conifers along an elevational gradient. THE NEW PHYTOLOGIST 2021; 229:213-229. [PMID: 32790914 DOI: 10.1111/nph.16872] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/29/2020] [Indexed: 05/17/2023]
Abstract
A valid representation of intra-annual wood formation processes in global vegetation models is vital for assessing climate change impacts on the forest carbon stock. Yet, wood formation is generally modelled with photosynthesis, despite mounting evidence that cambial activity is rather directly constrained by limiting environmental factors. Here, we apply a state-of-the-art turgor-driven growth model to simulate 4 yr of hourly stem radial increment from Picea abies (L.) Karst. and Larix decidua Mill. growing along an elevational gradient. For the first time, wood formation observations were used to validate weekly to annual stem radial increment simulations, while environmental measurements were used to assess the climatic constraints on turgor-driven growth. Model simulations matched the observed timing and dynamics of wood formation. Using the detailed model outputs, we identified a strict environmental regulation on stem growth (air temperature > 2°C and soil water potential > -0.6 MPa). Warmer and drier summers reduced the growth rate as a result of turgor limitation despite warmer temperatures being favourable for cambial activity. These findings suggest that turgor is a central driver of the forest carbon sink and should be considered in next-generation vegetation models, particularly in the context of global warming and increasing frequency of droughts.
Collapse
Affiliation(s)
- Richard L Peters
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf, CH-8903, Switzerland
- Department of Environmental Sciences - Botany, Basel University, Schönbeinstrasse 6, Basel, CH-4056, Switzerland
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, B-9000, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, B-9000, Belgium
| | - Henri E Cuny
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf, CH-8903, Switzerland
- Institut National de l'Information Géographique et Forestière (IGN), 1 rue des blanches terres, Champigneulles, 54115, France
| | - Dirk J W De Pauw
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, B-9000, Belgium
| | - David C Frank
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf, CH-8903, Switzerland
- Laboratory of Tree-Ring Research, 1215 E. Lowell Street, Tucson, AZ, 8572, USA
| | - Marcus Schaub
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf, CH-8903, Switzerland
| | | | - Antoine Cabon
- Joint Research Unit CTFC - AGROTECNIO, Solsona, E-25280, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, E-08193, Spain
| | - Patrick Fonti
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf, CH-8903, Switzerland
| |
Collapse
|
23
|
Rosell JA, Piper FI, Jiménez-Vera C, Vergílio PCB, Marcati CR, Castorena M, Olson ME. Inner bark as a crucial tissue for non-structural carbohydrate storage across three tropical woody plant communities. PLANT, CELL & ENVIRONMENT 2021; 44:156-170. [PMID: 33034374 DOI: 10.1111/pce.13903] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 05/29/2023]
Abstract
Non-structural carbohydrates (NSC) are crucial for forest resilience, but little is known regarding the role of bark in NSC storage. However, bark's abundance in woody stems and its large living fraction make it potentially key for NSC storage. We quantified total NSC, soluble sugar (SS) and starch concentrations in the most living region of bark (inner bark, IB), and sapwood of twigs, trunks and roots of 45 woody species from three contrasting tropical climates spanning global extremes of bark diversity and wide phylogenetic diversity. NSC concentrations were similar (total NSC, starch) or higher (SS) in IB than wood, with concentrations co-varying strongly. NSC concentrations varied widely across organs and species within communities and were not significantly affected by climate, leaf habit or the presence of photosynthetic bark. Starch concentration tended to increase with density, but only in wood. IB contributed substantially to NSC storage, accounting for 17-36% of total NSC, 23-47% of SS and 15-33% of starch pools. Further examination of the drivers of variation in IB NSC concentration, and taking into account the substantial contribution of IB to NSC pools, will be crucial to understand the role of storage in plant environmental adaptation.
Collapse
Affiliation(s)
- Julieta A Rosell
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Frida I Piper
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile
| | - Cipatli Jiménez-Vera
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Paula C B Vergílio
- Colegiado de Ciências Biológicas, Universidade Estadual do Paraná (UNESPAR), Paranaguá, Brazil
- Laboratório de Anatomia da Madeira, Departamento de Ciência Florestal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), São Paulo, Brazil
| | - Carmen R Marcati
- Laboratório de Anatomia da Madeira, Departamento de Ciência Florestal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), São Paulo, Brazil
| | - Matiss Castorena
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Mark E Olson
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
24
|
Peters RL, Miranda JC, Schönbeck L, Nievergelt D, Fonti MV, Saurer M, Stritih A, Fonti P, Wermelinger B, von Arx G, Lehmann MM. Tree physiological monitoring of the 2018 larch budmoth outbreak: preference for leaf recovery and carbon storage over stem wood formation in Larix decidua. TREE PHYSIOLOGY 2020; 40:1697-1711. [PMID: 32722795 DOI: 10.1093/treephys/tpaa087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 05/17/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Insect defoliation impacts forest productivity worldwide, highlighting the relevance of plant-insect interactions. The larch budmoth (Zeiraphera griseana Hübner) is one of the most extensively studied defoliators, where numerous tree ring-based analyses on its host (Larix decidua Mill.) have aided in identifying outbreak dynamics over the past millennia. Yet, outbreaks have been widely absent after the early 1980s, and little is known about the in situ tree physiological responses and the allocation of carbon resources during and after defoliation. In summer 2018, we tracked an ongoing larch budmoth outbreak in a well-studied larch forest in the Swiss Alps. We performed biweekly monitoring on an affected and unaffected site using a unique combination of xylogenesis observations, measurements of non-structural carbohydrates, isotopic analysis of needle assimilates and ground-based and remote-sensed leaf trait observations. The budmoth induced a defoliation that lasted 40 days and could be detected by satellite observations. Soluble sugars significantly decreased in needles and stem phloem of the defoliated trees, while starch levels remained stable in the stem and root xylem compared to the control. Carbon and oxygen isotope ratios in needle assimilates indicated that neither photosynthetic assimilation rates nor stomatal conductance was different between sites before, during and after the outbreak. Defoliated trees ceased cell wall thickening 17 days earlier than unaffected trees, showing the earliest halt of ring formation recorded from 2007 untill 2013 and causing significant thinner cell walls, particularly in the latewood. No significant differences were found for cell enlargement rates and ring width. Our study revealed that an outbreak causes a downregulation of cell wall thickening first, while no starch is mobilized or leaf physiology is adjusted to compensate for the reduced carbon source due to defoliation. Our observations suggest that affected larch trees prioritize leaf recovery and carbon storage over wood biomass development.
Collapse
Affiliation(s)
- Richard L Peters
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
- Department of Plants and Crops, Faculty of Bioscience Engineering, Laboratory of Plant Ecology, Ghent University, Coupure links 653, Ghent B-9000, Belgium
| | - Jose Carlos Miranda
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
- Forest Genetics and Ecophysiology Research Group, School of Forestry Engineering, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - Leonie Schönbeck
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
| | - Daniel Nievergelt
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
| | - Marina V Fonti
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
- Institute of Ecology and Geography, Siberian Federal University, 79 Svobodny pr., Krasnoyarsk 660041, Russia
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
| | - Ana Stritih
- ETH Zurich, Institute for Landscape and Spatial Development, Planning of Landscape and Urban Systems (PLUS), Stefano-Franscini Platz 5, Zürich 8093, Switzerland
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, Davos Dorf 7260, Switzerland
| | - Patrick Fonti
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
| | - Beat Wermelinger
- Forest Health and Biotic Interactions, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
| | - Georg von Arx
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
| | - Marco M Lehmann
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
| |
Collapse
|
25
|
Zweifel R, Etzold S, Sterck F, Gessler A, Anfodillo T, Mencuccini M, von Arx G, Lazzarin M, Haeni M, Feichtinger L, Meusburger K, Knuesel S, Walthert L, Salmon Y, Bose AK, Schoenbeck L, Hug C, De Girardi N, Giuggiola A, Schaub M, Rigling A. Determinants of legacy effects in pine trees - implications from an irrigation-stop experiment. THE NEW PHYTOLOGIST 2020; 227:1081-1096. [PMID: 32259280 PMCID: PMC7383578 DOI: 10.1111/nph.16582] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/24/2020] [Indexed: 05/02/2023]
Abstract
Tree responses to altered water availability range from immediate (e.g. stomatal regulation) to delayed (e.g. crown size adjustment). The interplay of the different response times and processes, and their effects on long-term whole-tree performance, however, is hardly understood. Here we investigated legacy effects on structures and functions of mature Scots pine in a dry inner-Alpine Swiss valley after stopping an 11-yr lasting irrigation treatment. Measured ecophysiological time series were analysed and interpreted with a system-analytic tree model. We found that the irrigation stop led to a cascade of downregulations of physiological and morphological processes with different response times. Biophysical processes responded within days, whereas needle and shoot lengths, crown transparency, and radial stem growth reached control levels after up to 4 yr only. Modelling suggested that organ and carbon reserve turnover rates play a key role for a tree's responsiveness to environmental changes. Needle turnover rate was found to be most important to accurately model stem growth dynamics. We conclude that leaf area and its adjustment time to new conditions is the main determinant for radial stem growth of pine trees as the transpiring area needs to be supported by a proportional amount of sapwood, despite the growth-inhibiting environmental conditions.
Collapse
Affiliation(s)
- Roman Zweifel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Sophia Etzold
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Frank Sterck
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
- Forest Ecology and Management GroupWageningen University6701Wageningenthe Netherlands
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH Zurich8092ZurichSwitzerland
| | - Tommaso Anfodillo
- Dipartimento Territorio e Sistemi Agro‐ForestaliUniversity of Padova35020LegnaroItaly
| | - Maurizio Mencuccini
- ICREA08010BarcelonaSpain
- CREAFUniversidad Autonoma de Barcelona08193BarcelonaSpain
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Martina Lazzarin
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
- Horticulture and Product PhysiologyWageningen UniversityWageningen6701the Netherlands
| | - Matthias Haeni
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Linda Feichtinger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Katrin Meusburger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Simon Knuesel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Lorenz Walthert
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Yann Salmon
- Institute for Atmospheric and Earth System Research/PhysicsUniversity of Helsinki00100HelsinkiFinland
- Institute for Atmospheric and Earth System Research/Forest SciencesUniversity of Helsinki00100HelsinkiFinland
| | - Arun K. Bose
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
- Forestry and Wood Technology DisciplineKhulna University9208KhulnaBangladesh
| | - Leonie Schoenbeck
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Christian Hug
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Nicolas De Girardi
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Arnaud Giuggiola
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Andreas Rigling
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| |
Collapse
|
26
|
Domisch T, Qian J, Sondej I, Martz F, Lehto T, Piirainen S, Finér L, Silvennoinen R, Repo T. Here comes the flood! Stress effects of continuous and interval waterlogging periods during the growing season on Scots pine saplings. TREE PHYSIOLOGY 2020; 40:869-885. [PMID: 32186742 DOI: 10.1093/treephys/tpaa036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/21/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
Future climate scenarios for the boreal zone project increasing temperatures and precipitation, as well as extreme weather events such as heavy rain during the growing season. This can result in more frequent short-term waterlogging (WL) leading to unfavorable conditions for tree roots. In addition, it is decisive whether short-term WL periods during the growing season occur continuously or periodically. We assessed the effects of short-termed WL on 4-year-old Scots pine (Pinus sylvestris L.) saplings after shoot elongation started. Waterlogging (WL) lasted either continuously for 2.5 weeks (ContWL) or noncontinuously for 5 weeks, consisting of three repeated 1-week-interval WL periods (IntWL). Both treatments resulted in the same duration of soil anoxia. We studied soil gases, root and shoot growth and physiology, and root survival probability and longevity during the experiment. In the final harvest, we determined shoot and root biomass and hydraulic conductance and electrical impedance spectra of the root systems. Soil CO2 and CH4 concentrations increased immediately after WL onset and O2 decreased until anoxia. Waterlogging decreased fine root survival probability, but there was no difference between WL treatments. Shoot growth suffered more from ContWL and root growth more from IntWL. Needle concentrations of pinitol increased in the WL saplings, indicating stress. No WL effects were observed in photosynthesis and chlorophyll fluorescence. Increased starch concentration in needles by WL may be due to damaged roots and thus a missing belowground sink. Electrical impedance indicated suffering of WL saplings, although root hydraulic conductance did not differ between the treatments. Oxidative stress of short-term and interval WL can have long-lasting effects on shoot and root growth and the physiology of Scots pine. We conclude that even short-term WL during the growing season is a stress factor, which will probably increase in the future and can affect carbon allocation and dynamics in boreal forests.
Collapse
Affiliation(s)
- Timo Domisch
- Natural Resources Institute Finland (Luke), Joensuu, Finland
| | - Ji Qian
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Izabela Sondej
- Department of Natural Forests, Forest Research Institute, Białowieża, Poland
| | - Françoise Martz
- Natural Resources Institute Finland (Luke), Rovaniemi, Finland
| | - Tarja Lehto
- School of Forest Sciences, University of Eastern Finland, Joensuu, Finland
| | - Sirpa Piirainen
- Natural Resources Institute Finland (Luke), Joensuu, Finland
| | - Leena Finér
- Natural Resources Institute Finland (Luke), Joensuu, Finland
| | | | - Tapani Repo
- Natural Resources Institute Finland (Luke), Joensuu, Finland
| |
Collapse
|
27
|
Guo JS, Gear L, Hultine KR, Koch GW, Ogle K. Non-structural carbohydrate dynamics associated with antecedent stem water potential and air temperature in a dominant desert shrub. PLANT, CELL & ENVIRONMENT 2020; 43:1467-1483. [PMID: 32112440 DOI: 10.1111/pce.13749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Non-structural carbohydrates (NSCs) are necessary for plant growth and affected by plant water status, but the temporal dynamics of water stress impacts on NSC are not well understood. We evaluated how seasonal NSC concentrations varied with plant water status (predawn xylem water potential, Ψ) and air temperature (T) in the evergreen desert shrub Larrea tridentata. Aboveground sugar and starch concentrations were measured weekly or monthly for ~1.5 years on 6-12 shrubs simultaneously instrumented with automated stem psychrometers; leaf photosynthesis (Anet ) was measured monthly for 1 year. Leaf sugar increased during the dry, premonsoon period, associated with lower Ψ (greater water stress) and high T. Leaf sugar accumulation coincided with declines in leaf starch and stem sugar, suggesting the prioritization of leaf sugar during low photosynthetic uptake. Leaf starch was strongly correlated with Anet and peaked during the spring and monsoon seasons, while stem starch remained relatively constant except for depletion during the monsoon. Recent photosynthate appeared sufficient to support spring growth, while monsoon growth required the remobilization of stem starch reserves. The coordinated responses of different NSC fractions to water status, photosynthesis, and growth demands suggest that NSCs serve multiple functions under extreme environmental conditions, including severe drought.
Collapse
Affiliation(s)
- Jessica S Guo
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - Linnea Gear
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, Arizona, USA
| | - Kevin R Hultine
- Department of Research, Conservation, and Collections, Desert Botanical Garden, Phoenix, Arizona, USA
| | - George W Koch
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - Kiona Ogle
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
28
|
Salmon Y, Lintunen A, Dayet A, Chan T, Dewar R, Vesala T, Hölttä T. Leaf carbon and water status control stomatal and nonstomatal limitations of photosynthesis in trees. THE NEW PHYTOLOGIST 2020; 226:690-703. [PMID: 31955422 DOI: 10.1111/nph.16436] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/18/2019] [Indexed: 05/22/2023]
Abstract
Photosynthetic rate is concurrently limited by stomatal limitations and nonstomatal limitations (NSLs). However, the controls on NSLs to photosynthesis and their coordination with stomatal control on different timescales remain poorly understood. According to a recent optimization hypothesis, NSLs depend on leaf osmotic or water status and are coordinated with stomatal control so as to maximize leaf photosynthesis. Drought and notching experiments were conducted on Pinus sylvestris, Picea abies, Betula Pendula and Populus tremula seedlings in glasshouse conditions to study the dependence of NSLs on leaf osmotic and water status, and their coordination with stomatal control, on timescales of minutes and weeks, to test the assumptions and predictions of the optimization hypothesis. Both NSLs and stomatal conductance followed power-law functions of leaf osmotic concentration and leaf water potential. Moreover, stomatal conductance was proportional to the square root of soil-to-leaf hydraulic conductance, as predicted by the optimization hypothesis. Though the detailed mechanisms underlying the dependence of NSLs on leaf osmotic or water status lie outside the scope of this study, our results support the hypothesis that NSLs and stomatal control are coordinated to maximize leaf photosynthesis and allow the effect of NSLs to be included in models of tree gas-exchange.
Collapse
Affiliation(s)
- Yann Salmon
- Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland
| | - Anna Lintunen
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland
| | - Alexia Dayet
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland
| | - Tommy Chan
- Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland
| | - Roderick Dewar
- Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Timo Vesala
- Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland
| | - Teemu Hölttä
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland
| |
Collapse
|
29
|
Casolo V, Braidot E, Petrussa E, Zancani M, Vianello A, Boscutti F. Relationships between population traits, nonstructural carbohydrates, and elevation in alpine stands of Vaccinium myrtillus. AMERICAN JOURNAL OF BOTANY 2020; 107:639-649. [PMID: 32239489 PMCID: PMC7217170 DOI: 10.1002/ajb2.1458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/30/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Despite great attention given to the relationship between plant growth and carbon balance in alpine tree species, little is known about shrubs at the treeline. We hypothesized that the pattern of main nonstructural carbohydrates (NSCs) across elevations depends on the interplay between phenotypic trait plasticity, plant-plant interaction, and elevation. METHODS We studied the pattern of NSCs (i.e., glucose, fructose, sucrose, and starch) in alpine stands of Vaccinium myrtillus (above treeline) across an elevational gradient. In the same plots, we measured key growth traits (i.e., anatomical stem features) and shrub cover, evaluating putative relationships with NSCs. RESULTS Glucose content was positively related with altitude, but negatively related with shrub cover. Sucrose decreased at high altitude and in older populations and increased with higher percentage of vascular tissue. Starch content increased at middle and high elevations and in stands with high shrub cover. Moreover, starch content was negatively related with the number of xylem rings and the percentage of phloem tissue, but positively correlated with the percentage of xylem tissue. CONCLUSIONS We found that the increase in carbon reserves across elevations was uncoupled from plant growth, supporting the growth limitation hypothesis, which postulates NSCs accumulate at high elevation as a consequence of low temperature. Moreover, the response of NSC content to the environmental stress caused by elevation was buffered by phenotypic plasticity of plant traits, suggesting that, under climate warming conditions, shrub expansion due to enhanced plant growth would be pronounced in old but sparse stands.
Collapse
Affiliation(s)
- Valentino Casolo
- Department of Agriculture, Food, Environmental and Animal SciencesPlant Biology UnitUniversity of Udinevia delle Scienze 9133100UdineItaly
| | - Enrico Braidot
- Department of Agriculture, Food, Environmental and Animal SciencesPlant Biology UnitUniversity of Udinevia delle Scienze 9133100UdineItaly
| | - Elisa Petrussa
- Department of Agriculture, Food, Environmental and Animal SciencesPlant Biology UnitUniversity of Udinevia delle Scienze 9133100UdineItaly
| | - Marco Zancani
- Department of Agriculture, Food, Environmental and Animal SciencesPlant Biology UnitUniversity of Udinevia delle Scienze 9133100UdineItaly
| | - Angelo Vianello
- Department of Agriculture, Food, Environmental and Animal SciencesPlant Biology UnitUniversity of Udinevia delle Scienze 9133100UdineItaly
| | - Francesco Boscutti
- Department of Agriculture, Food, Environmental and Animal SciencesPlant Biology UnitUniversity of Udinevia delle Scienze 9133100UdineItaly
| |
Collapse
|
30
|
Measurement of Inner Bark and Leaf Osmolality. Methods Mol Biol 2020. [PMID: 31197792 DOI: 10.1007/978-1-4939-9562-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Sugar transport in the phloem is driven by turgor pressure gradients which are created by osmotic gradients resulting from sugars loaded to the phloem at the source tissue and unloaded at the sink tissue. Therefore, osmolality is a key parameter that can be used to evaluate sugar status and get an indication of the driving force for phloem transport. Here we describe how osmotic concentration measurements from inner bark (practically, the phloem) and needles of trees can be measured. This protocol presents the procedure used by Lintunen et al. (Front Plant Sci 7:726, 2016) and Paljakka et al. (Plant Cell Environ 40:2160-2173, 2017), extended by practical advice and discussion of potential errors and caveats. We describe how to implement this procedure for gymnosperm as well as angiosperm trees. This method uses mechanical sap extraction with a centrifuge from inner bark and leaf samples, which have gone through a deep freeze treatment and thawing. The osmotic potential of these samples is then analyzed with a freezing point or vapor pressure osmometer. The aim of these measurements is to study the spatial and temporal dynamics of phloem function.
Collapse
|
31
|
Salomón RL, De Roo L, Oleksyn J, De Pauw DJW, Steppe K. TReSpire - a biophysical TRee Stem respiration model. THE NEW PHYTOLOGIST 2020; 225:2214-2230. [PMID: 31494939 DOI: 10.1111/nph.16174] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Mechanistic models of plant respiration remain poorly developed, especially in stems and woody tissues where measurements of CO2 efflux do not necessarily reflect local respiratory activity. We built a process-based model of stem respiration that couples water and carbon fluxes at the organ level (TReSpire). To this end, sap flow, stem diameter variations, xylem and soil water potential, stem temperature, stem CO2 efflux and nonstructural carbohydrates were measured in a maple tree, while xylem CO2 concentration and additional stem and xylem diameter variations were monitored in an ancillary tree for model validation. TReSpire realistically described: (1) turgor pressure to differentiate growing from nongrowing metabolism; (2) maintenance expenditures in xylem and outer tissues based on Arrhenius kinetics and nitrogen content; and (3) radial CO2 diffusivity and CO2 solubility and transport in the sap solution. Collinearity issues with phloem unloading rates and sugar-starch interconversion rates suggest parallel submodelling to close the stem carbon balance. TReSpire brings a breakthrough in the modelling of stem water and carbon fluxes at a detailed (hourly) temporal resolution. TReSpire is calibrated from a sink-driven perspective, and has potential to advance our understanding on stem growth dynamics, CO2 fluxes and underlying respiratory physiology across different species and phenological stages.
Collapse
Affiliation(s)
- Roberto L Salomón
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, 9000, Belgium
| | - Linus De Roo
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, 9000, Belgium
| | - Jacek Oleksyn
- Polish Academy of Sciences, Institute of Dendrology, Parkowa 5, Kórnik, PL-62-035, Poland
| | - Dirk J W De Pauw
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, 9000, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, 9000, Belgium
| |
Collapse
|
32
|
Sapes G, Roskilly B, Dobrowski S, Maneta M, Anderegg WRL, Martinez-Vilalta J, Sala A. Plant water content integrates hydraulics and carbon depletion to predict drought-induced seedling mortality. TREE PHYSIOLOGY 2019; 39:1300-1312. [PMID: 31135927 DOI: 10.1093/treephys/tpz062] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 05/25/2023]
Abstract
Widespread drought-induced forest mortality (DIM) is expected to increase with climate change and drought, and is expected to have major impacts on carbon and water cycles. For large-scale assessment and management, it is critical to identify variables that integrate the physiological mechanisms of DIM and signal risk of DIM. We tested whether plant water content, a variable that can be remotely sensed at large scales, is a useful indicator of DIM risk at the population level. We subjected Pinus ponderosa Douglas ex C. Lawson seedlings to experimental drought using a point of no return experimental design. Periodically during the drought, independent sets of seedlings were sampled to measure physiological state (volumetric water content (VWC), percent loss of conductivity (PLC) and non-structural carbohydrates) and to estimate population-level probability of mortality through re-watering. We show that plant VWC is a good predictor of population-level DIM risk and exhibits a threshold-type response that distinguishes plants at no risk from those at increasing risk of mortality. We also show that plant VWC integrates the mechanisms involved in individual tree death: hydraulic failure (PLC), carbon depletion across organs and their interaction. Our results are promising for landscape-level monitoring of DIM risk.
Collapse
Affiliation(s)
- Gerard Sapes
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Beth Roskilly
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Solomon Dobrowski
- Department of Forest Management, University of Montana, Missoula, MT 59812, USA
| | - Marco Maneta
- Department of Geosciences, University of Montana, Missoula, MT 59812, USA
| | - William R L Anderegg
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84103, USA
| | - Jordi Martinez-Vilalta
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF) Cerdanyola del Vallès 08193 Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193 Barcelona, Spain
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
33
|
Peters RL, Speich M, Pappas C, Kahmen A, von Arx G, Graf Pannatier E, Steppe K, Treydte K, Stritih A, Fonti P. Contrasting stomatal sensitivity to temperature and soil drought in mature alpine conifers. PLANT, CELL & ENVIRONMENT 2019; 42:1674-1689. [PMID: 30536787 DOI: 10.1111/pce.13500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
Conifers growing at high elevations need to optimize their stomatal conductance (gs ) for maximizing photosynthetic yield while minimizing water loss under less favourable thermal conditions. Yet the ability of high-elevation conifers to adjust their gs sensitivity to environmental drivers remains largely unexplored. We used 4 years of sap flow measurements to elucidate intraspecific and interspecific variability of gs in Larix decidua Mill. and Picea abies (L.) Karst along an elevational gradient and contrasting soil moisture conditions. Site- and species-specific gs response to main environmental drivers were examined, including vapour pressure deficit, air temperature, solar irradiance, and soil water potential. Our results indicate that maximum gs of L. decidua is >2 times higher, shows a more plastic response to temperature, and down-regulates gs stronger during atmospheric drought compared to P. abies. These differences allow L. decidua to exert more efficient water use, adjust to site-specific thermal conditions, and reduce water loss during drought episodes. The stronger plasticity of gs sensitivity to temperature and higher conductance of L. decidua compared to P. abies provide new insights into species-specific water use strategies, which affect species' performance and should be considered when predicting terrestrial water dynamics under future climatic change.
Collapse
Affiliation(s)
- Richard L Peters
- Forest Dynamics, Landscape Dynamics and Forest Soils and Biogeochemistry, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
- Department of Environmental Sciences-Botany, Basel University, Basel, CH-4056, Switzerland
| | - Matthias Speich
- Forest Dynamics, Landscape Dynamics and Forest Soils and Biogeochemistry, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
- Department of Environmental Systems Science, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Christoforos Pappas
- Département de géographie and Centre d'études nordiques, Université de Montréal, Montréal, Quebec, Canada
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ansgar Kahmen
- Department of Environmental Sciences-Botany, Basel University, Basel, CH-4056, Switzerland
| | - Georg von Arx
- Forest Dynamics, Landscape Dynamics and Forest Soils and Biogeochemistry, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Elisabeth Graf Pannatier
- Forest Dynamics, Landscape Dynamics and Forest Soils and Biogeochemistry, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, B-9000, Belgium
| | - Kerstin Treydte
- Forest Dynamics, Landscape Dynamics and Forest Soils and Biogeochemistry, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Ana Stritih
- Institute for Landscape and Spatial Development, Planning of Landscape and Urban Systems (PLUS), ETH Zurich, Zürich, CH-8093, Switzerland
| | - Patrick Fonti
- Forest Dynamics, Landscape Dynamics and Forest Soils and Biogeochemistry, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| |
Collapse
|
34
|
Epron D, Dannoura M, Ishida A, Kosugi Y. Estimation of phloem carbon translocation belowground at stand level in a hinoki cypress stand. TREE PHYSIOLOGY 2019; 39:320-331. [PMID: 29474703 DOI: 10.1093/treephys/tpy016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/15/2018] [Accepted: 01/27/2018] [Indexed: 06/08/2023]
Abstract
At stand level, carbon translocation in tree stems has to match canopy photosynthesis and carbohydrate requirements to sustain growth and the physiological activities of belowground sinks. This study applied the Hagen-Poiseuille equation to the pressure-flow hypothesis to estimate phloem carbon translocation and evaluate what percentage of canopy photosynthate can be transported belowground in a hinoki cypress (Chamaecyparis obtusa Sieb. et Zucc.) stand. An anatomical study revealed that, in contrast to sieve cell density, conductive phloem thickness and sieve cell hydraulic diameter at 1.3 m in height increased with increasing tree diameter, as did the concentration of soluble sugars in the phloem sap. At tree level, hydraulic conductivity increased by two orders of magnitude from the smallest to the largest trees in the stand, resulting in a stand-level hydraulic conductance of 1.7 × 10-15 m Pa-1 s-1. The osmotic potential of the sap extracted from the inner bark was -0.75 MPa. Assuming that phloem water potential equalled foliage water potential at predawn, the turgor pressure in the phloem at 1.3 m in height was estimated at 0.22 MPa, 0.59 MPa lower than values estimated in the foliage. With this maximal turgor pressure gradient, which would be lower during day-time when foliage water potential drops, the estimated stand-level rate of carbon translocation was 2.0 gC m-2 day-1 (30% of daily gross canopy photosynthesis), at a time of the year when aboveground growth and related respiration is thought to consume a large fraction of photosynthate, at the expense of belowground activity. Despite relying on some assumptions and approximations, this approach, when coupled with measurements of canopy photosynthesis, may further be used to provide qualitative insight into the seasonal dynamics of belowground carbon allocation.
Collapse
Affiliation(s)
- Daniel Epron
- Université de Lorraine, INRA, UMR SILVA, Faculté des Sciences et Technologies, Vandœuvre-lès-Nancy, France
- Kyoto University, Laboratory of Ecosystem Production and Dynamics, Graduate School of Global Environmental Studies, Kyoto, Japan
| | - Masako Dannoura
- Kyoto University, Laboratory of Ecosystem Production and Dynamics, Graduate School of Global Environmental Studies, Kyoto, Japan
- Kyoto University, Laboratory of Forest Utilization, Graduate School of Agriculture, Kyoto, Japan
| | - Atsushi Ishida
- Kyoto University, Center for Ecological Research, Otsu, Shiga, Japan
| | - Yoshiko Kosugi
- Kyoto University, Laboratory of Forest Hydrology, Graduate School of Agriculture, Kyoto, Japan
| |
Collapse
|
35
|
Kiorapostolou N, Petit G. Similarities and differences in the balances between leaf, xylem and phloem structures in Fraxinus ornus along an environmental gradient. TREE PHYSIOLOGY 2019; 39:234-242. [PMID: 30189046 DOI: 10.1093/treephys/tpy095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/10/2018] [Accepted: 08/04/2018] [Indexed: 06/08/2023]
Abstract
The plant carbon balance depends on the coordination between photosynthesis and the long-distance transport of water and sugars. How plants modify the allocation to the different structures affecting this coordination under different environmental conditions has been poorly investigated. In this study, we evaluated the effect of soil water availability on the allocation to leaf, xylem and phloem structures in Fraxinus ornus L. We selected small individuals of F. ornus (height ~2 m) from sites contrasting in soil water availability (wet vs dry). We measured how the leaf (LM) and stem + branch biomass (SBM) are cumulated along the stem. Moreover, we assessed the axial variation in xylem (XA) and phloem tissue area (PA), and in lumen area of xylem vessels (CAxy) and phloem sieve elements (CAph). We found a higher ratio of LM:SBM in the trees growing under drier conditions. The long-distance transport tissues of xylem and phloem followed axial patterns with scaling exponents (b) independent of site conditions. PA scaled isometrically with XA (b ~ 1). While CAxy was only marginally higher at the wet sites, CAph was significantly higher at the drier sites. Our results showed that under reduced soil water availability, F. ornus trees allocate relatively more to the leaf biomass and produce more conductive phloem, which is likely to compensate for the drought-related hydraulic limitations to the leaf gas exchanges and the phloem sap viscosity.
Collapse
Affiliation(s)
- Natasa Kiorapostolou
- Dipartimento Territorio e Sistemi Agro-Forestali, Università degli studi di Padova, Viale dell'Università 16, Legnaro (PD), Italy
| | - Giai Petit
- Dipartimento Territorio e Sistemi Agro-Forestali, Università degli studi di Padova, Viale dell'Università 16, Legnaro (PD), Italy
| |
Collapse
|
36
|
Salmon Y, Dietrich L, Sevanto S, Hölttä T, Dannoura M, Epron D. Drought impacts on tree phloem: from cell-level responses to ecological significance. TREE PHYSIOLOGY 2019; 39:173-191. [PMID: 30726983 DOI: 10.1093/treephys/tpy153] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/03/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
On-going climate change is increasing the risk of drought stress across large areas worldwide. Such drought events decrease ecosystem productivity and have been increasingly linked to tree mortality. Understanding how trees respond to water shortage is key to predicting the future of ecosystem functions. Phloem is at the core of the tree functions, moving resources such as non-structural carbohydrates, nutrients, and defence and information molecules across the whole plant. Phloem function and ability to transport resources is tightly controlled by the balance of carbon and water fluxes within the tree. As such, drought is expected to impact phloem function by decreasing the amount of available water and new photoassimilates. Yet, the effect of drought on the phloem has received surprisingly little attention in the last decades. Here we review existing knowledge on drought impacts on phloem transport from loading and unloading processes at cellular level to possible effects on long-distance transport and consequences to ecosystems via ecophysiological feedbacks. We also point to new research frontiers that need to be explored to improve our understanding of phloem function under drought. In particular, we show how phloem transport is affected differently by increasing drought intensity, from no response to a slowdown, and explore how severe drought might actually disrupt the phloem transport enough to threaten tree survival. Because transport of resources affects other organisms interacting with the tree, we also review the ecological consequences of phloem response to drought and especially predatory, mutualistic and competitive relations. Finally, as phloem is the main path for carbon from sources to sink, we show how drought can affect biogeochemical cycles through changes in phloem transport. Overall, existing knowledge is consistent with the hypotheses that phloem response to drought matters for understanding tree and ecosystem function. However, future research on a large range of species and ecosystems is urgently needed to gain a comprehensive understanding of the question.
Collapse
Affiliation(s)
- Yann Salmon
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, Gustaf Hällströmin katu 2b, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, Latokartanonkaari 7, University of Helsinki, Helsinki, Finland
| | - Lars Dietrich
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, Basel, Switzerland
| | - Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, PO Box 1663 MA 495, Los Alamos, NM, USA
| | - Teemu Hölttä
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, Latokartanonkaari 7, University of Helsinki, Helsinki, Finland
| | - Masako Dannoura
- Kyoto University, Laboratory of Ecosystem Production and Dynamics, Graduate School of Global Environmental Studies, Kyoto, Japan
- Kyoto University, Laboratory of Forest Utilization, Graduate School of Agriculture, Kyoto, Japan
| | - Daniel Epron
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Faculté des Sciences et Technologies, Nancy, France
| |
Collapse
|
37
|
Han X, Turgeon R, Schulz A, Liesche J. Environmental conditions, not sugar export efficiency, limit the length of conifer leaves. TREE PHYSIOLOGY 2019; 39:312-319. [PMID: 29850887 DOI: 10.1093/treephys/tpy056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/27/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Most conifer species have needle-shaped leaves that are only a few centimeters long. In general, variation in leaf size has been associated with environmental factors, such as cold or drought stress. However, it has recently been proposed that sugar export efficiency is the limiting factor for conifer needle length, based on the results obtained using a mathematical model of phloem transport. Here, phloem transport rates in long conifer needles were experimentally determined to test if the mathematical model accurately represents phloem transport. The validity of the model's assumptions was tested by anatomical analyses and sugar quantification. Furthermore, various environmental and physiological factors were tested for their correlation with needle length. The results indicate that needle length is not limited by sugar transport efficiency, but, instead, by winter temperatures and light availability. The identification of factors that influence needle size is instrumental for using this trait as a variable in breeding programs.
Collapse
Affiliation(s)
- Xiaoyu Han
- College of Life Science, Northwest A&F University, Nongling Road 10, Yangling, China
- Biomass Energy Center for Arid Lands, Northwest A&F University, Nongling Road 10, Yangling, China
| | - Robert Turgeon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, 412 Mann Library Building, Ithaca, NY, USA
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Johannes Liesche
- College of Life Science, Northwest A&F University, Nongling Road 10, Yangling, China
- Biomass Energy Center for Arid Lands, Northwest A&F University, Nongling Road 10, Yangling, China
| |
Collapse
|
38
|
Gričar J, Zavadlav S, Jyske T, Lavrič M, Laakso T, Hafner P, Eler K, Vodnik D. Effect of soil water availability on intra-annual xylem and phloem formation and non-structural carbohydrate pools in stem of Quercus pubescens. TREE PHYSIOLOGY 2019; 39:222-233. [PMID: 30239939 DOI: 10.1093/treephys/tpy101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Non-structural carbohydrates (NSCs, i.e., starch and soluble sugars) are frequently quantified in the context of tree response to stressful events (e.g., drought), because they serve as a carbon reservoir for growth and respiration, as well as providing a critical osmotic function to maintain turgor and vascular transport under different environmental conditions. We investigated the impact of soil water availability on intra-annual leaf phenology, radial growth dynamics and variation in NSC amounts in the stem of pubescent oak (Quercus pubescens Willd.). from a sub-Mediterranean region. For this purpose, trees growing at two nearby plots differing in bedrock and, consequently, soil characteristics (F-eutric cambisol on eocene flysch bedrock and L-rendzic leptosol on paleogenic limestone bedrock) were sampled. Non-structural carbohydrates were analysed in outer xylem and living phloem (separately for non-collapsed and collapsed parts). Results showed that xylem and phloem increments were 41.6% and 21.2%, respectively, wider in trees from F plot due to a higher rate of cell production. In contrast, the amount of NSCs and of soluble sugars significantly differed among the tissue parts and sampling dates but not between the two plots. Starch amounts were the highest in xylem, which could be explained by the abundance of xylem parenchyma cells. Two clear seasonal peaks of the starch amount were detected in all tissues, the first in September-November, in the period of leaf colouring and falling, and the second in March-April, i.e., at the onset of cambial cell production followed by bud development. The amounts of free sugars were highest in inner phloem + cambium, at the sites of active growth. Soil water availability substantially influenced secondary growth in the stem of Q. pubescens, whereas NSC amounts seemed to be less affected. The results show how the intricate relationships between soil properties, such as water availability, and tree performance should be considered when studying the impact of stressful events on the growth and functioning of trees.
Collapse
Affiliation(s)
- Jožica Gričar
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, Ljubljana, Slovenia
| | - Saša Zavadlav
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, Ljubljana, Slovenia
| | - Tuula Jyske
- Natural Resources Institute Finland, Production Systems Unit, Biomass Properties and Characterization, Tietotie 2, Espoo, Finland
| | - Martina Lavrič
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, Ljubljana, Slovenia
| | - Tapio Laakso
- Natural Resources Institute Finland, Production Systems Unit, Biomass Properties and Characterization, Tietotie 2, Espoo, Finland
| | - Polona Hafner
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, Ljubljana, Slovenia
| | - Klemen Eler
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia
| | - Dominik Vodnik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia
| |
Collapse
|
39
|
Dannoura M, Epron D, Desalme D, Massonnet C, Tsuji S, Plain C, Priault P, Gérant D. The impact of prolonged drought on phloem anatomy and phloem transport in young beech trees. TREE PHYSIOLOGY 2019; 39:201-210. [PMID: 29931112 DOI: 10.1093/treephys/tpy070] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/04/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Phloem failure has recently been recognized as one of the mechanisms causing tree mortality under drought, though direct evidence is still lacking. We combined 13C pulse-labelling of 8-year-old beech trees (Fagus sylvatica L.) growing outdoors in a nursery with an anatomical study of the phloem tissue in their stems to examine how drought alters carbon transport and phloem transport capacity. For the six trees under drought, predawn leaf water potential ranged from -0.7 to -2.4 MPa, compared with an average of -0.2 MPa in five control trees with no water stress. We also observed a longer residence time of excess 13C in the foliage and the phloem sap in trees under drought compared with controls. Compared with controls, excess 13C in trunk respiration peaked later in trees under moderate drought conditions and showed no decline even after 4 days under more severe drought conditions. We estimated higher phloem sap viscosity in trees under drought. We also observed much smaller sieve-tube radii in all drought-stressed trees, which led to lower sieve-tube conductivity and lower phloem conductance in the tree stem. We concluded that prolonged drought affected phloem transport capacity through a change in anatomy and that the slowdown of phloem transport under drought likely resulted from a reduced driving force due to lower hydrostatic pressure between the source and sink organs.
Collapse
Affiliation(s)
- Masako Dannoura
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Faculté des Sciences et Technologies, Nancy, France
- Laboratory of Ecosystem Production and Dynamics, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
- Laboratory of Forest Utilization, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Daniel Epron
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Faculté des Sciences et Technologies, Nancy, France
| | - Dorine Desalme
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Faculté des Sciences et Technologies, Nancy, France
| | - Catherine Massonnet
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Faculté des Sciences et Technologies, Nancy, France
| | - Shoko Tsuji
- Laboratory of Ecosystem Production and Dynamics, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Caroline Plain
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Faculté des Sciences et Technologies, Nancy, France
| | - Pierrick Priault
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Faculté des Sciences et Technologies, Nancy, France
| | - Dominique Gérant
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Faculté des Sciences et Technologies, Nancy, France
| |
Collapse
|
40
|
Lazzarin M, Zweifel R, Anten N, Sterck FJ. Does phloem osmolality affect diurnal diameter changes of twigs but not of stems in Scots pine? TREE PHYSIOLOGY 2019; 39:275-283. [PMID: 30371898 DOI: 10.1093/treephys/tpy121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/12/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Diel stem diameter changes measured at the stem base of temperate tree species can be mostly explained by a hydraulic system of flow and storage compartments passively driven by transpiration. Active, osmotic processes are considered to play a minor role only. Here we explore whether such osmotic processes have a stronger impact on diel changes in twig diameter than in stem diameter because twigs are closer to the leaves, the main source of newly acquired carbon. We investigated stem and twig diameter changes of wood and bark of pine trees in parallel to fluctuations of the osmolality in needles and in the bark at the stem base. We found consistent twig bark size increments concurrent with twig wood size decreases during daylight hours whereas needle osmolality was not consistently increasing even on sunny days. The size changes of bark and wood either reversed or ran in parallel from late afternoon onwards until the next morning. No such patterns were measurable at the stem base. Stem wood was hardly changing in size, whereas stem bark followed the regular pattern of a decrease during the daylight hours and an increase during the night. Osmolality at the stem base showed no particular course over 24 h. We conclude that assimilates from the needles were rapidly transported to the twigs where they increased the osmolality of the bark tissue by sugar loading, explaining the bark size increase (over-) compensating the xylem size decrease. The stem base largely followed the expectation of a passive, hydraulic system without a measurable role of osmoregulation. Diameter changes thus follow different diurnal dynamics in twigs and at the stem base.
Collapse
Affiliation(s)
- Martina Lazzarin
- Forest Ecology and Forest Management Group, Wageningen, The Netherlands
| | - Roman Zweifel
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) Zürcherstrasse 111, Birmensdorf, Switzerland
| | - Niels Anten
- Centre for Crop Systems Analysis, 6708PB Wageningen, The Netherlands
| | - Frank J Sterck
- Forest Ecology and Forest Management Group, Wageningen, The Netherlands
| |
Collapse
|
41
|
Sivaram AK, Subashchandrabose SR, Logeshwaran P, Lockington R, Naidu R, Megharaj M. Metabolomics reveals defensive mechanisms adapted by maize on exposure to high molecular weight polycyclic aromatic hydrocarbons. CHEMOSPHERE 2019; 214:771-780. [PMID: 30296765 DOI: 10.1016/j.chemosphere.2018.09.170] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/22/2018] [Accepted: 09/29/2018] [Indexed: 05/28/2023]
Abstract
Polycyclic aromatic hydrocarbons are an important group of persistent organic pollutants. Using plants to remediate PAHs has been recognized as a cost-effective and environmentally friendly technique. However, the overall impact of PAHs on the regulation of plant metabolism has not yet been explored. In this study, we analyzed the alteration in the maize (Zea mays L.) metabolome on exposure to high molecular weight PAHs such as benzo[a]pyrene (BaP) and pyrene (PYR) in a hydroponic medium, individually and as a mixture (BaP + PYR) using GC-MS. The differences in the metabolites were analyzed using XCMS (an acronym for various forms (X) of chromatography-mass spectrometry), an online-based data analysis tool. A significant variation in metabolites was observed between treatment groups and the unspiked control group. The univariate, multivariate and pathway impact analysis showed there were more significant alterations in metabolic profiles between individual PAHs and the mixture of BaP and PYR. The marked changes in the metabolites of galactose metabolism and aminoacyl tRNA biosynthesis in PAHs treated maize leaves exhibit the adaptive defensive mechanisms for individual and PAHs mixture. Therefore, the metabolomics approach is essential for an understanding of the complex biochemical responses of plants to PAHs contaminants. This knowledge will shed new light in the field of phytoremediation, bio-monitoring, and environmental risk assessment.
Collapse
Affiliation(s)
- Anithadevi Kenday Sivaram
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Suresh Ramraj Subashchandrabose
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Panneerselvan Logeshwaran
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Robin Lockington
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| |
Collapse
|
42
|
Landhäusser SM, Chow PS, Dickman LT, Furze ME, Kuhlman I, Schmid S, Wiesenbauer J, Wild B, Gleixner G, Hartmann H, Hoch G, McDowell NG, Richardson AD, Richter A, Adams HD. Standardized protocols and procedures can precisely and accurately quantify non-structural carbohydrates. TREE PHYSIOLOGY 2018; 38:1764-1778. [PMID: 30376128 PMCID: PMC6301340 DOI: 10.1093/treephys/tpy118] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/02/2018] [Indexed: 05/08/2023]
Abstract
Non-structural carbohydrates (NSCs), the stored products of photosynthesis, building blocks for growth and fuel for respiration, are central to plant metabolism, but their measurement is challenging. Differences in methods and procedures among laboratories can cause results to vary widely, limiting our ability to integrate and generalize patterns in plant carbon balance among studies. A recent assessment found that NSC concentrations measured for a common set of samples can vary by an order of magnitude, but sources for this variability were unclear. We measured a common set of nine plant material types, and two synthetic samples with known NSC concentrations, using a common protocol for sugar extraction and starch digestion, and three different sugar quantification methods (ion chromatography, enzyme, acid) in six laboratories. We also tested how sample handling, extraction solvent and centralizing parts of the procedure in one laboratory affected results. Non-structural carbohydrate concentrations measured for synthetic samples were within about 11.5% of known values for all three methods. However, differences among quantification methods were the largest source of variation in NSC measurements for natural plant samples because the three methods quantify different NSCs. The enzyme method quantified only glucose, fructose and sucrose, with ion chromatography we additionally quantified galactose, while the acid method quantified a large range of mono- and oligosaccharides. For some natural samples, sugars quantified with the acid method were two to five times higher than with other methods, demonstrating that trees allocate carbon to a range of sugar molecules. Sample handling had little effect on measurements, while ethanol sugar extraction improved accuracy over water extraction. Our results demonstrate that reasonable accuracy of NSC measurements can be achieved when different methods are used, as long as protocols are robust and standardized. Thus, we provide detailed protocols for the extraction, digestion and quantification of NSCs in plant samples, which should improve the comparability of NSC measurements among laboratories.
Collapse
Affiliation(s)
- Simon M Landhäusser
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
- Corresponding author ()
| | - Pak S Chow
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - L Turin Dickman
- Los Alamos National Laboratory, Earth and Environmental Sciences, Los Alamos, NM, USA
| | - Morgan E Furze
- Harvard University, Department of Organismic and Evolutionary Biology, 26 Oxford Street, Cambridge, MA, USA
| | - Iris Kuhlman
- Max Planck Institute for Biogeochemistry, Hans-Knöll Str. 10, Jena, Germany
| | - Sandra Schmid
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, Basel, Switzerland
| | - Julia Wiesenbauer
- University of Vienna, Department of Microbiology and Ecosystem Science, Althanstraße 14, Vienna, Austria
| | - Birgit Wild
- Stockholm University, Department of Environmental Science and Analytical Chemistry, Stockholm, Sweden
- University of Gothenburg, Department of Earth Sciences, Guldhedsgatan 5 A, Gothenburg, Sweden
| | - Gerd Gleixner
- Max Planck Institute for Biogeochemistry, Hans-Knöll Str. 10, Jena, Germany
| | - Henrik Hartmann
- Max Planck Institute for Biogeochemistry, Hans-Knöll Str. 10, Jena, Germany
| | - Günter Hoch
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, Basel, Switzerland
| | | | - Andrew D Richardson
- Harvard University, Department of Organismic and Evolutionary Biology, 26 Oxford Street, Cambridge, MA, USA
- Northern Arizona University, Center for Ecosystem Science and Society and School of Informatics, Computing and Cyber Systems, Flagstaff, AZ, USA
| | - Andreas Richter
- University of Vienna, Department of Microbiology and Ecosystem Science, Althanstraße 14, Vienna, Austria
| | - Henry D Adams
- Oklahoma State University, Department of Plant Biology, Ecology, and Evolution, 301 Physical Sciences, Stillwater, OK, USA
| |
Collapse
|
43
|
Traversari S, Francini A, Traversi ML, Emiliani G, Sorce C, Sebastiani L, Giovannelli A. Can sugar metabolism in the cambial region explain the water deficit tolerance in poplar? JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4083-4097. [PMID: 29846657 PMCID: PMC6054210 DOI: 10.1093/jxb/ery195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/16/2018] [Indexed: 05/06/2023]
Abstract
Drought dramatically affects wood production by adversely impacting cambial cells and their derivatives. Photosynthesis and assimilate transport are also affected by drought conditions. Two poplar genotypes, Populus deltoides 'Dvina' and Populus alba 'Marte', demonstrated contrasting growth performance and water-carbon balance strategies; a mechanistic understanding of the water deficit response was provided by these poplar species. 'Marte' was found to be more anisohydric than 'Dvina'. This characteristic was associated with the capacity to reallocate carbohydrates during water deficits. In contrast, 'Dvina' displayed more conservative water management; carbohydrates were preferably stored or used for cellulose production rather than to achieve an osmotic balance between the phloem and the xylem. Data confirmed that the more 'risk-taking' characteristic of 'Marte' allowed a rapid recovery following water deficit and was connected to a different carbohydrate metabolism.
Collapse
Affiliation(s)
- Silvia Traversari
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà, Pisa, Italy
| | - Alessandra Francini
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà, Pisa, Italy
| | - Maria Laura Traversi
- Trees and Timber Institute (IVALSA-CNR), Via Madonna del Piano, Sesto F.no (Florence), Italy
| | - Giovanni Emiliani
- Trees and Timber Institute (IVALSA-CNR), Via Madonna del Piano, Sesto F.no (Florence), Italy
| | - Carlo Sorce
- Department of Biology, University of Pisa, Via Luca Ghini, Pisa, Italy
| | - Luca Sebastiani
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà, Pisa, Italy
| | - Alessio Giovannelli
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà, Pisa, Italy
- Trees and Timber Institute (IVALSA-CNR), Via Madonna del Piano, Sesto F.no (Florence), Italy
| |
Collapse
|
44
|
Rockwell FE, Gersony JT, Holbrook NM. Where does Münch flow begin? Sucrose transport in the pre-phloem path. CURRENT OPINION IN PLANT BIOLOGY 2018; 43:101-107. [PMID: 29704829 DOI: 10.1016/j.pbi.2018.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/30/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Current conceptions of sucrose export largely neglect the effect of transpiration-induced water potential gradients within leaf mesophyll, even as the mix of convection and diffusion in the pre-phloem path remains uncertain. It is also generally held that the relative importance of convection and diffusion in the pre-phloem path is controlled by the ratio of their respective mass transfer coefficients. Here, we consider pre-phloem sucrose transport in the presence of adverse water potential gradients, finding that whether convection impedes or aids sucrose delivery to the phloem is independent of the permeability of the plasmodesmata to bulk flow, and depends only on assimilation rate, path-length, and the diffusivity. For most tissues subject to transpiration, convection through plasmodesmata pushes sugar away from the phloem.
Collapse
Affiliation(s)
- Fulton E Rockwell
- Harvard University, Department of Organismic and Evolutionary Biology, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Jessica T Gersony
- Harvard University, Department of Organismic and Evolutionary Biology, 26 Oxford Street, Cambridge, MA 02138, USA
| | - N Michele Holbrook
- Harvard University, Department of Organismic and Evolutionary Biology, 26 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
45
|
Pakkala T, Piiroinen J, Lakka J, Tiainen J, Piha M, Kouki J. Tree Sap as an Important Seasonal Food Resource for Woodpeckers: The Case of the Eurasian Three-Toed Woodpecker (Picoides tridactylus) in Southern Finland. ANN ZOOL FENN 2018. [DOI: 10.5735/086.055.0108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Timo Pakkala
- Lammi Biological Station, University of Helsinki, FI-16900 Lammi, Finland
- University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Jarmo Piiroinen
- Lammi Biological Station, University of Helsinki, FI-16900 Lammi, Finland
| | - Johanna Lakka
- University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Juha Tiainen
- Natural Resources Research Institute Finland, P.O. Box 2, FI-00791 Helsinki, Finland
| | - Markus Piha
- Finnish Museum of Natural History — LUOMUS, P.O. Box 17, FI-00014 University of Helsinki, Finland
| | - Jari Kouki
- University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland
| |
Collapse
|
46
|
Prendin AL, Petit G, Fonti P, Rixen C, Dawes MA, Arx G. Axial xylem architecture of
Larix decidua
exposed to CO
2
enrichment and soil warming at the tree line. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12986] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Angela Luisa Prendin
- Dipartimento Territorio e Sistemi Agro‐ForestaliUniversità degli Studi di Padova Legnaro PD Italy
| | - Giai Petit
- Dipartimento Territorio e Sistemi Agro‐ForestaliUniversità degli Studi di Padova Legnaro PD Italy
| | - Patrick Fonti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland
| | - Christian Rixen
- WSL Institute for Snow and Avalanche Research SLF Davos Switzerland
| | - Melissa Autumn Dawes
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland
- WSL Institute for Snow and Avalanche Research SLF Davos Switzerland
| | - Georg Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland
- Climatic Change and Climate ImpactsInstitute for Environmental Sciences Geneva Switzerland
| |
Collapse
|
47
|
Paljakka T, Jyske T, Lintunen A, Aaltonen H, Nikinmaa E, Hölttä T. Gradients and dynamics of inner bark and needle osmotic potentials in Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies L. Karst). PLANT, CELL & ENVIRONMENT 2017; 40:2160-2173. [PMID: 28671720 DOI: 10.1111/pce.13017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 06/07/2023]
Abstract
Preconditions of phloem transport in conifers are relatively unknown. We studied the variation of needle and inner bark axial osmotic gradients and xylem water potential in Scots pine and Norway spruce by measuring needle and inner bark osmolality in saplings and mature trees over several periods within a growing season. The needle and inner bark osmolality was strongly related to xylem water potential in all studied trees. Sugar concentrations were measured in Scots pine, and they had similar dynamics to inner bark osmolality. The sucrose quantity remained fairly constant over time and position, whereas the other sugars exhibited a larger change with time and position. A small osmotic gradient existed from branch to stem base under pre-dawn conditions, and the osmotic gradient between upper stem and stem base was close to zero. The turgor in branches was significantly driven by xylem water potential, and the turgor loss point in branches was relatively close to daily minimum needle water potentials typically reported for Scots pine. Our results imply that xylem water potential considerably impacts the turgor pressure gradient driving phloem transport and that gravitation has a relatively large role in phloem transport in the stems of mature Scots pine trees.
Collapse
Affiliation(s)
- Teemu Paljakka
- Department of Forest Sciences, University of Helsinki, Helsinki, FI-00014, Finland
| | - Tuula Jyske
- Natural Resources Institute Finland (Luke), FI-02150, Espoo, Finland
| | - Anna Lintunen
- Department of Forest Sciences, University of Helsinki, Helsinki, FI-00014, Finland
| | - Heidi Aaltonen
- Department of Forest Sciences, University of Helsinki, Helsinki, FI-00014, Finland
| | - Eero Nikinmaa
- Department of Forest Sciences, University of Helsinki, Helsinki, FI-00014, Finland
| | - Teemu Hölttä
- Department of Forest Sciences, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
48
|
Raffa KF, Mason CJ, Bonello P, Cook S, Erbilgin N, Keefover-Ring K, Klutsch JG, Villari C, Townsend PA. Defence syndromes in lodgepole - whitebark pine ecosystems relate to degree of historical exposure to mountain pine beetles. PLANT, CELL & ENVIRONMENT 2017; 40:1791-1806. [PMID: 28543133 DOI: 10.1111/pce.12985] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/21/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Warming climate is allowing tree-killing bark beetles to expand their ranges and access naïve and semi-naïve conifers. Conifers respond to attack using complex mixtures of chemical defences that can impede beetle success, but beetles exploit some compounds for host location and communication. Outcomes of changing relationships will depend on concentrations and compositions of multiple host compounds, which are largely unknown. We analysed constitutive and induced chemistries of Dendroctonus ponderosae's primary historical host, Pinus contorta, and Pinus albicaulis, a high-elevation species whose encounters with this beetle are transitioning from intermittent to continuous. We quantified multiple classes of terpenes, phenolics, carbohydrates and minerals. Pinus contorta had higher constitutive allocation to, and generally stronger inducibility of, compounds that resist these beetle-fungal complexes. Pinus albicaulis contained higher proportions of specific monoterpenes that enhance pheromone communication, and lower induction of pheromone inhibitors. Induced P. contorta increased insecticidal and fungicidal compounds simultaneously, whereas P. albicaulis responses against these agents were inverse. Induced terpene accumulation was accompanied by decreased non-structural carbohydrates, primarily sugars, in P. contorta, but not P. albicaulis, which contained primarily starches. These results show some host species with continuous exposure to bark beetles have more thoroughly integrated defence syndromes than less-continuously exposed host species.
Collapse
Affiliation(s)
- Kenneth F Raffa
- Department of Entomology, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Charles J Mason
- Department of Entomology, University of Wisconsin - Madison, Madison, WI, 53706, USA
- Department of Entomology, Pennsylvania State University, State College, PA, 16802, USA
| | - Pierluigi Bonello
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Stephen Cook
- Department of Plant, Soil and Entomological Science, University of Idaho, Moscow, ID, 83844, USA
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Jennifer G Klutsch
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Caterina Villari
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
- Warnell School of Forestry and Natural Resources, University of Georgia - Athens, Athens, GA, 30602, USA
| | - Philip A Townsend
- Department of Forest and Wildlife Ecology, University of Wisconsin - Madison, Madison, WI, 53706, USA
| |
Collapse
|