1
|
Plavcová L, Jandová V, Altman J, Liancourt P, Korznikov K, Doležal J. Variations in wood anatomy in Afrotropical trees with a particular emphasis on radial and axial parenchyma. ANNALS OF BOTANY 2024; 134:151-162. [PMID: 38525918 PMCID: PMC11161563 DOI: 10.1093/aob/mcae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND AND AIMS Understanding anatomical variations across plant phylogenies and environmental gradients is vital for comprehending plant evolution and adaptation. Previous studies on tropical woody plants have paid limited attention to quantitative differences in major xylem tissues, which serve specific roles in mechanical support (fibres), carbohydrate storage and radial conduction (radial parenchyma, rays), wood capacitance (axial parenchyma) and water transport (vessels). To address this gap, we investigate xylem fractions in 173 tropical tree species spanning 134 genera and 53 families along a 2200-m elevational gradient on Mount Cameroon, West Africa. METHODS We determined how elevation, stem height and wood density affect interspecific differences in vessel, fibre, and specific axial (AP) and radial (RP) parenchyma fractions. We focus on quantifying distinct subcategories of homogeneous or heterogeneous rays and apotracheal, paratracheal and banded axial parenchyma. KEY RESULTS Elevation-related cooling correlated with reduced AP fractions and vessel diameters, while fibre fractions increased. Lower elevations exhibited elevated AP fractions due to abundant paratracheal and wide-banded parenchyma in tall trees from coastal and lowland forests. Vasicentric and aliform AP were predominantly associated with greater tree height and wider vessels, which might help cope with high evaporative demands via elastic wood capacitance. In contrast, montane trees featured a higher fibre proportion, scarce axial parenchyma, smaller vessel diameters and higher vessel densities. The lack of AP in montane trees was often compensated for by extended uniseriate ray sections with upright or squared ray cells or the presence of living fibres. CONCLUSIONS Elevation gradient influenced specific xylem fractions, with lower elevations showing elevated AP due to abundant paratracheal and wide-banded parenchyma, securing greater vessel-to-parenchyma connectivity and lower embolism risk. Montane trees featured a higher fibre proportion and smaller vessel diameters, which may aid survival under greater environmental seasonality and fire risk.
Collapse
Affiliation(s)
- Lenka Plavcová
- Department of Biology, Faculty of Science, University of Hradec Králové, Rokitanského 62, Hradec Králové 500 03, Czech Republic
| | - Veronika Jandová
- Institute of Botany, The Czech Academy of Sciences, Dukelská 135, 37901, Třeboň, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
| | - Jan Altman
- Institute of Botany, The Czech Academy of Sciences, Dukelská 135, 37901, Třeboň, Czech Republic
| | - Pierre Liancourt
- Botany Department, State Museum of Natural History Stuttgart, Stuttgart, Germany
| | - Kirill Korznikov
- Institute of Botany, The Czech Academy of Sciences, Dukelská 135, 37901, Třeboň, Czech Republic
| | - Jiří Doležal
- Institute of Botany, The Czech Academy of Sciences, Dukelská 135, 37901, Třeboň, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
| |
Collapse
|
2
|
Fanton AC, Bouda M, Brodersen C. Xylem-dwelling pathogen unaffected by local xylem vessel network properties in grapevines (Vitis spp.). ANNALS OF BOTANY 2024; 133:521-532. [PMID: 38334466 PMCID: PMC11037485 DOI: 10.1093/aob/mcae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND AND AIMS Xylella fastidiosa (Xf) is the xylem-dwelling bacterium associated with Pierce's disease (PD), which causes mortality in agriculturally important species, such as grapevine (Vitis vinifera). The development of PD symptoms in grapevines depends on the ability of Xf to produce cell-wall-degrading enzymes to break up intervessel pit membranes and systematically spread through the xylem vessel network. Our objective here was to investigate whether PD resistance could be mechanistically linked to xylem vessel network local connectivity. METHODS We used high-resolution X-ray micro-computed tomography (microCT) imaging to identify and describe the type, area and spatial distribution of intervessel connections for six different grapevine genotypes from three genetic backgrounds, with varying resistance to PD (four PD resistant and two PD susceptible). KEY RESULTS Our results suggest that PD resistance is unlikely to derive from local xylem network connectivity. The intervessel pit area (Ai) varied from 0.07 ± 0.01 mm2 mm-3 in Lenoir to 0.17 ± 0.03 mm2 mm-3 in Blanc do Bois, both PD resistant. Intervessel contact fraction (Cp) was not statically significant, but the two PD-susceptible genotypes, Syrah (0.056 ± 0.015) and Chardonnay (0.041 ± 0.013), were among the most highly connected vessel networks. Neither Ai nor Cp explained differences in PD resistance among the six genotypes. Bayesian re-analysis of our data shows moderate evidence against the effects of the traits analysed: Ai (BF01 = 4.88), mean vessel density (4.86), relay diameter (4.30), relay density (3.31) and solitary vessel proportion (3.19). CONCLUSIONS Our results show that radial and tangential xylem network connectivity is highly conserved within the six different Vitis genotypes we sampled. The way that Xf traverses the vessel network may limit the importance of local network properties to its spread and may confer greater importance on host biochemical responses.
Collapse
Affiliation(s)
| | - Martin Bouda
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Zhang Y, Pereira L, Kaack L, Liu J, Jansen S. Gold perfusion experiments support the multi-layered, mesoporous nature of intervessel pit membranes in angiosperm xylem. THE NEW PHYTOLOGIST 2024; 242:493-506. [PMID: 38404029 DOI: 10.1111/nph.19608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Fluid transport across intervessel pit membranes of angiosperm xylem plays a major role in plant transpiration, with transport resistance largely depending on pore constriction sizes. Traditionally, fluid particles traversing pit membranes are assumed to cross a single instead of multiple pore constrictions. We tested a multi-layered pit membrane model in xylem of eight angiosperm species by estimating the size frequency of pore constrictions in relation to pit membrane thickness and compared modelled data with perfusion characteristics of nanoscale gold particles based on transmission electron microscopy. The size frequency of modelled pore constrictions showed similar patterns to the measured number of perfused particle sizes inside pit membranes, although frequency values measured were 10-50 times below modelled data. Small particles enter pit membranes most easily, especially when injected in thin pit membranes. The trapping of gold particles by pore constrictions becomes more likely with increasing pore constriction number and pit membrane thickness. While quantitative differences between modelled and experimental data are due to various practical limitations, their qualitative agreement supports a multi-layered pit membrane model with multiple pore constrictions. Pore constrictions between 5 and 50 nm are realistic, and confirm the mesoporous nature of pit membranes.
Collapse
Affiliation(s)
- Ya Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Beijingzhong Road 2, Wuhu, 241000, China
| | - Luciano Pereira
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Lucian Kaack
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Jiabao Liu
- College of Ecology and Environment, Anhui Normal University, Beijingzhong Road 2, Wuhu, 241000, China
| | - Steven Jansen
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| |
Collapse
|
4
|
Sabella E, Buja I, Negro C, Vergine M, Cherubini P, Pavan S, Maruccio G, De Bellis L, Luvisi A. The Significance of Xylem Structure and Its Chemical Components in Certain Olive Tree Genotypes with Tolerance to Xylella fastidiosa Infection. PLANTS (BASEL, SWITZERLAND) 2024; 13:930. [PMID: 38611461 PMCID: PMC11013585 DOI: 10.3390/plants13070930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Olive quick decline syndrome (OQDS) is a devastating plant disease caused by the bacterium Xylella fastidiosa (Xf). Exploratory missions in the Salento area led to the identification of putatively Xf-resistant olive trees (putatively resistant plants, PRPs) which were pauci-symptomatic or asymptomatic infected plants belonging to different genetic clusters in orchards severely affected by OQDS. To investigate the defense strategies employed by these PRPs to contrast Xf infection, the PRPs were analyzed for the anatomy and histology of xylem vessels, patterns of Xf distribution in host tissues (by the fluorescent in situ hybridization technique-FISH) and the presence of secondary metabolites in stems. The xylem vessels of the PRPs have an average diameter significantly lower than that of susceptible plants for each annual tree ring studied. The histochemical staining of xylem vessels highlighted an increase in the lignin in the parenchyma cells of the medullary rays of the wood. The 3D images obtained from FISH-LSM (laser scanning microscope) revealed that, in the PRPs, Xf cells mostly appeared as individual cells or as small aggregates; in addition, these bacterial cells looked to be incorporated in the autofluorescence signal of gels and phenolic compounds regardless of hosts' genotypes. In fact, the metabolomic data from asymptomatic PRP stems showed a significant increase in compounds like salicylic acid, known as a signal molecule which mediates host responses upon pathogen infection, and luteolin, a naturally derived flavonoid compound with antibacterial properties and with well-known anti-biofilm effects. Findings indicate that the xylem vessel geometry together with structural and chemical defenses are among the mechanisms operating to control Xf infection and may represent a common resistance trait among different olive genotypes.
Collapse
Affiliation(s)
- Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Monteroni 165, 73100 Lecce, Italy; (E.S.); (I.B.); (C.N.); (L.D.B.); (A.L.)
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Ilaria Buja
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Monteroni 165, 73100 Lecce, Italy; (E.S.); (I.B.); (C.N.); (L.D.B.); (A.L.)
| | - Carmine Negro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Monteroni 165, 73100 Lecce, Italy; (E.S.); (I.B.); (C.N.); (L.D.B.); (A.L.)
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Monteroni 165, 73100 Lecce, Italy; (E.S.); (I.B.); (C.N.); (L.D.B.); (A.L.)
| | - Paolo Cherubini
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- Department of Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Stefano Pavan
- Department of Soil, Plant and Food Science, University of Bari “Aldo Moro”, 70126 Bari, Italy;
| | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics, University of Salento, CNR-Institute of Nanotechnology, INFN Sezione di Lecce, Via per Monteroni, 73100 Lecce, Italy;
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Monteroni 165, 73100 Lecce, Italy; (E.S.); (I.B.); (C.N.); (L.D.B.); (A.L.)
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Monteroni 165, 73100 Lecce, Italy; (E.S.); (I.B.); (C.N.); (L.D.B.); (A.L.)
| |
Collapse
|
5
|
Charras Q, Rey P, Guillemain D, Dourguin F, Laganier H, Peschoux S, Molinié R, Ismaël M, Caffarri S, Rayon C, Jungas C. An efficient protocol for extracting thylakoid membranes and total leaf proteins from Posidonia oceanica and other polyphenol-rich plants. PLANT METHODS 2024; 20:38. [PMID: 38468328 DOI: 10.1186/s13007-024-01166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND The extraction of thylakoids is an essential step in studying the structure of photosynthetic complexes and several other aspects of the photosynthetic process in plants. Conventional protocols have been developed for selected land plants grown in controlled conditions. Plants accumulate defensive chemical compounds such as polyphenols to cope with environmental stresses. When the polyphenol levels are high, their oxidation and cross-linking properties prevent thylakoid extraction. RESULTS In this study, we developed a method to counteract the hindering effects of polyphenols by modifying the grinding buffer with the addition of both vitamin C (VitC) and polyethylene glycol (PEG4000). This protocol was first applied to the marine plant Posidonia oceanica and then extended to other plants synthesizing substantial amounts of polyphenols, such as Quercus pubescens (oak) and Vitis vinifera (grapevine). Native gel analysis showed that photosynthetic complexes (PSII, PSI, and LHCII) can be extracted from purified membranes and fractionated comparably to those extracted from the model plant Arabidopsis thaliana. Moreover, total protein extraction from frozen P. oceanica leaves was also efficiently carried out using a denaturing buffer containing PEG and VitC. CONCLUSIONS Our work shows that the use of PEG and VitC significantly improves the isolation of native thylakoids, native photosynthetic complexes, and total proteins from plants containing high amounts of polyphenols and thus enables studies on photosynthesis in various plant species grown in natural conditions.
Collapse
Affiliation(s)
- Quentin Charras
- CEA, CNRS, BIAM, LGBP Team, Aix-Marseille University, Marseille, France
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, KTH University, Stockholm, Sweden
| | - Pascal Rey
- CEA, CNRS, BIAM, P&E Team, Aix-Marseille University, Saint Paul-Lez-Durance, France
| | - Dorian Guillemain
- CNRS, IRD, IRSTEA, OSU Institut Pythéas, Aix-Marseille University, Marseille, France
| | - Fabian Dourguin
- CEA, CNRS, BIAM, LGBP Team, Aix-Marseille University, Marseille, France
| | - Hugo Laganier
- CEA, CNRS, BIAM, LGBP Team, Aix-Marseille University, Marseille, France
| | - Sacha Peschoux
- UFR Informatique, mathématiques et mathématiques appliquées (IM2AG), Université Grenoble Alpes, Saint Martin d'Heres, France
| | - Roland Molinié
- UMR INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), UPJV, Amiens, France
| | - Marwa Ismaël
- UMR INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), UPJV, Amiens, France
| | - Stefano Caffarri
- CEA, CNRS, BIAM, LGBP Team, Aix-Marseille University, Marseille, France
| | - Catherine Rayon
- UMR INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), UPJV, Amiens, France
| | - Colette Jungas
- CEA, CNRS, BIAM, LGBP Team, Aix-Marseille University, Marseille, France.
| |
Collapse
|
6
|
Adigun OA, Pham TH, Grapov D, Nadeem M, Jewell LE, Galagedara L, Cheema M, Thomas R. Lipid mediated plant immunity in susceptible and tolerant soybean cultivars in response to Phytophthora sojae colonization and infection. BMC PLANT BIOLOGY 2024; 24:154. [PMID: 38424489 PMCID: PMC10905861 DOI: 10.1186/s12870-024-04808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Soybean is one of the most cultivated crops globally and a staple food for much of the world's population. The annual global crop losses due to infection by Phytophthora sojae is currently estimated at $20B USD, yet we have limited understanding of the role of lipid mediators in the adaptative strategies used by the host plant to limit infection. Since root is the initial site of this infection, we examined the infection process in soybean root infected with Phytophthora sojae using scanning electron microscopy to observe the changes in root morphology and a multi-modal lipidomics approach to investigate how soybean cultivars remodel their lipid mediators to successfully limit infection by Phytophthora sojae. RESULTS The results reveal the presence of elevated biogenic crystals and more severe damaged cells in the root morphology of the infected susceptible cultivar compared to the infected tolerant cultivars. Furthermore, induced accumulation of stigmasterol was observed in the susceptible cultivar whereas, induced accumulation of phospholipids and glycerolipids occurred in tolerant cultivar. CONCLUSION The altered lipidome reported in this study suggest diacylglycerol and phosphatidic acid mediated lipid signalling impacting phytosterol anabolism appears to be a strategy used by tolerant soybean cultivars to successfully limit infection and colonization by Phytophthora sojae.
Collapse
Affiliation(s)
- Oludoyin Adeseun Adigun
- School of Science and the Environment/Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada.
| | - Thu Huong Pham
- School of Science and the Environment/Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada
| | | | - Muhammad Nadeem
- School of Science and the Environment/Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada
| | - Linda Elizabeth Jewell
- St. John's Research and Development Centre, Agriculture and Agri-Food Canada, 204 Brookfield Road, St. John's, Newfoundland and Labrador, A1E 6J5, Canada
| | - Lakshman Galagedara
- School of Science and the Environment/Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada
| | - Mumtaz Cheema
- School of Science and the Environment/Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada
| | - Raymond Thomas
- Department of Biology/Biotron Climate Change Experimental Research Centre, Western University, London, ON, Canada.
| |
Collapse
|
7
|
González-Melo A, Posada JM, Beauchêne J, Lehnebach R, Levionnois S, Derroire G, Clair B. The links between wood traits and species demography change during tree development in a lowland tropical rainforest. AOB PLANTS 2024; 16:plad090. [PMID: 38249523 PMCID: PMC10799319 DOI: 10.1093/aobpla/plad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
One foundational assumption of trait-based ecology is that traits can predict species demography. However, the links between traits and demographic rates are, in general, not as strong as expected. These weak associations may be due to the use of traits that are distantly related to performance, and/or the lack of consideration of size-related variations in both traits and demographic rates. Here, we examined how wood traits were related to demographic rates in 19 tree species from a lowland forest in eastern Amazonia. We measured 11 wood traits (i.e. structural, anatomical and chemical traits) in sapling, juvenile and adult wood; and related them to growth and mortality rates (MR) at different ontogenetic stages. The links between wood traits and demographic rates changed during tree development. At the sapling stage, relative growth rates (RGR) were negatively related to wood specific gravity (WSG) and total parenchyma fractions, while MR decreased with radial parenchyma fractions, but increased with vessel lumen area (VA). Juvenile RGR were unrelated to wood traits, whereas juvenile MR were negatively related to WSG and axial parenchyma fractions. At the adult stage, RGR scaled with VA and wood potassium concentrations. Adult MR were not predicted by any trait. Overall, the strength of the trait-demography associations decreased at later ontogenetic stages. Our results indicate that the associations between traits and demographic rates can change as trees age. Also, wood chemical or anatomical traits may be better predictors of growth and MR than WSG. Our findings are important to expand our knowledge on tree life-history variations and community dynamics in tropical forests, by broadening our understanding on the links between wood traits and demography during tree development.
Collapse
Affiliation(s)
- Andrés González-Melo
- Biology Department, Faculty of Natural Sciences, Universidad del Rosario, Avenida carrera 24 # 63C-69. Bogotá, Colombia
| | - Juan Manuel Posada
- Biology Department, Faculty of Natural Sciences, Universidad del Rosario, Avenida carrera 24 # 63C-69. Bogotá, Colombia
| | - Jacques Beauchêne
- CIRAD, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CNRS, INRAE, Université des Antilles, Université de Guyane, 97337, France
| | - Romain Lehnebach
- CNRS, Laboratory of Botany and Modeling of Plant Architecture and Vegetation (UMR AMAP), 34398 Montpellier, France
| | - Sébastian Levionnois
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CIRAD, INRAE, Université des Antilles, Universite de Guyane, Kourou, 97310France
| | - Géraldine Derroire
- CIRAD, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CNRS, INRAE, Université des Antilles, Université de Guyane, 97337, France
| | - Bruno Clair
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CIRAD, INRAE, Université des Antilles, Universite de Guyane, Kourou, 97310France
- Laboratoire de Mécanique de Génie Civil (LMGC), CNRS, Université de Montpellier, 34000, France
| |
Collapse
|
8
|
Tulik M, Jura-Morawiec J. An arrangement of secretory cells involved in the formation and storage of resin in tracheid-based secondary xylem of arborescent plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1268643. [PMID: 37731990 PMCID: PMC10508844 DOI: 10.3389/fpls.2023.1268643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
The evolution of the vascular system has led to the formation of conducting and supporting elements and those that are involved in the mechanisms of storage and defense against the influence of biotic and abiotic factors. In the case of the latter, the general evolutionary trend was probably related to a change in their arrangement, i.e. from cells scattered throughout the tissue to cells organized into ducts or cavities. These cells, regardless of whether they occur alone or in a cellular structure, are an important defense element of trees, having the ability to synthesize, among others, natural resins. In the tracheid-based secondary xylem of gymnosperms, the resin ducts, which consist of secretory cells, are of two types: axial, interspersed between the tracheids, and radial, carried in some rays. They are interconnected and form a continuous system. On the other hand, in the tracheid-based secondary xylem of monocotyledons, the resin-producing secretory cells do not form specialized structures. This review summarizes knowledge on the morpho-anatomical features of various types of resin-releasing secretory cells in relation to their: (i) location, (ii) origin, (iii) mechanism of formation, (iv) and ecological significance.
Collapse
Affiliation(s)
- Mirela Tulik
- Department of Forest Botany, Institute of Forest Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Joanna Jura-Morawiec
- Polish Academy of Sciences Botanical Garden - Centre for Biological Diversity Conservation in Powsin, Warsaw, Poland
| |
Collapse
|
9
|
Mansour MMA, Mohamed WA, El-Settawy AAA, Böhm M, Salem MZM, Farahat MGS. Long-term fungal inoculation of Ficus sycomorus and Tectona grandis woods with Aspergillus flavus and Penicillium chrysogenum. Sci Rep 2023; 13:10453. [PMID: 37380674 DOI: 10.1038/s41598-023-37479-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
In the current study, two molds, Aspergillus flavus (ACC# LC325160) and Penicillium chrysogenum (ACC# LC325162) were inoculated into two types of wood to be examined using scanning electron microscopy-energy dispersive X-ray (SEM-EDX) and computerized tomography (CT) scanning. Ficus sycomorus, a non-durable wood, and Tectona grandis, a durable wood, were the two wood blocks chosen, and they were inoculated with the two molds and incubated for 36 months at an ambient temperature of 27 ± 2 °C and 70 ± 5% relative humidity (RH). The surface and a 5-mm depth of inoculated wood blocks were histologically evaluated using SEM and CT images. The results showed that A. flavus and P. chrysogenum grew enormously on and inside of F. sycomorus wood blocks, but T. grandis wood displayed resistance to mold growth. The atomic percentages of C declined from 61.69% (control) to 59.33% in F. sycomorus wood samples inoculated with A. flavus while O increased from 37.81 to 39.59%. P. chrysogenum caused the C and O atomic percentages in F. sycomorus wood to drop to 58.43%, and 26.34%, respectively. C with atomic percentages in Teak wood's C content fell from 70.85 to 54.16%, and 40.89%, after being inoculated with A. flavus and P. chrysogenum. The O atomic percentage rose from 28.78 to 45.19% and 52.43%, when inoculated with A. flavus and P. chrysogenum, respectively. Depending on how durable each wood was, The examined fungi were able to attack the two distinct types of wood in various deterioration patterns. T. grandis wood overtaken by the two molds under study appears to be a useful material for a variety of uses.
Collapse
Affiliation(s)
- Maisa M A Mansour
- Department of Conservation and Restoration, Faculty of Archaeology, Cairo University, Giza, 12613, Egypt.
| | - Wafaa A Mohamed
- Department of Conservation and Restoration, Faculty of Archaeology, Cairo University, Giza, 12613, Egypt
| | - Ahmed A A El-Settawy
- Forestry and Wood Technology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Martin Böhm
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29, Prague 6, Czech Republic
| | - Mohamed Z M Salem
- Forestry and Wood Technology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
| | - Marwa G S Farahat
- Forestry and Wood Technology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| |
Collapse
|
10
|
Matsumoto R, Mehjabin JJ, Noguchi H, Miyamoto T, Takasuka TE, Hori C. Genomic and Secretomic Analyses of the Newly Isolated Fungus Perenniporia fraxinea SS3 Identified CAZymes Potentially Related to a Serious Pathogenesis of Hardwood Trees. Appl Environ Microbiol 2023; 89:e0027223. [PMID: 37098943 PMCID: PMC10231188 DOI: 10.1128/aem.00272-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/06/2023] [Indexed: 04/27/2023] Open
Abstract
Perenniporia fraxinea can colonize living trees and cause severe damage to standing hardwoods by secreting a number of carbohydrate-activate enzymes (CAZymes), unlike other well-studied Polyporales. However, significant knowledge gaps exist in understanding the detailed mechanisms for this hardwood-pathogenic fungus. To address this issue, five monokaryotic P. fraxinea strains, SS1 to SS5, were isolated from the tree species Robinia pseudoacacia, and high polysaccharide-degrading activities and the fastest growth were found for P. fraxinea SS3 among the isolates. The whole genome of P. fraxinea SS3 was sequenced, and its unique CAZyme potential for tree pathogenicity was determined in comparison to the genomes of other nonpathogenic Polyporales. These CAZyme features are well conserved in a distantly related tree pathogen, Heterobasidion annosum. Furthermore, the carbon source-dependent CAZyme secretions of P. fraxinea SS3 and a nonpathogenic and strong white-rot Polyporales member, Phanerochaete chrysosporium RP78, were compared by activity measurements and proteomic analyses. As seen in the genome comparisons, P. fraxinea SS3 exhibited higher pectin-degrading activities and higher laccase activities than P. chrysosporium RP78, which were attributed to the secretion of abundant glycoside hydrolase family 28 (GH28) pectinases and auxiliary activity family 1_1 (AA1_1) laccases, respectively. These enzymes are possibly related to fungal invasion into the tree lumens and the detoxification of tree defense substances. Additionally, P. fraxinea SS3 showed secondary cell wall degradation capabilities at the same level as that of P. chrysosporium RP78. Overall, this study suggested mechanisms for how this fungus can attack the cell walls of living trees as a serious pathogen and differs from other nonpathogenic white-rot fungi. IMPORTANCE Many studies have been done to understand the mechanisms underlying the degradation of plant cell walls of dead trees by wood decay fungi. However, little is known about how some of these fungi weaken living trees as pathogens. P. fraxinea belongs to the Polyporales, a group of strong wood decayers, and is known to aggressively attack and fell standing hardwood trees all over the world. Here, we report CAZymes potentially related to plant cell wall degradation and pathogenesis factors in a newly isolated fungus, P. fraxinea SS3, by genome sequencing in conjunction with comparative genomic and secretomic analyses. The present study provides insights into the mechanisms of the degradation of standing hardwood trees by the tree pathogen, which will contribute to the prevention of this serious tree disease.
Collapse
Affiliation(s)
- Ruy Matsumoto
- Research Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Jakia Jerin Mehjabin
- Research Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | | | - Taichi E. Takasuka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- Global Station for Food, Land, and Water Resources, Hokkaido University, Sapporo, Japan
| | - Chiaki Hori
- Research Faculty of Engineering, Hokkaido University, Sapporo, Japan
- Research Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
Jalil AM, Abdul-Hamid H, Sahrim-Lias, Anwar-Uyup MK, Md-Tahir P, Mohd-Razali S, Mohd-Noor AA, Syazwan SA, Shamsul-Anuar AS, Mohamad Kasim MR, Mohamed J, Abiri R. Assessment of the Effects of Artificial Fungi Inoculations on Agarwood Formation and Sap Flow Rate of Aquilaria malaccensis Lam. Using Sonic Tomography (SoT) and Sap Flow Meter (SFM). FORESTS 2022; 13:1731. [DOI: 10.3390/f13101731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Agarwood is a valuable aromatic resinous wood that is biosynthesised when a fungal attack injures the healthy wood tissue of the Aquilaria tree. The magnitude of infection related to sap flow (SF) is one of the most critical functional traits to evaluate the tree’s response to various adverse conditions. Therefore, the objective of this study was to investigate the reliability of sonic tomography (SoT) and sap flow meter (SFM) in studying the influence of inoculation fungi Pichia kudriavzevii Boidin, Pignal and Besson, and Paecilomyces niveus Stolk and Samson, on deteriorated wood (Dt) and SF rate in Aquilaria malaccensis Lam. A. malaccensis trees with small, medium, and large diameters were inoculated with each fungus separately at the bottom, middle, and top positions of the tree and the area of sapwood was measured after 6, 12, and 24 months to stimulate the agarwood formation. Furthermore, the SF rate was assessed using SFM in the position of the selected trees. There was a significant difference (p ≤ 0.05) in Dt% and SF rate between inoculated and uninoculated trees. The Dt percentage in trees inoculated with P. kudriavzevii, P. niveus, and control trees was 25.6%, 25.7%, and 15.0%, respectively. The SF rate was lower in P. kudriavzevii, with 207.7 cm3/h, than in the control trees, with 312.9 cm3/h in the small-diameter class. In summary, the results of this study emphasise the importance of inoculation duration (24 months) and the effects of water conductivity, especially tree diameter class (small), on the biosynthetic response of resinous substance.
Collapse
|
12
|
Soderberg DN, Bentz BJ, Runyon JB, Hood SM, Mock KE. Chemical defense strategies, induction timing, growth, and trade‐offs in
Pinus aristata
and
Pinus flexilis. Ecosphere 2022. [DOI: 10.1002/ecs2.4183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- David N. Soderberg
- Wildland Resources Department Utah State University Logan Utah USA
- Ecology Center Utah State University Logan Utah USA
| | - Barbara J. Bentz
- USDA Forest Service, Rocky Mountain Research Station Logan Utah USA
| | - Justin B. Runyon
- USDA Forest Service, Rocky Mountain Research Station Bozeman Montana USA
| | - Sharon M. Hood
- USDA Forest Service, Rocky Mountain Research Station Missoula Montana USA
| | - Karen E. Mock
- Wildland Resources Department Utah State University Logan Utah USA
- Ecology Center Utah State University Logan Utah USA
| |
Collapse
|
13
|
Vulnerability of non-native invasive plants to novel pathogen attack: do plant traits matter? Biol Invasions 2022. [DOI: 10.1007/s10530-022-02853-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
|
15
|
Nagy NE, Norli HR, Fongen M, Østby RB, Heldal IM, Davik J, Hietala AM. Patterns and roles of lignan and terpenoid accumulation in the reaction zone compartmentalizing pathogen-infected heartwood of Norway spruce. PLANTA 2022; 255:63. [PMID: 35142905 PMCID: PMC8831285 DOI: 10.1007/s00425-022-03842-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/25/2022] [Indexed: 05/17/2023]
Abstract
Lignan impregnation of the reaction zone wood protects against oxidative degradation by fungi. Traumatic resin canals may play roles in the underlying signal transduction, synthesis, and translocation of defense compounds. Tree defense against xylem pathogens involves both constitutive and induced phenylpropanoids and terpenoids. The induced defenses include compartmentalization of compromised wood with a reaction zone (RZ) characterized by polyphenol deposition, whereas the role of terpenoids has remained poorly understood. To further elucidate the tree-pathogen interaction, we profiled spatial patterns in lignan (low-molecular-weight polyphenols) and terpenoid content in Norway spruce (Picea abies) trees showing heartwood colonization by the pathogenic white-rot fungus Heterobasidion parviporum. There was pronounced variation in the amount and composition of lignans between different xylem tissue zones of diseased and healthy trees. Intact RZ at basal stem regions, where colonization is the oldest, showed the highest level and diversity of these compounds. The antioxidant properties of lignans obviously hinder oxidative degradation of wood: RZ with lignans removed by extraction showed significantly higher mass loss than unextracted RZ when subjected to Fenton degradation. The reduced diversity and amount of lignans in pathogen-compromised RZ and decaying heartwood in comparison to intact RZ and healthy heartwood suggest that α-conindendrin isomer is an intermediate metabolite in lignan decomposition by H. parviporum. Diterpenes and diterpene alcohols constituted above 90% of the terpenes detected in sapwood of healthy and diseased trees. A significant finding was that traumatic resin canals, predominated by monoterpenes, were commonly associated with RZ. The findings clarify the roles and fate of lignan during wood decay and raise questions about the potential roles of terpenoids in signal transduction, synthesis, and translocation of defense compounds upon wood compartmentalization against decay fungi.
Collapse
Affiliation(s)
| | - Hans Ragnar Norli
- Norwegian Institute of Bioeconomy Research, P.B. 115, 1431, Ås, Norway
| | - Monica Fongen
- Norwegian Institute of Bioeconomy Research, P.B. 115, 1431, Ås, Norway
| | - Runa Berg Østby
- Faculty of Health, Welfare and Organisation, Østfold University College, P.B. 700, 1757, Halden, Norway
| | - Inger M Heldal
- Norwegian Institute of Bioeconomy Research, P.B. 115, 1431, Ås, Norway
| | - Jahn Davik
- Norwegian Institute of Bioeconomy Research, P.B. 115, 1431, Ås, Norway
| | - Ari M Hietala
- Norwegian Institute of Bioeconomy Research, P.B. 2609, 7734, Steinkjer, Norway.
| |
Collapse
|
16
|
Kawai K, Minagi K, Nakamura T, Saiki ST, Yazaki K, Ishida A. Parenchyma underlies the interspecific variation of xylem hydraulics and carbon storage across 15 woody species on a subtropical island in Japan. TREE PHYSIOLOGY 2022; 42:337-350. [PMID: 34328187 DOI: 10.1093/treephys/tpab100] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Parenchyma is an important component of the secondary xylem. It has multiple functions and its fraction is known to vary substantially across angiosperm species. However, the physiological significance of this variation is not yet fully understood. Here, we examined how different types of parenchyma (ray parenchyma [RP], axial parenchyma [AP] and AP in direct contact with vessels [APV]) are coordinated with three essential xylem functions: water conduction, storage of non-structural carbohydrate (NSC) and mechanical support. Using branch sapwood of 15 co-occurring drought-adapted woody species from the subtropical Bonin Islands, Japan, we quantified 10 xylem anatomical traits and examined their linkages to hydraulic properties, storage of soluble sugars and starch and sapwood density. The fractions of APV and AP in the xylem transverse sections were positively correlated with the percentage loss of conductivity in the native condition, whereas that of RP was negatively correlated with the maximum conductivity across species. Axial and ray parenchyma fractions were positively associated with concentrations of starch and NSC. The fraction of parenchyma was independent of sapwood density, regardless of parenchyma type. We also identified a negative relationship between hydraulic conductivity and NSC storage and sapwood density, mirroring the negative relationship between the fractions of parenchyma and vessels. These results suggest that parenchyma fraction underlies species variation in xylem hydraulic and carbon use strategies, wherein xylem with a high fraction of AP may adopt an embolism repair strategy through an increased starch storage with low cavitation resistance.
Collapse
Affiliation(s)
- Kiyosada Kawai
- Center for Ecological Research, Kyoto University, Hirano 2 509-3 Otsu, Shiga 520-2113, Japan
- Forestry Division, Japan International Research Center for Agricultural Sciences, Ohwashi 1-1 Tsukuba, Ibaraki 305-8686, Japan
| | - Kanji Minagi
- Center for Ecological Research, Kyoto University, Hirano 2 509-3 Otsu, Shiga 520-2113, Japan
| | - Tomomi Nakamura
- Center for Ecological Research, Kyoto University, Hirano 2 509-3 Otsu, Shiga 520-2113, Japan
| | - Shin-Taro Saiki
- Department of Plant Ecology, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
| | - Kenichi Yazaki
- Department of Plant Ecology, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
- Soil-Plant Ecosystem Group, Hokkaido Research Center, Forestry and Forest Products Research Institute, Hitsujigaoka 7, Sapporo, Hokkaido 062-8516, Japan
| | - Atsushi Ishida
- Center for Ecological Research, Kyoto University, Hirano 2 509-3 Otsu, Shiga 520-2113, Japan
| |
Collapse
|
17
|
Yang S, Sterck FJ, Sass-Klaassen U, Cornelissen JHC, van Logtestijn RSP, Hefting M, Goudzwaard L, Zuo J, Poorter L. Stem Trait Spectra Underpin Multiple Functions of Temperate Tree Species. FRONTIERS IN PLANT SCIENCE 2022; 13:769551. [PMID: 35310622 PMCID: PMC8930200 DOI: 10.3389/fpls.2022.769551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/13/2022] [Indexed: 05/17/2023]
Abstract
A central paradigm in comparative ecology is that species sort out along a slow-fast resource economy spectrum of plant strategies, but this has been rarely tested for a comprehensive set of stem traits and compartments. We tested how stem traits vary across wood and bark of temperate tree species, whether a slow-fast strategy spectrum exists, and what traits make up this plant strategy spectrum. For 14 temperate tree species, 20 anatomical, chemical, and morphological traits belonging to six key stem functions were measured for three stem compartments (inner wood, outer wood, and bark). The trait variation was explained by major taxa (38%), stem compartments (24%), and species within major taxa (19%). A continuous plant strategy gradient was found across and within taxa, running from hydraulic safe gymnosperms to conductive angiosperms. Both groups showed a second strategy gradient related to chemical defense. Gymnosperms strongly converged in their trait strategies because of their uniform tracheids. Angiosperms strongly diverged because of their different vessel arrangement and tissue types. The bark had higher concentrations of nutrients and phenolics whereas the wood had stronger physical defense. The gymnosperms have a conservative strategy associated with strong hydraulic safety and physical defense, and a narrow, specialized range of trait values, which allow them to grow well in drier and unproductive habitats. The angiosperm species show a wider trait variation in all stem compartments, which makes them successful in marginal- and in mesic, productive habitats. The associations between multiple wood and bark traits collectively define a slow-fast stem strategy spectrum as is seen also for each stem compartment.
Collapse
Affiliation(s)
- Shanshan Yang
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Shanshan Yang, ;
| | - Frank J. Sterck
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
| | - Ute Sass-Klaassen
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
| | - J. Hans C. Cornelissen
- Department of Ecological Science, Systems Ecology, VU University (Vrije Universiteit) Amsterdam, Amsterdam, Netherlands
| | - Richard S. P. van Logtestijn
- Department of Ecological Science, Systems Ecology, VU University (Vrije Universiteit) Amsterdam, Amsterdam, Netherlands
| | - Mariet Hefting
- Landscape Ecology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | - Leo Goudzwaard
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
| | - Juan Zuo
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
18
|
Amais RS, Moreau PS, Francischini DS, Magnusson R, Locosselli GM, Godoy-Veiga M, Ceccantini G, Ortega Rodriguez DR, Tomazello-Filho M, Arruda MAZ. Trace elements distribution in tropical tree rings through high-resolution imaging using LA-ICP-MS analysis. J Trace Elem Med Biol 2021; 68:126872. [PMID: 34628231 DOI: 10.1016/j.jtemb.2021.126872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/26/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND The distribution of trace elements in tree rings although poorly known may be useful to better understand environmental changes, pollution trends, long-term droughts, forest dieback processes, and biology of trees. METHOD Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is used for imaging micronutrients and potentially toxic elements distribution, allowing the investigation of trace elements at high spatial resolution within the tree rings. To ensure a more efficient determination of micronutrients and potentially toxic elements, LA-ICP-MS instrumental conditions were optimized and carbon, a major element in wood, is used as an internal standard during analysis to correct for random fluctuations. RESULTS Spatial distributions maps of Ba, Cu, Fe, Mn, Ni, and Pb in growth layers of six tropical tree species were built-up using the LA-iMageS software, namely: Amburana cearensis (Fabaceae), Cedrela fissilis (Meliaceae), Hymenaea courbaril (Fabaceae), Maclura tinctoria (Moraceae), Parapiptadenia zehntneri (Fabaceae), Peltogyne paniculata (Fabaceae). A correlation between the trace element composition and different cell types (parenchyma, fiber, and vessel) was distinctly observed. It was observed a general pattern of Ba, Cu, Ni, Mn, and Pb accumulation mainly in the axial parenchyma and vessels. But the elemental composition of xylem cells is strongly species dependent. The multivariate analysis also points to a distinct accumulation of minerals between heartwood and sapwood in the same species. CONCLUSIONS Imaging both essential and deleterious element distributions in the tree rings may improve visualization and can effectively contribute to understanding the lifetime metabolism of trees and evaluating the effects of environmental changes related to climatic seasonality, pollution, and future paleoclimate reconstructions.
Collapse
Affiliation(s)
- Renata S Amais
- Spectrometry, Sample Preparation and Mechanization Group (GEPAM), Institute of Chemistry, University of Campinas, PO Box 6154, Campinas, SP, 13083-970, Brazil.
| | - Pedro S Moreau
- Spectrometry, Sample Preparation and Mechanization Group (GEPAM), Institute of Chemistry, University of Campinas, PO Box 6154, Campinas, SP, 13083-970, Brazil
| | - Danielle S Francischini
- Spectrometry, Sample Preparation and Mechanization Group (GEPAM), Institute of Chemistry, University of Campinas, PO Box 6154, Campinas, SP, 13083-970, Brazil
| | - Rafael Magnusson
- Spectrometry, Sample Preparation and Mechanization Group (GEPAM), Institute of Chemistry, University of Campinas, PO Box 6154, Campinas, SP, 13083-970, Brazil
| | | | - Milena Godoy-Veiga
- University of São Paulo, Institute of Biosciences, Department of Botany, Rua do Matão, 277, São Paulo, SP, 05508-090, Brazil
| | - Gregório Ceccantini
- University of São Paulo, Institute of Biosciences, Department of Botany, Rua do Matão, 277, São Paulo, SP, 05508-090, Brazil
| | - Daigard R Ortega Rodriguez
- University of São Paulo, Luiz de Queiroz College of Agriculture, Department of Forest Sciences, Piracicaba, Brazil
| | - Mario Tomazello-Filho
- University of São Paulo, Luiz de Queiroz College of Agriculture, Department of Forest Sciences, Piracicaba, Brazil
| | - Marco A Z Arruda
- Spectrometry, Sample Preparation and Mechanization Group (GEPAM), Institute of Chemistry, University of Campinas, PO Box 6154, Campinas, SP, 13083-970, Brazil
| |
Collapse
|
19
|
El Kayal W, Chamas Z, El-Sharkawy I, Subramanian J. Comparative Anatomical Responses of Tolerant and Susceptible European Plum Varieties to Black Knot Disease. PLANT DISEASE 2021; 105:3244-3249. [PMID: 33434033 DOI: 10.1094/pdis-07-20-1626-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plums are affected by a cancerous disease called "black knot disease" caused by the fungus Apiosporina morbosa. It affects both Japanese (Prunus salicina) and European (Prunus domestica) plums equally. To understand the spread of the disease, histological analysis was performed in two different European plum cultivars (susceptible and tolerant). Light and scanning electron microscope (SEM) analyses confirmed the presence of the growing hyphae in the internal tissues of the susceptible trees. By using stereoscopic analysis with a fluorescence filter, we were able to detect the hyphae in the visible lesion area. At about 2 inches from above and below the knots, no spore or hypha were visible with the light microscope. However, SEM images showed strong evidence that the fungus is capable of migrating to adjacent vessels in the susceptible plum genotype. In fact, at that distance below and above the knots, conidia were detected inside xylem vessels suggesting a systemic movement of the fungus that has not been shown so far. No symptoms were observed in the resistant genotype. Starch granules, vessel occlusions, and lipid droplets were the main distinguishable characteristics between susceptible and tolerant varieties.
Collapse
Affiliation(s)
- Walid El Kayal
- Faculty of Agricultural and Food Sciences, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon
- Department of Plant Agriculture, University of Guelph-Vineland Station, Vineland, Ontario L0R2E0, Canada
| | - Zeinab Chamas
- Faculty of Agricultural and Food Sciences, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon
| | - Islam El-Sharkawy
- Florida A&M University, College of Agriculture and Food Sciences, Center for Viticulture & Small Fruit Research, Tallahassee, FL 32308, U.S.A
| | - Jayasankar Subramanian
- Department of Plant Agriculture, University of Guelph-Vineland Station, Vineland, Ontario L0R2E0, Canada
| |
Collapse
|
20
|
Molecular Genetic Characteristics of Different Scenarios of Xylogenesis on the Example of Two Forms of Silver Birch Differing in the Ratio of Structural Elements in the Xylem. PLANTS 2021; 10:plants10081593. [PMID: 34451638 PMCID: PMC8400816 DOI: 10.3390/plants10081593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022]
Abstract
Silver birch (Betula pendula Roth) is an economically important species in Northern Europe. The current research focused on the molecular background of different xylogenesis scenarios in the birch trunks. The study objects were two forms of silver birch, silver birch trees, and Karelian birch trees; the latter form is characterized by the formation of two types of wood, non-figured (straight-grained) and figured, respectively, while it is currently not clear which factors cause this difference. We identified VND/NST/SND genes that regulate secondary cell wall biosynthesis in the birch genome and revealed differences in their expression in association with the formation of xylem with different ratios of structural elements. High expression levels of BpVND7 accompanied differentiation of the type of xylem which is characteristic of the species. At the same time, the appearance of figured wood was accompanied by the low expression levels of the VND genes and increased levels of expression of NST and SND genes. We identified BpARF5 as a crucial regulator of auxin-dependent vascular patterning and its direct target—BpHB8. A decrease in the BpARF5 level expression in differentiating xylem was a specific characteristic of both Karelian birch with figured and non-figured wood. Decreased BpARF5 level expression in non-figured trees accompanied by decreased BpHB8 and VND/NST/SND expression levels compared to figured Karelian birch trees. According to the results obtained, we suggested silver birch forms differing in wood anatomy as valuable objects in studying the regulation of xylogenesis.
Collapse
|
21
|
Słupianek A, Dolzblasz A, Sokołowska K. Xylem Parenchyma-Role and Relevance in Wood Functioning in Trees. PLANTS (BASEL, SWITZERLAND) 2021; 10:1247. [PMID: 34205276 PMCID: PMC8235782 DOI: 10.3390/plants10061247] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Woody plants are characterised by a highly complex vascular system, wherein the secondary xylem (wood) is responsible for the axial transport of water and various substances. Previous studies have focused on the dead conductive elements in this heterogeneous tissue. However, the living xylem parenchyma cells, which constitute a significant functional fraction of the wood tissue, have been strongly neglected in studies on tree biology. Although there has recently been increased research interest in xylem parenchyma cells, the mechanisms that operate in these cells are poorly understood. Therefore, the present review focuses on selected roles of xylem parenchyma and its relevance in wood functioning. In addition, to elucidate the importance of xylem parenchyma, we have compiled evidence supporting the hypothesis on the significance of parenchyma cells in tree functioning and identified the key unaddressed questions in the field.
Collapse
Affiliation(s)
- Aleksandra Słupianek
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland; (A.D.); (K.S.)
| | | | | |
Collapse
|
22
|
Guan X, Pereira L, McAdam SAM, Cao KF, Jansen S. No gas source, no problem: Proximity to pre-existing embolism and segmentation affect embolism spreading in angiosperm xylem by gas diffusion. PLANT, CELL & ENVIRONMENT 2021; 44:1329-1345. [PMID: 33529382 DOI: 10.1111/pce.14016] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 05/12/2023]
Abstract
Embolism spreading in dehydrating angiosperm xylem is driven by gas movement between embolized and sap-filled conduits. Here we examine how the proximity to pre-existing embolism and hydraulic segmentation affect embolism propagation. Based on the optical method, we compare xylem embolism resistance between detached leaves and leaves attached to branches, and between intact leaves and leaves with cut minor veins, for six species. Embolism resistance of detached leaves was significantly lower than that of leaves attached to stems, except for two species, with all vessels ending in their petioles. Cutting of minor veins showed limited embolism spreading in minor veins near the cuts prior to major veins. Moreover, despite strong agreement in the overall embolism resistance of detached leaves between the optical and pneumatic method, minor differences were observed during early stages of embolism formation. We conclude that embolism resistance may represent a relative trait due to an open-xylem artefact, with embolism spreading possibly affected by the proximity and connectivity to pre-existing embolism as a gas source, while hydraulic segmentation prevents such artefact. Since embolism formation may not rely on a certain pressure difference threshold between functional and embolized conduits, we speculate that embolism is facilitated by pressure-driven gas diffusion across pit membranes.
Collapse
Affiliation(s)
- Xinyi Guan
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - Luciano Pereira
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
- Laboratory of Plant Physiology "Coaracy M. Franco", Center R&D in Ecophysiology and Biophysics, Agronomic Institute (IAC), Campinas, Brazil
- Laboratory of Crop Physiology, Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Scott A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Kun-Fang Cao
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| |
Collapse
|
23
|
Herrera-Ramírez D, Sierra CA, Römermann C, Muhr J, Trumbore S, Silvério D, Brando PM, Hartmann H. Starch and lipid storage strategies in tropical trees relate to growth and mortality. THE NEW PHYTOLOGIST 2021; 230:139-154. [PMID: 33507548 DOI: 10.1111/nph.17239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Non-structural carbon (NSC) storage (i.e. starch, soluble sugras and lipids) in tree stems play important roles in metabolism and growth. Their spatial distribution in wood may explain species-specific differences in carbon storage dynamics, growth and survival. However, quantitative information on the spatial distribution of starch and lipids in wood is sparse due to methodological limitations. Here we assessed differences in wood NSC and lipid storage between tropical tree species with different growth and mortality rates and contrasting functional types. We measured starch and soluble sugars in wood cores up to 4 cm deep into the stem using standard chemical quantification methods and histological slices stained with Lugol's iodine. We also detected neutral lipids using histological slices stained with Oil-Red-O. The histological method allowed us to group individuals into two categories according to their starch storage strategy: fiber-storing trees and parenchyma-storing trees. The first group had a bigger starch pool, slower growth and lower mortality rates than the second group. Lipid storage was found in wood parenchyma in five species and was related to low mortality rates. The quantification of the spatial distribution of starch and lipids in wood improves our understanding of NSC dynamics in trees and reveals additional dimensions of tree growth and survival strategies.
Collapse
Affiliation(s)
| | - Carlos A Sierra
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str 10, Jena, 07745, Germany
| | - Christine Römermann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, D-04103, Germany
- Department of Bioclimatology, Georg August University Göttingen, Büsgenweg 2, Göttingen, 37077, Germany
| | - Jan Muhr
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str 10, Jena, 07745, Germany
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Philosophenweg 16, Jena, 07743, Germany
| | - Susan Trumbore
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str 10, Jena, 07745, Germany
| | - Divino Silvério
- Department of Biology, Universidade Federal Rural da Amazônia - UFRA, Capitão Poço, Pará, 68650-000, Brazil
| | - Paulo M Brando
- Department of Earth System Science, University of California, Irvine, CA, 92697, USA
- Instituto de Pesquisa Ambiental da Amazônia, Brasília, DF, 70863-520, Brazil
- Woodwell Climate Research Center, Falmouth, MA, 02540, USA
| | - Henrik Hartmann
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str 10, Jena, 07745, Germany
| |
Collapse
|
24
|
Aritsara ANA, Razakandraibe VM, Ramananantoandro T, Gleason SM, Cao KF. Increasing axial parenchyma fraction in the Malagasy Magnoliids facilitated the co-optimisation of hydraulic efficiency and safety. THE NEW PHYTOLOGIST 2021; 229:1467-1480. [PMID: 32981106 DOI: 10.1111/nph.16969] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
The evolution of angiosperms was accompanied by the segregation and specialisation of their xylem tissues. This study aimed to determine whether the fraction and arrangement of parenchyma tissue influence the hydraulic efficiency-safety trade-off in the basal angiosperms. We examined xylem anatomical structure and hydraulic functioning of 28 woody species of Magnoliids in a tropical rainforest of Madagascar and reported, for the first time, quantitative measurements that support the relationship between vessel-to-xylem parenchyma connectivity and the hydraulic efficiency-safety trade-off. We also introduced a new measurement - the distance of species from the trade-off limit - to quantify the co-optimisation of hydraulic efficiency and safety. Although the basal angiosperms in this study had low hydraulic conductivity and safety, species with higher axial parenchyma fraction (APf) had significantly higher hydraulic conductivity. Hydraulic efficiency-safety optimisation was accompanied by higher APf and vessel-to-axial parenchyma connectivity. Conversely, species exhibiting high ray parenchyma fraction and high vessel-to-ray connectivity had lower Ks and were further away from the hydraulic trade-off limit line. Our results provide evidence that axial parenchyma fraction and paratracheal arrangement are associated with both enhanced hydraulic efficiency and safety.
Collapse
Affiliation(s)
- Amy Ny Aina Aritsara
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
- Unité de Formation et de Recherche Sciences du Bois, Département Foresterie et Environnement, Ecole Supérieure des Sciences Agronomiques, Université d'Antananarivo, BP 175, Antananarivo, 101, Madagascar
| | - Vonjisoa M Razakandraibe
- Unité de Formation et de Recherche Sciences du Bois, Département Foresterie et Environnement, Ecole Supérieure des Sciences Agronomiques, Université d'Antananarivo, BP 175, Antananarivo, 101, Madagascar
| | - Tahiana Ramananantoandro
- Unité de Formation et de Recherche Sciences du Bois, Département Foresterie et Environnement, Ecole Supérieure des Sciences Agronomiques, Université d'Antananarivo, BP 175, Antananarivo, 101, Madagascar
| | - Sean M Gleason
- Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO, 80526, USA
| | - Kun-Fang Cao
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| |
Collapse
|
25
|
Alves EEN, Ortega Rodriguez DR, Rocha PDA, Vergütz L, Santini Junior L, Hesterberg D, Pessenda LCR, Tomazello-Filho M, Costa LMD. Synchrotron-based X-ray microscopy for assessing elements distribution and speciation in mangrove tree-rings. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
26
|
Pouzoulet J, Rolshausen PE, Charbois R, Chen J, Guillaumie S, Ollat N, Gambetta GA, Delmas CEL. Behind the curtain of the compartmentalization process: Exploring how xylem vessel diameter impacts vascular pathogen resistance. PLANT, CELL & ENVIRONMENT 2020; 43:2782-2796. [PMID: 32681569 DOI: 10.1111/pce.13848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 05/07/2023]
Abstract
A key determinant of plant resistance to vascular infections lies in the ability of the host to successfully compartmentalize invaders at the xylem level. Growing evidence supports that the structural properties of the vascular system impact host vulnerability towards vascular pathogens. The aim of this study was to provide further insight into the impact of xylem vessel diameter on compartmentalization efficiency and thus vascular pathogen movement, using the interaction between Vitis and Phaeomoniella chlamydospora as a model system. We showed experimentally that an increased number of xylem vessels above 100 μm of diameter resulted in a higher mean infection level of host tissue. This benchmark was validated within and across Vitis genotypes. Although the ability of genotypes to restore vascular cambium integrity upon infection was highly variable, this trait did not correlate with their ability to impede pathogen movement at the xylem level. The distribution of infection severity of cuttings across the range of genotype's susceptibility suggests that a risk-based mechanism is involved. We used this experimental data to calibrate a mechanistic stochastic model of the pathogen spread and we provide evidence that the efficiency of the compartmentalization process within a given xylem vessel is a function of its diameter.
Collapse
Affiliation(s)
- Jérôme Pouzoulet
- EGFV, INRAE, Bordeaux-Sciences Agro, Université Bordeaux, ISVV, Villenave d'Ornon, France
| | - Philippe E Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, California, USA
| | - Rémi Charbois
- EGFV, INRAE, Bordeaux-Sciences Agro, Université Bordeaux, ISVV, Villenave d'Ornon, France
| | - Jinliang Chen
- EGFV, INRAE, Bordeaux-Sciences Agro, Université Bordeaux, ISVV, Villenave d'Ornon, France
| | - Sabine Guillaumie
- EGFV, INRAE, Bordeaux-Sciences Agro, Université Bordeaux, ISVV, Villenave d'Ornon, France
| | - Nathalie Ollat
- EGFV, INRAE, Bordeaux-Sciences Agro, Université Bordeaux, ISVV, Villenave d'Ornon, France
| | - Gregory A Gambetta
- EGFV, INRAE, Bordeaux-Sciences Agro, Université Bordeaux, ISVV, Villenave d'Ornon, France
| | - Chloé E L Delmas
- SAVE, INRAE, Bordeaux-Sciences Agro, ISVV, Villenave d'Ornon, France
| |
Collapse
|
27
|
Koddenberg T, Zauner M, Militz H. Three-Dimensional Exploration of Soft-Rot Decayed Conifer and Angiosperm Wood by X-Ray Micro-Computed Tomography. Micron 2020; 134:102875. [PMID: 32362582 DOI: 10.1016/j.micron.2020.102875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 11/16/2022]
Abstract
X-ray micro-computed tomography (XμCT) was used to explore the decomposed structure of conifer and angiosperm wood after colonization by soft-rot fungi. The visualization of degradation features of soft-rot decay was challenging to achieve through XμCT. Difficulties in visualization emerged due to a decreased grayscale contrast (i.e. X-ray density) of the degraded wood. Nevertheless, we were able to image fungal-induced cell deformations in earlywood and cavities in the thick wall of latewood cells in three-dimensions (3D). Unlike the organic wood material, the higher X-ray density of inorganic deposits, identified as mainly calcium-based particles by energy-dispersive spectroscopy, allowed a facilitated 3D survey. The visualization of inorganic particles in 3D revealed a localized distribution in certain cells in conifer and angiosperm found mostly in earlywood.
Collapse
Affiliation(s)
- Tim Koddenberg
- Wood Biology and Wood Products, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Göttingen, Germany.
| | - Michaela Zauner
- Wood Biology and Wood Products, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Göttingen, Germany
| | - Holger Militz
- Wood Biology and Wood Products, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Göttingen, Germany
| |
Collapse
|
28
|
Morris H, Hietala AM, Jansen S, Ribera J, Rosner S, Salmeia KA, Schwarze FWMR. Using the CODIT model to explain secondary metabolites of xylem in defence systems of temperate trees against decay fungi. ANNALS OF BOTANY 2020; 125:701-720. [PMID: 31420666 PMCID: PMC7182590 DOI: 10.1093/aob/mcz138] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/12/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND In trees, secondary metabolites (SMs) are essential for determining the effectiveness of defence systems against fungi and why defences are sometimes breached. Using the CODIT model (Compartmentalization of Damage/Dysfunction in Trees), we explain defence processes at the cellular level. CODIT is a highly compartmented defence system that relies on the signalling, synthesis and transport of defence compounds through a three-dimensional lattice of parenchyma against the spread of decay fungi in xylem. SCOPE The model conceptualizes 'walls' that are pre-formed, formed during and formed after wounding events. For sapwood, SMs range in molecular size, which directly affects performance and the response times in which they can be produced. When triggered, high-molecular weight SMs such as suberin and lignin are synthesized slowly (phytoalexins), but can also be in place at the time of wounding (phytoanticipins). In contrast, low-molecular weight phenolic compounds such as flavonoids can be manufactured de novo (phytoalexins) rapidly in response to fungal colonization. De novo production of SMs can be regulated in response to fungal pathogenicity levels. The protective nature of heartwood is partly based on the level of accumulated antimicrobial SMs (phytoanticipins) during the transitionary stage into a normally dead substance. Effectiveness against fungal colonization in heartwood is largely determined by the genetics of the host. CONCLUSION Here we review recent advances in our understanding of the role of SMs in trees in the context of CODIT, with emphasis on the relationship between defence, carbohydrate availability and the hydraulic system.We also raise the limitations of the CODIT model and suggest its modification, encompassing other defence theory concepts. We envisage the development of a new defence system that is modular based and incorporates all components (and organs) of the tree from micro- to macro-scales.
Collapse
Affiliation(s)
- Hugh Morris
- Laboratory for Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Ari M Hietala
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - Javier Ribera
- Laboratory for Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | | | - Khalifah A Salmeia
- Laboratory of Advanced Fibers, Empa-Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Francis W M R Schwarze
- Laboratory for Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| |
Collapse
|
29
|
Marshall JD, Cuntz M, Beyer M, Dubbert M, Kuehnhammer K. Borehole Equilibration: Testing a New Method to Monitor the Isotopic Composition of Tree Xylem Water in situ. FRONTIERS IN PLANT SCIENCE 2020; 11:358. [PMID: 32351515 PMCID: PMC7175398 DOI: 10.3389/fpls.2020.00358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/11/2020] [Indexed: 05/27/2023]
Abstract
Forest water use has been difficult to quantify. One promising approach is to measure the isotopic composition of plant water, e.g., the transpired water vapor or xylem water. Because different water sources, e.g., groundwater versus shallow soil water, often show different isotopic signatures, isotopes can be used to investigate the depths from which plants take up their water and how this changes over time. Traditionally such measurements have relied on the extraction of wood samples, which provide limited time resolution at great expense, and risk possible artifacts. Utilizing a borehole drilled through a tree's stem, we propose a new method based on the notion that water vapor in a slow-moving airstream approaches isotopic equilibration with the much greater mass of liquid water in the xylem. We present two empirical data sets showing that the method can work in practice. We then present a theoretical model estimating equilibration times and exploring the limits at which the approach will fail. The method provides a simple, cheap, and accurate means of continuously estimating the isotopic composition of the source water for transpiration.
Collapse
Affiliation(s)
- John D. Marshall
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Matthias Cuntz
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, Nancy, France
| | - Matthias Beyer
- IGOE, Umweltgeochemie, Technische Universität Braunschweig, Braunschweig, Germany
- Department B2.3: Groundwater Resources and Dynamics, German Federal Institute for Geosciences and Natural Resources (BGR), Hanover, Germany
| | - Maren Dubbert
- Ecosystem Physiology, University Freiburg, Freiburg, Germany
- IGB Berlin, Landscape Ecohydrology, Berlin, Germany
| | - Kathrin Kuehnhammer
- IGOE, Umweltgeochemie, Technische Universität Braunschweig, Braunschweig, Germany
- Ecosystem Physiology, University Freiburg, Freiburg, Germany
| |
Collapse
|
30
|
Godfrey JM, Riggio J, Orozco J, Guzmán-Delgado P, Chin ARO, Zwieniecki MA. Ray fractions and carbohydrate dynamics of tree species along a 2750 m elevation gradient indicate climate response, not spatial storage limitation. THE NEW PHYTOLOGIST 2020; 225:2314-2330. [PMID: 31808954 DOI: 10.1111/nph.16361] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Parenchyma cells in the xylem store nonstructural carbohydrates (NSC), providing reserves of energy that fuel woody perennials through periods of stress and/or limitations to photosynthesis. If the capacity for storage is subject to selection, then the fraction of wood occupied by living parenchyma should increase towards stressful environments. Ray parenchyma fraction (RPF) and seasonal NSC dynamics were quantified for 12 conifers and three oaks along a transect spanning warm dry foothills (500 m above sea level) to cold wet treeline (3250 m asl) in California's central Sierra Nevada. Mean RPF was lower for both conifer and oak species with warmer dryer ranges. RPF variability increased with elevation or in relation to associated climatic variables in conifers - treeline-dominant Pinus albicaulis had the lowest mean RPF measured (c. 3.7%), but the highest environmentally standardized variability index. Conifer RPF variability was explained by environment, increasing predominantly towards cooler wetter range edges. In oaks, NSC was explained by environment - values increasing for evergreen and decreasing for deciduous oaks with elevation. Lastly, all species surveyed appear to prioritize filling available RPF with sugar to achieve molarities that balance reasonable tensions over starch to maximize stored carbon. RPF responds to environment but is unlikely to spatially constrain NSC storage.
Collapse
Affiliation(s)
- Jessie M Godfrey
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
| | - Jason Riggio
- Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, CA, 95616, USA
| | - Jessica Orozco
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
| | | | - Alana R O Chin
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
| | | |
Collapse
|
31
|
Zhang Y, Carmesin C, Kaack L, Klepsch MM, Kotowska M, Matei T, Schenk HJ, Weber M, Walther P, Schmidt V, Jansen S. High porosity with tiny pore constrictions and unbending pathways characterize the 3D structure of intervessel pit membranes in angiosperm xylem. PLANT, CELL & ENVIRONMENT 2020; 43:116-130. [PMID: 31595539 DOI: 10.1111/pce.13654] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 05/29/2023]
Abstract
Pit membranes between xylem vessels play a major role in angiosperm water transport. Yet, their three-dimensional (3D) structure as fibrous porous media remains unknown, largely due to technical challenges and sample preparation artefacts. Here, we applied a modelling approach based on thickness measurements of fresh and fully shrunken pit membranes of seven species. Pore constrictions were also investigated visually by perfusing fresh material with colloidal gold particles of known sizes. Based on a shrinkage model, fresh pit membranes showed tiny pore constrictions of ca. 20 nm, but a very high porosity (i.e. pore volume fraction) of on average 0.81. Perfusion experiments showed similar pore constrictions in fresh samples, well below 50 nm based on transmission electron microscopy. Drying caused a 50% shrinkage of pit membranes, resulting in much smaller pore constrictions. These findings suggest that pit membranes represent a mesoporous medium, with the pore space characterized by multiple constrictions. Constrictions are much smaller than previously assumed, but the pore volume is large and highly interconnected. Pores do not form highly tortuous, bent, or zigzagging pathways. These insights provide a novel view on pit membranes, which is essential to develop a mechanistic, 3D understanding of air-seeding through this porous medium.
Collapse
Affiliation(s)
- Ya Zhang
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- College of Life Sciences, Anhui Normal University, Beijingdong Road 1, 241000, Wuhu, Anhui, China
| | - Cora Carmesin
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Lucian Kaack
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Matthias M Klepsch
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Martyna Kotowska
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany
| | - Tabea Matei
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - H Jochen Schenk
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd, CA, 92831-3599, Fullerton, USA
| | - Matthias Weber
- Institute of Stochastics, Ulm University, Helmholtzstraße 18, 89069, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Volker Schmidt
- Institute of Stochastics, Ulm University, Helmholtzstraße 18, 89069, Ulm, Germany
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
32
|
Godfrey JM, Ferguson L, Sanden BL, Tixier A, Sperling O, Grattan SR, Zwieniecki MA. Sodium interception by xylem parenchyma and chloride recirculation in phloem may augment exclusion in the salt tolerant Pistacia genus: context for salinity studies on tree crops. TREE PHYSIOLOGY 2019; 39:1484-1498. [PMID: 31095335 DOI: 10.1093/treephys/tpz054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/01/2019] [Accepted: 05/02/2019] [Indexed: 05/25/2023]
Abstract
Working in tandem with root exclusion, stems may provide salt-tolerant woody perennials with some additional capacity to restrict sodium (Na) and chloride (Cl) accumulation in leaves. The Pistacia genus, falling at the nexus of salt tolerance and human intervention, provided an ideal set of organisms for studying the influences of both variable root exclusion and potentially variable discontinuities at the bud union on stem processes. In three experiments covering a wide range of salt concentrations (0 to 150 mM NaCl) and tree ages (1, 2 and 10 years) as well as nine rootstock-scion combinations we show that proportional exclusion of both Na and Cl reached up to ~85% efficacy, but efficacy varied by both rootstock and budding treatment. Effective Na exclusion was augmented by significant retrieval of Na from the xylem sap, as evidenced by declines in the Na concentrations of both sap and wood tissue along the transpiration stream. However, while we observed little to no differences between the concentrations of the two ions in leaves, analogous declines in sap concentrations of Cl were not observed. We conclude that some parallel but separate mechanism must be acting on Cl to provide leaf protection from toxicity specific to this ion and suggest that this mechanism is recirculation of Cl in the phloem. The presented findings underline the importance of holistic assessments of salt tolerance in woody perennials. In particular, greater emphasis might be placed on the dynamics of salt sequestration in the significant storage volumes offered by the stems of woody perennials and on the potential for phloem discontinuity introduced with a bud/graft union.
Collapse
Affiliation(s)
- Jessie M Godfrey
- Plant Sciences Department, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Louise Ferguson
- Plant Sciences Department, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Blake L Sanden
- Kern County Cooperative Extension, University of California, 1031 South Mount Vernon Avenue, Bakersfield, CA 93307, USA
| | - Aude Tixier
- Institut National de la Recherche Agronomique (INRA), UMR1347 Agroécologie, Aubiere, France
| | - Or Sperling
- Agricultural Research Organization (ARO), Gilat Center, Petah Tikva, Israel
| | - Steve R Grattan
- Department of Land, Air and Water Resources, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Maciej A Zwieniecki
- Plant Sciences Department, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
33
|
Plavcová L, Gallenmüller F, Morris H, Khatamirad M, Jansen S, Speck T. Mechanical properties and structure-function trade-offs in secondary xylem of young roots and stems. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3679-3691. [PMID: 31301134 DOI: 10.1093/jxb/erz286] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/27/2019] [Indexed: 05/26/2023]
Abstract
Bending and torsional properties of young roots and stems were measured in nine woody angiosperms. The variation in mechanical parameters was correlated to wood anatomical traits and analysed with respect to the other two competing functions of xylem (namely storage and hydraulics). Compared with stems, roots exhibited five times greater flexibility in bending and two times greater flexibility in torsion. Lower values of structural bending and structural torsional moduli (Estr and Gstr, respectively) of roots compared with stems were associated with the presence of thicker bark and a greater size of xylem cells. Across species, Estr and Gstr were correlated with wood density, which was mainly driven by the wall thickness to lumen area ratio of fibres. Higher fractions of parenchyma did not translate directly into a lower wood density and reduced mechanical stiffness in spite of parenchyma cells having thinner, and in some cases less lignified, cell walls than fibres. The presence of wide, partially non-lignified rays contributed to low values of Estr and Gstr in Clematis vitalba. Overall, our results demonstrate that higher demands for mechanical stability in self-supporting stems put a major constraint on xylem structure, whereas root xylem can be designed with a greater emphasis on both storage and hydraulic functions.
Collapse
Affiliation(s)
- Lenka Plavcová
- University of Hradec Králové, Department of Biology, Faculty of Science, Rokitanského, Hradec Králové, Czech Republic
| | - Friederike Gallenmüller
- Plant Biomechanics Group Freiburg, Botanic Garden of the Albert-Ludwigs-University of Freiburg, Faculty of Biology, Schänzlestrasse, Freiburg, Germany
| | - Hugh Morris
- Laboratory for Applied Wood Materials, Empa - Swiss Federal Laboratories for Materials Testing and Research, St Gallen, Switzerland
| | - Mohammad Khatamirad
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee, Ulm, Germany
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee, Ulm, Germany
| | - Thomas Speck
- Plant Biomechanics Group Freiburg, Botanic Garden of the Albert-Ludwigs-University of Freiburg, Faculty of Biology, Schänzlestrasse, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, Freiburg, Germany
| |
Collapse
|
34
|
Santini L, Ortega Rodriguez DR, Quintilhan MT, Brazolin S, Tommasiello Filho M. Evidence to wood biodeterioration of tropical species revealed by non-destructive techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:357-369. [PMID: 30959302 DOI: 10.1016/j.scitotenv.2019.03.429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
The wood biodeterioration process is one of the symptoms produced by biotic agents that affect the biomechanics of urban trees and reduce their useful life and environmental services. This process is mainly studied through methods that are time-consuming or destructive and provide little information regarding the degradation process at the cellular scale. Based on a non-destructive study of five tropical urban trees: Poincianella pluviosa (sibipiruna), Pterocarpus rhorii (aldrago), Rhamnidium elaeocarpum (saguaraji), Trichilia clausenii (Catiguá) and Lafoensia glyptocarpa (mirindiba rosa); the wood decaying zone, by xylophagous fungi, was analized. The trunk-wood samples containing the decaying zone were extracted with metal probes. Their microscopic anatomical structures were characterized and their microdensity and chemical composition analyzed by X-ray densitometry and X-ray fluorescence, respectively. Degraded cell wall fiber and vessels obstructed by mycelial mass were observed in wood decay zones. The presence of wood compartmentalized by the formation of extractive deposits was also observed, as a possible resistance mechanism varying among species. Likewise, phosphorus (P), calcium (Ca), calcium/manganese molar ratio and wood density increase were observed in barrier zones, while iron (Fe) was related to the decay zone. Altogether, the present study show for detailed evaluation of the wood biodeterioration process at the microscopic scale. The potential of non-destructive techniques for application in the physiological analysis of trees was also demonstrated.
Collapse
Affiliation(s)
- Luiz Santini
- Univ. of São Paulo, Center of Nuclear Energy in Agriculture, Department of Ecology, Av Centenário, 303, Piracicaba, SP 13416-000, Brazil
| | - Daigard Ricardo Ortega Rodriguez
- Univ. of São Paulo, School of the Agriculture Luiz de Queiroz, Department of Forest Resource, Av. Pádua Dias N° 11, Piracicaba, SP 13418-900, Brazil.
| | - Manolo Trindade Quintilhan
- Univ. of São Paulo, School of the Agriculture Luiz de Queiroz, Department of Forest Resource, Av. Pádua Dias N° 11, Piracicaba, SP 13418-900, Brazil
| | - Sergio Brazolin
- Laboratory of Wood Preservation and Biodeterioration of Materials, Center of Technology of Forest Resources, Institute of Technological Research - IPT/USP, São Paulo, SP 7141 01064-970, Brazil.
| | - Mario Tommasiello Filho
- Univ. of São Paulo, School of the Agriculture Luiz de Queiroz, Department of Forest Resource, Av. Pádua Dias N° 11, Piracicaba, SP 13418-900, Brazil.
| |
Collapse
|
35
|
Zheng J, Zhao X, Morris H, Jansen S. Phylogeny Best Explains Latitudinal Patterns of Xylem Tissue Fractions for Woody Angiosperm Species Across China. FRONTIERS IN PLANT SCIENCE 2019; 10:556. [PMID: 31130973 PMCID: PMC6509232 DOI: 10.3389/fpls.2019.00556] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 04/12/2019] [Indexed: 06/01/2023]
Abstract
Investigating space allocation patterns of plant secondary xylem along a latitudinal gradient is useful to evaluate structure-function tradeoffs in woody angiosperm xylem. An anatomical dataset including 700 woody angiosperm species across China was compiled together with latitudinal and climate data for each species. The relative tissue fractions of vessels, fibers, and parenchyma (including ray and axial parenchyma) in xylem were analyzed to determine the effect of latitudinal differences and phylogeny on anatomical variation. The analyses revealed a trade-off between vessel and non-vessel fraction across latitude, with tissue fraction trade-offs mainly occurring between vessels and fibers, and between fibers and total parenchyma. Among 13 climate variables, thermal indices generally had greater explanatory power than moisture indices in bi-variate models for all cell types, while mean annual temperature, mean temperature of the coldest month, and annual actual evapotranspiration were included in the top multi-variate models explaining variance of different tissue fractions. Phylogeny and climate together explained 57-73% of the total variation in xylem space occupancy, with phylogeny alone accounting for over 50% of the variation. These results contribute to our knowledge of wood structure-function and are relevant to better understand forest response to climate change.
Collapse
Affiliation(s)
- Jingming Zheng
- Beijing Key Laboratory for Forest Resources and Ecosystem Processes, Beijing Forestry University, Beijing, China
| | - Xia Zhao
- Beijing Key Laboratory for Forest Resources and Ecosystem Processes, Beijing Forestry University, Beijing, China
| | - Hugh Morris
- Laboratory for Applied Wood Materials, Empa-Swiss Federal Laboratories for Materials Testing and Research, St. Gallen, Switzerland
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| |
Collapse
|
36
|
Brodersen CR, Roddy AB, Wason JW, McElrone AJ. Functional Status of Xylem Through Time. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:407-433. [PMID: 30822114 DOI: 10.1146/annurev-arplant-050718-100455] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Water transport in vascular plants represents a critical component of terrestrial water cycles and supplies the water needed for the exchange of CO2 in the atmosphere for photosynthesis. Yet, many fundamental principles of water transport are difficult to assess given the scale and location of plant xylem. Here we review the mechanistic principles that underpin long-distance water transport in vascular plants, with a focus on woody species. We also discuss the recent development of noninvasive tools to study the functional status of xylem networks in planta. Limitations of current methods to detect drought-induced xylem blockages (e.g., embolisms) and quantify corresponding declines in sap flow, and the coordination of hydraulic dysfunction with other physiological processes are assessed. Future avenues of research focused on cross-validation of plant hydraulics methods are discussed, as well as a proposed fundamental shift in the theory and methodology used to characterize and measure plant water use.
Collapse
Affiliation(s)
- Craig R Brodersen
- School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06511, USA;
| | - Adam B Roddy
- School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06511, USA;
| | - Jay W Wason
- School of Forest Resources, University of Maine, Orono, Maine 04469, USA
| | - Andrew J McElrone
- US Department of Agriculture, Agricultural Research Service, Davis, California 95616, USA
- Department of Viticulture and Enology, University of California, Davis, California 95616, USA
| |
Collapse
|
37
|
Rioux D, Blais M, Nadeau-Thibodeau N, Lagacé M, DesRochers P, Klimaszewska K, Bernier L. First Extensive Microscopic Study of Butternut Defense Mechanisms Following Inoculation with the Canker Pathogen Ophiognomonia clavigignenti-juglandacearum Reveals Compartmentalization of Tissue Damage. PHYTOPATHOLOGY 2018; 108:1237-1252. [PMID: 29749798 DOI: 10.1094/phyto-03-18-0076-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ophiognomonia clavigignenti-juglandacearum endangers the survival of butternut (Juglans cinerea) throughout its native range. While screening for disease resistance, we found that artificial inoculations of 48 butternut seedlings with O. clavigignenti-juglandacearum induced the expression of external symptoms, but only after a period of dormancy. Before dormancy, compartmentalized tissues such as necrophylactic periderms (NPs) and xylem reaction zones (RZs) contributed to limiting pathogen invasion. Phenols were regularly detected in RZs, often in continuity with NPs during wound closure, and confocal microscopy revealed their presence in parenchyma cells, vessel plugs and cell walls. Vessels were blocked with tyloses and gels, particularly those present in RZs. Suberin was also detected in cells formed over the affected xylem by the callus at the inoculation point, in a few tylosis walls, and in longitudinal tubes that formed near NPs. Following dormancy, in all inoculated seedlings but one, defensive barriers were breached by O. clavigignenti-juglandacearum and then additional ones were produced in response to this new invasion. The results of this histopathological study indicate that trees inoculated in selection programs to test butternut canker resistance should go through at least one period of dormancy and that asymptomatic individuals should be dissected to better assess how they defend themselves against O. clavigignenti-juglandacearum.
Collapse
Affiliation(s)
- Danny Rioux
- First, second, fourth, fifth, and sixth authors: Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada; third author: Division des parcs et de l'horticulture, Arrondissement Le Plateau-Mont-Royal, Ville de Montréal, 201 Avenue Laurier Est, bureau 670, 6e étage, Montréal, QC, H2T 3E6, Canada; and seventh author: Université Laval, Centre d'étude de la forêt (CEF), Pavillon C-E-Marchand, Québec, QC, G1V 0A6, Canada
| | - Martine Blais
- First, second, fourth, fifth, and sixth authors: Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada; third author: Division des parcs et de l'horticulture, Arrondissement Le Plateau-Mont-Royal, Ville de Montréal, 201 Avenue Laurier Est, bureau 670, 6e étage, Montréal, QC, H2T 3E6, Canada; and seventh author: Université Laval, Centre d'étude de la forêt (CEF), Pavillon C-E-Marchand, Québec, QC, G1V 0A6, Canada
| | - Nicolas Nadeau-Thibodeau
- First, second, fourth, fifth, and sixth authors: Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada; third author: Division des parcs et de l'horticulture, Arrondissement Le Plateau-Mont-Royal, Ville de Montréal, 201 Avenue Laurier Est, bureau 670, 6e étage, Montréal, QC, H2T 3E6, Canada; and seventh author: Université Laval, Centre d'étude de la forêt (CEF), Pavillon C-E-Marchand, Québec, QC, G1V 0A6, Canada
| | - Marie Lagacé
- First, second, fourth, fifth, and sixth authors: Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada; third author: Division des parcs et de l'horticulture, Arrondissement Le Plateau-Mont-Royal, Ville de Montréal, 201 Avenue Laurier Est, bureau 670, 6e étage, Montréal, QC, H2T 3E6, Canada; and seventh author: Université Laval, Centre d'étude de la forêt (CEF), Pavillon C-E-Marchand, Québec, QC, G1V 0A6, Canada
| | - Pierre DesRochers
- First, second, fourth, fifth, and sixth authors: Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada; third author: Division des parcs et de l'horticulture, Arrondissement Le Plateau-Mont-Royal, Ville de Montréal, 201 Avenue Laurier Est, bureau 670, 6e étage, Montréal, QC, H2T 3E6, Canada; and seventh author: Université Laval, Centre d'étude de la forêt (CEF), Pavillon C-E-Marchand, Québec, QC, G1V 0A6, Canada
| | - Krystyna Klimaszewska
- First, second, fourth, fifth, and sixth authors: Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada; third author: Division des parcs et de l'horticulture, Arrondissement Le Plateau-Mont-Royal, Ville de Montréal, 201 Avenue Laurier Est, bureau 670, 6e étage, Montréal, QC, H2T 3E6, Canada; and seventh author: Université Laval, Centre d'étude de la forêt (CEF), Pavillon C-E-Marchand, Québec, QC, G1V 0A6, Canada
| | - Louis Bernier
- First, second, fourth, fifth, and sixth authors: Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada; third author: Division des parcs et de l'horticulture, Arrondissement Le Plateau-Mont-Royal, Ville de Montréal, 201 Avenue Laurier Est, bureau 670, 6e étage, Montréal, QC, H2T 3E6, Canada; and seventh author: Université Laval, Centre d'étude de la forêt (CEF), Pavillon C-E-Marchand, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
38
|
De Baerdemaeker NJF, Hias N, Van den Bulcke J, Keulemans W, Steppe K. The effect of polyploidization on tree hydraulic functioning. AMERICAN JOURNAL OF BOTANY 2018; 105:161-171. [PMID: 29570227 DOI: 10.1002/ajb2.1032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/11/2017] [Indexed: 05/14/2023]
Abstract
PREMISE OF THE STUDY Recent research has highlighted the importance of living tissue in wood. Polyploidization can impact amounts and arrangements of living cells in wood, potentially leading to increased drought tolerance. Tetraploid variants were created from the apple cultivar Malus ×domestica 'Gala' (Gala-4x), and their vulnerability to drought-induced cavitation and their hydraulic capacitance were compared to those of their diploid predecessors (Gala-2x). Assuming a positive correlation between polyploidy and drought tolerance, we hypothesized lower vulnerability and higher capacitance for the tetraploid. METHODS Vulnerability to drought-induced cavitation and the hydraulic capacitance were quantified through acoustic emission and continuous weighing of shoots during a bench-top dehydration experiment. To underpin the hydraulic trait results, anatomical variables such as vessel area, conduit diameter, cell wall reinforcement, and ray and vessel-associated parenchyma were measured. KEY RESULTS Vulnerability to drought-induced cavitation was intrinsically equal for both ploidy variants, but Gala-4x proved to be more vulnerable than Gala-2x during the early phase of desiccation as was indicated by its significantly lower air entry value. Higher change in water content of the leafy shoot, higher amount of parenchyma, and larger vessel area and size resulted in a significantly higher hydraulic capacitance and efficiency for Gala-4x compared to Gala-2x. CONCLUSIONS Both ploidy variants were typified as highly sensitive to drought-induced cavitation, with no significant difference in their overall drought vulnerability. But, when water deficit is short and moderate, Gala-4x may delay a drought-induced decrease in performance by trading hydraulic safety for increased release of capacitively stored water from living tissue.
Collapse
Affiliation(s)
- Niels J F De Baerdemaeker
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Niek Hias
- Laboratory for Fruit Breeding and Biotechnology, Division of Crop Biotechnics, Katholieke Universiteit (KU) Leuven, Willem de Croylaan 42, B-3001, Heverlee, Belgium
| | - Jan Van den Bulcke
- Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Wannes Keulemans
- Laboratory for Fruit Breeding and Biotechnology, Division of Crop Biotechnics, Katholieke Universiteit (KU) Leuven, Willem de Croylaan 42, B-3001, Heverlee, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| |
Collapse
|
39
|
Jochen Schenk H. Wood: Biology of a living tissue. AMERICAN JOURNAL OF BOTANY 2018; 105:139-141. [PMID: 29569710 DOI: 10.1002/ajb2.1039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Affiliation(s)
- H Jochen Schenk
- Department of Biological Science, California State University Fullerton, 800 N. State College Boulevard, Fullerton, CA, 92831, USA
| |
Collapse
|
40
|
Morris H, Plavcová L, Gorai M, Klepsch MM, Kotowska M, Jochen Schenk H, Jansen S. Vessel-associated cells in angiosperm xylem: Highly specialized living cells at the symplast-apoplast boundary. AMERICAN JOURNAL OF BOTANY 2018; 105:151-160. [PMID: 29578292 DOI: 10.1002/ajb2.1030] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/13/2017] [Indexed: 05/13/2023]
Abstract
BACKGROUND Vessel-associated cells (VACs) are highly specialized, living parenchyma cells that are in direct contact with water-conducting, dead vessels. The contact may be sparse or in large tight groups of parenchyma that completely surrounds vessels. VACs differ from vessel distant parenchyma in physiology, anatomy, and function and have half-bordered pits at the vessel-parenchyma juncture. The distinct anatomy of VACs is related to the exchange of substances to and from the water-transport system, with the cells long thought to be involved in water transport in woody angiosperms, but where direct experimental evidence is lacking. SCOPE This review focuses on our current knowledge of VACs regarding anatomy and function, including hydraulic capacitance, storage of nonstructural carbohydrates, symplastic and apoplastic interactions, defense against pathogens and frost, osmoregulation, and the novel hypothesis of surfactant production. Based on microscopy, we visually represent how VACs vary in dimensions and general appearance between species, with special attention to the protoplast, amorphous layer, and the vessel-parenchyma pit membrane. CONCLUSIONS An understanding of the relationship between VACs and vessels is crucial to tackling questions related to how water is transported over long distances in xylem, as well as defense against pathogens. New avenues of research show how parenchyma-vessel contact is related to vessel diameter and a new hypothesis may explain how surfactants arising from VAC can allow water to travel under negative pressure. We also reinforce the message of connectivity between VAC and other cells between xylem and phloem.
Collapse
Affiliation(s)
- Hugh Morris
- Ulm University, Institute of Systematic Botany and Ecology, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Laboratory for Applied Wood Materials, Empa-Swiss Federal Laboratories for Materials Testing and Research, St. Gallen, Switzerland
| | - Lenka Plavcová
- University of Hradec Králové, Department of Biology, Faculty of Science, Rokitanského 62, 500 03, Hradec Králové, Czech Republic
| | - Mustapha Gorai
- University of Gabes, Higher Institute of Applied Biology of Medenine, Medenine, 4119, Tunisia
| | - Matthias M Klepsch
- Ulm University, Institute of Systematic Botany and Ecology, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Martyna Kotowska
- Ulm University, Institute of Systematic Botany and Ecology, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Macquarie University, Department of Biological Sciences, North Ryde, NSW, 2109, Australia
| | - H Jochen Schenk
- California State University Fullerton, Department of Biological Science, 800 N. State College Blvd., Fullerton, CA, 92831-3599, USA
| | - Steven Jansen
- Ulm University, Institute of Systematic Botany and Ecology, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
41
|
Morris H, Gillingham MAF, Plavcová L, Gleason SM, Olson ME, Coomes DA, Fichtler E, Klepsch MM, Martínez-Cabrera HI, McGlinn DJ, Wheeler EA, Zheng J, Ziemińska K, Jansen S. Vessel diameter is related to amount and spatial arrangement of axial parenchyma in woody angiosperms. PLANT, CELL & ENVIRONMENT 2018; 41:245-260. [PMID: 29047119 DOI: 10.1111/pce.13091] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/22/2017] [Accepted: 09/28/2017] [Indexed: 05/13/2023]
Abstract
Parenchyma represents a critically important living tissue in the sapwood of the secondary xylem of woody angiosperms. Considering various interactions between parenchyma and water transporting vessels, we hypothesize a structure-function relationship between both cell types. Through a generalized additive mixed model approach based on 2,332 woody angiosperm species derived from the literature, we explored the relationship between the proportion and spatial distribution of ray and axial parenchyma and vessel size, while controlling for maximum plant height and a range of climatic factors. When factoring in maximum plant height, we found that with increasing mean annual temperatures, mean vessel diameter showed a positive correlation with axial parenchyma proportion and arrangement, but not for ray parenchyma. Species with a high axial parenchyma tissue fraction tend to have wide vessels, with most of the parenchyma packed around vessels, whereas species with small diameter vessels show a reduced amount of axial parenchyma that is not directly connected to vessels. This finding provides evidence for independent functions of axial parenchyma and ray parenchyma in large vesselled species and further supports a strong role for axial parenchyma in long-distance xylem water transport.
Collapse
Affiliation(s)
- Hugh Morris
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Laboratory for Applied Wood Materials, Empa-Swiss Federal Laboratories for Materials Testing and Research, St. Gallen, 9014, Switzerland
| | - Mark A F Gillingham
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Albert-Einstein-Allee 11, D-89069, Ulm, Germany
| | - Lenka Plavcová
- Department of Biology, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic
| | - Sean M Gleason
- USDA-ARS Water Management and Systems Research Unit, Fort Collins, CO, 80526, USA
| | - Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de CU, Mexico, DF, 04510, Mexico
| | - David A Coomes
- Forest Ecology and Conservation Group, Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Esther Fichtler
- Department of Crop Sciences, Tropical Plant Production and Agricultural Systems Modelling, Göttingen University, Grisebachstrasse 6, 37077, Göttingen, Germany
| | - Matthias M Klepsch
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | | | - Daniel J McGlinn
- Department of Biology, College of Charleston, Charleston, SC, 29424, USA
| | - Elisabeth A Wheeler
- Department of Forest Biomaterials, NC State University, Raleigh, NC, 27695-8005, USA
- North Carolina Museum of Natural Sciences, 11 West Jones St., Raleigh, NC, 27601, USA
| | - Jingming Zheng
- Zheng JingminG, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Kasia Ziemińska
- Arnold Arboretum of Harvard University, 1300 Centre St, Boston, MA, 02130, USA
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
42
|
Zhang Y, Klepsch M, Jansen S. Bordered pits in xylem of vesselless angiosperms and their possible misinterpretation as perforation plates. PLANT, CELL & ENVIRONMENT 2017; 40:2133-2146. [PMID: 28667823 DOI: 10.1111/pce.13014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
Vesselless wood represents a rare phenomenon within the angiosperms, characterizing Amborellaceae, Trochodendraceae and Winteraceae. Anatomical observations of bordered pits and their pit membranes based on light, scanning and transmission electron microscopy (SEM and TEM) are required to understand functional questions surrounding vesselless angiosperms and the potential occurrence of cryptic vessels. Interconduit pit membranes in 11 vesselless species showed a similar ultrastructure as mesophytic vessel-bearing angiosperms, with a mean thickness of 245 nm (± 53, SD; n = six species). Shrunken, damaged and aspirated pit membranes, which were 52% thinner than pit membranes in fresh samples (n = four species), occurred in all dried-and-rehydrated samples, and in fresh latewood of Tetracentron sinense and Trochodendron aralioides. SEM demonstrated that shrunken pit membranes showed artificially enlarged, > 100 nm wide pores. Moreover, perfusion experiments with stem segments of Drimys winteri showed that 20 and 50 nm colloidal gold particles only passed through 2 cm long dried-and-rehydrated segments, but not through similar sized fresh ones. These results indicate that pit membrane shrinkage is irreversible and associated with a considerable increase in pore size. Moreover, our findings suggest that pit membrane damage, which may occur in planta, could explain earlier records of vessels in vesselless angiosperms.
Collapse
Affiliation(s)
- Ya Zhang
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Matthias Klepsch
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
43
|
Pouzoulet J, Scudiero E, Schiavon M, Rolshausen PE. Xylem Vessel Diameter Affects the Compartmentalization of the Vascular Pathogen Phaeomoniella chlamydospora in Grapevine. FRONTIERS IN PLANT SCIENCE 2017; 8:1442. [PMID: 28871268 PMCID: PMC5566965 DOI: 10.3389/fpls.2017.01442] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/03/2017] [Indexed: 05/23/2023]
Abstract
Fungal wilt diseases are a threat to global food safety. Previous studies in perennial crops showed that xylem vessel diameter affects disease susceptibility. We tested the hypothesis that xylem vessel diameter impacts occlusion processes and pathogen compartmentalization in Vitis vinifera L. We studied the interaction between four grape commercial cultivars with the vascular wilt pathogen Phaeomoniella chlamydospora. We used qPCR and wood necrotic lesion length to measure fungal colonization coupled with histological studies to assess differences in xylem morphology, pathogen compartmentalization, and fungal colonization strategy. We provided evidence that grape cultivar with wide xylem vessel diameter showed increased susceptibility to P. chlamydospora. The host response to pathogen included vessel occlusion with tyloses and gels, deposition of non-structural phenolic compounds and suberin in vessel walls and depletion of starch in parenchyma cells. Pathogen compartmentalization was less efficient in wide xylem vessels than in narrow diameter vessels. Large vessels displayed higher number of tyloses and gel pockets, which provided substrate for P. chlamydospora growth and routes to escape occluded vessels. We discuss in which capacity xylem vessel diameter is a key determinant of the compartmentalization process and in turn grape cultivar resistance to disease caused by P. chlamydospora.
Collapse
Affiliation(s)
- Jérôme Pouzoulet
- Department of Botany and Plant Sciences, University of California, Riverside, RiversideCA, United States
| | - Elia Scudiero
- United States Salinity Laboratory, United States Department of Agriculture–Agricultural Research Service, RiversideCA, United States
| | - Marco Schiavon
- Department of Botany and Plant Sciences, University of California, Riverside, RiversideCA, United States
| | - Philippe E. Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, RiversideCA, United States
| |
Collapse
|