1
|
He S, Li L, Lv M, Wang R, Wang L, Yu S, Gao Z, Li X. PGPR: Key to Enhancing Crop Productivity and Achieving Sustainable Agriculture. Curr Microbiol 2024; 81:377. [PMID: 39325205 DOI: 10.1007/s00284-024-03893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Due to the burgeoning global population and the advancement of economies, coupled with human activities leading to the degradation of soil ecosystems and the depletion of non-renewable resources, concerns have arisen regarding food security and human survival. In order to address these adverse impacts, the spotlight has been cast upon plant growth-promoting rhizobacteria (PGPR), driven by a strong environmental consciousness. PGPR possesses the capability to foster plant growth and amplify crop yield through both direct and indirect mechanisms. By expediting plant growth, augmenting nutrient assimilation, heightening crop yield and caliber, and fortifying stress resilience, the application of PGPR can mitigate reliance on chemical fertilizers and pesticides while diminishing ecological perils. This exposition delves into the function of PGPR in modulating plant hormones, fostering nutrient solubilization, and fortifying plant resistance against biotic and abiotic stressors. This review offers valuable insights into the intricate interplay between PGPR and plants, elucidating uncertainties ripe for further investigation. Profound comprehension and judicious utilization of PGPR are indispensable for attaining sustainable agricultural progression, making substantial contributions to resolving the conundrums of global food security and environmental conservation.
Collapse
Affiliation(s)
- Shidong He
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Lingli Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Minghao Lv
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Rongxin Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Lujun Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Shaowei Yu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Zheng Gao
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiang Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
2
|
Li X, Sun Q, Shen Q, Zhao C, Chen F, Liu Y, Zhou G, Liu X, Kang X. Exogenous melatonin promoted seed hypocotyl germination of Paeonia ostia 'Fengdan' characterized by regulating hormones and starches. PeerJ 2024; 12:e18038. [PMID: 39314842 PMCID: PMC11418826 DOI: 10.7717/peerj.18038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Background Seed hypocotyl germination signifies the initiation of the life cycle for plants and represents a critical stage that heavily influences subsequent plant growth and development. While previous studies have established the melatonin (MEL; N-acetyl-5-methoxytrytamine) effect to stimulate seed germination of some plants, its specific role in peony germination and underlying physiological mechanism have yet to be determined. This study aims to evaluate the MEL effect for the hypocotyl germination of peony seeds, further ascertain its physiological regulation factors. Methods In this work, seeds of Paeonia ostia 'Fengdan' were soaked into MEL solution at concentrations of 50, 100, 200, and 400 µM for 48 h and then germinated in darkness in incubators. Seeds immersed in distilled water without MEL for the same time were served as the control group. Results At concentrations of 100 and 200 µM, MEL treatments improved the rooting rate of peony seeds, while 400 µM inhibited the process. During seed germination, the 100 and 200 µM MEL treatments significantly reduced the starch concentration, and α-amylase was the primary amylase involved in the action of melatonin. Additionally, compared to the control group, 100 µM MEL treatment significantly increased the GA3 concentration and radicle thickness of seeds, but decreased ABA concentration. The promotion effect of 200 µM MEL pretreatment on GA1 and GA7 was the most pronounced, while GA4 concentration was most significantly impacted by 50 µM and 100 µM MEL. Conclusion Correlation analysis established that 100 µM MEL pretreatment most effectively improved the rooting rate characterized by increasing α-amylase activity to facilitate starch decomposition, boosting GA3 levels, inhibiting ABA production to increase the relative ratio of GA3 to ABA. Moreover, MEL increased radicle thickness of peony seeds correlating with promoting starch decomposition and enhancing the synthesis of GA1 and GA7.
Collapse
Affiliation(s)
- Xia Li
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Qi Sun
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Qiang Shen
- Heze Ruipu Peony Biotechnology Co., LTD, Heze, Shandong, China
| | - Chunlei Zhao
- Heze Cunlei Horticulture Co., LTD, Heze, Shandong, China
| | - Fengzhen Chen
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Yumei Liu
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Guangcan Zhou
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Xueqin Liu
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Xiaofei Kang
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| |
Collapse
|
3
|
Tamindžić G, Miljaković D, Ignjatov M, Miladinović J, Đorđević V, Milošević D, Jovičić D, Vlajić S, Budakov D, Grahovac M. Impact of Simultaneous Nutrient Priming and Biopriming on Soybean Seed Quality and Health. PLANTS (BASEL, SWITZERLAND) 2024; 13:2557. [PMID: 39339532 PMCID: PMC11434937 DOI: 10.3390/plants13182557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
In soybean production, numerous strategies are utilized to enhance seed quality and mitigate the effects of biotic and abiotic stressors. Zn-based nutrient priming has been shown to be effective for field crops, and biopriming is a strategy that is becoming increasingly important for sustainable agriculture. On the other hand, there is a lack of information about the effect of comprehensive nutrient priming and biopriming techniques on soybean seed quality and viability and seed health. This study was performed to assess the benefits of nutrient priming with Zn, biopriming with Bacillus megaterium and Bradyrhizobium japonicum (single and co-inoculation), and combination of nutrient priming and biopriming on the seed quality and viability, as well as seed infection caused by Alternaria spp. and Fusarium spp. Three different laboratory tests were employed: germination test, accelerated aging test, and seed health test. The results revealed that all tested priming treatments have a beneficial effect on seed germination, initial plant growth, and reduction of seed infection in normal and aged seeds. Additionally, comprehensive priming with Zn, Bacillus megaterium, and Bradyrhizobium japonicum reduced the occurrence of Alternaria spp. (-84% and -75%) and Fusarium spp. (-91% and -88%) on soybean seeds in the germination and accelerated aging tests, respectively, as compared to the control, which proved to be the most effective treatment in both optimal and stressful conditions.
Collapse
Affiliation(s)
- Gordana Tamindžić
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia
| | - Dragana Miljaković
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia
| | - Maja Ignjatov
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia
| | - Jegor Miladinović
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia
| | - Vuk Đorđević
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia
| | - Dragana Milošević
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia
| | - Dušica Jovičić
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia
| | - Slobodan Vlajić
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia
| | - Dragana Budakov
- Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Mila Grahovac
- Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia
| |
Collapse
|
4
|
Vittozzi Y, Krüger T, Majee A, Née G, Wenkel S. ABI5 binding proteins: key players in coordinating plant growth and development. TRENDS IN PLANT SCIENCE 2024; 29:1006-1017. [PMID: 38584080 DOI: 10.1016/j.tplants.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024]
Abstract
During the course of terrestrial evolution, plants have developed complex networks that involve the coordination of phytohormone signalling pathways in order to adapt to an ever-changing environment. Transcription factors coordinate these responses by engaging in different protein complexes and exerting both positive and negative effects. ABA INSENSITIVE 5 (ABI5) binding proteins (AFPs), which are closely related to NOVEL INTERACTOR OF JAZ (NINJA)-like proteins, are known for their fundamental role in plants' morphological and physiological growth. Recent studies have shown that AFPs regulate several hormone-signalling pathways, including abscisic acid (ABA) and gibberellic acid (GA). Here, we review the genetic control of AFPs and their crosstalk with plant hormone signalling, and discuss the contributions of AFPs to plants' growth and development.
Collapse
Affiliation(s)
- Ylenia Vittozzi
- University of Copenhagen, Department of Plant & Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; NovoCrops Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Thorben Krüger
- University of Münster, Institut für Biologie und Biotechnologie der Pflanzen, Schlossplatz 4, 48149 Münster, Germany
| | - Adity Majee
- Umeå Plant Science Centre, Umeå University, Linnaeus väg 6, 907 36 Umeå, Sweden
| | - Guillaume Née
- University of Münster, Institut für Biologie und Biotechnologie der Pflanzen, Schlossplatz 4, 48149 Münster, Germany.
| | - Stephan Wenkel
- University of Copenhagen, Department of Plant & Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; NovoCrops Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; Umeå Plant Science Centre, Umeå University, Linnaeus väg 6, 907 36 Umeå, Sweden.
| |
Collapse
|
5
|
Hong J, Han S, Geem KR, Bae W, Kim J, Jee MG, Lee JW, Kim JU, Lee G, Joo Y, Shim D, Ryu H. Identification of a key signaling network regulating perennating bud dormancy in Panax ginseng. J Ginseng Res 2024; 48:511-519. [PMID: 39263311 PMCID: PMC11385393 DOI: 10.1016/j.jgr.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 09/13/2024] Open
Abstract
Background The cycle of seasonal dormancy of perennating buds is an essential adaptation of perennial plants to unfavorable winter conditions. Plant hormones are key regulators of this critical biological process, which is intricately connected with diverse internal and external factors. Recently, global warming has increased the frequency of aberrant temperature events that negatively affect the dormancy cycle of perennials. Although many studies have been conducted on the perennating organs of Panax ginseng, the molecular aspects of bud dormancy in this species remain largely unknown. Methods In this study, the molecular physiological responses of three P. ginseng cultivars with different dormancy break phenotypes in the spring were dissected using comparative genome-wide RNA-seq and network analyses. These analyses identified a key role for abscisic acid (ABA) activity in the regulation of bud dormancy. Gene set enrichment analysis revealed that a transcriptional network comprising stress-related hormone responses made a major contribution to the maintenance of dormancy. Results Increased expression levels of cold response and photosynthesis-related genes were associated with the transition from dormancy to active growth in perennating buds. Finally, the expression patterns of genes encoding ABA transporters, receptors (PYRs/PYLs), PROTEIN PHOSPHATASE 2Cs (PP2Cs), and DELLAs were highly correlated with different dormancy states in three P. ginseng cultivars. Conclusion This study provides evidence that ABA and stress signaling outputs are intricately connected with a key signaling network to regulate bud dormancy under seasonal conditions in the perennial plant P. ginseng.
Collapse
Affiliation(s)
- Jeoungeui Hong
- Department of Biology, Chungbuk National University, Cheongju, Republic of Korea
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Soeun Han
- Department of Biology, Chungbuk National University, Cheongju, Republic of Korea
| | - Kyoung Rok Geem
- Department of Biology, Chungbuk National University, Cheongju, Republic of Korea
| | - Wonsil Bae
- Department of Biology, Chungbuk National University, Cheongju, Republic of Korea
| | - Jiyong Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Moo-Geun Jee
- Ginseng & Medicinal Plant Research Institute, Chungnam Agricultural Research & Extention Service, Keumsan, Republic of Korea
| | - Jung-Woo Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Jang-Uk Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Gisuk Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, Republic of Korea
| | - Youngsung Joo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju, Republic of Korea
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
6
|
Mandal D, Datta S, Mitra S, Nag Chaudhuri R. ABSCISIC ACID INSENSITIVE 3 promotes auxin signalling by regulating SHY2 expression to control primary root growth in response to dehydration stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5111-5129. [PMID: 38770693 DOI: 10.1093/jxb/erae237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Plants combat dehydration stress through different strategies including root architectural changes. Here we show that when exposed to varying levels of dehydration stress, primary root growth in Arabidopsis is modulated by regulating root meristem activity. Abscisic acid (ABA) in concert with auxin signalling adjust primary root growth according to stress levels. ABSCISIC ACID INSENSITIVE 3 (ABI3), an ABA-responsive transcription factor, stands at the intersection of ABA and auxin signalling and fine-tunes primary root growth in response to dehydration stress. Under low ABA or dehydration stress, induction of ABI3 expression promotes auxin signalling by decreasing expression of SHY2, a negative regulator of auxin response. This further enhances the expression of auxin transporter gene PIN1 and cell cycle gene CYCB1;1, resulting in an increase in primary root meristem size and root length. Higher levels of dehydration stress or ABA repress ABI3 expression and promote ABSCISIC ACID INSENSITIVE 5 (ABI5) expression. This elevates SHY2 expression, thereby impairing primary root meristem activity and retarding root growth. Notably, ABI5 can promote SHY2 expression only in the absence of ABI3. Such ABA concentration-dependent expression of ABI3 therefore functions as a regulatory sensor of dehydration stress levels and orchestrates primary root growth by coordinating its downstream regulation.
Collapse
Affiliation(s)
- Drishti Mandal
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata-700016, India
| | - Saptarshi Datta
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata-700016, India
| | - Sicon Mitra
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata-700016, India
| | - Ronita Nag Chaudhuri
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata-700016, India
| |
Collapse
|
7
|
Ren H, Ou Q, Pu Q, Lou Y, Yang X, Han Y, Liu S. Comprehensive Review on Bimolecular Fluorescence Complementation and Its Application in Deciphering Protein-Protein Interactions in Cell Signaling Pathways. Biomolecules 2024; 14:859. [PMID: 39062573 PMCID: PMC11274695 DOI: 10.3390/biom14070859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Signaling pathways are responsible for transmitting information between cells and regulating cell growth, differentiation, and death. Proteins in cells form complexes by interacting with each other through specific structural domains, playing a crucial role in various biological functions and cell signaling pathways. Protein-protein interactions (PPIs) within cell signaling pathways are essential for signal transmission and regulation. The spatiotemporal features of PPIs in signaling pathways are crucial for comprehending the regulatory mechanisms of signal transduction. Bimolecular fluorescence complementation (BiFC) is one kind of imaging tool for the direct visualization of PPIs in living cells and has been widely utilized to uncover novel PPIs in various organisms. BiFC demonstrates significant potential for application in various areas of biological research, drug development, disease diagnosis and treatment, and other related fields. This review systematically summarizes and analyzes the technical advancement of BiFC and its utilization in elucidating PPIs within established cell signaling pathways, including TOR, PI3K/Akt, Wnt/β-catenin, NF-κB, and MAPK. Additionally, it explores the application of this technology in revealing PPIs within the plant hormone signaling pathways of ethylene, auxin, Gibberellin, and abscisic acid. Using BiFC in conjunction with CRISPR-Cas9, live-cell imaging, and ultra-high-resolution microscopy will enhance our comprehension of PPIs in cell signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (H.R.); (Q.O.); (Q.P.); (Y.L.); (X.Y.); (Y.H.)
| |
Collapse
|
8
|
Girardi F, Canton M, Populin F, Tijero V, Bettio G, Munné-Bosch S, Rasori A, Cardillo V, Costa G, Botton A. A gibberellin-assisted study of the transcriptional and hormonal changes occurring at floral transition in peach buds (Prunus persica L. Batsch). BMC PLANT BIOLOGY 2024; 24:643. [PMID: 38973005 PMCID: PMC11229236 DOI: 10.1186/s12870-024-05360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Flower load in peach is an important determinant of final fruit quality and is subjected to cost-effective agronomical practices, such as the thinning, to finely balance the sink-source relationships within the tree and drive the optimal amount of assimilates to the fruits. Floral transition in peach buds occurs as a result of the integration of specific environmental signals, such as light and temperature, into the endogenous pathways that induce the meristem to pass from vegetative to reproductive growth. The cross talk and integration of the different players, such as the genes and the hormones, are still partially unknown. In the present research, transcriptomics and hormone profiling were applied on bud samples at different developmental stages. A gibberellin treatment was used as a tool to identify the different phases of floral transition and characterize the bud sensitivity to gibberellins in terms of inhibition of floral transition. RESULTS Treatments with gibberellins showed different efficacies and pointed out a timeframe of maximum inhibition of floral transition in peach buds. Contextually, APETALA1 gene expression was shown to be a reliable marker of gibberellin efficacy in controlling this process. RNA-Seq transcriptomic analyses allowed to identify specific genes dealing with ROS, cell cycle, T6P, floral induction control and other processes, which are correlated with the bud sensitivity to gibberellins and possibly involved in bud development during its transition to the reproductive stage. Transcriptomic data integrated with the quantification of the main bioactive hormones in the bud allowed to identify the main hormonal regulators of floral transition in peach, with a pivotal role played by endogenous gibberellins and cytokinins. CONCLUSIONS The peach bud undergoes different levels of receptivity to gibberellin inhibition. The stage with maximum responsiveness corresponded to a transcriptional and hormonal crossroad, involving both flowering inhibitors and inductors. Endogenous gibberellin levels increased only at the latest developmental stage, when floral transition was already partially achieved, and the bud was less sensitive to exogenous treatments. A physiological model summarizes the main findings and suggests new research ideas to improve our knowledge about floral transition in peach.
Collapse
Affiliation(s)
- Francesco Girardi
- Department of Agronomy, Food, Natural resources, Animals and Environment - DAFNAE, University of Padova, Agripolis, Viale dell'università 16, Legnaro, PD, 35020, Italy
| | - Monica Canton
- Department of Agronomy, Food, Natural resources, Animals and Environment - DAFNAE, University of Padova, Agripolis, Viale dell'università 16, Legnaro, PD, 35020, Italy
| | - Francesca Populin
- Department of Agronomy, Food, Natural resources, Animals and Environment - DAFNAE, University of Padova, Agripolis, Viale dell'università 16, Legnaro, PD, 35020, Italy
- Berry Genetics and Breeding Unit - Research and Innovation Centre (CRI), Fondazione Edmund Mach, San Michele all'Adige, Trento, 38098, Italy
| | - Verónica Tijero
- Department of Agronomy, Food, Natural resources, Animals and Environment - DAFNAE, University of Padova, Agripolis, Viale dell'università 16, Legnaro, PD, 35020, Italy
- Fruit Production Programme, Institute of Agrifood Research and Technology (IRTA), Parc Agrobiotech Lleida, Parc de Gardeny, Edifici Fruitcentre, Lleida, 25003, Spain
| | - Giorgia Bettio
- Department of Agronomy, Food, Natural resources, Animals and Environment - DAFNAE, University of Padova, Agripolis, Viale dell'università 16, Legnaro, PD, 35020, Italy
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Diagonal 643, Barcelona, 08017, Spain
| | - Angela Rasori
- Department of Agronomy, Food, Natural resources, Animals and Environment - DAFNAE, University of Padova, Agripolis, Viale dell'università 16, Legnaro, PD, 35020, Italy
| | - Valerio Cardillo
- Department of Agronomy, Food, Natural resources, Animals and Environment - DAFNAE, University of Padova, Agripolis, Viale dell'università 16, Legnaro, PD, 35020, Italy
| | - Guglielmo Costa
- Department of Agricultural and Food Sciences - DISTAL, University of Bologna, Bologna, 40126, Italy
| | - Alessandro Botton
- Department of Agronomy, Food, Natural resources, Animals and Environment - DAFNAE, University of Padova, Agripolis, Viale dell'università 16, Legnaro, PD, 35020, Italy.
| |
Collapse
|
9
|
Wang Z, Mao Y, Liang L, Pedro GC, Zhi L, Li P, Hu X. HFR1 antagonizes ABI4 to coordinate cytosolic redox status for seed germination under high-temperature stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14490. [PMID: 39169549 DOI: 10.1111/ppl.14490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
Seed germination and dormancy represent critical phases in the life cycle of plants, tightly regulated by endogenous phytochrome levels and environment signals. High temperatures (HT) induce the overaccumulation of reactive oxygen species (ROS) and increase abscisic acid (ABA), thereby inhibiting seed germination. Our previous findings showed that HT induced the burst of reactive nitrogen species (RNS), increasing the S-nitrosylation modification of HFR1, which effectively blocks seed germination. Importantly, stabilizing HFR1 has been shown to significantly mitigate the inhibitory effect of HT on seed germination. In this study, we reported that HT increased the protein abundance of ABI4, a crucial component in ABA signaling, which in turn activates the expression of RbohD while suppressing the expression of VTC2. This leads to the rapid generation of ROS, thereby inhibiting seed germination. Consistently, the seed germination of abi4 mutant showed insensitivity to HT with lower ROS level during seed germination, whereas transgenic lines overexpressing ABI4 showed reduced germination rates accompanied by elevated ROS levels. Furthermore, we noted that HFR1 interacts with ABI4 to sequester its activity under normal conditions. However, HT-induced ROS triggered the degradation of HFR1, consequently releasing ABI4 activity. This activation of ABI4 promotes RbohD expression, culminating in a ROS burst that suppresses seed germination. Thus, our study unveils a novel function for ABI4 in regulating ROS level and seed germination under HT stress. Throughout this process, HFR1 plays a critical role in restraining ABI4 activity to maintain an optimal endogenous ROS level, thereby ensuring seed germination under favorable environmental conditions.
Collapse
Affiliation(s)
- Zhangcheng Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yan Mao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Lei Liang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | | | - Lulu Zhi
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Ping Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiangyang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
10
|
Calderón L, Carbonell-Bejerano P, Muñoz C, Bree L, Sola C, Bergamin D, Tulle W, Gomez-Talquenca S, Lanz C, Royo C, Ibáñez J, Martinez-Zapater JM, Weigel D, Lijavetzky D. Diploid genome assembly of the Malbec grapevine cultivar enables haplotype-aware analysis of transcriptomic differences underlying clonal phenotypic variation. HORTICULTURE RESEARCH 2024; 11:uhae080. [PMID: 38766532 PMCID: PMC11101320 DOI: 10.1093/hr/uhae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/08/2024] [Indexed: 05/22/2024]
Abstract
To preserve their varietal attributes, established grapevine cultivars (Vitis vinifera L. ssp. vinifera) must be clonally propagated, due to their highly heterozygous genomes. Malbec is a France-originated cultivar appreciated for producing high-quality wines and is the offspring of cultivars Prunelard and Magdeleine Noire des Charentes. Here, we have built a diploid genome assembly of Malbec, after trio binning of PacBio long reads into the two haploid complements inherited from either parent. After haplotype-aware deduplication and corrections, complete assemblies for the two haplophases were obtained with a very low haplotype switch-error rate (<0.025). The haplophase alignment identified > 25% of polymorphic regions. Gene annotation including RNA-seq transcriptome assembly and ab initio prediction evidence resulted in similar gene model numbers for both haplophases. The annotated diploid assembly was exploited in the transcriptomic comparison of four clonal accessions of Malbec that exhibited variation in berry composition traits. Analysis of the ripening pericarp transcriptome using either haplophases as a reference yielded similar results, although some differences were observed. Particularly, among the differentially expressed genes identified only with the Magdeleine-inherited haplotype as reference, we observed an over-representation of hypothetically hemizygous genes. The higher berry anthocyanin content of clonal accession 595 was associated with increased abscisic acid responses, possibly leading to the observed overexpression of phenylpropanoid metabolism genes and deregulation of genes associated with abiotic stress response. Overall, the results highlight the importance of producing diploid assemblies to fully represent the genomic diversity of highly heterozygous woody crop cultivars and unveil the molecular bases of clonal phenotypic variation.
Collapse
Affiliation(s)
- Luciano Calderón
- Instituto de Biología Agrícola de Mendoza (CONICET-UNCuyo), Genetica y Genomica de Vid, Chacras de Coria 5505, Mendoza, Argentina
| | - Pablo Carbonell-Bejerano
- Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC - Universidad de La Rioja - Gobierno de La Rioja, Logroño 26007, La Rioja, Spain
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Claudio Muñoz
- Instituto de Biología Agrícola de Mendoza (CONICET-UNCuyo), Genetica y Genomica de Vid, Chacras de Coria 5505, Mendoza, Argentina
- Facultad de Ciencias Agrarias (UNCuyo), Cátedra Fitopatología, Chacras de Coria 5505, Mendoza, Argentina
| | - Laura Bree
- Vivero Mercier Argentina, Perdriel 5500, Mendoza, Argentina
| | - Cristobal Sola
- Vivero Mercier Argentina, Perdriel 5500, Mendoza, Argentina
| | | | - Walter Tulle
- Instituto de Biología Agrícola de Mendoza (CONICET-UNCuyo), Genetica y Genomica de Vid, Chacras de Coria 5505, Mendoza, Argentina
| | - Sebastian Gomez-Talquenca
- Plant Virology Laboratory, Instituto Nacional de Tecnología Agropecuaria, Luján de Cuyo 5534, Mendoza, Argentina
| | - Christa Lanz
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Carolina Royo
- Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC - Universidad de La Rioja - Gobierno de La Rioja, Logroño 26007, La Rioja, Spain
| | - Javier Ibáñez
- Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC - Universidad de La Rioja - Gobierno de La Rioja, Logroño 26007, La Rioja, Spain
| | - José Miguel Martinez-Zapater
- Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC - Universidad de La Rioja - Gobierno de La Rioja, Logroño 26007, La Rioja, Spain
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Diego Lijavetzky
- Instituto de Biología Agrícola de Mendoza (CONICET-UNCuyo), Genetica y Genomica de Vid, Chacras de Coria 5505, Mendoza, Argentina
| |
Collapse
|
11
|
Nagle MF, Yuan J, Kaur D, Ma C, Peremyslova E, Jiang Y, Goralogia GS, Magnuson A, Li JY, Muchero W, Fuxin L, Strauss SH. Genome-wide association study and network analysis of in vitro transformation in Populus trichocarpa support key roles of diverse phytohormone pathways and cross talk. THE NEW PHYTOLOGIST 2024. [PMID: 38650352 DOI: 10.1111/nph.19737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
Wide variation in amenability to transformation and regeneration (TR) among many plant species and genotypes presents a challenge to the use of genetic engineering in research and breeding. To help understand the causes of this variation, we performed association mapping and network analysis using a population of 1204 wild trees of Populus trichocarpa (black cottonwood). To enable precise and high-throughput phenotyping of callus and shoot TR, we developed a computer vision system that cross-referenced complementary red, green, and blue (RGB) and fluorescent-hyperspectral images. We performed association mapping using single-marker and combined variant methods, followed by statistical tests for epistasis and integration of published multi-omic datasets to identify likely regulatory hubs. We report 409 candidate genes implicated by associations within 5 kb of coding sequences, and epistasis tests implicated 81 of these candidate genes as regulators of one another. Gene ontology terms related to protein-protein interactions and transcriptional regulation are overrepresented, among others. In addition to auxin and cytokinin pathways long established as critical to TR, our results highlight the importance of stress and wounding pathways. Potential regulatory hubs of signaling within and across these pathways include GROWTH REGULATORY FACTOR 1 (GRF1), PHOSPHATIDYLINOSITOL 4-KINASE β1 (PI-4Kβ1), and OBF-BINDING PROTEIN 1 (OBP1).
Collapse
Affiliation(s)
- Michael F Nagle
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Jialin Yuan
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Damanpreet Kaur
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Cathleen Ma
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Ekaterina Peremyslova
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Yuan Jiang
- Statistics Department, Oregon State University, Corvallis, OR, 97331, USA
| | - Greg S Goralogia
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Anna Magnuson
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Jia Yi Li
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, 37996, USA
| | - Li Fuxin
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Steven H Strauss
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
12
|
Istaitieh M, Yoosefzadeh Najafabadi M, Edwards AM, Todd J, Van Acker R, Rajcan I. Genetic study for seed germination and shattering in Euphorbia lagascae in response to different seed treatments. Heliyon 2024; 10:e27975. [PMID: 38560240 PMCID: PMC10979140 DOI: 10.1016/j.heliyon.2024.e27975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 02/24/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Euphorbia lagascae Spreng is a promising emerging oilseed crop, with its seed oil accounting for approximately 50% of the seed weight. Euphorbia oil contains a significant amount of vernolic acid, comprising two-thirds of its composition, which boasts various industrial applications, including acting as a stabilizer-plasticizer and natural dye. However, this species was known to have a high degree of seed-shattering and a low germination rate, which act as two important barriers to large-scale production and exploitation. Therefore, the objective of this study is to determine the genetic control of seed germination and seed-shattering traits in order to develop a reliable pipeline that would be applicable for industries and breeders to select superior E. lagascae lines and design a robust breeding scheme in a short time at reduced labor costs. For this objective, five different wild-type genotypes of E. lagascae that demonstrated high germination potential were crossed with an ethyl methanesulfonate (EMS) mutant genotype that produces non-shattering capsules. The F2 populations from two successful crosses (A and B) were separated into three different treated groups for seed germination evaluation and to study the segregation of 200 individuals per F2 population. The three treatments were: light, gibberellic acid (GA3), and control treatment. Consequently, plants treated with approximately 250 μmol/m2/s of light showed significant improvement in germination up to 75% in cross A and 82.4 % in cross B compared with the control plants and the group treated with 0.05% GA3. According to the chi-square test results, the inheritance pattern of seed germination in response to light treatment follows a 3:1 segregation ratio between germinated and non-germinated seeds, indicating a dominant gene action in the F2 generation. The same conclusion was followed for the shattering trait in the group treated with light, which was also simply inherited as a 3:1 ratio for shattering vs. non-shattering capsules. Our results emphasize the importance and significance of light treatment in producing uniform populations through acceptable germination and shattering resistance of the mutant genotypes of E. lagascae. This is the first report of light treatment that significantly improved seed germination of E. lagascae, which may enhance efforts in the development of this new industrial crop as a feedstock for vernolic acid production.
Collapse
Affiliation(s)
- Maram Istaitieh
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - A. Michelle Edwards
- Office of Research, Ontario Agri-Food Innovation Alliance, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jim Todd
- Ontario Ministry of Agriculture, Food and Rural Affairs, 1283 Blueline Rd, Simcoe, ON, N3Y 4K3, Canada
| | - Rene Van Acker
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
13
|
Xu M, Zhang W, Jiao Y, Yang Q, Chen M, Cheng H, Cheng B, Zhang X. OsSCYL2 is Involved in Regulating ABA Signaling-Mediated Seed Germination in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:1088. [PMID: 38674497 PMCID: PMC11054224 DOI: 10.3390/plants13081088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Seed germination represents a multifaceted biological process influenced by various intrinsic and extrinsic factors. In the present study, our investigation unveiled the regulatory role of OsSCYL2, a gene identified as a facilitator of seed germination in rice. Notably, the germination kinetics of OsSCYL2-overexpressing seeds surpassed those of their wild-type counterparts, indicating the potency of OsSCYL2 in enhancing this developmental process. Moreover, qRT-PCR results showed that OsSCYL2 was consistently expressed throughout the germination process in rice. Exogenous application of ABA on seeds and seedlings underscored the sensitivity of OsSCYL2 to ABA during both seed germination initiation and post-germination growth phases. Transcriptomic profiling following OsSCYL2 overexpression revealed profound alterations in metabolic pathways, MAPK signaling cascades, and phytohormone-mediated signal transduction pathways, with 15 genes related to the ABA pathways exhibiting significant expression changes. Complementary in vivo and in vitro assays unveiled the physical interaction between OsSCYL2 and TOR, thereby implicating OsSCYL2 in the negative modulation of ABA-responsive genes and its consequential impact on seed germination dynamics. This study elucidated novel insights into the function of OsSCYL2 in regulating the germination process of rice seeds through the modulation of ABA signaling pathways, thereby enhancing the understanding of the functional significance of the SCYL protein family in plant physiological processes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xin Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
14
|
Tian Z, Zhao M, Wang J, Yang Q, Ma Y, Yang X, Ma L, Qi Y, Li J, Quinet M, Shi B, Meng Y. Exogenous melatonin improves germination rate in buckwheat under high temperature stress by regulating seed physiological and biochemical characteristics. PeerJ 2024; 12:e17136. [PMID: 38590707 PMCID: PMC11000643 DOI: 10.7717/peerj.17136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/28/2024] [Indexed: 04/10/2024] Open
Abstract
The germinations of three common buckwheat (Fagopyrum esculentum) varieties and two Tartary buckwheat (Fagopyrum tataricum) varieties seeds are known to be affected by high temperature. However, little is known about the physiological mechanism affecting germination and the effect of melatonin (MT) on buckwheat seed germination under high temperature. This work studied the effects of exogenous MT on buckwheat seed germination under high temperature. MT was sprayed. The parameters, including growth, and physiological factors, were examined. The results showed that exogenous MT significantly increased the germination rate (GR), germination potential (GP), radicle length (RL), and fresh weight (FW) of these buckwheat seeds under high-temperature stress and enhanced the content of osmotic adjustment substances and enzyme activity. Comprehensive analysis revealed that under high-temperature stress during germination, antioxidant enzymes play a predominant role, while osmotic adjustment substances work synergistically to reduce the extent of damage to the membrane structure, serving as the primary key indicators for studying high-temperature resistance. Consequently, our results showed that MT had a positive protective effect on buckwheat seeds exposed to high temperature stress, providing a theoretical basis for improving the ability to adapt to high temperature environments.
Collapse
Affiliation(s)
- Zemiao Tian
- Hebei Agricultrual University, Baoding, China
- Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing, China
| | - Mengyu Zhao
- Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing, China
| | - Junzhen Wang
- Liangshan Yi Autonomous Prefecture Academy of Agricultural Sciences, Xichang, China
| | - Qian Yang
- Hebei Agricultrual University, Baoding, China
| | - Yini Ma
- Hebei Agricultrual University, Baoding, China
| | - Xinlei Yang
- Hebei Agricultrual University, Baoding, China
| | - Luping Ma
- Hebei Agricultrual University, Baoding, China
| | - Yongzhi Qi
- Hebei Agricultrual University, Baoding, China
| | - Jinbo Li
- Luoyang Normal University, Luoyang, China
| | - Muriel Quinet
- Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Yu Meng
- Hebei Agricultrual University, Baoding, China
| |
Collapse
|
15
|
Ren X, Yang C, Zhu X, Yi P, Jiang X, Yang J, Xiang S, Li Y, Yu B, Yan W, Li X, Li Y, Hu R, Hu Z. Insights into drought stress response mechanism of tobacco during seed germination by integrated analysis of transcriptome and metabolome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 209:108526. [PMID: 38537383 DOI: 10.1016/j.plaphy.2024.108526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
Drought stress inhibits seed germination, plant growth and development of tobacco, and seriously affects the yield and quality of tobacco leaves. However, the molecular mechanism underlying tobacco drought stress response remains largely unknown. In this study, integrated analysis of transcriptome and metabolome was performed on the germinated seeds of a cultivated variety K326 and its EMS mutagenic mutant M28 with great drought tolerance. The result showed that drought stress inhibited seed germination of the both varieties, while the germination rate of M28 was faster than that of K326 under drought stress. Besides, the levels of phytohormone ABA, GA19, and zeatin were increased by drought stress in M28. Five vital pathways were identified through integrated transcriptomic and metabolomic analysis, including zeatin biosynthesis, aspartate and glutamate synthesis, phenylamine metabolism, glutathione metabolism, and phenylpropanoid synthesis. Furthermore, 20 key metabolites in the above pathways were selected for further analysis of gene modular-trait relationship, and then four highly correlated modules were found. Then analysis of gene expression network was carried out of Top30 hub gene of these four modules, and 9 key candidate genes were identified, including HSP70s, XTH16s, APX, PHI-1, 14-3-3, SCP, PPO. In conclusion, our study uncovered some key drought-responsive pathways and genes of tobacco during seeds germination, providing new insights into the regulatory mechanisms of tobacco drought stress response.
Collapse
Affiliation(s)
- Xiaomin Ren
- Hunan Tobacco Research Institute, Changsha, Hunan, 410004, China
| | - Chenkai Yang
- Chenzhou Tobacco Company, Chenzhou, Hunan, 423000, China
| | - Xianxin Zhu
- Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Pengfei Yi
- Changde Tobacco Company, Changde, Hunan, 415300, China
| | - Xizhen Jiang
- Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Jiashuo Yang
- Hunan Tobacco Research Institute, Changsha, Hunan, 410004, China
| | - Shipeng Xiang
- Tobacco Production Technology Center, Changsha Tobacco Company, Changsha, Hunan, 410007, China
| | - Yunxia Li
- Chenzhou Agricultural Science Research Institute, Chenzhou, Hunan, 423000, China
| | - Bei Yu
- Hunan Tobacco Research Institute, Changsha, Hunan, 410004, China
| | - Weijie Yan
- Changde Tobacco Company, Changde, Hunan, 415300, China
| | - Xiaoxu Li
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, Hunan, 410021, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, Hunan, 410004, China.
| | - Risheng Hu
- Hunan Tobacco Research Institute, Changsha, Hunan, 410004, China.
| | - Zhengrong Hu
- Hunan Tobacco Research Institute, Changsha, Hunan, 410004, China.
| |
Collapse
|
16
|
Vollmeister E, Phokas A, Meyberg R, Böhm CV, Peter M, Kohnert E, Yuan J, Grosche C, Göttig M, Ullrich KK, Perroud PF, Hiltbrunner A, Kreutz C, Coates JC, Rensing SA. A DELAY OF GERMINATION 1 (DOG1)-like protein regulates spore germination in the moss Physcomitrium patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:909-923. [PMID: 37953711 DOI: 10.1111/tpj.16537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
DELAY OF GERMINATION 1 is a key regulator of dormancy in flowering plants before seed germination. Bryophytes develop haploid spores with an analogous function to seeds. Here, we investigate whether DOG1 function during germination is conserved between bryophytes and flowering plants and analyse the underlying mechanism of DOG1 action in the moss Physcomitrium patens. Phylogenetic and in silico expression analyses were performed to identify and characterise DOG1 domain-containing genes in P. patens. Germination assays were performed to characterise a Ppdog1-like1 mutant, and replacement with AtDOG1 was carried out. Yeast two-hybrid assays were used to test the interaction of the PpDOG1-like protein with DELLA proteins from P. patens and A. thaliana. P. patens possesses nine DOG1 domain-containing genes. The DOG1-like protein PpDOG1-L1 (Pp3c3_9650) interacts with PpDELLAa and PpDELLAb and the A. thaliana DELLA protein AtRGA in yeast. Protein truncations revealed the DOG1 domain as necessary and sufficient for interaction with PpDELLA proteins. Spores of Ppdog1-l1 mutant germinate faster than wild type, but replacement with AtDOG1 reverses this effect. Our data demonstrate a role for the PpDOG1-LIKE1 protein in moss spore germination, possibly alongside PpDELLAs. This suggests a conserved DOG1 domain function in germination, albeit with differential adaptation of regulatory networks in seed and spore germination.
Collapse
Affiliation(s)
- Evelyn Vollmeister
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Alexandros Phokas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Rabea Meyberg
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Clemens V Böhm
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Marlies Peter
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Eva Kohnert
- Institute of Medical Biometry and Statistics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79104, Germany
| | - Jinhong Yuan
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Christopher Grosche
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Marco Göttig
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Kristian K Ullrich
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | | | - Andreas Hiltbrunner
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Germany
| | - Clemens Kreutz
- Institute of Medical Biometry and Statistics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79104, Germany
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Platon L, Ménard D. Plasmodium falciparum ring-stage plasticity and drug resistance. Trends Parasitol 2024; 40:118-130. [PMID: 38104024 DOI: 10.1016/j.pt.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Malaria is a life-threatening tropical disease caused by parasites of the genus Plasmodium, of which Plasmodium falciparum is the most lethal. Malaria parasites have a complex life cycle, with stages occurring in both the Anopheles mosquito vector and human host. Ring stages are the youngest form of the parasite in the intraerythrocytic developmental cycle and are associated with evasion of spleen clearance, temporary growth arrest (TGA), and drug resistance. This formidable ability to survive and develop into mature, sexual, or growth-arrested forms demonstrates the inherent population heterogeneity. Here we highlight the role of the ring stage as a crossroads in parasite development and as a reservoir of surviving cells in the human host via TGA survival mechanisms.
Collapse
Affiliation(s)
- Lucien Platon
- Institut Pasteur, Université Paris Cité, Malaria Genetics and Resistance Unit, INSERM U1201, F-75015 Paris, France; Sorbonne Université, Collège Doctoral ED 515 Complexité du Vivant, F-75015 Paris, France; Université de Strasbourg, Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, F-67000 Strasbourg, France.
| | - Didier Ménard
- Institut Pasteur, Université Paris Cité, Malaria Genetics and Resistance Unit, INSERM U1201, F-75015 Paris, France; Institut Pasteur, Université Paris Cité, Malaria Parasite Biology and Vaccines Unit, F-75015 Paris, France; Université de Strasbourg, Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, F-67000 Strasbourg, France; CHU Strasbourg, Laboratory of Parasitology and Medical Mycology, F-67000 Strasbourg, France.
| |
Collapse
|
18
|
Hu Y, Wang H, Jia H, Peng M, Zhu T, Liu Y, Wei J. Effects of Cd treatment on morphology, chlorophyll content and antioxidant enzyme activity of Elymus nutans Griseb., a native plant in Qinghai-Tibet Plateau. PLANT SIGNALING & BEHAVIOR 2023; 18:2187561. [PMID: 36938824 PMCID: PMC10038041 DOI: 10.1080/15592324.2023.2187561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Cd pollution is a global environmental problem. However, the response mechanism of the alpine plant Pelagia under Cd stress remains unclear. Therefore, in this study, a native plant(Elymus nutans Griseb.) of the Qinghai-Tibet Plateau was used as the material to quantify plant height, leaf number, length of leaf, crown width, root number, biomass, Dry weight malondialdehyde (MDA), free proline, superoxide dismutase (SOD), ascorbate enzyme (APX), catalase (CAT) and chlorophyll contents under different Cd concentrations. The results showed that the growth of Elymus nutans Griseb. was a phenomenon of "low concentration promotes growth, high concentration inhibited growth" under Cd treatment. It meant that 10 mg·L-1 Cd promoted the growth of leaf number, plant height, crown width and tiller number, while 40 mg·L-1 Cd inhibited the growth of root number and biomass of Elymus nutans Griseb. compare with the control. The MDA content, free proline content, SOD activity, APX activity and CAT activity of Elymus nutans Griseb. was increased with the increase of Cd treatment concentration to resist the oxidative damage caused by Cd to the body. At the same time, the accumulation of chlorophyll A, chlorophyll B and chlorophyll AB was decreased with the increase of Cd stress concentration. In addition, the carotenoid content did not change much between the control group and the treatment group, indicating that Cd treatment had little effect on it. The results could provide a reference for the mechanism of heavy metal resistance and the selection and improvement of Cd -resistant varieties of Elymus nutans Griseb.
Collapse
Affiliation(s)
- Ying Hu
- College of Life Sciences, Qinghai Normal University, Xi’ Ning, China
| | - Huichun Wang
- College of Life Sciences, Qinghai Normal University, Xi’ Ning, China
- Qinghai south of Qilian Mountain Forest Ecosystem Observation and Research Station, Huzhu
- Key Laboratory of Medicinal Animal and Plant Resources on the Qinghai–Tibet Plateau, Qinghai Normal University, Xi’ Ning, China
| | - Huiping Jia
- College of Life Sciences, Qinghai Normal University, Xi’ Ning, China
| | - Maodeji Peng
- College of Life Sciences, Qinghai Normal University, Xi’ Ning, China
| | - Tiantian Zhu
- College of Life Sciences, Qinghai Normal University, Xi’ Ning, China
| | - Yangyang Liu
- College of Life Sciences, Qinghai Normal University, Xi’ Ning, China
| | - Jingjing Wei
- College of Geographical Sciences, Qinghai Normal University, Xi’ Ning, China
| |
Collapse
|
19
|
Liu Y, Chen Z, Zhang C, Guo J, Liu Q, Yin Y, Hu Y, Xia H, Li B, Sun X, Li Y, Liu X. Gene editing of ZmGA20ox3 improves plant architecture and drought tolerance in maize. PLANT CELL REPORTS 2023; 43:18. [PMID: 38148416 DOI: 10.1007/s00299-023-03090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/19/2023] [Indexed: 12/28/2023]
Abstract
KEY MESSAGE Editing ZmGA20ox3 can achieve the effect similar to applying Cycocel, which can reduce maize plant height and enhance stress resistance. Drought stress, a major plant abiotic stress, is capable of suppressing crop yield performance severely. However, the trade-off between crop drought tolerance and yield performance turns out to be significantly challenging in drought-resistant crop breeding. Several phytohormones [e.g., gibberellin (GA)] have been reported to play a certain role in plant drought response, which also take on critical significance in plant growth and development. In this study, the loss-of-function mutations of GA biosynthesis enzyme ZmGA20ox3 were produced using the CRISPR-Cas9 system in maize. As indicated by the result of 2-year field trials, the above-mentioned mutants displayed semi-dwarfing phenotype with the decrease of GA1, and almost no yield loss was generated compared with wild-type (WT) plants. Interestingly, as revealed by the transcriptome analysis, differential expressed genes (DEGs) were notably enriched in abiotic stress progresses, and biochemical tests indicated the significantly increased ABA, JA, and DIMBOA levels in mutants, suggesting that ZmGA20ox3 may take on vital significance in stress response in maize. The in-depth analysis suggested that the loss function of ZmGA20ox3 can enhance drought tolerance in maize seedling, reduce Anthesis-Silking Interval (ASI) delay while decreasing the yield loss significantly in the field under drought conditions. The results of this study supported that regulating ZmGA20ox3 can improve plant height while enhancing drought resistance in maize, thus serving as a novel method for drought-resistant genetic improvement in maize.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Ziqi Chen
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Chuang Zhang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jia Guo
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Qing Liu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yuejia Yin
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yang Hu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Hanchao Xia
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
- Jilin Agricultural University, Changchun, China
| | - Bingyang Li
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xiaopeng Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| | - Yidan Li
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China.
| | - Xiangguo Liu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
20
|
Larson AJS, Cartwright MM, Jones WD, Luce K, Chen MY, Petersen K, Nelson SV, Michaelis DJ, Madsen MD. Slow Release of GA 3 Hormone from Polymer Coating Overcomes Seed Dormancy and Improves Germination. PLANTS (BASEL, SWITZERLAND) 2023; 12:4139. [PMID: 38140466 PMCID: PMC10748187 DOI: 10.3390/plants12244139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Seed dormancy often hinders direct seeding efforts that are attempting to restore degraded landscapes. Gibberellic acid (GA3) can be applied to physiologically dormant seeds to induce germination, but this hormone is rarely effective, as it can degrade or be leached from the seed. We tested different polymer matrixes (polylactic acid, polyvinylpyrrolidone, and ethylcellulose) to apply and slowly release GA3 to the seed. These polymers were tested as seed coatings in either a powder, liquid, or a combination of powder and liquid forms. We found that a liquid ethylcellulose/GA3 coating generally outperformed the other polymers and applications methods using our test species Penstemon palmeri. With this top-performing treatment, seed germination was 3.0- and 3.9-fold higher at 15 °C and 25 °C, respectively. We also evaluated the liquid ethylcellulose/GA3 coating on P. comharrenus, P. strictus, P. pachyphyllus, and P. eatonii. Again, the coating had a strong treatment response, with the degree of difference related to the relative level of dormancy of the species. Growth studies were also performed in pots to ensure that the side effects of GA3 overdosing were not present. Here, we found minimal differences in root length, shoot length, or biomass between plants grown from untreated and GA3-coated seeds.
Collapse
Affiliation(s)
- Alexandra J. S. Larson
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA; (A.J.S.L.); (W.D.J.); (K.L.); (M.-Y.C.); (S.V.N.)
| | - Maureen M. Cartwright
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA; (A.J.S.L.); (W.D.J.); (K.L.); (M.-Y.C.); (S.V.N.)
| | - Whitney D. Jones
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA; (A.J.S.L.); (W.D.J.); (K.L.); (M.-Y.C.); (S.V.N.)
| | - Katrina Luce
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA; (A.J.S.L.); (W.D.J.); (K.L.); (M.-Y.C.); (S.V.N.)
| | - Mei-Yu Chen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA; (A.J.S.L.); (W.D.J.); (K.L.); (M.-Y.C.); (S.V.N.)
| | - Kate Petersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (K.P.); (D.J.M.)
| | - Shannon V. Nelson
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA; (A.J.S.L.); (W.D.J.); (K.L.); (M.-Y.C.); (S.V.N.)
| | - David J. Michaelis
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (K.P.); (D.J.M.)
| | - Matthew D. Madsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA; (A.J.S.L.); (W.D.J.); (K.L.); (M.-Y.C.); (S.V.N.)
| |
Collapse
|
21
|
Tian C, Quan H, Jiang R, Zheng Q, Huang S, Tan G, Yan C, Zhou J, Liao H. Differential roles of Cassia tora 1-deoxy-D-xylulose-5-phosphate synthase and 1-deoxy-D-xylulose-5-phosphate reductoisomerase in trade-off between plant growth and drought tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1270396. [PMID: 37929171 PMCID: PMC10623318 DOI: 10.3389/fpls.2023.1270396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Due to global climate change, drought is emerging as a major threat to plant growth and agricultural productivity. Abscisic acid (ABA) has been implicated in plant drought tolerance, however, its retarding effects on plant growth cannot be ignored. The reactions catalyzed by 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) proteins are critical steps within the isoprenoid biosynthesis in plants. Here, five DXS (CtDXS1-5) and two DXR (CtDXR1-2) genes were identified from Cassia tora genome. Based on multiple assays including the phylogeny, cis-acting element, expression pattern, and subcellular localization, CtDXS1 and CtDXR1 genes might be potential candidates controlling the isoprenoid biosynthesis. Intriguingly, CtDXS1 transgenic plants resulted in drought tolerance but retardant growth, while CtDXR1 transgenic plants exhibited both enhanced drought tolerance and increased growth. By comparison of β-carotene, chlorophyll, abscisic acid (ABA) and gibberellin 3 (GA3) contents in wild-type and transgenic plants, the absolute contents and (or) altered GA3/ABA levels were suggested to be responsible for the balance between drought tolerance and plant growth. The transcriptome of CtDXR1 transgenic plants suggested that the transcript levels of key genes, such as DXS, 9-cis-epoxycarotenoid dioxygenases (NCED), ent-kaurene synthase (KS) and etc, involved with chlorophyll, β-carotene, ABA and GA3 biosynthesis were induced and their contents increased accordingly. Collectively, the trade-off effect induced by CtDXR1 was associated with redesigning architecture in phytohormone homeostasis and thus was highlighted for future breeding purposes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
22
|
Sinha N, Zahra T, Gahane AY, Rout B, Bhattacharya A, Basu S, Chakrabarti A, Thakur AK. Protein reservoirs of seeds are amyloid composites employed differentially for germination and seedling emergence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:329-346. [PMID: 37675599 DOI: 10.1111/tpj.16429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/15/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
Seed protein localization in seed storage protein bodies (SSPB) and their significance in germination are well recognized. SSPB are spherical and contain an assembly of water-soluble and salt-soluble proteins. Although the native structures of some SSPB proteins are explored, their structural arrangement to the functional correlation in SSPB remains unknown. SSPB are morphologically analogous to electron-dense amyloid-containing structures reported in other organisms. Here, we show that wheat, mungbean, barley, and chickpea SSPB exhibit a speckled pattern of amyloids interspersed in an amyloid-like matrix along with native structures, suggesting the composite nature of SSPB. This is confirmed by multispectral imaging methods, electron microscopy, infrared, and X-ray diffraction analysis, using in situ tissue sections, ex vivo protoplasts, and in vitro SSPB. Laser capture microdissection coupled with peptide fingerprinting has shown that globulin 1 and 3 in wheat, and 8S globulin and conglycinin in mungbean are the major amyloidogenic proteins. The amyloid composites undergo a sustained degradation during germination and seedling growth, facilitated by an intricate interplay of plant hormones and proteases. These results would lay down the foundation for understanding the amyloid composite structure during SSPB biogenesis and its evolution across the plant kingdom and have implications in both basic and applied plant biology.
Collapse
Affiliation(s)
- Nabodita Sinha
- Department of Biological Sciences and Bioengineering, The Mehta Family Centre For Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| | - Talat Zahra
- Department of Biological Sciences and Bioengineering, The Mehta Family Centre For Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| | - Avinash Yashwant Gahane
- Department of Biological Sciences and Bioengineering, The Mehta Family Centre For Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| | - Bandita Rout
- Department of Biological Sciences and Bioengineering, The Mehta Family Centre For Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| | | | | | | | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering, The Mehta Family Centre For Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|
23
|
Zhu K, Chen H, Mei X, Lu S, Xie H, Liu J, Chai L, Xu Q, Wurtzel ET, Ye J, Deng X. Transcription factor CsMADS3 coordinately regulates chlorophyll and carotenoid pools in Citrus hesperidium. PLANT PHYSIOLOGY 2023; 193:519-536. [PMID: 37224514 DOI: 10.1093/plphys/kiad300] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Citrus, 1 of the largest fruit crops with global economic and nutritional importance, contains fruit known as hesperidium with unique morphological types. Citrus fruit ripening is accompanied by chlorophyll degradation and carotenoid biosynthesis, which are indispensably linked to color formation and the external appearance of citrus fruits. However, the transcriptional coordination of these metabolites during citrus fruit ripening remains unknown. Here, we identified the MADS-box transcription factor CsMADS3 in Citrus hesperidium that coordinates chlorophyll and carotenoid pools during fruit ripening. CsMADS3 is a nucleus-localized transcriptional activator, and its expression is induced during fruit development and coloration. Overexpression of CsMADS3 in citrus calli, tomato (Solanum lycopersicum), and citrus fruits enhanced carotenoid biosynthesis and upregulated carotenogenic genes while accelerating chlorophyll degradation and upregulating chlorophyll degradation genes. Conversely, the interference of CsMADS3 expression in citrus calli and fruits inhibited carotenoid biosynthesis and chlorophyll degradation and downregulated the transcription of related genes. Further assays confirmed that CsMADS3 directly binds and activates the promoters of phytoene synthase 1 (CsPSY1) and chromoplast-specific lycopene β-cyclase (CsLCYb2), 2 key genes in the carotenoid biosynthetic pathway, and STAY-GREEN (CsSGR), a critical chlorophyll degradation gene, which explained the expression alterations of CsPSY1, CsLCYb2, and CsSGR in the above transgenic lines. These findings reveal the transcriptional coordination of chlorophyll and carotenoid pools in the unique hesperidium of Citrus and may contribute to citrus crop improvement.
Collapse
Affiliation(s)
- Kaijie Zhu
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Hongyan Chen
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Xuehan Mei
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Suwen Lu
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Heping Xie
- The Experimental Station of Loose-skin Mandarins in Yichang, Agricultural Technical Service Center of Yiling District, Yichang, Hubei 443100, China
| | - Junwei Liu
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lijun Chai
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qiang Xu
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Eleanore T Wurtzel
- Department of Biological Sciences, Lehman College, The City University of New York, Bronx, NY 10468, USA
- The Graduate Center, The City University of New York, New York, NY 10016-16 4309, USA
| | - Junli Ye
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiuxin Deng
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| |
Collapse
|
24
|
Zhang L, Song W, Xin G, Zhu M, Meng X. Comparative Analysis of the PYL Gene Family in Three Ipomoea Species and the Expression Profiling of IbPYL Genes during Abiotic Stress Response in Sweetpotato. Genes (Basel) 2023; 14:1471. [PMID: 37510375 PMCID: PMC10379866 DOI: 10.3390/genes14071471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Abscisic acid (ABA), a critical phytohormone that regulates plant development and stress response, is sensed by the ABA receptors PYR/PYL/RCAR (PYLs). The PYL genes have been widely studied in multiple plant species, while a systematic analysis of PYL genes in the genus Ipomoea remains unperformed. Here, a total of 13, 14, and 14 PYLs were identified in Ipomoea batatas, Ipomoea trifida, and Ipomoea triloba, respectively. Fragment duplication was speculated to play prominent roles in Ipomoea PYL gene expansions. These Ipomoea PYLs were classified into three subfamilies via phylogenetic analysis, which was supported by exon-intron structures and conserved motif analyses. Additionally, the interspecies collinearity analysis further depicted a potential evolutionary relationship between them. Moreover, qRT-PCR analysis showed that multiple IbPYLs are highly and differentially responsive to abiotic stress treatments, suggesting their potential roles in sweetpotato stress responses. Taken together, these data provide valuable insights into the PYLs in the genus Ipomoea, which may be useful for their further functional analysis of their defense against environmental changes.
Collapse
Affiliation(s)
- Lei Zhang
- Yantai Academy of Agricultural Sciences, Yantai 261417, China
| | - Weihan Song
- Jiangsu Xuzhou Sweetpotato Research Center, Xuzhou 221131, China
| | - Guosheng Xin
- Yantai Academy of Agricultural Sciences, Yantai 261417, China
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Xiaoqing Meng
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
25
|
Peng W, He Y, He S, Luo J, Zeng Y, Zhang X, Huo Y, Jie Y, Xing H. Exogenous plant growth regulator and foliar fertilizers for phytoextraction of cadmium with Boehmeria nivea [L.] Gaudich from contaminated field soil. Sci Rep 2023; 13:11019. [PMID: 37419889 PMCID: PMC10329045 DOI: 10.1038/s41598-023-37971-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/30/2023] [Indexed: 07/09/2023] Open
Abstract
As a enrichment plant, ramie can be used for the phytoremediation of cadmium (Cd)-contaminated soil. However, it is worth exploring the role of plant growth regulators and foliar fertilizers in the process of plant growth and development and Cd adsorption. By measuring the agronomic traits, Cd content of aboveground and underground ramie, calculating the Cd transfer coefficient (TF) and Cd bioconcentration factors (BCF), and the correlation between various indicators. This study examined the effects of plant growth regulators and foliar fertilizers on ramie's capacity for Cd accumulation and transportation. Plant growth regulators and foliar fertilizers increased the Cd content of the aboveground ramie, reduced the Cd content of the underground ramie, and increased the TF. Among them, GA-1 increased the Cd content of the aboveground ramie to 3 times more than that of the control and reduced the Cd content of the underground ramie by 54.76%. Salicylic acid (SA) increased the Cd content of the aboveground ramie to three times more than that of the control. The combination of GA and foliar fertilizer reduced the Cd content of the aboveground and underground ramie and the TF and BCF of the underground ramie. After the hormones were sprayed, the TF of ramie had a significant positive correlation with the Cd content of the aboveground ramie; the BCF of the aboveground ramie had a significant positive correlation with the Cd content and TF of the aboveground ramie. The results indicate that Brassinolide (BR), gibberellin (GA), ethephon (ETH), polyamines (PAs), and salicylic acid (SA) have different effects on the enrichment and transport of Cd in ramie. This study provided an effective method to improve the capacity for ramie to adsorb heavy metals during cultivation.
Collapse
Affiliation(s)
- Wenxian Peng
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Yejun He
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Si He
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Jinfeng Luo
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Yi Zeng
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Xiaoyang Zhang
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Yingyi Huo
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Yucheng Jie
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Hucheng Xing
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China.
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China.
| |
Collapse
|
26
|
Feng X, Li S, Meng D, Di Q, Zhou M, Yu X, He C, Yan Y, Wang J, Sun M, Li Y. CsBPC2 is a key regulator of root growth and development. PHYSIOLOGIA PLANTARUM 2023; 175:e13977. [PMID: 37616013 DOI: 10.1111/ppl.13977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 08/25/2023]
Abstract
BASIC PENTACYSTEINE (BPCs) transcription factors are important regulators of plant growth and development. However, the regulatory mechanism of BPC2 in roots remains unclear. In our previous study, we created Csbpc2 cucumber mutants by the CRISPR/Cas9 system, and our studies on the phenotype of Csbpc2 mutants showed that the root growth was inhibited compared with wide-type (WT). Moreover, the surface area, volume and number of roots decreased significantly, with root system architecture changing from dichotomous branching to herringbone branching. Compared with WT, the leaf growth of the Csbpc2 mutants was not affected. However, the palisade and spongy tissue were significantly thinner, which was not beneficial for photosynthesis. The metabolome of root exudates showed that compared with WT, amino acids and their derivatives were significantly decreased, and the enriched pathways were mainly regulated by amino acids and their derivatives, indicating that knockout of CsBPC2 mainly affected the amino acid content in root exudates. Importantly, transcriptome analysis showed that knockout of CsBPC2 mainly affected root gene expression. Knockout of CsBPC2 significantly reduced the gene expression of gibberellins synthesis. However, the expression of genes related to amino acid synthesis, nitrogen fixation and PSII-related photosynthesis increased significantly, which may be due to the effect of knocking out CsBPC2 on gibberellins synthesis, resulting in the inhibition of seedling growth, thus forming negative feedback regulation. Generally, we showed for the first time that BPC2 is a key regulator gene of root growth and development, laying the foundation for future mechanisms of BPC2 regulation in roots.
Collapse
Affiliation(s)
- Xiaojie Feng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuzhen Li
- Ganzhou Key Laboratory of Greenhouse Vegetable, College of Life Science, Gannan Normal University, Ganzhou, China
| | - Di Meng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qinghua Di
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengdi Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianchang Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaoxing He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Yan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mintao Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yansu Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
Aloo BN, Dessureault-Rompré J, Tripathi V, Nyongesa BO, Were BA. Signaling and crosstalk of rhizobacterial and plant hormones that mediate abiotic stress tolerance in plants. Front Microbiol 2023; 14:1171104. [PMID: 37455718 PMCID: PMC10347528 DOI: 10.3389/fmicb.2023.1171104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Agricultural areas exhibiting numerous abiotic stressors, such as elevated water stress, temperatures, and salinity, have grown as a result of climate change. As such, abiotic stresses are some of the most pressing issues in contemporary agricultural production. Understanding plant responses to abiotic stressors is important for global food security, climate change adaptation, and improving crop resilience for sustainable agriculture, Over the decades, explorations have been made concerning plant tolerance to these environmental stresses. Plant growth-promoting rhizobacteria (PGPR) and their phytohormones are some of the players involved in developing resistance to abiotic stress in plants. Several studies have investigated the part of phytohormones in the ability of plants to withstand and adapt to non-living environmental factors, but very few have focused on rhizobacterial hormonal signaling and crosstalk that mediate abiotic stress tolerance in plants. The main objective of this review is to evaluate the functions of PGPR phytohormones in plant abiotic stress tolerance and outline the current research on rhizobacterial hormonal communication and crosstalk that govern plant abiotic stress responses. The review also includes the gene networks and regulation under diverse abiotic stressors. The review is important for understanding plant responses to abiotic stresses using PGPR phytohormones and hormonal signaling. It is envisaged that PGPR offer a useful approach to increasing plant tolerance to various abiotic stresses. However, further studies can reveal the unclear patterns of hormonal interactions between plants and rhizobacteria that mediate abiotic stress tolerance.
Collapse
Affiliation(s)
- B. N. Aloo
- Department of Biological Sciences, University of Eldoret, Eldoret, Kenya
| | | | - V. Tripathi
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - B. O. Nyongesa
- Department of Biological Sciences, University of Eldoret, Eldoret, Kenya
| | - B. A. Were
- Department of Biological Sciences, University of Eldoret, Eldoret, Kenya
| |
Collapse
|
28
|
Veerabagu M, van der Schoot C, Turečková V, Tarkowská D, Strnad M, Rinne PLH. Light on perenniality: Para-dormancy is based on ABA-GA antagonism and endo-dormancy on the shutdown of GA biosynthesis. PLANT, CELL & ENVIRONMENT 2023; 46:1785-1804. [PMID: 36760106 DOI: 10.1111/pce.14562] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 05/04/2023]
Abstract
Perennial para- and endo-dormancy are seasonally separate phenomena. Whereas para-dormancy is the suppression of axillary buds (AXBs) by a growing shoot, endo-dormancy is the short-day elicited arrest of terminal and AXBs. In hybrid aspen (Populus tremula x P. tremuloides) compromising the apex releases para-dormancy, whereas endo-dormancy requires chilling. ABA and GA are implicated in both phenomena. To untangle their roles, we blocked ABA biosynthesis with fluridone (FD), which significantly reduced ABA levels, downregulated GA-deactivation genes, upregulated the major GA3ox-biosynthetic genes, and initiated branching. Comprehensive GA-metabolite analyses suggested that FD treatment shifted GA production to the non-13-hydroxylation pathway, enhancing GA4 function. Applied ABA counteracted FD effects on GA metabolism and downregulated several GA3/4 -inducible α- and γ-clade 1,3-β-glucanases that hydrolyze callose at plasmodesmata (PD), thereby enhancing PD-callose accumulation. Remarkably, ABA-deficient plants repressed GA4 biosynthesis and established endo-dormancy like controls but showed increased stress sensitivity. Repression of GA4 biosynthesis involved short-day induced DNA methylation events within the GA3ox2 promoter. In conclusion, the results cast new light on the roles of ABA and GA in dormancy cycling. In para-dormancy, PD-callose turnover is antagonized by ABA, whereas in short-day conditions, lack of GA4 biosynthesis promotes callose deposition that is structurally persistent throughout endo-dormancy.
Collapse
Affiliation(s)
| | | | - Veronika Turečková
- Laboratory of Growth Regulators, Faculty of Sciences, Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Faculty of Sciences, Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Sciences, Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Päivi L H Rinne
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
29
|
Binenbaum J, Wulff N, Camut L, Kiradjiev K, Anfang M, Tal I, Vasuki H, Zhang Y, Sakvarelidze-Achard L, Davière JM, Ripper D, Carrera E, Manasherova E, Ben Yaakov S, Lazary S, Hua C, Novak V, Crocoll C, Weinstain R, Cohen H, Ragni L, Aharoni A, Band LR, Achard P, Nour-Eldin HH, Shani E. Gibberellin and abscisic acid transporters facilitate endodermal suberin formation in Arabidopsis. NATURE PLANTS 2023; 9:785-802. [PMID: 37024660 PMCID: PMC7615257 DOI: 10.1038/s41477-023-01391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 03/09/2023] [Indexed: 05/04/2023]
Abstract
The plant hormone gibberellin (GA) regulates multiple developmental processes. It accumulates in the root elongating endodermis, but how it moves into this cell file and the significance of this accumulation are unclear. Here we identify three NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER (NPF) transporters required for GA and abscisic acid (ABA) translocation. We demonstrate that NPF2.14 is a subcellular GA/ABA transporter, presumably the first to be identified in plants, facilitating GA and ABA accumulation in the root endodermis to regulate suberization. Further, NPF2.12 and NPF2.13, closely related proteins, are plasma membrane-localized GA and ABA importers that facilitate shoot-to-root GA12 translocation, regulating endodermal hormone accumulation. This work reveals that GA is required for root suberization and that GA and ABA can act non-antagonistically. We demonstrate how the clade of transporters mediates hormone flow with cell-file-specific vacuolar storage at the phloem unloading zone, and slow release of hormone to induce suberin formation in the maturation zone.
Collapse
Affiliation(s)
- Jenia Binenbaum
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Nikolai Wulff
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lucie Camut
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Kristian Kiradjiev
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, UK
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Moran Anfang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Iris Tal
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Himabindu Vasuki
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yuqin Zhang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Lali Sakvarelidze-Achard
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jean-Michel Davière
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Dagmar Ripper
- ZMBP-Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion, Israel
| | - Shir Ben Yaakov
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Shani Lazary
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Chengyao Hua
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Vlastimil Novak
- Plant Nutrients and Food Quality Research Group, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Christoph Crocoll
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Roy Weinstain
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion, Israel
| | - Laura Ragni
- ZMBP-Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Leah R Band
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, UK.
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK.
| | - Patrick Achard
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| | - Hussam Hassan Nour-Eldin
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
30
|
Wurms KV, Reglinski T, Buissink P, Ah Chee A, Fehlmann C, McDonald S, Cooney J, Jensen D, Hedderley D, McKenzie C, Rikkerink EHA. Effects of Drought and Flooding on Phytohormones and Abscisic Acid Gene Expression in Kiwifruit. Int J Mol Sci 2023; 24:ijms24087580. [PMID: 37108744 PMCID: PMC10143653 DOI: 10.3390/ijms24087580] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Environmental extremes, such as drought and flooding, are becoming more common with global warming, resulting in significant crop losses. Understanding the mechanisms underlying the plant water stress response, regulated by the abscisic acid (ABA) pathway, is crucial to building resilience to climate change. Potted kiwifruit plants (two cultivars) were exposed to contrasting watering regimes (water logging and no water). Root and leaf tissues were sampled during the experiments to measure phytohormone levels and expression of ABA pathway genes. ABA increased significantly under drought conditions compared with the control and waterlogged plants. ABA-related gene responses were significantly greater in roots than leaves. ABA responsive genes, DREB2 and WRKY40, showed the greatest upregulation in roots with flooding, and the ABA biosynthesis gene, NCED3, with drought. Two ABA-catabolic genes, CYP707A i and ii were able to differentiate the water stress responses, with upregulation in flooding and downregulation in drought. This study has identified molecular markers and shown that water stress extremes induced strong phytohormone/ABA gene responses in the roots, which are the key site of water stress perception, supporting the theory kiwifruit plants regulate ABA to combat water stress.
Collapse
Affiliation(s)
- Kirstin V Wurms
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand
| | - Tony Reglinski
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand
| | - Poppy Buissink
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand
| | - Annette Ah Chee
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand
| | - Christina Fehlmann
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand
| | - Stella McDonald
- Mount Albert Research Centre, The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| | - Janine Cooney
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand
| | - Dwayne Jensen
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand
| | - Duncan Hedderley
- Palmerston North Research Centre, The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Catherine McKenzie
- Te Puke Research Centre, The New Zealand Institute for Plant and Food Research Limited, Te Puke 3182, New Zealand
| | - Erik H A Rikkerink
- Mount Albert Research Centre, The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| |
Collapse
|
31
|
Singh A, Roychoudhury A. Abscisic acid in plants under abiotic stress: crosstalk with major phytohormones. PLANT CELL REPORTS 2023; 42:961-974. [PMID: 37079058 DOI: 10.1007/s00299-023-03013-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE Extensive crosstalk exists among ABA and different phytohormones that modulate plant tolerance against different abiotic stress. Being sessile, plants are exposed to a wide range of abiotic stress (drought, heat, cold, salinity and metal toxicity) that exert unwarranted threat to plant life and drastically affect growth, development, metabolism, and yield of crops. To cope with such harsh conditions, plants have developed a wide range of protective phytohormones of which abscisic acid plays a pivotal role. It controls various physiological processes of plants such as leaf senescence, seed dormancy, stomatal closure, fruit ripening, and other stress-related functions. Under challenging situations, physiological responses of ABA manifested in the form of morphological, cytological, and anatomical alterations arise as a result of synergistic or antagonistic interaction with multiple phytohormones. This review provides new insight into ABA homeostasis and its perception and signaling crosstalk with other phytohormones at both molecular and physiological level under critical conditions including drought, salinity, heavy metal toxicity, and extreme temperature. The review also reveals the role of ABA in the regulation of various physiological processes via its positive or negative crosstalk with phytohormones, viz., gibberellin, melatonin, cytokinin, auxin, salicylic acid, jasmonic acid, ethylene, brassinosteroids, and strigolactone in response to alteration of environmental conditions. This review forms a basis for designing of plants that will have an enhanced tolerance capability against different abiotic stress.
Collapse
Affiliation(s)
- Ankur Singh
- Department of Biotechnology, St. Xavier's College (Autonomous), 30 Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi, 110068, India.
| |
Collapse
|
32
|
Srivastava S, Ranjan M, Bano N, Asif MH, Srivastava S. Comparative transcriptome analysis reveals the phosphate starvation alleviation mechanism of phosphate accumulating Pseudomonas putida in Arabidopsis thaliana. Sci Rep 2023; 13:4918. [PMID: 36966146 PMCID: PMC10039930 DOI: 10.1038/s41598-023-31154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/07/2023] [Indexed: 03/27/2023] Open
Abstract
Phosphate starvation is one of the major factors limiting plant productivity globally. Soil microflora with an inherent trait of phosphate accumulation directly influences soil phosphorus level by regulating its labile form in soil solution. However, the detailed mechanism involved during their interaction with plants under phosphate deficient conditions is still unexplored. Hence, to dissect these complex gene regulatory networks, transcriptome analysis of A. thaliana roots grown under phosphate starved conditions in presence of phosphate accumulating bacteria (Pseudomonas putida; RAR) was performed. Plants grown under phosphate starved conditions showed upregulation of phosphate starvation responsive genes associated with cell biogenesis, stress, photosynthesis, senescence, and cellular transport. Inoculation of RAR upregulated genes linked to defense, cell wall remodeling, and hormone metabolism in stressed plants. Gene ontology analysis indicated the induction of S-glycoside, glucosinolate, and glycosinolate metabolic processes in RAR inoculated plants under phosphate stressed conditions. Further, protein-protein interaction analysis revealed upregulation of root development, cation transport, anion transport, sulfur compound metabolic process, secondary metabolic process, cellular amino metabolic process, and response to salicylic acid in RAR inoculated plants under phosphate starved conditions. These results indicate the potential role of phosphate accumulating bacteria in alleviating phosphate starvation in plants by involving multiple pathways.
Collapse
Affiliation(s)
- Sonal Srivastava
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, 201002, India
| | - Manish Ranjan
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Nasreen Bano
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, 201002, India
- Computational Biology Laboratory, Genetics and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Mehar Hasan Asif
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, 201002, India.
- Computational Biology Laboratory, Genetics and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India.
| | - Suchi Srivastava
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India.
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, 201002, India.
| |
Collapse
|
33
|
Wei H, Liu G, Qin J, Zhang Y, Chen J, Zhang X, Yu C, Chen Y, Lian B, Zhong F, Movahedi A, Zhang J. Genome-wide characterization, chromosome localization, and expression profile analysis of poplar non-specific lipid transfer proteins. Int J Biol Macromol 2023; 231:123226. [PMID: 36641014 DOI: 10.1016/j.ijbiomac.2023.123226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are small and have a broad biological function involved in reproductive development and abiotic stress resistance. Although a small part of plant nsLTPs have been identified, these proteins have not been characterized in poplar at the genomic level. A genome-wide characterization and expression identification of poplar nsLTP members were performed in this study. A total of 42 poplar nsLTP genes were identified from the poplar genome. A comprehensive analysis of poplar nsLTPs was conducted by a phylogenetic tree, duplication events, gene structures, and conserved motifs. The cis-elements of poplar nsLTPs were predicted to respond to light, hormone, and abiotic stress. Many transcription factors (TFs) were identified to interact with poplar nsLTP cis-elements. The tested poplar nsLTPs were expressed in leaves, stems, and roots, but their expression levels differed among tested tissues. Most poplar nsLTP expression levels were changed by abiotic stress, implying that poplar nsLTP may be involved in abiotic stress resistance. Network analysis showed that poplar nsLTPs are putative genes involved in fatty acid (FA) metabolism. This research provides sight into the further study to explain the regulatory mechanism of the poplar nsLTPs.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China
| | - Jin Qin
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China
| | - Yanyan Zhang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.
| | - Jinxin Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Xingyue Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Chunmei Yu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Bolin Lian
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Ali Movahedi
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| |
Collapse
|
34
|
Tungsirisurp S, O'Reilly R, Napier R. Nucleic acid aptamers as aptasensors for plant biology. TRENDS IN PLANT SCIENCE 2023; 28:359-371. [PMID: 36357246 DOI: 10.1016/j.tplants.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Our knowledge of cell- and tissue-specific quantification of phytohormones is heavily reliant on laborious mass spectrometry techniques. Genetically encoded biosensors have allowed spatial and some temporal quantification of phytohormones intracellularly, but there is still limited information on their intercellular distributions. Here, we review nucleic acid aptamers as an emerging biosensing platform for the detection and quantification of analytes with high affinity and specificity. Options for DNA aptamer technology are explained through selection, sequencing analysis and techniques for evaluating affinity and specificity, and we focus on previously developed DNA aptamers against various plant analytes. We suggest how these tools might be applied in planta for quantification of molecules of interest both intracellularly and intercellularly.
Collapse
Affiliation(s)
| | - Rachel O'Reilly
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Richard Napier
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
35
|
Accelerated germination of aged recalcitrant seeds by K +-rich bulk oxygen nanobubbles. Sci Rep 2023; 13:3301. [PMID: 36849737 PMCID: PMC9971192 DOI: 10.1038/s41598-023-30343-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2023] Open
Abstract
Bulk nanobubbles, measuring less than 200 nm in water, have shown their salient properties in promoting growth in various species of plants and orthodox seeds, and as potential drug-delivery carriers in medicine. Studies of recalcitrant seeds have reported markedly increased germination rates with gibberellin treatment; however, neither the mechanism promoting germination nor the implication for food safety is well elucidated. In our study, recalcitrant wasabi (Eutrema japonicum) seeds treated with bulk oxygen nanobubbles (BONB) containing K+, Na+, and Cl- (BONB-KNaCl) showed significantly accelerated germination. As germination progressed, 99% of K+ ions in the BONB-KNaCl medium were absorbed by the seeds, whereas Ca2+ ions were released. These results suggest that the germination mechanism involves the action of K+ channels for migration of K+ ions down their concentration gradient and Ca2+ pumps for the movement of Ca2+ ions, the first potential discovery in germination promotion in recalcitrant seeds using nutrient solutions with BONB-KNaCl.
Collapse
|
36
|
Shohat H, Cheriker H, Cohen A, Weiss D. Tomato ABA-IMPORTING TRANSPORTER 1.1 inhibits seed germination under high salinity conditions. PLANT PHYSIOLOGY 2023; 191:1404-1415. [PMID: 36449559 PMCID: PMC9922386 DOI: 10.1093/plphys/kiac545] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 05/27/2023]
Abstract
The plant hormone abscisic acid (ABA) plays a central role in the regulation of seed maturation and dormancy. ABA also restrains germination under abiotic-stress conditions. Here, we show in tomato (Solanum lycopersicum) that the ABA importer ABA-IMPORTING TRANSPORTER 1.1 (AIT1.1/NPF4.6) has a role in radicle emergence under salinity conditions. AIT1.1 expression was upregulated following seed imbibition, and CRISPR/Cas9-derived ait1.1 mutants exhibited faster radicle emergence, increased germination and partial resistance to ABA. AIT1.1 was highly expressed in the endosperm, but not in the embryo, and ait1.1 isolated embryos did not show resistance to ABA. On the other hand, loss of AIT1.1 activity promoted the expression of endosperm-weakening-related genes, and seed-coat scarification eliminated the promoting effect of ait1.1 on radicle emergence. Therefore, we propose that imbibition-induced AIT1.1 expression in the micropylar endosperm mediates ABA-uptake into micropylar cells to restrain endosperm weakening. While salinity conditions strongly inhibited wild-type M82 seed germination, high salinity had a much weaker effect on ait1.1 germination. We suggest that AIT1.1 evolved to inhibit germination under unfavorable conditions, such as salinity. Unlike other ABA mutants, ait1.1 exhibited normal seed longevity, and therefore, the ait1.1 allele may be exploited to improve seed germination in crops.
Collapse
Affiliation(s)
- Hagai Shohat
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Hadar Cheriker
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Amir Cohen
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - David Weiss
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| |
Collapse
|
37
|
Ge N, Jia JS, Yang L, Huang RM, Wang QY, Chen C, Meng ZG, Li LG, Chen JW. Exogenous gibberellic acid shortening after-ripening process and promoting seed germination in a medicinal plant Panax notoginseng. BMC PLANT BIOLOGY 2023; 23:67. [PMID: 36721119 PMCID: PMC9890714 DOI: 10.1186/s12870-023-04084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Panax notoginseng (Burk) F.H. Chen is an essential plant in the family of Araliaceae. Its seeds are classified as a type of morphophysiological dormancy (MPD), and are characterized by recalcitrance during the after-ripening process. However, it is not clear about the molecular mechanism on the after-ripening in recalcitrant seeds. RESULTS In this study, exogenous supply of gibberellic acid (GA3) with different concentrations shortened after-ripening process and promoted the germination of P. notoginseng seeds. Among the identified plant hormone metabolites, exogenous GA3 results in an increased level of endogenous hormone GA3 through permeation. A total of 2971 and 9827 differentially expressed genes (DEGs) were identified in response to 50 mg L-1 GA3 (LG) and 500 mg L-1 GA3 (HG) treatment, respectively, and the plant hormone signal and related metabolic pathways regulated by GA3 was significantly enriched. Weighted gene co-expression network analysis (WGCNA) revealed that GA3 treatment enhances GA biosynthesis and accumulation, while inhibiting the gene expression related to ABA signal transduction. This effect was associated with higher expression of crucial seed embryo development and cell wall loosening genes, Leafy Contyledon1 (LEC1), Late Embryogenesis Abundant (LEA), expansins (EXP) and Pectinesterase (PME). CONCLUSIONS Exogenous GA3 application promotes germination and shorts the after-ripening process of P. notoginseng seeds by increasing GA3 contents through permeation. Furthermore, the altered ratio of GA and ABA contributes to the development of the embryo, breaks the mechanical constraints of the seed coat and promotes the protrusion of the radicle in recalcitrant P. notoginseng seeds. These findings improve our knowledge of the contribution of GA to regulating the dormancy of MPD seeds during the after-ripening process, and provide new theoretical guidance for the application of recalcitrant seeds in agricultural production and storage.
Collapse
Affiliation(s)
- Na Ge
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Jin-Shan Jia
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Ling Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Rong-Mei Huang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Qing-Yan Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Cui Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Zhen-Gui Meng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Long-Geng Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Jun-Wen Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China.
| |
Collapse
|
38
|
Qu M, Zheng Y, Bi L, Yang X, Shang P, Zhou X, Zeng B, Shen B, Li W, Fan Y, Zeng B. Comparative transcriptomic analysis of the gene expression and underlying molecular mechanism of submergence stress response in orchardgrass roots. FRONTIERS IN PLANT SCIENCE 2023; 13:1104755. [PMID: 36704155 PMCID: PMC9871833 DOI: 10.3389/fpls.2022.1104755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Submergence stress creates a hypoxic environment. Roots are the first plant organ to face these low-oxygen conditions, which causes damage and affects the plant growth and yield. Orchardgrass (Dactylis glomerata L.) is one of the most important cold-season forage grasses globally. However, their submergence stress-induced gene expression and the underlying molecular mechanisms of orchardgrass roots are still unknown. METHODS Using the submergence-tolerant 'Dianbei' and submergence-sensitive 'Anba', the transcriptomic analysis of orchardgrass roots at different time points of submergence stress (0 h, 8 h, and 24 h) was performed. RESULTS We obtained 118.82Gb clean data by RNA-Seq. As compared with the control, a total of 6663 and 9857 differentially expressed genes (DEGs) were detected in Dianbei, while 7894 and 11215 DEGs were detected in Anba at 8 h and 24 h post-submergence-stress, respectively. Gene Ontology (GO) enrichment analysis obtained 986 terms, while Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis obtained 123 pathways. Among them, the DEGs in plant hormones, mitogen-activated protein kinase (MAPK) and Ca2+ signal transduction were significantly differentially expressed in Dianbei, but not in Anba. DISCUSSION This study was the first to molecularly elucidate the submergence stress tolerance in the roots of two orchardgrass cultivars. These findings not only enhanced our understanding of the orchardgrass submergence tolerance, but also provided a theoretical basis 36 for the cultivation of submergence-tolerant forage varieties.
Collapse
Affiliation(s)
- Minghao Qu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yuqian Zheng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Lei Bi
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xingyun Yang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Panpan Shang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiaoli Zhou
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Bing Zeng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Bingna Shen
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Wenwen Li
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yan Fan
- Institute of Prataculture, Chongqing Academy of Animal Science, Chongqing, China
| | - Bing Zeng
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Chongqing University Herbivore Engineering Research Center, Chongqing, China
| |
Collapse
|
39
|
Yang ZY, Huang KX, Zhang YR, Yang L, Zhou JL, Yang Q, Gao F. Efficient microalgal lipid production driven by salt stress and phytohormones synergistically. BIORESOURCE TECHNOLOGY 2023; 367:128270. [PMID: 36347483 DOI: 10.1016/j.biortech.2022.128270] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
In this study, a novel method of coupling phytohormones with saline wastewater was proposed to drive efficient microalgal lipid production. All the six phytohormones effectively promoted microalgae growth in saline wastewater, and further increased the microalgal lipid content based on salt stress, so as to achieve a large increase in microalgal lipid productivity. Among the phytohormones used, abscisic acid had the most significant promoting effect. Under the synergistic effect of 20 g/L salt and 20 mg/L abscisic acid, the microalgal lipid productivity reached 3.7 times that of the control. Transcriptome analysis showed that differentially expressed genes (DEGs) of microalgae in saline wastewater were mainly up-regulated under the effects of phytohormones except brassinolide. Common DEGs analysis showed that phytohormones all regulated the expression of genes related to DNA repair and substance synthesis. In conclusion, synergistic effect of salt stress and phytohormones can greatly improve the microalgal lipid production efficiency.
Collapse
Affiliation(s)
- Zi-Yan Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Kai-Xuan Huang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Yu-Ru Zhang
- Zhejiang Zhouhuan Environmental Engineering Design Co. LTD, Zhoushan 316000, China
| | - Lei Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Qiao Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Donghai Laboratory, Zhoushan 316021, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Donghai Laboratory, Zhoushan 316021, China.
| |
Collapse
|
40
|
Awan SA, Khan I, Wang Q, Gao J, Tan X, Yang F. Pre-treatment of melatonin enhances the seed germination responses and physiological mechanisms of soybean ( Glycine max L.) under abiotic stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1149873. [PMID: 36950358 PMCID: PMC10025545 DOI: 10.3389/fpls.2023.1149873] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/21/2023] [Indexed: 05/19/2023]
Abstract
The germination of soybean (Glycine max L.) seeds is critically affected by abiotic stresses which resulting in decreasing crop growth and yield. However; little is known about the physiological mechanisms of germination and the potential role of melatonin on soybean seed germination under drought, salt, cold, and heat stresses. Therefore, the current study investigated the possible effects of melatonin to enhance germination indices and other physiological attributes by alleviating the harmful impacts of these stresses during germination. Seeds of soybean were pre-treated (seed priming) with melatonin at MT1 (20 μmol L-1), MT2 (50 μmol L-1), MT3 (100 μmol L-1), MT4 (200 μmol L-1), and MT5 (300 μmol L-1) and exposed to the four stresses (drought at PEG 15%, salt at 150mM, cold at 10 °C, and heat at 30 °C) . It was noted that MT1 (20 μmol L-1), MT2 (50 μmol L-1), and MT3 (100 μmol L-1) remarkably improved the germination potential, germination rate, radical length, and biomass under given stresses. Furthermore, MT1, MT2, and MT3 progressively increased the proline to minimize the impact of drought, salt, cold, and heat stresses. In addition, all stresses significantly induced oxidative damage however, salt (150 mM NaCl) and heat (30 °C) stresses highly increased the malondialdehyde content (MDA) and hydrogen peroxide (H2O2) as compared to drought (PEG 15%) and cold (10 °C) stresses. Moreover, MT2 and MT3 significantly enhanced the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) to reduce the oxidative damage in soybean seeds during the germination. Overall, melatonin at 50 μmol L-1 and 100 μmol L-1 considerably mitigated the harmful impacts of drought, salt, cold, and heat stress by enhancing germination and other physiological mechanisms of soybean. This study could provide bases to enhance the melatonin-mediated tolerance of soybean and other related crops at early growth stages when exposed to abiotic stresses.
Collapse
Affiliation(s)
- Samrah Afzal Awan
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Imran Khan
- State Key Laboratory of Grassland Agro-Ecosystems, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Qi Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Jing Gao
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Xianming Tan
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Feng Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- *Correspondence: Feng Yang,
| |
Collapse
|
41
|
Bilal S, Shahzad R, Asaf S, Imran M, Al-Harrasi A, Lee IJ. Efficacy of endophytic SB10 and glycine betaine duo in alleviating phytotoxic impact of combined heat and salinity in Glycine max L. via regulation of redox homeostasis and physiological and molecular responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120658. [PMID: 36379292 DOI: 10.1016/j.envpol.2022.120658] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Adverse environmental stresses occurring simultaneously exhibit a lethal effect on crop productivity at the global level. Here, we investigated the individual and synergistic effects of endophytic T. virens SB10 and glycine betaine (GB) on the physiological and biochemical responses of Glycine max L. to alleviate the devastating effects of combined heat and salinity (HS) stress. Screening against HS stress tolerance showed that SB10 has significant tolerance against heat stress and produces hormones such as gibberellins and indole-3-acetic acid upon GB amendment of the growth medium under HS stress. Moreover, the current findings illustrated that the synergistic application of SB10 and GB was effective in alleviating the negative effects of HS stress on plant growth and physiology. The findings revealed that SB10 + GB led to a reduction in proline accumulation and Na+ uptake. It also maintained a high K+/Na + ratio by regulating GmHKT1 and GmSOS1 expression and enhanced macronutrient uptake (N, Ca, K) in plants. In turn, plants exhibited a higher growth rate and gaseous exchange attributes coupled with the upregulation of APX, SOD, POD, and GSH antioxidant activities and transcript accumulation of GmSOD1 and GmAPX1 to overcome HS-induced oxidative damage. Furthermore, SB10 + GB downregulated DREB2, DREB1B, and GmNCED3 expression and resulted in the reduced accumulation of endogenous ABA while enhancing endogenous SA accumulation via upregulation of PAL genes. In addition, enhanced accumulation of bioactive gibberellins (GA1, GA3, GA4, and GA7) was detected under HS stress in the SB10 + GB treatment group. Moreover, SB10 + GB also significantly regulated GmHsp90A2 and GmHsfA2 expression in tolerance against HS stress. The combination of SB10 and GB was shown to be an effective and alternative approach for growing G. max at high temperature coupled with saline conditions for sustainable agriculture.
Collapse
Affiliation(s)
- Saqib Bilal
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman.
| | - Raheem Shahzad
- Department of Horticulture, The University of Haripur, Haripur, 22620, Khyber Pakhtunkhwa, Pakistan.
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman.
| | - Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman.
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
42
|
Galeano E, Thomas BR. Unraveling genetic variation among white spruce families generated through different breeding strategies: Heritability, growth, physiology, hormones and gene expression. FRONTIERS IN PLANT SCIENCE 2023; 14:1052425. [PMID: 37077625 PMCID: PMC10106773 DOI: 10.3389/fpls.2023.1052425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Tree improvement programs select genotypes for faster growth, at both early and late stages, to increase yields over unimproved material, and the improvement is frequently attributed to genetic control in growth parameters among genotypes. Underutilized genetic variability among genotypes also has the potential to ensure future gains are possible. However, the genetic variation in growth, physiology and hormone control among genotypes generated from different breeding strategies has not been well characterized in conifers. We assessed growth, biomass, gas exchange, gene expression and hormone levels in white spruce seedlings obtained from three different breeding strategies (controlled crosses, polymix pollination, open pollination) using parents grafted into a clonal seed orchard in Alberta, Canada. A pedigree-based best linear unbiased prediction (ABLUP) mixed model was implemented to quantify variability and narrow-sense heritability for target traits. The levels of several hormones and expression of gibberellin-related genes in apical internodes were also determined. Over the first two years of development, the estimated heritabilities for height, volume, total dry biomass, above ground dry biomass, root:shoot ratio and root length, varied between 0.10 and 0.21, with height having the highest value. The ABLUP values showed large genetic variability in growth and physiology traits both between families from different breeding strategies, and within families. The principal component analysis showed that developmental and hormonal traits explained 44.2% and 29.4% of the total phenotypic variation between the three different breeding strategies and two growth groups. In general, controlled crosses from the fast growth group showed the best apical growth, with more accumulation of indole-3-acetic acid, abscisic acid, phaseic acid, and a 4-fold greater gene expression of PgGA3ox1 in genotypes from controlled crosses versus those from open pollination. However, in some cases, open pollination from the fast and slow growth groups showed the best root development, higher water use efficiency (iWUE and δ13C) and more accumulation of zeatin and isopentenyladenosine. In conclusion, tree domestication can lead to trade-offs between growth, carbon allocation, photosynthesis, hormone levels and gene expression, and we encourage the use of this phenotypic variation identified in improved and unimproved trees to advance white spruce tree improvement programs.
Collapse
Affiliation(s)
- Esteban Galeano
- Department of Forestry, Mississippi State University, Starkville, MS, United States
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Esteban Galeano,
| | - Barb R. Thomas
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
43
|
Li S, Liu S, Zhang Q, Cui M, Zhao M, Li N, Wang S, Wu R, Zhang L, Cao Y, Wang L. The interaction of ABA and ROS in plant growth and stress resistances. FRONTIERS IN PLANT SCIENCE 2022; 13:1050132. [PMID: 36507454 PMCID: PMC9729957 DOI: 10.3389/fpls.2022.1050132] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/08/2022] [Indexed: 05/31/2023]
Abstract
The plant hormone ABA (abscisic acid) plays an extremely important role in plant growth and adaptive stress, including but are not limited to seed germination, stomatal closure, pathogen infection, drought and cold stresses. Reactive oxygen species (ROS) are response molecules widely produced by plant cells under biotic and abiotic stress conditions. The production of apoplast ROS is induced and regulated by ABA, and participates in the ABA signaling pathway and its regulated plant immune system. In this review, we summarize ABA and ROS in apoplast ROS production, plant response to biotic and abiotic stresses, plant growth regulation, ABA signal transduction, and the regulatory relationship between ABA and other plant hormones. In addition, we also discuss the effects of protein post-translational modifications on ABA and ROS related factors.
Collapse
Affiliation(s)
- Shenghui Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Sha Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Qiong Zhang
- Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai’an, China
| | - Meixiang Cui
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Min Zhao
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Nanyang Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Suna Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Ruigang Wu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Lin Zhang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Yunpeng Cao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
44
|
Ngumbi E, Dady E, Calla B. Flooding and herbivory: the effect of concurrent stress factors on plant volatile emissions and gene expression in two heirloom tomato varieties. BMC PLANT BIOLOGY 2022; 22:536. [PMID: 36396998 PMCID: PMC9670554 DOI: 10.1186/s12870-022-03911-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND In nature and in cultivated fields, plants encounter multiple stress factors. Nonetheless, our understanding of how plants actively respond to combinatorial stress remains limited. Among the least studied stress combination is that of flooding and herbivory, despite the growing importance of these stressors in the context of climate change. We investigated plant chemistry and gene expression changes in two heirloom tomato varieties: Cherokee Purple (CP) and Striped German (SG) in response to flooding, herbivory by Spodoptera exigua, and their combination. RESULTS Volatile organic compounds (VOCs) identified in tomato plants subjected to flooding and/or herbivory included several mono- and sesquiterpenes. Flooding was the main factor altering VOCs emission rates, and impacting plant biomass accumulation, while different varieties had quantitative differences in their VOC emissions. At the gene expression levels, there were 335 differentially expressed genes between the two tomato plant varieties, these included genes encoding for phenylalanine ammonia-lyase (PAL), cinnamoyl-CoA-reductase-like, and phytoene synthase (Psy1). Flooding and variety effects together influenced abscisic acid (ABA) signaling genes with the SG variety showing higher levels of ABA production and ABA-dependent signaling upon flooding. Flooding downregulated genes associated with cytokinin catabolism and general defense response and upregulated genes associated with ethylene biosynthesis, anthocyanin biosynthesis, and gibberellin biosynthesis. Combining flooding and herbivory induced the upregulation of genes including chalcone synthase (CHS), PAL, and genes encoding BAHD acyltransferase and UDP-glucose iridoid glucosyltransferase-like genes in one of the tomato varieties (CP) and a disproportionate number of heat-shock proteins in SG. Only the SG variety had measurable changes in gene expression due to herbivory alone, upregulating zeatin, and O-glucosyltransferase and thioredoxin among others. CONCLUSION Our results suggest that both heirloom tomato plant varieties differ in their production of secondary metabolites including phenylpropanoids and terpenoids and their regulation and activation of ABA signaling upon stress associated with flooding. Herbivory and flooding together had interacting effects that were evident at the level of plant chemistry (VOCs production), gene expression and biomass markers. Results from our study highlight the complex nature of plant responses to combinatorial stresses and point at specific genes and pathways that are affected by flooding and herbivory combined.
Collapse
Affiliation(s)
- Esther Ngumbi
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Erinn Dady
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bernarda Calla
- USDA-ARS Forage Seed and Cereal Research Unit, Corvallis, OR, 97331, USA
| |
Collapse
|
45
|
Xu S, Han W, Cao K, Li B, Zheng C, Xie K, Li W, He L. Knockdown of NtCPS2 promotes plant growth and reduces drought tolerance in Nicotiana tabacum. FRONTIERS IN PLANT SCIENCE 2022; 13:968738. [PMID: 36426146 PMCID: PMC9679219 DOI: 10.3389/fpls.2022.968738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Drought stress is one of the primary environmental stress factors that gravely threaten crop growth, development, and yields. After drought stress, plants can regulate the content and proportion of various hormones to adjust their growth and development, and in some cases to minimize the adverse effects of drought stress. In our previous study, the tobacco cis-abienol synthesis gene (NtCPS2) was found to affect hormone synthesis in tobacco plants. Unfortunately, the role of NtCPS2 genes in the response to abiotic stress has not yet been investigated. Here, we present data supporting the role of NtCPS2 genes in drought stress and the possible underlying molecular mechanisms. NtCPS2 gene expression was induced by polyethylene glycol, high-temperature, and virus treatments. The results of subcellular localization showed that NtCPS2 was localized in the cell membrane. The NtCPS2-knockdown plants exhibited higher levels of gibberellin (GA) content and synthesis pathway genes expression but lower abscisic acid (ABA) content and synthesis pathway genes expression in response to drought stress. In addition, the transgenic tobacco lines showed higher leaf water loss and electrolyte loss, lower soluble protein and reactive oxygen species content (ROS), and lower antioxidant enzyme activity after drought treatment compared to wild type plants (WT). In summary, NtCPS2 positively regulates drought stress tolerance possibly by modulating the ratio of GA to ABA, which was confirmed by evidence of related phenotypic and physiological indicators. This study may provide evidence for the feedback regulation of hormone to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Shixiao Xu
- Henan Agricultural University, College Tobacco Science, National Tobacco Cultivation & Physiology & Biochemistry Research Center, Scientific Observation and Experiment Station of Henan, Ministry of Agriculture, Zhengzhou, Henan, China
| | - Wenlong Han
- Henan Agricultural University, College Tobacco Science, National Tobacco Cultivation & Physiology & Biochemistry Research Center, Scientific Observation and Experiment Station of Henan, Ministry of Agriculture, Zhengzhou, Henan, China
| | - Kexin Cao
- Henan Agricultural University, College Tobacco Science, National Tobacco Cultivation & Physiology & Biochemistry Research Center, Scientific Observation and Experiment Station of Henan, Ministry of Agriculture, Zhengzhou, Henan, China
| | - Bo Li
- China Tobacco Zhejiang Industry Co, Ltd., Hangzhou, China
| | - Cong Zheng
- Fujian Tobacco Corporation Nanping Company, Nanping, Fujian, China
| | - Ke Xie
- Fujian Tobacco Corporation Nanping Company, Nanping, Fujian, China
| | - Wei Li
- Fujian Tobacco Corporation Nanping Company, Nanping, Fujian, China
| | - Lingxiao He
- College of Agronomy, Sichuan Agricultural University & Sichuan Engineering Research Center for Crop Strip Intercropping System & Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan, China
| |
Collapse
|
46
|
Milyaev A, Kofler J, Moya YAT, Lempe J, Stefanelli D, Hanke MV, Flachowsky H, von Wirén N, Wünsche JN. Profiling of phytohormones in apple fruit and buds regarding their role as potential regulators of flower bud formation. TREE PHYSIOLOGY 2022; 42:2319-2335. [PMID: 35867427 PMCID: PMC9912367 DOI: 10.1093/treephys/tpac083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Apple (Malus × domestica Borkh.) cropping behavior, if not regulated, is often manifested by high yields of small-sized fruit in so called ON-years, which are usually followed by strongly reduced crop loads in OFF-years. Such cropping pattern is defined as biennial bearing and causes significant losses in apple production. The growth of apple fruit overlaps with the formation of flower buds, which remain dormant until the following spring. Earlier works proposed that some fruit-derived mobile compounds, as e.g., phytohormones, could suppress flower bud formation that thereby leads to biennial bearing. We addressed this hypothesis by analyzing 39 phytohormones in apple seeds, fruit flesh and by measuring phytohormone export from the fruits of the biennial bearing cultivar 'Fuji' and of the regular bearing cultivar 'Gala'. Moreover, we analyzed the same compounds in bourse buds from fruiting (ON-trees) and non-fruiting (OFF-trees) spurs of both apple cultivars over the period of flower bud formation. Our results showed that apple fruit exported at least 14 phytohormones including indole-3-acetic acid and gibberellin A3; however, their influence on flower bud formation was inconclusive. A gibberellin-like compound, which was detected exclusively in bourse buds, was significantly more abundant in bourse buds from ON-trees compared with OFF-trees. Cultivar differences were marked by the accumulation of trans-zeatin-O-glucoside in bourse buds of 'Gala' ON-trees, whereas the levels of this compound in 'Gala' OFF were significantly lower and comparable to those in 'Fuji' ON- and OFF-trees. Particular phytohormones including five cytokinin forms as well as abscisic acid and its degradation products had higher levels in bourse buds from OFF-trees compared with ON-trees and were therefore proposed as potential promotors of flower bud initiation. The work discusses regulatory roles of phytohormones in flower bud formation in apple based on the novel and to date most comprehensive phytohormone profiles of apple fruit and buds.
Collapse
Affiliation(s)
| | - Julian Kofler
- Institute of Crop Science, Section of Crop Physiology of Specialty Crops (340f), University of Hohenheim, Emil-Wolff-Street 25, 70599 Stuttgart, Germany
| | - Yudelsy Antonia Tandron Moya
- Department Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Janne Lempe
- Julius Kühn-Institute (JKI), Institute for Breeding Research on Fruit Crops, Federal Research Centre for Cultivated Plants, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Dario Stefanelli
- Department of Primary Industries and Regional Development, Government of Western Australia, Locked Bag 7, 6258 Manjimup, Australia
| | - Magda-Viola Hanke
- Julius Kühn-Institute (JKI), Institute for Breeding Research on Fruit Crops, Federal Research Centre for Cultivated Plants, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Henryk Flachowsky
- Julius Kühn-Institute (JKI), Institute for Breeding Research on Fruit Crops, Federal Research Centre for Cultivated Plants, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Nicolaus von Wirén
- Department Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Jens-Norbert Wünsche
- Institute of Crop Science, Section of Crop Physiology of Specialty Crops (340f), University of Hohenheim, Emil-Wolff-Street 25, 70599 Stuttgart, Germany
| |
Collapse
|
47
|
Zhou H, Hua J, Zhang J, Luo S. Negative Interactions Balance Growth and Defense in Plants Confronted with Herbivores or Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12723-12732. [PMID: 36165611 DOI: 10.1021/acs.jafc.2c04218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plants have evolved a series of defensive mechanisms against pathogens and herbivores, but the defense response always leads to decreases in growth or reproduction, which has serious implications for agricultural production. Growth and defense are negatively regulated not only through metabolic consumption but also through the antagonism of different phytohormones, such as jasmonic acid (JA) and salicylic acid (SA). Meanwhile, plants can limit the expression of defensive metabolites to reduce the costs of defense by producing constitutive defenses such as glandular trichomes or latex and accumulating specific metabolites, determining the activation of plant defense or the maintenance of plant growth. Interestingly, plant defense pathways might be prepared in advance which may be transmitted to descendants. Plants can also use external organisms to protect themselves, thus minimizing the costs of defense. In addition, plant relatives exhibit cooperation to deal with pathogens and herbivores, which is also a way to regulate growth and defense.
Collapse
Affiliation(s)
- Huiwen Zhou
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Juan Hua
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Jiaming Zhang
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Shihong Luo
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| |
Collapse
|
48
|
Chen X, Wang J, Wang R, Zhang D, Chu S, Yang X, Hayat K, Fan Z, Cao X, Ok YS, Zhou P. Insights into growth-promoting effect of nanomaterials: Using transcriptomics and metabolomics to reveal the molecular mechanisms of MWCNTs in enhancing hyperaccumulator under heavy metal(loid)s stress. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129640. [PMID: 35882170 DOI: 10.1016/j.jhazmat.2022.129640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Carbon nanotubes present potential applications in soil remediation, particularly in phytoremediation. Yet, how multi-walled carbon nanotubes (MWCNTs) induced hyperaccumulator growth at molecular level remains unclear. Here, physio-biochemical, transcriptomic, and metabolomic analyses were performed to determine the effect of MWCNTs on Solanum nigrum L. (S. nigrum) growth under cadmium and arsenic stresses. 500 mg/kg MWCNTs application significantly promoted S. nigrum growth, especially for root tissues. Specially, MWCNTs application yields 1.38-fold, 1.56-fold, and 1.37-fold enhancement in the shoot length, root length, and fresh biomass, respectively. Furthermore, MWCNTs significantly strengthened P and Fe absorption in roots, as well as the activities of antioxidative enzymes. Importantly, the transcriptomic analysis indicated that S. nigrum gene expression was sensitive to MWCNTs, and MWCNTs upregulated advantageous biological processes under heavy metal(loid)s stress. Besides, MWCNTs reprogramed metabolism that related to defense system, leading to accumulation of 4-hydroxyphenylpyruvic acid (amino acid), 4-hydroxycinnamic acid (xenobiotic), and (S)-abscisic acid (lipid). In addition, key common pathways of differentially expressed metabolites and genes, including "tyrosine metabolism" and "isoquinoline alkaloid biosynthesis" were selected via integrating transcriptome and metabolome analyses. Combined omics technologies, our findings provide molecular mechanisms of MWCNTs in promoting S. nigrum growth, and highlight potential application of MWCNTs in soil remediation.
Collapse
Affiliation(s)
- Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Juncai Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| |
Collapse
|
49
|
A K, I V, R J, G S. Effects of climatic and cultivar changes on winter wheat phenology in central Lithuania. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:2009-2020. [PMID: 35962858 DOI: 10.1007/s00484-022-02336-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 06/27/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
It is essential to understand how climate change and varieties affect crop phenology and yields to adapt to future climate change. The aim of this study was to analyse the phenological development trends of three winter wheat cultivars (1990-2020) to identify the most critical meteorological-climatic factors influencing the development and yield of the cultivars and to investigate the heat requirements for each phenological phase to reveal the potential of the different cultivars to adapt to the warming climate. The observed dates of green-up, the beginning of stem elongation, and the grain development advanced significantly, but the timing of maturity changed insignificantly during the period of 1990-2020. The most marked change was related to the shortening of the period from sowing to green-up. The green-up dates were related to the mean temperature of the period after sowing. The occurrence of stem elongation and grain development dates were negatively correlated with the mean temperature in May. Significant correlations were found between temperature and duration from sowing to green-up and positive from stem elongation to grain development. The change of cultivar led to earlier green-up and grain development dates, but cultivar choise had no influence on sowing, stem elongation, and maturity dates from 1990 to 2020. The newer cultivar Skagen was more successful in exploiting increased thermal resources. The heat requirements remained almost unchanged during the vegetative development period, while the heat amount required during the reproductive period increased by about 15%. These findings demonstrate that the choice of crop cultivars with higher thermal requirements may be an appropriate adaptation mean to achieve higher yields in response to climate change, at least in the middle latitudes.
Collapse
Affiliation(s)
- Kanapickas A
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Vagusevičienė I
- Institute of Agricultural and Food Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Juknys R
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Sujetovienė G
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania.
| |
Collapse
|
50
|
Wang T, Zhou Q, Wu X, Wang D, Yang L, Luo W, Wang J, Yang Y, Liu Z. Arabidopsis thaliana E3 ligase AIRP4 is involved in GA synthesis. JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153805. [PMID: 36087409 DOI: 10.1016/j.jplph.2022.153805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Arabidopsis abscisic acid ABA-Insensitive RING Proteins (AtAIRP1-4) are RING E3s that play significant roles in ABA-signaling pathways. However, it is still unclear whether they have other functions. Here, AtAIRP4 was determined to play a role in response to gibberellin A3 (GA3) in Arabidopsis thaliana. After proAtAIRP4::GUS transgenic lines were treated with GA3, the GUS activity decreased in hypocotyls. Increased hypocotyl elongation in response to GA3 seen in WT was not observed in the AtAIRP4-overexpression lines, whereas AtAIRP4-overexpression lines were hypersensitive to Paclobutrazol (PAC, an inhibitor of GA biosynthesis) during the seed germination stage. Additionally, AtAIRP4-overexpressing lines showed the lowest level of primary root elongation in the presence of GA3. The levels of endogenous GA3 in 35S::AtAIRP4 lines were lower than those in wild-type. In addition, among the plants, the mRNA levels of the GA synthetic gene GIBBERELLIN 20-OXIDASE1 (GA20ox1) was the lowest in overexpressing line. However, the expression of the response gene DELLA RGA-LIKE3 (RGL3) was the highest in overexpressing lines after treatment with GA3. Thus, AtAIRP4 plays a negative role in GA-mediated hypocotyl elongation and root growth, and it inhibits the synthesis of endogenous biologically active GA3 to some extent.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Qin Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xiaobo Wu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Duo Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Liang Yang
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Wenmin Luo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhibin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|