1
|
Elbarky A, Ismail KG, Yousef YF, Elshafiey RMG, Elsharaby RM, El-Kaffas A, Al-Beltagi M. Selenoprotein-p and insulin resistance in children and adolescents with obesity. World J Clin Pediatr 2024; 13:94721. [PMID: 39350909 PMCID: PMC11438929 DOI: 10.5409/wjcp.v13.i3.94721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND Insulin resistance and obesity present significant challenges in pediatric populations. Selenoprotein P1 (SEPP1) serves as a biomarker for assessing selenium levels in the body. While its association with metabolic syndrome is established in adults, its relevance in children remains underexplored. AIM To ascertain SEPP1 blood levels in children and adolescents diagnosed with obesity and to assess its correlation with insulin resistance and adiposity indices. METHODS 170 children participated in this study, including 85 diagnosed with obesity and an equal number of healthy counterparts matched for age and sex. Each participant underwent a comprehensive medical evaluation, encompassing a detailed medical history, clinical examination, and anthropometric measurements like waist circumference and waist-to-height ratio. Furthermore, routine blood tests were conducted, including serum SEPP1, visceral adiposity index (VAI), and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) level. RESULTS Our findings revealed significantly lower serum SEPP1 levels in children with obesity compared to their healthy peers. Moreover, notable negative correlations were observed between serum SEPP1 levels and body mass index, VAI, and HOMA-IR. CONCLUSION The study suggests that SEPP1 could serve as a valuable predictor for insulin resistance among children and adolescents diagnosed with obesity. This highlights the potential utility of SEPP1 in pediatric metabolic health assessment and warrants further investigation.
Collapse
Affiliation(s)
- Amany Elbarky
- Gastroenterology and Clinical Nutrition Unit, Pediatric Department, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
| | - Kholoud Gamal Ismail
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
| | - Yousef Fouad Yousef
- Gastroenterology and Clinical Nutrition Unit, Pediatric Department, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
| | - Rasha Mohamed Gamal Elshafiey
- Gastroenterology and Clinical Nutrition Unit, Pediatric Department, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
| | - Radwa Mahmoud Elsharaby
- Department of Clinical Pathology, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
| | - Asmaa El-Kaffas
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
| | - Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Paediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Manama, Bahrain
| |
Collapse
|
2
|
Lin WL, Chien MM, Patchara S, Wang W, Faradina A, Huang SY, Tung TH, Tsai CS, Skalny AV, Tinkov AA, Chang CC, Chang JS. Essential trace element and phosphatidylcholine remodeling: Implications for body composition and insulin resistance. J Trace Elem Med Biol 2024; 85:127479. [PMID: 38878466 DOI: 10.1016/j.jtemb.2024.127479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Recent studies indicated that bioactive lipids of phosphatidylcholines (PCs) and lysophosphatidylcholines (LysoPCs) predict unhealthy metabolic phenotypes, but results remain inconsistent. To fill this knowledge gap, we investigated whether essential trace elements affect PC-Lyso PC remodeling pathways and the risk of insulin resistance (IR). METHODS Anthropometric and blood biochemical data (glucose, insulin, and lipoprotein-associated phospholipase A2 (Lp-PLA2)) were obtained from 99 adults. Blood essential/probably essential trace elements and lipid metabolites were respectively measured by inductively coupled plasma mass spectrometry (ICP-MS), and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). RESULT AND CONCLUSION Except for LysoPC (O-18:0/0:0), an inverse V shape was observed between body weight and PC and LysoPC species. A Pearson correlation analysis showed that essential/probably-essential metals (Se, Cu, and Ni: r=-0.4∼-0.7) were negatively correlated with PC metabolites but positively correlated with LysoPC (O-18:0/0:0) (Se, Cu, and Ni: r=0.85-0.64). Quantile-g computation showed that one quantile increase in essential metals was associated with a 2.16-fold increase in serum Lp-PLA2 (β=2.16 (95 % confidence interval (CI): 0.34, 3.98), p=0.023), which are key enzymes involved in PC/Lyso PC metabolism. An interactive analysis showed that compared to those with the lowest levels (reference), individuals with the highest levels of serum PCs (pooled, M2) and the lowest essential/probably essential metals (M1) were associated with a healthier body composition and had a 76 % decreased risk of IR (odds ratio (OR)=0.24 (95 % CI: 0.06, 0.90), p<0.05). In contrast, increased exposure to LysoPC(O-18:0/0:0) (M2) and essential metals (M2) exhibited an 8.22-times highest risk of IR (OR= 8.22 (2.07, 32.57), p<0.05) as well as an altered body composition. In conclusion, overexposure to essential/probably essential trace elements may promote an unhealthy body weight and IR through modulating PC/LysoPC remodeling pathways.
Collapse
Affiliation(s)
- Wen-Ling Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan, ROC
| | - Mu-Ming Chien
- Department of Pediatrics, Taipei Medical University Hospital, Taipei 11031, Taiwan, ROC
| | - Sangopas Patchara
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan, ROC
| | - Weu Wang
- Division of Digestive Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11301, Taiwan, ROC; Department of Surgery, College of Medicine, Taipei Medical University, Taipei 11301, Taiwan, ROC
| | - Amelia Faradina
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan, ROC
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan, ROC; Center for Reproductive Medicine & Sciences, Taipei Medical University Hospital, Taipei 11031, Taiwan, ROC; Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan, ROC
| | - Te-Hsuan Tung
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Tri-service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan, ROC; Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei 114202, Taiwan, ROC
| | - Anatoly V Skalny
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Alexey A Tinkov
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, Russia
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taiwan, ROC; Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Collage of Medicine, Taipei Medical University, Taipei 11031, Taiwan, ROC
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan, ROC; Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan, ROC; Chinese Taipei Society for the Study of Obesity (CTSSO), Taipei 11031, Taiwan, ROC; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 11031, Taiwan, ROC.
| |
Collapse
|
3
|
Lv Q, Yang A, Han Z, Yu R, Zhu J, Shi Z, Yang C, Dai S, Hao M, Chen Y, Zhou JC. Selenoprotein H mediates low selenium-related cognitive decline through impaired oligodendrocyte myelination with disrupted hippocampal lipid metabolism in female mice. Food Funct 2024; 15:8544-8561. [PMID: 39072440 DOI: 10.1039/d4fo00888j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Low selenium levels are closely associated with reduced cognitive performance and lipid dysregulation, yet the mechanism of action remains unclear. The physiological function of selenium is primarily mediated by selenoproteins. Selenoprotein H (SELENOH), as one of the selenium-containing proteins, has an unelucidated role in regulating cognitive status and lipid metabolism. In this study, we established a Selenoh gene knockout (HKO) mouse model to investigate whether Selenoh mediates the impact of selenium on cognitive function. We found that HKO mice showed a significant decline in cognition compared with the wild-type (HWT) littermates, and were not affected by deficient or excessive selenium, while no differences in anxiety and depression behavior were observed. HKO mice showed reduced myelin basic protein expression in hippocampal oligodendrocytes, with decreased glycolipid levels and increased phospholipid and sphingolipid levels in the hippocampus. Furthermore, the high-fat diet (HFD) exerted no effect on cognition and limited impact on the gene profile in the hippocampus of HKO mice. Compared with those of HWT mice, the myelination pathways in the hippocampus of HKO mice were downregulated as revealed by RNA-seq, which was further confirmed by the reduced expression levels of myelin-related proteins. Finally, HKO increased the expression of hippocampal fatty acid transporter (FATP) 4, and HFD increased the FATP4 expression in HWT mice but not in HKO mice. In summary, our study demonstrated that HKO induced cognitive decline by impairing myelination in oligodendrocytes with disrupted hippocampal lipid metabolism, which provided a novel viewpoint on the selenoprotein-mediated neurodegenerative diseases of selenium.
Collapse
Affiliation(s)
- Qingqing Lv
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
| | - Aolin Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
| | - Ziyu Han
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
| | - Ruirui Yu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
| | - Junying Zhu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
| | - Zhan Shi
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
| | - Chenggang Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
| | - Shimiao Dai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
| | - Mengru Hao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
| | - Yuqing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
- Guangdong Province Engineering Laboratory for Nutrition Translation, Shenzhen 518107, Guangdong, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, Guangdong, China
| |
Collapse
|
4
|
Lupu A, Fotea S, Jechel E, Starcea IM, Ioniuc I, Knieling A, Salaru DL, Sasaran MO, Cirstea O, Revenco N, Mihai CM, Lupu VV, Nedelcu AH. Is oxidative stress - antioxidants imbalance the physiopathogenic core in pediatric obesity? Front Immunol 2024; 15:1394869. [PMID: 39176098 PMCID: PMC11338799 DOI: 10.3389/fimmu.2024.1394869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Despite the early recognition of obesity as an epidemic with global implications, research on its pathogenesis and therapeutic approach is still on the rise. The literature of the 21st century records an excess weight found in up to 1/3 of children. Both the determining factors and its systemic effects are multiple and variable. Regarding its involvement in the potentiation of cardio-vascular, pulmonary, digestive, metabolic, neuro-psychic or even dermatological diseases, the information is already broadly outlined. The connection between the underlying disease and the associated comorbidities seems to be partially attributable to oxidative stress. In addition to these, and in the light of the recent COVID-19 pandemic, the role played by oxidative stress in the induction, maintenance and potentiation of chronic inflammation among overweight children and adolescents becomes a topic of interest again. Thus, this review's purpose is to update general data on obesity, with an emphasis on the physiopathological mechanisms that underlie it and involve oxidative stress. At the same time, we briefly present the latest principles of pathology diagnosis and management. Among these, we will mainly emphasize the impact played by endogenous and exogenous antioxidants in the evolutionary course of pediatric obesity. In order to achieve our objectives, we will refer to the most recent studies published in the specialized literature.
Collapse
Affiliation(s)
- Ancuta Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Silvia Fotea
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, Galati, Romania
| | - Elena Jechel
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Ileana Ioniuc
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Anton Knieling
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Maria Oana Sasaran
- Pediatrics, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| | - Olga Cirstea
- Pediatrics, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Neli Revenco
- Pediatrics, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | | | - Vasile Valeriu Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
5
|
Alves HPDM, Duarte GBS, Souza Junior ACD, Pereira Batista LDS, Rogero MM, Barbosa F, Cozzolino SMF, Dantas-Komatsu RCS, Marinho Costa KZS, Reis BZ. Selenium biomarkers and miR-7-5p in overweight/obese women. J Trace Elem Med Biol 2024; 86:127499. [PMID: 39084121 DOI: 10.1016/j.jtemb.2024.127499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Chronic low-grade inflammation and oxidative stress are pivotal contributors to the metabolic complications associated with obesity. Selenoprotein P (SELENOP) and glutathione peroxidase 1 (GPx1) are selenoproteins involved in the reduction of reactive oxygen species and pro-inflammatory cytokines levels. Nutritional epigenomics revealed the interaction of microRNAs and nutrients with an important impact on metabolic pathways involved in obesity. However, the knowledge regarding the influence of microRNA on selenium biomarkers and its impact on metabolic pathways related to obesity remains scarce. Thus, the aim of this study was to investigate the association of plasma miR-7-5p expression with selenium and inflammatory biomarkers in women with overweight/obesity. MATERIAL AND METHODS Anthropometric evaluations were performed and blood samples were collected for the analysis of fasting glucose, insulin, inflammatory and selenium biomarkers, and miR-7-5p expression in 54 women with overweight/obesity. Gene expression of SELENOP and GPX1 were evaluated in peripheral mononuclear blood cells. RESULTS This study observed a negative correlation between SELENOP levels and miR-7-5p (rho = -0.350; p = 0.018). Additionally, it was observed that body fat (OR = 0.737; p = 0.011), age (OR = 1.214; p = 0.007), and miR-7-5p (OR = 0.990; p = 0.015) emerged as significant predictors of SELENOP levels. CONCLUSIONS In conclusion, we observed a significant inverse association between miR-7-5p expression and SELENOP concentration in overweight/obese women, suggesting that age and percentage of body fat are also associated. TRIAL REGISTRATION NUMBER Brazilian Registry of Clinical Trials (ReBEC) number RBR-2nfy5q.
Collapse
Affiliation(s)
- Higor Paiva de Mendonça Alves
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Rio Grande do Norte, Avenida Senador Salgado Filho, 3000. University Campus - Lagoa Nova, Natal, RN 59078-970, Brazil.
| | - Graziela Biude Silva Duarte
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, Avenida Prof. Lineu Prestes, 580, Bloco 14 - Butantã, São Paulo, SP 05508-000, Brazil.
| | - Adriano Carlos de Souza Junior
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Rio Grande do Norte, Avenida Senador Salgado Filho, 3000. University Campus - Lagoa Nova, Natal, RN 59078-970, Brazil.
| | - Leonam da Silva Pereira Batista
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Rio Grande do Norte, Avenida Senador Salgado Filho, 3000. University Campus - Lagoa Nova, Natal, RN 59078-970, Brazil.
| | - Marcelo Macedo Rogero
- Department of Nutrition, School of Public Health, University of São Paulo, Avenida Dr. Arnaldo, 715 - Cerqueira César, São Paulo, SP 01246-904, Brazil; Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers São Paulo Research Foundation, Laboratory of Food Engineering, Semi Industrial Ed. - R. do Lago, 250 - Bloco C, São Paulo, SP 05468-140, Brazil.
| | - Fernando Barbosa
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, SP 14040903, Brazil.
| | - Silvia Maria Franciscato Cozzolino
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, Avenida Prof. Lineu Prestes, 580, Bloco 14 - Butantã, São Paulo, SP 05508-000, Brazil.
| | - Raquel Costa Silva Dantas-Komatsu
- Postgraduate Program in Pharmaceutical Sciences, Center for Health Sciences, Federal University of Rio Grande do Norte, Rio Grande do Norte, Rua General Gustavo Cordeiro de Faria, s/nº - Petrópolis, Natal, RN 59012-570, Brazil.
| | - Karina Zaira Silva Marinho Costa
- Brazilian Company of Hospital Services (EBSERH), Onofre Lopes University Hospital, Av. Nilo Peçanha, 620 - Petrópolis, Natal, RN 59012-300, Brazil.
| | - Bruna Zavarize Reis
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Rio Grande do Norte, Avenida Senador Salgado Filho, 3000. University Campus - Lagoa Nova, Natal, RN 59078-970, Brazil; Department of Nutrition, Federal University of Rio Grande do Norte, Rio Grande do Norte, Avenida Senador Salgado Filho, 3000, University Campus - Lagoa Nova, Natal, RN 59078-970, Brazil.
| |
Collapse
|
6
|
Zhao K, Wang J, Zhang Y, Sui W. Circulating Selenium Level Was Positively Related to Visceral Adiposity Index with a Non-linear Trend: a Nationwide Study of the General Population. Biol Trace Elem Res 2024; 202:2921-2930. [PMID: 37792266 DOI: 10.1007/s12011-023-03885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/23/2023] [Indexed: 10/05/2023]
Abstract
Selenium plays a role in obesity. However, whether circulating selenium levels are related to the visceral adiposity index (VAI), an indicator of obesity, is still unknown. Based on the National Health and Nutrition Examination Survey (NHANES) 2011-2018, data from 12,777 individuals aged ≥ 20 years were analyzed to clarify this question. In fully adjusted models of multivariate regression analysis, natural logarithm (Ln) selenium was positively related to Ln VAI (β = 0.41; 95% confidence interval [CI], 0.27, 0.55; P < 0.001). Compared with the lowest quartile of Ln selenium, the highest quartile was also positively associated with Ln VAI (β = 0.16; 95% CI, 0.11, 0.21; P < 0.001). Moreover, we found that this positive connection was non-linear. When Ln selenium was less than the inflection point, Ln selenium was positively related to Ln VAI (β = 0.41; 95% CI, 0.31, 0.52; P < 0.001). However, when Ln selenium was greater than or equal to the inflection point, Ln selenium was not significantly related to Ln VAI (β = -0.15; 95% CI, -0.56, 0.25; P = 0.455). In subgroup analysis, significant interactions were observed with age and sex (P for interaction < 0.05). Stronger interactions were observed among middle-aged participants (β = 0.65; 95% CI, 0.31, 0.98; P = 0.002) and males (β = 0.61; 95% CI, 0.43, 0.79; P < 0.001). Overall, circulating selenium levels were positively related to VAI, with a non-linear trend. Prospective studies and interventional experiments are necessary to verify the possible mechanisms.
Collapse
Affiliation(s)
- Kunsheng Zhao
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jue Wang
- Central Laboratory, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Yun Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Wenhai Sui
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
7
|
Ruswandi YAR, Lesmana R, Rosdianto AM, Gunadi JW, Goenawan H, Zulhendri F. Understanding the Roles of Selenium on Thyroid Hormone-Induced Thermogenesis in Adipose Tissue. Biol Trace Elem Res 2024; 202:2419-2441. [PMID: 37758980 DOI: 10.1007/s12011-023-03854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Brown adipose tissue (BAT) and white adipose tissue (WAT) are known to regulate lipid metabolism. A lower amount of BAT compared to WAT, along with adipose tissue dysfunction, can result in obesity. Studies have shown that selenium supplementation protects against adipocyte dysfunction, decreases WAT triglycerides, and increases BAT triiodothyronine (T3). In this review, we discuss the relationship between selenium and lipid metabolism regulation through selenoprotein deiodinases and the role of deiodinases and thyroid hormones in the induction of adipose tissue thermogenesis. Upon 22 studies included in our review, we found that studies investigating the relationship between selenium and deiodinases demonstrated that selenium supplementation affects the iodothyronine deiodinase 2 (DIO2) protein and the expression of its associated gene, DIO2, proportionally. However, its effect on DIO1 is inconsistent while its effect on DIO3 activity is not detected. Studies have shown that the activity of deiodinases especially DIO2 protein and DIO2 gene expression is increased along with other browning markers upon white adipose tissue browning induction. Studies showed that thermogenesis is stimulated by the thyroid hormone T3 as its activity is correlated to the expression of other thermogenesis markers. A proposed mechanism of thermogenesis induction in selenium supplementation is by autophagy control. However, more studies are needed to establish the role of T3 and autophagy in adipose tissue thermogenesis, especially, since some studies have shown that thermogenesis can function even when T3 activity is lacking and studies related to autophagy in adipose tissue thermogenesis have contradictory results.
Collapse
Affiliation(s)
- Yasmin Anissa R Ruswandi
- Graduate School of Master Program in Anti-Aging and Aesthetic Medicine, Faculty of Medicine, Universitas Padjadjaran, Kabupaten Sumedang, West Java, Indonesia
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang, KM.21, Hegarmanah, Kec. Jatinangor, Kabupaten Sumedang, West Java, 45363, Indonesia.
| | - Aziiz Mardanarian Rosdianto
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang, KM.21, Hegarmanah, Kec. Jatinangor, Kabupaten Sumedang, West Java, 45363, Indonesia
- Veterinary Medicine Study Program, Faculty of Medicine, Universitas Padjadjaran, Kabupaten Sumedang, West Java, Indonesia
| | - Julia Windi Gunadi
- Department of Physiology, Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia
| | - Hanna Goenawan
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang, KM.21, Hegarmanah, Kec. Jatinangor, Kabupaten Sumedang, West Java, 45363, Indonesia
| | - Felix Zulhendri
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Kabupaten Sumedang, West Java, Indonesia
- Kebun Efi, Kabanjahe, 22171, North Sumatra, Indonesia
| |
Collapse
|
8
|
Watanabe LM, Pereira VAB, Noronha NY, de Souza Pinhel MA, Wolf LS, de Oliveira CC, Plaça JR, Noma IHY, da Silva Rodrigues G, de Souza VCO, Júnior FB, Nonino CB. The influence of serum selenium in differential epigenetic and transcriptional regulation of CPT1B gene in women with obesity. J Trace Elem Med Biol 2024; 83:127376. [PMID: 38183920 DOI: 10.1016/j.jtemb.2023.127376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
INTRODUCTION The increasing prevalence of obesity has become a major health problem worldwide. The causes of obesity are multifactorial and could be influenced by dietary patterns and genetic factors. Obesity has been associated with a decrease in micronutrient intake and consequently decreased blood concentrations. Selenium is an essential micronutrient for human health, and its metabolism could be affected by obesity, especially severe obesity. This study aimed to identify differential methylation genes associated with serum selenium concentration in women with and without obesity. METHODOLOGY Thirty-four patients were enrolled in the study and divided into two groups: Obese (Ob) n = 20 and Non-Obese (NOb) n = 14, according to the Body Mass Index (BMI). Anthropometry, body composition, serum selenium, selenium intake, and biochemical parameters were evaluated. DNA extraction and bisulfite conversion were performed to hybridize the samples on the 450k Methylation Chip Infinium Beadchip (Illumina). Bioinformatics analysis was performed using the R program and the Champ package. The differentially methylated regions (DMRs) were identified using the Bumphunter method. In addition, logarithmic conversion was performed for the analysis of serum selenium and methylation. RESULTS In the Ob group, the body weight, BMI, fat mass, and free fat mass were higher than in the NOb group, as expected. Interestingly, the serum selenium was lower in the Ob than in the NOb group without differences in selenium intake. One DMR corresponding to the CPT1B gene, involved in lipid oxidation, was related to selenium levels. This region was hypermethylated in the Ob group, indicating that the intersection between selenium deficiency and hypermethylation could influence the expression of the CPT1B gene. The transcriptional analysis confirmed the lower expression of the CPT1B gene in the Ob group. CONCLUSION Studies connecting epigenetics to environmental factors could offer insights into the mechanisms involving the expression of genes related to obesity and its comorbidities. Here we demonstrated that the mineral selenium might play an essential role in lipid oxidation via epigenetic and transcriptional regulation of the CPT1B gene in obesity.
Collapse
Affiliation(s)
- Lígia Moriguchi Watanabe
- Department of Health Sciences, Division of Nutrition and Metabolism, Ribeirão Preto Medical School, University of São Paulo, FMRP/USP, Brazil.
| | - Vanessa Aparecida Batista Pereira
- Department of Health Sciences, Division of Nutrition and Metabolism, Ribeirão Preto Medical School, University of São Paulo, FMRP/USP, Brazil
| | - Natalia Yumi Noronha
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, FMRP/USP, Brazil
| | - Marcela Augusta de Souza Pinhel
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, FMRP/USP, Brazil; Departament of Molecular Biology - São Jose do Rio Preto Medical School, Sao Jose do Rio Preto, São Paulo, Brazil
| | - Leticia Santana Wolf
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, FMRP/USP, Brazil
| | | | - Jessica Rodrigues Plaça
- National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, São Paulo, Brazil
| | - Isabella Harumi Yonehara Noma
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Vanessa Cristina Oliveira de Souza
- Department of Clinical and Toxicological Analyses and Bromatology, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, FCFRP/USP, Brazil
| | - Fernando Barbosa Júnior
- Department of Clinical and Toxicological Analyses and Bromatology, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, FCFRP/USP, Brazil
| | - Carla Barbosa Nonino
- Department of Health Sciences, Division of Nutrition and Metabolism, Ribeirão Preto Medical School, University of São Paulo, FMRP/USP, Brazil; Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, FMRP/USP, Brazil
| |
Collapse
|
9
|
Bankole T, Ma T, Arora I, Lei Z, Raju M, Li Z, Li Y. The Effect of Broccoli Glucoraphanin Supplementation on Ameliorating High-Fat-Diet-Induced Obesity through the Gut Microbiome and Metabolome Interface. Mol Nutr Food Res 2024; 68:e2300856. [PMID: 38676466 DOI: 10.1002/mnfr.202300856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/22/2024] [Indexed: 04/29/2024]
Abstract
SCOPE Obesity and its metabolic comorbidities pose a major global challenge for public health. Glucoraphanin (GRN) is a natural bioactive compound enriched in broccoli that is known to have potential health benefits against various human chronic diseases. METHODS AND RESULTS This study investigats the effects of broccoli GRN supplementation on body weight, metabolic parameters, gut microbiome and metabolome associated with obesity. The study is conducted on an obese-related C57BL/6J mouse model through the treatment of normal control diet, high-fat diet (HFD)and GRN-supplemented HFD (HFD-GRN) to determine the metabolic protection of GRN. The results shows that GRN treatment alleviates obesity-related traits leading to improved glucose metabolism in HFD-fed animals. Mechanically, the study noticed that GRN significantly shifts the gut microbial diversity and composition to an eubiosis status. GRN supplement also significantly alters plasma metabolite profiles. Further integrated analysis reveal a complex interaction between the gut microbes and host metabolism that may contribute to GRN-induced beneficial effects against HFD. CONCLUSION These results indicate that beneficial effects of broccoli GRN on reversing HFD-induced adverse metabolic parameters may be attributed to its impacts on reprogramming microbial community and metabolites. Identification of the mechanistic functions of GRN further warrants it as a dietary candidate for obesity prevention.
Collapse
Affiliation(s)
- Taiwo Bankole
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, University of Maryland, College Park, MD, 20742, USA
| | - Itika Arora
- Department of Microbiology and Immunology, University of Miami, Miami, FL, 33136, USA
| | - Zhentian Lei
- Metabolomics Center, University of Missouri at Columbia, Columbia, MO, 65211, USA
| | - Murugesan Raju
- Bioinformatics and Analytics Core, University of Missouri at Columbia, Columbia, MO, 65211, USA
| | - Zhenhai Li
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Yuanyuan Li
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
10
|
Kiseleva OI, Pyatnitskiy MA, Arzumanian VA, Kurbatov IY, Ilinsky VV, Ilgisonis EV, Plotnikova OA, Sharafetdinov KK, Tutelyan VA, Nikityuk DB, Ponomarenko EA, Poverennaya EV. Multiomics Picture of Obesity in Young Adults. BIOLOGY 2024; 13:272. [PMID: 38666884 PMCID: PMC11048234 DOI: 10.3390/biology13040272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Obesity is a socially significant disease that is characterized by a disproportionate accumulation of fat. It is also associated with chronic inflammation, cancer, diabetes, and other comorbidities. Investigating biomarkers and pathological processes linked to obesity is especially vital for young individuals, given their increased potential for lifestyle modifications. By comparing the genetic, proteomic, and metabolomic profiles of individuals categorized as underweight, normal, overweight, and obese, we aimed to determine which omics layer most accurately reflects the phenotypic changes in an organism that result from obesity. We profiled blood plasma samples by employing three omics methodologies. The untargeted GC×GC-MS metabolomics approach identified 313 metabolites. To augment the metabolomic dataset, we integrated a label-free HPLC-MS/MS proteomics method, leading to the identification of 708 proteins. The genomic layer encompassed the genotyping of 647,250 SNPs. Utilizing omics data, we trained sparse Partial Least Squares models to predict body mass index. Molecular features exhibiting frequently non-zero coefficients were selected as potential biomarkers, and we further explored enriched biological pathways. Proteomics was the most effective in single-omics analyses, with a median absolute error (MAE) of 5.44 ± 0.31 kg/m2, incorporating an average of 24 proteins per model. Metabolomics showed slightly lower performance (MAE = 6.06 ± 0.33 kg/m2), followed by genomics (MAE = 6.20 ± 0.34 kg/m2). As expected, multiomic models demonstrated better accuracy, particularly the combination of proteomics and metabolomics (MAE = 4.77 ± 0.33 kg/m2), while including genomics data did not enhance the results. This manuscript is the first multiomics study of obesity in a gender-balanced cohort of young adults profiled by genomic, proteomic, and metabolomic methods. The comprehensive approach provides novel insights into the molecular mechanisms of obesity, opening avenues for more targeted interventions.
Collapse
Affiliation(s)
- Olga I. Kiseleva
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (O.I.K.)
| | - Mikhail A. Pyatnitskiy
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (O.I.K.)
- Faculty of Computer Science, National Research University Higher School of Economics, Moscow 101000, Russia
| | | | - Ilya Y. Kurbatov
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (O.I.K.)
| | | | | | - Oksana A. Plotnikova
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Russian Academy of Sciences, Moscow 109240, Russia
| | - Khaider K. Sharafetdinov
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Russian Academy of Sciences, Moscow 109240, Russia
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of the Russian Federation, Moscow 125993, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, Moscow 119991, Russia
| | - Victor A. Tutelyan
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Russian Academy of Sciences, Moscow 109240, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, Moscow 119991, Russia
| | - Dmitry B. Nikityuk
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Russian Academy of Sciences, Moscow 109240, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, Moscow 119991, Russia
| | | | | |
Collapse
|
11
|
Cardoso BEP, da Cunha Soares T, da Silva Dias TM, Fontenelle LC, Morais JBS, Cruz KJC, de Paiva Sousa M, de Sousa TGV, de Sousa Melo SR, Dos Santos LR, Henriques GS, Oliveira FE, do Nascimento Marreiro D. Selenium Biomarkers and Their Relationship to Cardiovascular Risk Parameters in Obese Women. Biol Trace Elem Res 2024; 202:866-877. [PMID: 37338800 DOI: 10.1007/s12011-023-03726-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/04/2023] [Indexed: 06/21/2023]
Abstract
A cross-sectional study was carried out with 210 women divided into a case group (obese, n = 84) and a control group (eutrophic, n = 126). Body weight, height, waist circumference (WC), and hip and neck circumference were measured and the waist-hip ratio and conicity index were calculated. Selenium in plasma, erythrocytes and urine, erythrocyte GPx activity, lipid profile, Castelli I and II indices, and systolic and diastolic blood (DBP) pressure were evaluated. Mean dietary selenium intake (µg/kg/day) and plasma and erythrocyte concentrations were lower in the obese group compared to the healthy group (p < 0.001). while urinary selenium concentrations were higher (p < 0.001). There was a statistical difference between groups regarding cardiovascular risk parameters: waist circumference, neck circumference, waist-hip ratio, conicity index, triacylglycerols (TGC), and lipoproteins rich in triacylglycerols (VLDL-c) (p > 0.05). There was a negative correlation between plasma selenium concentrations and total cholesterol (TC), non-high-density lipoprotein (non-HDL), low-density lipoprotein (LDL-c), and systolic blood pressure (SBP). Urinary selenium correlated negatively with waist circumference and hip circumference and positively with neck circumference, TC, TGC, high-density lipoprotein (HDL-c), non-HDL, and VLDL-c. There was a negative correlation between dietary selenium and waist circumference, waist-hip ratio, neck circumference, conicity index, non-HDL cholesterol, LDL-c, and Castelli indices I and II, as well as a positive correlation with HDL-c and diastolic blood pressure. Women with obesity present changes in their nutritional status related to selenium, as well as increased cardiovascular risk parameters. Thus, the positive role of selenium in protecting the risk of cardiovascular disease is likely.
Collapse
|
12
|
Li S, Ding J, Sun X, Feng L, Zhou W, Gui Z, Mao J. Selenium Concentration Is Positively Associated with Triglyceride-Glucose Index and Triglyceride Glucose-Body Mass Index in Adults: Data from NHANES 2011-2018. Biol Trace Elem Res 2024; 202:401-409. [PMID: 37145256 PMCID: PMC10764531 DOI: 10.1007/s12011-023-03684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
Compiling evidence supports that selenium plays a vital role in glucose metabolism. Triglyceride-glucose index (TyG) and triglyceride-glucose-body mass index (TyG-BMI) are commonly used in epidemiologic studies to evaluate insulin resistance and cardiovascular disease (CVD) risks. This study is aimed to investigate the association between whole blood selenium concentration and TyG and TyG-BMI. A total of 6290 participants (age ≥ 20 years) from the National Health and Nutrition Examination Survey (NHANES) 2011-2018 were included. Multiple linear regression models were used to examine the association between blood selenium quartiles and TyG and TyG-BMI. Subgroup analysis stratified by diabetes status was also performed. The adjusted model showed a positive association between TyG and blood selenium concentration (β [95%CI] = 0.099 [0.063, 0.134], p < 0.001) and TyG-BMI (β [95%CI] = 3.185 [2.102, 4.268], p < 0.001). The association persisted after stratification by diabetes status (p < 0.001). Participants were stratified into four quartiles based on selenium concentration (Q1: 1.08-2.24 μmol/L, Q2: 2.25-2.42 μmol/L, Q3: 2.43-2.62 µmol/L, Q4: 2.63-8.08). Compared with the Q1 group, TyG in the Q3 and Q4 groups was significantly higher (β = 0.075 [95%CI 0.039 to 0.112] and β = 0.140 [95%CI 0.103 to 0.176], respectively). Additionally, TyG-BMI in the Q2, Q3, and Q4 groups was higher than that in the Q1 group (β = 1.189 [95%CI 0.065 to 2.314], β = 2.325 [95%CI 1.204 to 3.446], and β = 4.322 [95%CI 3.210 to 5.435], respectively). Blood level of selenium was positively associated with TyG and TyG-BMI, indicating that excessive blood selenium may be associated with impaired insulin sensitivity and increased risk of cardiovascular disease.
Collapse
Affiliation(s)
- Shuying Li
- Department of Health Management Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Jie Ding
- Department of Health Management Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Xiaoxiao Sun
- Department of Health Management Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Li Feng
- Department of Health Management Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Weihong Zhou
- Department of Health Management Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China.
| | - Zhen Gui
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| | - Jiangfeng Mao
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
13
|
Gasull M, Camargo J, Pumarega J, Henríquez-Hernández LA, Campi L, Zumbado M, Contreras-Llanes M, Oliveras L, González-Marín P, Luzardo OP, Gómez-Gutiérrez A, Alguacil J, Porta M. Blood concentrations of metals, essential trace elements, rare earth elements and other chemicals in the general adult population of Barcelona: Distribution and associated sociodemographic factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168502. [PMID: 37977377 DOI: 10.1016/j.scitotenv.2023.168502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Very little information is available on the population distribution and on sociodemographic predictors of body concentrations of rare earth elements (REE) and other chemicals used in the manufacturing of high-tech devices. OBJECTIVES To analyze the distribution and associated sociodemographic factors of blood concentrations of chemical elements (including some metals, essential trace elements, rare earth elements and other minority elements) in a representative sample of the general population of Barcelona (Spain). METHODS A sample of participants in the Barcelona Health Survey of 2016 (N = 240) were interviewed face-to-face, gave blood, and underwent a physical exam. Concentrations of 50 chemical elements were analyzed by ICP-MS in whole blood samples. RESULTS All 50 chemicals studied, including 26 REE and minority elements, were detected. Lead, silver, arsenic, cadmium, mercury, antimony, strontium, thallium and six essential trace elements were detected in more than 70% of the population. The most frequently detected REE and minority elements were europium (62%), thulium (56%), gold (41%), indium (31%), ruthenium (24%), and tantalum (20%). Less affluent occupational social classes had higher percentages of detection of some REE. Median concentrations of silver, arsenic, cadmium and mercury were: 0.091, 3.01, 0.309, and 3.33 ng/mL, respectively. Women had lower median concentrations than men of lead (1.47 vs. 2.04 μg/dL, respectively), iron and zinc, and higher concentrations of copper and manganese. The influence of sociodemographic characteristics on chemical concentrations differed by sex. CONCLUSIONS While well-known contaminants as lead, mercury, cadmium, or arsenic were detected in the majority of the population, numerous individuals had also detectable concentrations of chemicals as europium, indium, thulium, or gold. Sociodemographic and physical characteristics (sex, age, social class, weight change) influenced concentrations of some chemicals.
Collapse
Affiliation(s)
- Magda Gasull
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Judit Camargo
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain; School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Pumarega
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luis Alberto Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain; CIBER de Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Laura Campi
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain; CIBER de Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Manuel Contreras-Llanes
- Centro de Investigación en Recursos Naturales, Salud y Medio Ambiente, Universidad de Huelva, Huelva, Spain
| | - Laura Oliveras
- Qualitat i Intervenció Ambiental, Agència de Salut Pública de Barcelona, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Patricia González-Marín
- Qualitat i Intervenció Ambiental, Agència de Salut Pública de Barcelona, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain; CIBER de Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Anna Gómez-Gutiérrez
- Qualitat i Intervenció Ambiental, Agència de Salut Pública de Barcelona, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Juan Alguacil
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Centro de Investigación en Recursos Naturales, Salud y Medio Ambiente, Universidad de Huelva, Huelva, Spain
| | - Miquel Porta
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Lu Y, Liu Q, Huang C, Tang X, Wei Y, Mo X, Huang S, Lin Y, Luo T, Gou R, Zhang Z, Qin J, Cai J. Association between plasma and dietary trace elements and obesity in a rural Chinese population. Br J Nutr 2024; 131:123-133. [PMID: 37439087 DOI: 10.1017/s0007114523001435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Trace elements may play an important role in obesity. This study aimed to assess the plasma and dietary intake levels of four trace elements, Mn, Cu, Zn and Se in a rural Chinese population, and analyse the relationship between trace elements and obesity. A cross-sectional study involving 2587 participants was conducted. Logistic regression models were used to analyse the association between trace elements and obesity; restricted cubic spline (RCS) models were used to assess the dose-response relationship between trace elements and obesity; the weighted quantile sum (WQS) model was used to examine the potential interaction of four plasma trace elements on obesity. Logistic regression analysis showed that plasma Se concentrations in the fourth quartile (Q4) exhibited a lower risk of developing obesity than the first quartile (Q1) (central obesity: OR = 0·634, P = 0·002; general obesity: OR = 0·525, P = 0·005). Plasma Zn concentration in the third quartile (Q3) showed a lower risk of developing obesity in general obesity compared with the first quartile (Q1) (OR = 0·625, P = 0·036). In general obesity, the risk of morbidity was 1·727 and 1·923 times higher for the second and third (Q2, Q3) quartiles of dietary Mn intake than for Q1, respectively. RCS indicated an inverse U-shaped correlation between plasma Se and obesity. WQS revealed the combined effects of four trace elements were negatively associated with central obesity. Plasma Zn and Se were negatively associated with obesity, and dietary Mn was positively associated with obesity. The combined action of the four plasma trace elements had a negative effect on obesity.
Collapse
Affiliation(s)
- Yufu Lu
- School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning530021, Guangxi, People's Republic of China
| | - Qiumei Liu
- School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning530021, Guangxi, People's Republic of China
| | - Chuwu Huang
- School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning530021, Guangxi, People's Republic of China
| | - Xu Tang
- School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning530021, Guangxi, People's Republic of China
| | - Yanfei Wei
- School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning530021, Guangxi, People's Republic of China
| | - Xiaoting Mo
- School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning530021, Guangxi, People's Republic of China
| | - Shenxiang Huang
- School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning530021, Guangxi, People's Republic of China
| | - Yinxia Lin
- School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning530021, Guangxi, People's Republic of China
| | - Tingyu Luo
- School of Public Health, Guilin Medical University, 20 Lequn Road, Guilin, Guangxi, People's Republic of China
| | - Ruoyu Gou
- School of Public Health, Guilin Medical University, 20 Lequn Road, Guilin, Guangxi, People's Republic of China
| | - Zhiyong Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Jian Qin
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning530021, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, Nanning530021, People's Republic of China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning530021, People's Republic of China
| | - Jiansheng Cai
- School of Public Health, Guilin Medical University, 20 Lequn Road, Guilin, Guangxi, People's Republic of China
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| |
Collapse
|
15
|
Zhan R, Liu L, Yang M, Ren Y, Ge Z, Shi J, Zhou K, Zhang J, Cao H, Yang L, Liu K, Sheng J, Tao F, Wang S. Associations of 10 trace element levels in the whole blood with risk of three types of obesity in the elderly. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9787-9806. [PMID: 37847362 DOI: 10.1007/s10653-023-01747-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/29/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Currently, over 2 billion people worldwide suffer from obesity, which poses a serious health risk. More and more attention is being given to the effects of trace elements on obesity in recent years. Synergistic or antagonistic interactions among these elements can adversely or positively impact human health. However, epidemiological evidence on the relationship between trace element exposure levels and obesity has been inconclusive. METHODS Baseline data of 994 participants from the Cohort of Elderly Health and Environment Controllable Factors were used in the present study. ICP-MS was used to measure the concentrations of 10 trace elements in the whole blood of the older population. Binary logistic regression, restricted cubic splines (RCS) models, and Bayesian kernel machine regression (BKMR) models were employed to assess single, nonlinear, and mixed relationships between 10 trace element levels and three types of obesity based on body mass index (BMI), waist circumference (WC), and body fat percentage (BFP) in the elderly. RESULTS Based on BMI, WC and BFP, 51.8% of the included old population were defined as general overweight/obesity, 67.1% as abdominal obesity, and 36.2% as having slightly high/high BFP. After multivariable adjustment, compared with the lowest tertile, the highest tertile of blood selenium (Se) concentration was associated with an increased risk of all three types of obesity. Additionally, compared with the lowest tertile, higher tertiles of strontium (Sr) concentrations were associated with a lower risk of general overweight/obesity and having slightly high/high BFP, and the highest tertile of barium (Ba) was associated with a lower risk of having slightly high BFP, while higher tertiles of arsenic (As) concentrations were associated with an increased risk of having slightly high/high BFP, and the highest tertile of manganese (Mn) was associated with a higher risk of abdominal obesity. BKMR analyses showed a strong linear positive association between Se and three types of obesity. Higher blood levels of trace element mixture were associated with increased obesity risks in a dose-response pattern, with Se having the highest value of the posterior inclusion probability (PIP) within the mixture. CONCLUSIONS In this study, we found higher Se levels were associated with an elevated risk of obesity and high levels of Ba, Pb and Cr were associated with a decreased risk of obesity. Studies with larger samples are needed to confirm these findings.
Collapse
Affiliation(s)
- Rui Zhan
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental, Toxicology of Anhui Higher Education Institutes, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Lin Liu
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Maoyuan Yang
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yating Ren
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhihao Ge
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jun Shi
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Ke Zhou
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jiebao Zhang
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Hongjuan Cao
- Lu'an Center of Disease Control and Prevention, Lu'an, Anhui, China
| | - Linsheng Yang
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental, Toxicology of Anhui Higher Education Institutes, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kaiyong Liu
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental, Toxicology of Anhui Higher Education Institutes, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jie Sheng
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental, Toxicology of Anhui Higher Education Institutes, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental, Toxicology of Anhui Higher Education Institutes, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Sufang Wang
- School of Public Health, Anhui Medical University, Hefei, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental, Toxicology of Anhui Higher Education Institutes, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
16
|
Allemann MS, Lee P, Beer JH, Saeedi Saravi SS. Targeting the redox system for cardiovascular regeneration in aging. Aging Cell 2023; 22:e14020. [PMID: 37957823 PMCID: PMC10726899 DOI: 10.1111/acel.14020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiovascular aging presents a formidable challenge, as the aging process can lead to reduced cardiac function and heightened susceptibility to cardiovascular diseases. Consequently, there is an escalating, unmet medical need for innovative and effective cardiovascular regeneration strategies aimed at restoring and rejuvenating aging cardiovascular tissues. Altered redox homeostasis and the accumulation of oxidative damage play a pivotal role in detrimental changes to stem cell function and cellular senescence, hampering regenerative capacity in aged cardiovascular system. A mounting body of evidence underscores the significance of targeting redox machinery to restore stem cell self-renewal and enhance their differentiation potential into youthful cardiovascular lineages. Hence, the redox machinery holds promise as a target for optimizing cardiovascular regenerative therapies. In this context, we delve into the current understanding of redox homeostasis in regulating stem cell function and reprogramming processes that impact the regenerative potential of the cardiovascular system. Furthermore, we offer insights into the recent translational and clinical implications of redox-targeting compounds aimed at enhancing current regenerative therapies for aging cardiovascular tissues.
Collapse
Affiliation(s)
- Meret Sarah Allemann
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Pratintip Lee
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Jürg H. Beer
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Seyed Soheil Saeedi Saravi
- Center for Translational and Experimental Cardiology, Department of CardiologyUniversity Hospital Zurich, University of ZurichSchlierenSwitzerland
| |
Collapse
|
17
|
García-Esquinas E, Carballo-Casla A, Ortolá R, Sotos-Prieto M, Olmedo P, Gil F, Plans-Beriso E, Fernández-Navarro P, Pastor-Barriuso R, Rodríguez-Artalejo F. Blood Selenium Concentrations Are Inversely Associated with the Risk of Undernutrition in Older Adults. Nutrients 2023; 15:4750. [PMID: 38004143 PMCID: PMC10674362 DOI: 10.3390/nu15224750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/13/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Selenium is an essential trace element with an antioxidant and anti-inflammatory capacity that has been associated in experimental studies with beneficial effects on appetite control, the regulation of the gut microbiota, and control of the anabolic-catabolic balance. The main aim of the present study was to evaluate the association between circulating selenium concentrations and the risk of developing undernutrition in older adults. METHODS This was a cohort study with 1398 well-nourished community-dwelling individuals aged ≥ 65 years residing in Spain in 2017, who were followed for a mean of 2.3 years. Whole blood selenium was measured at baseline using inductively coupled plasma-mass spectrometry. Undernutrition was assessed at baseline and at follow-up, and defined as having at least one of the three GLIM phenotypic criteria (involuntary weight loss, a low body mass index, and a reduced muscle mass) and at least one of the two etiologic criteria (reduced food consumption or nutrient assimilation and inflammation/disease burden). RESULTS During the follow-up, 142 participants (11%) developed moderate undernutrition and 113 (8.8%) severe undernutrition. The standardized relative risks of moderate and severe undernutrition at the 75th percentile of Se levels versus the 25th were 0.90 and 0.70, respectively. In dose-response analyses, the risk of severe undernutrition decreased linearly with increasing selenium concentrations. This association was independent of protein intake or diet quality and was stronger among participants with a diagnosis of a musculoskeletal disorder. CONCLUSIONS The results suggest that an adequate dietary selenium status is needed to prevent undernutrition in older adults. Also, this may open the door for clinical trials with selenium supplementation, at doses considered as safe, to prevent undernutrition.
Collapse
Affiliation(s)
- Esther García-Esquinas
- Department of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, 28029 Madrid, Spain; (E.P.-B.); (P.F.-N.); (R.P.-B.)
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (A.C.-C.); (R.O.); (M.S.-P.); (F.R.-A.)
| | - Adrián Carballo-Casla
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (A.C.-C.); (R.O.); (M.S.-P.); (F.R.-A.)
- Aging Research Center, Department of Neurobiology, Care Sciences and Society Karolinska Institutet & Stockholm University, 141 86 Stockholm, Sweden
| | - Rosario Ortolá
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (A.C.-C.); (R.O.); (M.S.-P.); (F.R.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Mercedes Sotos-Prieto
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (A.C.-C.); (R.O.); (M.S.-P.); (F.R.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- IMDEA Food Institute, CEI UAM+CSIC, 28049 Madrid, Spain
| | - Pablo Olmedo
- Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, 18071 Granada, Spain; (P.O.); (F.G.)
| | - Fernando Gil
- Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, 18071 Granada, Spain; (P.O.); (F.G.)
| | - Elena Plans-Beriso
- Department of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, 28029 Madrid, Spain; (E.P.-B.); (P.F.-N.); (R.P.-B.)
| | - Pablo Fernández-Navarro
- Department of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, 28029 Madrid, Spain; (E.P.-B.); (P.F.-N.); (R.P.-B.)
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (A.C.-C.); (R.O.); (M.S.-P.); (F.R.-A.)
| | - Roberto Pastor-Barriuso
- Department of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, 28029 Madrid, Spain; (E.P.-B.); (P.F.-N.); (R.P.-B.)
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (A.C.-C.); (R.O.); (M.S.-P.); (F.R.-A.)
| | - Fernando Rodríguez-Artalejo
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (A.C.-C.); (R.O.); (M.S.-P.); (F.R.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- IMDEA Food Institute, CEI UAM+CSIC, 28049 Madrid, Spain
| |
Collapse
|
18
|
Skalny AV, Korobeinikova TV, Zabroda NN, Chang JS, Chao JCJ, Aschner M, Paoliello MMB, Burtseva TI, Tinkov AA. Interactive Effects of Obesity and Hypertension on Patterns of Hair Essential Trace Element and Mineral Content in Adult Women. Biol Trace Elem Res 2023; 201:4677-4687. [PMID: 36648598 DOI: 10.1007/s12011-023-03561-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023]
Abstract
The objective of the present study was to evaluate potential similar patterns and interactive effects of obesity and hypertension on hair essential trace element and mineral content in adult women. In this cross-sectional study, a total of 607 adult women divided into controls (n = 101), groups with obesity without hypertension (n = 199), hypertension without obesity (n = 143), and both obesity and hypertension (n = 164) were included in the study. Assessment of hair mineral and trace element levels was performed by inductively-coupled plasma mass-spectrometry. Hair Ca, Mg, Co, and Mn levels in women with obesity, hypertension, and both diseases were significantly lower, compared to controls. Hair Mg levels in women with obesity and hypertension were significantly lower, whereas hair Na and K were found to be higher when compared to other groups. Hair Fe and V content in obese patients was lower than in other groups. Obesity was associated with lower hair Cu levels, whereas patients with hypertension had higher hair Cu content. Hypertension was also associated with higher hair Cr and Se content irrespective of body weight. Hair Zn levels in obese women with and without hypertension were significantly lower than those in healthy controls and normal-weight women with hypertension. In multiple regression models hair Mg was considered as a significant negative predictor of both systolic and diastolic blood pressure values. The observed alterations in hair trace element and mineral content provide an additional link between obesity and hypertension, although further detailed studies are required.
Collapse
Affiliation(s)
- Anatoly V Skalny
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
- Yaroslavl State University, Yaroslavl, 150003, Russia
| | - Tatiana V Korobeinikova
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
| | - Nadezhda N Zabroda
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
| | - Jung-Su Chang
- Taipei Medical University, Taipei, 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Jane C-J Chao
- Taipei Medical University, Taipei, 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Alexey A Tinkov
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia.
- Yaroslavl State University, Yaroslavl, 150003, Russia.
| |
Collapse
|
19
|
Zavros A, Andreou E, Aphamis G, Bogdanis GC, Sakkas GK, Roupa Z, Giannaki CD. The Effects of Zinc and Selenium Co-Supplementation on Resting Metabolic Rate, Thyroid Function, Physical Fitness, and Functional Capacity in Overweight and Obese People under a Hypocaloric Diet: A Randomized, Double-Blind, and Placebo-Controlled Trial. Nutrients 2023; 15:3133. [PMID: 37513551 PMCID: PMC10386647 DOI: 10.3390/nu15143133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Evidence of the effectiveness of zinc (Zn) and selenium (Se) on resting metabolic rate (RMR) and physical function parameters in people with overweight and obesity is scarce, while the effects of zinc and selenium on thyroid function and body composition are still a topic of debate and controversy. The aim of this randomized, double-blind, and placebo-controlled trial was to examine the effects of a hypocaloric diet and Se-Zn co-supplementation on RMR, thyroid function, body composition, physical fitness, and functional capacity in overweight or obese individuals. Twenty-eight overweight-obese participants (mean BMI: 29.4 ± 4.7) were randomly allocated (1:1) to the supplementation group (n = 14, 31.1 ± 5.5 yrs, 9 females) and the placebo group (n = 14, 32.1 ± 4.8 yrs, 6 females). The participants received Zn (25 mg of zinc gluconate/day) and Se (200 mcg of L-selenomethionine/day) or placebo tablets containing starch for eight weeks. The participants of both groups followed a hypocaloric diet during the intervention. RMR, thyroid function, body composition, cardiorespiratory fitness (VO2max), and functional capacity (sit-to-stand tests, timed up-and-go test, and handgrip strength) were assessed before and after the intervention. A significant interaction was found between supplementation and time on RMR (p = 0.045), with the intervention group's RMR increasing from 1923 ± 440 to 2364 ± 410 kcal/day. On the other hand, no interaction between supplementation and time on the thyroid function was found (p > 0.05). Regarding the effects of Zn/Se co-administration on Se levels, a significant interaction between supplementation and time on Se levels was detected (p = 0.004). Specifically, the intervention group's Se serum levels were increased from 83.04 ± 13.59 to 119.40 ± 23.93 μg/L. However, Zn serum levels did not change over time (90.61 ± 23.23 to 89.58 ± 10.61 umol/L). Even though all body composition outcomes improved in the intervention group more than placebo at the second measurement, no supplement × time interaction was detected on body composition (p > 0.05). Cardiorespiratory fitness did not change over the intervention. Yet, a main effect of time was found for some functional capacity tests, with both groups improving similarly over the eight-week intervention period (p < 0.05). In contrast, a supplement x group interaction was found in the performance of the timed up-and-go test (TUG) (p = 0.010), with the supplementation group improving more. In conclusion, an eight-week intervention with Zn/Se co-supplementation combined with a hypocaloric diet increased the RMR, TUG performance, and Se levels in overweight and obese people. However, thyroid function, Zn levels, body composition, and the remaining outcomes of exercise performance remained unchanged.
Collapse
Affiliation(s)
- Antonis Zavros
- Department of Life Sciences, University of Nicosia, Nicosia 2417, Cyprus
- Research Centre for Exercise and Nutrition (RECEN), Nicosia 2417, Cyprus
| | - Eleni Andreou
- Department of Life Sciences, University of Nicosia, Nicosia 2417, Cyprus
- Research Centre for Exercise and Nutrition (RECEN), Nicosia 2417, Cyprus
| | - George Aphamis
- Department of Life Sciences, University of Nicosia, Nicosia 2417, Cyprus
- Research Centre for Exercise and Nutrition (RECEN), Nicosia 2417, Cyprus
| | - Gregory C Bogdanis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Giorgos K Sakkas
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece
| | - Zoe Roupa
- Department of Life Sciences, University of Nicosia, Nicosia 2417, Cyprus
| | - Christoforos D Giannaki
- Department of Life Sciences, University of Nicosia, Nicosia 2417, Cyprus
- Research Centre for Exercise and Nutrition (RECEN), Nicosia 2417, Cyprus
| |
Collapse
|
20
|
Jovanović M, Kovačević S, Brkljačić J, Djordjevic A. Oxidative Stress Linking Obesity and Cancer: Is Obesity a 'Radical Trigger' to Cancer? Int J Mol Sci 2023; 24:ijms24098452. [PMID: 37176160 PMCID: PMC10179114 DOI: 10.3390/ijms24098452] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity is on the rise worldwide, and consequently, obesity-related non-communicable diseases are as well. Nutritional overload induces metabolic adaptations in an attempt to restore the disturbed balance, and the byproducts of the mechanisms at hand include an increased generation of reactive species. Obesity-related oxidative stress causes damage to vulnerable systems and ultimately contributes to neoplastic transformation. Dysfunctional obese adipose tissue releases cytokines and induces changes in the cell microenvironment, promoting cell survival and progression of the transformed cancer cells. Other than the increased risk of cancer development, obese cancer patients experience higher mortality rates and reduced therapy efficiency as well. The fact that obesity is considered the second leading preventable cause of cancer prioritizes the research on the mechanisms connecting obesity to cancerogenesis and finding the solutions to break the link. Oxidative stress is integral at different stages of cancer development and advancement in obese patients. Hypocaloric, balanced nutrition, and structured physical activity are some tools for relieving this burden. However, the sensitivity of simultaneously treating cancer and obesity poses a challenge. Further research on the obesity-cancer liaison would offer new perspectives on prevention programs and treatment development.
Collapse
Affiliation(s)
- Mirna Jovanović
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Sanja Kovačević
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Jelena Brkljačić
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Ana Djordjevic
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| |
Collapse
|
21
|
Urbano T, Filippini T, Wise LA, Sucato S, Polledri E, Malavolti M, Fustinoni S, Michalke B, Vinceti M. Selenium exposure and urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine: Major effects of chemical species and sex. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161584. [PMID: 36702271 DOI: 10.1016/j.scitotenv.2023.161584] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an element present in trace amounts and different chemical forms. It may exert both beneficial and adverse effects on cellular redox status and on the generation of reactive oxygen species. 8-oxo-7,8-dihydro-2'deoxyguanosine (8-oxodG) is an oxidized derivative of deoxyguanosine, and a sensitive biomarker of oxidative stress and genotoxicity. The present study assessed the extent to which selenium status was associated with urinary 8-oxodG concentrations in a Northern Italian population. We recruited healthy, non-smoking blood donors living in the Reggio Emilia province during 2017-2019. We measured urinary 8-oxodG concentrations and used restricted cubic spline regression analyses to investigate the association between selenium status (estimated using food frequency questionnaires, urinary concentrations, and serum concentrations of selenium and selenium species) and 8-oxodG/g creatinine. Among 137 participants aged 30-60 years, median urinary selenium and 8-oxodG concentrations were 22.02 μg/L and 3.21 μg/g creatinine, respectively. Serum samples and selenium speciation analyses were available for 104 participants. Median total serum selenium levels and dietary intake were 116.5 μg/L and 78.7 μg/day, respectively. In spline regression analysis, there was little association between dietary, serum, or urinary selenium with 8-oxodG concentrations. In sex-specific analyses, urinary selenium showed a positive association with the endpoint among males. For single selenium species, we observed positive associations with urinary 8-oxodG for serum organic selenium species, and negative associations for inorganic selenium forms. In the most adjusted analysis, urinary 8-oxodG concentrations showed a strong positive association with selenomethione-bound selenium (Se-Met) and a negative association with inorganic tetravalent selenium, selenite. In sex-specific analyses, these associations were considerably stronger in males than in females. Overall, study findings indicate that selenium species exhibited very different patterns of associations with the biomarker of oxidative stress, and that these associations also depended on sex. Background exposure to Se-Met appears to be strongly and positively associated with oxidative stress.
Collapse
Affiliation(s)
- Teresa Urbano
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Filippini
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Sabrina Sucato
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Elisa Polledri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Marcella Malavolti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Fustinoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; IRCCS Ca' Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Helmholtz Center Munich, Neuherberg, Germany
| | - Marco Vinceti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
22
|
Schneider-Matyka D, Cybulska AM, Szkup M, Pilarczyk B, Panczyk M, Lubkowska A, Sadowska N, Grochans E. Selenium as a Factor Moderating Depression and Obesity in Middle-Aged Women. Nutrients 2023; 15:nu15071594. [PMID: 37049434 PMCID: PMC10096999 DOI: 10.3390/nu15071594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/28/2023] Open
Abstract
The aim of this study was to evaluate the effect of serum selenium on PPAR-γ and the selected proinflammatory cytokines (IL-1β, IL-6, TNF-α) in relation to depressive symptoms and obesity in middle-aged women. The research procedure was as follows: a survey was performed using the authors’ questionnaire and the BDI, anthropometric measurements, and the analysis of blood for the levels of selenium, cytokines, and genetic analysis of the PPAR-γ polymorphism (n = 443). It was found that the BMI increased along with the concentration of IL-6. No moderating effect of selenium was observed, although the cut-off values for “p” were established for IL-β*Se (p = 0.068) and IL-6*Se (p = 0.068), so there was a potential association with these two markers. At high selenium levels, the effect of higher IL-β levels on a decrease in BMI was stronger, as was the effect of an increase in IL-6 levels on an increase in BMI. No effect of selenium on PPAR-γ was found in relation to depressive symptoms and obesity. Higher selenium levels may have a beneficial effect on BMI even at high IL-β concentrations, however, at high IL-6 concentrations, this effect was not observed. Selenium levels had no impact on depressive symptoms.
Collapse
Affiliation(s)
- Daria Schneider-Matyka
- Department of Nursing, Pomeranian Medical University in Szczecin, Żołnierska Str. 48, 71-210 Szczecin, Poland
- Correspondence: ; Tel.: +48-914-800-910
| | - Anna Maria Cybulska
- Department of Nursing, Pomeranian Medical University in Szczecin, Żołnierska Str. 48, 71-210 Szczecin, Poland
| | - Małgorzata Szkup
- Department of Nursing, Pomeranian Medical University in Szczecin, Żołnierska Str. 48, 71-210 Szczecin, Poland
| | - Bogumiła Pilarczyk
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, West Pomeranian University of Technology, Klemensa Janickiego Str. 29, 71-217 Szczecin, Poland
| | - Mariusz Panczyk
- Department of Education and Research in Health Sciences, Faculty of Health Sciences, Medical University of Warsaw, Litewska Str. 14/16, 00-581 Warsaw, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska Str. 54, 71-210 Szczecin, Poland
| | - Nikola Sadowska
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, West Pomeranian University of Technology, Klemensa Janickiego Str. 29, 71-217 Szczecin, Poland
| | - Elżbieta Grochans
- Department of Nursing, Pomeranian Medical University in Szczecin, Żołnierska Str. 48, 71-210 Szczecin, Poland
| |
Collapse
|
23
|
Wang X, Wu B, Sun G, Gao J, Huang T, Liu J, Zhou Q, He X, Zhang S, Wang CY, Zhang Z, Zhu H. Dietary selenomethionine attenuates obesity by enhancing beiging process in white adipose tissue. J Nutr Biochem 2023; 113:109230. [PMID: 36435293 DOI: 10.1016/j.jnutbio.2022.109230] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 09/21/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022]
Abstract
Imbalanced nutrient intake causes abnormal energy metabolism, which results in obesity. There is feasible evidence that selenium-rich (Se-rich) foods may alleviate obesity and enhance general public health, but the underlying mechanisms remain elusive. Herein we examined the effect of Se supplementation on white adipose tissue beiging process. The mice were fed with a normal diet or a Se-deficient high-fat diet (DHFD) until significant differences in terms of body weight, glucose tolerance and insulin sensitivity. Next, mice in the DHFD group were changed to a high-fat diet (HFD) containing specified amounts of selenomethionine (SeMet) (0, 150, 300, and 600 μg/kg) and continued to feed for 14 weeks. Notably, 150 μg/kg SeMet supplement highly protected mice from DHFD-induced obesity, insulin resistance, and lipid deposits in the liver and kidney, and featured by the enhanced beiging process in white adipose tissue and increased energy expenditure. Moreover, upon cold challenge, 150 μg/kg SeMet supplement enhanced cold tolerance in mice by inducing adipose beiging to promote energy expenditure, as evidenced by the increased expression of uncoupling protein-1 (UCP1) in adipocytes. Similarly, SeMet (10 μM) promoted the differentiation of beige adipocytes from the stromal vascular fraction. Collectively, our data support that optimal supplementation of SeMet could enhance the beiging process to attenuate HFD-induced obesity, which provides new insights into the relationship between dietary SeMet and type 2 diabetes.
Collapse
Affiliation(s)
- Xiaohui Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Bo Wu
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei Selenium and Human Health Institute, Enshi, Hubei, China
| | - Guogen Sun
- Hubei Selenium and Human Health Institute, Enshi, Hubei, China
| | - Jia Gao
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Teng Huang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Jing Liu
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Qing Zhou
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Xiaoyu He
- Branch of National Clinical Research Center for Metabolic Diseases, Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Zixiong Zhang
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei Selenium and Human Health Institute, Enshi, Hubei, China.
| | - He Zhu
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China.
| |
Collapse
|
24
|
An KJ, Hanato AN, Hui KW, Pitts MW, Seale LA, Nicholson JL, Toh P, Kim JK, Berry MJ, Torres DJ. Selenium Protects Mouse Hypothalamic Cells from Glucocorticoid-Induced Endoplasmic Reticulum Stress Vulnerability and Insulin Signaling Impairment. Antioxidants (Basel) 2023; 12:526. [PMID: 36830084 PMCID: PMC9952756 DOI: 10.3390/antiox12020526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The use of glucocorticoid medications is known to cause metabolic side effects such as overeating, excess weight gain, and insulin resistance. The hypothalamus, a central regulator of feeding behavior and energy expenditure, is highly responsive to glucocorticoids, and it has been proposed that it plays a role in glucocorticoid-induced metabolic defects. Glucocorticoids can alter the expression and activity of antioxidant enzymes and promote the accumulation of reactive oxygen species. Recent evidence indicates that selenium can counter the effects of glucocorticoids, and selenium is critical for proper hypothalamic function. This study sought to determine whether selenium is capable of protecting hypothalamic cells from dysfunction caused by glucocorticoid exposure. We treated mHypoE-44 mouse hypothalamic cells with corticosterone to study the effects on cellular physiology and the involvement of selenium. We found that corticosterone administration rendered cells more vulnerable to endoplasmic reticulum stress and the subsequent impairment of insulin signaling. Supplementing the cell culture media with additional selenium alleviated endoplasmic reticulum stress and promoted insulin signaling. These findings implicate a protective role of selenium against chronic glucocorticoid-induced hypothalamic dysfunction.
Collapse
Affiliation(s)
- Katlyn J. An
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai‘i, Honolulu, HI 96813, USA
| | - Ashley N. Hanato
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai‘i, Honolulu, HI 96813, USA
| | - Katherine W. Hui
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai‘i, Honolulu, HI 96813, USA
| | - Matthew W. Pitts
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai‘i, Honolulu, HI 96813, USA
| | - Lucia A. Seale
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i, Honolulu, HI 96822, USA
| | - Jessica L. Nicholson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai‘i, Honolulu, HI 96813, USA
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i, Honolulu, HI 96822, USA
| | - Pamela Toh
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i, Honolulu, HI 96822, USA
| | - Jun Kyoung Kim
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai‘i, Honolulu, HI 96813, USA
| | - Marla J. Berry
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i, Honolulu, HI 96822, USA
| | - Daniel J. Torres
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai‘i, Honolulu, HI 96813, USA
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i, Honolulu, HI 96822, USA
| |
Collapse
|
25
|
Thermogenic Adipose Redox Mechanisms: Potential Targets for Metabolic Disease Therapies. Antioxidants (Basel) 2023; 12:antiox12010196. [PMID: 36671058 PMCID: PMC9854447 DOI: 10.3390/antiox12010196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Metabolic diseases, such as diabetes and non-alcoholic fatty liver disease (NAFLD), have several negative health outcomes on affected humans. Dysregulated energy metabolism is a key component underlying the pathophysiology of these conditions. Adipose tissue is a fundamental regulator of energy homeostasis that utilizes several redox reactions to carry out the metabolism. Brown and beige adipose tissues, in particular, perform highly oxidative reactions during non-shivering thermogenesis to dissipate energy as heat. The appropriate regulation of energy metabolism then requires coordinated antioxidant mechanisms to counterbalance the oxidation reactions. Indeed, non-shivering thermogenesis activation can cause striking changes in concentrations of both oxidants and antioxidants in order to adapt to various oxidative environments. Current therapeutic options for metabolic diseases either translate poorly from rodent models to humans (in part due to the challenges of creating a physiologically relevant rodent model) or tend to have numerous side effects, necessitating novel therapies. As increased brown adipose tissue activity results in enhanced energy expenditure and is associated with beneficial effects on metabolic health, such as decreased obesity, it has gathered great interest as a modulator of metabolic disease. One potential reason for the beneficial health effects may be that although non-shivering thermogenesis is enormously oxidative, it is also associated with decreased oxidant formation after its activation. However, targeting its redox mechanisms specifically to alter metabolic disease remains an underexplored area. Therefore, this review will discuss the role of adipose tissue in energy homeostasis, non-shivering thermogenesis in adults, and redox mechanisms that may serve as novel therapeutic targets of metabolic disease.
Collapse
|
26
|
Golin A, Tinkov AA, Aschner M, Farina M, da Rocha JBT. Relationship between selenium status, selenoproteins and COVID-19 and other inflammatory diseases: A critical review. J Trace Elem Med Biol 2023; 75:127099. [PMID: 36372013 PMCID: PMC9630303 DOI: 10.1016/j.jtemb.2022.127099] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
The antioxidant effects of selenium as a component of selenoproteins has been thought to modulate host immunity and viral pathogenesis. Accordingly, the association of low dietary selenium status with inflammatory and immunodeficiency has been reported in the literature; however, the causal role of selenium deficiency in chronic inflammatory diseases and viral infection is still undefined. The COVID-19, characterized by acute respiratory syndrome and caused by the novel coronavirus 2, SARS-CoV-2, has infected millions of individuals worldwide since late 2019. The severity and mortality from COVID-19 have been associated with several factor, including age, sex and selenium deficiency. However, available data on selenium status and COVID-19 are limited, and a possible causative role for selenium deficiency in COVID-19 severity has yet to be fully addressed. In this context, we review the relationship between selenium, selenoproteins, COVID-19, immune and inflammatory responses, viral infection, and aging. Regardless of the role of selenium in immune and inflammatory responses, we emphasize that selenium supplementation should be indicated after a selenium deficiency be detected, particularly, in view of the critical role played by selenoproteins in human health. In addition, the levels of selenium should be monitored after the start of supplementation and discontinued as soon as normal levels are reached. Periodic assessment of selenium levels after supplementation is a critical issue to avoid over production of toxic metabolites of selenide because under normal conditions, selenoproteins attain saturated expression levels that limits their potential deleterious metabolic effects.
Collapse
Affiliation(s)
- Anieli Golin
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, Brazil
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia; Institute of Bioelementology, Orenburg, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - João Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, Brazil; Departamento de Bioquímica, Instituto Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
27
|
Toh P, Nicholson JL, Vetter AM, Berry MJ, Torres DJ. Selenium in Bodily Homeostasis: Hypothalamus, Hormones, and Highways of Communication. Int J Mol Sci 2022; 23:15445. [PMID: 36499772 PMCID: PMC9739294 DOI: 10.3390/ijms232315445] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
The ability of the body to maintain homeostasis requires constant communication between the brain and peripheral tissues. Different organs produce signals, often in the form of hormones, which are detected by the hypothalamus. In response, the hypothalamus alters its regulation of bodily processes, which is achieved through its own pathways of hormonal communication. The generation and transmission of the molecules involved in these bi-directional axes can be affected by redox balance. The essential trace element selenium is known to influence numerous physiological processes, including energy homeostasis, through its various redox functions. Selenium must be obtained through the diet and is used to synthesize selenoproteins, a family of proteins with mainly antioxidant functions. Alterations in selenium status have been correlated with homeostatic disturbances in humans and studies with animal models of selenoprotein dysfunction indicate a strong influence on energy balance. The relationship between selenium and energy metabolism is complicated, however, as selenium has been shown to participate in multiple levels of homeostatic communication. This review discusses the role of selenium in the various pathways of communication between the body and the brain that are essential for maintaining homeostasis.
Collapse
Affiliation(s)
- Pamela Toh
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Jessica L. Nicholson
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Alyssa M. Vetter
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- School of Human Nutrition, McGill University, Montreal, QC H3A 0G4, Canada
| | - Marla J. Berry
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Daniel J. Torres
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
28
|
Barazzoni R, Bischoff SC, Busetto L, Cederholm T, Chourdakis M, Cuerda C, Delzenne N, Genton L, Schneider S, Singer P, Boirie Y. Nutritional management of individuals with obesity and COVID-19: ESPEN expert statements and practical guidance. Clin Nutr 2022; 41:2869-2886. [PMID: 34140163 PMCID: PMC8110326 DOI: 10.1016/j.clnu.2021.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 01/27/2023]
Abstract
The COVID-19 pandemics has created unprecedented challenges and threats to patients and healthcare systems worldwide. Acute respiratory complications that require intensive care unit (ICU) management are a major cause of morbidity and mortality in COVID-19 patients. Among other important risk factors for severe COVID-19 outcomes, obesity has emerged along with undernutrition-malnutrition as a strong predictor of disease risk and severity. Obesity-related excessive body fat may lead to respiratory, metabolic and immune derangements potentially favoring the onset of COVID-19 complications. In addition, patients with obesity may be at risk for loss of skeletal muscle mass, reflecting a state of hidden malnutrition with a strong negative health impact in all clinical settings. Also importantly, obesity is commonly associated with micronutrient deficiencies that directly influence immune function and infection risk. Finally, the pandemic-related lockdown, deleterious lifestyle changes and other numerous psychosocial consequences may worsen eating behaviors, sedentarity, body weight regulation, ultimately leading to further increments of obesity-associated metabolic complications with loss of skeletal muscle mass and higher non-communicable disease risk. Therefore, prevention, diagnosis and treatment of malnutrition and micronutrient deficiencies should be routinely included in the management of COVID-19 patients in the presence of obesity; lockdown-induced health risks should also be specifically monitored and prevented in this population. In the current document, the European Society for Clinical Nutrition and Metabolism (ESPEN) aims at providing clinical practice guidance for nutritional management of COVID-19 patients with obesity in various clinical settings.
Collapse
Affiliation(s)
- Rocco Barazzoni
- Department of Medical, Surgical and Health Sciences, University of Trieste, Italy,Azienda sanitaria universitaria Giuliano Isontina (ASUGI), Cattinara Hospital, Trieste, Italy,Corresponding author. Department of Medical, Surgical and Health Sciences and Azienda sanitaria universitaria Giuliano Isontina (ASUGI), Cattinara University Hospital, Strada di Fiume 447, Trieste, Italy
| | - Stephan C. Bischoff
- Department of Nutritional Medicine and Prevention, University of Hohenheim, Stuttgart, Germany
| | - Luca Busetto
- Department of Medicine, University of Padova, Italy
| | - Tommy Cederholm
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Michael Chourdakis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Cristina Cuerda
- Nutrition Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Laurence Genton
- Clinical Nutrition, Geneva University Hospitals, Geneva, Switzerland
| | - Stephane Schneider
- Gastroenterology and Nutrition, Nice University Hospital, Université Côte d’Azur, Nice, France
| | - Pierre Singer
- Department of General Intensive Care and Institute for Nutrition Research, Rabin Medical Center, Beilinson Hospital, Sackler School of Medicine, Tel Aviv University, Israel
| | - Yves Boirie
- Department of Clinical Nutrition, CHU Clermont-Ferrand, University of Clermont Auvergne, Human Nutrition Unit, CRNH Auvergne, F-63000, Clermont-Ferrand, France
| | | |
Collapse
|
29
|
Selenium and selenoproteins in thermogenic adipocytes. Arch Biochem Biophys 2022; 731:109445. [PMID: 36265651 PMCID: PMC9981474 DOI: 10.1016/j.abb.2022.109445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/20/2022]
Abstract
Selenium (Se) is involved in energy metabolism in the liver, white adipose tissue, and skeletal muscle, and may also play a role in thermogenic adipocytes, i.e. brown and beige adipocytes. Thereby this micronutrient is a key nutritional target to aid in combating obesity and metabolic diseases. In thermogenic adipocytes, particularly in brown adipose tissue (BAT), the selenoprotein type 2 iodothyronine deiodinase (DIO2) is essential for the activation of adaptive thermogenesis. Recent evidence has suggested that additional selenoproteins may also be participating in this process, and a role for Se itself through its metabolic pathways is also envisioned. In this review, we discuss the recognized effects and the knowledge gaps in the involvement of Se metabolism and selenoproteins in the mechanisms of adaptive thermogenesis in thermogenic (brown and beige) adipocytes.
Collapse
|
30
|
Wu Q, Li J, Zhu J, Sun X, He D, Li J, Cheng Z, Zhang X, Xu Y, Chen Q, Zhu Y, Lai M. Gamma-glutamyl-leucine levels are causally associated with elevated cardio-metabolic risks. Front Nutr 2022; 9:936220. [PMID: 36505257 PMCID: PMC9729530 DOI: 10.3389/fnut.2022.936220] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022] Open
Abstract
Objective Gamma-glutamyl dipeptides are bioactive peptides involved in inflammation, oxidative stress, and glucose regulation. Gamma-glutamyl-leucine (Gamma-Glu-Leu) has been extensively reported to be associated with the risk of cardio-metabolic diseases, such as obesity, metabolic syndrome, and type 2 diabetes. However, the causality remains to be uncovered. The aim of this study was to explore the causal-effect relationships between Gamma-Glu-Leu and metabolic risk. Materials and methods In this study, 1,289 subjects were included from a cross-sectional survey on metabolic syndrome (MetS) in eastern China. Serum Gamma-Glu-Leu levels were measured by untargeted metabolomics. Using linear regressions, a two-stage genome-wide association study (GWAS) for Gamma-Glu-Leu was conducted to seek its instrumental single nucleotide polymorphisms (SNPs). One-sample Mendelian randomization (MR) analyses were performed to evaluate the causality between Gamma-Glu-Leu and the metabolic risk. Results Four SNPs are associated with serum Gamma-Glu-Leu levels, including rs12476238, rs56146133, rs2479714, and rs12229654. Out of them, rs12476238 exhibits the strongest association (Beta = -0.38, S.E. = 0.07 in discovery stage, Beta = -0.29, S.E. = 0.14 in validation stage, combined P-value = 1.04 × 10-8). Each of the four SNPs has a nominal association with at least one metabolic risk factor. Both rs12229654 and rs56146133 are associated with body mass index, waist circumference (WC), the ratio of WC to hip circumference, blood pressure, and triglyceride (5 × 10-5 < P < 0.05). rs56146133 also has nominal associations with fasting insulin, glucose, and insulin resistance index (5 × 10-5 < P < 0.05). Using the four SNPs serving as the instrumental SNPs of Gamma-Glu-Leu, the MR analyses revealed that higher Gamma-Glu-Leu levels are causally associated with elevated risks of multiple cardio-metabolic factors except for high-density lipoprotein cholesterol and low-density lipoprotein cholesterol (P > 0.05). Conclusion Four SNPs (rs12476238, rs56146133, rs2479714, and rs12229654) may regulate the levels of serum Gamma-Glu-Leu. Higher Gamma-Glu-Leu levels are causally linked to cardio-metabolic risks. Future prospective studies on Gamma-Glu-Leu are required to explain its role in metabolic disorders.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Epidemiology and Biostatistics, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Jiankang Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Jinghan Zhu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaohui Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Di He
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Li
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zongxue Cheng
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuhui Zhang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China,Affiliated Hangzhou Center of Disease Control and Prevention, School of Public Health, Zhejiang University, Hangzhou, China
| | - Yuying Xu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qing Chen
- Zhejiang Provincial Centers for Disease Control and Prevention, Hangzhou, China,*Correspondence: Qing Chen,
| | - Yimin Zhu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Cancer Center, Zhejiang University, Hangzhou, China,Yimin Zhu,
| | - Maode Lai
- Key Laboratory of Disease Proteomics of Zhejiang Province, Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China,State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China,Maode Lai,
| |
Collapse
|
31
|
Effects of Regular Brazil Nut ( Bertholletia excelsa H.B.K.) Consumption on Health: A Systematic Review of Clinical Trials. Foods 2022; 11:foods11182925. [PMID: 36141050 PMCID: PMC9498495 DOI: 10.3390/foods11182925] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
The Brazil nut (BN) is a promising food due to its numerous health benefits, but it is still necessary to systematically review the scientific evidence on these benefits. Thus, we examined the effects of regular BN consumption on health markers in humans according to the health state (with specific diseases or not) of the subjects. PubMed, Embase®, and Scielo databases were used to search for clinical trials. The PRISMA guideline was used to report the review, and the risk of bias for all studies was assessed. Twenty-four studies were included in the present review, of which fifteen were non-randomized. BNs were consumed in the context of a habitual free-living diet in all studies. Improvement in antioxidant status through increased levels of selenium and/or glutathione peroxidase activity in plasma, serum, whole blood, and/or erythrocytes was observed in all studies that evaluated antioxidant status, regardless of the health state of the sample. In addition, healthy subjects improved lipid markers and fasting glucose. Subjects with obesity had improvement in markers of lipid metabolism. Subjects with type 2 diabetes mellitus or dyslipidemia improved oxidative stress or DNA damage. Subjects undergoing hemodialysis benefited greatly from BN consumption, as they improved lipid profile markers, oxidative stress, inflammation, and thyroid function. Older adults with mild cognitive impairment improved verbal fluency and constructional praxis, and controversial results regarding the change in a marker of lipid peroxidation were observed in subjects with coronary artery disease. In conclusion, the benefits of BN consumption were found in different pathways of action and study populations.
Collapse
|
32
|
Zhao L, Chu XH, Liu S, Li R, Zhu YF, Li FN, Jiang J, Zhou JC, Lei XG, Sun LH. Selenium-Enriched Cardamine violifolia Increases Selenium and Decreases Cholesterol Concentrations in Liver and Pectoral Muscle of Broilers. J Nutr 2022; 152:2072-2079. [PMID: 35728044 DOI: 10.1093/jn/nxac141] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/19/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Supernutrition of selenium (Se) in an effort to produce Se-enriched meat may inadvertently cause lipid accumulation. Se-enriched Cardamine violifolia (SeCv) contains >80% of Se in organic forms. OBJECTIVES This study was to determine whether feeding chickens a high dose of SeCv could produce Se-biofortified muscle without altering their lipid metabolism. METHODS Day-old male broilers were allocated to 4 groups (6 cages/group and 6 chicks/cage) and were fed either a corn-soy base diet (BD, 0.13-0.15 mg Se/kg), the BD plus 0.5 mg Se/kg as sodium selenite (SeNa) or as SeCv, or the BD plus a low-Se Cardamine violifolia (Cv, 0.20-0.21mg Se/kg). At week 6, concentrations of Se and lipid and expression of selenoprotein and lipid metabolism-related genes were determined in the pectoral muscle and liver. RESULTS The 4 diets showed no effects on growth performance of broilers. Compared with the other 3 diets, SeCv elevated (P < 0.05) Se concentrations in the pectoral muscle and liver by 14.4-127% and decreased (P < 0.05) total cholesterol concentrations by 12.5-46.7% and/or triglyceride concentrations by 28.8-31.1% in the pectoral muscle and/or liver, respectively. Meanwhile, SeCv enhanced (P < 0.05) muscular α-linolenic acid (80.0%) and hepatic arachidonic acid (58.3%) concentrations compared with SeNa and BD, respectively. SeCv downregulated (P < 0.05) the cholesterol and triglyceride synthesis-related proteins (sterol regulatory element binding transcription factor 2 and diacylglycerol O-acyltransferase 2) and upregulated (P < 0.05) hydrolysis and β-oxidation of fatty acid-related proteins (lipoprotein lipase, fatty acid binding protein 1, and carnitine palmitoyltransferase 1A), as well as selenoprotein P1 and thioredoxin reductase activity in the pectoral muscle and/or liver compared with SeNa. CONCLUSIONS Compared with SeNa, SeCv effectively raised Se and reduced lipids in the liver and muscle of broilers. The effect was mediated through the regulation of the cholesterol and triglyceride biosynthesis and utilization-related genes.
Collapse
Affiliation(s)
- Ling Zhao
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiao-Han Chu
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuai Liu
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rong Li
- Enshi Autonomous Prefecture Academy of Agricultural Sciences, Enshi, Hubei, China
| | - Yun-Fen Zhu
- Enshi Autonomous Prefecture Academy of Agricultural Sciences, Enshi, Hubei, China
| | - Feng-Na Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jie Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Lv-Hui Sun
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
33
|
Rios-Lugo MJ, Palos-Lucio AG, Victoria-Campos CI, Lugo-Trampe A, Trujillo-Murillo KDC, López-García MA, Espinoza-Ruiz M, Romero-Guzmán ET, Hernández-Mendoza H, Chang-Rueda C. Sex-Specific Association between Fasting Plasma Glucose and Serum Selenium Levels in Adults from Southern Mexico. Healthcare (Basel) 2022; 10:1665. [PMID: 36141277 PMCID: PMC9498661 DOI: 10.3390/healthcare10091665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Selenium (Se) is an essential trace element that by its antioxidant properties has been studied to elucidate its participation in the development of obesity and type 2 diabetes. We evaluated the association between cardiometabolic traits and serum Se levels in a sample of adults from southern Mexico. In 96 nondiabetic individuals, anthropometric data and clinical biochemistry measurements were analyzed. Serum total Se levels were measured with inductively coupled plasma mass spectrometry (ICP-MS). Serum Se level in the whole sample was 10.309 ± 3.031 μg mL-1 and no difference between the women and men was observed (p = 0.09). Additionally, fasting plasma glucose (FPG) was significantly associated with serum Se level (β = -0.07 ± 0.03, p = 0.02, analysis adjusted for age, sex and BMI). Furthermore, sex shows significant interaction with FPG on the serum Se levels (p = 0.01). A follow-up analysis revealed the particular association between FPG and Se levels in women (β = -0.10 ± 0.04, p = 0.01). In conclusion, our data evidenced a women-specific association between FPG and serum Se levels in a sample of adults from southern Mexico.
Collapse
Affiliation(s)
- María Judith Rios-Lugo
- Sección de Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSaB), Universidad Autónoma de San Luis Potosí, Avda Sierra Leona 550, San Luis 78210, San Luis Potosí, Mexico
- Unidad de Posgrado, Facultad de Enfermería y Nutrición, Universidad Autónoma de San Luis Potosí, Avda. Niño Artillero 130, San Luis Potosí 78210, San Luis Potosí, Mexico
| | - Ana Gabriela Palos-Lucio
- Unidad de Posgrado, Facultad de Enfermería y Nutrición, Universidad Autónoma de San Luis Potosí, Avda. Niño Artillero 130, San Luis Potosí 78210, San Luis Potosí, Mexico
| | - Claudia Inés Victoria-Campos
- Sección de Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSaB), Universidad Autónoma de San Luis Potosí, Avda Sierra Leona 550, San Luis 78210, San Luis Potosí, Mexico
- Unidad de Posgrado, Facultad de Enfermería y Nutrición, Universidad Autónoma de San Luis Potosí, Avda. Niño Artillero 130, San Luis Potosí 78210, San Luis Potosí, Mexico
| | - Angel Lugo-Trampe
- Facultad de Medicina Humana, Campus IV, Universidad Autónoma de Chiapas, Carretera a Puerto Madero Km 1.5, Tapachula 30580, Chiapas, Mexico
| | - Karina Del Carmen Trujillo-Murillo
- Facultad de Medicina Humana, Campus IV, Universidad Autónoma de Chiapas, Carretera a Puerto Madero Km 1.5, Tapachula 30580, Chiapas, Mexico
| | - Maximiliano Arahon López-García
- Facultad de Medicina Humana, Campus IV, Universidad Autónoma de Chiapas, Carretera a Puerto Madero Km 1.5, Tapachula 30580, Chiapas, Mexico
| | - Marisol Espinoza-Ruiz
- Facultad de Ciencias Químicas, Campus IV, Universidad Autónoma de Chiapas, Carretera a Puerto Madero Km 1.5, Tapachula 30580, Chiapas, Mexico
| | - Elizabeth Teresita Romero-Guzmán
- Departamento de Química, Gerencia de Ciencias Básicas, Dirección de Investigación Científica, Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, La Marquesa, Ocoyoacác 52750, State of Mexico, Mexico
| | - Héctor Hernández-Mendoza
- Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí, Altair 200, San Luis 78377, San Luis Potosí, Mexico
- Universidad del Centro de Mexico, Capitán Caldera 75, San Luis 78250, San Luis Potosí, Mexico
- Hospital General de Soledad de Graciano Sánchez, Secretaría de Salud, Valentín Amador 1112, Soledad de Graciano Sánchez 78435, San Luis Potosí, Mexico
| | - Consuelo Chang-Rueda
- Facultad de Ciencias Químicas, Campus IV, Universidad Autónoma de Chiapas, Carretera a Puerto Madero Km 1.5, Tapachula 30580, Chiapas, Mexico
| |
Collapse
|
34
|
Ojeda ML, Nogales F, Carreras O, Pajuelo E, Gallego-López MDC, Romero-Herrera I, Begines B, Moreno-Fernández J, Díaz-Castro J, Alcudia A. Different Effects of Low Selenite and Selenium-Nanoparticle Supplementation on Adipose Tissue Function and Insulin Secretion in Adolescent Male Rats. Nutrients 2022; 14:nu14173571. [PMID: 36079831 PMCID: PMC9459699 DOI: 10.3390/nu14173571] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
Adolescence is a period of intense growth and endocrine changes, and obesity and insulin-resistance processes during this period have lately been rising. Selenium (Se) homeostasis is related to lipid metabolism depending on the form and dose of Se. This study tests the actions of low-dose selenite and Se nanoparticles (SeNPs) on white (WAT) and brown adipose tissue (BAT) deposition, insulin secretion, and GPx1, IRS-1 and FOXO3a expression in the WAT of adolescent rats as regards oxidative stress, adipocyte length and adipokine secretion. Four groups of male adolescent rats were treated: control (C), low selenite supplementation (S), low SeNP supplementation (NS) and moderate SeNP supplementation (NSS). Supplementation was received orally through water intake; NS and NSS rats received two- and tenfold more Se than C animals, respectively. SeNPs were obtained by reducing Se tetrachloride in the presence of ascorbic acid. For the first time in vivo, it was demonstrated that low selenite supplementation contributed to increased adipogenesis via the insulin signaling pathway and LCN2 modulation, while low SeNP administration prevented fat depots in WAT via the decrease in insulin signaling and FOXO3a autophagy in WAT, lowering inflammation. These effects were independent of GPx1 expression or activity in WAT. These findings provide data for dietary approaches to prevent obesity and/or anorexia during adolescence. These findings may be relevant to future studies looking at a nutritional approach aimed at pre-venting obesity and/or anorexia in adolescence.
Collapse
Affiliation(s)
- María Luisa Ojeda
- Department of Physiology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Fátima Nogales
- Department of Physiology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
- Correspondence: ; Tel.: +34-954556518
| | - Olimpia Carreras
- Department of Physiology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Eloísa Pajuelo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
| | | | - Inés Romero-Herrera
- Department of Physiology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Belén Begines
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Jorge Moreno-Fernández
- Department of Physiology, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
| | - Javier Díaz-Castro
- Department of Physiology, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
| | - Ana Alcudia
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
| |
Collapse
|
35
|
Li Q, Chen KC, Bridges PJ, Matthews JC. Pituitary and liver selenoprotein transcriptome profiles of grazing steers and their sensitivity to the form of selenium in vitamin-mineral mixes. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.911094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many supplemental Se-dependent metabolic effects are mediated through the function of selenoproteins. The full complement and relative abundance of selenoproteins expressed by highly metabolic cattle tissues have not been characterized in cattle. The complement and number of selenoprotein mRNA transcripts expressed by the pituitary and liver of healthy growing beef steers (n = 7 to 8) was characterized using NanoString methodology (Study 1). Of the 25 known bovine selenoproteins, 24 (all but SELENOH) were expressed by the pituitary and 23 (all but SELENOH and SELENOV) by the liver. Transcript abundance ranged (P ≤ 0.05) over 5 orders of magnitude in the pituitary (> 10,000 for GPX3, < 10 for DIO1 and GPX2) and liver (> 35,000 for SELENOP, < 10 for DIO2). Also unknown is the sensitivity of the selenoprotein transcriptome to the form of supplemental Se. The effect of form of supplemental Se on the relative content of selenoprotein mRNA species in the pituitary and liver of steers grazing a Se-deficient (0.07 ppm Se) tall fescue pasture and consuming 85 g/d of a basal vitamin-mineral mix that contained 35 ppm Se as either ISe (n = 6), organically-bound Se (SELPLEX; OSe, n = 7 to 8), or a 1:1 blend of ISe and OSe (MIX, n = 7 to 8) was determined by RT-PCR after sequence-validating the 25 bovine selenoprotein cDNA products (Study 2). In the pituitary, Se form affected (P < 0.05) the relative content of 9 selenoprotein mRNAs and 2 selenoprotein P receptor mRNAs in a manner consistent with a greater capacity to manage against oxidative damage, maintain cellular redox balance, and have a better control of protein-folding in the pituitaries of OSe and MIX versus ISe steers. In the liver, expression of 5 selenoprotein mRNA was affected (P ≤ 0.05) in a manner consistent with MIX steers having greater redox signaling capacity and capacity to manage oxidative damage than ISe steers. We conclude that inclusion of 3 mg Se/d as OSe or MIX versus ISe, forms of supplemental Se in vitamin-mineral mixes alters the selenoprotein transcriptome in a beneficial manner in both the pituitary and liver of growing steers consuming toxic endophyte-infected tall fescue.
Collapse
|
36
|
Sahin K, Orhan C, Kucuk O, Tuzcu M, Sahin N, Ozercan IH, Sylla S, Ojalvo SP, Komorowski JR. Effects of magnesium picolinate, zinc picolinate, and selenomethionine co-supplementation on reproductive hormones, and glucose and lipid metabolism-related protein expressions in male rats fed a high-fat diet. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100081. [PMID: 35415682 PMCID: PMC8991512 DOI: 10.1016/j.fochms.2022.100081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 01/01/2023]
Abstract
This study aimed to examine the impacts of the magnesium picolinate (MgPic), zinc picolinate (ZnPic), and selenomethionine (SeMet) alone or as a combination on blood metabolites, oxidative enzymes, reproductive hormones, and glucose and lipid metabolism-related protein expressions in Wistar rats fed a high-fed diet (HFD). The rats were fed either a control, HFD, or HFD supplemented with a single (MgPic, ZnPic, SeMet) or two or three organic mineral combinations. Body weights, visceral fat, serum glucose, insulin, total cholesterol, triglycerides, leptin, malondialdehyde (MDA) concentrations as well as liver sterol regulatory element-binding protein-1c (SREBP-1c), liver X receptor alpha (LXRα), ATP citrate lyase (ACLY), fatty acid synthase (FAS), and nuclear factor kappa B (NF-κB) levels increased, while serum testosterone, follicle-stimulating hormone (FSH), luteinizing hormone (LH), sex hormone-binding globulin (SHBG), and insulin-like growth factor (IGF-1) concentrations along with liver nuclear factor erythroid 2-related factor 2 (Nrf2) levels declined in HFD rats (P < 0.05). Supplementing each organic mineral, but particularly the combination of HFD + MgPic + ZnPic + SeMet reversed the responses with various degrees. None of the organic elements alone or as a combination of two exerted a prominent effect on parameters measured. Although not additive or synergistic, the combination of all organic minerals added to HFD (HFD + MgPic + ZnPic + SeMet) provided the greatest responses.
Collapse
Affiliation(s)
- Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Osman Kucuk
- Department of Animal Nutrition, School of Veterinary Medicine, Erciyes University, 38039 Kayseri, Turkey
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Ibrahim H Ozercan
- Department of Pathology, School of Medicine, Firat University, 23119 Elazig, Turkey
| | - Sarah Sylla
- Research and Development, Nutrition 21, Harrison, NY 10577, USA
| | - Sara P Ojalvo
- Research and Development, Nutrition 21, Harrison, NY 10577, USA
| | | |
Collapse
|
37
|
Nunes FLDS, Lima SCVC, Lyra CDO, Marchioni DM, Pedrosa LFC, Barbosa Junior F, Sena-Evangelista KCM. The impact of essential and toxic elements on cardiometabolic risk factors in adults and older people. J Trace Elem Med Biol 2022; 72:126991. [PMID: 35597099 DOI: 10.1016/j.jtemb.2022.126991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/06/2022] [Accepted: 05/03/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM Evidence suggests an association between essential and toxic elements and the worsening of cardiometabolic risk factors. This study aimed to investigate the concentrations of zinc, copper, selenium, arsenic, cadmium, and mercury and their relationship with cardiometabolic risk factors in adults and older people. METHODS This cross-sectional study was carried out with 112 adults with a mean age of 59 (sd 14) years old and a BMI of 29.30 (sd 5.11) Kg/m2. The subject's weight and height were measured for body mass index (BMI) calculation, classified according to the cut-off points recommended by the World Health Organization (WHO). We evaluated sociodemographic, clinical, lifestyle, waist circumference - WC, visceral adiposity index - VAI, glycemic lipid profile, blood pressure, and high-sensitive C-reactive protein (hs-CRP). Cardiovascular risk was defined by The Global Risk Score (GRS) score. Plasma zinc, selenium, copper levels, urinary arsenic, cadmium, and mercury levels were measured using the inductively coupled plasma mass spectrometry technique (ICP-MS). RESULTS There was a negative association between urinary arsenic and VAI (β - 0.03, p < 0.01), triglycerides (β - 1.10, p < 0.01), and VLDL cholesterol (β - 0.14, p = 0.02). Plasma copper and copper/zinc ratio were positively associated with fasting glucose and hs-CRP (β 0.38, p < 0.01; β 36.02, p = 0.01, β 0.004, p < 0.01, β 0.68, p < 0.001, respectively). Urinary arsenic (β - 0.14, p = 0.04) and cadmium (β - 36.42, p = 0.04) were negatively associated with systolic blood pressure. Also, urinary cadmium was negatively associated with diastolic blood pressure (β - 21.55, p = 0.03), and urinary mercury showed an opposite behavior (β 1.45, p = 0.03). CONCLUSION Essential and toxic elements in urine and plasma could be potential biomarkers for cardiovascular risk factors. A healthy lifestyle should be adopted; in addition, government policies should be developed to guarantee sustainable production and a safe environment.
Collapse
Affiliation(s)
- Francisca Leide da Silva Nunes
- Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, 3000 - Lagoa Nova, 59078-900 Natal, Rio Grande do Norte, Brazil.
| | - Severina Carla Vieira Cunha Lima
- Department of Nutrition, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, 3000 - Lagoa Nova, 59078-900 Natal, Rio Grande do Norte, Brazil.
| | - Clélia de Oliveira Lyra
- Department of Nutrition, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, 3000 - Lagoa Nova, 59078-900 Natal, Rio Grande do Norte, Brazil.
| | - Dirce Maria Marchioni
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo Campus, Av. Dr. Arnaldo, 715 - Cerqueira César, 01246-904 São Paulo, SP, Brazil.
| | - Lucia Fatima Campos Pedrosa
- Department of Nutrition, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, 3000 - Lagoa Nova, 59078-900 Natal, Rio Grande do Norte, Brazil.
| | - Fernando Barbosa Junior
- Laboratory of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto Campus, Av. do Café, s/n - Monte Alegre, Ribeirão Preto, 14040-903 São Paulo, SP, Brazil.
| | | |
Collapse
|
38
|
Yu R, Wang Z, Ma M, Xu P, Liu L, Tinkov AA, Lei XG, Zhou JC. Associations between Circulating SELENOP Level and Disorders of Glucose and Lipid Metabolism: A Meta-Analysis. Antioxidants (Basel) 2022; 11:1263. [PMID: 35883754 PMCID: PMC9311835 DOI: 10.3390/antiox11071263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Selenoprotein P (SELENOP) is an extracellular antioxidant, selenium transporter, and hepatokine interfering with glucose and lipid metabolism. To study the association between the circulating SELENOP concentration and glucose and lipid metabolic diseases (GLMDs), including gestational diabetes (GD), metabolic syndrome (MetS), non-alcoholic fatty liver disease, obesity, and type 2 diabetes, as well as the individual markers, a meta-analysis was conducted by searching multiple databases from their establishment through March 2022 and including 27 articles published between October 2010 and May 2021, involving 4033 participants. Participants with GLMDs had higher levels of SELENOP than those without GLMDs (standardized mean difference = 0.84, 95% CI: 0.16 to 1.51), and the SELENOP levels were positively correlated with the markers of GLMDs (pooled effect size = 0.09, 95% CI: 0.02 to 0.15). Subgroup analyses showed that the SELENOP concentrations were higher in women with GD and lower in individuals with MetS than their counterparts, respectively. Moreover, SELENOP was positively correlated with low-density lipoprotein cholesterol, but not with the other markers of GLMDs. Thus, the heterogenicity derived from diseases or disease markers should be carefully considered while interpreting the overall positive association between SELENOP and GLMDs. Studies with a larger sample size and advanced design are warranted to confirm these findings.
Collapse
Affiliation(s)
- Ruirui Yu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (R.Y.); (Z.W.); (M.M.)
| | - Zhoutian Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (R.Y.); (Z.W.); (M.M.)
| | - Miaomiao Ma
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (R.Y.); (Z.W.); (M.M.)
| | - Ping Xu
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China;
| | - Longjian Liu
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA 19104, USA;
| | - Alexey A. Tinkov
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University, 119146 Moscow, Russia;
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA;
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (R.Y.); (Z.W.); (M.M.)
- Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou 510080, China
| |
Collapse
|
39
|
Liu G, Li J, Pang B, Li Y, Xu F, Liao N, Shao D, Jiang C, Shi J. Potential role of selenium in alleviating obesity-related iron dyshomeostasis. Crit Rev Food Sci Nutr 2022; 63:10032-10046. [PMID: 35574661 DOI: 10.1080/10408398.2022.2074961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Obesity is a serious health problem in modern life and increases the risk of many comorbidities including iron dyshomeostasis. In contrast to malnourished anemia, obesity-related iron dyshomeostasis is mainly caused by excessive fat accumulation, inflammation, and disordered gut microbiota. In obesity, iron dyshomeostasis also induces disorders associated with gut microbiota, neurodegenerative injury, oxidative damage, and fat accumulation in the liver. Selenium deficiency is often accompanied by obesity or iron deficiency, and selenium supplementation has been shown to alleviate obesity and overcome iron deficiency. Selenium inhibits fat accumulation and exhibits anti-inflammatory activity. It regulates gut microbiota, prevents neurodegenerative injury, alleviates oxidative damage to the body, and ameliorates hepatic fat accumulation. These effects theoretically meet the requirements for the inhibition of factors underlying obesity-related iron dyshomeostasis. Selenium supplementation may have a potential role in the alleviation of obesity-related iron dyshomeostasis. This review verifies this hypothesis in theory. All the currently reported causes and results of obesity-related iron dyshomeostasis are reviewed comprehensively, together with the effects of selenium. The challenges and strategies of selenium supplementation are also discussed. The findings demonstrate the possibility of selenium-containing drugs or functional foods in alleviating obesity-related iron dyshomeostasis.
Collapse
Affiliation(s)
- Guanwen Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Junjun Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yinghui Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Fengqin Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| |
Collapse
|
40
|
Zavros A, Giannaki CD, Aphamis G, Roupa Z, Andreou E. The Effects of Zinc and Selenium Supplementation on Body Composition and Thyroid Function in Individuals with Overweight or Obesity: A Systematic Review. J Diet Suppl 2022:1-29. [PMID: 35532055 DOI: 10.1080/19390211.2022.2072044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
People with obesity have been found to have lower zinc (Zn) and selenium (Se) circulatory levels and abnormal thyroid function than people with normal weight. Studies about the effects of Zn and Se supplementation on body composition and thyroid function of overweight-obese people showed inconsistent results. A systematic review of randomized controlled trials was conducted to determine the effects of Ζn supplementation, Se supplementation, and their combination on body composition and thyroid function of individuals with overweight or obesity. Databases of PubMed, ScienceDirect, and Cochrane, were searched from inception to February 27, 2022, to identify relevant articles. For the assessment of the methodological quality of the studies, the Jadad scale was used. After screening the articles, thirteen studies were finally included and were analyzed using the strength of the evidence approach. Regarding the effectiveness of Zn supplementation on body composition, moderate evidence was found, while the effects of Se were found to be mixed. Zn supplementation was found to affect the thyroid function of people with overweight or obesity by increasing their free triiodothyronine (FT3) levels. However, this result is based only on one study among hypothyroid patients. At this point, the effectiveness of Zn, Se, and their combination, on the body composition and the thyroid function of people with overweight or obesity cannot safely be determined because of the controversial results, small number, and the limitations of the identified studies. The results of this systematic review must be interpreted with caution due to the limitations detected.
Collapse
Affiliation(s)
- Antonis Zavros
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | | | - George Aphamis
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - Zoe Roupa
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - Eleni Andreou
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
41
|
Selenium Supplementation during Puberty and Young Adulthood Mitigates Obesity-Induced Metabolic, Cellular and Epigenetic Alterations in Male Rat Physiology. Antioxidants (Basel) 2022; 11:antiox11050895. [PMID: 35624758 PMCID: PMC9138167 DOI: 10.3390/antiox11050895] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Selenium (Se) role in obesity is not clear. In addition, information on Se’s role in male physiology, specifically in obesity, is scarce. We conducted this study to evaluate the efficacy of Se supplementation, specifically during puberty until young adulthood, against obesity-induced deregulation of metabolic, cellular, and epigenetic parameters in epididymal fat and/or sperm cells in a rat model. High-fat-diet consumption by male rats during puberty and young adulthood significantly increased body weight, adipocyte size, oxidative stress, deregulated expression of genes associated with inflammation (Adiponectin, IL-6, TNF-α), adipogenesis (CEBPα), estrogen biosynthesis (CYP19) and epigenetic processes in epididymal adipose tissue (Dnmt3a), as well as altered microRNA expression vital for spermatogenesis in sperm cells (miR-15b and miR-497). On the other hand, Se supplementation significantly decreased oxidative stress and mitigated these molecular/epigenetic alterations in epididymal adipose tissue or sperm cells. Our results indicate that selenium supplementation during puberty/young adulthood could improve male physiology in the context of obesity. In addition, it suggests that Se could potentially positively affect offspring health.
Collapse
|
42
|
Fiorito S, Epifano F, Palumbo L, Collevecchio C, Genovese S. A revised version of the Iwaoka’s assay: Application of hyphenated techniques. J Pharm Biomed Anal 2022; 212:114652. [DOI: 10.1016/j.jpba.2022.114652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 01/04/2023]
|
43
|
Vinceti M, Filippini T, Jablonska E, Saito Y, Wise LA. Safety of selenium exposure and limitations of selenoprotein maximization: Molecular and epidemiologic perspectives. ENVIRONMENTAL RESEARCH 2022; 211:113092. [PMID: 35259406 DOI: 10.1016/j.envres.2022.113092] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 02/08/2023]
Abstract
Recent evidence from laboratory and epidemiologic studies has shed a different light on selenium health effects and its recommended range of environmental exposure, compared with earlier research. Specifically, epidemiologic studies in Western populations have shown adverse effects of selenium exposure at low levels, sometimes below or slightly above selenium intakes needed to maximize selenoprotein expression and activity. In addition, three recent lines of evidence in molecular and biochemical studies suggest some potential drawbacks associated with selenoprotein maximization: 1) the possibility that selenoprotein upregulation is a compensatory response to oxidative challenge, induced by selenium itself or other oxidants; 2) the capacity of selenoproteins to trigger tumor growth in some circumstances; and 3) the deleterious metabolic effects of selenoproteins and particularly of selenoprotein P. The last observation provides a toxicological basis to explain why in humans selenium intake levels as low as 60 μg/day, still in the range of selenium exposure upregulating selenoprotein expression, might start to increase risk of type 2 diabetes. Overall, these new pieces of evidence from the literature call into question the purported benefit of selenoprotein maximization, and indicate the need to reassess selenium dietary reference values and upper intake level. This reassessment should clarify which range of selenoprotein upregulation follows restoration of adequate selenium availability and which range is driven by a compensatory response to selenium toxicity and oxidative stress.
Collapse
Affiliation(s)
- Marco Vinceti
- CREAGEN Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| | - Tommaso Filippini
- CREAGEN Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ewa Jablonska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
44
|
Ojeda ML, Carreras O, Nogales F. The Role of Selenoprotein Tissue Homeostasis in MetS Programming: Energy Balance and Cardiometabolic Implications. Antioxidants (Basel) 2022; 11:antiox11020394. [PMID: 35204276 PMCID: PMC8869711 DOI: 10.3390/antiox11020394] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/16/2022] Open
Abstract
Selenium (Se) is an essential trace element mainly known for its antioxidant, anti-inflammatory, and anti-apoptotic properties, as it is part of the catalytic center of 25 different selenoproteins. Some of them are related to insulin resistance (IR) and metabolic syndrome (MetS) generation, modulating reactive oxygen species (ROS), and the energetic sensor AMP-activated protein kinase (AMPK); they can also regulate the nuclear transcription factor kappa-B (NF-kB), leading to changes in inflammation production. Selenoproteins are also necessary for the correct synthesis of insulin and thyroid hormones. They are also involved in endocrine central regulation of appetite and energy homeostasis, affecting growth and development. MetS, a complex metabolic disorder, can appear during gestation and lactation in mothers, leading to energetic and metabolic changes in their offspring that, according to the metabolic programming theory, will produce cardiovascular and metabolic diseases later in life. However, there is a gap concerning Se tissue levels and selenoproteins’ implications in MetS generation, which is even greater during MetS programming. This narrative review also provides an overview of the existing evidence, based on experimental research from our laboratory, which strengthens the fact that maternal MetS leads to changes in Se tissue deposits and antioxidant selenoproteins’ expression in their offspring. These changes contribute to alterations in tissues’ oxidative damage, inflammation, energy balance, and tissue function, mainly in the heart. Se imbalance also could modulate appetite and endocrine energy balance, affecting pups’ growth and development. MetS pups present a profile similar to that of diabetes type 1, which also appeared when dams were exposed to low-Se dietary supply. Maternal Se supplementation should be taken into account if, during gestation and/or lactation periods, there are suspicions of endocrine energy imbalance in the offspring, such as MetS. It could be an interesting therapy to induce heart reprogramming. However, more studies are necessary.
Collapse
|
45
|
Nutritional Status Of Selenium In Overweight And Obesity: A Systematic Review And Meta-Analysis. Clin Nutr 2022; 41:862-884. [DOI: 10.1016/j.clnu.2022.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022]
|
46
|
Tarhonska K, Raimondi S, Specchia C, Wieczorek E, Reszka E, Krol MB, Gromadzinska J, Wasowicz W, Socha K, Borawska MH, Jablonska E. Association of allelic combinations in selenoprotein and redox related genes with markers of lipid metabolism and oxidative stress - multimarkers analysis in a cross-sectional study. J Trace Elem Med Biol 2022; 69:126873. [PMID: 34695782 DOI: 10.1016/j.jtemb.2021.126873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Selenium (Se) and selenoproteins have been shown to be involved in lipid metabolism mainly due to their ability to modulate redox homeostasis in adipose tissue. The underlying mechanisms are yet to be evaluated. In the light of few data related to the association between polymorphic variants of selenoprotein encoding genes and metabolic syndrome or obesity in humans, the role of selenoprotein polymorphisms in lipid metabolism remains unclear. The aim of this study was to investigate the impact of allelic combination within selenoprotein and redox related genes on the markers of lipid metabolism and oxidative stress. METHODS The study comprised 441 healthy individuals from Poland, in the 18-74 year age group. Allelic combinations were investigated within the polymorphic variants of four selenoprotein encoding genes (GPX1 rs1050450, GPX4 rs713041, SELENOP rs3877899 and SELENOF rs5859) and the redox related gene (SOD2 rs4880). The impact of the most common allelic GPX1-GPX4-SELENOP-SELENOF-SOD2 combinations was assessed on the following markers: triglycerides (TG), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), glutathione peroxidase activities (GPX1, GPX3), lipid peroxidation (as TBARS), ceruloplasmin (Cp) and superoxide dismutase 1 (SOD1). RESULTS Multivariable analysis revealed significant associations between three allelic combinations and markers of lipid metabolism, including HDL-C and TC/HDL-C ratio (AAAAa), LDL-C (aaAaa), and triglycerides (aaaaA), whereas two allelic combinations (aAaAA, aaaAA) were associated with GPX3 activity. CONCLUSION This study confirms the possible implication of selenoproteins in lipid metabolism and warrants further research on specific allele combinations within selenoprotein and redox related genes in order to identify functional genetic combinations linked to metabolic phenotype.
Collapse
Affiliation(s)
- Kateryna Tarhonska
- Department of Translational Research, Nofer Institute of Occupational Medicine, 91-348, Lodz, Poland.
| | - Sara Raimondi
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto diRicovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.
| | - Claudia Specchia
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy.
| | - Edyta Wieczorek
- Department of Translational Research, Nofer Institute of Occupational Medicine, 91-348, Lodz, Poland.
| | - Edyta Reszka
- Department of Translational Research, Nofer Institute of Occupational Medicine, 91-348, Lodz, Poland.
| | - Magdalena Beata Krol
- Department of Biological and Environmental Monitoring, Nofer Institute of Occupational Medicine, 91-348, Lodz, Poland.
| | - Jolanta Gromadzinska
- Department of Biological and Environmental Monitoring, Nofer Institute of Occupational Medicine, 91-348, Lodz, Poland.
| | - Wojciech Wasowicz
- Department of Biological and Environmental Monitoring, Nofer Institute of Occupational Medicine, 91-348, Lodz, Poland.
| | - Katarzyna Socha
- Department of Bromatology, Faculty of Pharmacy With the Division of Laboratory Medicine, Medical University of Bialystok, 15-222, Bialystok, Poland.
| | - Maria Halina Borawska
- Department of Bromatology, Faculty of Pharmacy With the Division of Laboratory Medicine, Medical University of Bialystok, 15-222, Bialystok, Poland.
| | - Ewa Jablonska
- Department of Translational Research, Nofer Institute of Occupational Medicine, 91-348, Lodz, Poland.
| |
Collapse
|
47
|
Kim SJ, Choi MC, Park JM, Chung AS. Antitumor Effects of Selenium. Int J Mol Sci 2021; 22:11844. [PMID: 34769276 PMCID: PMC8584251 DOI: 10.3390/ijms222111844] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Functions of selenium are diverse as antioxidant, anti-inflammation, increased immunity, reduced cancer incidence, blocking tumor invasion and metastasis, and further clinical application as treatment with radiation and chemotherapy. These functions of selenium are mostly related to oxidation and reduction mechanisms of selenium metabolites. Hydrogen selenide from selenite, and methylselenol (MSeH) from Se-methylselenocyteine (MSeC) and methylseleninicacid (MSeA) are the most reactive metabolites produced reactive oxygen species (ROS); furthermore, these metabolites may involve in oxidizing sulfhydryl groups, including glutathione. Selenite also reacted with glutathione and produces hydrogen selenide via selenodiglutathione (SeDG), which induces cytotoxicity as cell apoptosis, ROS production, DNA damage, and adenosine-methionine methylation in the cellular nucleus. However, a more pronounced effect was shown in the subsequent treatment of sodium selenite with chemotherapy and radiation therapy. High doses of sodium selenite were effective to increase radiation therapy and chemotherapy, and further to reduce radiation side effects and drug resistance. In our study, advanced cancer patients can tolerate until 5000 μg of sodium selenite in combination with radiation and chemotherapy since the half-life of sodium selenite may be relatively short, and, further, selenium may accumulates more in cancer cells than that of normal cells, which may be toxic to the cancer cells. Further clinical studies of high amount sodium selenite are required to treat advanced cancer patients.
Collapse
Affiliation(s)
- Seung Jo Kim
- Sangkyungwon Integrate Medical Caner Hospital, Yeoju 12616, Gyeonggido, Korea;
| | - Min Chul Choi
- Comprehensive Gynecological Cancer Center, CHA Bundang Medical Center, Seongnam 13497, Gyeonggido, Korea;
| | - Jong Min Park
- Oriental Medicine, Daejeon University, Daejeon 34520, Korea;
| | - An Sik Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and technology, Daejeon 34141, Korea
| |
Collapse
|
48
|
Mojadadi A, Au A, Salah W, Witting P, Ahmad G. Role for Selenium in Metabolic Homeostasis and Human Reproduction. Nutrients 2021; 13:3256. [PMID: 34579133 PMCID: PMC8469766 DOI: 10.3390/nu13093256] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Selenium (Se) is a micronutrient essential for life. Dietary intake of Se within the physiological range is critical for human health and reproductive functions. Selenium levels outside the recommended range have been implicated in infertility and variety of other human diseases. However, presently it is not clear how different dietary Se sources are processed in our bodies, and in which form or how much dietary Se is optimum to maintain metabolic homeostasis and boost reproductive health. This uncertainty leads to imprecision in published dietary guidelines and advice for human daily intake of Se and in some cases generating controversies and even adverse outcomes including mortality. The chief aim for this review is to describe the sources of organic and inorganic Se, the metabolic pathways of selenoproteins synthesis, and the critical role of selenprotenis in the thyroid gland homeostasis and reproductive/fertility functions. Controversies on the use of Se in clinical practice and future directions to address these challenges are also described and discussed herein.
Collapse
Affiliation(s)
- Albaraa Mojadadi
- Molecular Biomedicine, Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (A.M.); (A.A.); (W.S.); (P.W.)
- Department of Anatomy, College of Medicine, King AbdulAziz University, Rabigh 21589, Saudi Arabia
| | - Alice Au
- Molecular Biomedicine, Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (A.M.); (A.A.); (W.S.); (P.W.)
| | - Wed Salah
- Molecular Biomedicine, Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (A.M.); (A.A.); (W.S.); (P.W.)
- Department of Anatomy, College of Medicine, Jeddah University, Jeddah 21959, Saudi Arabia
| | - Paul Witting
- Molecular Biomedicine, Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (A.M.); (A.A.); (W.S.); (P.W.)
| | - Gulfam Ahmad
- Molecular Biomedicine, Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (A.M.); (A.A.); (W.S.); (P.W.)
| |
Collapse
|
49
|
de Oliveira Campos R, de Jesus LM, Morais DA, de Sousa Júnior WT, de Oliveira Souza VC, Oliveira CA, Júnior FB, Macedo M, Hegedüs L, Ramos HE. Low urinary selenium levels are associated with iodine deficiency in Brazilian schoolchildren and adolescents. Endocrine 2021; 73:609-616. [PMID: 33719010 DOI: 10.1007/s12020-021-02681-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 02/27/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Selenium (Se) and iodine (Io) are important micronutrients for the proper functioning of the thyroid gland, as they are crucial for the synthesis and activation of the thyroid hormones (TH) triiodothyronine (T3) and thyroxine (T4). OBJECTIVE To evaluate the Se and Io nutritional status among schoolchildren. METHODOLOGY Cross-sectional, descriptive and analytical study conducted in 982 schoolchildren aged 6-14 years from public schools in the state of Bahia, Brazil. Sociodemographic and anthropometric variables, as well as urinary Se (USC) and Io concentrations (UIC) using the inductively coupled plasma mass spectrometry (ICP-MS) method and thyroid-stimulating hormone (TSH) from filter paper blood collection, were evaluated. RESULTS The median USC and UIC were 38.7 and 210.0 (IQR: 26.8-52.9 and 129.3-334.1 μg/L, respectively). The prevalence of iodine deficiency and excessive UIC were observed in 17.1% and 30.9% of schoolchildren, respectively. Concomitant low USC and IoD was found in 3.9% of schoolchildren. There was a positive correlation between USC and UIC (r = 0.60; p = 0.00). The median TSH was 0.95 (IQR: 0.69-1.30 µUI/L). CONCLUSIONS This study demonstrates that USC is a good biomarker for assessing Se status, meantime more studies are needed to establish cutoff USC in child population. Despite adequate median intake, a subgroup of schoolchildren had IoD and low USC. The correlation between UIC and USC point at the importance of two micronutrients, raising the question whether measuring Se should be included in monitoring programs that address the prevention of nutritional disturbances.
Collapse
Affiliation(s)
- Renata de Oliveira Campos
- Health and Science Center, Federal University Reconcavo of Bahia, Santo Antonio de Jesus, BA, Brazil
- Postgraduate Program in Interactive Processes of Organs and Systems, Health & Science Institute, Federal University of Bahia, Salvador, BA, Brazil
- Bioregulation Department, Health and Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| | - Lorena Maia de Jesus
- Bioregulation Department, Health and Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| | - Déborah Araújo Morais
- Laboratory of Toxicology and Essentiality of Metals, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Wellington Tavares de Sousa Júnior
- Laboratory of Toxicology and Essentiality of Metals, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Vanessa Cristina de Oliveira Souza
- Laboratory of Toxicology and Essentiality of Metals, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Clotilde Assis Oliveira
- Health and Science Center, Federal University Reconcavo of Bahia, Santo Antonio de Jesus, BA, Brazil
| | - Fernando Barbosa Júnior
- Laboratory of Toxicology and Essentiality of Metals, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Mariana Macedo
- Federal University of Jequitinhonha e Mucuri Valleys, Teófilo Otoni, Brazil
| | - Laszlo Hegedüs
- Department of Endocrinology and Metabolism, University of Southern Denmark, Odense, 5000, Denmark
| | - Helton Estrela Ramos
- Postgraduate Program in Interactive Processes of Organs and Systems, Health & Science Institute, Federal University of Bahia, Salvador, BA, Brazil.
- Bioregulation Department, Health and Science Institute, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
50
|
Kondrakhina IN, Verbenko DA, Zatevalov AM, Gatiatulina ER, Nikonorov AA, Deryabin DG, Kubanov AA. A Cross-sectional Study of Plasma Trace Elements and Vitamins Content in Androgenetic Alopecia in Men. Biol Trace Elem Res 2021; 199:3232-3241. [PMID: 33151470 DOI: 10.1007/s12011-020-02468-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022]
Abstract
Androgenetic alopecia (AGA) is the most common variant of male pattern baldness in which occurrence and development of multiple genetic, hormonal, and metabolic factors are involved. We aimed to estimate plasma element content (Mg, Ca, Zn, Cu, Se, Fe), vitamin status (B12, D, E, and folic acid) in patients with AGA using direct colorimetric tests or atomic absorption spectrometry, and the influence of these parameters in the formation of various hair loss patterns. The study included 50 patients with I-IV stages of AGA divided into two groups with normal and high levels of dihydrotestosterone compared with 25 healthy individuals. The presence of two patterns of pathological hair loss in the androgen-dependent (parietal) and androgen-independent (occipital) areas of the scalp was confirmed. It was shown that all patients with AGA have a deficiency of elements (Zn, Cu, Mg, Se) and vitamins (B12, E, D, folic acid). However, the hair loss rate was not due to their content. А positive interrelation between quantitative trichogram parameters in the occipital region and iron metabolism in pairs "hair density vs Fe" and "hair diameter vs ferritin" was shown. In turn, in the parietal region, an inverse correlation of hair diameter with plasma Cu level was found, the most pronouncing in patients with high levels of dihydrotestosterone. The obtained results indicate the importance of multiple micronutrient deficiencies in the AGA occurrence accompanied by the existence of two different hair loss patterns, differently related to the content of certain trace elements and androgens in the blood.
Collapse
Affiliation(s)
- Irina N Kondrakhina
- State Research Center of Dermatovenereology and Cosmetology, Korolenko St., 3, Bldg 6, Moscow, Russian Federation, 107076
| | - Dmitry A Verbenko
- State Research Center of Dermatovenereology and Cosmetology, Korolenko St., 3, Bldg 6, Moscow, Russian Federation, 107076
| | - Alexander M Zatevalov
- G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Admiral Makarov St., 10, 125212, Moscow, Russian Federation
| | - Eugenia R Gatiatulina
- All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Grina St., 7, Moscow, Russian Federation, 117216
| | - Alexander A Nikonorov
- State Research Center of Dermatovenereology and Cosmetology, Korolenko St., 3, Bldg 6, Moscow, Russian Federation, 107076.
| | - Dmitry G Deryabin
- State Research Center of Dermatovenereology and Cosmetology, Korolenko St., 3, Bldg 6, Moscow, Russian Federation, 107076
| | - Alexey A Kubanov
- State Research Center of Dermatovenereology and Cosmetology, Korolenko St., 3, Bldg 6, Moscow, Russian Federation, 107076
| |
Collapse
|