1
|
Sun G, Zhang RWY, Chen XY, Chen YH, Zou LH, Zhang J, Li PG, Wang K, Hu ZG. Analysis of optical properties and response mechanism of H 2S fluorescent probe based on rhodamine derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124745. [PMID: 38955071 DOI: 10.1016/j.saa.2024.124745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
H2S plays a crucial role in numerous physiological and pathological processes. In this project, a new fluorescent probe, SG-H2S, for the detection of H2S, was developed by introducing the recognition group 2,4-dinitrophenyl ether. The combination of rhodamine derivatives can produce both colorimetric reactions and fluorescence reactions. Compared with the current H2S probes, the main advantages of SG-H2S are its wide pH range (5-9), fast response (30 min), and high selectivity in competitive species (including biological mercaptan). The probe SG-H2S has low cytotoxicity and has been successfully applied to imaging in MCF-7 cells, HeLa cells, and BALB/c nude mice. We hope that SG-H2S will provide a vital method for the field of biology.
Collapse
Affiliation(s)
- Guo Sun
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China
| | - Ren-Wei-Yang Zhang
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China
| | - Xu-Yang Chen
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China
| | - Yu-Hua Chen
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China
| | - Liang-Hua Zou
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| | - Jian Zhang
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China.
| | - Ping-Gui Li
- School of Environmental Engineering, Wuxi Univerisity, Jiangsu 214105, China.
| | - Kai Wang
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China.
| | - Zhi-Gang Hu
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China.
| |
Collapse
|
2
|
Zhang Q, Zhang Y, Guo S, Wang X, Wang H. Hydrogen sulfide plays an important role by regulating microRNA in different ischemia-reperfusion injury. Biochem Pharmacol 2024; 229:116503. [PMID: 39179120 DOI: 10.1016/j.bcp.2024.116503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/28/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
MicroRNAs (miRNAs) are the short endogenous non-coding RNAs that regulate the expression of the target gene at posttranscriptional level through degrading or inhibiting the specific target messenger RNAs (mRNAs). MiRNAs regulate the expression of approximately one-third of protein coding genes, and in most cases inhibit gene expression. MiRNAs have been reported to regulate various biological processes, such as cell proliferation, apoptosis and differentiation. Therefore, miRNAs participate in multiple diseases, including ischemia-reperfusion (I/R) injury. Hydrogen sulfide (H2S) was once considered as a colorless, toxic and harmful gas with foul smelling. However, in recent years, it has been discovered that it is the third gas signaling molecule after carbon monoxide (CO) and nitric oxide (NO), with multiple important biological functions. Increasing evidence indicates that H2S plays a vital role in I/R injury through regulating miRNA, however, the mechanism has not been fully understood. In this review, we summarized the current knowledge about the role of H2S in I/R injury by regulating miRNAs, and analyzed its mechanism in detail.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yanting Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xiao Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
3
|
Hu G, Xu HD, Fang J. Sulfur-based fluorescent probes for biological analysis: A review. Talanta 2024; 279:126515. [PMID: 39024854 DOI: 10.1016/j.talanta.2024.126515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
The widespread adoption of small-molecule fluorescence detection methodologies in scientific research and industrial contexts can be ascribed to their inherent merits, including elevated sensitivity, exceptional selectivity, real-time detection capabilities, and non-destructive characteristics. In recent years, there has been a growing focus on small-molecule fluorescent probes engineered with sulfur elements, aiming to detect a diverse array of biologically active species. This review presents a comprehensive survey of sulfur-based fluorescent probes published from 2017 to 2023. The diverse repertoire of recognition sites, including but not limited to N, N-dimethylthiocarbamyl, disulfides, thioether, sulfonyls and sulfoxides, thiourea, thioester, thioacetal and thioketal, sulfhydryl, phenothiazine, thioamide, and others, inherent in these sulfur-based probes markedly amplifies their capacity for detecting a broad spectrum of analytes, such as metal ions, reactive oxygen species, reactive sulfur species, reactive nitrogen species, proteins, and beyond. Owing to the individual disparities in the molecular structures of the probes, analogous recognition units may be employed to discern diverse substrates. Subsequent to this classification, the review provides a concise summary and introduction to the design and biological applications of these probe molecules. Lastly, drawing upon a synthesis of published works, the review engages in a discussion regarding the merits and drawbacks of these fluorescent probes, offering guidance for future endeavors.
Collapse
Affiliation(s)
- Guodong Hu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China.
| | - Hua-Dong Xu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, China.
| |
Collapse
|
4
|
De Stefano S, Tiberi M, Salvatori I, De Bardi M, Gimenez J, Pirshayan M, Greco V, Borsellino G, Ferri A, Valle C, Mercuri NB, Chiurchiù V, Spalloni A, Longone P. Hydrogen Sulfide Modulates Astrocytic Toxicity in Mouse Spinal Cord Cultures: Implications for Amyotrophic Lateral Sclerosis. Antioxidants (Basel) 2024; 13:1241. [PMID: 39456494 PMCID: PMC11504967 DOI: 10.3390/antiox13101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Hydrogen sulfide (H2S), a known inhibitor of the electron transport chain, is endogenously produced in the periphery as well as in the central nervous system, where is mainly generated by glial cells. It affects, as a cellular signaling molecule, many different biochemical processes. In the central nervous system, depending on its concentration, it can be protective or damaging to neurons. In the study, we have demonstrated, in a primary mouse spinal cord cultures, that it is particularly harmful to motor neurons, is produced by glial cells, and is stimulated by inflammation. However, its role on glial cells, especially astrocytes, is still under-investigated. The present study was designed to evaluate the impact of H2S on astrocytes and their phenotypic heterogeneity, together with the functionality and homeostasis of mitochondria in primary spinal cord cultures. We found that H2S modulates astrocytes' morphological changes and their phenotypic transformation, exerts toxic properties by decreasing ATP production and the mitochondrial respiration rate, disturbs mitochondrial depolarization, and alters the energetic metabolism. These results further support the hypothesis that H2S is a toxic mediator, mainly released by astrocytes, possibly acting as an autocrine factor toward astrocytes, and probably involved in the non-cell autonomous mechanisms leading to motor neuron death.
Collapse
Affiliation(s)
- Susanna De Stefano
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (S.D.S.); (M.T.); (N.B.M.)
- Laboratory of Molecular Neurobiology, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (J.G.); (M.P.); (A.S.)
| | - Marta Tiberi
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (S.D.S.); (M.T.); (N.B.M.)
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
| | - Illari Salvatori
- Laboratory of Neurochemistry, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (I.S.); (A.F.); (C.V.)
| | - Marco De Bardi
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (M.D.B.); (G.B.)
| | - Juliette Gimenez
- Laboratory of Molecular Neurobiology, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (J.G.); (M.P.); (A.S.)
| | - Mahsa Pirshayan
- Laboratory of Molecular Neurobiology, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (J.G.); (M.P.); (A.S.)
| | - Viviana Greco
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
- Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giovanna Borsellino
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (M.D.B.); (G.B.)
| | - Alberto Ferri
- Laboratory of Neurochemistry, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (I.S.); (A.F.); (C.V.)
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00133 Rome, Italy
| | - Cristiana Valle
- Laboratory of Neurochemistry, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (I.S.); (A.F.); (C.V.)
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00133 Rome, Italy
| | - Nicola B. Mercuri
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (S.D.S.); (M.T.); (N.B.M.)
- Laboratory of Experimental Neurology, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Valerio Chiurchiù
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00133 Rome, Italy
| | - Alida Spalloni
- Laboratory of Molecular Neurobiology, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (J.G.); (M.P.); (A.S.)
| | - Patrizia Longone
- Laboratory of Molecular Neurobiology, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (J.G.); (M.P.); (A.S.)
| |
Collapse
|
5
|
Cao L, Wang XL, Chu T, Wang YW, Fan YQ, Chen YH, Zhu YW, Zhang J, Ji XY, Wu DD. Role of gasotransmitters in necroptosis. Exp Cell Res 2024; 442:114233. [PMID: 39216662 DOI: 10.1016/j.yexcr.2024.114233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Gasotransmitters are endogenous gaseous signaling molecules that can freely pass through cell membranes and transmit signals between cells, playing multiple roles in cell signal transduction. Due to extensive and ongoing research in this field, we have successfully identified many gasotransmitters so far, among which nitric oxide, carbon monoxide, and hydrogen sulfide are best studied. Gasotransmitters are implicated in various diseases related to necroptosis, such as cardiovascular diseases, inflammation, ischemia-reperfusion, infectious diseases, and neurological diseases. However, the mechanisms of their effects on necroptosis are not fully understood. This review focuses on endogenous gasotransmitter synthesis and metabolism and discusses their roles in necroptosis, aiming to offer new insights for the therapeutic approaches to necroptosis-associated diseases.
Collapse
Affiliation(s)
- Lei Cao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Xue-Li Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Wen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yong-Qi Fan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Hang Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Jing Zhang
- Department of Stomatology, The First Affiliated Hospital of Henan University, Kaifeng, Henan, 475001, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Kaifeng, Henan, 475000, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
6
|
Robinson J, Bush L, Okolie A, Muili F, Ohia S, Opere C, Mbye YFN. Roles of Prostaglandins and Hydrogen Sulfide in an Outflow Model of the Porcine Ocular Anterior Segment Ex Vivo. Pharmaceuticals (Basel) 2024; 17:1262. [PMID: 39458903 PMCID: PMC11510490 DOI: 10.3390/ph17101262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S)-releasing compounds can reduce intraocular pressure in normotensive rabbits by increasing aqueous humor (AH) outflow through the trabecular meshwork. In the present study, we investigated the contribution of endogenous H2S and the role of intramurally generated prostaglandins in the observed increase in AH outflow facility in an ex vivo porcine ocular anterior segment model. MATERIAL AND METHODS Porcine ocular anterior segment explants were perfused with Dulbecco's Modified Eagle's Medium maintained at 37 °C and gassed with 5% CO2 and 95% air under an elevated pressure of 15 mmHg for four hours. Perfusates from the anterior segment explants were collected and immediately assayed for their H2S and prostaglandin E2 content. RESULTS Elevating perfusion pressure from 7.35 to 15 mm Hg significantly (p < 0.001) increased H2S concentration in the perfusate from 0.4 ± 0.1 to 67.6 ± 3.6 nM/µg protein. In the presence of an inhibitor of cystathionine ß-synthase/cystathionine γ-lyase, aminooxyacetic acid (AOAA, 30 µM), or an inhibitor of 3-mercaptopyruvate sulfurtransferase, α-ketobutyric acid (KBA, 1 mM), the effects of elevated pressure on H2S levels in the perfusate was significant (p < 0.001). Furthermore, flurbiprofen (30 µM) and indomethacin (10 µM) attenuated the elevated pressure-induced increase in H2S levels in the perfusate. Interestingly, elevating perfusion pressure had no significant effect on PGE2 concentrations in the perfusate. While the inhibition of H2S biosynthesis by AOAA or KBA did not affect PGE2 levels in perfusate, flurbiprofen (30 µM) caused a significant (p < 0.05) decrease in the concentration of PGE2 under conditions of elevated perfusion pressure. CONCLUSIONS We conclude that the elevated perfusion pressure-induced increase in H2S concentrations depends upon the endogenous biosynthesis of H2S and intramurally produced prostaglandins in the porcine anterior segment explants. While the concentration of PGE2 in the perfusate under elevated perfusion pressure was unaffected by pretreatment with inhibitors of H2S biosynthesis, it was reduced in the presence of an inhibitor of cyclooxygenase.
Collapse
Affiliation(s)
- Jenaye Robinson
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA; (J.R.); (L.B.); (A.O.); (F.M.); (S.O.)
| | - Leah Bush
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA; (J.R.); (L.B.); (A.O.); (F.M.); (S.O.)
| | - Anthonia Okolie
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA; (J.R.); (L.B.); (A.O.); (F.M.); (S.O.)
| | - Fatima Muili
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA; (J.R.); (L.B.); (A.O.); (F.M.); (S.O.)
| | - Sunny Ohia
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA; (J.R.); (L.B.); (A.O.); (F.M.); (S.O.)
| | - Catherine Opere
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA;
| | - Ya Fatou Njie Mbye
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA; (J.R.); (L.B.); (A.O.); (F.M.); (S.O.)
| |
Collapse
|
7
|
Ji G, Zhao J, Si X, Song W. Targeting bacterial metabolites in tumor for cancer therapy: An alternative approach for targeting tumor-associated bacteria. Adv Drug Deliv Rev 2024; 211:115345. [PMID: 38834140 DOI: 10.1016/j.addr.2024.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Emerging evidence reveal that tumor-associated bacteria (TAB) can facilitate the initiation and progression of multiple types of cancer. Recent work has emphasized the significant role of intestinal microbiota, particularly bacteria, plays in affecting responses to chemo- and immuno-therapies. Hence, it seems feasible to improve cancer treatment outcomes by targeting intestinal bacteria. While considering variable richness of the intestinal microbiota and diverse components among individuals, direct manipulating the gut microbiota is complicated in clinic. Tumor initiation and progression requires the gut microbiota-derived metabolites to contact and reprogram neoplastic cells. Hence, directly targeting tumor-associated bacteria metabolites may have the potential to provide alternative and innovative strategies to bypass the gut microbiota for cancer therapy. As such, there are great opportunities to explore holistic approaches that incorporates TAB-derived metabolites and related metabolic signals modulation for cancer therapy. In this review, we will focus on key opportunistic areas by targeting TAB-derived metabolites and related metabolic signals, but not bacteria itself, for cancer treatment, and elucidate future challenges that need to be addressed in this emerging field.
Collapse
Affiliation(s)
- Guofeng Ji
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jingjing Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China
| | - Xinghui Si
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China.
| |
Collapse
|
8
|
Lorenc-Koci E, Górny M, Chwatko G, Kamińska K, Iciek M, Rogóż Z. The effect of phencyclidine-mediated blockade of NMDA receptors in the early postnatal period on glutathione and sulfur amino acid levels in the rat brain as a potential causative factor of schizophrenia-like behavior in adulthood. Pharmacol Rep 2024; 76:863-877. [PMID: 38904712 PMCID: PMC11294273 DOI: 10.1007/s43440-024-00607-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Phencyclidine, an NMDA receptor antagonist, is frequently used to model behavioral and neurochemical changes correlated with schizophrenia in laboratory animals. The present study aimed to examine the effects of repeated administration of phencyclidine during early postnatal development on the contents of glutathione and sulfur-containing amino acids, as well as the activity of antioxidant enzymes in the brain of 12-day-old rats, and schizophrenia-like symptoms in adulthood. METHODS Male Sprague-Dawley pups were administered phencyclidine (10 mg/kg) or saline subcutaneously on the postnatal days p2, p6, p9 and p12. In 12-day-old pups, 4 h after the last dose of phencyclidine, the levels of glutathione, cysteine, methionine, and homocysteine, and the enzymatic activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) were measured in the frontal cortex, hippocampus, and striatum. In 70-72-day-old rats, schizophrenia-like symptoms were assessed using behavioral tests. RESULTS Biochemical data showed that perinatal phencyclidine treatment significantly reduced glutathione and cysteine levels in all brain structures studied, methionine was diminished in the striatum, and homocysteine in both the frontal cortex and striatum. GR activity was increased in the frontal cortex while SODactivity was decreased in the hippocampus. Behaviorally, perinatal phencyclidine induced long-term deficits in social and cognitive function and a decrease in locomotor activity assessed as the time of walking. Finally, perinatal treatment with phencyclidine resulted in a significant reduction in body weight gain over time. CONCLUSION Our research provides further evidence for the usefulness of the phencyclidine-induced neurodevelopmental model of schizophrenia for studying the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Elżbieta Lorenc-Koci
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland.
| | - Magdalena Górny
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika Street, Kraków, 31-034, Poland
| | - Grażyna Chwatko
- Department of Environmental Chemistry, University of Łódź, 163 Pomorska Street, Łódź, 90-236, Poland
| | - Kinga Kamińska
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland
| | - Małgorzata Iciek
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika Street, Kraków, 31-034, Poland
| | - Zofia Rogóż
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland
| |
Collapse
|
9
|
Emre Aydıngöz S, Teimoori A, Orhan HG, Demirtaş E, Zeynalova N. A meta-analysis of animal studies evaluating the effect of hydrogen sulfide on ischemic stroke: is the preclinical evidence sufficient to move forward? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03291-5. [PMID: 39017715 DOI: 10.1007/s00210-024-03291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter that has been studied for its potential therapeutic effects, including its role in the pathophysiology and treatment of stroke. This systematic review and meta-analysis aimed to determine the sufficiency of overall preclinical evidence to guide the initiation of clinical stroke trials with H2S and provide tailored recommendations for their design. PubMed, Web of Science, Scopus, EMBASE, and MEDLINE were searched for studies evaluating the effect of any H2S donor on in vivo animal models of regional ischemic stroke, and 34 publications were identified. Pooling of the effect sizes using the random-effect model revealed that H2S decreased the infarct area by 34.5% (95% confidence interval (CI) 28.2-40.8%, p < 0.0001), with substantial variability among the studies (I2 = 89.8%). H2S also caused a 37.9% reduction in the neurological deficit score (95% CI 29.0-46.8%, p < 0.0001, I2 = 63.8%) and in the brain water content (3.2%, 95% CI 1.4-4.9%, p = 0.0014, I2 = 94.6%). Overall, the studies had a high risk of bias and low quality of evidence (median quality score 5/15, interquartile range 4-9). The majority of the included studies had a "high" or "unclear" risk of bias, and none of the studies overall had a "low" risk. In conclusion, H2S significantly improves structural and functional outcomes in in vivo animal models of ischemic stroke. However, the level of evidence from preclinical studies is not sufficient to proceed to clinical trials due to the low external validity, high risk of bias, and variable design of existing animal studies.
Collapse
Affiliation(s)
- Selda Emre Aydıngöz
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey.
| | - Ariyan Teimoori
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Halit Güner Orhan
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Elif Demirtaş
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Nargız Zeynalova
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
10
|
Göntér K, Dombi Á, Kormos V, Pintér E, Pozsgai G. Examination of the Effect of Dimethyl Trisulfide in Acute Stress Mouse Model with the Potential Involvement of the TRPA1 Ion Channel. Int J Mol Sci 2024; 25:7701. [PMID: 39062944 PMCID: PMC11277546 DOI: 10.3390/ijms25147701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Polysulfides are endogenously produced in mammals and generally associated with protective functions. Our aim was to investigate the effect of dimethyl trisulfide (DMTS) in a mouse model of acute stress. DMTS activates transient receptor potential ankyrin 1 (TRPA1) channels and leads to neuropeptide release, potentially that of substance P (SP). We hypothesize that DMTS might inhibit the degrading enzymes of endocannabinoids, so this system was also investigated as another possible pathway for mediating the effects of DMTS. Trpa1 gene wild-type (WT) and knockout (KO) mice were used to confirm the role of the TRPA1 ion channel in mediating the effects of DMTS. C57BL/6J, NK1 gene KO, and Tac1 gene KO mice were used to evaluate the effect of DMTS on the release and expression of SP. Some C57BL/6J animals were treated with AM251, an inhibitor of the cannabinoid CB1 receptor, to elucidate the role of the endocannabinoid system in these processes. Open field test (OFT) and forced swim test (FST) were performed in each mouse strain. A tail suspension test (TST) was performed in Trpa1 WT and KO animals. C-FOS immunohistochemistry was carried out on Trpa1 WT and KO animals. The DMTS treatment increased the number of highly active periods and decreased immobility time in the FST in WT animals, but had no effect on the Trpa1 KO mice. The DMTS administration induced neuronal activation in the Trpa1 WT mice in the stress-related brain areas, such as the locus coeruleus, dorsal raphe nucleus, lateral septum, paraventricular nucleus of the thalamus, and paraventricular nucleus of the hypothalamus. DMTS may have a potential role in the regulation of stress-related processes, and the TRPA1 ion channel may also be involved in mediating the effects of DMTS. DMTS can be an ideal candidate for further study as a potential remedy for stress-related disorders.
Collapse
Affiliation(s)
- Kitti Göntér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (K.G.); (V.K.); (E.P.)
| | - Ágnes Dombi
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary;
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (K.G.); (V.K.); (E.P.)
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (K.G.); (V.K.); (E.P.)
| | - Gábor Pozsgai
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary;
| |
Collapse
|
11
|
Lian J, Chen Y, Zhang Y, Guo S, Wang H. The role of hydrogen sulfide regulation of ferroptosis in different diseases. Apoptosis 2024:10.1007/s10495-024-01992-z. [PMID: 38980600 DOI: 10.1007/s10495-024-01992-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2024] [Indexed: 07/10/2024]
Abstract
Ferroptosis is a programmed cell death that relies on iron and lipid peroxidation. It differs from other forms of programmed cell death such as necrosis, apoptosis and autophagy. More and more evidence indicates that ferroptosis participates in many types of diseases, such as neurodegenerative diseases, ischemia-reperfusion injury, cardiovascular diseases and so on. Hence, clarifying the role and mechanism of ferroptosis in diseases is of great significance for further understanding the pathogenesis and treatment of some diseases. Hydrogen sulfide (H2S) is a colorless and flammable gas with the smell of rotten eggs. Many years ago, H2S was considered as a toxic gas. however, in recent years, increasing evidence indicates that it is the third important gas signaling molecule after nitric oxide and carbon monoxide. H2S has various physiological and pathological functions such as antioxidant stress, anti-inflammatory, anti-apoptotic and anti-tumor, and can participate in various diseases. It has been reported that H2S regulation of ferroptosis plays an important role in many types of diseases, however, the related mechanisms are not fully clear. In this review, we reviewed the recent literature about the role of H2S regulation of ferroptosis in diseases, and analyzed the relevant mechanisms, hoping to provide references for future in-depth researches.
Collapse
Affiliation(s)
- Jingwen Lian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yuhang Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yanting Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Shiyun Guo
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
12
|
Sekiguchi F, Tsubota M, Kawabata A. Sulfide and polysulfide as pronociceptive mediators: Focus on Ca v3.2 function enhancement and TRPA1 activation. J Pharmacol Sci 2024; 155:113-120. [PMID: 38797535 DOI: 10.1016/j.jphs.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024] Open
Abstract
Reactive sulfur species including sulfides, polysulfides and cysteine hydropersulfide play extensive roles in health and disease, which involve modification of protein functions through the interaction with metals bound to the proteins, cleavage of cysteine disulfide (S-S) bonds and S-persulfidation of cysteine residues. Sulfides over a wide micromolar concentration range enhance the activity of Cav3.2 T-type Ca2+ channels by eliminating Zn2+ bound to the channels, thereby promoting somatic and visceral pain. Cav3.2 is under inhibition by Zn2+ in physiological conditions, so that sulfides function to reboot Cav3.2 from Zn2+ inhibition and increase the excitability of nociceptors. On the other hand, polysulfides generated from sulfides activate TRPA1 channels via cysteine S-persulfidation, thereby facilitating somatic, but not visceral, pain. Thus, Cav3.2 function enhancement by sulfides and TRPA1 activation by polysulfides, synergistically accelerate somatic pain signals. The increased activity of the sulfide/Cav3.2 system, in particular, appears to have a great impact on pathological pain, and may thus serve as a therapeutic target for treatment of neuropathic and inflammatory pain including visceral pain.
Collapse
Affiliation(s)
- Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan.
| |
Collapse
|
13
|
Jones DP. Redox organization of living systems. Free Radic Biol Med 2024; 217:179-189. [PMID: 38490457 PMCID: PMC11313653 DOI: 10.1016/j.freeradbiomed.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 03/17/2024]
Abstract
Redox organization governs an underlying simplicity in living systems. Critically, redox reactions enable the essential characteristics of life: extraction of energy from the environment, use of energy to support metabolic and structural organization, use of dynamic redox responses to defend against environmental threats, and use of redox mechanisms to direct differentiation of cells and organ systems essential for reproduction. These processes are sustained through a redox context in which electron donor/acceptor couples are poised at substantially different steady-state redox potentials, some with relatively reducing steady states and others with relatively oxidizing steady states. Redox-sensitive thiols of the redox proteome, as well as low molecular weight redox-active molecules, are maintained individually by the kinetics of oxidation-reduction within this redox system. Recent research has revealed opposing network interactions of the metallome, redox proteome, metabolome and transcriptome, which appear to be an evolved redox response structure to maintain stability of an organism in the presence of variable oxidative environments. Considerable opportunity exists to improve human health through detailed understanding of these redox networks so that targeted interventions can be developed to support new avenues for redox medicine.
Collapse
Affiliation(s)
- Dean P Jones
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Whitehead Biomedical Research Building, 615 Michael St, RM205P, Atlanta, GA, 30322, USA.
| |
Collapse
|
14
|
Shi X, Li H, Guo F, Li D, Xu F. Novel ray of hope for diabetic wound healing: Hydrogen sulfide and its releasing agents. J Adv Res 2024; 58:105-115. [PMID: 37245638 PMCID: PMC10982866 DOI: 10.1016/j.jare.2023.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a long-term metabolic disease accompanied by difficulties in wound healing placing a severe financial and physical burden on patients. As one of the important signal transduction molecules, both endogenous and exogenous hydrogen sulfide (H2S) was found to promote diabetic wound healing in recent studies. H2S at physiological concentrations can not only promote cell migration and adhesion functions, but also resist inflammation, oxidative stress and inappropriate remodeling of the extracellular matrix. AIM OF REVIEW The purpose of this review is to summarize current research on the function of H2S in diabetic wound healing at all stages, and propose future directions. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, first, the various factors affecting wound healing under diabetic pathological conditions and the in vivo H2S generation pathway are briefly introduced. Second, how H2S may improve diabetic wound healing is categorized and described. Finally, we discuss the relevant H2S donors and new dosage forms, analyze and reveal the characteristics of many typical H2S donors, which may provide new ideas for the development of H2S-released agents to improve diabetic wound healing.
Collapse
Affiliation(s)
- Xinyi Shi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Fengrui Guo
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
15
|
Cao Q, Liu X, Wang Q, Liu Z, Xia Y, Xun L, Liu H. Rhodobacteraceae methanethiol oxidases catalyze methanethiol degradation to produce sulfane sulfur other than hydrogen sulfide. mBio 2024; 15:e0290723. [PMID: 38329332 PMCID: PMC10936201 DOI: 10.1128/mbio.02907-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024] Open
Abstract
Methanethiol (MT) is a sulfur-containing compound produced during dimethylsulfoniopropionate (DMSP) degradation by marine bacteria. The C-S bond of MT can be cleaved by methanethiol oxidases (MTOs) to release a sulfur atom. However, the cleaving process remains unclear, and the species of sulfur product is uncertain. It has long been assumed that MTOs produce hydrogen sulfide (H2S) from MT. Herein, we studied the MTOs in the Rhodobacteraceae family-whose members are important DMSP degraders ubiquitous in marine environments. We identified 57 MTOs from 1,904 Rhodobacteraceae genomes. These MTOs were grouped into two major clusters. Cluster 1 members share three conserved cysteine residues, while cluster 2 members contain one conserved cysteine residue. We examined the products of three representative MTOs both in vitro and in vivo. All of them produced sulfane sulfur other than H2S from MT. Their conserved cysteines are substrate-binding sites in which the MTO-S-S-CH3 complex is formed. This finding clarified the sulfur product of MTOs and enlightened the MTO-catalyzing process. Moreover, this study connected DMSP degradation with sulfane sulfur metabolism, filling a critical gap in the DMSP degradation pathway and representing new knowledge in the marine sulfur cycle field. IMPORTANCE This study overthrows a long-time assumption that methanethiol oxidases (MTOs) cleave the C-S bond of methanethiol to produce both H2S and H2O2-the former is a strong reductant and the latter is a strong oxidant. From a chemistry viewpoint, this reaction is difficult to happen. Investigations on three representative MTOs indicated that sulfane sulfur (S0) was the direct product, and no H2O2 was produced. Finally, the products of MTOs were corrected to be S0 and H2O. This finding connected dimethylsulfoniopropionate (DMSP) degradation with sulfane sulfur metabolism, filling a critical gap in the DMSP degradation pathway and representing new knowledge in the marine sulfur cycle field.
Collapse
Affiliation(s)
- Qun Cao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xuanyu Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qingda Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zongzheng Liu
- Qingdao Institute of Animal Husbandry and Veterinary Medicine, Qingdao, China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
16
|
Gao W, Liu YF, Zhang YX, Wang Y, Jin YQ, Yuan H, Liang XY, Ji XY, Jiang QY, Wu DD. The potential role of hydrogen sulfide in cancer cell apoptosis. Cell Death Discov 2024; 10:114. [PMID: 38448410 PMCID: PMC10917771 DOI: 10.1038/s41420-024-01868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
For a long time, hydrogen sulfide (H2S) has been considered a toxic compound, but recent studies have found that H2S is the third gaseous signaling molecule which plays a vital role in physiological and pathological conditions. Currently, a large number of studies have shown that H2S mediates apoptosis through multiple signaling pathways to participate in cancer occurrence and development, for example, PI3K/Akt/mTOR and MAPK signaling pathways. Therefore, the regulation of the production and metabolism of H2S to mediate the apoptotic process of cancer cells may improve the effectiveness of cancer treatment. In this review, the role and mechanism of H2S in cancer cell apoptosis in mammals are summarized.
Collapse
Affiliation(s)
- Wei Gao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
- School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
- Department of Stomatology, Huaihe Hospital of Henan University, Kaifeng, Henan, 475000, China.
| |
Collapse
|
17
|
Zineldeen DH, Mushtaq M, Haider KH. Cellular preconditioning and mesenchymal stem cell ferroptosis. World J Stem Cells 2024; 16:64-69. [PMID: 38455100 PMCID: PMC10915960 DOI: 10.4252/wjsc.v16.i2.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/26/2024] Open
Abstract
In this editorial, we comment on the article published in the recent issue of the World Journal of Stem Cells. They focus on stem cell preconditioning to prevent ferroptosis by modulating the cystathionine γ-lyase/hydrogen sulfide (H2S) pathway as a novel approach to treat vascular disorders, particularly pulmonary hypertension. Preconditioned stem cells are gaining popularity in regenerative medicine due to their unique ability to survive by resisting the harsh, unfavorable microenvironment of the injured tissue. They also secrete various paracrine factors against apoptosis, necrosis, and ferroptosis to enhance cell survival. Ferroptosis, a regulated form of cell death characterized by iron accumulation and oxidative stress, has been implicated in various pathologies encompassing degenerative disorders to cancer. The lipid peroxidation cascade initiates and sustains ferroptosis, generating many reactive oxygen species that attack and damage multiple cellular structures. Understanding these intertwined mechanisms provides significant insights into developing therapeutic modalities for ferroptosis-related diseases. This editorial primarily discusses stem cell preconditioning in modulating ferroptosis, focusing on the cystathionase gamma/H2S ferroptosis pathway. Ferroptosis presents a significant challenge in mesenchymal stem cell (MSC)-based therapies; hence, the emerging role of H2S/cystathionase gamma/H2S signaling in abrogating ferroptosis provides a novel option for therapeutic intervention. Further research into understanding the precise mechanisms of H2S-mediated cytoprotection against ferroptosis is warranted to enhance the therapeutic potential of MSCs in clinical settings, particularly vascular disorders.
Collapse
Affiliation(s)
- Doaa Hussein Zineldeen
- Basic Sciences, Sulaiman AlRajhi University, Albukairiyah 52736, AlQaseem, Saudi Arabia
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Tanta University, Tanta 6632110, Egypt
| | - Mazhar Mushtaq
- Basic Sciences, Sulaiman AlRajhi University, Albukairiyah 52736, AlQaseem, Saudi Arabia
| | - Khawaja Husnain Haider
- Basic Sciences, Sulaiman AlRajhi University, Albukairiyah 52736, AlQaseem, Saudi Arabia.
| |
Collapse
|
18
|
Zhan HQ, Zhang X, Chen XL, Cheng L, Wang X. Application of nanotechnology in the treatment of glomerulonephritis: current status and future perspectives. J Nanobiotechnology 2024; 22:9. [PMID: 38169389 PMCID: PMC10763010 DOI: 10.1186/s12951-023-02257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Glomerulonephritis (GN) is the most common cause of end-stage renal failure worldwide; in most cases, it cannot be cured and can only delay the progression of the disease. At present, the main treatment methods include symptomatic therapy, immunosuppressive therapy, and renal replacement therapy. However, effective treatment of GN is hindered by issues such as steroid resistance, serious side effects, low bioavailability, and lack of precise targeting. With the widespread application of nanoparticles in medical treatment, novel methods have emerged for the treatment of kidney diseases. Targeted transportation of drugs, nucleic acids, and other substances to kidney tissues and even kidney cells through nanodrug delivery systems can reduce the systemic effects and adverse reactions of drugs and improve treatment effectiveness. The high specificity of nanoparticles enables them to bind to ion channels and block or enhance channel gating, thus improving inflammation. This review briefly introduces the characteristics of GN, describes the treatment status of GN, systematically summarizes the research achievements of nanoparticles in the treatment of primary GN, diabetic nephropathy and lupus nephritis, analyzes recent therapeutic developments, and outlines promising research directions, such as gas signaling molecule nanodrug delivery systems and ultrasmall nanoparticles. The current application of nanoparticles in GN is summarized to provide a reference for better treatment of GN in the future.
Collapse
Affiliation(s)
- He-Qin Zhan
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xiaoxun Zhang
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
19
|
Lapenna D. Glutathione and glutathione-dependent enzymes: From biochemistry to gerontology and successful aging. Ageing Res Rev 2023; 92:102066. [PMID: 37683986 DOI: 10.1016/j.arr.2023.102066] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
The tripeptide glutathione (GSH), namely γ-L-glutamyl-L-cysteinyl-glycine, is an ubiquitous low-molecular weight thiol nucleophile and reductant of utmost importance, representing the central redox agent of most aerobic organisms. GSH has vital functions involving also antioxidant protection, detoxification, redox homeostasis, cell signaling, iron metabolism/homeostasis, DNA synthesis, gene expression, cysteine/protein metabolism, and cell proliferation/differentiation or death including apoptosis and ferroptosis. Various functions of GSH are exerted in concert with GSH-dependent enzymes. Indeed, although GSH has direct scavenging antioxidant effects, its antioxidant function is substantially accomplished by glutathione peroxidase-catalyzed reactions with reductive removal of H2O2, organic peroxides such as lipid hydroperoxides, and peroxynitrite; to this antioxidant activity also contribute peroxiredoxins, enzymes further involved in redox signaling and chaperone activity. Moreover, the detoxifying function of GSH is basically exerted in conjunction with glutathione transferases, which have also antioxidant properties. GSH is synthesized in the cytosol by the ATP-dependent enzymes glutamate cysteine ligase (GCL), which catalyzes ligation of cysteine and glutamate forming γ-glutamylcysteine (γ-GC), and glutathione synthase, which adds glycine to γ-GC resulting in GSH formation; GCL is rate-limiting for GSH synthesis, as is the precursor amino acid cysteine, which may be supplemented as N-acetylcysteine (NAC), a therapeutically available compound. After its cell export, GSH is degraded extracellularly by the membrane-anchored ectoenzyme γ-glutamyl transferase, a process occurring, as GSH synthesis and export, in the γ-glutamyl cycle. GSH degradation occurs also intracellularly by the cytoplasmic enzymatic ChaC family of γ-glutamyl cyclotransferase. Synthesis and degradation of GSH, together with its export, translocation to cell organelles, utilization for multiple essential functions, and regeneration from glutathione disulfide by glutathione reductase, are relevant to GSH homeostasis and metabolism. Notably, GSH levels decline during aging, an alteration generally related to impaired GSH biosynthesis and leading to cell dysfunction. However, there is evidence of enhanced GSH levels in elderly subjects with excellent physical and mental health status, suggesting that heightened GSH may be a marker and even a causative factor of increased healthspan and lifespan. Such aspects, and much more including GSH-boosting substances administrable to humans, are considered in this state-of-the-art review, which deals with GSH and GSH-dependent enzymes from biochemistry to gerontology, focusing attention also on lifespan/healthspan extension and successful aging; the significance of GSH levels in aging is considered also in relation to therapeutic possibilities and supplementation strategies, based on the use of various compounds including NAC-glycine, aimed at increasing GSH and related defenses to improve health status and counteract aging processes in humans.
Collapse
Affiliation(s)
- Domenico Lapenna
- Dipartimento di Medicina e Scienze dell'Invecchiamento, and Laboratorio di Fisiopatologia dello Stress Ossidativo, Center for Advanced Studies and Technology (CAST, former CeSI-MeT, Center of Excellence on Aging), Università degli Studi "G. d'Annunzio" Chieti Pescara, U.O.C. Medicina Generale 2, Ospedale Clinicizzato "Santissima Annunziata", Via dei Vestini, 66100 Chieti, Italy.
| |
Collapse
|
20
|
Pałasz A, Kistowska J, Suszka-Świtek A, Krzystanek M, Błaszczyk I, Menezes IC, Filipczyk Ł, Bogus K. Olanzapine alters the expression of gasotransmitter-related enzymes: CBS and HO-2 in the rat hippocampus and striatum. Pharmacol Rep 2023; 75:1610-1618. [PMID: 37874531 PMCID: PMC10661766 DOI: 10.1007/s43440-023-00538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Gaseous neurotransmitters have been thought to be novel factors involved in the mechanisms of mental disorders pathogenesis for quite some time. However, little is known about the potential crosstalk between neuronal gasotransmitter signaling and neuroleptics action. The present work was, therefore, focused on gene expression of H2S and CO-producing enzymes in the brains of rats chronically treated with olanzapine, an atypical antipsychotic drug. METHODS Studies were carried out on adult, male Sprague-Dawley rats that were divided into 2 groups: control and experimental animals treated with olanzapine (28-day-long intraperitoneal injection, at a dose of 5 mg/kg daily). All individuals were sacrificed under anesthesia and the whole brains excised. Immunohistochemical procedure was used for histological assessment of the whole brain and for quantitative analysis of cystathionine β-synthase (CBS) and heme oxygenase 2 (HO-2) protein distribution in selected brain structures. RESULTS Long-term treatment with olanzapine is reflected in different changes in the number of enzymes-expressing cells in the rat brain. Olanzapine decreased the number of CBS-expressing cells and possibly reduced H2S synthesis in the hippocampus and striatum. The antipsychotic administration increased the number of HO-2 immunopositive cells and probably stimulated the CO production in the hippocampus. CONCLUSIONS Modulatory effect of olanzapine on cellular mechanisms of gasotransmitter synthesis may be an alternative way of their pharmacological action.
Collapse
Affiliation(s)
- Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ul. Medyków18, 40-752, Katowice, Poland.
| | - Julia Kistowska
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ul. Medyków18, 40-752, Katowice, Poland
| | - Aleksandra Suszka-Świtek
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ul. Medyków18, 40-752, Katowice, Poland
| | - Marek Krzystanek
- Department and Clinic of Psychiatric Rehabilitation, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Ul. Ziołowa 45/47, 40-635, Katowice, Poland
| | - Iwona Błaszczyk
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ul. Medyków18, 40-752, Katowice, Poland
| | - Itiana Castro Menezes
- Department of Neurosciences and Behaviour, Faculty of Medicine, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Łukasz Filipczyk
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ul. Medyków18, 40-752, Katowice, Poland
| | - Katarzyna Bogus
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ul. Medyków18, 40-752, Katowice, Poland
| |
Collapse
|
21
|
Górny M, Bilska-Wilkosz A, Iciek M, Rogóż Z, Lorenc-Koci E. Treatment with aripiprazole and N-acetylcysteine affects anaerobic cysteine metabolism in the hippocampus and reverses schizophrenia-like behavior in the neurodevelopmental rat model of schizophrenia. FEBS J 2023; 290:5773-5793. [PMID: 37646112 DOI: 10.1111/febs.16944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/25/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
Preclinical and clinical studies have shown that the antipsychotic drug aripiprazole and the antioxidant N-acetylcysteine have unique biological properties. The aim of the study was to investigate, in a rat model of schizophrenia, the effects of chronic administration of these drugs on schizophrenia-like behaviors and anaerobic cysteine metabolism in the hippocampus (HIP). The schizophrenia-type changes were induced in Sprague-Dawley rats by repeated administration of the glutathione synthesis inhibitor l-butionine-(S,R)-sulfoximine in combination with the dopamine reuptake inhibitor GBR 12909 in the early postnatal period. Adult model rats were chronically treated with aripiprazole (0.3 mg·kg-1 , i.p.) or N-acetylcysteine (30 mg·kg-1 , orally), and their effects on schizophrenia-like behaviors were assessed using the social interaction test and novel object recognition test. In the HIP, the level of anaerobic cysteine metabolites, H2 S, and bound sulfane sulfur were determined by a fluorescence method, while the expression of H2 S-synthetizing enzymes: cystathionine β-synthase (CBS) and mercaptopyruvate sulfurtransferase (MST) by western blot. Long-term treatment with aripiprazole or N-acetylcysteine reversed social and cognitive deficits and reduced the exploratory behaviors. In the HIP of 16-day-old model pups, H2 S levels and MST protein expression were significantly decreased. In adult model rats, H2 S levels remained unchanged, bound sulfane sulfur significantly increased, and the expression of CBS and MST slightly decreased. The studied drugs significantly reduced the level of bound sulfane sulfur and the expression of tested enzymes. The reduction in bound sulfane sulfur level coincided with the attenuation of exploratory behavior, suggesting that modulation of anaerobic cysteine metabolism in the HIP may have therapeutic potential in schizophrenia.
Collapse
Affiliation(s)
- Magdalena Górny
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Bilska-Wilkosz
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | - Małgorzata Iciek
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | - Zofia Rogóż
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | |
Collapse
|
22
|
Rumbeiha WK, Kim DS, Min A, Nair M, Giulivi C. Disrupted brain mitochondrial morphology after in vivo hydrogen sulfide exposure. Sci Rep 2023; 13:18129. [PMID: 37875542 PMCID: PMC10598273 DOI: 10.1038/s41598-023-44807-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Changes in mitochondrial dynamics are often associated with dietary patterns, medical treatments, xenobiotics, and diseases. Toxic exposures to hydrogen sulfide (H2S) harm mitochondria by inhibiting Complex IV and via other mechanisms. However, changes in mitochondrial dynamics, including morphology following acute exposure to H2S, are not yet fully understood. This study followed mitochondrial morphology changes over time after a single acute LCt50 dose of H2S by examining electron microscopy thalami images of surviving mice. Our findings revealed that within the initial 48 h after H2S exposure, mitochondrial morphology was impaired by H2S, supported by the disruption and scarcity of the cristae, which are required to enhance the surface area for ATP production. At the 72-h mark point, a spectrum of morphological cellular changes was observed, and the disordered mitochondrial network, accompanied by the probable disruption of mitophagy, was tied to changes in mitochondrial shape. In summary, this study sheds light on how acute exposure to high levels of H2S triggers alterations in mitochondrial shape and structure as early as 24 h that become more evident at 72 h post-exposure. These findings underscore the impact of H2S on mitochondrial function and overall cellular health.
Collapse
Affiliation(s)
- Wilson K Rumbeiha
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| | - Dong-Suk Kim
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Angela Min
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Maya Nair
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDH, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
23
|
Noguchi N, Saito Y, Niki E. Actions of Thiols, Persulfides, and Polysulfides as Free Radical Scavenging Antioxidants. Antioxid Redox Signal 2023; 39:728-743. [PMID: 37154744 PMCID: PMC10619894 DOI: 10.1089/ars.2022.0191] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/10/2023]
Abstract
Significance: The essential roles of thiol compounds as redox signaling mediators and protectors have been established. Recently, the roles of persulfides and polysulfides as mediators involved in numerous physiological processes have been revealed. Recent Advances: Recently, it became possible to detect and measure persulfides and polysulfides in human fluids and tissues and their physiological functions, including cellular signaling and protection against oxidative stress, have been reported, but the underlying mechanisms and dynamics remain elusive. Critical Issues: Physiological functions of thiol compounds have been studied, focusing primarily on two-electron redox reactions. In contrast, the contribution of one-electron redox mechanisms, that is, free radical-mediated oxidation and antioxidation, has received much less attention. Considering the important effects of free radical-mediated oxidation of biological molecules on pathophysiology, the antioxidant functions of thiol compounds as free radical scavengers are challenging issues. Future Directions: The antioxidant actions and dynamics of thiols, hydropersulfides, and hydropolysulfides as free radical scavenging antioxidants and their physiological significance remain to be established. Antioxid. Redox Signal. 39, 728-743.
Collapse
Affiliation(s)
- Noriko Noguchi
- The Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Etsuo Niki
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Japan
| |
Collapse
|
24
|
Córdova JA, Palermo JC, Estrin DA, Bari SE, Capece L. Binding mechanism of disulfide species to ferric hemeproteins: The case of metmyoglobin. J Inorg Biochem 2023; 247:112313. [PMID: 37467661 DOI: 10.1016/j.jinorgbio.2023.112313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 07/01/2023] [Indexed: 07/21/2023]
Abstract
The interactions of the heme iron of hemeproteins with sulfide and disulfide compounds are of potential interest as physiological signaling processes. While the interaction with hydrogen sulfide has been described computationally and experimentally, the reaction with disulfide, and specifically the molecular mechanism for ligand binding has not been studied in detail. In this work, we study the association process for disulfane and its conjugate base disulfanide at different pH conditions. Additionally, by means of advanced sampling techniques based on multiple steered molecular dynamics, we provide free energy profiles for ligand migration for both acid/base species, showing a similar behavior to the previously reported for the related H2S/HS¯ pair. Finally, we studied the ligand interchange reaction (H2O/H2S, HS¯ and H2O/HSSH, HSS¯) by means of hybrid quantum mechanics-molecular mechanics calculations. We show that the anionic species are able to displace more efficiently the H2O bound to the iron, and that the H-bond network in the distal cavity can help the neutral species to perform the reaction. Altogether, we provide a molecular explanation for the experimental information and show that the global association process depends on a fine balance between the migration towards the active site and the ligand interchange reaction.
Collapse
Affiliation(s)
- Jonathan Alexis Córdova
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| | - Juan Cruz Palermo
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| | - Darío A Estrin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| | - Sara E Bari
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina..
| | - Luciana Capece
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina..
| |
Collapse
|
25
|
Palermo JC, Colombo MC, Scocozza MF, Murgida DH, Estrin DA, Bari SE. Reduction of metmyoglobin by inorganic disulfide species. J Inorg Biochem 2023; 245:112256. [PMID: 37244768 DOI: 10.1016/j.jinorgbio.2023.112256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
The mechanism of the metal centered reduction of metmyoglobin (MbFeIII) by inorganic disulfide species has been studied by combined spectroscopic and kinetic analyses, under argon atmosphere. The process is kinetically characterized by biexponential time traces, for variable ratios of excess disulfide to protein, in the pH interval 6.6-8.0. Using UV-vis and resonance Raman spectroscopies, we observed that MbFeIII is converted into a low spin hexacoordinated ferric complex, tentatively assigned as MbFeIII(HSS-)/MbFeIII(SS2-), in an initial fast step. The complex is slowly converted into a pentacoordinated ferrous form, assigned as MbFeII according to the resonance Raman records. The reduction is a pH-dependent process, but independent of the initial disulfide concentration, suggesting the unimolecular decomposition of the intermediate complex following a reductive homolysis. We estimated the rate of the fast formation of the complex at pH 7.4 (kon = 3.7 × 103 M-1 s-1), and a pKa2 = 7.5 for the equilibrium MbFeIII(HSS-)/MbFeIII(SS2-). Also, we estimated the rate for the slow reduction at the same pH (kred = 10-2 s-1). A reaction mechanism compliant with the experimental results is proposed. This mechanistic study provides a differential kinetic signature for the reactions of disulfide compared to sulfide species on metmyoglobin, which may be considered in other hemeprotein systems.
Collapse
Affiliation(s)
- Juan Cruz Palermo
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| | - Melisa Carllinni Colombo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| | - Magalí F Scocozza
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| | - Daniel H Murgida
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| | - Darío A Estrin
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| | - Sara E Bari
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina.
| |
Collapse
|
26
|
Olivencia MA, Esposito E, Brancaleone V, Castaldo S, Cirino G, Pérez-Vizcaino F, Sorrentino R, d'Emmanuele di Villa Bianca R, Mitidieri E. Hydrogen sulfide regulates the redox state of soluble guanylate cyclase in CSE -/- mice corpus cavernosum microcirculation. Pharmacol Res 2023; 194:106834. [PMID: 37343646 DOI: 10.1016/j.phrs.2023.106834] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/29/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023]
Abstract
The corpus cavernosum (CC) is a highly vascularized tissue and represents an excellent example of microcirculation. Indeed, erectile dysfunction is considered an early index of cardiovascular disease. Hydrogen sulfide (H2S) at the vascular level is endogenously produced from L-cysteine mainly by the action of cystathionine-γ-lyase (CSE) and plays a role in CC vascular homeostasis. Here we have evaluated the involvement of the endogenous H2S in the regulation of the soluble guanylate cyclase (sCG) redox state. The lack of CSE-derived endogenous H2S, in CSE-/- mice, disrupted the eNOS/NO/sGC/PDE pathway. Indeed, the absence of CSE-derived endogenous H2S caused a significant reduction of the relaxant response to riociguat, an sGC redox-dependent stimulator. Conversely, the response to cinaciguat, an sGC redox-independent activator, was not modified. The relevance of the role played at the redox level of the endogenous H2S was confirmed by the findings that in CC harvested from CSE-/- mice there was a significant reduction of GCβ1 expression coupled with a decrease in CYP5R3, a reductase involved in the regulation of the redox state of sGC. These molecular changes driven by the lack of endogenous H2S translate into a significant reduction in cGMP levels. The replenishment of the lack of H2S with an H2S donor rescued the relaxant response to riociguat in CC of CSE-/- mice. In conclusion, the endogenous CSE-derived H2S plays a physiological key role in the regulation of the redox state of sGC in CC microcirculation.
Collapse
Affiliation(s)
- Miguel A Olivencia
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; CIBER Enfermedades Respiratorias, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Erika Esposito
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | - Sigismondo Castaldo
- U.O.C. Ricerca Formazione & Cooperazione Internazionale, A.O.R.N." Antonio Cardarelli", Naples, Italy
| | - Giuseppe Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy; Interdepartmental Centre for Sexual Medicine, University of Naples Federico II, Naples, Italy
| | - Francisco Pérez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; CIBER Enfermedades Respiratorias, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Raffaella Sorrentino
- Interdepartmental Centre for Sexual Medicine, University of Naples Federico II, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Roberta d'Emmanuele di Villa Bianca
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy; Interdepartmental Centre for Sexual Medicine, University of Naples Federico II, Naples, Italy.
| | - Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
27
|
Kei CY, Singh K, Dautov RF, Nguyen TH, Chirkov YY, Horowitz JD. Coronary "Microvascular Dysfunction": Evolving Understanding of Pathophysiology, Clinical Implications, and Potential Therapeutics. Int J Mol Sci 2023; 24:11287. [PMID: 37511046 PMCID: PMC10379859 DOI: 10.3390/ijms241411287] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Until recently, it has been generally held that stable angina pectoris (SAP) primarily reflects the presence of epicardial coronary artery stenoses due to atheromatous plaque(s), while acute myocardial infarction (AMI) results from thrombus formation on ruptured plaques. This concept is now challenged, especially by results of the ORBITA and ISCHEMIA trials, which showed that angioplasty/stenting does not substantially relieve SAP symptoms or prevent AMI or death in such patients. These disappointing outcomes serve to redirect attention towards anomalies of small coronary physiology. Recent studies suggest that coronary microvasculature is often both structurally and physiologically abnormal irrespective of the presence or absence of large coronary artery stenoses. Structural remodelling of the coronary microvasculature appears to be induced primarily by inflammation initiated by mast cell, platelet, and neutrophil activation, leading to erosion of the endothelial glycocalyx. This leads to the disruption of laminar flow and the facilitation of endothelial platelet interaction. Glycocalyx shedding has been implicated in the pathophysiology of coronary artery spasm, cardiovascular ageing, AMI, and viral vasculitis. Physiological dysfunction is closely linked to structural remodelling and occurs in most patients with myocardial ischemia, irrespective of the presence or absence of large-vessel stenoses. Dysfunction includes the impairment of platelet and vascular responsiveness to autocidal coronary vasodilators, such as nitric oxide, prostacyclin, and hydrogen sulphide, and predisposes both to coronary vasoconstriction and to a propensity for microthrombus formation. These findings emphasise the need for new directions in medical therapeutics for patients with SAP, as well as a wide range of other cardiovascular disorders.
Collapse
Affiliation(s)
- Chun Yeung Kei
- Department of Medicine, University of Adelaide, Adelaide 5371, Australia
| | - Kuljit Singh
- Department of Medicine, Griffith University, Southport 4111, Australia
- Gold Coast University Hospital, Gold Coast 4215, Australia
| | - Rustem F Dautov
- Department of Medicine, University of Queensland, Woolloongabba 4102, Australia
- Prince Charles Hospital, Brisbane 4032, Australia
| | - Thanh H Nguyen
- Department of Medicine, University of Adelaide, Adelaide 5371, Australia
- Northern Adelaide Local Health Network, Adelaide 5000, Australia
| | - Yuliy Y Chirkov
- Department of Medicine, University of Adelaide, Adelaide 5371, Australia
- Basil Hetzel Institute for Translational Research, Adelaide 5011, Australia
| | - John D Horowitz
- Department of Medicine, University of Adelaide, Adelaide 5371, Australia
- Basil Hetzel Institute for Translational Research, Adelaide 5011, Australia
| |
Collapse
|
28
|
Ishkaeva RA, Khaertdinov NN, Yakovlev AV, Esmeteva MV, Salakhieva DV, Nizamov IS, Sitdikova GF, Abdullin TI. Characterization of Glutathione Dithiophosphates as Long-Acting H 2S Donors. Int J Mol Sci 2023; 24:11063. [PMID: 37446245 DOI: 10.3390/ijms241311063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Considering the important cytoprotective and signaling roles but relatively narrow therapeutic index of hydrogen sulfide (H2S), advanced H2S donors are required to achieve a therapeutic effect. In this study, we proposed glutathione dithiophosphates as new combination donors of H2S and glutathione. The kinetics of H2S formation in dithiophosphate solutions suggested a continuous H2S release by the donors, which was higher for the dithiophosphate of reduced glutathione than oxidized glutathione. The compounds, unlike NaHS, inhibited the proliferation of C2C12 myoblasts at submillimolar concentrations due to an efficient increase in intracellular H2S. The H2S donors more profoundly affected reactive oxygen species and reduced glutathione levels in C2C12 myocytes, in which these parameters were elevated compared to myoblasts. Oxidized glutathione dithiophosphate as well as control donors exerted antioxidant action toward myocytes, whereas the effect of reduced glutathione dithiophosphate at (sub-)micromolar concentrations was rather modulating. This dithiophosphate showed an enhanced negative inotropic effect mediated by H2S upon contraction of the atrial myocardium, furthermore, its activity was prolonged and reluctant for washing. These findings identify glutathione dithiophosphates as redox-modulating H2S donors with long-acting profile, which are of interest for further pharmacological investigation.
Collapse
Affiliation(s)
- Rezeda A Ishkaeva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Nail N Khaertdinov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Aleksey V Yakovlev
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Marina V Esmeteva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Diana V Salakhieva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Ilyas S Nizamov
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
| | - Guzel F Sitdikova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Timur I Abdullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| |
Collapse
|
29
|
Wu X, Fan K, Wang Q, Cao Q, Chen C, Xun L, Liu H. Investigating the debrominations of a subset of brominated flame retardants by biogenic reactive sulfur species. ENVIRONMENT INTERNATIONAL 2023; 174:107873. [PMID: 36933304 DOI: 10.1016/j.envint.2023.107873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Brominated flame retardants (BFRs) are persistent organic pollutants. Many bacteria are able to debrominate BFRs, but the underlying mechanism is unclear. Herein, we discovered that reactive sulfur species (RSS), which have strong reductive activity and are commonly present in bacteria, might be one of the reasons leading to such ability. Experiments performed with RSS (H2S and HSSH) and BFRs indicated that RSS can debrominate BFRs via two different mechanisms simultaneously: the substitutive debromination that generates thiol-BFRs and the reductive debromination that generates hydrogenated BFRs. Debromination reactions rapidly happened under neutral pH and ambient temperature, and the debromination degree was around 30% - 55% in one hour. Two Pseudomonas strains, Pseudomonas sp. C27 and Pseudomonas putida B6-2 both produced extracellular RSS and showed debromination activity. C27 debrominated HBCD, TBECH, and TBP by 5.4%, 17.7%, and 15.9% in two days. Whereas, B6-2 debrominated the three BFRs by 0.4%, 0.6%, and 0.3% in two days. The two bacteria produced different amounts and species of RSS, which were likely responsible for the contrasted degrees of the debromination. Our finding unveiled a novel, non-enzymatic debromination mechanism that many bacteria may possess. RSS producing bacteria have potentials to contribute to bioremediation of BFRs-polluted environments.
Collapse
Affiliation(s)
- Xiaohua Wu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266200, China
| | - Kaili Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Qingda Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266200, China
| | - Qun Cao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266200, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266200, China; School of Molecular Biosciences, Washington State University, Pullman, WA 991647520, USA.
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266200, China.
| |
Collapse
|
30
|
Emre Aydıngöz S, Teimoori A, Orhan HG, Efe OE, Kibaroğlu S, Erdem ŞR. Effect of hydrogen sulfide on ischemia-reperfusion injury of kidney: A systematic review and meta-analysis of in vivo animal studies. Eur J Pharmacol 2023; 943:175564. [PMID: 36736943 DOI: 10.1016/j.ejphar.2023.175564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/14/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Hydrogen sulfide (H2S) has been shown to be effective against kidney ischemia-reperfusion injury (IRI) in animal studies. We aimed to evaluate the current evidence from in vivo animal studies for the protective effects of H2S against kidney IRI by systematically reviewing the literature and performing a meta-analysis. Based on the preregistered protocol (PROSPERO: CRD42021295469); PubMed, Medline, Embase, Web of Science, and Scopus were searched to identify in vivo animal studies evaluating the effect of H2S against kidney IRI. Standardized mean difference (SMD) with 95% confidence interval (CI) was calculated and pooled using random-effects meta-analysis. Twenty-two articles complied with eligibility criteria, from which the creatinine levels of 152 control animals and 182 animals treated with H2S from 27 individual experiments were pooled. H2S treatment significantly decreased serum creatinine (SMD = -1.82 [95% CI -1.12, -2.51], p < 0.0001), blood urea nitrogen (-2.50 [-1.46, -3.54], p < 0.0001), tissue malondialdehyde (-2.59 [-3.30, -1.88], p < 0.0001), tunel positive cells (-3.16 [-4.38, -1.94], p < 0.0001), and tubular damage score (-2.01 [-3.03, -0.99], p < 0.0001). There was a high heterogeneity across studies (I2 = 83.5% for serum creatinine level). In meta-regression analysis, the type of H2S donor and its application time accounted for 11.3% (p = 0.025) and 16.6% (p = 0.039) of heterogeneity, respectively. Accordingly, H2S protects the kidney against IRI only if it is given as GYY4137 before or during ischemia. Although H2S is a potential candidate against kidney IRI, further well-designed preclinical studies focusing on GYY4137 are warranted before clinical implication.
Collapse
Affiliation(s)
- Selda Emre Aydıngöz
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey.
| | - Arıyan Teimoori
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Halit Güner Orhan
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Oğuzhan Ekin Efe
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Seda Kibaroğlu
- Department of Pharmacology, Başkent University Institute of Health Sciences, Ankara, Turkey
| | - Ş Remzi Erdem
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
31
|
Xia Y, Zhang W, He K, Bai L, Miao Y, Liu B, Zhang X, Jin S, Wu Y. Hydrogen sulfide alleviates lipopolysaccharide-induced myocardial injury through TLR4-NLRP3 pathway. Physiol Res 2023; 72:15-25. [PMID: 36545872 PMCID: PMC10069815 DOI: 10.33549/physiolres.934928] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
Abstract
To investigate the effect of hydrogen sulfide (H2S) on myocardial injury in sepsis-induced myocardial dysfunction (SIMD), male C57BL/6 mice were intraperitoneally injected with lipopolysaccharide (LPS) (10 mg/kg, i.p.) to induce cardiac dysfunction without or with the H2S donor sodium hydrosulfide (NaHS) (50 µmol/kg, i.p.) administration 3 h after LPS injection. Six hours after the LPS injection, echocardiography, cardiac hematoxylin and eosin (HE) staining, myocardial damage and inflammatory biomarkers and Western blot results were analyzed. In mice, the administration of LPS decreased left ventricular ejection fraction (LVEF) by 30 % along with lowered H2S levels (35 % reduction). It was observed that cardiac troponin I (cTnI), tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta) levels were all increased (by 0.22-fold, 2000-fold and 0.66-fold respectively). HE staining revealed structural damage and inflammatory cell infiltration in the myocardial tissue after LPS administration. Moreover, after 6 h of LPS treatment, toll-like receptor 4 (TLR4) and nod-like receptor protein 3 (NLRP3) expressions were up-regulated 2.7-fold and 1.6-fold respectively. When compared to the septic mice, NaHS enhanced ventricular function (by 0.19-fold), decreased cTnI, TNF-alpha, and IL-1beta levels (by 11 %, 33 %, and 16 % respectively) and downregulated TLR4 and NLRP3 expressions (by 64 % and 31 % respectively). Furthermore, NaHS did not further improve cardiac function and inflammation in TLR4-/- mice or mice in which NLRP3 activation was inhibited by MCC950, after LPS injection. In conclusion, these findings imply that decreased endogenous H2S promotes the progression of SIMD, whereas exogenous H2S alleviates SIMD by inhibiting inflammation via the TLR4-NLRP3 pathway suppression.
Collapse
Affiliation(s)
- Y Xia
- Department of Physiology, Hebei Medical University, Hebei, China. ;
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
H2S Donors with Cytoprotective Effects in Models of MI/R Injury and Chemotherapy-Induced Cardiotoxicity. Antioxidants (Basel) 2023; 12:antiox12030650. [PMID: 36978898 PMCID: PMC10045576 DOI: 10.3390/antiox12030650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous signaling molecule that greatly influences several important (patho)physiological processes related to cardiovascular health and disease, including vasodilation, angiogenesis, inflammation, and cellular redox homeostasis. Consequently, H2S supplementation is an emerging area of interest, especially for the treatment of cardiovascular-related diseases. To fully unlock the medicinal properties of hydrogen sulfide, however, the development and refinement of H2S releasing compounds (or donors) are required to augment its bioavailability and to better mimic its natural enzymatic production. Categorizing donors by the biological stimulus that triggers their H2S release, this review highlights the fundamental chemistry and releasing mechanisms of a range of H2S donors that have exhibited promising protective effects in models of myocardial ischemia-reperfusion (MI/R) injury and cancer chemotherapy-induced cardiotoxicity, specifically. Thus, in addition to serving as important investigative tools that further advance our knowledge and understanding of H2S chemical biology, the compounds highlighted in this review have the potential to serve as vital therapeutic agents for the treatment (or prevention) of various cardiomyopathies.
Collapse
|
33
|
He B, Zhang Z, Huang Z, Duan X, Wang Y, Cao J, Li L, He K, Nice EC, He W, Gao W, Shen Z. Protein persulfidation: Rewiring the hydrogen sulfide signaling in cell stress response. Biochem Pharmacol 2023; 209:115444. [PMID: 36736962 DOI: 10.1016/j.bcp.2023.115444] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
The past few decades have witnessed significant progress in the discovery of hydrogen sulfide (H2S) as a ubiquitous gaseous signaling molecule in mammalian physiology, akin to nitric oxide and carbon monoxide. As the third gasotransmitter, H2S is now known to exert a wide range of physiological and cytoprotective functions in the biological systems. However, endogenous H2S concentrations are usually low, and its potential biologic mechanisms responsible have not yet been fully clarified. Recently, a growing body of evidence has demonstrated that protein persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH) elicited by H2S, is a fundamental mechanism of H2S-mediated signaling pathways. Persulfidation, as a biological switch for protein function, plays an important role in the maintenance of cell homeostasis in response to various internal and external stress stimuli and is also implicated in numerous diseases, such as cardiovascular and neurodegenerative diseases and cancer. In this review, the biological significance of protein persulfidation by H2S in cell stress response is reviewed providing a framework for understanding the multifaceted roles of H2S. A mechanism-guided perspective can help open novel avenues for the exploitation of therapeutics based on H2S-induced persulfidation in the context of diseases.
Collapse
Affiliation(s)
- Bo He
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhe Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhao Huang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xirui Duan
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Wang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jiangjun Cao
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Kai He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing 400038, China.
| | - Wei Gao
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Lihuili Hospital, Ningbo University, Ningbo 315040, Zhejiang, China.
| |
Collapse
|
34
|
Kiss H, Örlős Z, Gellért Á, Megyesfalvi Z, Mikáczó A, Sárközi A, Vaskó A, Miklós Z, Horváth I. Exhaled Biomarkers for Point-of-Care Diagnosis: Recent Advances and New Challenges in Breathomics. MICROMACHINES 2023; 14:391. [PMID: 36838091 PMCID: PMC9964519 DOI: 10.3390/mi14020391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Cancers, chronic diseases and respiratory infections are major causes of mortality and present diagnostic and therapeutic challenges for health care. There is an unmet medical need for non-invasive, easy-to-use biomarkers for the early diagnosis, phenotyping, predicting and monitoring of the therapeutic responses of these disorders. Exhaled breath sampling is an attractive choice that has gained attention in recent years. Exhaled nitric oxide measurement used as a predictive biomarker of the response to anti-eosinophil therapy in severe asthma has paved the way for other exhaled breath biomarkers. Advances in laser and nanosensor technologies and spectrometry together with widespread use of algorithms and artificial intelligence have facilitated research on volatile organic compounds and artificial olfaction systems to develop new exhaled biomarkers. We aim to provide an overview of the recent advances in and challenges of exhaled biomarker measurements with an emphasis on the applicability of their measurement as a non-invasive, point-of-care diagnostic and monitoring tool.
Collapse
Affiliation(s)
- Helga Kiss
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Zoltán Örlős
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Áron Gellért
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Zsolt Megyesfalvi
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Angéla Mikáczó
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Anna Sárközi
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Attila Vaskó
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Zsuzsanna Miklós
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Ildikó Horváth
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| |
Collapse
|
35
|
Akahoshi N, Hasegawa R, Yamamoto S, Takemoto R, Yoshizawa T, Kamichatani W, Ishii I. Differential Roles of Cystathionine Gamma-Lyase and Mercaptopyruvate Sulfurtransferase in Hapten-Induced Colitis and Contact Dermatitis in Mice. Int J Mol Sci 2023; 24:ijms24032659. [PMID: 36768979 PMCID: PMC9916491 DOI: 10.3390/ijms24032659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023] Open
Abstract
Hydrogen sulfide (H2S) has been shown to act as both anti-inflammatory and pro-inflammatory mediators. Application of H2S donors generally protects against inflammation; however, experimental results using mice lacking endogenous H2S-producing enzymes, such as cystathionine γ-lyase (CTH) and mercaptopyruvate sulfurtransferase (MPST), are often contradictory. We herein examined two types of model hapten-induced inflammation models, colitis (an inflammatory bowel disease model of mucosal immunity) and contact dermatitis (a type IV allergic model of systemic immunity), in CTH-deficient (Cth-/-) and MPST-deficient (Mpst-/-) mice. Both mice exhibited no significant alteration from wild-type mice in trinitrobenzene sulfonic acid (Th1-type hapten)-induced colitis (a Crohn's disease model) and oxazolone (Th1/Th2 mix-type; Th2 dominant)-induced colitis (an ulcerative colitis model). However, Cth-/- (not Mpst-/-) mice displayed more exacerbated phenotypes in trinitrochlorobenzene (TNCB; Th1-type)-induced contact dermatitis, but not oxazolone, at the delayed phase (24 h post-administration) of inflammation. CTH mRNA expression was upregulated in the TNCB-treated ears of both wild-type and Mpst-/- mice. Although mRNA expression of pro-inflammatory cytokines (IL-1β and IL-6) was upregulated in both early (2 h) and delayed phases of TNCB-triggered dermatitis in all genotypes, that of Th2 (IL-4) and Treg cytokines (IL-10) was upregulated only in Cth-/- mice, when that of Th1 cytokines (IFNγ and IL-2) was upregulated in wild-type and Mpst-/- mice at the delayed phase. These results suggest that (upregulated) CTH or H2S produced by it helps maintain Th1/Th2 balance to protect against contact dermatitis.
Collapse
|
36
|
Domán A, Dóka É, Garai D, Bogdándi V, Balla G, Balla J, Nagy P. Interactions of reactive sulfur species with metalloproteins. Redox Biol 2023; 60:102617. [PMID: 36738685 PMCID: PMC9926313 DOI: 10.1016/j.redox.2023.102617] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Reactive sulfur species (RSS) entail a diverse family of sulfur derivatives that have emerged as important effector molecules in H2S-mediated biological events. RSS (including H2S) can exert their biological roles via widespread interactions with metalloproteins. Metalloproteins are essential components along the metabolic route of oxygen in the body, from the transport and storage of O2, through cellular respiration, to the maintenance of redox homeostasis by elimination of reactive oxygen species (ROS). Moreover, heme peroxidases contribute to immune defense by killing pathogens using oxygen-derived H2O2 as a precursor for stronger oxidants. Coordination and redox reactions with metal centers are primary means of RSS to alter fundamental cellular functions. In addition to RSS-mediated metalloprotein functions, the reduction of high-valent metal centers by RSS results in radical formation and opens the way for subsequent per- and polysulfide formation, which may have implications in cellular protection against oxidative stress and in redox signaling. Furthermore, recent findings pointed out the potential role of RSS as substrates for mitochondrial energy production and their cytoprotective capacity, with the involvement of metalloproteins. The current review summarizes the interactions of RSS with protein metal centers and their biological implications with special emphasis on mechanistic aspects, sulfide-mediated signaling, and pathophysiological consequences. A deeper understanding of the biological actions of reactive sulfur species on a molecular level is primordial in H2S-related drug development and the advancement of redox medicine.
Collapse
Affiliation(s)
- Andrea Domán
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary
| | - Éva Dóka
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary
| | - Dorottya Garai
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary,Kálmán Laki Doctoral School, University of Debrecen, 4012, Debrecen, Hungary
| | - Virág Bogdándi
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary
| | - György Balla
- Kálmán Laki Doctoral School, University of Debrecen, 4012, Debrecen, Hungary,Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary,ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, 4012, Debrecen, Hungary
| | - József Balla
- Kálmán Laki Doctoral School, University of Debrecen, 4012, Debrecen, Hungary,ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, 4012, Debrecen, Hungary,Department of Nephrology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, 4012, Debrecen, Hungary
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary; Department of Anatomy and Histology, ELKH Laboratory of Redox Biology, University of Veterinary Medicine, 1078, Budapest, Hungary; Chemistry Institute, University of Debrecen, 4012, Debrecen, Hungary.
| |
Collapse
|
37
|
Cerebroprotective actions of hydrogen sulfide in the epileptic brain in newborn pigs. Pediatr Res 2023:10.1038/s41390-023-02486-5. [PMID: 36694027 PMCID: PMC10363572 DOI: 10.1038/s41390-023-02486-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND Neonatal epileptic seizures cause postictal dysregulation of cerebral blood flow. Hydrogen sulfide (H2S), a mediator with vasodilator and antioxidant properties, is produced in the brain by astrocyte cystathionine β-synthase (CBS). This study investigated whether H2S improves the cerebral vascular outcome of seizures. METHODS Epileptic seizures were induced in newborn pigs using bicuculline. The effects of the CBS inhibitor aminooxyacetate (AOA) and the H2S donor NaHS on cerebral vascular outcome of seizures were examined in live pigs, cerebral endothelial cells, and cortical astrocytes. RESULTS Brain H2S was elevated during seizures. AOA blocked H2S and reduced functional hyperemia in the epileptic brain. The endothelium- and astrocyte-dependent vasodilation of pial arterioles was impaired 48 h after seizures suggesting cerebral vascular dysfunction. Systemic NaHS elevated brain H2S and blocked reactive oxygen species in the epileptic brain and in primary endothelial cells and astrocytes during inflammatory and excitotoxic conditions. Postictal cerebrovascular dysfunction was exaggerated in H2S-inhibited pigs and minimized in NaHS-treated pigs. CONCLUSIONS H2S elevation in the epileptic brain via activation of CBS contributes to functional hyperemia and exhibits cerebroprotective properties. The H2S donor NaHS enhances brain antioxidant defense and provides a therapeutic approach for preventing adverse cerebral vascular outcome of neonatal epileptic seizures. IMPACT Epileptic seizures in neonates lead to prolonged postictal cerebral vascular dysregulation. The role of hydrogen sulfide (H2S), a mediator with vasodilator and antioxidant properties, in the epileptic brain has been explored. Astrocytes are major sites of enzymatic H2S production in the epileptic brain. Postictal cerebral vascular dysfunction is exaggerated when astrocyte H2S production is pharmacologically inhibited during seizures. Postictal cerebral vascular dysfunction is minimized when the brain H2S is elevated by systemic administration of NaHS during seizures. NaHS provides a therapeutic approach for improving cerebrovascular outcome of epileptic seizures via a mechanism that involves the antioxidant potential of H2S.
Collapse
|
38
|
Chen R, Peng B, Zhu P, Wang Y. Editorial: Modulation of neuronal excitability by non-neuronal cells in physiological and pathophysiological conditions. Front Cell Neurosci 2023; 17:1133445. [PMID: 36714438 PMCID: PMC9879699 DOI: 10.3389/fncel.2023.1133445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023] Open
Affiliation(s)
- Rongqing Chen
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,*Correspondence: Rongqing Chen ✉
| | - Biwen Peng
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Peimin Zhu
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, United States
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Muñoz-Vargas MA, Rodríguez-Ruiz M, González-Gordo S, Palma JM, Corpas FJ. Analysis of Plant L-Cysteine Desulfhydrase (LCD) Isozymes by Non-denaturing Polyacrylamide Gel Electrophoresis. Methods Mol Biol 2023; 2642:233-240. [PMID: 36944882 DOI: 10.1007/978-1-0716-3044-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Hydrogen sulfide (H2S) is a signaling molecule that achieves different regulatory functions in animal and plant cells. The cytosolic enzyme L-cysteine desulfhydrase (LCD; EC 4.4.1.28) catalyzes the conversion of cysteine (L-Cys) to pyruvate and ammonium with the concomitant generation of H2S, this enzyme being considered one of the main sources of H2S in higher plants. Using non-denaturing polyacrylamide gel electrophoresis (PAGE) in combination with a specific assay for LCD activity, the present protocol allows identifying diverse LCD isozymes present in different organs (roots, shoots, leaves, and fruits) and plant species including pea, garlic, Arabidopsis, and pepper.
Collapse
Affiliation(s)
- María A Muñoz-Vargas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain.
| |
Collapse
|
40
|
Strutynska N, Strutynskyi R, Mys L, Luchkova A, Korkach Y, Goshovska Y, Chorna S, Sagach V. Exercise restores endogenous H 2 S synthesis and mitochondrial function in the heart of old rats. Eur J Clin Invest 2022; 52:e13829. [PMID: 35778885 DOI: 10.1111/eci.13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Ageing is accompanied by a decrease in endogenous hydrogen sulphide (H2 S) synthesis and the development of mitochondrial dysfunction. The aim of our work was to study the possible participation of exercise training-induced regulation of endogenous H2 S production in the restoration of mitochondrial function in old rats. MATERIALS AND METHODS Male rats were divided into three groups: adult, old and exercise-trained old. Exercise training of old rats was performed for 4 weeks. The mRNA expression cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) were determined using reverse transcription and real-time polymerase chain reaction analysis. Mitochondrial dysfunction was determined by mPTP opening, which was investigated by spectrophotometric registration of the swelling of mitochondria isolated from the rat heart. We also studied the effect of exercise on H2 S content, oxidative stress and mtNOS activity. RESULTS Exercise training in old animals significantly increased the expression of H2 S-synthesizing enzymes CSE and 3-MST and restored endogenous H2 S production in cardiac tissue and cardiac mitochondria to levels of adult animals. In addition, the training significantly reduced oxidative stress in old rats, in particular the rate of formation of •O2 - and H2 O2 , diene conjugates and malondialdehyde levels in the mitochondria of the heart. Simultaneously, in the hearts of these animals, resistance of mPTP to the inducer of its opening of calcium ions was increased. CONCLUSIONS Thus, exercise training restores endogenous H2 S production, and significantly reduces oxidative stress in cardiac mitochondria of old rats that are associated with the inhibition of calcium-induced mPTP opening as an indicator of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Nataliіa Strutynska
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ruslan Strutynskyi
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Lidiia Mys
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Alina Luchkova
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yuliia Korkach
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yulia Goshovska
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Snizhana Chorna
- Department of Physiology and Cell Biology, Ohio State University, Columbus, Ohio, USA
| | - Vadym Sagach
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
41
|
Ascenção K, Lheimeur B, Szabo C. Regulation of CyR61 expression and release by 3-mercaptopyruvate sulfurtransferase in colon cancer cells. Redox Biol 2022; 56:102466. [PMID: 36113340 PMCID: PMC9482125 DOI: 10.1016/j.redox.2022.102466] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 10/28/2022] Open
Abstract
Cysteine-rich angiogenic inducer 61 (CYR61, also termed CCN family member 1 or CCN1), is a matricellular protein encoded by the CYR61 gene. This protein has been implicated in the regulation of various cancer-associated processes including tumor growth, angiogenesis, tumor cell adhesion, migration, and invasion as well as the regulation of anticancer drug resistance. Hydrogen sulfide (H2S) is a gaseous endogenous biological mediator, involved in the regulation of cellular bioenergetics, angiogenesis, invasion, and chemotherapeutic resistance in several types of cancer. H2S is produced by three enzymes: cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current studies were set up to investigate if CBS or 3-MST regulates CyR61 in colon cancer cells in the context of the regulation of proliferation, migration, and survival. The study mainly utilized HCT116 cells, in which two of the principal H2S-producing enzymes, CBS and 3-MST, are highly expressed. The H2S donor GYY4137 and the polysulfide donor Na2S3 activated the CyR61 promoter in a concentration-dependent fashion. Aminooxyacetic acid (AOAA), a pharmacological inhibitor of CBS as well as HMPSNE: 2-[(4-hydroxy-6- methylpyrimidin-2-yl)sulfanyl]-1-(naphthalen-1-yl)ethan-1-one, a pharmacological inhibitor of 3-MST inhibited CyR61 mRNA expression. This effect was more pronounced in response to HMPSNE than to AOAA and occurred through the modulation of S1PR via ATF1 and CREB. CyR61 was found to play an active, but relatively minor role in maintaining colon cell proliferation. HMPSNE markedly suppressed the secretion/release of CyR61 from the colon cancer cells. Moreover, HMPSNE promoted colon cancer cell apoptosis; endogenously produced CyR61 was found to counteract this effect, at least in part via RhoA activation. Taken together, we conclude that the upregulation of 3-MST in cancer cells exerts cytoprotective effects and confers the cancer cells a more aggressive phenotype - at least in part via the modulation of CyR61 expression and release.
Collapse
Affiliation(s)
- Kelly Ascenção
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Bassma Lheimeur
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Csaba Szabo
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
42
|
Szabo C. Novel Regulatory Roles of Hydrogen Sulfide in Health and Disease. Biomolecules 2022; 12:biom12101372. [PMID: 36291581 PMCID: PMC9599174 DOI: 10.3390/biom12101372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
43
|
Extract of Acanthopanax senticosus and Its Components Interacting with Sulfide, Cysteine and Glutathione Increase Their Antioxidant Potencies and Inhibit Polysulfide-Induced Cleavage of Plasmid DNA. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175735. [PMID: 36080497 PMCID: PMC9457693 DOI: 10.3390/molecules27175735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022]
Abstract
Aqueous root extract from Acanthopanax senticosus (ASRE) has a wide range of medicinal effects. The present work was aimed at studying the influence of sulfide, cysteine and glutathione on the antioxidant properties of ASRE and some of its selected phytochemical components. Reduction of the 2-(4-carboxyphenyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazol-1-yloxy-3-oxide (●cPTIO) stable radical and plasmid DNA (pDNA) cleavage in vitro assays were used to evaluate antioxidant and DNA-damaging properties of ASRE and its individual components. We found that the interaction of ASRE and its two components, caffeic acid and chlorogenic acid (but not protocatechuic acid and eleutheroside B or E), with H2S/HS−, cysteine or glutathione significantly increased the reduction of the ●cPTIO radical. In contrast, the potency of ASRE and its selected components was not affected by Na2S4, oxidized glutathione, cystine or methionine, indicating that the thiol group is a prerequisite for the promotion of the antioxidant effects. ASRE interacting with H2S/HS− or cysteine displayed a bell-shaped effect in the pDNA cleavage assay. However, ASRE and its components inhibited pDNA cleavage induced by polysulfides. In conclusion, we suggest that cysteine, glutathione and H2S/HS− increase antioxidant properties of ASRE and that changes of their concentrations and the thiol/disulfide ratio can influence the resulting biological effects of ASRE.
Collapse
|
44
|
Mi L, Lin B, Jin J, Zhang H, Chen H, Cheng Z, Wu J, Liu H. Development of an activatable red emissive fluorescent probe for imaging hydrogen disulfide upregulation in living cells and zebrafish. Anal Chim Acta 2022; 1226:340288. [DOI: 10.1016/j.aca.2022.340288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/01/2022]
|
45
|
Panagaki T, Pecze L, Randi EB, Nieminen AI, Szabo C. Role of the cystathionine β-synthase / H 2S pathway in the development of cellular metabolic dysfunction and pseudohypoxia in down syndrome. Redox Biol 2022; 55:102416. [PMID: 35921774 PMCID: PMC9356176 DOI: 10.1016/j.redox.2022.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/10/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Overexpression of the transsulfuration enzyme cystathionine-β-synthase (CBS), and overproduction of its product, hydrogen sulfide (H2S) are recognized as potential pathogenetic factors in Down syndrome (DS). The purpose of the study was to determine how the mitochondrial function and core metabolic pathways are affected by DS and how pharmacological inhibition of CBS affects these parameters. METHODS 8 human control and 8 human DS fibroblast cell lines have been subjected to bioenergetic and fluxomic and proteomic analysis with and without treatment with a pharmacological inhibitor of CBS. RESULTS DS cells exhibited a significantly higher CBS expression than control cells, and produced more H2S. They also exhibited suppressed mitochondrial electron transport and oxygen consumption and suppressed Complex IV activity, impaired cell proliferation and increased ROS generation. Inhibition of H2S biosynthesis with aminooxyacetic acid reduced cellular H2S, improved cellular bioenergetics, attenuated ROS and improved proliferation. 13C glucose fluxomic analysis revealed that DS cells exhibit a suppression of the Krebs cycle activity with a compensatory increase in glycolysis. CBS inhibition restored the flux from glycolysis to the Krebs cycle and reactivated oxidative phosphorylation. Proteomic analysis revealed no CBS-dependent alterations in the expression level of the enzymes involved in glycolysis, oxidative phosphorylation and the pentose phosphate pathway. DS was associated with the dysregulation of several components of the autophagy network; CBS inhibition normalized several of these parameters. CONCLUSIONS Increased H2S generation in DS promotes pseudohypoxia and contributes to cellular metabolic dysfunction by causing a shift from oxidative phosphorylation to glycolysis.
Collapse
Affiliation(s)
- Theodora Panagaki
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Laszlo Pecze
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Elisa B Randi
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Anni I Nieminen
- Metabolomics Unit, Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Csaba Szabo
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
46
|
A Caveat When Using Alkyl Halides as Tagging Agents to Detect/Quantify Reactive Sulfur Species. Antioxidants (Basel) 2022; 11:antiox11081583. [PMID: 36009302 PMCID: PMC9405219 DOI: 10.3390/antiox11081583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Using alkyl halides to tag reactive sulfur species (RSSs) (H2S, per/polysulfide, and protein-SSH) is an extensively applied approach. The underlying supposition is that, as with thiols, RSS reacts with alkyl halides via a nucleophilic substitution reaction. We found that this supposition is facing a challenge. RSS also initiates a reductive dehalogenation reaction, which generates the reduced unloaded tag and oxidized RSS. Therefore, RSS content in bio-samples might be underestimated, and its species might not be precisely determined when using alkyl halide agents for its analysis. To calculate to the extent of this underestimation, further studies are still required.
Collapse
|
47
|
Shieh M, Ni X, Xu S, Lindahl SP, Yang M, Matsunaga T, Flaumenhaft R, Akaike T, Xian M. Shining a light on SSP4: A comprehensive analysis and biological applications for the detection of sulfane sulfurs. Redox Biol 2022; 56:102433. [PMID: 35987086 PMCID: PMC9411671 DOI: 10.1016/j.redox.2022.102433] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Abstract
Fluorescent probes are useful tools for the detection of sulfane sulfurs in biological systems. In this work, we report the development of SSP4, a widely used probe generated in our laboratory. We describe its evolution, preparation, and physical/chemical properties. Fluorescence analyses of SSP4 determined its high selectivity and sensitivity to sulfane sulfurs, even with the interfering presence of other species, such as amino acids and metal ions. Protocols for using SSP4 in a relatively quick and simple manner for the detection of persulfidated proteins, including papain, BSA, and GAPDH were developed. The method was then applied to human protein disulfide isomerase (PDI), leading to the discovery that persulfidation can occur at PDI's non-active site cysteines, and that PDI reductase activity is affected by sulfane sulfur treatment. Protocols for using SSP4 for the bioimaging of exogenous and endogenous sulfane sulfurs in different -cell lines were also established. These results should guide further applications of SSP4.
Collapse
Affiliation(s)
- Meg Shieh
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Xiang Ni
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Shi Xu
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Stephen P Lindahl
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02115, USA
| | - Tetsuro Matsunaga
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02115, USA
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
48
|
Hydrogen Sulfide Ameliorated High Choline-Induced Cardiac Dysfunction by Inhibiting cGAS-STING-NLRP3 Inflammasome Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1392896. [PMID: 35910846 PMCID: PMC9337966 DOI: 10.1155/2022/1392896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
Abstract
Although it is an essential nutrient, high choline intake directly or indirectly via its metabolite is associated with increased risk of cardiovascular disease, the mechanism of which remains to be elucidated. The present study was performed to investigate whether hydrogen sulfide (H2S) was involved in high choline-induced cardiac dysfunction and explore the potential mechanisms. We found that ejection fraction (EF) and fractional shortening (FS), the indicators of cardiac function measured by echocardiography, were significantly decreased in mice fed a diet containing 1.3% choline for 4 months as compared to the control, while applying 3,3-dimethyl-1-butanol (DMB) to suppress trimethylamine N-oxide (TMAO, a metabolite of choline) generation ameliorated the cardiac function. Subsequently, we found that feeding choline or TMAO significantly increased the protein levels of cyclic GMP-AMP (cGAMP) synthase (cGAS), stimulator of interferon genes (STING), NOD-like receptor protein 3 (NLRP3), caspase-1, and interleukin-1β (IL-1β) as compared to the control, which indicated the activation of cGAS-STING-NLRP3 inflammasome axis. Moreover, the protein expression of cystathionine γ-lyase (CSE), the main enzyme for H2S production in the cardiovascular system, was significantly increased after dietary supplementation with choline, but the plasma H2S levels were significantly decreased. To observe the effect of endogenous H2S, CSE knockout (KO) mice were used, and we found that the EF, FS, and plasma H2S levels in WT mice were significantly decreased after dietary supplementation with choline, while there was no difference between CSE KO + control and CSE KO + choline group. To observe the effect of exogenous H2S, mice were intraperitoneally injected with sodium hydrosulfide (NaHS, a H2S donor) for 4 months, and we found that NaHS improved the cardiac function and reduced the protein levels of cGAS, STING, NLRP3, caspase-1, and IL-1β in mice receiving dietary choline. In conclusion, our studies revealed that high choline diet decreased plasma H2S levels and induced cardiac dysfunction via cGAS-STING-NLRP3 inflammasome axis while H2S treatment could restore the cardiac function by inhibiting cGAS-STING-NLRP3 inflammasome axis.
Collapse
|
49
|
Corpas FJ, González-Gordo S, Rodríguez-Ruiz M, Muñoz-Vargas MA, Palma JM. Thiol-based Oxidative Posttranslational Modifications (OxiPTMs) of Plant Proteins. PLANT & CELL PHYSIOLOGY 2022; 63:889-900. [PMID: 35323963 PMCID: PMC9282725 DOI: 10.1093/pcp/pcac036] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/21/2022] [Indexed: 06/01/2023]
Abstract
The thiol group of cysteine (Cys) residues, often present in the active center of the protein, is of particular importance to protein function, which is significantly determined by the redox state of a protein's environment. Our knowledge of different thiol-based oxidative posttranslational modifications (oxiPTMs), which compete for specific protein thiol groups, has increased over the last 10 years. The principal oxiPTMs include S-sulfenylation, S-glutathionylation, S-nitrosation, persulfidation, S-cyanylation and S-acylation. The role of each oxiPTM depends on the redox cellular state, which in turn depends on cellular homeostasis under either optimal or stressful conditions. Under such conditions, the metabolism of molecules such as glutathione, NADPH (reduced nicotinamide adenine dinucleotide phosphate), nitric oxide, hydrogen sulfide and hydrogen peroxide can be altered, exacerbated and, consequently, outside the cell's control. This review provides a broad overview of these oxiPTMs under physiological and unfavorable conditions, which can regulate the function of target proteins.
Collapse
Affiliation(s)
- Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - Salvador González-Gordo
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - Marta Rodríguez-Ruiz
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - María A Muñoz-Vargas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - José M Palma
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| |
Collapse
|
50
|
Chen Y, Mao G, Zhang Z, Zhao T, Feng W, Yang L, Wu X. The protective effect of C3G against Pb-induced learning and memory impairments through cAMP-PKA-CREB signaling pathway in rat hippocampus. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|