1
|
Chen Y, Tu Y, Cao J, Wang Y, Ren Y. Rhein Alleviates Doxorubicin-Induced Myocardial Injury by Inhibiting the p38 MAPK/HSP90/c-Jun/c-Fos Pathway-Mediated Apoptosis. Cardiovasc Toxicol 2024; 24:1139-1150. [PMID: 39240427 DOI: 10.1007/s12012-024-09917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Doxorubicin (Dox) has been limited in clinical application due to its cardiac toxicity that varies with the dose. This study aimed to explore how Rhein modulates Dox-induced myocardial toxicity. The general condition and echocardiographic changes of mice were observed to evaluate cardiac function and structure, with myocardial cell injury and apoptosis checked by TUNEL and HE staining. The ELISA assessed markers of myocardial damage and inflammation. The TCMSP and SwissTargetPrediction databases were used to retrieve Rhein's targets while GeneCards was used to find genes related to Dox-induced myocardial injury. Intersection genes were analyzed by Protein-Protein Interaction Networks. The core network genes underwent GO and KEGG enrichment analysis using R software. Western blot was used to detect protein expression. Compared to the Dox group, there was no remarkable difference in heart mass /body mass ratio in the Rhein+Dox group. However, heart mass/tibia length increased. Mice in the Rhein+Dox group had significantly increased LVEF, LVPWs, and LVFS compared to those in the Dox group. Myocardial cell damage, inflammation, and apoptosis significantly reduced in the Rhein+Dox group compared to the model group. Eleven core network genes were selected. Further, Rhein+Dox group showed significantly downregulated expression of p38/p-p38, HSP90AA1, c-Jun/p-c-Jun, c-Fos/p-c-Fos, Bax, and cleaved-caspase-3/caspase-3 while Bcl-2 expression significantly upregulated compared to the Dox group. The study suggests that Rhein mediates cardioprotection against Dox-induced myocardial injury, at least partly, by influencing multiple core genes in the MAPK signaling pathway to inhibit myocardial cell apoptosis.
Collapse
Affiliation(s)
- Yong Chen
- Chongqing Hospital of Traditional Chinese Medicine, No.6, Panxi 7th Road, Jiangbei District, Chongqing, 400021, China
| | - Yadan Tu
- Chongqing Hospital of Traditional Chinese Medicine, No.6, Panxi 7th Road, Jiangbei District, Chongqing, 400021, China
| | - Jin Cao
- Chongqing Hospital of Traditional Chinese Medicine, No.6, Panxi 7th Road, Jiangbei District, Chongqing, 400021, China
| | - Yigang Wang
- Chongqing Hospital of Traditional Chinese Medicine, No.6, Panxi 7th Road, Jiangbei District, Chongqing, 400021, China
| | - Yi Ren
- Chongqing Hospital of Traditional Chinese Medicine, No.6, Panxi 7th Road, Jiangbei District, Chongqing, 400021, China.
| |
Collapse
|
2
|
Zhang H, Tang M, Liu Q, Wu D, Sun B, Dong J, Guan L, Luo J, Zeng M. PAT exposure caused human hepatocytes apoptosis and induced mice subacute liver injury by activating oxidative stress and the ERS-associated PERK pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177003. [PMID: 39433224 DOI: 10.1016/j.scitotenv.2024.177003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
With the widespread use of antimony compounds in synthetic materials and processing, the occupational exposure and environmental pollution caused by antimony have attracted the attention of researchers. Studies have shown that antimony compounds can cause liver damage, but the mechanism has not yet been elucidated. In this study, we used the trivalent potassium antimony tartrate (PAT) to infect L02 hepatocytes and Kunming (KM) mice to establish an antimony-induced apoptosis model of L02 cells and a subacute liver injury model of KM mice. We found that PAT exposure caused hepatocyte apoptosis and was accompanied by oxidative stress and endoplasmic reticulum stress (ERS), and the ERS-associated PERK pathway was activated. Further experimental results showed that N-acetyl-l-cysteine (NAC) pretreatment or silencing of the PERK gene in L02 cells reduced PAT-induced apoptosis. The activity of SOD and CAT in treated L02 cells was increased, the malondialdehyde content in L02 cells and liver tissues was decreased, and the content of ERS-related proteins GRP78 and CHOP, as well as the content of PERK-pathway-related proteins p-PERK/PERK, p-eif2α/eif2α and ATF4 protein were significantly reduced. Overall, PAT exposure triggered hepatocyte apoptosis and liver injury by inducing oxidative stress and activating the ERS-associated PERK pathway; however, this effect could be alleviated by NAC intervention or silencing of PERK in hepatocytes.
Collapse
Affiliation(s)
- Hualing Zhang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Meng Tang
- Center for Disease Control and Prevention, Jiulongpo District, Chongqing 400050, PR China
| | - Qin Liu
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Die Wu
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Bing Sun
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Jingbang Dong
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Lan Guan
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Jianlan Luo
- Institute of Geophysical & Geochemical Exploration of Hunan, Changsha 411100, PR China
| | - Ming Zeng
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China.
| |
Collapse
|
3
|
Li S, Xiong Q, Shen Y, Lin J, Zhang L, Wu Y, Jin J, Luan X. Toosendanin: upgrade of an old agent in cancer treatment. Chin J Nat Med 2024; 22:887-899. [PMID: 39428181 DOI: 10.1016/s1875-5364(24)60693-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 10/22/2024]
Abstract
Toosendanin (TSN), a tetracyclic triterpenoid derived from Melia toosendan and M. azedarach, demonstrates broad application prospects in cancer treatment. Although previously employed as a pesticide, recent studies have revealed its potential therapeutic value in treating various types of cancer. TSN exerts an anticancer effect via mechanisms including proliferation inhibition, apoptosis induction, migration suppression, and angiogenesis inhibition. However, TSN's toxicity, particularly its hepatotoxicity, significantly limits its therapeutic application. This review explored the dual nature of TSN, evaluating both its anticancer potential and toxicological risks, emphasizing the importance of balancing these aspects in therapeutic applications. Furthermore, we investigated the incorporation of TSN into novel therapeutic strategies, such as Proteolysis-targeting chimeras (PROTAC) technology and nanotechnology-based drug delivery systems (DDS), which enhance treatment efficacy while mitigating toxicity in normal tissues.
Collapse
Affiliation(s)
- Shuwei Li
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qingyi Xiong
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiwen Shen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinmei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Wang X, Liu G, Huan T, Wang Y, Jiang B, Liu W, Dai A, Zhang X, Yu F. Synergistic effect of chimeric antigen receptor modified with Bcl-2 on enhanced solid tumour targeting. Hum Cell 2024; 37:1421-1433. [PMID: 38878230 DOI: 10.1007/s13577-024-01088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/30/2024] [Indexed: 08/23/2024]
Abstract
Engineered T cells expressing chimeric antigen receptors (CARs) have shown remarkable therapeutic effects on haematological malignancies. However, CART cells are less effective on solid tumours mainly due to their weak persistence, which might be caused by activation-induced cell death (AICD). To overcome this limitation, CART cell with the antigen, Epidermal growth factor receptor variant III (EGFRvIII), targeting was modified to carry the anti-apoptotic molecule B cell lymphoma 2 (Bcl-2), and the final construct was named as EGFRvIII·CART-Bcl2 cells. Compared with the EGFRvIII·CART cells, EGFRvIII·CART-Bcl2 cells revealed higher capacities of proliferation, anti-apoptosis and tumour cell killing in vitro. Moreover, EGFRvIII·CART-Bcl2 cells had a longer persistence rate and exerted better anti-tumour effects than EGFRvIII·CART cells in cervical carcinoma xenograft model. Taken together, our findings suggest that incorporating anti-apoptotic molecules into CART cells may enhance its therapeutic effects against solid tumours.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Guodong Liu
- Department of General Surgery, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Tian Huan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Yuxing Wang
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Bo Jiang
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Wei Liu
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Anran Dai
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xiangzhi Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Feng Yu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
5
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
6
|
Kazak F, Akcakavak G, Alakus I, Alakus H, Kirgiz O, Karatas O, Deveci MZY, Coskun P. Proanthocyanidin alleviates testicular torsion/detorsion-induced ischemia/reperfusion injury in rats. Tissue Cell 2024; 89:102459. [PMID: 39002290 DOI: 10.1016/j.tice.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
Testicular torsion is an urological emergency and can lead to ischemia damage and testicular loss if not diagnosed in time. Proanthocyanidin is reported to have anti-inflammatory and antioxidant properties. The current study aimed to examine the possible effects of proanthocyanidin (P) on the testis in torsion/detorsion (T/D)-induced testicular ischemia/reperfusion (I/R) injury in rats. Forty rats were divided into four groups (n=10 for each): sham-operated (sham), I/R, I/R + P100 (100 mg/kg, 30 min before torsion), and I/R + P200 (200 mg/kg, 30 min before torsion). Testicular T/D was performed on the left testicle by 3 hours of torsion at 720° clockwise, followed by 3 hours of detorsion. In the I/R group, an increase in malondialdehyde (MDA) levels and a decrease in glutathione (GSH), vitamin C (Vit C), glutathione peroxidase (GPx), glucose-6-phosphate dehydrogenase (G6PD) values were determined compared to the sham group (p<0.001). Moreover, an increase in the expression of cleaved caspase-3 and Bcl2-associated X protein (Bax), a decrease in the expression of B-cell lymphoma 2 (Bcl-2) and proliferating cell nuclear antigen (PCNA) were detected in the I/R group (p<0.001). Histopathologically, it was determined that the Johnsen and Cosentino scores of the testicles were irregular in the I/R group (p<0.001). Proanthocyanidin treatment caused a decrease in MDA, cleaved caspase-3 and Bax levels and an increase in GSH, Vit C, GPx, G6PD, Bcl-2 and PCNA values. Additionally, Johnsen and Cosentino rearranged the scores. The present findings revealed the protective and curative effects of proanthocyanidin in organ damage due to testicular torsion/detorsion-induced ischemia/reperfusion with their antioxidative and antiapoptotic properties.
Collapse
Affiliation(s)
- Filiz Kazak
- Department of Biochemistry, Faculty of Veterinary Sciences, Hatay Mustafa Kemal University, Hatay, Turkey.
| | - Gokhan Akcakavak
- Department of Pathology, Faculty of Veterinary Sciences, Aksaray University, Aksaray, Turkey.
| | - Ibrahim Alakus
- Department of Surgery, Faculty of Veterinary Sciences, Hatay Mustafa Kemal University, Hatay, Turkey.
| | - Halil Alakus
- Department of Surgery, Faculty of Veterinary Sciences, Hatay Mustafa Kemal University, Hatay, Turkey.
| | - Omer Kirgiz
- Department of Surgery, Faculty of Veterinary Sciences, Hatay Mustafa Kemal University, Hatay, Turkey.
| | - Ozhan Karatas
- Department of Pathology, Faculty of Veterinary Sciences, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Mehmet Zeki Yilmaz Deveci
- Department of Surgery, Faculty of Veterinary Sciences, Hatay Mustafa Kemal University, Hatay, Turkey.
| | - Pınar Coskun
- Department of Biochemistry, Faculty of Veterinary Sciences, Hatay Mustafa Kemal University, Hatay, Turkey.
| |
Collapse
|
7
|
Rouchidane Eyitayo A, Daury L, Priault M, Manon S. The membrane insertion of the pro-apoptotic protein Bax is a Tom22-dependent multi-step process: a study in nanodiscs. Cell Death Discov 2024; 10:335. [PMID: 39043635 PMCID: PMC11266675 DOI: 10.1038/s41420-024-02108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
Membrane insertion of the pro-apoptotic protein Bax was investigated by setting up cell-free synthesis of full-length Bax in the presence of pre-formed nanodiscs. While Bax was spontaneously poorly inserted in nanodiscs, co-synthesis with the mitochondrial receptor Tom22 stimulated Bax membrane insertion. The initial interaction of Bax with the lipid bilayer exposed the hydrophobic GALLL motif in Hα1 leading to Bax precipitation through hydrophobic interactions. The same motif was recognized by Tom22, triggering conformational changes leading to the extrusion and the ensuing membrane insertion of the C-terminal hydrophobic Hα9. Tom22 was also required for Bax-membrane insertion after Bax was activated either by BH3-activators or by its release from Bcl-xL by WEHI-539. The effect of Tom22 was impaired by D154Y substitution in Bax-Hα7 and T174P substitution in Bax-Hα9, which are found in several tumors. Conversely, a R9E substitution promoted a spontaneous insertion of Bax in nanodiscs, in the absence of Tom22. Both Tom22-activated Bax and BaxR9E alone permeabilized liposomes to dextran-10kDa and formed ~5-nm-diameter pores in nanodiscs. The concerted regulation of Bax membrane insertion by Tom22 and BH3-activators is discussed.
Collapse
Affiliation(s)
| | - Laetitia Daury
- CNRS, Université de Bordeaux, UMR 5248, CBMN, Pessac, France
| | - Muriel Priault
- CNRS, Université de Bordeaux, UMR 5095, IBGC, Bordeaux, France
| | - Stéphen Manon
- CNRS, Université de Bordeaux, UMR 5095, IBGC, Bordeaux, France.
| |
Collapse
|
8
|
Shao M, Qiu Y, Shen M, Liu W, Feng D, Luo Z, Zhou Y. Procyanidin C1 inhibits bleomycin-induced pulmonary fibrosis in mice by selective clearance of senescent myofibroblasts. FASEB J 2024; 38:e23749. [PMID: 38953707 DOI: 10.1096/fj.202302547rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/05/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
Pulmonary fibrosis is a formidable challenge in chronic and age-related lung diseases. Myofibroblasts secrete large amounts of extracellular matrix and induce pro-repair responses during normal wound healing. Successful tissue repair results in termination of myofibroblast activity via apoptosis; however, some myofibroblasts exhibit a senescent phenotype and escape apoptosis, causing over-repair that is characterized by pathological fibrotic scarring. Therefore, the removal of senescent myofibroblasts using senolytics is an important method for the treatment of pulmonary fibrosis. Procyanidin C1 (PCC1) has recently been discovered as a senolytic compound with very low toxicity and few side effects. This study aimed to determine whether PCC1 could improve lung fibrosis by promoting apoptosis in senescent myofibroblasts and to investigate the mechanisms involved. The results showed that PCC1 attenuates bleomycin (BLM)-induced pulmonary fibrosis in mice. In addition, we found that PCC1 inhibited extracellular matrix deposition and promoted the apoptosis of senescent myofibroblasts by increasing PUMA expression and activating the BAX signaling pathway. Our findings represent a new method of pulmonary fibrosis management and emphasize the potential of PCC1 as a senotherapeutic agent for the treatment of pulmonary fibrosis, providing hope for patients with pulmonary fibrosis worldwide. Our results advance our understanding of age-related diseases and highlight the importance of addressing cellular senescence in treatment.
Collapse
Affiliation(s)
- Min Shao
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yujia Qiu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Mengxia Shen
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Liu
- Department of Community Nursing, Xiangya Nursing School, Central South University, Changsha, China
| | - Dandan Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ziqiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Yan Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
9
|
Park C, Cha HJ, Hwangbo H, Bang E, Kim HS, Yun SJ, Moon SK, Kim WJ, Kim GY, Lee SO, Shim JH, Choi YH. Activation of Heme Oxygenase-1 by Mangiferin in Human Retinal Pigment Epithelial Cells Contributes to Blocking Oxidative Damage. Biomol Ther (Seoul) 2024; 32:329-340. [PMID: 38586992 PMCID: PMC11063488 DOI: 10.4062/biomolther.2023.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 04/09/2024] Open
Abstract
Mangiferin is a kind of natural xanthone glycosides and is known to have various pharmacological activities. However, since the beneficial efficacy of this compound has not been reported in retinal pigment epithelial (RPE) cells, this study aimed to evaluate whether mangiferin could protect human RPE ARPE-19 cells from oxidative injury mimicked by hydrogen peroxide (H2O2). The results showed that mangiferin attenuated H2O2-induced cell viability reduction and DNA damage, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione (GSH). Mangiferin also antagonized H2O2-induced inhibition of the expression and activity of antioxidant enzymes such as manganese superoxide dismutase and GSH peroxidase, which was associated with inhibition of mitochondrial ROS production. In addition, mangiferin protected ARPE-19 cells from H2O2-induced apoptosis by increasing the Bcl-2/Bax ratio, decreasing caspase-3 activation, and blocking poly(ADP-ribose) polymerase cleavage. Moreover, mangiferin suppressed the release of cytochrome c into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Furthermore, mangiferin increased the expression and activity of heme oxygenase-1 (HO-1) and nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the inhibition of ROS production, cytoprotective and anti-apoptotic effects of mangiferin were significantly attenuated by the HO-1 inhibitor, indicating that mangiferin promoted Nrf2-mediated HO-1 activity to prevent ARPE-19 cells from oxidative injury. The results of this study suggest that mangiferin, as an Nrf2 activator, has potent ROS scavenging activity and may have the potential to protect oxidative stress-mediated ocular diseases.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49104, Republic of Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - EunJin Bang
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Seok Joong Yun
- Department of Urology, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Ansung 17546, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea
- Institute of Urotech, Cheongju 28120, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Seung-On Lee
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Jung-Hyun Shim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| |
Collapse
|
10
|
Park C, Hwangbo H, Kim SO, Noh JS, Park SH, Hong SH, Hong SH, Kim GY, Choi YH. Anthocyanins Inhibits Oxidative Injury in Human Retinal Pigment Epithelial ARPE-19 Cells via Activating Heme Oxygenase-1. J Microbiol Biotechnol 2024; 34:596-605. [PMID: 38044685 PMCID: PMC11016763 DOI: 10.4014/jmb.2310.10011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023]
Abstract
Anthocyanins belong to phenolic pigments and are known to have various pharmacological activities. This study aimed to investigate whether anthocyanins could inhibit hydrogen peroxide (H2O2)-induced oxidative damage in human retinal pigment epithelial ARPE-19 cells. Our results indicated that anthocyanins suppressed H2O2-induced genotoxicity, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione. Anthocyanins also suppressed H2O2-induced apoptosis by reversing the Bcl-2/Bax ratio and inhibiting caspase-3 activation. Additionally, anthocyanins attenuated the release of cytochrome c into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Moreover, anthocyanins increased the expression of heme oxygenase-1 (HO-1) as well as its activity, which was correlated with the phosphorylation and nuclear translocation of nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the cytoprotective and anti-apoptotic effects of anthocyanins were significantly attenuated by the HO-1 inhibitor, demonstrating that anthocyanins promoted Nrf2-induced HO-1 activity to prevent ARPE-19 cells from oxidative stress. Therefore, our findings suggest that anthocyanins, as Nrf2 activators, have potent ROS scavenging activity and may have the potential to protect ocular injury caused by oxidative stress.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Republic of Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Sung Ok Kim
- Department of Food Science and Biotechnology, College of Engineering, Kyungsung University, Busan 48434, Republic of Korea
| | - Jeong Sook Noh
- Department of Food Science & Nutrition, Tongmyong University, Busan 48520, Republic of Korea
| | - Shin-Hyung Park
- Department of Pathology, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Su Hyun Hong
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Sang Hoon Hong
- Department of Internal Medicine, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| |
Collapse
|
11
|
Tan W, Li Y, Ma L, Fu X, Long Q, Yan F, Li W, Liu X, Ding H, Wang Y, Zhang W. Exosomes of endothelial progenitor cells repair injured vascular endothelial cells through the Bcl2/Bax/Caspase-3 pathway. Sci Rep 2024; 14:4465. [PMID: 38396011 PMCID: PMC10891177 DOI: 10.1038/s41598-024-55100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/20/2024] [Indexed: 02/25/2024] Open
Abstract
The main objective of this study is to evaluate the influence of exosomes derived from endothelial progenitor cells (EPC-Exo) on neointimal formation induced by balloon injury in rats. Furthermore, the study aims to investigate the potential of EPC-Exo to promote proliferation, migration, and anti-apoptotic effects of vascular endothelial cells (VECs) in vitro. The underlying mechanisms responsible for these observed effects will also be thoroughly explored and analyzed. Endothelial progenitor cells (EPCs) was isolated aseptically from Sprague-Dawley (SD) rats and cultured in complete medium. The cells were then identified using immunofluorescence and flow cytometry. The EPC-Exo were isolated and confirmed the identities by western-blot, transmission electron microscope, and nanoparticle analysis. The effects of EPC-Exo on the rat carotid artery balloon injury (BI) were detected by hematoxylin and eosin (H&E) staining, ELISA, immunohistochemistry, immunofluorescence, western-blot and qPCR. LPS was used to establish an oxidative damage model of VECs. The mechanism of EPC-Exo repairing injured vascular endothelial cells was detected by measuring the proliferation, migration, and tube function of VECs, actin cytoskeleton staining, TUNEL staining, immunofluorescence, western-blot and qPCR. In vivo, EPC-Exo exhibit inhibitory effects on neointima formation following carotid artery injury and reduce the levels of inflammatory factors, including TNF-α and IL-6. Additionally, EPC-Exo downregulate the expression of adhesion molecules on the injured vascular wall. Notably, EPC-Exo can adhere to the injured vascular area, promoting enhanced endothelial function and inhibiting vascular endothelial hyperplasia Moreover, they regulate the expression of proteins and genes associated with apoptosis, including B-cell lymphoma-2 (Bcl2), Bcl2-associated x (Bax), and Caspase-3. In vitro, experiments further confirmed that EPC-Exo treatment significantly enhances the proliferation, migration, and tube formation of VECs. Furthermore, EPC-Exo effectively attenuate lipopolysaccharides (LPS)-induced apoptosis of VECs and regulate the Bcl2/Bax/Caspase-3 signaling pathway. This study demonstrates that exosomes derived from EPCs have the ability to inhibit excessive carotid intimal hyperplasia after BI, promote the repair of endothelial cells in the area of intimal injury, and enhance endothelial function. The underlying mechanism involves the suppression of inflammation and anti-apoptotic effects. The fundamental mechanism for this anti-apoptotic effect involves the regulation of the Bcl2/Bax/Caspase-3 signaling pathway.
Collapse
Affiliation(s)
- Wei Tan
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan, 410208, China
| | - Yanling Li
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan, 410208, China
| | - Lu Ma
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan, 410208, China
| | - Xinying Fu
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan, 410208, China
| | - Qingyin Long
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan, 410208, China
| | - Fanchen Yan
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan, 410208, China
| | - Wanyu Li
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan, 410208, China
| | - Xiaodan Liu
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan, 410208, China
| | - Huang Ding
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan, 410208, China
| | - Yang Wang
- Institute of Integrative Medicine, Key Laboratory of Hunan Province for Liver Manifestation of Traditional Chinese Medicine, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Wei Zhang
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan, 410208, China.
| |
Collapse
|
12
|
Wang W, Ling X, Wang R, Xiong H, Hu L, Yang Z, Wang H, Zhang Y, Wu W, Singh PK, Wang J, Li F, Li Q. Structure-Activity Relationship of FL118 Platform Position 7 Versus Position 9-Derived Compounds and Their Mechanism of Action and Antitumor Activity. J Med Chem 2023; 66:16888-16916. [PMID: 38100041 DOI: 10.1021/acs.jmedchem.3c01589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Structurally, FL118 is a camptothecin analogue and possesses exceptional antitumor efficacy against human cancer through a novel mechanism of action (MOA). In this report, we have synthesized and characterized 24 FL118 Position 7-substituted and 24 FL118 Position 9-substituted derivatives. The top compounds were further characterized for their MOA in colorectal cancer (CRC) models using CRC patient-derived xenograft (PDX) models and pancreatic cancer PDX models to evaluate their antitumor activities. Four FL118 Position 7-substituted derivatives showed significantly better antitumor efficacy than the FL118 Position 9-substituted derivatives. The four identified compounds also appeared to have better antitumor activity than their parental platform FL118. Interestingly, RNA-Seq analyses indicated that three of the four compounds exerted antitumor effects via an MOA similar to FL118, which provided an intriguing opportunity for follow-up studies. Extended in vivo studies revealed that FL77-6 (7-(4-ethylphenyl)-FL118), FL77-9 (7-(4-methoxylphenyl)-FL118), and FL77-24 (7-(3, 5-dimethoxyphenyl)-FL118) exhibit potential for further development toward clinical trials.
Collapse
Affiliation(s)
- Wenchao Wang
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiang Ling
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
- Canget BioTekpharma, LLC, Buffalo, New York 14203, United States
| | - Ruojiong Wang
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haonan Xiong
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liuzhi Hu
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhikun Yang
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yali Zhang
- Department of Bioinformatics & Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Wenjie Wu
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
- Canget BioTekpharma, LLC, Buffalo, New York 14203, United States
| | - Prashant K Singh
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Jianmin Wang
- Department of Bioinformatics & Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
- Developmental Therapeutics (DT) Program, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - QingYong Li
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
13
|
Saatli B, Kurt S, Çağlıyan E, Kızıldağ S. The alteration of apoptosis-related genes in female pelvic supportive tissues with regard to menopausal status. Mol Biol Rep 2023; 51:6. [PMID: 38085363 PMCID: PMC10716063 DOI: 10.1007/s11033-023-09022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
PURPOSE We aimed to compare the expression levels of anti-apoptotic and proapoptotic genes in the parametrium, sacrouterine and round ligaments with respect to menopausal status in women presenting without any indication of pelvic organ prolapse (POP). We hypothesized that apoptosis related gene expressions in female pelvic tissues may be altered during menopause. METHODS The study groups consisted of pre-menopausal (n = 10) and menopausal (n = 10) females who did not have POP symptoms. Three different types of tissue samples (Parametrium, Round Ligament and Sacrouterine Ligament) were obtained and RNA was isolated from these tissues. After purifying and quantifying RNA samples, qPCR was used to determine the expression levels of anti-apoptotic and pro-apoptotic genes. RESULTS BCL-2 gene expression levels were significantly lower in all the tissues of menopausal patients compared to those of premenopausal patients. In comparison to premenopausal patients, the sacrouterine ligament tissue BAD expression level was significantly high (p = 0.035), and the BCL-2/BAD ratio was significantly lower in menopausal patients (p = 0.006). CONCLUSION Apoptosis-related protein levels change during menopause; pro-apoptotic gene expressions decrease and anti-apoptotic gene expressions increase. The significant alteration of BCL-2 and BAD expression in sacrouterine ligament with respect to menopausal status was observed and this suggested that when compared to other pelvic tissues, the sacrouterine ligament, which plays a crucial role for genital organs in restoring normal pelvic anatomy and providing support, could be affected more by menopause.
Collapse
Affiliation(s)
- Bahadır Saatli
- Department of Obstetrics and Gynecology, Dokuz Eylül University School of Medicine, Izmir, Turkey
| | - Serap Kurt
- Department of Medical Biology and Genetics, Dokuz Eylül University School of Medicine, Izmir, Turkey.
| | - Erkan Çağlıyan
- Department of Obstetrics and Gynecology, Dokuz Eylül University School of Medicine, Izmir, Turkey
| | - Sefa Kızıldağ
- Department of Medical Biology and Genetics, Dokuz Eylül University School of Medicine, Izmir, Turkey
| |
Collapse
|
14
|
Zhang P, Yan X, Zhang X, Liu Y, Feng X, Yang Z, Zhang J, Xu X, Zheng Q, Liang L, Han H. TMEM215 Prevents Endothelial Cell Apoptosis in Vessel Regression by Blunting BIK-Regulated ER-to-Mitochondrial Ca Influx. Circ Res 2023; 133:739-757. [PMID: 37750320 DOI: 10.1161/circresaha.123.322686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND In developmental and pathological tissues, nascent vessel networks generated by angiogenesis require further pruning/regression to delete nonfunctional endothelial cells (ECs) by apoptosis and migration. Mechanisms underlying EC apoptosis during vessel pruning remain elusive. TMEM215 (transmembrane protein 215) is an endoplasmic reticulum-located, 2-pass transmembrane protein. We have previously demonstrated that TMEM215 knockdown in ECs leads to cell death, but its physiological function and mechanism are unclear. METHODS We characterized the role and mechanism of TMEM215 in EC apoptosis using human umbilical vein endothelial cells by identifying its interacting proteins with immunoprecipitation-mass spectrometry. The physiological function of TMEM215 in ECs was assessed by establishing a conditional knockout mouse strain. The role of TMEM215 in pathological angiogenesis was evaluated by tumor and choroidal neovascularization models. We also tried to evaluate its translational value by delivering a Tmem215 small interfering RNA (siRNA) using nanoparticles in vivo. RESULTS TMEM215 knockdown in ECs induced apoptotic cell death. We identified the chaperone BiP as a binding partner of TMEM215, and TMEM215 forms a complex with and facilitates the interaction of BiP (binding immunoglobin protein) with the BH (BCL-2 [B-cell lymphoma 2] homology) 3-only proapoptotic protein BIK (BCL-2 interacting killer). TMEM215 knockdown triggered apoptosis in a BIK-dependent way and was abrogated by BCL-2. Notably, TMEM215 knockdown increased the number and diminished the distance of mitochondria-associated endoplasmic reticulum membranes and increased mitochondrial calcium influx. Inhibiting mitochondrial calcium influx by blocking the IP3R (inositol 1,4,5-trisphosphate receptor) or MCU (mitochondrial calcium uniporter) abrogated TMEM215 knockdown-induced apoptosis. TMEM215 expression in ECs was induced by physiological laminar shear stress via EZH2 downregulation. In EC-specific Tmem215 knockout mice, induced Tmem215 depletion impaired the regression of retinal vasculature characterized by reduced vessel density, increased empty basement membrane sleeves, and increased EC apoptosis. Moreover, EC-specific Tmem215 ablation inhibited tumor growth with disrupted vasculature. However, Tmem215 ablation in adult mice attenuated lung metastasis, consistent with reduced Vcam1 expression. Administration of nanoparticles carrying Tmem215 siRNA also inhibited tumor growth and choroidal neovascularization injury. CONCLUSIONS TMEM215, which is induced by blood flow-derived shear stress via downregulating EZH2, protects ECs from BIK-triggered mitochondrial apoptosis mediated by calcium influx through mitochondria-associated ER membranes during vessel pruning, thus providing a novel target for antiangiogenic therapy.
Collapse
Affiliation(s)
- Peiran Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xianchun Yan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaoyan Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuan Liu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- The Affiliated Northwest Women's and Children's Hospital of Xi'an Jiaotong University Health Science Center, China (Y.L.)
| | - Xingxing Feng
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ziyan Yang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiayulin Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinyuan Xu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qijun Zheng
- Department of Cardiovascular Surgery, Shenzhen People's Hospital, China (Q.Z.)
| | - Liang Liang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Gastroenterology (H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
15
|
El-Huneidi W, Anjum S, Mohammed AK, Bin Eshaq S, Abdrabh S, Bustanji Y, Soares NC, Semreen MH, Alzoubi KH, Abu-Gharbieh E, Taneera J. Rosemarinic acid protects β-cell from STZ-induced cell damage via modulating NF-κβ pathway. Heliyon 2023; 9:e19234. [PMID: 37662743 PMCID: PMC10472240 DOI: 10.1016/j.heliyon.2023.e19234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/30/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Rosmarinic acid (RA), a natural ester phenolic compound, is known to have antioxidant and anti-inflammatory properties. RA has also been reported to exhibit a hypoglycemic effect; however, the mechanisms underlying this effect have yet to be investigated. Therefore, the present study focused on the anti-diabetic effects and mechanism of RA in INS-1 cells using in vitro model. Streptozotocin (STZ) at a concentration of 3 mM was applied to INS-1 cells for 4 h to create a diabetic model. The cells were pretreated for 24 h with various concentrations (1 and 2.5 μM) of RA. The Cell viability, glucose-stimulated insulin secretion (GSIS), glucose uptake, lipid peroxidation, reactive oxygen species (ROS), apoptosis, and protein expression of Bcl-2, NF-κB, 1L-1β, and PARP were assessed. Results showed that STZ-treated INS-1 cells exhibited reduced cell viability, insulin release, insulin content, glucose uptake, and elevated MDA and ROS levels. Cells pretreated with RA maintained the function and morphology of β-cells against STZ-induced damage. Moreover, RA sustained high protein expression levels of Bcl-2 and low expression levels of NF-κB, IL-1β, and PARP. In conclusion, RA preserved β-cells function against STZ-induced damage by altering NF-κB and Bcl-2 pathways.
Collapse
Affiliation(s)
- Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Shabana Anjum
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- College of Engineering, Drug Delivery Research Group, American University of Sharjah, Sharjah, United Arab Emirates
| | - Abdul Khader Mohammed
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Shuhd Bin Eshaq
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Sham Abdrabh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | - Nelson C. Soares
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Mohammad H. Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Karem H. Alzoubi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Jalal Taneera
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| |
Collapse
|
16
|
Liu Y, Cao Z, Wei G. Effects of photodynamic therapy using Red LED-light combined with hypocrellin B on apoptotic signaling in cutaneous squamous cell carcinoma A431 cells. Photodiagnosis Photodyn Ther 2023; 43:103683. [PMID: 37390854 DOI: 10.1016/j.pdpdt.2023.103683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND The incidence of cutaneous squamous cell carcinoma (cSCC) has been demonstrating yearly increases. cSCC is a malignant cancer and exerts a major impact on patients' health and quality of life. Thus, the development and use of novel therapies in the treatment of cSCC are needed. It has been reported that LED photodynamic therapy (LED PDT) mediated by Hypocrellin B and its derivatives, a second-generation photosensitizer, can induce apoptosis in a variety of tumor cells, However, its potential pro-apoptotic effects on cSCC have yet to be investigated. OBJECTIVE This study aims to investigate the pro-apoptotic effects and molecular mechanisms of HB-LED PDT in cutaneous squamous cell carcinoma A431 cells (Subsequent abbreviation A431 cells). Such information can provide an important theoretical foundation for the clinical translation of HB-LED PDT in the treatment of cSCC. METHODS 1. Effects of HB on A431 cells were determined using a Cell Counting Kit-8 assay, which method can indirectly reflect the number of living cells. In this way, this assay can then provide a means to identify the optimal concentrations of HB required for the induction of apoptosis in A431 cells. 2. The effects of HB-LED PDT on the morphology of A431 cells and changes in the nuclei after Hoechst33342 staining as determined using inverted fluorescent microscopy. 3. Use of the Annexin V-FITC test kit to detect levels of apoptosis in A431 cells in response to treatment with HB. Changes in reactive oxygen species and mitochondrial membrane potential following HB-LED PDT treatment in A431 cells were determined using fluorescence activated cell sorting (FACS). 4. Real-time quantitative PCR and Western Blot were applied to assess changes in several key factors involved in apoptosis including Bax, Bcl-2, and Caspase-3, at both transcription and translation levels. With these assays, it was possible to investigate the apoptotic signaling pathway in A431 cells in response to HB-LED PDT. RESULTS HB-LED PDT inhibited proliferation activity and promoted nuclear fragmentation within these A431 cells. HB-LED PDT inhibited mitochondrial activity, increased reactive oxygen species production, and promoted apoptosis of A431 cells. In addition, several key factors in the apoptotic signaling pathway were increased at both the transcriptional and translational levels in A431 cells in response to the HB-LED PDT, indicating that the apoptotic signaling pathway was activated by HB-LED PDT. CONCLUSION HB-LED PDT induces apoptosis in A431 cells through a mitochondria-mediated apoptotic pathway. Such findings serve as an important foundation for the development of new approaches in the treatment of cSCC.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Dermatology, The Second Hospital of Shandong University, 247 Beiyuan Dajie Street, Jinan 250033, China
| | - Zhiqiang Cao
- Department of Dermatology, The Second Hospital of Shandong University, 247 Beiyuan Dajie Street, Jinan 250033, China
| | - Guo Wei
- Department of Dermatology, The Second Hospital of Shandong University, 247 Beiyuan Dajie Street, Jinan 250033, China.
| |
Collapse
|
17
|
Pieniazek A, Bernasinska-Slomczewska J, Hikisz P. Indoxyl sulfate induces apoptosis in mononuclear blood cells via mitochondrial pathway. Sci Rep 2023; 13:14044. [PMID: 37640757 PMCID: PMC10462746 DOI: 10.1038/s41598-023-40824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
The consequence of chronic kidney disease is the accumulation of metabolic products called uremic toxins in the body. Indoxyl sulfate (IS) is a toxin with a high affinity for proteins. This study focuses on the deleterious effect of IS, especially apoptosis induction, in mononuclear blood cells (MNCs). Thus, in MNCs treated with IS at three different concentrations for 24 h, the survival, mitochondrial potential, caspases activity and expression, Bcl-2 and Bax protein expression, DNA damage, and PARP degradation were estimated. The study showed a decrease in survival and mitochondrial potential of MNCs treated with IS compared to the control. IS increased the activity of caspase 2-, 3-, 9-, and the expression of caspase 3-, and 9- in MNCs but does not affect the activity of caspase 6- and 8. The treatment of MNCs with IS also increased DNA damage and degradation of PARP. Indoxyl sulfate significantly influences the expression of Bcl-2 and Bax proteins. Indoxyl sulfate induces the programmed death of MNCs through the intrinsic mitochondrial apoptotic pathway. The observed cellular changes are mostly dose-dependent.
Collapse
Affiliation(s)
- Anna Pieniazek
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Ul. Pomorska 141/143, 90-236, Lodz, Poland.
| | - Joanna Bernasinska-Slomczewska
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Ul. Pomorska 141/143, 90-236, Lodz, Poland
| | - Pawel Hikisz
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Ul. Pomorska 141/143, 90-236, Lodz, Poland
| |
Collapse
|
18
|
Abd El-Gawad A, Kenawy MA, El-Messery TM, Hassan ME, El-Nekeety AA, Abdel-Wahhab MA. Fabrication and characterization of bee venom-loaded nanoliposomes: Enhanced anticancer activity against different human cancer cell lines via the modulation of apoptosis-related genes. J Drug Deliv Sci Technol 2023; 84:104545. [DOI: 10.1016/j.jddst.2023.104545] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
|
19
|
Abdel Fattah HS, Omar EM. The protective role of curcumin nanoparticles on the submandibular salivary gland toxicity induced by methotrexate in male rats. Arch Oral Biol 2023; 152:105717. [PMID: 37182319 DOI: 10.1016/j.archoralbio.2023.105717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVE To evaluate the protective role of nanocurcumin on the toxicity induced by methotrexate in the submandibular glands of rats. DESIGN Twenty- four healthy male Wistar albino rats were randomly distributed into 3 groups, 8 rats each. Group I-control: rats received a single intraperitoneal injection of saline; Group II-methotrexate (MTX): rats received methotrexate 20 mg/ kg day 1 of the experiment; Group III-methotrexate and nanocurcumin (MTX+NCU): rats received methotrexate 20 mg/ kg on day 1 of the experimental period in addition to nanocurcumin 100 mg/kg/day for 7 days. After euthanasia, the submandibular salivary glands of all rats were collected and prepared for histological, histomorphometric, and immunohistochemical examination (Caspase 3, Bcl2), in addition to transmission electron microscopy. RESULTS Histological and ultrastructural assessment revealed less salivary gland damage in the nanocurcumin group in comparison to the methotrexate group, and the percentage of acinar vacuolization showed significantly lower values in the nanocurcumin group. Group III (MTX+NCU) showed lower immunoexpression of caspase 3 than group II (MTX), while Bcl2 immunoreactivity was higher in the MTX group than in the MTX+NCU group. CONCLUSIONS Our results suggest that simultaneous administration of nanocurcumin reduces apoptosis in salivary glands subjected to methotrexate.
Collapse
Affiliation(s)
- Hagar Sherif Abdel Fattah
- Department of Oral Biology, Faculty of Dentistry, Alexandria University, Champollion Street, Alexandria 21526, Egypt.
| | - Enas Magdi Omar
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Champollion Street, Alexandria 21526, Egypt
| |
Collapse
|
20
|
Park C, Cha HJ, Hwangbo H, Ji SY, Kim DH, Kim MY, Bang E, Hong SH, Kim SO, Jeong SJ, Lee H, Moon SK, Shim JH, Kim GY, Cho S, Choi YH. Phloroglucinol Inhibits Oxidative-Stress-Induced Cytotoxicity in C2C12 Murine Myoblasts through Nrf-2-Mediated Activation of HO-1. Int J Mol Sci 2023; 24:4637. [PMID: 36902068 PMCID: PMC10003575 DOI: 10.3390/ijms24054637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Phloroglucinol is a class of polyphenolic compounds containing aromatic phenyl rings and is known to have various pharmacological activities. Recently, we reported that this compound isolated from Ecklonia cava, a brown alga belonging to the family Laminariaceae, has potent antioxidant activity in human dermal keratinocytes. In this study, we evaluated whether phloroglucinol could protect against hydrogen peroxide (H2O2)-induced oxidative damage in murine-derived C2C12 myoblasts. Our results revealed that phloroglucinol suppressed H2O2-induced cytotoxicity and DNA damage while blocking the production of reactive oxygen species. We also found that phloroglucinol protected cells from the induction of apoptosis associated with mitochondrial impairment caused by H2O2 treatment. Furthermore, phloroglucinol enhanced the phosphorylation of nuclear factor-erythroid-2 related factor 2 (Nrf2) as well as the expression and activity of heme oxygenase-1 (HO-1). However, such anti-apoptotic and cytoprotective effects of phloroglucinol were greatly abolished by the HO-1 inhibitor, suggesting that phloroglucinol could increase the Nrf2-mediated activity of HO-1 to protect C2C12 myoblasts from oxidative stress. Taken together, our results indicate that phloroglucinol has a strong antioxidant activity as an Nrf2 activator and may have therapeutic benefits for oxidative-stress-mediated muscle disease.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan 49267, Republic of Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Da Hye Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - EunJin Bang
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Su Hyun Hong
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Sung Ok Kim
- Department of Food and Nutrition, College of Life and Health, Kyungsung University, Busan 48434, Republic of Korea
| | - Soon-Jeong Jeong
- Department of Dental Hygiene & Institute of Basic Science for Well-Aging, Youngsan University, Yangsan 50510, Republic of Korea
| | - Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, College of Biotechnology & Natural Resource, Chung-Ang University, Ansung 17546, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, College of Ocean Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Suengmok Cho
- Department of Food Science and Technology, Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| |
Collapse
|
21
|
Balance Cell Apoptosis and Pyroptosis of Caspase-3-Activating Chemotherapy for Better Antitumor Therapy. Cancers (Basel) 2022; 15:cancers15010026. [PMID: 36612023 PMCID: PMC9817729 DOI: 10.3390/cancers15010026] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy is a standard treatment modality in clinic that exerts an antitumor effect via the activation of the caspase-3 pathway, inducing cell death. While a number of chemotherapeutic drugs have been developed to combat various types of tumors, severe side effects have been their common limitation, due to the nonspecific drug biodistribution, bringing significant pain to cancer patients. Recently, scientists found that, besides apoptosis, chemotherapy could also cause cell pyroptosis, both of which have great influence on the therapeutic index. For example, cell apoptosis is, generally, regarded as the main mechanism of killing tumor cells, while cell pyroptosis in tumors promotes treatment efficacy, but in normal tissue results in toxicity. Therefore, significant research efforts have been paid to exploring the rational modulation mode of cell death induced by chemotherapy. This critical review aims to summarize recent progress in the field, focusing on how to balance cell apoptosis and pyroptosis for better tumor chemotherapy. We first reviewed the mechanisms of chemotherapy-induced cell apoptosis and pyroptosis, in which the activated caspase-3 is the key signaling molecule for regulating both types of cell deaths. Then, we systematically discussed the rationale and methods of switching apoptosis to pyroptosis for enhanced antitumor efficacy, as well as the blockage of pyroptosis to decrease side effects. To balance cell pyroptosis in tumor and normal tissues, the level of GSDME expression and tumor-targeting drug delivery are two important factors. Finally, we proposed potential future research directions, which may provide guidance for researchers in the field.
Collapse
|
22
|
Mivebresib synergized with PZ703b, a novel Bcl-xl PROTAC degrader, induces apoptosis in bladder cancer cells via the mitochondrial pathway. Biochem Biophys Res Commun 2022; 623:120-126. [DOI: 10.1016/j.bbrc.2022.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022]
|
23
|
Jiang Z, Qi G, Lu W, Wang H, Li D, Chen W, Ding L, Yang X, Yuan H, Zeng Q. Omaveloxolone inhibits IL-1β-induced chondrocyte apoptosis through the Nrf2/ARE and NF-κB signalling pathways in vitro and attenuates osteoarthritis in vivo. Front Pharmacol 2022; 13:952950. [PMID: 36238561 PMCID: PMC9551575 DOI: 10.3389/fphar.2022.952950] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease. Effective drugs that can halt or decelerate osteoarthritis progression are still lacking. Omaveloxolone is a semisynthetic oleanane triterpenoid exerting antioxidative and anti-inflammatory effects. The present study aims to determine whether omaveloxolone has a therapeutic effect on OA. Chondrocytes were treated with interleukin (IL)-1β to establish an OA cell model in vitro. Indicators of cell viability, oxidative stress, inflammation, cell apoptosis and extracellular matrix (ECM) degradation were investigated. Proteins related to the Nuclear factor erythroid derived-2-related factor 2 (Nrf2)/antioxidant response element (ARE) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signalling pathways were assessed using Western blotting. A destabilized medial meniscus surgery-induced OA rat model was used in vivo. Gait analysis, microcomputed tomography analysis, and histopathological and immunohistochemical analyses were performed to determine the therapeutic effect of omaveloxolone on attenuating osteoarthritis in vivo. The results showed that omaveloxolone exerts antioxidative, anti-inflammatory, antiapoptotic and anti-ECM degradation effects via activation of the Nrf2/ARE signalling pathway and inhibition of the NF-κB signalling pathway in chondrocytes in vitro and attenuates OA progression in vivo, suggesting that omaveloxolone may be a potential therapeutic agent for OA.
Collapse
Affiliation(s)
- Zengxin Jiang
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
- Department of Orthopedic Surgery, Fudan University Jinshan Hospital, Shanghai, China
| | - Guobin Qi
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Lu
- Department of Orthopedic Surgery, Shanghai TCM-Integrated Hospital Shanghai University of TCM, Shanghai, China
| | - Hao Wang
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Defang Li
- Department of Orthopedic Surgery, Fudan University Jinshan Hospital, Shanghai, China
| | - Weibin Chen
- Department of Orthopedic Surgery, Fudan University Jinshan Hospital, Shanghai, China
| | - Lei Ding
- Department of Orthopedic Surgery, Fudan University Jinshan Hospital, Shanghai, China
| | - Xiuying Yang
- Department of Radiology, Fudan University Jinshan Hospital, Shanghai, China
- *Correspondence: Qingmin Zeng, ; Hengfeng Yuan, ; Xiuying Yang,
| | - Hengfeng Yuan
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Qingmin Zeng, ; Hengfeng Yuan, ; Xiuying Yang,
| | - Qingmin Zeng
- Department of Orthopedic Surgery, Fudan University Jinshan Hospital, Shanghai, China
- *Correspondence: Qingmin Zeng, ; Hengfeng Yuan, ; Xiuying Yang,
| |
Collapse
|
24
|
The Expression Pattern of Bcl-2 and Bax in the Tumor and Stromal Cells in Colorectal Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58081135. [PMID: 36013602 PMCID: PMC9416041 DOI: 10.3390/medicina58081135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022]
Abstract
Background and objectives: The epithelial and stromal tissues both play a role in the progression of colorectal cancer (CRC). The aim of this study was to assess the expression of anti-apoptotic Bcl-2 and pro-apoptotic Bax in the epithelium as well as the lamina propria of normal colonic controls, low-grade tumor samples and high-grade tumor samples. Materials and Methods: A total of 60 samples consisting of both normal colonic and carcinoma samples was collected from the Department of Pathology, Cytology and Forensic Medicine, University Hospital Center, Split from January 2020 to December 2021. The expression of Bcl-2 and Bax markers was semi-quantitatively and quantitatively evaluated by recording immunofluorescence stain intensity and by counting stained cells in the lamina propria and epithelium. Analysis of positive cells was performed using the Mann-Whitney test. Results: In all samples, Bcl-2 was significantly more expressed in the lamina propria when compared with the epithelium. Bax was significantly more expressed in the epithelium of normal and low-grade cancer samples when compared with their respective laminae propriae. The percentage of Bcl-2-positive cells in lamina propria is about two times lower in high-grade CRC and about three times lower in low-grade CRC in comparison with healthy controls. Contrary to this, the percentage of Bax-positive cells was greater in the epithelium of low-grade CRC in comparison with healthy control and high-grade CRC. Conclusions: Our study provides a new insight into Bcl-2 and Bax expression pattern in CRC. Evaluation of Bcl-2 expression in the lamina propria and Bax expression in the epithelium could provide important information for colorectal cancer prognosis as well as potential treatment strategies.
Collapse
|
25
|
Athanasopoulou K, Adamopoulos PG, Daneva GN, Scorilas A. Decoding the concealed transcriptional signature of the apoptosis-related BCL2 antagonist/killer 1 (BAK1) gene in human malignancies. Apoptosis 2022; 27:869-882. [DOI: 10.1007/s10495-022-01753-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/29/2022]
|
26
|
Ruellia tuberosa Ethyl Acetate Leaf Extract Induces Apoptosis and Cell Cycle Arrest in Human Breast Cancer Cell Line, MCF-7. Sci Pharm 2022. [DOI: 10.3390/scipharm90030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ruellia tuberosa L. has been previously shown to possess antioxidant and antiproliferative activities on cancer cells but its underlying mechanisms are largely unknown. This study aimed to elucidate the mode of action underlying this inhibitory effect on MCF-7 using ethyl acetate extract obtained after liquid-liquid partition of methanol crude extract. Antiproliferative effect of R. tuberosa ethyl acetate leaf extract (RTEAL) was evaluated using MTT assay. Its ability to induce apoptosis was assessed by DNA ladder formation, JC-1, Annexin V, and methylene blue staining assays. Perturbation of cell cycle progression was determined using flow cytometry. RTEAL was found to selectively inhibit the proliferation of MCF-7 cells with the IC50 value of 28 µg/mL. Morphological changes such as nuclear fragmentation and chromatin condensation were observed although DNA laddering was undetected in agarose gel. RTEAL-induced apoptotic pathways by inhibiting the expression of anti-apoptotic BCL-2 while upregulating pro-apoptotic BAX, caspase 7 and caspase 8. RTEAL also caused cell cycle arrests at the S and G2/M phase and dysregulation of cell cycle regulators. These findings collectively demonstrate that RTEAL extract inhibited cell growth by inducing apoptosis and cell cycle arrest, suggesting its therapeutic potential against breast cancer.
Collapse
|
27
|
Li Z, Ren D, Chen C, Sun L, Fang K. OSU-T315 and doxorubicin synergistically induce apoptosis via mitochondrial pathway in bladder cancer cells. Cell Biol Int 2022; 46:1672-1681. [PMID: 35830716 DOI: 10.1002/cbin.11855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/11/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022]
Abstract
Bladder cancer (BC) is a common urological malignancy that still lacks an effective treatment. Doxorubicin (Dox) has been widely used in the treatment of various cancers, including BC. However, chemoresistance often hampers the clinical application of Dox, therefore, it is necessary to develop effective strategies to improve its efficacy. By using high-throughput screening, we identified OSU-T315, an integrin-linked kinase (ILK) inhibitor, that can augment the cytotoxicity of Dox against BC cells. We found that OSU-T315 and Dox synergistically induce apoptosis of BC cells via mitochondrial pathway in a caspase-dependent. Mechanically, it was found that OSU-T315 and Dox synergistically induced activation of Bax which is critical for the induction of apoptosis. Moreover, it was also found that the downregulation of BCL-2 and MCL-1 is essential for the activation of BAX induced by OSU-T315 and Dox. OSU-T315 was found to downregulate MCL-1 via the GSK-3β/FBXW7 axis in BC cells. Our findings suggest that combined treatment with OSU-T315 and Dox may be a promising strategy to treat BC.
Collapse
Affiliation(s)
- Zhihui Li
- Department of Intensive Care Unit, Hangzhou Red Cross Hospital/Hospital of Integrated Traditional Chinese and Western Medicine in Zhejiang Province, Hangzhou, Zhejiang, China
| | - Danhong Ren
- Department of Intensive Care Unit, Hangzhou Red Cross Hospital/Hospital of Integrated Traditional Chinese and Western Medicine in Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chen Chen
- Department of Urology, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Leiming Sun
- Department of Intensive Care Unit, Hangzhou Red Cross Hospital/Hospital of Integrated Traditional Chinese and Western Medicine in Zhejiang Province, Hangzhou, Zhejiang, China
| | - Kun Fang
- Department of Intensive Care Unit, Hangzhou Red Cross Hospital/Hospital of Integrated Traditional Chinese and Western Medicine in Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Ferreira A, Pereira F, Reis C, Oliveira MJ, Sousa MJ, Preto A. Crucial Role of Oncogenic KRAS Mutations in Apoptosis and Autophagy Regulation: Therapeutic Implications. Cells 2022; 11:cells11142183. [PMID: 35883626 PMCID: PMC9319879 DOI: 10.3390/cells11142183] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 11/16/2022] Open
Abstract
KRAS, one of the RAS protein family members, plays an important role in autophagy and apoptosis, through the regulation of several downstream effectors. In cancer cells, KRAS mutations confer the constitutive activation of this oncogene, stimulating cell proliferation, inducing autophagy, suppressing apoptosis, altering cell metabolism, changing cell motility and invasion and modulating the tumor microenvironment. In order to inhibit apoptosis, these oncogenic mutations were reported to upregulate anti-apoptotic proteins, including Bcl-xL and survivin, and to downregulate proteins related to apoptosis induction, including thymine-DNA glycosylase (TDG) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL). In addition, KRAS mutations are known to induce autophagy in order to promote cell survival and tumor progression through MAPK and PI3K regulation. Thus, these mutations confer resistance to anti-cancer drug treatment and, consequently, result in poor prognosis. Several therapies have been developed in order to overcome KRAS-induced cell death resistance and the downstream signaling pathways blockade, especially by combining MAPK and PI3K inhibitors, which demonstrated promising results. Understanding the involvement of KRAS mutations in apoptosis and autophagy regulation, might bring new avenues to the discovery of therapeutic approaches for CRCs harboring KRAS mutations.
Collapse
Affiliation(s)
- Anabela Ferreira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.); (F.P.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Flávia Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.); (F.P.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (C.R.); (M.J.O.)
- Institute of Biomedical Engineering (INEB), University of Porto, 4200-135 Porto, Portugal
| | - Celso Reis
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (C.R.); (M.J.O.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Maria José Oliveira
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (C.R.); (M.J.O.)
- Institute of Biomedical Engineering (INEB), University of Porto, 4200-135 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.); (F.P.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Ana Preto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.); (F.P.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- Correspondence: ; Tel.: +351-253-601524
| |
Collapse
|
29
|
Keeping Cell Death Alive: An Introduction into the French Cell Death Research Network. Biomolecules 2022; 12:biom12070901. [PMID: 35883457 PMCID: PMC9313292 DOI: 10.3390/biom12070901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Since the Nobel Prize award more than twenty years ago for discovering the core apoptotic pathway in C. elegans, apoptosis and various other forms of regulated cell death have been thoroughly characterized by researchers around the world. Although many aspects of regulated cell death still remain to be elucidated in specific cell subtypes and disease conditions, many predicted that research into cell death was inexorably reaching a plateau. However, this was not the case since the last decade saw a multitude of cell death modalities being described, while harnessing their therapeutic potential reached clinical use in certain cases. In line with keeping research into cell death alive, francophone researchers from several institutions in France and Belgium established the French Cell Death Research Network (FCDRN). The research conducted by FCDRN is at the leading edge of emerging topics such as non-apoptotic functions of apoptotic effectors, paracrine effects of cell death, novel canonical and non-canonical mechanisms to induce apoptosis in cell death-resistant cancer cells or regulated forms of necrosis and the associated immunogenic response. Collectively, these various lines of research all emerged from the study of apoptosis and in the next few years will increase the mechanistic knowledge into regulated cell death and how to harness it for therapy.
Collapse
|
30
|
El-Huneidi W, Anjum S, Saleh MA, Bustanji Y, Abu-Gharbieh E, Taneera J. Carnosic Acid Protects INS-1 β-Cells against Streptozotocin-Induced Damage by Inhibiting Apoptosis and Improving Insulin Secretion and Glucose Uptake. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072102. [PMID: 35408495 PMCID: PMC9000724 DOI: 10.3390/molecules27072102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/16/2022]
Abstract
Carnosic acid (CA), a natural polyphenolic diterpene derived from Rosmarinus officinalis, has been proven to possess a broad spectrum of medicinal properties. Nevertheless, no studies on its impact on pancreatic β-cells have been conducted to date. Herein, clonal rat INS-1 (832/13) cells were pretreated with CA for 24 h and then incubated with streptozotocin (STZ) for 3 h. Several functional experiments were performed to determine the effect of CA on STZ-induced pancreatic β-cell damage, including cell viability assay, apoptosis analysis, and measurement of the level of insulin secretion, glucose uptake, malondialdehyde (MDA), reactive oxygen species (ROS), and proteins expression. STZ treatment decreased cell survival, insulin secretion, glucose uptake, and increased apoptosis, MDA, and ROS production in INS-1 cells. Furthermore, protein expression/phosphorylation analysis showed significant down-regulation in insulin, PDX-1, PI3K, AKT/p-AKT, and Bcl2. On the other hand, expression of BAX and BAD and cleaved PARP were significantly increased. Interestingly, preincubation with CA reversed the adverse impact of STZ at the cellular and protein expression levels. In conclusion, the data indicate that CA protects β-cells against STZ-induced damage, presumably through its modulatory effect on the different pathways, including the Pi3K/AKT/PDX-1/insulin pathway and mitochondria-mediated apoptosis.
Collapse
Affiliation(s)
- Waseem El-Huneidi
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (S.A.); (M.A.S.); (E.A.-G.)
- Correspondence: (W.E.-H.); (J.T.); Tel.: +971-6-505-7222 (W.E.-H.); +971-6-505-7743 (J.T.)
| | - Shabana Anjum
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (S.A.); (M.A.S.); (E.A.-G.)
| | - Mohamed A. Saleh
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (S.A.); (M.A.S.); (E.A.-G.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Yasser Bustanji
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (S.A.); (M.A.S.); (E.A.-G.)
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Eman Abu-Gharbieh
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (S.A.); (M.A.S.); (E.A.-G.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Jalal Taneera
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (S.A.); (M.A.S.); (E.A.-G.)
- Correspondence: (W.E.-H.); (J.T.); Tel.: +971-6-505-7222 (W.E.-H.); +971-6-505-7743 (J.T.)
| |
Collapse
|
31
|
Alinaghipour A, Salami M, Riahi E, Ashabi G, Soheili M, Nabavizadeh F. Protective effects of nanocurcumin against stress-induced deterioration in the intestine. Stress 2022; 25:337-346. [PMID: 36369802 DOI: 10.1080/10253890.2022.2132142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The therapeutic activities of curcumin have long been investigated in some chronic and inflammatory diseases. This study was designed to investigate the protective effects of nanocurcumin on intestinal barrier function, apoptosis, and oxidative stress in rats exposed to traffic noise. Forty rats were divided into four groups: two traffic noise-exposed groups of animals that received either vehicle (NOISE) or nanocurcumin (NCUR + NOISE) and two control groups that either remained intact (CON) or received nanocurcumin (NCUR). Nanocurcumin injection (15 mg/Kg/ip) and traffic noise exposure were administered daily for two weeks. The relative protein expression of intestinal tight junctions, occludin, and ZO-1 and Bax/Bcl-2 ratio was measured to evaluate barrier integrity and apoptosis in intestinal samples, respectively. Plasma D-lactate concentration was examined as a criterion of intestinal permeability. Corticosterone, superoxide dismutase (SOD) activity, glutathione (GSH), total antioxidant capacity (TAC), and nitrite were measured in serum. The noise exposure increased Bax/Bcl-2 ratio, corticosterone, and oxidative stress in the NOISE animals. Nanocurcumin treatment improved the Bax/Bcl-2 ratio and reduced corticosterone and oxidative stress in the NCUR + NOISE animals. The expression of tight junction proteins was decreased while the concentration of D-lactate was increased in the NOISE animals. Nanocurcumin did not efficiently impact the expression of tight junction proteins and the D-lactate level in the NCUR + NOISE group. Nanocurcumin administration displayed antioxidant and anti-apoptotic roles in the noise-exposed rats, however, it did not affect the intestinal barrier integrity. We concluded that reduced apoptosis in the intestine might be related to the antioxidant activity of nanocurcumin and its modulatory effects on the HPA axis in the nanocurcumin-treated animals.
Collapse
Affiliation(s)
- Azam Alinaghipour
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmail Riahi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Soheili
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|