1
|
Rahman MM, Siddique N, Hasnat S, Rahman MT, Rahman M, Alam M, Das ZC, Islam T, Hoque MN. Genomic insights into the probiotic potential and genes linked to gallic acid metabolism in Pediococcus pentosaceus MBBL6 isolated from healthy cow milk. PLoS One 2024; 19:e0316270. [PMID: 39724288 DOI: 10.1371/journal.pone.0316270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
Pediococcus pentosaceus is well known for its probiotic properties, including roles in improving health, antimicrobial production, and enhancing fermented food quality. This study aimed to comprehensively analyze the whole genome of P. pentosaceus MBBL6, isolated from healthy cow milk, to assess its probiotic and antimicrobial potentials. P. pentosaceus MBBL6, isolated from a healthy cow milk at BSMRAU dairy farm, Gazipur, Bangladesh, underwent comprehensive genomic analysis, including whole genome sequencing, assembly, annotation, phylogenetic comparison, and assessment of metabolic pathways and secondary metabolites. Antimicrobial efficacy was evaluated through in-vitro and in-vivo studies, alongside in-silico exploration for potential mastitis therapy. We predicted 1,906 genes and 204 SEED sub-systems involved in carbohydrate metabolism and vitamin B complex biosynthesis, with a focus on lactose metabolism in MMBL6. Notably, 43 putative carbohydrate-active enzyme genes, including lysozymes, suggest the ability of MBBL6 for carbohydrate biotransformation and antimicrobial activity. The genome also revealed primary metabolic pathways for arginine and gallic acid metabolism and secondary metabolite gene clusters, including T3PKS and RiPP-like regions. Importantly, two bacteriocin biosynthesis gene clusters namely bovicin_255_variant and penocin_A, were identified in MBBL6. The safety assessment of MBBL6 genome revealed no virulence genes and a low pathogenicity score (0.196 out of 1.0). Several genes related to survival in gastrointestinal tract and colonization were also identified. Furthermore, MBBL6 exhibited susceptibility to a wide range of antibiotics in-vitro, and effectively suppressed mastitis pathogens in an in-vivo mouse mastitis model trial. The observed bacteriocin, particularly bovicin, demonstrated the ability to disrupt the function of an essential protein, Rho factor of mastitis pathogens by blocking transcription termination process. Taken together, our in-depth genomic analysis underscores the metabolic versatility, safety profile, and antimicrobial potential of P. pentosaceus MBBL6, suggesting its promise for applications in therapeutics, bioremediation, and biopreservation.
Collapse
Affiliation(s)
- Md Morshedur Rahman
- Department of Gynecology, Obstetrics and Reproductive Health, Molecular Biology and Bioinformatics Laboratory, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Naim Siddique
- Department of Gynecology, Obstetrics and Reproductive Health, Molecular Biology and Bioinformatics Laboratory, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Soharth Hasnat
- Department of Gynecology, Obstetrics and Reproductive Health, Molecular Biology and Bioinformatics Laboratory, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Tanvir Rahman
- Faculty of Veterinary Sciences, Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mustafizur Rahman
- iccdr'b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Munirul Alam
- iccdr'b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Ziban Chandra Das
- Department of Gynecology, Obstetrics and Reproductive Health, Molecular Biology and Bioinformatics Laboratory, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M Nazmul Hoque
- Department of Gynecology, Obstetrics and Reproductive Health, Molecular Biology and Bioinformatics Laboratory, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
2
|
Lee S, Choi SP, Choi HJ, Jeong H, Park YS. A comprehensive review of synbiotics: an emerging paradigm in health promotion and disease management. World J Microbiol Biotechnol 2024; 40:280. [PMID: 39060821 DOI: 10.1007/s11274-024-04085-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
Synbiotics are complex preparations of prebiotics that can be selectively utilized by live microorganisms to improve host health. Synbiotics are divided into complementary synbiotics, which consist of probiotics and prebiotics with independent functions, and synergistic synbiotics, which consist of prebiotics that are selectively used by gut microorganisms. Complementary synbiotics used in human clinical trials include Lactobacillus spp. and Bifidobacterium spp. as probiotics, and fructooligosaccharides, galactooligosaccharides, and inulin as prebiotics. Over the past five years, synbiotics have been most commonly used in patients with metabolic disorders, including obesity, and immune and gastrointestinal disorders. Several studies have observed alterations in the microbial community; however, these changes did not lead to significant improvements in disease outcomes or biochemical and hematological markers. The same synbiotics have been applied to individuals with different gut environments. As a result, even with the same synbiotics, there are non-responders who do not respond to the applied synbiotics due to the different intestinal environment for each individual. Therefore, to obtain meaningful results, applying different synbiotics depending on the individual is necessary. Synergistic synbiotics are one solution to circumvent this problem, as they combine elements that can effectively improve health, even in non-responders. This review aims to explain the concept of synbiotics, highlight recent human clinical trials, and explore the current state of research on synergistic synbiotics.
Collapse
Affiliation(s)
- Sulhee Lee
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Sang-Pil Choi
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Hak-Jong Choi
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Huijin Jeong
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
3
|
Haque M, Kaminsky L, Abdulqadir R, Engers J, Kovtunov E, Rawat M, Al-Sadi R, Ma TY. Lactobacillus acidophilus inhibits the TNF-α-induced increase in intestinal epithelial tight junction permeability via a TLR-2 and PI3K-dependent inhibition of NF-κB activation. Front Immunol 2024; 15:1348010. [PMID: 39081324 PMCID: PMC11286488 DOI: 10.3389/fimmu.2024.1348010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Background Defective intestinal epithelial tight junction (TJ), characterized by an increase in intestinal TJ permeability, has been shown to play a critical role in the pathogenesis of inflammatory bowel disease (IBD). Tumor necrosis factor-α (TNF-α) is a key pro-inflammatory cytokine involved in the immunopathology of IBD and has been shown to cause an increase in intestinal epithelial TJ permeability. Although TNF-α antibodies and other biologics have been advanced for use in IBD treatment, these therapies are associated with severe side effects and have limited efficacy, and there is an urgent need for therapies with benign profiles and high therapeutic efficacy. Probiotic bacteria have beneficial effects and are generally safe and represent an important class of potential therapeutic agents in IBD. Lactobacillus acidophilus (LA) is one of the most used probiotics for wide-ranging health benefits, including in gastrointestinal, metabolic, and inflammatory disorders. A specific strain of LA, LA1, was recently demonstrated to have protective and therapeutic effects on the intestinal epithelial TJ barrier. However, the mechanisms of actions of LA1 remain largely unknown. Methods The primary aim of this study was to investigate microbial-epithelial interactions and novel signaling pathways that regulate the effect of LA1 on TNF-α-induced increase in intestinal epithelial TJ permeability, using cell culture and animal model systems. Results and Conclusion Pre-treatment of filter-grown Caco-2 monolayers with LA1 prevented the TNF-α-induced increase in intestinal epithelial TJ permeability by inhibiting TNF-α-induced activation of NF-κB p50/p65 and myosin light chain kinase (MLCK) gene and kinase activity in a TLR-2-dependent manner. LA1 produced a TLR-2- and MyD88-dependent activation of NF-κB p50/p65 in immune cells; however, LA1, in intestinal cells, inhibited the NF-κB p50/p65 activation in a TLR-2-dependent but MyD88-independent manner. In addition, LA1 inhibition of NF-κB p50/p65 and MLCK gene was mediated by TLR-2 pathway activation of phosphatidylinositol 3-kinase (PI3K) and IKK-α phosphorylation. Our results demonstrated novel intracellular signaling pathways by which LA1/TLR-2 suppresses the TNF-α pathway activation of NF-κB p50/p65 in intestinal epithelial cells and protects against the TNF-α-induced increase in intestinal epithelial TJ permeability.
Collapse
Affiliation(s)
- Mohammad Haque
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Lauren Kaminsky
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Raz Abdulqadir
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Jessica Engers
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Evgeny Kovtunov
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Manmeet Rawat
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Rana Al-Sadi
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Thomas Y. Ma
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| |
Collapse
|
4
|
Olier M, Naud N, Fouché E, Tondereau V, Ahn I, Leconte N, Blas-Y-Estrada F, Garric G, Heliès-Toussaint C, Harel-Oger M, Marmonier C, Théodorou V, Guéraud F, Jan G, Pierre F. Calcium-rich dairy matrix protects better than mineral calcium against colonic luminal haem-induced alterations in male rats. NPJ Sci Food 2024; 8:43. [PMID: 38956092 PMCID: PMC11220098 DOI: 10.1038/s41538-024-00273-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 05/15/2024] [Indexed: 07/04/2024] Open
Abstract
The haemoglobin content in meat is consistently associated with an increased risk of colorectal cancer, whereas calcium may play a role as a chemopreventive agent. Using rodent models, calcium salts have been shown to prevent the promotion of haem-induced and red meat-induced colorectal carcinogenesis by limiting the bioavailability of the gut luminal haem iron. Therefore, this study aimed to compare impacts of dietary calcium provided as calcium salts or dairy matrix on gut homoeostasis perturbations by high haeminic or non-haeminic iron intakes. A 3-week intervention study was conducted using Fischer 344 rats. Compared to the ferric citrate-enriched diet, the haemoglobin-enriched diet led to increased faecal, mucosal, and urinary lipoperoxidation-related biomarkers, resulting from higher gut luminal haem iron bioavailability. This redox imbalance was associated to a dysbiosis of faecal microbiota. The addition of calcium to haemoglobin-enriched diets limited haem iron bioavailability and counteracted redox imbalance, with improved preventive efficacy when calcium was provided in dairy matrix. Data integration revealed correlations between haem-induced lipoperoxidation products and bacterial communities belonging to Peptococcaceae, Eubacterium coprostanoligenes group, and Bifidobacteriaceae. This integrated approach provides evidence of the benefits of dairy matrix as a dietary calcium vehicle to counteract the deleterious side-effects of meat consumption.
Collapse
Affiliation(s)
- Maïwenn Olier
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-EI Purpan, UPS, Toulouse, France
| | - Nathalie Naud
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-EI Purpan, UPS, Toulouse, France
| | - Edwin Fouché
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-EI Purpan, UPS, Toulouse, France
| | - Valérie Tondereau
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-EI Purpan, UPS, Toulouse, France
| | - Ingrid Ahn
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-EI Purpan, UPS, Toulouse, France
| | | | - Florence Blas-Y-Estrada
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-EI Purpan, UPS, Toulouse, France
| | | | - Cécile Heliès-Toussaint
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-EI Purpan, UPS, Toulouse, France
| | | | | | - Vassilia Théodorou
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-EI Purpan, UPS, Toulouse, France
| | - Françoise Guéraud
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-EI Purpan, UPS, Toulouse, France
| | - Gwénaël Jan
- STLO, INRAE, I'Institut Agro, Rennes, France
| | - Fabrice Pierre
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-EI Purpan, UPS, Toulouse, France.
| |
Collapse
|
5
|
Odorskaya MV, Mavletova DA, Nesterov AA, Tikhonova OV, Soloveva NA, Reznikova DA, Galanova OO, Vatlin AA, Slynko NM, Vasilieva AR, Peltek SE, Danilenko VN. The use of omics technologies in creating LBP and postbiotics based on the Limosilactobacillus fermentum U-21. Front Microbiol 2024; 15:1416688. [PMID: 38919499 PMCID: PMC11197932 DOI: 10.3389/fmicb.2024.1416688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
In recent years, there has been an increasing tendency to create drugs based on certain commensal bacteria of the human microbiota and their ingredients, primarily focusing on live biotherapeutics (LBPs) and postbiotics. The creation of such drugs, termed pharmacobiotics, necessitates an understanding of their mechanisms of action and the identification of pharmacologically active ingredients that determine their target properties. Typically, these are complexes of biologically active substances synthesized by specific strains, promoted as LBPs or postbiotics (including vesicles): proteins, enzymes, low molecular weight metabolites, small RNAs, etc. This study employs omics technologies, including genomics, proteomics, and metabolomics, to explore the potential of Limosilactobacillus fermentum U-21 for innovative LBP and postbiotic formulations targeting neuroinflammatory processes. Proteomic techniques identified and quantified proteins expressed by L. fermentum U-21, highlighting their functional attributes and potential applications. Key identified proteins include ATP-dependent Clp protease (ClpL), chaperone protein DnaK, protein GrpE, thioredoxin reductase, LysM peptidoglycan-binding domain-containing protein, and NlpC/P60 domain-containing protein, which have roles in disaggregase, antioxidant, and immunomodulatory activities. Metabolomic analysis provided insights into small-molecule metabolites produced during fermentation, revealing compounds with anti-neuroinflammatory activity. Significant metabolites produced by L. fermentum U-21 include GABA (γ-aminobutyric acid), niacin, aucubin, and scyllo-inositol. GABA was found to stabilize neuronal activity, potentially counteracting neurodegenerative processes. Niacin, essential for optimal nervous system function, was detected in vesicles and culture fluid, and it modulates cytokine production, maintaining immune homeostasis. Aucubin, an iridoid glycoside usually secreted by plants, was identified as having antioxidant properties, addressing issues of bioavailability for therapeutic use. Scyllo-inositol, identified in vesicles, acts as a chemical chaperone, reducing abnormal protein clumps linked to neurodegenerative diseases. These findings demonstrate the capability of L. fermentum U-21 to produce bioactive substances that could be harnessed in the development of pharmacobiotics for neurodegenerative diseases, contributing to their immunomodulatory, anti-neuroinflammatory, and neuromodulatory activities. Data of the HPLC-MS/MS analysis are available via ProteomeXchange with identifier PXD050857.
Collapse
Affiliation(s)
- Maya V. Odorskaya
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Dilara A. Mavletova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Andrey A. Nesterov
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
- Institute of Environmental Engineering, RUDN University, Moscow, Russia
| | | | | | - Diana A. Reznikova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Olesya O. Galanova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Aleksey A. Vatlin
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Nikolai M. Slynko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Asya R. Vasilieva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey E. Peltek
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Valery N. Danilenko
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
- Brain Science Institute, Research Center of Neurology, Moscow, Russia
| |
Collapse
|
6
|
Zhang A, Wang J, Hu Y, Qiu Y, Dong C. Polysaccharides play an anti-fibrotic role by regulating intestinal flora: A review of research progress. Int J Biol Macromol 2024; 271:131982. [PMID: 38724335 DOI: 10.1016/j.ijbiomac.2024.131982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 06/20/2024]
Abstract
Fibrosis is a common pathological process affecting multiple organs. It refers to an increase in fibrous connective tissue and a decrease in parenchymal cells in damaged tissues or organs. This may lead to structural damage and functional decline or even organ failure. The incidence of fibrosis is increasing worldwide, and the need for safe and effective therapeutic drugs and treatments is pivotal. The intestinal tract has a complex network of exchanging information with various tissues in the body. It contains a sizeable microbial community of which the homeostasis and metabolites are closely related to fibrosis. Polysaccharides are a class of biomolecules present in natural products; they have potential value as anti-fibrotic prebiotics. Recently, polysaccharides have been found to improve fibrosis in different organs by decreasing inflammation and modulating the immune function and intestinal microbiota. In this paper, we reviewed the progress made in research concerning polysaccharides and organ fibrosis in relation to the intestinal microbiota from the pathogenesis of fibrosis to the relationship between the intestinal flora and fibrosis. Furthermore, we provide ideas and references for future polysaccharide-drug discovery and strategies for the treatment of fibrosis.
Collapse
Affiliation(s)
- Aoying Zhang
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; College of Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Jie Wang
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; College of Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Yulong Hu
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Yuanhao Qiu
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; College of Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China.
| | - Chunhong Dong
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| |
Collapse
|
7
|
Park S, Son S, Park MA, Kim DH, Kim Y. Complete genome sequence of Latilactobacillus curvatus CACC879 and its functional probiotic properties. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:630-634. [PMID: 38975571 PMCID: PMC11222110 DOI: 10.5187/jast.2023.e50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 07/09/2024]
Abstract
Latilactobacillus curvatus CACC879 originated from swine feces in Korea, and its probiotic properties have been analyzed. The complete genome of strain CACC879 contained one chromosome 1,398,247 bp in length and three circular plasmids, namely, pCACC879-1 (591,981 bp), pCACC879-2 (14,542 base pairs [bp]), and pCACC879-3 (45,393 bp). The complete genome encodes a total of 2,077 genes, including 25 rRNA genes and 90 tRNA genes. In addition, probiotic stability- genes acid/bile related to salts tolerance, the biosynthesis of cobalamin (vitamin B12), riboflavin (vitamin B2), and CRISPR/Cas9 were found in the whole genomes. Remarkably, L. curvatus CACC879 contained the antioxidant-related (peroxiredoxin) and bacteriocin-related genes (lysM and blpA). Overall, these results demonstrate that L. curvatus CACC879 is a functional probiotic candidate for animal industry applications.
Collapse
Affiliation(s)
- Soyeon Park
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup 56212, Korea
| | - Seoyun Son
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup 56212, Korea
| | - Mi Ae Park
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup 56212, Korea
| | - Dae-Hyuk Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup 56212, Korea
- Department of Molecular Biology, Department of Bioactive Material Science, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Korea
| | - Yangseon Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup 56212, Korea
| |
Collapse
|
8
|
Zhang J, Wang H, Meng S, Zhang C, Guo L, Miao Z. The Effects of Poria cocos Polysaccharides on Growth Performance, Immunity, and Cecal Microflora Composition of Weaned Piglets. Animals (Basel) 2024; 14:1121. [PMID: 38612361 PMCID: PMC11011092 DOI: 10.3390/ani14071121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
This paper aims to identify Poria cocos polysaccharides (PCPs) as a potential feed additive used for swine production; thus, we explored the effects of different dietary inclusion levels of PCP on growth performance, immunity, and cecal microflora composition in weaned piglets. For this, a total of 120 28-day-old Duroc × Landrace × Yorkshire weaned piglets (8.51 ± 0.19 kg; 28 ± 1 days of age) were randomly allocated to five groups that were fed a basal diet supplemented with 0, 0.025%, 0.05%, 0.1%, and 0.2% PCP, respectively, for 42 days. The results indicated that the average daily gain (ADG) and gain/feed ratio were higher in the PCP treatment groups than in the control group, with a linear effect. The serum concentrations of IgG, IgA, IL-2, IFN-γ, the number of CD4+ T cells, and the CD4+-to-CD8+ T-cell ratio (CD4+/CD8+) were increased, while the levels of IL-6 and TNF-α were decreased in the PCP supplementation groups compared with those in the control group. Furthermore, the cytokine mRNA expression levels exhibited a similar trend in the spleen. PCP supplementation also reduced the abundance of Escherichia coli and Salmonella and enhanced that of Lactobacilli and Bifidobacteria in the cecum. In summary, dietary PCP inclusion exerted positive effects on the growth performance, immunity, and cecal microbiota of piglets and showed potential for use as a feed additive for improving the health of weaned piglets, with 0.1% being the optimal dosage.
Collapse
Affiliation(s)
- Jinzhou Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, East Section of Hualan Avenue, Xinxiang 453003, China; (J.Z.); (H.W.); (S.M.); (C.Z.)
| | - Heming Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, East Section of Hualan Avenue, Xinxiang 453003, China; (J.Z.); (H.W.); (S.M.); (C.Z.)
| | - Shuaitao Meng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, East Section of Hualan Avenue, Xinxiang 453003, China; (J.Z.); (H.W.); (S.M.); (C.Z.)
| | - Chuankuan Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, East Section of Hualan Avenue, Xinxiang 453003, China; (J.Z.); (H.W.); (S.M.); (C.Z.)
| | - Liping Guo
- School of Food Science, Henan Institute of Science and Technology, No. 90, East Section of Hualan Avenue, Xinxiang 453003, China;
| | - Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, East Section of Hualan Avenue, Xinxiang 453003, China; (J.Z.); (H.W.); (S.M.); (C.Z.)
| |
Collapse
|
9
|
Lee SU, Jang BS, Na YR, Lee SH, Han S, Chang JH, Kim HJ. Effect of Lactobacillus Rhamnosus GG for Regulation of Inflammatory Response in Radiation-Induced Enteritis. Probiotics Antimicrob Proteins 2024; 16:636-648. [PMID: 37072632 DOI: 10.1007/s12602-023-10071-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 04/20/2023]
Abstract
The purpose of this study was to investigate the role of Lactobacillus rhamnosus GG (LGG) probiotics in radiation enteritis using in vivo mice. A total of 40 mice were randomly assigned to four groups: control, probiotics, radiotherapy (RT), and RT + probiotics. For the group of probiotics, 0.2 mL of solution that contained 1.0 × 108 colony-forming units (CFU) of LGG was used and orally administered daily until sacrifice. For RT, a single dose of 14 Gy was administered using a 6 mega-voltage photon beam to the abdominopelvic area. Mice were sacrifice at day 4 (S1) and day 7 (S2) after RT. Their jejunum, colon, and stool were collected. A multiplex cytokine assay and 16 s ribosomal RNA amplicon sequencing were then performed. Regarding cytokine concentrations in tissues, pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin-6 and monocyte chemotactic protein-1, showed significantly decreased protein levels in colon tissues of the RT + probiotics group than in the RT alone group (all p < 0.05). As for comparing microbial abundance through alpha-diversity and beta-diversity, no significant differences were observed between the RT + probiotics and RT alone groups, except for an increase in alpha-diversity in the stool of the RT + probiotics group. Upon analysis of differential microbes based on treatment, the dominance of anti-inflammatory-related microbes, such as Porphyromonadaceae, Bacteroides acidifaciens, and Ruminococcus, was observed in the jejunum, colon, and stool of the RT + probiotics group. With regard to predicted metabolic pathway abundances, the pathways associated with anti-inflammatory processes, such as biosynthesis of pyrimidine nucleotides, peptidoglycans, tryptophan, adenosylcobalamin, and propionate, were differentially identified in the RT + probiotics group compared to the RT alone group. Protective effects of probiotics on radiation enteritis were potentially derived from dominant anti-inflammation-related microbes and metabolites.
Collapse
Affiliation(s)
- Sung Uk Lee
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea
- Proton Therapy Center, National Cancer Center, Goyang, South Korea
| | - Bum-Sup Jang
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea
| | - Yi Rang Na
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, South Korea
| | - Sun Hwa Lee
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea
| | - Sunwoo Han
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, South Korea
| | - Ji Hyun Chang
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea.
| | - Hak Jae Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
10
|
Hajian H, Motallebi M, Akhavan Taheri M, Kheiripour N, Aghadavod E, Shahaboddin ME. The preventive effect of heat-killed Lactobacillus plantarum on male reproductive toxicity induced by cholestasis in rats. Food Chem Toxicol 2024:114571. [PMID: 38452966 DOI: 10.1016/j.fct.2024.114571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
This study investigated the preventive effect of heat-killed Lactobacillus plantarum (L. plantarum) on cholestasis-induced male reproductive toxicity in rats. Rats were divided into control normal, sham control, bile duct ligation (BDL) control, and BDL with heat-killed L. plantarum supplementation groups. The effects on sexual hormones, testicular and epididymal histology, sperm parameters, oxidative stress markers, and inflammatory gene expression were evaluated. Compared to the BDL control group, the BDL + heat-killed L. plantarum group showed higher levels of normal sperm, luteinizing hormone, testosterone, total antioxidant capacity, and catalase activity, indicating improved reproductive function. Conversely, markers of oxidative stress, such as total oxidative status, oxidative stress index, and carbonyl protein, were lower in the BDL + heat-killed L. plantarum group. The expression levels of inflammatory genes tumor necrosis factor-alpha and interleukin-6 were reduced, while interleukin-10 gene expression was increased in the BDL + heat-killed L. plantarum group. Histological evaluation confirmed the positive effects of heat-killed L. plantarum intervention on testicular parameters. In conclusion, heat-killed L. plantarum supplementation protects against cholestasis-induced male reproductive dysfunction in rats, as evidenced by improvements in hormonal balance, sperm quality, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Hajar Hajian
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mitra Motallebi
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Akhavan Taheri
- Institute for Basic Sciences, Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Nejat Kheiripour
- Institute for Basic Sciences, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmat Aghadavod
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Esmaeil Shahaboddin
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Institute for Basic Sciences, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
11
|
Kabiri-Arani S, Motallebi M, Taheri MA, Kheiripour N, Ardjmand A, Aghadavod E, Shahaboddin ME. The Effect of Heat-Killed Lactobacillus plantarum on Oxidative Stress and Liver Damage in Rats with Bile Duct Ligation-Induced Hepatic Fibrosis. Probiotics Antimicrob Proteins 2024; 16:196-211. [PMID: 36522610 DOI: 10.1007/s12602-022-10033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
This study is aimed at evaluating the effects of heat-killed Lactobacillus plantarum (L. plantarum) on cholestatic liver injury induced by bile duct ligation (BDL) in rats. Rats in the first group were healthy (normal control) and in the second group underwent abdominal incision (sham control). Rats in the third and fourth groups underwent common bile duct ligation and were treated with either oral distilled water (BDL control group) or heat-killed L. plantarum (BDL + L. plantarum) for 28 days. Finally, rats were sacrificed, blood samples were analyzed through biochemical methods, liver and ileum tissue tissues were histologically assessed, and the expression of the αSMA, TNF-α, IL-6, and IL-10 genes in the liver and ZO-1 gene in ileum tissues were assessed through real-time PCR. The levels of bilirubin, liver function enzymes, NO, MDA, and carbonyl protein in the BDL + L. plantarum group were significantly lower than in the BDL control group (P ≤ 0.05). SOD and CAT activity in BDL + L. plantarum group was significantly greater than the BDL control group 1.4 and 3.0 times, respectively (P ≤ 0.001). Moreover, in the BDL + L. plantarum group, the expression of the α-SMA, TNF-α, and IL-6 genes was significantly lower (3.1, 2.9, and 2.5 times), and IL-10 and ZO-1 genes were significantly greater than the BDL control group by 2.1 and 3.6 times, respectively (P ≤ 0.05). The histological assessment also confirmed the greater effectiveness of heat-killed L. plantarum in improving the morphology and parenchymal structure of the liver. Taken together, our results suggest that heat-killed L. plantarum strains are potential therapeutic agents for hepatic fibrosis.
Collapse
Affiliation(s)
- Shima Kabiri-Arani
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Pezeshk Blvd, Qotbe Ravandi Blvd, Kashan, Iran
| | - Mitra Motallebi
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Akhavan Taheri
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Nejat Kheiripour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Abolfazl Ardjmand
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmat Aghadavod
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Pezeshk Blvd, Qotbe Ravandi Blvd, Kashan, Iran
| | - Mohammad Esmaeil Shahaboddin
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Pezeshk Blvd, Qotbe Ravandi Blvd, Kashan, Iran.
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
12
|
Liu Y, Li L, Feng J, Wan B, Tu Q, Cai W, Jin F, Tang G, Rodrigues LR, Zhang X, Yin J, Zhang Y. Modulation of chronic obstructive pulmonary disease progression by antioxidant metabolites from Pediococcus pentosaceus: enhancing gut probiotics abundance and the tryptophan-melatonin pathway. Gut Microbes 2024; 16:2320283. [PMID: 38444395 PMCID: PMC10936690 DOI: 10.1080/19490976.2024.2320283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a condition primarily linked to oxidative stress, poses significant health burdens worldwide. Recent evidence has shed light on the association between the dysbiosis of gut microbiota and COPD, and their metabolites have emerged as potential modulators of disease progression through the intricate gut-lung axis. Here, we demonstrate the efficacy of oral administration of the probiotic Pediococcus pentosaceus SMM914 (SMM914) in delaying the progression of COPD by attenuating pulmonary oxidative stress. Specially, SMM914 induces a notable shift in the gut microbiota toward a community structure characterized by an augmented abundance of probiotics producing short-chain fatty acids and antioxidant metabolisms. Concurrently, SMM914 synthesizes L-tryptophanamide, 5-hydroxy-L-tryptophan, and 3-sulfino-L-alanine, thereby enhancing the tryptophan-melatonin pathway and elevating 6-hydroxymelatonin and hypotaurine in the lung environment. This modulation amplifies the secretion of endogenous anti-inflammatory factors, diminishes macrophage polarization toward the M1 phenotype, and ultimately mitigates the oxidative stress in mice with COPD. The demonstrated efficacy of the probiotic intervention, specifically with SMM914, not only highlights the modulation of intestine microbiota but also emphasizes the consequential impact on the intricate interplay between the gastrointestinal system and respiratory health.
Collapse
Affiliation(s)
- Yiting Liu
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
- The Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, P. R. China
| | - Longjie Li
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
- The Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, P. R. China
| | - Jing Feng
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
- The Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, P. R. China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Cai
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Fa Jin
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Guiying Tang
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Lígia R. Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
- The Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, P. R. China
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
13
|
Forouhandeh H, Soofiyani SR, Hosseini K, Beirami SM, Ahangari H, Moammer Y, Ebrahimzadeh S, Nejad MK, Farjami A, Khodaiefar F, Tarhriz V. Modulation of the Immune System Mechanisms using Probiotic Bacteria in Allergic Diseases: Focus on Allergic Retinitis and Food Allergies. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:11-26. [PMID: 37842889 DOI: 10.2174/0127722708246899230928080651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Allergic illnesses occur when an organism's immune system is excessively responsive to certain antigens, such as those that are presented in the environment. Some people suffer from a wide range of immune system-related illnesses including allergic rhinitis, asthma, food allergies, hay fever, and even anaphylaxis. Immunotherapy and medications are frequently used to treat allergic disorders. The use of probiotics in bacteriotherapy has lately gained interest. Probiotics are essential to human health by modulating the gut microbiota in some ways. Due to probiotics' immunomodulatory properties present in the gut microbiota of all animals, including humans, these bacterial strains can prevent a wide variety of allergic disorders. Probiotic treatment helps allergy patients by decreasing inflammatory cytokines and enhancing intestinal permeability, which is important in the battle against allergy. By altering the balance of Th1 and Th2 immune responses in the intestinal mucosa, probiotics can heal allergic disorders. Numerous studies have shown a correlation between probiotics and a reduced risk of allergy disorders. A wide range of allergic disorders, including atopic dermatitis, asthma, allergic retinitis and food allergies has been proven to benefit from probiotic bacteria. Therefore, the use of probiotics in the treatment of allergic diseases offers a promising perspective. Considering that probiotic intervention in the treatment of diseases is a relatively new field of study, more studies in this regard seem necessary.
Collapse
Affiliation(s)
- Haleh Forouhandeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saiedeh Razi Soofiyani
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sohrab Minaei Beirami
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yusif Moammer
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Ebrahimzadeh
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoomeh Kashef Nejad
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Khodaiefar
- Department of Traditional Medicine, Faculty of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
14
|
Debnath N, Yadav P, Yadav AK. Assessment of Probiotic and Antioxidant Potential of Indigenous Lactobacillus Strains Isolated from Human Faecal Samples. Indian J Microbiol 2023; 63:677-692. [PMID: 38031600 PMCID: PMC10681969 DOI: 10.1007/s12088-023-01129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
This study aimed to isolate and characterize probiotic Lactobacilli from human faecal samples of Jammu region of India and evaluation of their antioxidative properties. A total of 29 Lactobacillus strains were isolated and tested for their ability to withstand different pH levels, high concentrations of bile salt and lysozyme along with their adhesion ability to different hydrocarbons and auto-aggregation. Selected probiotic Lactobacillus isolates were further examined for their antioxidant potential using ABTS, DPPH methods, and the ability to scavenge superoxide and hydroxyl radicals. The results showed that Lactobacillus LpJ1 (7.93 ± 0.23) and LpJ5 (7.93 ± 0.59) had the highest cell viability at a pH of 2.5, while Lactobacillus LpJ16 (7.91 ± 0.48) had the highest resistance to bile salts. Many of the isolates also demonstrated good tolerance to lysozyme. The adhesion abilities of these isolates were characterized by cell surface hydrophobicity and auto aggregation which ranged between 50.32% to 77.8% and 51.02% to 78.95% respectively. In addition, Lactobacillus LpJ5 and LpJ8 showed excellent antioxidant activity. Based on these findings, the selected probiotic strains could be potential candidates for use in functional food to reduce oxidative stress. Graphical abstract
Collapse
Affiliation(s)
- Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Rahya-Suchani (Bagla) Samba, Jammu & Kashmir 181143 India
| | - Pooja Yadav
- Centre for Molecular Biology, Central University of Jammu, Rahya-Suchani (Bagla) Samba, Jammu & Kashmir 181143 India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Rahya-Suchani (Bagla) Samba, Jammu & Kashmir 181143 India
| |
Collapse
|
15
|
Aluwong T, Sumanu VO, Abdulsalam RA, Emmanuel DS, Ezekiel NG, Aliyu MB, Ayo JO, Ukwenu JO, Yaro JD, Ogbuagu NE. Melatonin and probiotic administration ameliorated hyperglycaemia, oxidative stress, and enhanced cytoprotective effect on beta-cells of diabetic rats. J Diabetes Metab Disord 2023; 22:1537-1549. [PMID: 37975141 PMCID: PMC10638259 DOI: 10.1007/s40200-023-01284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/16/2023] [Indexed: 11/19/2023]
Abstract
Objective The study aimed at investigating the effects of administering melatonin and a probiotic to streptozotocin-induced diabetic rats on hyperglycaemia, oxidative stress biomarkers and beta-cells. Design Type 1 diabetes was induced in 5 months-old male Wistar rats by single intraperitoneal (i.p.) administration of freshly-prepared STZ (60 mg/kg body weight). Six groups of 10 rats were used and treated once daily for six weeks; (1) Healthy control: normal saline only; (2) Pre-treated with Melatonin (MEL); (3) Diabetic control; (4) Diabetic + Treated with MEL; (5) Diabetic + Treated with Probiotic (Prob); (6) Diabetic + Treated with MEL + Prob. Blood glucose, body weight, activities of antioxidant enzymes and malondialdehyde concentration in serum and tissues, reduced glutathione and immunohistochemical assay. Data obtained were expressed as mean ± standard error of the mean (Mean ± SEM) and subjected to ANOVA followed by Tukey's post hoc test. Results Melatonin + Probiotic significantly decreased blood glucose concentrations in diabetic treated rats, compared to the diabetic control rats. MEL + Probiotic increased (p < 0.05) superoxide dismutase activity in serum and liver of diabetic rats. MEL + Probiotic reduced (p < 0.05) malondialdehyde concentration in the serum, liver and kidneys, respectively. MEL + Probiotic treated diabetic rats displayed islets with much greater content of insulin. Conclusion Melatonin + Probiotic combination was more effective in mitigating hyperglycaemia, oxidative stress, and exerted cytoprotective effect on the beta-cells.
Collapse
Affiliation(s)
- Tagang Aluwong
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Victory Osirimade Sumanu
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | | | - David Smith Emmanuel
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Nanyil Gunshin Ezekiel
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Muhammad Bello Aliyu
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Joseph Olusegun Ayo
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | | | - Jigo Dangude Yaro
- Department of Pathology, Ahmadu Bello University Teaching Hospital, Zaria, Nigeria
| | - Ngozi Ejum Ogbuagu
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
16
|
Di Cesare F, Calgaro M, Ghini V, Squarzanti DF, De Prisco A, Visciglia A, Zanetta P, Rolla R, Savoia P, Amoruso A, Azzimonti B, Vitulo N, Tenori L, Luchinat C, Pane M. Exploring the Effects of Probiotic Treatment on Urinary and Serum Metabolic Profiles in Healthy Individuals. J Proteome Res 2023; 22:3866-3878. [PMID: 37970754 PMCID: PMC10696601 DOI: 10.1021/acs.jproteome.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023]
Abstract
Probiotics are live microorganisms that confer health benefits when administered in adequate amounts. They are used to promote gut health and alleviate various disorders. Recently, there has been an increasing interest in the potential effects of probiotics on human physiology. In the presented study, the effects of probiotic treatment on the metabolic profiles of human urine and serum using a nuclear magnetic resonance (NMR)-based metabonomic approach were investigated. Twenty-one healthy volunteers were enrolled in the study, and they received two different dosages of probiotics for 8 weeks. During the study, urine and serum samples were collected from volunteers before and during probiotic supplementation. The results showed that probiotics had a significant impact on the urinary and serum metabolic profiles without altering their phenotypes. This study demonstrated the effects of probiotics in terms of variations of metabolite levels resulting also from the different probiotic posology. Overall, the results suggest that probiotic administration may affect both urine and serum metabolomes, although more research is needed to understand the mechanisms and clinical implications of these effects. NMR-based metabonomic analysis of biofluids is a powerful tool for monitoring host-gut microflora dynamic interaction as well as for assessing the individual response to probiotic treatment.
Collapse
Affiliation(s)
- Francesca Di Cesare
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, Firenze 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Matteo Calgaro
- Department
of Biotechnology, University of Verona, Strada le Grazie, 15, Verona 37134, Italy
| | - Veronica Ghini
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, Firenze 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Diletta Francesca Squarzanti
- Department
of Health Sciences (DiSS), University of
Piemonte Orientale (UPO), Via Solaroli, 17, Novara 28100, Italy
- Center
for Translational Research on Autoimmune and Allergic Diseases (CAAD),
Department of Health Sciences (DiSS), University
of Piemonte Orientale (UPO), Corso Trieste, 15, Novara 28100, Italy
| | | | | | - Paola Zanetta
- Department
of Health Sciences (DiSS), University of
Piemonte Orientale (UPO), Via Solaroli, 17, Novara 28100, Italy
- Center
for Translational Research on Autoimmune and Allergic Diseases (CAAD),
Department of Health Sciences (DiSS), University
of Piemonte Orientale (UPO), Corso Trieste, 15, Novara 28100, Italy
| | - Roberta Rolla
- Department
of Health Sciences (DiSS), University of
Piemonte Orientale (UPO), Via Solaroli, 17, Novara 28100, Italy
| | - Paola Savoia
- Department
of Health Sciences (DiSS), University of
Piemonte Orientale (UPO), Via Solaroli, 17, Novara 28100, Italy
| | - Angela Amoruso
- Probiotical
Research Srl, Via Enrico
Mattei, 3, Novara 28100, Italy
| | - Barbara Azzimonti
- Department
of Health Sciences (DiSS), University of
Piemonte Orientale (UPO), Via Solaroli, 17, Novara 28100, Italy
- Center
for Translational Research on Autoimmune and Allergic Diseases (CAAD),
Department of Health Sciences (DiSS), University
of Piemonte Orientale (UPO), Corso Trieste, 15, Novara 28100, Italy
| | - Nicola Vitulo
- Department
of Biotechnology, University of Verona, Strada le Grazie, 15, Verona 37134, Italy
| | - Leonardo Tenori
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, Firenze 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, Firenze 50019, Italy
| | - Claudio Luchinat
- Consorzio
Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, Firenze 50019, Italy
- Giotto
Biotech S.r.l., Via Madonna
del Piano, 6, Sesto Fiorentino, Firenze 50019, Italy
| | - Marco Pane
- Probiotical
Research Srl, Via Enrico
Mattei, 3, Novara 28100, Italy
| |
Collapse
|
17
|
Song W, Yan X, Zhai Y, Ren J, Wu T, Guo H, Song Y, Li X, Guo Y. Probiotics attenuate valproate-induced liver steatosis and oxidative stress in mice. PLoS One 2023; 18:e0294363. [PMID: 37971986 PMCID: PMC10653412 DOI: 10.1371/journal.pone.0294363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
Valproate (valproic acid, VPA), a drug for the treatment of epilepsy and bipolar disorder, causes liver steatosis with enhanced oxidative stress. Accumulating evidences exhibite that gut microbiota plays an important role in progression of nonalcoholic fatty liver disease (NAFLD). However, whether gut microbiota contributes to VPA-caused hepatic steatosis needs to be elucidated. A mixture of five probiotics was selected to investigate their effects on liver steatosis and oxidative stress in mice orally administered VPA for 30 days. Probiotics treatment significantly attenuated the hepatic lipid accumulation in VPA-treated mice via inhibiting the expression of cluster of differentiation 36 (CD36) and distinct diacylglycerol acyltransferase 2 (DGAT2). Meanwhile, probiotics exerted a protective effect against VPA-induced oxidative stress by decreasing the pro-oxidant cytochrome P450 2E1 (CYP2E1) level and activating the Nrf2/antioxidant enzyme pathway. Moreover, VPA treatment altered the relative abundance of gut microbiota at the phylum, family and genera levels, while probiotics partially restored these changes. Spearman's correlation analysis showed that several specific genera and family were significantly correlated with liver steatosis and oxidative stress-related indicators. These results suggest that probiotics exert their health benefits in the abrogation of liver steatosis and oxidative stress in VPA-treated mice by manipulating the microbial homeostasis.
Collapse
Affiliation(s)
- Wenfang Song
- School of Life Sciences, Jilin University, Changchun, China
| | - Xinrui Yan
- School of Life Sciences, Jilin University, Changchun, China
| | - Yu Zhai
- School of Life Sciences, Jilin University, Changchun, China
| | - Jing Ren
- School of Life Sciences, Jilin University, Changchun, China
| | - Ting Wu
- School of Life Sciences, Jilin University, Changchun, China
| | - Han Guo
- School of Life Sciences, Jilin University, Changchun, China
| | - Yu Song
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Ministry of Education, Key Laboratory for Protection and Utilization of Tropical Marine Fishery Resources, College of Fishery and Life Science, Hainan Tropical Ocean University, Sanya, China
| | - Xiaojiao Li
- Phase I Clinical Trial Center, The First Hospital of Jilin University, Changchun, China
| | - Yingjie Guo
- School of Life Sciences, Jilin University, Changchun, China
- National Engineering Laboratory of AIDS Vaccine, Jilin University, Changchun, China
| |
Collapse
|
18
|
Herrera-Rocha KM, Manjarrez-Juanes MM, Larrosa M, Barrios-Payán JA, Rocha-Guzmán NE, Macías-Salas A, Gallegos-Infante JA, Álvarez SA, González-Laredo RF, Moreno-Jiménez MR. The Synergistic Effect of Quince Fruit and Probiotics ( Lactobacillus and Bifidobacterium) on Reducing Oxidative Stress and Inflammation at the Intestinal Level and Improving Athletic Performance during Endurance Exercise. Nutrients 2023; 15:4764. [PMID: 38004161 PMCID: PMC10675360 DOI: 10.3390/nu15224764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Endurance exercise promotes damage at the intestinal level and generates a variety of symptoms related to oxidative stress processes, inflammatory processes, microbiota dysbiosis, and intestinal barrier damage. This study evaluated the effects of quince (Cydonia oblonga Mill.) and probiotics of the genera Lactobacillus and Bifidobacterium on intestinal protection and exercise endurance in an animal swimming model. Phytochemical characterization of the quince fruit demonstrated a total dietary fiber concentration of 0.820 ± 0.70 g/100 g and a fiber-bound phenolic content of 30,218 ± 104 µg/g in the freeze-dried fruit. UPLC-PDA-ESI-QqQ analyses identified a high content of polyphenol, mainly flavanols, hydroxycinnamic acids, hydroxybenzoic acids, flavonols, and, to a lesser extent, dihydrochalcones. The animal model of swimming was performed using C57BL/6 mice. The histological results determined that the consumption of the synbiotic generated intestinal protection and increased antioxidant (catalase and glutathione peroxidase enzymes) and anti-inflammatory (TNF-α and IL-6 and increasing IL-10) activities. An immunohistochemical analysis indicated mitochondrial biogenesis (Tom2) at the muscular level related to the increased swimming performance. These effects correlated mainly with the polyphenol content of the fruit and the effect of the probiotics. Therefore, this combination of quince and probiotics could be an alternative for the generation of a synbiotic product that improves exercise endurance and reduces the effects generated by the practice of high performance sports.
Collapse
Affiliation(s)
- Karen Marlenne Herrera-Rocha
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - María Magdalena Manjarrez-Juanes
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - Mar Larrosa
- Department of Nutrition and Food Science, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jorge Alberto Barrios-Payán
- Laboratory of Experimental Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán (INCMNSZ), Vasco de Quiroga #15, Tlalpan, Ciudad de México 14080, Mexico
| | - Nuria Elizabeth Rocha-Guzmán
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - Alejo Macías-Salas
- Hospital Santiago Ramón y Cajal, Departamento de Patología, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Durango 34079, Mexico
| | - José Alberto Gallegos-Infante
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - Saul Alberto Álvarez
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - Rubén Francisco González-Laredo
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - Martha Rocío Moreno-Jiménez
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| |
Collapse
|
19
|
Kunnummal SP, Sori N, Khan MA, Khan M. Plant-Based Nutraceutical Formulation Modulates the Human Gut Microbiota and Ferulic Acid Esterase Activity During In Vitro Fermentation. Curr Microbiol 2023; 81:3. [PMID: 37940729 DOI: 10.1007/s00284-023-03518-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Oxidative stress is an imbalance between free reactive oxygen species and antioxidant defences leading to neurological and other chronic disorders. The interaction between food and gut microbiota and their metabolites significantly reduces oxidative stress and influences host physiology and metabolism. This process mainly involves enzymes that hydrolyse complex polysaccharides and produce metabolites. Ferulic acid esterases (FAE) one of the most important enzymes of the gut microbiome, release ferulic acid from feruloylated sugar ester conjugates, that occur naturally in grains, fruits, and vegetables. FA is crucial in combating oxidative stress resulted from free radical formation. This study investigated the effect of two plant-based nutraceutical formulations, cereal-millet-based (PC1) and fruit-vegetable-based (PC2), on gut microbiota and the production of FAE, short chain fatty acids (SCFA) and other small metabolites in in vitro fermentation using human faecal samples. After in vitro fermentation, both nutraceutical formulations increased the abundance of Bifidobacterium, Lactobacillus, Prevotella, Feacalibacteria, and Clostridium leptum. Furthermore, they induced the production of FAE, xylanase and pectinase enzymes, SCFA and other small metabolites, resulting in increased antioxidation activity of the fermentate. PC1 stimulated FAE and xylanase production more effectively. These results demonstrated a positive correlation between the feruloylated nutraceutical formulation and the production of FAE and other accessory enzymes, suggesting that PC1 and PC2 stimulate the proliferation of the FAE-producing microbial consortium of the gut microbiome and therefore, increase FA and SCFA concentration. From this study it is evident that FA-rich plant-based formulation can be used as a prophylactic nutraceutical supplement to alleviate oxidative stress by modulating the gut microbiota.
Collapse
Affiliation(s)
- Saarika Pothuvan Kunnummal
- Department of Microbiology and Fermentation Technology, CSIR- Central Food Technological Research Institute, Mysuru, Karnataka, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nidhi Sori
- Department of Microbiology and Fermentation Technology, CSIR- Central Food Technological Research Institute, Mysuru, Karnataka, 570020, India
| | - Mudassir Azeez Khan
- Department of Community Medicine, Mysore Medical College and Research Institute, Mysuru, Karnataka, India
| | - Mahejibin Khan
- Department of Microbiology and Fermentation Technology, CSIR- Central Food Technological Research Institute, Mysuru, Karnataka, 570020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
20
|
Tang J, Wei Y, Pi C, Zheng W, Zuo Y, Shi P, Chen J, Xiong L, Chen T, Liu H, Zhao Q, Yin S, Ren W, Cao P, Zeng N, Zhao L. The therapeutic value of bifidobacteria in cardiovascular disease. NPJ Biofilms Microbiomes 2023; 9:82. [PMID: 37903770 PMCID: PMC10616273 DOI: 10.1038/s41522-023-00448-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023] Open
Abstract
There has been an increase in cardiovascular morbidity and mortality over the past few decades, making cardiovascular disease (CVD) the leading cause of death worldwide. However, the pathogenesis of CVD is multi-factorial, complex, and not fully understood. The gut microbiome has long been recognized to play a critical role in maintaining the physiological and metabolic health of the host. Recent scientific advances have provided evidence that alterations in the gut microbiome and its metabolites have a profound influence on the development and progression of CVD. Among the trillions of microorganisms in the gut, bifidobacteria, which, interestingly, were found through the literature to play a key role not only in regulating gut microbiota function and metabolism, but also in reducing classical risk factors for CVD (e.g., obesity, hyperlipidemia, diabetes) by suppressing oxidative stress, improving immunomodulation, and correcting lipid, glucose, and cholesterol metabolism. This review explores the direct and indirect effects of bifidobacteria on the development of CVD and highlights its potential therapeutic value in hypertension, atherosclerosis, myocardial infarction, and heart failure. By describing the key role of Bifidobacterium in the link between gut microbiology and CVD, we aim to provide a theoretical basis for improving the subsequent clinical applications of Bifidobacterium and for the development of Bifidobacterium nutritional products.
Collapse
Affiliation(s)
- Jia Tang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Wenwu Zheng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Ying Zuo
- Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Peng Shi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Jinglin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Linjin Xiong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Tao Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Huiyang Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Qianjiao Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Suyu Yin
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Peng Cao
- The Affiliated Hospital of Traditional Chinese and Western Medicine Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, P.R. China.
| | - Nan Zeng
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China.
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China.
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.
| |
Collapse
|
21
|
Şirin S. Lactic Acid Bacteria-Derived Exopolysaccharides Mitigate the Oxidative Response via the NRF2-KEAP1 Pathway in PC12 Cells. Curr Issues Mol Biol 2023; 45:8071-8090. [PMID: 37886953 PMCID: PMC10605729 DOI: 10.3390/cimb45100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Parabiotics, including L-EPSs, have been administered to patients with neurodegenerative disorders. However, the antioxidant properties of L-EPSs against H2O2-induced oxidative stress in PC12 cells have not been studied. Herein, we aimed to investigate the antioxidant properties of the L-EPSs, their plausible targets, and their mechanism of action. We first determined the amount of L-EPSs in Lactobacillus delbrueckii ssp. bulgaricus B3 and Lactiplantibacillus plantarum GD2 using spectrophotometry. Afterwards, we studied their effects on TDH, TOS/TAS, antioxidant enzyme activities, and intracellular ROS level. Finally, we used qRT-PCR and ELISA to determine the effects of L-EPSs on the NRF2-KEAP1 pathway. According to our results, the L-EPS groups exhibited significantly higher total thiol activity, native thiol activity, disulfide activity, TAS levels, antioxidant enzyme levels, and gene expression levels (GCLC, HO-1, NRF2, and NQO1) than did the H2O2 group. Additionally, the L-EPS groups caused significant reductions in TOS levels and KEAP1 gene expression levels compared with those in the H2O2 group. Our results indicate that H2O2-induced oxidative stress was modified by L-EPSs. Thus, we revealed that L-EPSs, which regulate H2O2-induced oxidative stress, could have applications in the field of neurochemistry.
Collapse
Affiliation(s)
- Seda Şirin
- Department of Biology, Faculty of Science, Gazi University, Teknikokullar, 06500 Ankara, Turkey
| |
Collapse
|
22
|
Shangpliang HNJ, Tamang JP. Metagenomics and metagenome-assembled genomes mining of health benefits in jalebi batter, a naturally fermented cereal-based food of India. Food Res Int 2023; 172:113130. [PMID: 37689895 DOI: 10.1016/j.foodres.2023.113130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Jalebi is one of the oldest Indian traditional fermented wheat-based confectioneries. Since jalebi is prepared by natural fermentation, diverse microbial community is expected to play bio-functional activities. Due to limited studies, information on microbial community structure in jalebi is unknown. Hence, the present study is aimed to profile the microbial community in jalebi by shotgun metagenomics and also to predict putative probiotic and functional genes by metagenome-assembled genome (MAG). Bacteria were the most abundant domain (91.91%) under which Bacillota was the most abundant phylum (82%). The most abundant species was Lapidilactobacillus dextrinicus followed by several species of lactic acid bacteria, acetic acid bacteria including few yeasts. Lap. dextrinicus was also significantly abundant in jalebi when compared to similar fermented wheat-based sourdough. Additionally, Lap. bayanensis, Pediococcus stilesii, and yeast- Candida glabrata, Gluconobacter japonicus, Pichia kudriavzevii, Wickerhamomyces anomalus were only detected in jalebi, which are not detected in sourdough. Few viruses and archaea were detected with < 1 % abundance. In silico screening of genes from the abundant species was mined using both KEGG and EggNOG database for putative health beneficial attributes. Circular genomes of five high-quality MAGs, identified as Lapidilactobacillus dextrinicus, Enterococcus hirae, Pediococcus stilesii, Acetobacter indonesiensis and Acetobacter cibinongensis, were constructed separately and putative genes were mapped and annotated. The CRISPR/Cas gene clusters in the genomes of four MAGs except Acetobacter cibinongensis were detected. MAGs also showed several secondary metabolites. Since, the identified MAGs have different putative genes for bio-functional properties, this may pave the way to selectively culture the uncultivated putative microbes for jalebi production. We believe this is the first report on metagenomic and MAGs of jalebi.
Collapse
Affiliation(s)
| | - Jyoti Prakash Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Tadong, Gangtok 737102, Sikkim, India.
| |
Collapse
|
23
|
Rodenes-Gavidia A, Lamelas A, Bloor S, Hobson A, Treadway S, Haworth J, Vijayakumar V, Naghibi M, Day R, Chenoll E. An insight into the functional alterations in the gut microbiome of healthy adults in response to a multi-strain probiotic intake: a single arm open label trial. Front Cell Infect Microbiol 2023; 13:1240267. [PMID: 37841999 PMCID: PMC10570534 DOI: 10.3389/fcimb.2023.1240267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Background Probiotic supplements, by definition, provide a benefit to the host, but few studies have investigated the effect of probiotic supplements in healthy adult populations. Purpose The present, single arm, open label clinical trial, evaluated compositional and functional changes in the fecal microbiome of healthy adults after supplementation with a 14-strain probiotic. Methods We analysed the effect of a 14-strain probiotic blend (Bacillus subtilis NCIMB 30223, Bifidobacterium bifidum NCIMB 30179, B. breve NCIMB 30180, B. infantis NCIMB 30181, B. longum NCIMB 30182, Lactobacillus helveticus NCIMB 30184, L. delbrueckii subsp. bulgaricus NCIMB 30186, Lacticaseibacillus paracasei NCIMB 30185, Lactiplantibacillus plantarum NCIMB 30187, Lacticaseibacillus rhamnosus NCIMB 30188, L. helveticus NCIMB 30224, Lactobacillus salivarius NCIMB 30225, Lactococcus lactis subsp. lactis NCIMB 30222, and Streptococcus thermophilus NCIMB 30189), on the faecal microbiota of healthy young adults (n=41) in a single arm study. The adults consumed 4 capsules daily of the 14 strain blend(8 billion colony forming units/day) for 8 weeks. Compositional and functional changes in faecal microbiota before and after supplementation were assessed using shotgun metagenomic sequencing. Fasting breath analysis, faecal biochemistry and bowel habits were also assessed. Results In healthy adult participants, no significant changes to the overall alpha- or beta-diversity was observed after 8 weeks of multi-strain probiotic supplementation. However, in a simplified model that considered only time and individual differences, significant decreases (p < 0.05) in family Odoribacteraceae and Bacteroidaceae abundance and a significant increase (p < 0.05) in genus Megamonas abundance were observed. At a functional level, there were significant changes in functional gene abundance related to several functional pathways, including phenylalanine metabolism, O-antigen nucleotide sugar biosynthesis, bacterial chemotaxis, and flagellar assembly. No significant changes in stool form or frequency, fecal biochemistry, or methane and hydrogen breath tests were observed. Conclusion In healthy young adults, overall alpha- and beta-diversity did not change in response to probiotic intake even though modest compositional changes at the family and genus level were observed. However, at functional level, results identified changes in gene abundance for several functional pathways.
Collapse
Affiliation(s)
- Andrea Rodenes-Gavidia
- ADM BIOPOLIS, University of Valencia Science Park (Parc Científic de la Universitat de València), Valencia, Spain
| | - Araceli Lamelas
- ADM BIOPOLIS, University of Valencia Science Park (Parc Científic de la Universitat de València), Valencia, Spain
| | - Sarah Bloor
- Functional Gut Clinic, Manchester, United Kingdom
- Anglia Ruskin University, Essex, Norwich, United Kingdom
| | - Anthony Hobson
- Functional Gut Clinic, Manchester, United Kingdom
- Anglia Ruskin University, Essex, Norwich, United Kingdom
| | - Sam Treadway
- Functional Gut Clinic, Manchester, United Kingdom
| | | | | | - Malwina Naghibi
- Medical Department, ADM Health & Wellness, Somerset, United Kingdom
| | - Richard Day
- Medical Department, ADM Health & Wellness, Somerset, United Kingdom
| | - Empar Chenoll
- ADM BIOPOLIS, University of Valencia Science Park (Parc Científic de la Universitat de València), Valencia, Spain
| |
Collapse
|
24
|
Averina OV, Kovtun AS, Mavletova DA, Ziganshin RH, Danilenko VN, Mihaylova D, Blazheva D, Slavchev A, Brazkova M, Ibrahim SA, Krastanov A. Oxidative Stress Response of Probiotic Strain Bifidobacterium longum subsp. longum GT15. Foods 2023; 12:3356. [PMID: 37761064 PMCID: PMC10530004 DOI: 10.3390/foods12183356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Bifidobacterium is a predominant and important genus in the bacterial population of the human gut microbiota. Despite the increasing number of studies on the beneficial functionality of bifidobacteria for human health, knowledge about their antioxidant potential is still insufficient. Several in vivo and in vitro studies of Bifidobacterium strains and their cellular components have shown good antioxidant capacity that provided a certain protection of their own and the host's cells. Our work presents the data of transcriptomic, proteomic, and metabolomic analyses of the growing and stationary culture of the probiotic strain B. longum subsp. longum GT15 after exposure to hydrogen peroxide for 2 h and oxygen for 2 and 4 h. The results of the analysis of the sequenced genome of B. longum GT15 showed the presence of 16 gene-encoding proteins with known antioxidant functions. The results of the full transcriptomic analysis demonstrated a more than two-fold increase of levels of transcripts for eleven genes, encoding proteins with antioxidant functions. Proteomic data analysis showed an increased level of more than two times for glutaredoxin and thioredoxin after the exposure to oxygen, which indicates that the thioredoxin-dependent antioxidant system may be the major redox homeostasis system in B. longum bacteria. We also found that the levels of proteins presumably involved in global stress, amino acid metabolism, nucleotide and carbohydrate metabolism, and transport had significantly increased in response to oxidative stress. The metabolic fingerprint analysis also showed good discrimination between cells responding to oxidative stress and the untreated controls. Our results provide a greater understanding of the mechanism of oxidative stress response in B. longum and the factors that contribute to its survival in functional food products.
Collapse
Affiliation(s)
- Olga V. Averina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.S.K.); (D.A.M.); (V.N.D.)
| | - Aleksey S. Kovtun
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.S.K.); (D.A.M.); (V.N.D.)
| | - Dilara A. Mavletova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.S.K.); (D.A.M.); (V.N.D.)
| | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Valery N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.S.K.); (D.A.M.); (V.N.D.)
| | - Dasha Mihaylova
- Department of Biotechnology, University of Food Technologies, 4002 Plovdiv, Bulgaria; (D.M.); (A.K.)
| | - Denica Blazheva
- Department of Microbiology, University of Food Technologies, 4002 Plovdiv, Bulgaria; (D.B.); (A.S.)
| | - Aleksandar Slavchev
- Department of Microbiology, University of Food Technologies, 4002 Plovdiv, Bulgaria; (D.B.); (A.S.)
| | - Mariya Brazkova
- Department of Biotechnology, University of Food Technologies, 4002 Plovdiv, Bulgaria; (D.M.); (A.K.)
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, Food and Nutritional Science Program, North Carolina A&T State University, Greensboro, NC 27411-1064, USA;
| | - Albert Krastanov
- Department of Biotechnology, University of Food Technologies, 4002 Plovdiv, Bulgaria; (D.M.); (A.K.)
| |
Collapse
|
25
|
Castro-López C, García-Galaz A, García HS, González-Córdova AF, Vallejo-Cordoba B, Hernández-Mendoza A. Potential probiotic lactobacilli strains isolated from artisanal Mexican Cocido cheese: evidence-based biosafety and probiotic action-related traits on in vitro tests. Braz J Microbiol 2023; 54:2137-2152. [PMID: 37450104 PMCID: PMC10485211 DOI: 10.1007/s42770-023-01059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023] Open
Abstract
The biosafety of four potentially probiotic lactobacilli strains, isolated from artisanal Mexican Cocido cheese, was assessed through in vitro tests aimed to determine (1) the antibiotic susceptibility profile by broth microdilution, (2) the transferability of antibiotic resistance determinants by filter-mating, and (3) the phenotypic and genotypic stability during serial batch sub-culture (100-day period) by evaluating physiological and probiotic features and RAPD-PCR fingerprinting. Lactobacilli strains exhibited multidrug-resistance; however, resistance determinants were not transferred in the filter-mating assay. Significant (p < 0.05) differences were observed in bacterial morphology and some functional and technological properties when strains were serially sub-cultured over 50 generations (G50), compared to the initial cultures (G0). Conversely, the strains did not show mucinolytic and hemolytic activities either at G0 or after 100 generations (G100). Genetic polymorphism and genomic template instability on selected strains were detected, which suggest possible evolutionary arrangements that may occur when these bacteria are largely cultured. Our findings suggest that the assessed strains did not raise in vitro biosafety concerns; however, complementary studies are still needed to establish the safe potential applications in humans and animals.
Collapse
Affiliation(s)
- Cecilia Castro-López
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México
| | - Alfonso García-Galaz
- Laboratorio de Microbiología Polifásica y Bioactividades, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos‒UNIDA, Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, Miguel Ángel de Quevedo 2779, Veracruz, Veracruz, México, 91897
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México
| | - Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México.
| |
Collapse
|
26
|
Shangpliang HNJ, Tamang JP. Metagenome-assembled genomes for biomarkers of bio-functionalities in Laal dahi, an Indian ethnic fermented milk product. Int J Food Microbiol 2023; 402:110300. [PMID: 37364321 DOI: 10.1016/j.ijfoodmicro.2023.110300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
Laal dahi is a sweetened and soft pudding-like fermented milk product of the Eastern regions of India, which has not been studied for its microbial community structures and health promoting functionality in terms of 'omics' approaches. We applied metagenomic and metagenomes-assembled genomes (MAGs) tools to decipher the biomarkers for genes encoding for different health promoting functionalities in laal dahi. Abundance of bacterial domains was observed with negligible presence of eukaryotes and viruses. Bacillota was the most abundant phylum with different bacterial species viz., Enterococcus italicus, Lactococcus raffinolactis, Lactobacillus helveticus, Bifidobacterium mongoliense, Hafnia alvei, Lactococcus lactis, Acetobacter okinawensis, Streptococcus thermophilus, Thermus thermophilus, Leuconostoc citreum, Leuconostoc pseudomesenteroides, Acetobacter orientalis, Lactobacillus gallinarum, Lactococcus chungangensis and Lactobacillus delbrueckii. Comparison of laal dahi microbiome with that of similar fermented milk products was also carried out after retrieving the metagenomic datasets from public databases. Significant abundance of Lb. helveticus, E. italicus, Lc. raffinolactis and Lc. lactis in laal dahi. Interestingly, Bifidobacterium mongoliense, Lb. gallinarum, Lc. chungangensis and Acetobacter okinawensis were only detected in laal dahi but Streptococcus infantarius, Lacticaseibacillus rhamnosus and Lb. johnsonii were absent. Reconstruction of putative single environment-specific genomes from metagenomes in addition to subsampling of the abundant species resulted in five high-quality MAGs identified as Lactobacillus delbrueckii, Lactobacillus helveticus, Lactococcus chungangensis, Lactococcus lactis and Streptococcus thermophilus. All MAGs showed the presence of various genes with several putative functions corresponding to different probiotic and prebiotic functions, short-chain fatty acids production, immunomodulation, antitumor genes, essential amino acid and vitamin biosynthesis. Genes for γ-Aminobutyric acid (GABA) production were only detected in MAG of Lactococcus lactis. Gene clusters for secondary metabolites (antimicrobial peptides) were detected in all MAGs except Lc. chungangensis. Additionally, detection of clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) elements was observed only in Lactobacillus delbrueckii and Streptococcus thermophilus. Annotation of several genes with potential health beneficial properties in all five MAGs may support the need to explore the culturability of these MAGs for future use in controlled fermentation of functional dairy products.
Collapse
Affiliation(s)
| | - Jyoti Prakash Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Tadong, Gangtok 737102, Sikkim, India.
| |
Collapse
|
27
|
Minoretti P, Sigurtà C, Fachinetti A, Cerone E, Rotta F, Emanuele E. A Preliminary Study of Gut Microbiota in Airline Pilots: Comparison With Construction Workers and Fitness Instructors. Cureus 2023; 15:e39841. [PMID: 37397653 PMCID: PMC10314802 DOI: 10.7759/cureus.39841] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
INTRODUCTION The term "WORKbiota" has been used to describe the impact of occupational exposure and work types on human microbiota composition. Airline pilots, construction workers, and fitness instructors encompass three diverse professional groups, each with distinct work environments and lifestyle factors that may significantly influence their intestinal "WORKbiota." OBJECTIVES The current preliminary investigation was aimed to compare the relative abundance of specific gut microbes among airline pilots, construction workers, and fitness instructors to shed light on any significant differences. By scrutinizing these diverse professional groups, our objective was to enhance our understanding of how occupational factors influence gut microbiota while identifying possible implications for occupational medicine. METHODS A convenience sample consisting of 60 men representing three different professional domains - airline pilots, construction workers, and fitness instructors (with 20 individuals in each group) - was selected during regular outpatient occupational health consultations. The abundance of selected gut microbiota constituents, including Escherichia coli, Methanobrevibacter smithii, Akkermansia muciniphila, Faecalibacterium prausnitzii, Lactobacillus spp., Bifidobacterium spp., and Bacteroides spp., was quantified using quantitative SYBR Green quantitative real-time polymerase chain reaction (qRT-PCR) in stool samples. RESULTS There were no significant variations among the groups concerning Escherichia coli, Methanobrevibacter smithii, Bifidobacterium spp., and Bacteroides spp. However, Lactobacillus spp. and Faecalibacterium prausnitzii were significantly more abundant in the microbiota of fitness instructors compared to both airline pilots and construction workers, with no significant differences observed between the latter two groups. Notably, the abundance of Akkermansia muciniphila demonstrated a progressive decline from fitness instructors to construction workers and ultimately to airline pilots, who exhibited the lowest levels. CONCLUSION Airline pilots' gut microbiota was characterized by a lower abundance of health-promoting bacterial species, including Lactobacillus spp., Faecalibacterium prausnitzii, and Akkermansia muciniphila. Future research is essential to determine whether targeted interventions, such as probiotic and prebiotic supplementation, could potentially enhance gut microbiota composition and overall health in particular occupational groups.
Collapse
Affiliation(s)
| | - Camilla Sigurtà
- Aviation Medicine, Cavok Medical Center, Lonate Pozzolo, ITA
| | - Anna Fachinetti
- Aviation Medicine, Cavok Medical Center, Lonate Pozzolo, ITA
| | | | - Fabio Rotta
- Aviation Medicine, Studio Minoretti, Oggiono, ITA
| | | |
Collapse
|
28
|
Grishina YV, Vatlin AA, Mavletova DA, Odorskaya MV, Senkovenko AM, Ilyasov RA, Danilenko VN. Metabolites Potentially Determine the High Antioxidant Properties of Limosilactobacillus fermentum U-21. BIOTECH 2023; 12:biotech12020039. [PMID: 37218756 DOI: 10.3390/biotech12020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Many kinds of Lactobacillus are common occupants of humans' digestive tract that support the preservation of a balanced microbial environment that benefits host health. In this study, the unique lactic acid bacterium strain Limosilactobacillus fermentum U-21, which was isolated from the feces of a healthy human, was examined for its metabolite profile in order to compare it to that of the strain L. fermentum 279, which does not have antioxidant (AO) capabilities. By using GC × GC-MS, the metabolite fingerprint of each strain was identified, and the data were then subjected to multivariate bioinformatics analysis. The L. fermentum U-21 strain has previously been shown to possess distinctive antioxidant properties in in vivo and in vitro studies, positioning it as a drug candidate for the treatment of Parkinsonism. The production of multiple distinct compounds is shown by the metabolite analysis, demonstrating the unique characteristics of the L. fermentum U-21 strain. According to reports, some of the L. fermentum U-21 metabolites found in this study have health-promoting properties. The GC × GC-MS-based metabolomic tests defined strain L. fermentum U-21 as a potential postbiotic with significant antioxidant potential.
Collapse
Affiliation(s)
- Yelena V Grishina
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 141701 Moscow, Russia
| | - Aleksey A Vatlin
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Dilara A Mavletova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Maya V Odorskaya
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Alexey M Senkovenko
- Department of Bioengineering, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/12, 111234 Moscow, Russia
| | - Rustem A Ilyasov
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Laboratory of Molecular Genetics, Bashkir State Agrarian University, 450001 Ufa, Russia
| | - Valeriy N Danilenko
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| |
Collapse
|
29
|
Watthanasakphuban N, Srila P, Pinmanee P, Sompinit K, Rattanaporn K, Peterbauer C. Development of high cell density Limosilactobacillus reuteri KUB-AC5 for cell factory using oxidative stress reduction approach. Microb Cell Fact 2023; 22:86. [PMID: 37120528 PMCID: PMC10149017 DOI: 10.1186/s12934-023-02076-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/31/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Expression systems for lactic acid bacteria have been developed for metabolic engineering applications as well as for food-grade recombinant protein production. But the industrial applications of lactic acid bacteria as cell factories have been limited due to low biomass formation resulted in low efficiency of biomanufacturing process. Limosilactobacillus reuteri KUB-AC5 is a safe probiotic lactic acid bacterium that has been proven as a gut health enhancer, which could be developed as a mucosal delivery vehicle for vaccines or therapeutic proteins, or as expression host for cell factory applications. Similar to many lactic acid bacteria, its oxygen sensitivity is a key factor that limits cell growth and causes low biomass production. The aim of this study is to overcome the oxidative stress in L. reuteri KUB-AC5. Several genes involved in oxidative and anti-oxidative stress were investigated, and strain improvement for higher cell densities despite oxidative stress was performed using genetic engineering. RESULTS An in-silico study showed that L. reuteri KUB-AC5 genome possesses an incomplete respiratory chain lacking four menaquinone biosynthesis genes as well as a complete biosynthesis pathway for the production of the precursor. The presence of an oxygen consuming enzyme, NADH oxidase (Nox), leads to high ROS formation in aerobic cultivation, resulting in strong growth reduction to approximately 25% compared to anaerobic cultivation. Recombinant strains expressing the ROS scavenging enzymes Mn-catalase and Mn-superoxide dismutase were successfully constructed using the pSIP expression system. The Mn-catalase and Mn-SOD-expressing strains produced activities of 873 U/ml and 1213 U/ml and could minimize the ROS formation in the cell, resulting in fourfold and sevenfold higher biomass formation, respectively. CONCLUSIONS Expression of Mn-catalase and Mn-SOD in L. reuteri KUB-AC5 successfully reduced oxidative stress and enhanced growth. This finding could be applied for other lactic acid bacteria that are subject to oxidative stress and will be beneficial for applications of lactic acid bacteria for cell factory applications.
Collapse
Affiliation(s)
- Nisit Watthanasakphuban
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| | - Pimsiriya Srila
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Phitsanu Pinmanee
- Enzyme Technology Research Team, National Center of Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, 12120, Thailand
| | - Kamonwan Sompinit
- Department of Food Sciences and Technology, BOKU-University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Kittipong Rattanaporn
- Fermentation Technology Research Center, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| | - Clemens Peterbauer
- Department of Food Sciences and Technology, BOKU-University of Natural Resources and Life Sciences, 1190, Vienna, Austria.
| |
Collapse
|
30
|
Low-Molecular-Weight Gels as Smart Materials for the Enhancement of Antioxidants Activity. COSMETICS 2023. [DOI: 10.3390/cosmetics10020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Antioxidants are important substances used in the cosmetic and pharmaceutical fields that are able to block free radicals. These compounds can be incorporated into formulations for many reasons, such as release over time or preservation of the formulation activity and applicability. In the present study, a low-molecular-weight gel made with Boc-L-DOPA(Bn)2-OH was studied as suitable material to host antioxidants and improve their activity. The solvent change (DMSO/H2O) in combination with temperature was the technological procedure for the preparation of the gel. Two different antioxidants were tested: (1) α-tocopherol and (2) postbiotics. The antioxidant activity of α-tocopherol and of the postbiotics in the gel, measured by the (2,2-diphenyl-1-picryl-hydrazyl radical (DPPH) assay, showed higher values than those in the pure solvent. The antioxidant activity of the gel with 0.8 w/v% of gelator and α-tocopherol in the concentration range of 5–100 µM was 2.7–1.1 times higher on average than in the pure solvent. In the case of both postbiotics, the biggest difference was observed at 30% of postbiotics in the gel with 0.5% of a gelator, when the antioxidant activity was 4.4 to 4.7 times higher than that in the pure solvent.
Collapse
|
31
|
Adaptation of Lacticaseibacillus rhamnosus CM MSU 529 to Aerobic Growth: A Proteomic Approach. Microorganisms 2023; 11:microorganisms11020313. [PMID: 36838278 PMCID: PMC9963975 DOI: 10.3390/microorganisms11020313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The study describes the effect of aerobic conditions on the proteome of homofermentative lactic acid bacterium Lacticaseibacillus rhamnosus CM MSU 529 grown in a batch culture. Aeration caused the induction of the biosynthesis of 43 proteins, while 14 proteins were downregulated as detected by label-free LC-MS/MS. Upregulated proteins are involved in oxygen consumption (Pox, LctO, pyridoxine 5'-phosphate oxidase), xylulose 5-phosphate conversion (Xfp), pyruvate metabolism (PdhD, AlsS, AlsD), reactive oxygen species (ROS) elimination (Tpx, TrxA, Npr), general stress response (GroES, PfpI, universal stress protein, YqiG), antioxidant production (CysK, DkgA), pyrimidine metabolism (CarA, CarB, PyrE, PyrC, PyrB, PyrR), oligopeptide transport and metabolism (OppA, PepO), and maturation and stability of ribosomal subunits (RbfA, VicX). Downregulated proteins participate in ROS defense (AhpC), citrate and pyruvate consumption (CitE, PflB), oxaloacetate production (AvtA), arginine synthesis (ArgG), amino acid transport (GlnQ), and deoxynucleoside biosynthesis (RtpR). The data obtained shed light on mechanisms providing O2-tolerance and adaptation to aerobic conditions in strain CM MSU 529. The biosynthesis of 39 from 57 differentially abundant proteins was shown to be O2-sensitive in lactic acid bacteria for the first time. To our knowledge this is the first study on the impact of aerobic cultivation on the proteome of L. rhamnosus.
Collapse
|
32
|
Rashed SS, Ghaffari M, Moghadam NB, Ebrahimi MT, Keshtmand Z. Effects of a novel probiotic mixture on the modulation of brain and intestine Aquaporin-4 gene expression in rats exposed to Cadmium. Metab Brain Dis 2022; 37:2777-2782. [PMID: 36214979 DOI: 10.1007/s11011-022-01092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/25/2022] [Indexed: 11/26/2022]
Abstract
Cadmium (Cd) is a toxicant metal that risks human and animal health. Nowadays, the vital role of Aquaporin-4 (AQP-4) in brain and gut cell permeability has gathered too much attention to protecting against heavy metals. Studies have shown that heavy metals can harm the body due to oxidative stress. Probiotics are known for their health-beneficial effects and establish as dietary adjuncts mainly for their antioxidant properties. This study investigated the impact of a novel probiotic combination including Lactobacillus casei IBRC-M10783, Lactobacillus rhamnosus IBRC-M10782, and Lactobacillus helveticus TG-34 on the AQP-4 gene expression in CdCl2-induced Wistar rats. Rats were divided into three groups and received a specific dose of CdCl2 or probiotics. The AQP-4 expression level had estimated by Real-Time PCR in both the intestine and brain. These results showed a significant reduction in AQP-4 gene expression in the probiotic treatment group compared to the CdCl2 control group in the intestine and brain for the first time. Our research showed that consuming a probiotic mixture of L. casei, L. rhamnosus, and L. helveticus can reduce the expression of the aquaporin-4 gene in the brain and intestine of rats exposed to Cadmium, which can be promising in the field of aquaporin-4 regulation.
Collapse
Affiliation(s)
- Saba Sadeghi Rashed
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehran Ghaffari
- Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nahid Beladi Moghadam
- Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zahra Keshtmand
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
33
|
Synbiotics and Their Antioxidant Properties, Mechanisms, and Benefits on Human and Animal Health: A Narrative Review. Biomolecules 2022; 12:biom12101443. [PMID: 36291652 PMCID: PMC9599591 DOI: 10.3390/biom12101443] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022] Open
Abstract
Antioxidants are often associated with a variety of anti-aging compounds that can ensure human and animal health longevity. Foods and diet supplements from animals and plants are the common exogenous sources of antioxidants. However, microbial-based products, including probiotics and their derivatives, have been recognized for their antioxidant properties through numerous studies and clinical trials. While the number of publications on probiotic antioxidant capacities and action mechanisms is expanding, that of synbiotics combining probiotics with prebiotics is still emerging. Here, the antioxidant metabolites and properties of synbiotics, their modes of action, and their different effects on human and animal health are reviewed and discussed. Synbiotics can generate almost unlimited possibilities of antioxidant compounds, which may have superior performance compared to those of their components through additive or complementary effects, and especially by synergistic actions. Either combined with antioxidant prebiotics or not, probiotics can convert these substrates to generate antioxidant compounds with superior activities. Such synbiotic-based new routes for supplying natural antioxidants appear relevant and promising in human and animal health prevention and treatment. A better understanding of various component interactions within synbiotics is key to generating a higher quality, quantity, and bioavailability of antioxidants from these biotic sources.
Collapse
|
34
|
Bryukhanov AL, Klimko AI, Netrusov AI. Antioxidant Properties of Lactic Acid Bacteria. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722601439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
35
|
Jiang Y, You S, Zhang Y, Zhao J, Wang D, Zhao D, Li M, Wang C. Enhancing Bioactive Components of Euryale ferox with Lactobacillus curvatus to Reduce H2O2-Induced Oxidative Stress in Human Skin Fibroblasts. Antioxidants (Basel) 2022; 11:antiox11101881. [PMID: 36290604 PMCID: PMC9598438 DOI: 10.3390/antiox11101881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/05/2022] Open
Abstract
This study investigated the effects of Lactobacillus curvatus fermentation on the oxidative stress attenuating effects of Euryale ferox on H2O2-induced human skin fibroblasts (HSF). The results showed that Lactobacillus curvatus fermentation (i) increases the content of the various bioactive components of Euryale ferox and is found to have smaller molecular weights of polysaccharides and polypeptides; (ii) increases the overall intracellular and extracellular antioxidant capacity of H2O2-induced HSF while reducing reactive oxygen species (ROS) levels. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) all showed simultaneous increases in activity. Aside from that, the Nrf2 and MAPK signaling pathways are activated to regulate downstream-associated proteins such as the Bax/Bcl-2 protein ratio, matrix metalloproteinase 1 (MMP-1) activity, and human type I collagen (COL-1). These results suggested that the fermentation of Euryale ferox with Lactobacillus curvatus enhances its antioxidant capacity and attenuates apoptosis and senescence caused by oxidative stress.
Collapse
Affiliation(s)
- Yanbing Jiang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100040, China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100040, China
| | - Shiquan You
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100040, China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100040, China
| | - Yongtao Zhang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100040, China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100040, China
| | - Jingsha Zhao
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100040, China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100040, China
| | - Dongdong Wang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100040, China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100040, China
| | - Dan Zhao
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100040, China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100040, China
| | - Meng Li
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100040, China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100040, China
- Correspondence: ; Tel.: +86-13426015179
| | - Changtao Wang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100040, China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100040, China
| |
Collapse
|
36
|
Yunes RA, Poluektova EU, Belkina TV, Danilenko VN. Lactobacilli: Legal Regulation and Prospects for New Generation Drugs. APPL BIOCHEM MICRO+ 2022; 58:652-664. [PMID: 36164404 PMCID: PMC9492457 DOI: 10.1134/s0003683822050179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022]
Abstract
The global probiotics industry has been undergoing major changes in recent years. Approaches to finding and creating new probiotics, as well as a paradigm of their use in food, medicine, and pharmacology are changing. The catalyst proved to be the increasing popularity and availability of omics technologies, in particular, metagenomic studies of human and animal microbiomes. However, the efficiency and safety of drugs based on probiotic strains, as well as their marketing rates, largely depend on the levels of legal and technical regulation in the field. The present review discusses the aspects of legal regulation in Russia, the European Union and the United States, along with the advantages and disadvantages of probiotics and postbiotics. A consensus is emerging that postbiotics have a number of advantages over classical live probiotic cultures. The review also focuses on the lactobacilli family, which includes the largest number of probiotic strains studied so far and still holds a leading position among probiotics. On the legislative front, Russia is often ahead of its time with adopting such laws as the Federal Law No. 492-FZ on biosecurity, which defined the concept of human and animal microbiota and set forth legislative guidelines for its preservation. The new field of research referred to as microbiome nutrigenomics aims to achieve this goal.
Collapse
Affiliation(s)
- R. A. Yunes
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - E. U. Poluektova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - T. V. Belkina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - V. N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
37
|
Alterations of the Composition and Neurometabolic Profile of Human Gut Microbiota in Major Depressive Disorder. Biomedicines 2022; 10:biomedicines10092162. [PMID: 36140263 PMCID: PMC9496097 DOI: 10.3390/biomedicines10092162] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder (MDD) is among the most prevalent mental disorders worldwide. Factors causing the pathogenesis of MDD include gut microbiota (GM), which interacts with the host through the gut–brain axis. In previous studies of GM in MDD patients, 16S rRNA sequencing was used, which provided information about composition but not about function. In our study, we analyzed whole metagenome sequencing data to assess changes in both the composition and functional profile of GM. We looked at the GM of 36 MDD patients, compared with that of 38 healthy volunteers. Comparative taxonomic analysis showed decreased abundances of Faecalibacterium prausnitzii, Roseburia hominis, and Roseburia intestinalis, and elevated abundances of Escherichia coli and Ruthenibacterium lactatiformans in the GM of MDD patients. We observed decreased levels of bacterial genes encoding key enzymes involved in the production of arginine, asparagine, glutamate, glutamine, melatonin, acetic, butyric and conjugated linoleic acids, and spermidine in MDD patients. These genes produced signature pairs with Faecalibacterium prausntizii and correlated with decreased levels of this species in the GM of MDD patients. These results show the potential impact of the identified biomarker bacteria and their metabolites on the pathogenesis of MDD, and should be confirmed in future metabolomic studies.
Collapse
|
38
|
Poluektova EU, Mavletova DA, Odorskaya MV, Marsova MV, Klimina KM, Koshenko TA, Yunes RA, Danilenko VN. Comparative Genomic, Transcriptomic, and Proteomic Analysis of the Limosilactobacillus fermentum U-21 Strain Promising for the Creation of a Pharmabiotic. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422090125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Blazheva D, Mihaylova D, Averina OV, Slavchev A, Brazkova M, Poluektova EU, Danilenko VN, Krastanov A. Antioxidant Potential of Probiotics and Postbiotics: A Biotechnological Approach to Improving Their Stability. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422090058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Biswas S, Ray Banerjee E. Probiotic treatment of inflammatory bowel disease: Its extent and intensity. World J Immunol 2022; 12:15-24. [DOI: 10.5411/wji.v12.i2.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/09/2022] [Accepted: 08/17/2022] [Indexed: 02/05/2023] Open
Abstract
Free radicals (reactive oxygen species, superoxides and hydroxyl radicals) lead to the development of oxidative stress because of imbalance in the amount of antioxidants. Continued development of oxidative stress leads to chronic diseases in humans. The instability in the antioxidant activities and accumulation of oxidative stress due to free radicals may occur in diseases like inflammatory bowel disease (IBD). Antioxidants are substances that inhibit or delay the mechanism of oxidation of molecules mediated by free radicals and also transform into lesser-active derivatives. Probiotics are defined as live microorganisms that show beneficial effects on inflamed intestine and balance the inflammatory immune responses in the gut. Probiotic strains have been reported to scavenge hydroxyl radicals and superoxide anions that are abundantly produced during oxidative stress. The most widely studied probiotic strains are Streptococcus, Bifidobacterium and Lactobacillus. Probiotics cultured in broth have shown some amount of antioxidant activities. Fermented milk and soy milk, which possess starter microorganisms (probiotics), tends to increase the antioxidant activities many-fold. This review aims to discuss the in vivo and in vitro antioxidant activities of specific probiotics with various assays with respect to IBD.
Collapse
Affiliation(s)
- Saheli Biswas
- Department of Zoology, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Ena Ray Banerjee
- Department of Zoology, University of Calcutta, Kolkata 700019, West Bengal, India
| |
Collapse
|
41
|
Human supplementation with Pediococcus acidilactici GR-1 decreases heavy metals levels through modifying the gut microbiota and metabolome. NPJ Biofilms Microbiomes 2022; 8:63. [PMID: 35974020 PMCID: PMC9381558 DOI: 10.1038/s41522-022-00326-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Exposure to heavy metals (HMs) is a threat to human health. Although probiotics can detoxify HMs in animals, their effectiveness and mechanism of action in humans have not been studied well. Therefore, we conducted this randomized, double-blind, controlled trial on 152 occupational workers from the metal industry, an at-risk human population, to explore the effectiveness of probiotic yogurt in reducing HM levels. Participants were randomly assigned to two groups: one consumed probiotic yogurt containing the HM-resistant strain Pediococcus acidilactici GR-1 and the other consumed conventional yogurt for 12 weeks. Analysis of metal contents in the blood revealed that the consumption of probiotic yogurt resulted in a higher and faster decrease in copper (34.45%) and nickel (38.34%) levels in the blood than the consumption of conventional yogurt (16.41% and 27.57%, respectively). Metagenomic and metabolomic studies identified a close correlation between gut microbiota (GM) and host metabolism. Significantly enriched members of Blautia and Bifidobacterium correlated positively with the antioxidant capacities of GM and host. Further murine experiments confirmed the essential role of GM and protective effect of GR-1 on the antioxidative role of the intestine against copper. Thus, the use of probiotic yogurt may be an effective and affordable approach for combating toxic metal exposure through the protection of indigenous GM in humans. ClinicalTrials.gov identifier: ChiCTR2100053222
Collapse
|
42
|
Guo B, He X, Ge C, Xue M, Wang J, Longshaw M, Wang J, Liang X. A Natural Gas Fermentation Bacterial Meal (FeedKind®) as a Functional Alternative Ingredient for Fishmeal in Diet of Largemouth Bass, Micropterus salmoides. Antioxidants (Basel) 2022; 11:antiox11081479. [PMID: 36009198 PMCID: PMC9405052 DOI: 10.3390/antiox11081479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 02/05/2023] Open
Abstract
A 10-week growth study was conducted to evaluate the effect of a natural gas fermentation bacterial meal (FeedKind®, FK) as a fishmeal (FM) alternative in largemouth bass (Micropterus salmoides) (48.0 ± 0.03 g). Four isonitrogenous and isoenergetic diets were formulated including one commercial control (C, 42% FM) and three experimental diets with gradient FK of 3% (FK3, 29%FM), 6% (FK6, 26%FM) and 9% (FK9, 23%FM), respectively. FK-fed groups showed significantly higher SR than that of C group. The WGR and SGR of fish fed FK3 and FK6 were significantly higher than those of FK9, but not statistical different from the C group. FK-fed groups showed higher apparent digestibility coefficients of dry matter and nutrients. Further, FK-fed groups increased the ratio of SOD/MDA in the plasma and liver, and the upregulation of intestinal Keap1 and downregulation of HIF1α was found in FK3. Furthermore, FK-fed groups showed higher microbial richness and diversity. Pearson correlation analysis found that antioxidant relevant biomarkers were negatively correlated with the relative abundance of certain potential beneficial bacteria. In conclusion, supplemented up to 3–6% FK replacing FM in a low FM diet of largemouth bass could increase growth, survival rate, antioxidant capacity, and improve gut microbiota.
Collapse
Affiliation(s)
- Boyuan Guo
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.G.); (X.H.); (C.G.); (M.X.)
| | - Xia He
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.G.); (X.H.); (C.G.); (M.X.)
| | - Chunyu Ge
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.G.); (X.H.); (C.G.); (M.X.)
| | - Min Xue
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.G.); (X.H.); (C.G.); (M.X.)
| | - Jia Wang
- Calysta (China) Company Limited, Shanghai 200041, China;
| | - Matt Longshaw
- Calysta (UK) Company Limited, Redcar TS10 4RF, Cleveland, UK;
| | - Jie Wang
- Feed Processing and Quality Control Innovation Team, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (J.W.); (X.L.)
| | - Xiaofang Liang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.G.); (X.H.); (C.G.); (M.X.)
- Correspondence: (J.W.); (X.L.)
| |
Collapse
|
43
|
Spore Powder of Paecilomyces hepiali Shapes Gut Microbiota to Relieve Exercise-Induced Fatigue in Mice. Nutrients 2022; 14:nu14142973. [PMID: 35889929 PMCID: PMC9323605 DOI: 10.3390/nu14142973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023] Open
Abstract
Paecilomyces hepiali, a fungal strain isolated from natural Ophiocordyceps sinensis, contains similar pharmacologically active components, has been used widely as a substitute of O. sinensis in functional food and medicine. However, the components and anti-fatigue effects of P.hepiali spores and their mechanisms of action are largely unknown. Here, we compared the chemical composition in P.hepiali spore (HPS) and mycelium (HPM) by liquid chromatography with tandem mass spectrometry analysis. We found 85 metabolites with significant differences, and HPS contains more L-Malic acid, Oxalacetic acid, Fructose-1,6-bisphosphate, and L-Arginine than HPM. Then we evaluated their anti-fatigue effects and regulatory effects on the gut microbiota in mice. The forced swimming time (SW) was only significantly increased in HPS groups: the high and low dose of the HPS group was 101% and 72% longer than the control group, respectively. Both HPS and HPM treatment decreased lactic acid, blood urea nitrogen, creatine kinase while increased lactate dehydrogenase (LDH) levels in the blood. Moreover, mice treated with HPS and HPM showed less skeletal muscle fiber spacing and breakage. The relative abundance of Alistips, Eubacterium, Bacterium, Parasutterella, and Olsenella in the gut microbiota of the HPS group was higher than that in the HPM group through 16S rRNA gene sequencing analysis. These changes may be related to the regulation of nucleotide, amino acid, and carbohydrate metabolism. Correlation analysis between the gut microbiota and fatigue-related indicators suggested that Alistips, Clostridium, Akkermansia, Olsenella, and Lactobacillus were positively correlated with the SW and LDH content. Our findings demonstrated that HPS has beneficial anti-fatigue effects by regulating gut microbiota.
Collapse
|
44
|
Yang X, Jiang S, Deng X, Luo Z, Chen A, Yu R. Effects of Antioxidants in Human Milk on Bronchopulmonary Dysplasia Prevention and Treatment: A Review. Front Nutr 2022; 9:924036. [PMID: 35923207 PMCID: PMC9340220 DOI: 10.3389/fnut.2022.924036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/21/2022] [Indexed: 12/20/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe chronic lung illness that affects neonates, particularly premature infants. It has far-reaching consequences for infant health and their families due to intractable short- and long-term repercussions. Premature infant survival and long-term quality of life are severely harmed by BPD, which is characterized by alveolarization arrest and hypoplasia of pulmonary microvascular cells. BPD can be caused by various factors, with oxidative stress (OS) being the most common. Premature infants frequently require breathing support, which results in a hyperoxic environment in the developing lung and obstructs lung growth. OS can damage the lungs of infants by inducing cell death, inhibiting alveolarization, inducing inflammation, and impairing pulmonary angiogenesis. Therefore, antioxidant therapy for BPD relieves OS and lung injury in preterm newborns. Many antioxidants have been found in human milk, including superoxide dismutase, glutathione peroxidase, glutathione, vitamins, melatonin, short-chain fatty acids, and phytochemicals. Human milk oligosaccharides, milk fat globule membrane, and lactoferrin, all unique to human milk, also have antioxidant properties. Hence, human milk may help prevent OS injury and improve BPD prognosis in premature infants. In this review, we explored the role of OS in the pathophysiology of BPD and related signaling pathways. Furthermore, we examined antioxidants in human milk and how they could play a role in BPD to understand whether human milk could prevent and treat BPD.
Collapse
Affiliation(s)
- Xianpeng Yang
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xianhui Deng
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zichen Luo
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ailing Chen
- Translational Medicine Laboratory, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Ailing Chen
| | - Renqiang Yu
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Renqiang Yu
| |
Collapse
|
45
|
Editorial of Special Issue “Pharmacomicrobiomics in Non-Communicable Disease”. Biomedicines 2022; 10:biomedicines10071605. [PMID: 35884910 PMCID: PMC9313195 DOI: 10.3390/biomedicines10071605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
|
46
|
Soheili M, Alinaghipour A, Salami M. Good bacteria, oxidative stress and neurological disorders: Possible therapeutical considerations. Life Sci 2022; 301:120605. [DOI: 10.1016/j.lfs.2022.120605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022]
|
47
|
Danilenko V, Devyatkin A, Marsova M, Shibilova M, Ilyasov R, Shmyrev V. Common Inflammatory Mechanisms in COVID-19 and Parkinson's Diseases: The Role of Microbiome, Pharmabiotics and Postbiotics in Their Prevention. J Inflamm Res 2021; 14:6349-6381. [PMID: 34876830 PMCID: PMC8643201 DOI: 10.2147/jir.s333887] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
In the last decade, metagenomic studies have shown the key role of the gut microbiome in maintaining immune and neuroendocrine systems. Malfunction of the gut microbiome can induce inflammatory processes, oxidative stress, and cytokine storm. Dysfunction of the gut microbiome can be caused by short-term (virus infection and other infectious diseases) or long-term (environment, nutrition, and stress) factors. Here, we reviewed the inflammation and oxidative stress in neurodegenerative diseases and coronavirus infection (COVID-19). Here, we reviewed the renin-angiotensin-aldosterone system (RAAS) involved in the processes of formation of oxidative stress and inflammation in viral and neurodegenerative diseases. Moreover, the coronavirus uses ACE2 receptors of the RAAS to penetrate human cells. The coronavirus infection can be the trigger for neurodegenerative diseases by dysfunction of the RAAS. Pharmabiotics, postbiotics, and next-generation probiotics, are considered as a means to prevent oxidative stress, inflammatory processes, neurodegenerative and viral diseases through gut microbiome regulation.
Collapse
Affiliation(s)
- Valery Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Devyatkin
- Central Clinical Hospital with a Polyclinic CMP RF, Moscow, Russia
| | - Mariya Marsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | - Rustem Ilyasov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|