1
|
Aehnlich P, Leuchte K, Schöllkopf C, Salo SF, Seremet TJ, Høgdall E, Met Ö, Grønbaek K, Straten PT. AXL in myeloid malignancies - an elusive target? Biomark Res 2024; 12:158. [PMID: 39696384 DOI: 10.1186/s40364-024-00704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
The TAM receptor tyrosine kinase family member AXL plays critical roles in tissue homeostasis, survival, chemoresistance, and motility. This study investigates the receptor expression in six AML cell lines and bone marrow myeloblasts from 25 patients with myeloid neoplasms. We found that AXL expression was generally absent or very low in AML myeloblasts. These findings suggest that the efficacy of AXL inhibitors may not depend on AXL positivity but rather on alternative therapeutic mechanisms, such as inducing significant immune responses.
Collapse
Affiliation(s)
- Pia Aehnlich
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Katharina Leuchte
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital Herlev, Herlev, Denmark.
| | - Claudia Schöllkopf
- Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sara Fresnillo Salo
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Tina J Seremet
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Estrid Høgdall
- Department of Pathology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Özcan Met
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Kirsten Grønbaek
- Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per Thor Straten
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital Herlev, Herlev, Denmark
| |
Collapse
|
2
|
Naresh GKRS, Guruprasad L. In silico design, modelling and molecular mechanisms of Axl receptor tyrosine kinase inhibitors. J Biomol Struct Dyn 2024:1-14. [PMID: 39681465 DOI: 10.1080/07391102.2024.2439578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/04/2024] [Indexed: 12/18/2024]
Abstract
A kinase domain from receptor tyrosine kinases (RTKs) regulate intracellular communications to control cellular metabolic activities. Some of the malignant cells have upregulated and overexpressed RTKs which are responsible for angiogenesis in many metastatic cancers. Axl RTK is present in most of the eukaryotic cells and all metastatic cancer cells have overexpressed Axl tyrosine kinase to trigger uncontrolled growth and angiogenesis in the malignant cells. The upregulated kinases can be inhibited in its active and inactive states in the presence of small organic molecule inhibitors. Kinase inhibitors have been discovered to arrest the signal transduction pathways in the malignant cells as a therapy and cure for cancer. In this work, small molecule databases were screened using the pharmacophore features of a macrocyclic inhibitor (7YS) taken as reference from the crystal structure of Axl kinase domain. Pharmacophore based virtual screening of small molecule libraries (CHEMBL32, ChemDiv, Chemspace, Mcule, MolProt, PubChem and Zinc), followed by molecular docking, molecular dynamics simulations, binding energies from MM-PBSA calculations and trajectory analysis as principal component analysis were studied. The molecular basis for the binding of macrocyclic inhibitor, ATP and seven screened hit molecules bound at Axl kinase domain in two different modes at catalytic and regulatory sites was analyzed.
Collapse
|
3
|
Lv Y, Zhu J, Ge S, Jiang T, Xu Y, Yao W, Jiang C. The AXL-mediated modulation of myeloid-derived suppressor cells (MDSC) in nasopharyngeal carcinoma. Med Oncol 2024; 42:17. [PMID: 39592496 DOI: 10.1007/s12032-024-02561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024]
Abstract
AXL has ubiquitous expression in multiple cancers, and is strongly linked to both tumor progression, metastasis, and poor prognosis, as well as anti-tumor immune response suppression and induction of tumor resistance to immunotherapy. Therefore, it is a strong target for cancer intervention. Despite the wide application of AXL inhibitors in clinical trials, the role of AXL in the tumor immune microenvironment (TIME) remains undetermined. Herein, we established cell lines with stable AXL knockdown or overexpression using lentiviral infection. Subsequently, we co-cultured the cells with healthy human blood-derived CD33 + PBMCs. After two days of culture, we evaluated the differentiation of PBMCs into MDSCs. Additionally, the culture supernatants were collected from both the co-culture system and the individual cultures of each cell group to measure the concentrations of IL-6 and GM-CSF. Additionally, we subcutaneously administered nasopharyngeal carcinoma (NPC) cells into mice, and evaluated the association between AXL content and MDSC recruitment in the resulting tumors. We demonstrated that AXL is a critical modulator of MDSC differentiation and accumulation in NPC. It modulates IL-6, GM-CSF, and Toll-like receptor contents to achieve the aforementioned actions. Herein, we revealed a strong and direct link between AXL, cytokines in TIME, and MDSC differentiation and accumulation. Our work highlights novel approaches to optimizing existing immunotherapeutic interventions.
Collapse
Affiliation(s)
- Yu Lv
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Jiahui Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Sichen Ge
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Tao Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Yajia Xu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Weige Yao
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Chengyi Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, Anhui, China.
| |
Collapse
|
4
|
Diawara M, Martin LJ. The transcription factors NR5A1 and JUNB cooperate to activate the Axl promoter in mouse Sertoli cell lines. Mol Biol Rep 2024; 51:982. [PMID: 39271559 DOI: 10.1007/s11033-024-09934-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND The Axl gene is a receptor tyrosine kinase essential for male fertility. With other Tyro3 family members, it regulates cell apoptosis and preserves the organization of seminiferous tubules. However, the regulation of the expression of Axl in testicular Sertoli cells is not entirely understood. The transcription factors NR5A1 and JUNB are involved in several male fertility mechanisms such as sex development and steroidogenesis. We hypothesize that Axl promoter activity is regulated by cooperation between JUNB and NR5A1 in Sertoli cells. METHODS AND RESULTS Following transfections of TM4 Sertoli cells with DsiRNA interference against Axl, our results show that cell morphology may be regulated by AXL. Using transfections of expression plasmids and reporter plasmids containing the Axl promoter, we report that Axl expression is highly activated by cooperation between NR5A1 and JUNB in TM4 and 15P-1 Sertoli cells. Chromatin immunoprecipitation and luciferase reporter assays with 5' promoter deletions demonstrate that JUNB and NR5A1 are being recruited to DNA regulatory elements in the proximal region of the Axl promoter. The fourth intronic region of Axl also participates in the recruitment of JUNB. CONCLUSION Thus, Axl expression is regulated by a cooperation between the transcription factors JUNB and NR5A1 and influences the morphology of TM4 Sertoli cells.
Collapse
Affiliation(s)
- Mariama Diawara
- Biology Department, Université de Moncton, 18, Avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, 18, Avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada.
| |
Collapse
|
5
|
Valdez BC, Tsimberidou AM, Yuan B, Baysal MA, Chakraborty A, Andersen CR, Andersson BS. Synergistic Cytotoxicity of Histone Deacetylase and Poly-ADP Ribose Polymerase Inhibitors and Decitabine in Breast and Ovarian Cancer Cells: Implications for Novel Therapeutic Combinations. Int J Mol Sci 2024; 25:9241. [PMID: 39273190 PMCID: PMC11394699 DOI: 10.3390/ijms25179241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Breast and ovarian cancers pose significant therapeutic challenges. We explored the synergistic cytotoxicity of histone deacetylase inhibitors (HDACis), poly(ADP-ribose) polymerase inhibitors (PARPis), and decitabine in breast (MDA-MB-231 and MCF-7) and ovarian (HEY-T30 and SKOV-3) cancer cell lines that were exposed to HDACi (panobinostat or vorinostat), PARPi (talazoparib or olaparib), decitabine, or their combinations. HDACi, PARPi, and decitabine combinations had synergistic cytotoxicity (assessed by MTT and clonogenic assays) in all cell lines (combination index < 1). Clonogenic assays confirmed the sensitivity of breast and ovarian cancer cell lines to the three-drug combinations (panobinostat, talazoparib, and decitabine; panobinostat, olaparib, and decitabine; vorinostat, talazoparib, and decitabine; vorinostat, olaparib, and decitabine). Cell proliferation was inhibited by 48-70%, and Annexin V positivity was 42-59% in all cell lines exposed to the three-drug combinations. Western blot analysis showed protein PARylation inhibition, caspase 3 and PARP1 cleavage, and c-MYC down-regulation. The three-drug combinations induced more DNA damage (increased phosphorylation of histone 2AX) than the individual drugs, impaired the DNA repair pathways, and altered the epigenetic regulation of gene expression. These results indicate that HDACi, PARPi, and decitabine combinations should be further explored in these tumor types. Further clinical validation is warranted to assess their safety and efficacy.
Collapse
Affiliation(s)
- Benigno C. Valdez
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Apostolia M. Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA (A.C.)
| | - Bin Yuan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Mehmet A. Baysal
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA (A.C.)
| | - Abhijit Chakraborty
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA (A.C.)
| | - Clark R. Andersen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Borje S. Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| |
Collapse
|
6
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Liu Z, Chen L, Zhang J, Yang J, Xiao X, Shan L, Mao W. Recent discovery and development of AXL inhibitors as antitumor agents. Eur J Med Chem 2024; 272:116475. [PMID: 38714043 DOI: 10.1016/j.ejmech.2024.116475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
AXL, a receptor tyrosine kinase (RTK), plays a pivotal role in various cellular functions. It is primarily involved in processes such as epithelial-mesenchymal transition (EMT) in tumor cells, angiogenesis, apoptosis, immune regulation, and chemotherapy resistance mechanisms. Therefore, targeting AXL is a promising therapeutic approach for the treatment of cancer. AXL inhibitors that have entered clinical trials, such as BGB324(1), have shown promising efficacy in the treatment of melanoma and non-small cell lung cancer. Additionally, novel AXL-targeted drugs, such as AXL degraders, offer a potential solution to overcome the limitations of traditional small-molecule AXL inhibitors targeting single pathways. We provide an overview of the structure and biological functions of AXL, discusses its correlation with various cancers, and critically analyzes the structure-activity relationship of AXL small-molecule inhibitors in cellular contexts. Additionally, we summarize multiple research and development strategies, offering insights for the future development of innovative AXL inhibitors.
Collapse
Affiliation(s)
- Zihang Liu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Li Chen
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jun Yang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xue Xiao
- Department of Obstetrics & Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Lianhai Shan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
8
|
De Rosa L, Di Stasi R, Fusco V, D'Andrea LD. AXL receptor as an emerging molecular target in colorectal cancer. Drug Discov Today 2024; 29:104005. [PMID: 38685399 DOI: 10.1016/j.drudis.2024.104005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
AXL receptor tyrosine kinase (AXL) is a receptor tyrosine kinase whose aberrant expression has recently been associated with colorectal cancer (CRC), contributing to tumor growth, epithelial-mesenchymal transition (EMT), increased invasiveness, metastatic spreading, and the development of drug resistance. In this review we summarize preclinical data, the majority of which are limited to recent years, convincingly linking the AXL receptor to CRC. These findings support the value of targeting AXL with molecules in drug discovery, offering novel and advanced therapeutic or diagnostic tools for CRC management.
Collapse
Affiliation(s)
- Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, via P. Castellino, 111 - 80131 Naples, Italy.
| | - Rossella Di Stasi
- Istituto di Biostrutture e Bioimmagini, CNR, via P. Castellino, 111 - 80131 Naples, Italy
| | - Virginia Fusco
- Istituto di Biostrutture e Bioimmagini, CNR, via P. Castellino, 111 - 80131 Naples, Italy
| | - Luca D D'Andrea
- Istituto di Scienze e Tecnologie Chimiche 'G. Natta', CNR, via M. Bianco, 9 - 20131 Milan, Italy.
| |
Collapse
|
9
|
Barthélémy P, Dutailly P, Qvick B, Perrot V, Verzoni E. CaboCombo: a prospective, phase IV study of first-line cabozantinib + nivolumab for advanced renal cell carcinoma. Future Oncol 2024; 20:811-819. [PMID: 37403652 DOI: 10.2217/fon-2023-0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023] Open
Abstract
Cabozantinib plus nivolumab was approved as a first-line (1L) treatment for advanced renal cell carcinoma (aRCC) following the CheckMate 9ER trial. CaboCombo (ClinicalTrials.gov identifier: NCT05361434) is a non-interventional study designed to evaluate the effectiveness and tolerability of cabozantinib plus nivolumab in a real-world setting. Overall, 311 patients with clear-cell aRCC receiving 1L cabozantinib plus nivolumab will be recruited from at least 70 centers in seven countries worldwide. The primary end point is overall survival at 18 months. Secondary end points include progression-free survival, objective response rate, safety, patterns of treatment, subsequent anticancer therapies and quality of life. CaboCombo will provide real-world evidence on the characteristics, treatment sequences, and outcomes of patients with aRCC receiving 1L cabozantinib plus nivolumab.
Collapse
Affiliation(s)
- Philippe Barthélémy
- Institut de Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, Strasbourg, 67200, France
| | - Pascale Dutailly
- Ipsen, 65 Quai Georges Gorse, Boulogne-Billancourt, 92100, France
| | - Bryan Qvick
- Ipsen, Einsteinstraße 174, München, 81677, Germany
| | - Valerie Perrot
- Ipsen, 65 Quai Georges Gorse, Boulogne-Billancourt, 92100, France
| | - Elena Verzoni
- Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, Milano, 20133, Italy
| |
Collapse
|
10
|
Miao YR, Rankin EB, Giaccia AJ. Therapeutic targeting of the functionally elusive TAM receptor family. Nat Rev Drug Discov 2024; 23:201-217. [PMID: 38092952 PMCID: PMC11335090 DOI: 10.1038/s41573-023-00846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 03/07/2024]
Abstract
The TAM receptor family of TYRO3, AXL and MERTK regulates tissue and immune homeostasis. Aberrant TAM receptor signalling has been linked to a range of diseases, including cancer, fibrosis and viral infections. Specifically, the dysregulation of TAM receptors can enhance tumour growth and metastasis due to their involvement in multiple oncogenic pathways. For example, TAM receptors have been implicated in the epithelial-mesenchymal transition, maintaining the stem cell phenotype, immune modulation, proliferation, angiogenesis and resistance to conventional and targeted therapies. Therapeutically, multiple TAM receptor inhibitors are in preclinical and clinical development for cancers and other indications, with those targeting AXL being the most clinically advanced. Although there has been notable clinical advancement in recent years, challenges persist. This Review aims to provide both biological and clinical insights into the current therapeutic landscape of TAM receptor inhibitors, and evaluates their potential for the treatment of cancer and non-malignant diseases.
Collapse
Affiliation(s)
- Yu Rebecca Miao
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
11
|
Wu Q, Li X, Yang Y, Huang J, Yao M, Li J, Huang Y, Cai X, Geller DA, Yan Y. MICA+ Tumor Cell Upregulated Macrophage-Secreted MMP9 via PROS1-AXL Axis to Induce Tumor Immune Escape in Advanced Hepatocellular Carcinoma (HCC). Cancers (Basel) 2024; 16:269. [PMID: 38254761 PMCID: PMC10813556 DOI: 10.3390/cancers16020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND tumor-associated macrophages (TAMs) constitute a significant proportion of non-cancerous cells within the intricate tumor microenvironment (TME) of hepatocellular carcinoma (HCC). Understanding the communication between macrophages and tumor cells, as well as investigating potential signaling pathways, holds promise for enhancing therapeutic responses in HCC. METHODS single-cell RNA-sequencing data and bulk RNA-sequencing data were derived from open source databases Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Through this analysis, we elucidated the interactions between MICA+ tumor cells and MMP9+ macrophages, primarily mediated via the PROS1-AXL axis in advanced HCC. Subsequently, we employed a range of experimental techniques including lentivirus infection, recombinant protein stimulation, and AXL inhibition experiments to validate these interactions and unravel the underlying mechanisms. RESULTS we presented a single-cell atlas of advanced HCC, highlighting the expression patterns of MICA and MMP9 in tumor cells and macrophages, respectively. Activation of the interferon gamma (IFN-γ) signaling pathway was observed in MICA+ tumor cells and MMP9+ macrophages. We identified the existence of an interaction between MICA+ tumor cells and MMP9+ macrophages mediated via the PROS1-AXL axis. Additionally, we found MMP9+ macrophages had a positive correlation with M2-like macrophages. Subsequently, experiments validated that DNA damage not only induced MICA expression in tumor cells via IRF1, but also upregulated PROS1 levels in HCC cells, stimulating macrophages to secrete MMP9. Consequently, MMP9 led to the proteolysis of MICA. CONCLUSION MICA+ HCC cells secreted PROS1, which upregulated MMP9 expression in macrophages through AXL receptors. The increased MMP9 activity resulted in the proteolytic shedding of MICA, leading to the release of soluble MICA (sMICA) and the subsequent facilitation of tumor immune escape.
Collapse
Affiliation(s)
- Qiulin Wu
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China; (Q.W.); (X.L.); (Y.Y.); (J.H.); (M.Y.); (J.L.); (Y.H.); (X.C.)
| | - Xicai Li
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China; (Q.W.); (X.L.); (Y.Y.); (J.H.); (M.Y.); (J.L.); (Y.H.); (X.C.)
| | - Yan Yang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China; (Q.W.); (X.L.); (Y.Y.); (J.H.); (M.Y.); (J.L.); (Y.H.); (X.C.)
| | - Jingquan Huang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China; (Q.W.); (X.L.); (Y.Y.); (J.H.); (M.Y.); (J.L.); (Y.H.); (X.C.)
| | - Ming Yao
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China; (Q.W.); (X.L.); (Y.Y.); (J.H.); (M.Y.); (J.L.); (Y.H.); (X.C.)
| | - Jianjun Li
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China; (Q.W.); (X.L.); (Y.Y.); (J.H.); (M.Y.); (J.L.); (Y.H.); (X.C.)
| | - Yubin Huang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China; (Q.W.); (X.L.); (Y.Y.); (J.H.); (M.Y.); (J.L.); (Y.H.); (X.C.)
| | - Xiaoyong Cai
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China; (Q.W.); (X.L.); (Y.Y.); (J.H.); (M.Y.); (J.L.); (Y.H.); (X.C.)
| | - David A. Geller
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
| | - Yihe Yan
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China; (Q.W.); (X.L.); (Y.Y.); (J.H.); (M.Y.); (J.L.); (Y.H.); (X.C.)
| |
Collapse
|
12
|
Zhang N, Li Y. Receptor tyrosine kinases: biological functions and anticancer targeted therapy. MedComm (Beijing) 2023; 4:e446. [PMID: 38077251 PMCID: PMC10701465 DOI: 10.1002/mco2.446] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 10/16/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) are a class of protein kinases that play crucial roles in various cellular processes, including cell migration, morphological differentiation, cell growth, and angiogenesis. In humans, 58 RTKs have been identified and categorized into 20 distinct families based on the composition of their extracellular regions. RTKs are primarily activated by specific ligands that bind to their extracellular region. They not only regulate tumor transformation, proliferation, metastasis, drug resistance, and angiogenesis, but also initiate and maintain the self-renewal and cloning ability of cancer stem cells. Accurate diagnosis and grading of tumors with dysregulated RTKs are essential in clinical practice. There is a growing body of evidence supporting the benefits of RTKs-targeted therapies for cancer patients, and researchers are actively exploring new targets and developing targeted agents. However, further optimization of RTK inhibitors is necessary to effectively target the diverse RTK alterations observed in human cancers. This review provides insights into the classification, structure, activation mechanisms, and expression of RTKs in tumors. It also highlights the research advances in RTKs targeted anticancer therapy and emphasizes their significance in optimizing cancer diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Nan Zhang
- Chongqing University Cancer Hospital, School of MedicineChongqing UniversityChongqingChina
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of MedicineChongqing UniversityChongqingChina
- Department of Medical OncologyChongqing University Cancer HospitalChongqingChina
| |
Collapse
|
13
|
Fang F, Dai Y, Wang H, Ji Y, Liang X, Peng X, Li J, Zhao Y, Li C, Wang D, Li Y, Zhang D, Zhang D, Geng M, Liu H, Ai J, Zhou Y. Structure-based drug discovery of novel fused-pyrazolone carboxamide derivatives as potent and selective AXL inhibitors. Acta Pharm Sin B 2023; 13:4918-4933. [PMID: 38045061 PMCID: PMC10692477 DOI: 10.1016/j.apsb.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/02/2023] [Accepted: 09/25/2023] [Indexed: 12/05/2023] Open
Abstract
As a novel and promising antitumor target, AXL plays an important role in tumor growth, metastasis, immunosuppression and drug resistance of various malignancies, which has attracted extensive research interest in recent years. In this study, by employing the structure-based drug design and bioisosterism strategies, we designed and synthesized in total 54 novel AXL inhibitors featuring a fused-pyrazolone carboxamide scaffold, of which up to 20 compounds exhibited excellent AXL kinase and BaF3/TEL-AXL cell viability inhibitions. Notably, compound 59 showed a desirable AXL kinase inhibitory activity (IC50: 3.5 nmol/L) as well as good kinase selectivity, and it effectively blocked the cellular AXL signaling. In turn, compound 59 could potently inhibit BaF3/TEL-AXL cell viability (IC50: 1.5 nmol/L) and significantly suppress GAS6/AXL-mediated cancer cell invasion, migration and wound healing at the nanomolar level. More importantly, compound 59 oral administration showed good pharmacokinetic profile and in vivo antitumor efficiency, in which we observed significant AXL phosphorylation suppression, and its antitumor efficacy at 20 mg/kg (qd) was comparable to that of BGB324 at 50 mg/kg (bid), the most advanced AXL inhibitor. Taken together, this work provided a valuable lead compound as a potential AXL inhibitor for the further antitumor drug development.
Collapse
Affiliation(s)
| | - Yang Dai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hao Wang
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinchun Ji
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiyuan Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yangrong Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danyi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yazhou Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dong Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Jing Ai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yu Zhou
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
14
|
Yang SM, Kim J, Lee JY, Lee JS, Lee JM. Regulation of glucose and glutamine metabolism to overcome cisplatin resistance in intrahepatic cholangiocarcinoma. BMB Rep 2023; 56:600-605. [PMID: 37401237 PMCID: PMC10689087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/06/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a bile duct cancer and a rare malignant tumor with a poor prognosis owing to the lack of an early diagnosis and resistance to conventional chemotherapy. A combination of gemcitabine and cisplatin is the typically attempted first-line treatment approach. However, the underlying mechanism of resistance to chemotherapy is poorly understood. We addressed this by studying dynamics in the human ICC SCK cell line. Here, we report that the regulation of glucose and glutamine metabolism was a key factor in overcoming cisplatin resistance in SCK cells. RNA sequencing analysis revealed a high enrichment cell cycle-related gene set score in cisplatin-resistant SCK (SCK-R) cells compared to parental SCK (SCK WT) cells. Cell cycle progression correlates with increased nutrient requirement and cancer proliferation or metastasis. Commonly, cancer cells are dependent upon glucose and glutamine availability for survival and proliferation. Indeed, we observed the increased expression of GLUT (glucose transporter), ASCT2 (glutamine transporter), and cancer progression markers in SCK-R cells. Thus, we inhibited enhanced metabolic reprogramming in SCK-R cells through nutrient starvation. SCK-R cells were sensitized to cisplatin, especially under glucose starvation. Glutaminase-1 (GLS1), which is a mitochondrial enzyme involved in tumorigenesis and progression in cancer cells, was upregulated in SCK-R cells. Targeting GLS1 with the GLS1 inhibitor CB-839 (telaglenastat) effectively reduced the expression of cancer progression markers. Taken together, our study results suggest that a combination of GLUT inhibition, which mimics glucose starvation, and GLS1 inhibition could be a therapeutic strategy to increase the chemosensitivity of ICC. [BMB Reports 2023; 56(11): 600-605].
Collapse
Affiliation(s)
- So Mi Yang
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea
| | - Jueun Kim
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Ji-Yeon Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea
| | - Ji Min Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
15
|
Mohammadzadeh P, Roueinfar M, Amberg GC. AXL receptor tyrosine kinase modulates gonadotropin-releasing hormone receptor signaling. Cell Commun Signal 2023; 21:284. [PMID: 37828510 PMCID: PMC10568877 DOI: 10.1186/s12964-023-01313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/09/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Gonadotropin-releasing hormone (GnRH) receptors are essential for reproduction and are expressed in numerous urogenital, reproductive, and non-reproductive cancers. In addition to canonical G protein-coupled receptor signaling, GnRH receptors functionally interact with several receptor tyrosine kinases. AXL is a receptor tyrosine kinase expressed in numerous tissues as well as multiple tumors. Here we tested the hypothesis that AXL, along with its endogenous ligand Gas6, impacts GnRH receptor signaling. METHODS We used clonal murine pituitary αT3-1 and LβT2 gonadotrope cell lines to examine the effect of AXL activation on GnRH receptor-dependent signaling outcomes. ELISA and immunofluorescence were used to observe AXL and GnRH receptor expression in αT3-1 and LβT2 cells, as well as in murine and human pituitary sections. We also used ELISA to measure changes in ERK phosphorylation, pro-MMP9 production, and release of LHβ. Digital droplet PCR was used to measure the abundance of Egr-1 transcripts. A transwell migration assay was used to measure αT3-1 and LβT2 migration responses to GnRH and AXL. RESULTS We observed AXL, along with the GnRH receptor, expression in αT3-1 and LβT2 gonadotrope cell lines, as well as in murine and human pituitary sections. Consistent with a potentiating role of AXL, Gas6 enhanced GnRH-dependent ERK phosphorylation in αT3-1 and LβT2 cells. Further, and consistent with enhanced post-transcriptional GnRH receptor responses, we found that Gas6 increased the abundance of Egr-1 transcripts. Suggesting functional significance, in LβT2 cells, Gas6/AXL signaling stimulated LHβ production and enhanced GnRH receptor-dependent generation of pro-MMP9 protein and promoted cell migration. CONCLUSIONS Altogether, these data describe a novel role for AXL as a modulator of GnRH receptor signaling. Video Abstract.
Collapse
Affiliation(s)
- Pardis Mohammadzadeh
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Mina Roueinfar
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Gregory C Amberg
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO, 80523, USA.
| |
Collapse
|
16
|
Garg V, Oza AM. Treatment of Ovarian Cancer Beyond PARP Inhibition: Current and Future Options. Drugs 2023; 83:1365-1385. [PMID: 37737434 PMCID: PMC10581945 DOI: 10.1007/s40265-023-01934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2023] [Indexed: 09/23/2023]
Abstract
Ovarian cancer is the leading cause of gynecological cancer death. Improved understanding of the biologic pathways and introduction of poly (ADP-ribose) polymerase inhibitors (PARPi) during the last decade have changed the treatment landscape. This has improved outcomes, but unfortunately half the women with ovarian cancer still succumb to the disease within 5 years of diagnosis. Pathways of resistance to PARPi and chemotherapy have been studied extensively, but there is an unmet need to overcome treatment failure and improve outcome. Major mechanisms of PARPi resistance include restoration of homologous recombination repair activity, alteration of PARP function, stabilization of the replication fork, drug efflux, and activation of alternate pathways. These resistant mechanisms can be targeted to sensitize the resistant ovarian cancer cells either by rechallenging with PARPi, overcoming resistance mechanism or bypassing resistance pathways. Augmenting the PARPi activity by combining it with other targets in the DNA damage response pathway, antiangiogenic agents and immune checkpoint inhibitors can potentially overcome the resistance mechanisms. Methods to bypass resistance include targeting non-cross-resistant pathways acting independent of homologous recombination repair (HRR), modulating tumour microenvironment, and enhancing drug delivery systems such as antibody drug conjugates. In this review, we will discuss the first-line management of ovarian cancer, resistance mechanisms and potential strategies to overcome these.
Collapse
Affiliation(s)
- Vikas Garg
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Amit M Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
- , 610 University Avenue, Toronto, ON, M5G 2M9, Canada.
| |
Collapse
|
17
|
Al-Gazally ME, Khan R, Imran M, Ramírez-Coronel AA, Alshahrani SH, Altalbawy FMA, Turki Jalil A, Romero-Parra RM, Zabibah RS, Shahid Iqbal M, Karampoor S, Mirzaei R. The role and mechanism of action of microRNA-122 in cancer: Focusing on the liver. Int Immunopharmacol 2023; 123:110713. [PMID: 37523968 DOI: 10.1016/j.intimp.2023.110713] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
microRNA-122 (miR-122) is a highly conserved microRNA that is predominantly expressed in the liver and plays a critical role in the regulation of liver metabolism. Recent studies have shown that miR-122 is involved in the pathogenesis of various types of cancer, particularly liver cancer. In this sense, The current findings highlighted the potential role of miR-122 in regulating many vital processes in cancer pathophysiology, including apoptosis, signaling pathway, cell metabolism, immune system response, migration, and invasion. These results imply that miR-122, which has been extensively studied for its biological functions and potential therapeutic applications, acts as a tumor suppressor or oncogene in cancer development. We first provide an overview and summary of the physiological function and mode of action of miR-122 in liver cancer. We will examine the various signaling pathways and molecular mechanisms through which miR-122 exerts its effects on cancer cells, including the regulation of oncogenic and tumor suppressor genes, the modulation of cell proliferation and apoptosis, and the regulation of metastasis. Most importantly, we will also discuss the potential diagnostic and therapeutic applications of miR-122 in cancer, including the development of miRNA-based biomarkers for cancer diagnosis and prognosis, and the potential use of miR-122 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
| | - Ramsha Khan
- MBBS, Nawaz Sharif Medical College, Gujrat, Pakistan
| | - Muhammad Imran
- MBBS, Multan Medical and Dental College, Multan, Pakistan
| | | | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt; Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, 11942 Alkharj, Saudi Arabia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
18
|
Wu J, Uchida K, Yoshikawa A, Hashimoto M, Kondo M, Nihei K, Ishii M, Choi JH, Miwa Y, Shoda C, Lee D, Nakai A, Kurihara T, D’Alessandro-Gabazza CN, Toda M, Yasuma T, Gabazza EC, Hirai H, Kawagishi H. "Fruiting Liquid" of Mushroom-Forming Fungi, A Novel Source of Bioactive Compounds - Fruiting-Body Inducer and HIF and Axl Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13338-13345. [PMID: 37650528 PMCID: PMC10510384 DOI: 10.1021/acs.jafc.3c03633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
In general, mushroom-forming fungi secrete liquid on the surface of mycelia just before fruiting-body formation. However, no researchers in mushroom science have paid attention to the liquid until now. We formulated a hypothesis that the liquid plays an important role(s) in the formation of the fruiting body and produces various bioactive compounds and named it the "fruiting liquid (FL)". Four novel compounds (1-4) were isolated from FL of Hypholoma lateritium and Hericium erinaceus. The structures of 1-4 except for their stereochemistry were determined by interpretation of MS and NMR data. The absolute configurations of compounds 1-4 were determined by quantum chemical calculation of the ECD spectrum, by single-crystal X-ray diffraction analyses, or by chemical syntheses. Compounds 1, 3, and 4 induced fruiting body formation of Flammulina velutipes. Compound 4 inhibited the activity of hypoxia-inducible factor, and compounds 2-4 suppressed receptor tyrosine kinase (Axl) expression.
Collapse
Affiliation(s)
- Jing Wu
- Faculty
of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research
Institute for Mushroom Science, Shizuoka
University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Kazuki Uchida
- Graduate
School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Aoto Yoshikawa
- Graduate
School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Masaru Hashimoto
- Faculty
of Agriculture and Life Science, Hirosaki
University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Mitsuru Kondo
- Research
Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Kenichi Nihei
- Department
of Applied Biological Chemistry, School of Agriculture, Utsunomiya University, Mine-machi 350, Tochigi 321-0943, Japan
| | - Mizuki Ishii
- Department
of Applied Biological Chemistry, School of Agriculture, Utsunomiya University, Mine-machi 350, Tochigi 321-0943, Japan
| | - Jae-Hoon Choi
- Faculty
of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research
Institute for Mushroom Science, Shizuoka
University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate
School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research
Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Yukihiro Miwa
- Laboratory
of Photobiology, Keio University School
of Medicine, 35 Shina-nomachi,
Shinjuku-ku, Tokyo 160-8582, Japan
- Department
of Ophthalmology, Keio University School
of Medicine, 35 Shina-nomachi,
Shinjuku-ku, Tokyo 160-8582, Japan
| | - Chiho Shoda
- Laboratory
of Photobiology, Keio University School
of Medicine, 35 Shina-nomachi,
Shinjuku-ku, Tokyo 160-8582, Japan
- Department
of Ophthalmology, Keio University School
of Medicine, 35 Shina-nomachi,
Shinjuku-ku, Tokyo 160-8582, Japan
| | - Deokho Lee
- Laboratory
of Photobiology, Keio University School
of Medicine, 35 Shina-nomachi,
Shinjuku-ku, Tokyo 160-8582, Japan
- Department
of Ophthalmology, Keio University School
of Medicine, 35 Shina-nomachi,
Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ayaka Nakai
- Laboratory
of Photobiology, Keio University School
of Medicine, 35 Shina-nomachi,
Shinjuku-ku, Tokyo 160-8582, Japan
- Department
of Ophthalmology, Keio University School
of Medicine, 35 Shina-nomachi,
Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshihide Kurihara
- Laboratory
of Photobiology, Keio University School
of Medicine, 35 Shina-nomachi,
Shinjuku-ku, Tokyo 160-8582, Japan
- Department
of Ophthalmology, Keio University School
of Medicine, 35 Shina-nomachi,
Shinjuku-ku, Tokyo 160-8582, Japan
| | | | - Masaaki Toda
- Department
of Immunology, Mie University Graduate School
of Medicine, Edobashi
2-174, Tsu, Mie 524-8507, Japan
| | - Taro Yasuma
- Department
of Immunology, Mie University Graduate School
of Medicine, Edobashi
2-174, Tsu, Mie 524-8507, Japan
| | - Esteban C. Gabazza
- Department
of Immunology, Mie University Graduate School
of Medicine, Edobashi
2-174, Tsu, Mie 524-8507, Japan
| | - Hirofumi Hirai
- Faculty
of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research
Institute for Mushroom Science, Shizuoka
University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate
School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research
Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirokazu Kawagishi
- Faculty
of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research
Institute for Mushroom Science, Shizuoka
University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
19
|
Pidkovka N, Belkhiri A. Altered expression of AXL receptor tyrosine kinase in gastrointestinal cancers: a promising therapeutic target. Front Oncol 2023; 13:1079041. [PMID: 37469409 PMCID: PMC10353021 DOI: 10.3389/fonc.2023.1079041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/31/2023] [Indexed: 07/21/2023] Open
Abstract
Gastrointestinal (GI) cancers that include all cancers of the digestive tract organs are generally associated with obesity, lack of exercising, smoking, poor diet, and heavy alcohol consumption. Treatment of GI cancers typically involves surgery followed by chemotherapy and/or radiation. Unfortunately, intrinsic or acquired resistance to these therapies underscore the need for more effective targeted therapies that have been proven in other malignancies. The aggressive features of GI cancers share distinct signaling pathways that are connected to each other by the overexpression and activation of AXL receptor tyrosine kinase. Several preclinical and clinical studies involving anti-AXL antibodies and small molecule AXL kinase inhibitors to test their efficacy in solid tumors, including GI cancers, have been recently carried out. Therefore, AXL may be a promising therapeutic target for overcoming the shortcomings of standard therapies in GI cancers.
Collapse
Affiliation(s)
- Nataliya Pidkovka
- Department of Health Science, South College, Nashville, TN, United States
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
20
|
Narayanan J, Tamilanban T, Kumar PS, Guru A, Muthupandian S, Kathiravan MK, Arockiaraj J. Role and mechanistic actions of protein kinase inhibitors as an effective drug target for cancer and COVID. Arch Microbiol 2023; 205:238. [PMID: 37193831 PMCID: PMC10188327 DOI: 10.1007/s00203-023-03559-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/18/2023]
Abstract
Kinases can be grouped into 20 families which play a vital role as a regulator of neoplasia, metastasis, and cytokine suppression. Human genome sequencing has discovered more than 500 kinases. Mutations of the kinase itself or the pathway regulated by kinases leads to the progression of diseases such as Alzheimer's, viral infections, and cancers. Cancer chemotherapy has made significant leaps in recent years. The utilization of chemotherapeutic agents for treating cancers has become difficult due to their unpredictable nature and their toxicity toward the host cells. Therefore, targeted therapy as a therapeutic option against cancer-specific cells and toward the signaling pathways is a valuable avenue of research. SARS-CoV-2 is a member of the Betacoronavirus genus that is responsible for causing the COVID pandemic. Kinase family provides a valuable source of biological targets against cancers and for recent COVID infections. Kinases such as tyrosine kinases, Rho kinase, Bruton tyrosine kinase, ABL kinases, and NAK kinases play an important role in the modulation of signaling pathways involved in both cancers and viral infections such as COVID. These kinase inhibitors consist of multiple protein targets such as the viral replication machinery and specific molecules targeting signaling pathways for cancer. Thus, kinase inhibitors can be used for their anti-inflammatory, anti-fibrotic activity along with cytokine suppression in cases of COVID. The main goal of this review is to focus on the pharmacology of kinase inhibitors for cancer and COVID, as well as ideas for future development.
Collapse
Affiliation(s)
- J Narayanan
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - P Senthil Kumar
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, Tamil Nadu, 641021, India
| | - Ajay Guru
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, 600077, India.
| | - Saravanan Muthupandian
- AMR and Nanomedicine Lab, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600077, India.
| | - M K Kathiravan
- 209, Dr APJ Abdul Kalam Research Lab, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India.
| | - Jesu Arockiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India.
| |
Collapse
|
21
|
Apostolo D, D’Onghia D, Tonello S, Minisini R, Baricich A, Gramaglia C, Patrucco F, Zeppegno P, Acquaviva A, Balbo PE, Castello LM, Cappellano G, Chiocchetti A, Gerevini C, Giordano M, Laaguid F, Manfredi M, Raineri D, Rigamonti C, Rolla R, Romano V, Confalonieri M, Savoia P, Zavattaro E, Pirisi M, Ruaro B, Sainaghi PP, Bellan M. Decreased Gas6 and sAxl Plasma Levels Are Associated with Hair Loss in COVID-19 Survivors. Int J Mol Sci 2023; 24:ijms24076257. [PMID: 37047229 PMCID: PMC10094682 DOI: 10.3390/ijms24076257] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Post-acute conditions after coronavirus disease 2019 (COVID-19) are quite common, although the underlying pathogenetic mechanisms leading to these conditions are not yet completely understood. In this prospective observational study, we aimed to test the hypothesis that Growth Arrest-Specific 6 (Gas6) and its soluble receptors, Axl (sAxl) and MerTK (sMer), might be implicated. A total of 263 subjects underwent a structured clinical evaluation one year after their hospital discharge for COVID-19, and they consented to donate a blood sample to measure their circulating Gas6, sAxl, and sMer levels. A total of 98 (37.3%) post-COVID-19 subjects complained of at least one residual physical symptom one year after their hospital discharge. Univariate analysis revealed that sAxl was marginally associated with residual symptoms, but at the level of logistic regression analysis, only the diffusing capacity of the lungs for carbon monoxide (DLCO) (OR 0.98, CI 95%: 0.96–0.99; p = 0.007) and the female sex (OR 2.49, CI 95%: 1.45–4.28; p = 0.001) were independently associated with long-lasting symptoms. A total of 69 (26.2%) subjects had hair loss. At the level of univariate analysis, Gas6, sAxl, DLCO, and the female gender were associated with its development. In a logistic regression analysis model, Gas6 (OR 0.96, CI 95%: 0.92–0.99; p = 0.015) and sAxl (OR 0.98, CI 95%; 0.97–1.0; p = 0.014), along with the female sex (OR 6.58, CI 95%: 3.39–12.78; p = 0.0001), were independent predictors of hair loss. Decreased levels of Gas6 and sAxl were associated with a history of hair loss following COVID-19. This was resolved spontaneously in most patients, although 23.7% complained of persistent hair loss one year after hospital discharge.
Collapse
|
22
|
Kim J, Nam G, Shin YK, Vilaplana-Lopera N, Jeung HC, Moon EJ, Lee IJ. Targeting AXL Using the AVB-500 Soluble Receptor and through Genetic Knockdown Inhibits Bile Duct Cancer Growth and Metastasis. Cancers (Basel) 2023; 15:cancers15061882. [PMID: 36980768 PMCID: PMC10047303 DOI: 10.3390/cancers15061882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Bile duct cancer, or cholangiocarcinoma, is a rare disease with limited treatment options that include surgery and cytotoxic chemotherapy. The high recurrence rate and poor prognosis of this type of cancer highlights the need to identify new and more effective therapeutic targets. In this study, we found that AXL, a receptor tyrosine kinase, is highly expressed in biliary cancer patients and significantly correlated with poor patient outcomes, including metastasis and low survival rates. We also demonstrated that targeting AXL inhibits tumor progression. In vitro studies with bile duct cancer cells (SNU1196 and HUCCT1) showed that genetic knockdown of AXL significantly reduced both tumor cell growth and invasion. In addition, in vivo studies using subcutaneous and orthotopic intrahepatic models demonstrated that genetic inhibition of AXL resulted in tumor-growth delay. To further examine the possible clinical translation of AXL inhibition in the clinic, we tested the efficacy of AVB-500, a soluble AXL receptor, in reducing AXL activation and tumor growth. AVB-500 was effective at inhibiting AXL activation and decreasing the growth and invasion of SNU1196 and HUCCT1 tumors which possess high AXL expression. Most importantly, AVB-500 was highly effective at decreasing tumor dissemination of bile duct tumor cells in the peritoneal cavity. This study strongly supports the idea of using the AXL receptor as a new therapeutic target to treat the growth and progression of biliary cancer.
Collapse
Affiliation(s)
- Jiyoung Kim
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Headington OX3 7DQ, UK
| | - Gilyeong Nam
- Department of Integrative Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - You Keun Shin
- Department of Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Nuria Vilaplana-Lopera
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Headington OX3 7DQ, UK
| | - Hei-Cheul Jeung
- Department of Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Eui Jung Moon
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Headington OX3 7DQ, UK
| | - Ik Jae Lee
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| |
Collapse
|
23
|
Ruggieri L, Moretti A, Berardi R, Cona MS, Dalu D, Villa C, Chizzoniti D, Piva S, Gambaro A, La Verde N. Host-Related Factors in the Interplay among Inflammation, Immunity and Dormancy in Breast Cancer Recurrence and Prognosis: An Overview for Clinicians. Int J Mol Sci 2023; 24:ijms24054974. [PMID: 36902406 PMCID: PMC10002538 DOI: 10.3390/ijms24054974] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
A significant proportion of patients treated for early breast cancer develop medium-term and late distant recurrence. The delayed manifestation of metastatic disease is defined as "dormancy". This model describes the aspects of the clinical latency of isolated metastatic cancer cells. Dormancy is regulated by extremely complex interactions between disseminated cancer cells and the microenvironment where they reside, the latter in turn influenced directly by the host. Among these entangled mechanisms, inflammation and immunity may play leading roles. This review is divided into two parts: the first describes the biological underpinnings of cancer dormancy and the role of the immune response, in particular, for breast cancer; the second provides an overview of the host-related factors that may influence systemic inflammation and immune response, subsequently impacting the dynamics of breast cancer dormancy. The aim of this review is to provide physicians and medical oncologists a useful tool to understand the clinical implications of this relevant topic.
Collapse
Affiliation(s)
- Lorenzo Ruggieri
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Anna Moretti
- Medical Oncology Unit, S. Carlo Hospital, ASST Santi Paolo e Carlo, 20153 Milan, Italy
| | - Rossana Berardi
- Department of Oncology, Università Politecnica delle Marche—AOU delle Marche, 60121 Ancona, Italy
| | - Maria Silvia Cona
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Davide Dalu
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Cecilia Villa
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Davide Chizzoniti
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Sheila Piva
- Medical Oncology Unit, Fatebenefratelli Hospital, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy
| | - Anna Gambaro
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Nicla La Verde
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
- Correspondence: ; Tel.: +39-02-3904-2492
| |
Collapse
|
24
|
Nasimian A, Al Ashiri L, Ahmed M, Duan H, Zhang X, Rönnstrand L, Kazi JU. A Receptor Tyrosine Kinase Inhibitor Sensitivity Prediction Model Identifies AXL Dependency in Leukemia. Int J Mol Sci 2023; 24:ijms24043830. [PMID: 36835239 PMCID: PMC9959897 DOI: 10.3390/ijms24043830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Despite incredible progress in cancer treatment, therapy resistance remains the leading limiting factor for long-term survival. During drug treatment, several genes are transcriptionally upregulated to mediate drug tolerance. Using highly variable genes and pharmacogenomic data for acute myeloid leukemia (AML), we developed a drug sensitivity prediction model for the receptor tyrosine kinase inhibitor sorafenib and achieved more than 80% prediction accuracy. Furthermore, by using Shapley additive explanations for determining leading features, we identified AXL as an important feature for drug resistance. Drug-resistant patient samples displayed enrichment of protein kinase C (PKC) signaling, which was also identified in sorafenib-treated FLT3-ITD-dependent AML cell lines by a peptide-based kinase profiling assay. Finally, we show that pharmacological inhibition of tyrosine kinase activity enhances AXL expression, phosphorylation of the PKC-substrate cyclic AMP response element binding (CREB) protein, and displays synergy with AXL and PKC inhibitors. Collectively, our data suggest an involvement of AXL in tyrosine kinase inhibitor resistance and link PKC activation as a possible signaling mediator.
Collapse
Affiliation(s)
- Ahmad Nasimian
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Lina Al Ashiri
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Mehreen Ahmed
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Hongzhi Duan
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Xiaoyue Zhang
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, 22185 Lund, Sweden
| | - Julhash U. Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
- Correspondence: ; Tel.: +46-462226407
| |
Collapse
|
25
|
Brosseron F, Maass A, Kleineidam L, Ravichandran KA, Kolbe CC, Wolfsgruber S, Santarelli F, Häsler LM, McManus R, Ising C, Röske S, Peters O, Cosma NC, Schneider LS, Wang X, Priller J, Spruth EJ, Altenstein S, Schneider A, Fliessbach K, Wiltfang J, Schott BH, Buerger K, Janowitz D, Dichgans M, Perneczky R, Rauchmann BS, Teipel S, Kilimann I, Görß D, Laske C, Munk MH, Düzel E, Yakupow R, Dobisch L, Metzger CD, Glanz W, Ewers M, Dechent P, Haynes JD, Scheffler K, Roy N, Rostamzadeh A, Spottke A, Ramirez A, Mengel D, Synofzik M, Jucker M, Latz E, Jessen F, Wagner M, Heneka MT. Serum IL-6, sAXL, and YKL-40 as systemic correlates of reduced brain structure and function in Alzheimer's disease: results from the DELCODE study. Alzheimers Res Ther 2023; 15:13. [PMID: 36631909 PMCID: PMC9835320 DOI: 10.1186/s13195-022-01118-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/06/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Neuroinflammation constitutes a pathological hallmark of Alzheimer's disease (AD). Still, it remains unresolved if peripheral inflammatory markers can be utilized for research purposes similar to blood-based beta-amyloid and neurodegeneration measures. We investigated experimental inflammation markers in serum and analyzed interrelations towards AD pathology features in a cohort with a focus on at-risk stages of AD. METHODS Data of 74 healthy controls (HC), 99 subjective cognitive decline (SCD), 75 mild cognitive impairment (MCI), 23 AD relatives, and 38 AD subjects were obtained from the DELCODE cohort. A panel of 20 serum biomarkers was determined using immunoassays. Analyses were adjusted for age, sex, APOE status, and body mass index and included correlations between serum and CSF marker levels and AD biomarker levels. Group-wise comparisons were based on screening diagnosis and routine AD biomarker-based schematics. Structural imaging data were combined into composite scores representing Braak stage regions and related to serum biomarker levels. The Preclinical Alzheimer's Cognitive Composite (PACC5) score was used to test for associations between the biomarkers and cognitive performance. RESULTS Each experimental marker displayed an individual profile of interrelations to AD biomarkers, imaging, or cognition features. Serum-soluble AXL (sAXL), IL-6, and YKL-40 showed the most striking associations. Soluble AXL was significantly elevated in AD subjects with pathological CSF beta-amyloid/tau profile and negatively related to structural imaging and cognitive function. Serum IL-6 was negatively correlated to structural measures of Braak regions, without associations to corresponding IL-6 CSF levels or other AD features. Serum YKL-40 correlated most consistently to CSF AD biomarker profiles and showed the strongest negative relations to structure, but none to cognitive outcomes. CONCLUSIONS Serum sAXL, IL-6, and YKL-40 relate to different AD features, including the degree of neuropathology and cognitive functioning. This may suggest that peripheral blood signatures correspond to specific stages of the disease. As serum markers did not reflect the corresponding CSF protein levels, our data highlight the need to interpret serum inflammatory markers depending on the respective protein's specific biology and cellular origin. These marker-specific differences will have to be considered to further define and interpret blood-based inflammatory profiles for AD research.
Collapse
Affiliation(s)
- Frederic Brosseron
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Anne Maass
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Luca Kleineidam
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Kishore Aravind Ravichandran
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Carl-Christian Kolbe
- grid.15090.3d0000 0000 8786 803XInstitute of Innate Immunity, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany ,grid.420044.60000 0004 0374 4101Bayer AG, Alfred-Nobel-Straße 50, 40789 Monheim am Rhein, Germany
| | - Steffen Wolfsgruber
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Francesco Santarelli
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Lisa M. Häsler
- grid.10392.390000 0001 2190 1447Hertie Institute for Clinical Brain Research, Department Cellular Neurology, University of Tübingen, Otfried-Müller-Strasse 27, 72076 Tübingen, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Róisín McManus
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christina Ising
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany ,grid.452408.fExcellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Köln, Germany
| | - Sandra Röske
- grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Oliver Peters
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Charitéplatz 1, 10117 Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Nicoleta-Carmen Cosma
- grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Luisa-Sophie Schneider
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Charitéplatz 1, 10117 Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Xiao Wang
- grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Josef Priller
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Charitéplatz 1, 10117 Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany ,grid.6936.a0000000123222966Department of Psychiatry and Psychotherapy, Technical University Munich, 81675 Munich, Germany
| | - Eike J. Spruth
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Charitéplatz 1, 10117 Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Slawek Altenstein
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Charitéplatz 1, 10117 Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Anja Schneider
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Klaus Fliessbach
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Jens Wiltfang
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany ,grid.7450.60000 0001 2364 4210Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, University of Göttingen, Von-Siebold-Str. 5, 37075 Göttingen, Germany ,grid.7311.40000000123236065Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Björn H. Schott
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany ,grid.7450.60000 0001 2364 4210Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, University of Göttingen, Von-Siebold-Str. 5, 37075 Göttingen, Germany ,grid.418723.b0000 0001 2109 6265Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Katharina Buerger
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, 81377 Munich, Germany ,grid.411095.80000 0004 0477 2585Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Daniel Janowitz
- grid.411095.80000 0004 0477 2585Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Martin Dichgans
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, 81377 Munich, Germany ,grid.411095.80000 0004 0477 2585Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Robert Perneczky
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, 81377 Munich, Germany ,grid.411095.80000 0004 0477 2585Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany ,grid.7445.20000 0001 2113 8111Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK ,grid.11835.3e0000 0004 1936 9262Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Boris-Stephan Rauchmann
- grid.411095.80000 0004 0477 2585Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Stefan Teipel
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Gehlsheimer Str. 20, 18147 Rostock, Germany ,grid.413108.f0000 0000 9737 0454Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Ingo Kilimann
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Gehlsheimer Str. 20, 18147 Rostock, Germany ,grid.413108.f0000 0000 9737 0454Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Doreen Görß
- grid.413108.f0000 0000 9737 0454Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Christoph Laske
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 27, 72076 Tübingen, Germany ,grid.10392.390000 0001 2190 1447Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Matthias H. Munk
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 27, 72076 Tübingen, Germany ,grid.10392.390000 0001 2190 1447Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Emrah Düzel
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Renat Yakupow
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Laura Dobisch
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Coraline D. Metzger
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
| | - Wenzel Glanz
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Michael Ewers
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Peter Dechent
- grid.7450.60000 0001 2364 4210MR-Research in Neurosciences, Department of Cognitive Neurology, Georg-August-University, Goettingen, Germany
| | - John Dylan Haynes
- grid.6363.00000 0001 2218 4662Bernstein Center for Computational Neurosciences, Charité – Universitätsmedizin, Berlin, Germany
| | - Klaus Scheffler
- grid.10392.390000 0001 2190 1447Department for Biomedical Magnetic Resonance, University of Tübingen, 72076 Tübingen, Germany
| | - Nina Roy
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Ayda Rostamzadeh
- grid.6190.e0000 0000 8580 3777Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany
| | - Annika Spottke
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.10388.320000 0001 2240 3300Department of Neurology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Alfredo Ramirez
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany ,grid.452408.fExcellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Köln, Germany ,grid.6190.e0000 0000 8580 3777Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany ,Department of Psychiatry & Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX USA
| | - David Mengel
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 27, 72076 Tübingen, Germany ,grid.10392.390000 0001 2190 1447Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Strasse 27, 72076 Tübingen, Germany
| | - Matthis Synofzik
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 27, 72076 Tübingen, Germany ,grid.10392.390000 0001 2190 1447Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Strasse 27, 72076 Tübingen, Germany
| | - Mathias Jucker
- grid.10392.390000 0001 2190 1447Hertie Institute for Clinical Brain Research, Department Cellular Neurology, University of Tübingen, Otfried-Müller-Strasse 27, 72076 Tübingen, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Eicke Latz
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XInstitute of Innate Immunity, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Frank Jessen
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.452408.fExcellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Köln, Germany ,grid.6190.e0000 0000 8580 3777Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany
| | - Michael Wagner
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Michael T. Heneka
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany ,grid.16008.3f0000 0001 2295 9843Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, 4362 Esch-sur- Alzette, Luxembourg
| | | |
Collapse
|
26
|
Sharma A, Shambhwani D, Pandey S, Singh J, Lalhlenmawia H, Kumarasamy M, Singh SK, Chellappan DK, Gupta G, Prasher P, Dua K, Kumar D. Advances in Lung Cancer Treatment Using Nanomedicines. ACS OMEGA 2023; 8:10-41. [PMID: 36643475 PMCID: PMC9835549 DOI: 10.1021/acsomega.2c04078] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/13/2022] [Indexed: 06/01/2023]
Abstract
Carcinoma of the lungs is among the most menacing forms of malignancy and has a poor prognosis, with a low overall survival rate due to delayed detection and ineffectiveness of conventional therapy. Therefore, drug delivery strategies that may overcome undesired damage to healthy cells, boost therapeutic efficacy, and act as imaging tools are currently gaining much attention. Advances in material science have resulted in unique nanoscale-based theranostic agents, which provide renewed hope for patients suffering from lung cancer. Nanotechnology has vastly modified and upgraded the existing techniques, focusing primarily on increasing bioavailability and stability of anti-cancer drugs. Nanocarrier-based imaging systems as theranostic tools in the treatment of lung carcinoma have proven to possess considerable benefits, such as early detection and targeted therapeutic delivery for effectively treating lung cancer. Several variants of nano-drug delivery agents have been successfully studied for therapeutic applications, such as liposomes, dendrimers, polymeric nanoparticles, nanoemulsions, carbon nanotubes, gold nanoparticles, magnetic nanoparticles, solid lipid nanoparticles, hydrogels, and micelles. In this Review, we present a comprehensive outline on the various types of overexpressed receptors in lung cancer, as well as the various targeting approaches of nanoparticles.
Collapse
Affiliation(s)
- Akshansh Sharma
- Department
of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| | | | - Sadanand Pandey
- Department
of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Jay Singh
- Department
of Chemistry, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Hauzel Lalhlenmawia
- Department
of Pharmacy, Regional Institute of Paramedical
and Nursing Sciences, Zemabawk, Aizawl, Mizoram 796017, India
| | - Murali Kumarasamy
- Department
of Biotechnology, National Institute of
Pharmaceutical Education and Research, Hajipur 844102, India
| | - Sachin Kumar Singh
- School
of Pharmaceutical Sciences, Lovely Professional
University, Phagwara 144411, India
- Faculty
of Health, Australian Research Centre in Complementary and Integrative
Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department
of Life Sciences, School of Pharmacy, International
Medical University, Kuala Lumpur 57000, Malaysia
| | - Gaurav Gupta
- Department
of Pharmacology, School of Pharmacy, Suresh
Gyan Vihar University, Jaipur 302017, India
- Department
of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical
and Technical Sciences, Saveetha University, Chennai 602117, India
- Uttaranchal
Institute of Pharmaceutical Sciences, Uttaranchal
University, Dehradun 248007, India
| | - Parteek Prasher
- Department
of Chemistry, University of Petroleum &
Energy Studies, Dehradun 248007, India
| | - Kamal Dua
- Faculty
of Health, Australian Research Centre in Complementary and Integrative
Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
- Discipline
of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Deepak Kumar
- Department
of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| |
Collapse
|
27
|
Dosquet H, Neirinckx V, Meyrath M, Wantz M, Haan S, Niclou SP, Szpakowska M, Chevigné A. Nanoluciferase-based complementation assays to monitor activation, modulation and signaling of receptor tyrosine kinases (RTKs). Methods Enzymol 2023; 682:1-16. [PMID: 36948698 DOI: 10.1016/bs.mie.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Receptor tyrosine kinases (RTKs) are transmembrane receptors activated by a wide diversity of growth factors, cytokines or hormones. They ensure multiple roles in cellular processes, including proliferation, differentiation and survival. They are also crucial drivers of development and progression of multiple cancer types, and represent important drug targets. Generally, ligand binding induces dimerization of RTK monomers, which induces auto-/transphosphorylation of tyrosine residues on the intracellular tails leading to the recruitment of adaptor proteins and modifying enzymes to promote and modulate various downstream signaling pathways. This chapter details easy, rapid, sensitive and versatile methods based on split Nanoluciferase complementation technology (NanoBiT) to monitor activation and modulation of two models of RTKs (EGFR and AXL) through the measurement of their dimerization and the recruitment of the adaptor protein Grb2 (SH2 domain-containing growth factor receptor-bound protein 2) and the receptor-modifying enzyme, the ubiquitin ligase Cbl.
Collapse
Affiliation(s)
- Hugo Dosquet
- Department of Cancer Research, NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Virginie Neirinckx
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
| | - Max Meyrath
- Department of Infection and Immunity, Immunopharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - May Wantz
- Department of Infection and Immunity, Immunopharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Serge Haan
- Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Simone P Niclou
- Department of Cancer Research, NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg; Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immunopharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immunopharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
28
|
Kotajima M, Choi JH, Kondo M, D’Alessandro-Gabazza CN, Toda M, Yasuma T, Gabazza EC, Miwa Y, Shoda C, Lee D, Nakai A, Kurihara T, Wu J, Hirai H, Kawagishi H. Axl, Immune Checkpoint Molecules and HIF Inhibitors from the Culture Broth of Lepista luscina. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248925. [PMID: 36558053 PMCID: PMC9781456 DOI: 10.3390/molecules27248925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Two compounds 1 and 2 were isolated from the culture broth of Lepista luscina. This is the first time that compound 1 was isolated from a natural source. The structure of compound 1 was identified via 1D and 2D NMR and HRESIMS data. Compounds 1 and 2 along with 8-nitrotryptanthrin (4) were evaluated for their biological activities using the A549 lung cancer cell line. As a result, 1 and 2 inhibited the expression of Axl and immune checkpoint molecules. In addition, compounds 1, 2 and 4 were tested for HIF inhibitory activity. Compound 2 demonstrated statistically significant HIF inhibitory effects on NIH3T3 cells and 1 and 2 against ARPE19 cells.
Collapse
Affiliation(s)
- Mihaya Kotajima
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Jae-Hoon Choi
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Mitsuru Kondo
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | | | - Masaaki Toda
- Department of Immunology, Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 524-8507, Japan
| | - Taro Yasuma
- Department of Immunology, Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 524-8507, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 524-8507, Japan
| | - Yukihiro Miwa
- Department of Ophthalmology, Keio University School of Medicine, 35 Shina-nomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Chiho Shoda
- Department of Ophthalmology, Keio University School of Medicine, 35 Shina-nomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Deokho Lee
- Department of Ophthalmology, Keio University School of Medicine, 35 Shina-nomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ayaka Nakai
- Department of Ophthalmology, Keio University School of Medicine, 35 Shina-nomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, 35 Shina-nomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jing Wu
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirofumi Hirai
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Correspondence:
| |
Collapse
|
29
|
Hokanson CA, Zacco E, Cappuccilli G, Odineca T, Crea R. AXL-Receptor Targeted 14FN3 Based Single Domain Proteins (Pronectins™) from 3 Synthetic Human Libraries as Components for Exploring Novel Bispecific Constructs against Solid Tumors. Biomedicines 2022; 10:biomedicines10123184. [PMID: 36551940 PMCID: PMC9775294 DOI: 10.3390/biomedicines10123184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
A highly specific AXL-receptor targeted family of non-immunoglobulin, single domain protein binders (Pronectins™) have been isolated from three (3) synthetic libraries that employ the human scaffold of the 14th domain of Fibronectin III (14FN3) and evolutionary CDRs diversity of over 25 billion loop sequences. The three libraries, each containing diversity in two loops, were designed to expand upon a human database of more than 6000 natural scaffold sequences and approximately 3000 human loop sequences. We used a bioinformatic-based approach to maximize "human" amino acid loop diversity and minimize or prevent altogether CDR immunogenicity created by the use of mutagenesis processes to generate diversity. A combination of phage display and yeast display was used to isolate 59 AXL receptor targeted Pronectins with KD ranging between 2 and 100 nM. FACS analysis with tumor cells over-expressing AXL and the use of an AXL knock-out cell line allowed us to identify Pronectin candidates with exquisite specificity for AXL receptor. Based upon several in vitro cell-based tests, we selected the best candidate, AXL54, to further characterize its in vitro cancer cells killing activity. Finally, AXL54 was used to produce the first bi-specific T cell engager protein (AXL54 [Pronectin]-linker-scFV CD3), a "new in class" protein for further testing of its anti-tumor activity in vitro and in vivo.
Collapse
Affiliation(s)
- Craig A. Hokanson
- Protelica, Inc., 26225 Eden Landing Road, Suite C, Hayward, CA 94545, USA
| | | | | | - Tatjana Odineca
- Protelica, Inc., 26225 Eden Landing Road, Suite C, Hayward, CA 94545, USA
| | - Roberto Crea
- Protelica, Inc., 26225 Eden Landing Road, Suite C, Hayward, CA 94545, USA
- Correspondence:
| |
Collapse
|
30
|
Nanomedicine for targeting the lung cancer cells by interpreting the signaling pathways. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Malvankar C, Kumar D. AXL kinase inhibitors- A prospective model for medicinal chemistry strategies in anticancer drug discovery. Biochim Biophys Acta Rev Cancer 2022; 1877:188786. [PMID: 36058379 DOI: 10.1016/j.bbcan.2022.188786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/19/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022]
Abstract
Deviant expressions of the tyrosine kinase AXL receptor are strongly correlated with a plethora of malignancies. Henceforth, the topic of targeting AXL is beginning to gain prominence due to mounting evidence of the protein's substantial connection to poor prognosis and treatment resistance. This year marked a milestone in clinical testing for AXL as an anti-carcinogenic target, with the start of the first AXL-branded inhibitor study. It is critical to emphasize that AXL is a primary and secondary target in various kinase inhibitors that have been approved or are on the verge of being approved while interpreting the present benefits and future potential effects of AXL suppression in the clinical setting. Several research arenas across the globe resolutely affirm the crucial significance of AXL receptors in the case study of several pathophysiologies including AML, prostate cancer, and breast cancer. This review endeavors to delve deeply into the biological, chemical, and structural features of AXL kinase; primary AXL inhibitors that target the enzyme (either purposefully or unintentionally); and the prospects and barriers for turning AXL inhibitors into a feasible treatment alternative. Furthermore, we analyse the co-crystal structure of AXL, which remains extensively unexplored, as well as the mutations of AXL that may be valuable in the development of novel inhibitors in the upcoming future and take a comprehensive look at the medicinal chemistry of AXL inhibitors of recent years.
Collapse
Affiliation(s)
- Chinmay Malvankar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India; Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA; UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
32
|
Targeting Tyrosine Kinases in Ovarian Cancer: Small Molecule Inhibitor and Monoclonal Antibody, Where Are We Now? Biomedicines 2022; 10:biomedicines10092113. [PMID: 36140214 PMCID: PMC9495728 DOI: 10.3390/biomedicines10092113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 12/27/2022] Open
Abstract
Ovarian cancer is one of the most lethal gynaecological malignancies worldwide. Despite high success rates following first time treatment, this heterogenous disease is prone to recurrence. Oncogenic activity of receptor tyrosine kinases is believed to drive the progression of ovarian cancer. Here we provide an update on the progress of the therapeutic targeting of receptor tyrosine kinases in ovarian cancer. Broadly, drug classes that inhibit tyrosine kinase/pathways can be classified as small molecule inhibitors, monoclonal antibodies, or immunotherapeutic vaccines. Small molecule inhibitors tested in clinical trials thus far include sorafenib, sunitinib, pazopanib, tivantinib, and erlotinib. Monoclonal antibodies include bevacizumab, cetuximab, pertuzumab, trastuzumab, and seribantumab. While numerous trials have been carried out, the results of monotherapeutic agents have not been satisfactory. For combination with chemotherapy, the monoclonal antibodies appear more effective, though the efficacy is limited by low frequency of target alteration and a lack of useful predictive markers for treatment stratification. There remain critical gaps for the treatment of platinum-resistant ovarian cancers; however, platinum-sensitive tumours may benefit from the combination of tyrosine kinase targeting drugs and PARP inhibitors. Immunotherapeutics such as a peptide B-cell epitope vaccine and plasmid-based DNA vaccine have shown some efficacy both as monotherapeutic agents and in combination therapy, but require further development to validate current findings. In conclusion, the tyrosine kinases remain attractive targets for treating ovarian cancers. Future development will need to consider effective drug combination, frequency of target, and developing predictive biomarker.
Collapse
|
33
|
Bone Marrow Endothelial Cells Increase Prostate Cancer Cell Apoptosis in 3D Triculture Model of Reactive Stroma. BIOLOGY 2022; 11:biology11091271. [PMID: 36138750 PMCID: PMC9495890 DOI: 10.3390/biology11091271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 12/01/2022]
Abstract
Simple Summary Prostate cancer (PCa) metastasizes preferentially to the bone marrow where it becomes difficult to treat. PCa cells in the bone marrow may survive, dormant and undetected for many years before patients eventually relapse with metastatic disease. Bone marrow is a complex tissue that initially is hostile to the PCa cells, Understanding how cancer cells survive in the bone marrow and what changes to the bone microenvironment permit them to switch to an actively growing state could offer new therapeutic strategies to combat metastatic PCa. In this study, we describe a method to culture PCa cells with two other cell types from the bone marrow, stromal cells and endothelial cells, as a way to study the interactions among these cell types. We found that factors produced by bone marrow endothelial cells, but not endothelial cells from other tissues, trigger PCa cells to either die or enter a dormant state, similar to what has been observed in patients when PCa cells initially colonize the bone marrow. Further analysis of the cell interactions within the culture model described in this study will offer increased understanding of PCa interaction with the bone marrow environment. Abstract The bone marrow tumor microenvironment (BMTE) is a complex network of cells, extracellular matrix, and sequestered signaling factors that initially act as a hostile environment for disseminating tumor cells (DTCs) from the cancerous prostate. Three-dimensional (3D) culture systems offer an opportunity to better model these complex interactions in reactive stroma, providing contextual behaviors for cancer cells, stromal cells, and endothelial cells. Using a new system designed for the triculture of osteoblastic prostate cancer (PCa) cells, stromal cells, and microvascular endothelial cells, we uncovered a context-specific pro-apoptotic effect of endothelial cells of the bone marrow different from those derived from the lung or dermis. The paracrine nature of this effect was demonstrated by observations that conditioned medium from bone marrow endothelial cells, but not from dermal or lung endothelial cells, led to PCa cell death in microtumors grown in 3D BMTE-simulating hydrogels. Analysis of the phosphoproteome by reverse phase protein analysis (RPPA) of PCa cells treated with conditioned media from different endothelial cells identified the differential regulation of pathways involved in proliferation, cell cycle regulation, and apoptosis. The findings from the RPPA were validated by western blotting for representative signaling factors identified, including forkhead box M1 (FOXM1; proliferation factor), pRb (cell cycle regulator), and Smac/DIABLO (pro-apoptosis) among treatment conditions. The 3D model presented here thus presents an accurate model to study the influence of the reactive BMTE, including stromal and endothelial cells, on the adaptive behaviors of cancer cells modeling DTCs at sites of bone metastasis. These findings in 3D culture systems can lead to a better understanding of the real-time interactions among cells present in reactive stroma than is possible using animal models.
Collapse
|
34
|
Chun KH. Molecular Targets and Signaling Pathways of microRNA-122 in Hepatocellular Carcinoma. Pharmaceutics 2022; 14:1380. [PMID: 35890276 PMCID: PMC9316959 DOI: 10.3390/pharmaceutics14071380] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading global causes of cancer mortality. MicroRNAs (miRNAs) are small interfering RNAs that alleviate the levels of protein expression by suppressing translation, inducing mRNA cleavage, and promoting mRNA degradation. miR-122 is the most abundant miRNA in the liver and is responsible for several liver-specific functions, including metabolism, cellular growth and differentiation, and hepatitis virus replication. Recent studies have shown that aberrant regulation of miR-122 is a key factor contributing to the development of HCC. In this review, the signaling pathways and the molecular targets of miR-122 involved in the progression of HCC have been summarized, and the importance of miR-122 in therapy has been discussed.
Collapse
Affiliation(s)
- Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Korea
| |
Collapse
|
35
|
KHAMKO RICUPHAN, WASENANG WIPHAWAN, DADUANG JUREERUT, SETTASATIAN CHATRI, LIMPAIBOON TEMDUANG. Combined OPCML and AXL Expression as a Prognostic Marker and OPCML Enhances AXL Inhibitor in Cholangiocarcinoma. In Vivo 2022; 36:1168-1177. [PMID: 35478117 PMCID: PMC9087092 DOI: 10.21873/invivo.12816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIM Cholangiocarcinoma (CCA) is a type of liver cancer originating from bile duct epithelium which has an unfavorable prognosis. Therefore, novel prognostic markers and effective therapeutic regimens are required. Opioid-binding protein/cell adhesion molecule-like (OPCML) is a tumor-suppressor protein that suppresses CCA cell proliferation via AXL receptor tyrosine kinase/signal transducer and activator of transcription 3 (AXL/STAT3) inactivation. However, this association in clinical samples remains unknown. We aimed to determine OPCML and AXL expression and investigate their association with clinicopathological features in patients with CCA. In addition, we also addressed whether OPCML enhanced the sensitivity of CCA cells to AXL inhibitor R428 in vitro. MATERIALS AND METHODS The expression of OPCML and AXL was determined by immunohistochemistry in 90 CCA tissue samples. The study of CCA cell line sensitivity to R428 was performed by cell viability assay. RESULTS The expression of OPCML was significantly lower while AXL expression was substantially higher in CCA than in adjacent normal tissue (p<0.001). Furthermore, high AXL expression was significantly associated with lymph node metastasis (p=0.035). Interestingly, patients with combined low OPCML/high AXL expression had significantly shorter overall survival (p=0.007). OPCML enhanced the effect of AXL inhibitor R428 in AXL-expressing CCA cell lines. CONCLUSION Combined expression of OPCML and AXL shows potential value as a prognostic marker and OPCML as an agent enhancing the effect of R428 may contribute to better prognosis for patients with CCA.
Collapse
Affiliation(s)
- RICUPHAN KHAMKO
- Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand,Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - WIPHAWAN WASENANG
- Faculty of Medical Technology, Nakhon Ratchasima College, Nakhon Ratchasima, Thailand
| | - JUREERUT DADUANG
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - CHATRI SETTASATIAN
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - TEMDUANG LIMPAIBOON
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
36
|
Role of Anti-Angiogenic Factors in the Pathogenesis of Breast Cancer: A Review of Therapeutic Potential. Pathol Res Pract 2022; 236:153956. [DOI: 10.1016/j.prp.2022.153956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/06/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022]
|
37
|
Engelsen AST, Lotsberg ML, Abou Khouzam R, Thiery JP, Lorens JB, Chouaib S, Terry S. Dissecting the Role of AXL in Cancer Immune Escape and Resistance to Immune Checkpoint Inhibition. Front Immunol 2022; 13:869676. [PMID: 35572601 PMCID: PMC9092944 DOI: 10.3389/fimmu.2022.869676] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
The development and implementation of Immune Checkpoint Inhibitors (ICI) in clinical oncology have significantly improved the survival of a subset of cancer patients with metastatic disease previously considered uniformly lethal. However, the low response rates and the low number of patients with durable clinical responses remain major concerns and underscore the limited understanding of mechanisms regulating anti-tumor immunity and tumor immune resistance. There is an urgent unmet need for novel approaches to enhance the efficacy of ICI in the clinic, and for predictive tools that can accurately predict ICI responders based on the composition of their tumor microenvironment. The receptor tyrosine kinase (RTK) AXL has been associated with poor prognosis in numerous malignancies and the emergence of therapy resistance. AXL is a member of the TYRO3-AXL-MERTK (TAM) kinase family. Upon binding to its ligand GAS6, AXL regulates cell signaling cascades and cellular communication between various components of the tumor microenvironment, including cancer cells, endothelial cells, and immune cells. Converging evidence points to AXL as an attractive molecular target to overcome therapy resistance and immunosuppression, supported by the potential of AXL inhibitors to improve ICI efficacy. Here, we review the current literature on the prominent role of AXL in regulating cancer progression, with particular attention to its effects on anti-tumor immune response and resistance to ICI. We discuss future directions with the aim to understand better the complex role of AXL and TAM receptors in cancer and the potential value of this knowledge and targeted inhibition for the benefit of cancer patients.
Collapse
Affiliation(s)
- Agnete S. T. Engelsen
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Maria L. Lotsberg
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Jean-Paul Thiery
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
- Guangzhou Laboratory, Guangzhou, China
- Inserm, UMR 1186, Integrative Tumor Immunology and Immunotherapy, Villejuif, France
| | - James B. Lorens
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
- Inserm, UMR 1186, Integrative Tumor Immunology and Immunotherapy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Faculty of Medicine, University Paris Sud, Le Kremlin-Bicêtre, France
| | - Stéphane Terry
- Inserm, UMR 1186, Integrative Tumor Immunology and Immunotherapy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Faculty of Medicine, University Paris Sud, Le Kremlin-Bicêtre, France
- Research Department, Inovarion, Paris, France
| |
Collapse
|
38
|
Zammarchi F, Havenith KEG, Chivers S, Hogg P, Bertelli F, Tyrer P, Janghra N, Reinert HW, Hartley JA, van Berkel PH. Preclinical Development of ADCT-601, a Novel Pyrrolobenzodiazepine Dimer-based Antibody-drug Conjugate Targeting AXL-expressing Cancers. Mol Cancer Ther 2022; 21:582-593. [PMID: 35086955 PMCID: PMC9377743 DOI: 10.1158/1535-7163.mct-21-0715] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/13/2021] [Accepted: 01/18/2022] [Indexed: 01/07/2023]
Abstract
AXL, a tyrosine kinase receptor that is overexpressed in many solid and hematologic malignancies, facilitates cancer progression and is associated with poor clinical outcomes. Importantly, drug-induced expression of AXL results in resistance to conventional chemotherapy and targeted therapies. Together with its presence on multiple cell types in the tumor immune microenvironment, these features make it an attractive therapeutic target for AXL-expressing malignancies. ADCT-601 (mipasetamab uzoptirine) is an AXL-targeted antibody-drug conjugate (ADC) comprising a humanized anti-AXL antibody site specifically conjugated using GlycoConnect technology to PL1601, which contains HydraSpace, a Val-Ala cleavable linker and the potent pyrrolobenzodiazepine (PBD) dimer cytotoxin SG3199. This study aimed to validate the ADCT-601 mode of action and evaluate its efficacy in vitro and in vivo, as well as its tolerability and pharmacokinetics. ADCT-601 bound to both soluble and membranous AXL, and was rapidly internalized by AXL-expressing tumor cells, allowing release of PBD dimer, DNA interstrand cross-linking, and subsequent cell killing. In vivo, ADCT-601 had potent and durable antitumor activity in a wide variety of human cancer xenograft mouse models, including patient-derived xenograft models with heterogeneous AXL expression where ADCT-601 antitumor activity was markedly superior to an auristatin-based comparator ADC. Notably, ADCT-601 had antitumor activity in a monomethyl auristatin E-resistant lung-cancer model and synergized with the PARP inhibitor olaparib in a BRCA1-mutated ovarian cancer model. ADCT-601 was well tolerated at doses of up to 6 mg/kg and showed excellent stability in vivo. These preclinical results warrant further evaluation of ADCT-601 in the clinic.
Collapse
Affiliation(s)
- Francesca Zammarchi
- ADC Therapeutics (UK) Limited, London, United Kingdom.,Corresponding Author: Francesca Zammarchi, Imperial College White City Campus, ADC Therapeutics (UK) Limited, London W12 0BZ, United Kingdom. E-mail:
| | | | - Simon Chivers
- ADC Therapeutics (UK) Limited, London, United Kingdom
| | - Paul Hogg
- ADC Therapeutics (UK) Limited, London, United Kingdom
| | | | - Peter Tyrer
- AstraZeneca (MedImmune/Spirogen), Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
39
|
Majumder A, Hosseinian S, Stroud M, Adhikari E, Saller JJ, Smith MA, Zhang G, Agarwal S, Creixell M, Meyer BS, Kinose F, Bowers K, Fang B, Stewart PA, Welsh EA, Boyle TA, Meyer AS, Koomen JM, Haura EB. Integrated Proteomics-Based Physical and Functional Mapping of AXL Kinase Signaling Pathways and Inhibitors Define Its Role in Cell Migration. Mol Cancer Res 2022; 20:542-555. [PMID: 35022314 PMCID: PMC8983558 DOI: 10.1158/1541-7786.mcr-21-0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/14/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022]
Abstract
To better understand the signaling complexity of AXL, a member of the tumor-associated macrophage (TAM) receptor tyrosine kinase family, we created a physical and functional map of AXL signaling interactions, phosphorylation events, and target-engagement of three AXL tyrosine kinase inhibitors (TKI). We assessed AXL protein complexes using proximity-dependent biotinylation (BioID), effects of AXL TKI on global phosphoproteins using mass spectrometry, and target engagement of AXL TKI using activity-based protein profiling. BioID identifies AXL-interacting proteins that are mostly involved in cell adhesion/migration. Global phosphoproteomics show that AXL inhibition decreases phosphorylation of peptides involved in phosphatidylinositol-mediated signaling and cell adhesion/migration. Comparison of three AXL inhibitors reveals that TKI RXDX-106 inhibits pAXL, pAKT, and migration/invasion of these cells without reducing their viability, while bemcentinib exerts AXL-independent phenotypic effects on viability. Proteomic characterization of these TKIs demonstrates that they inhibit diverse targets in addition to AXL, with bemcentinib having the most off-targets. AXL and EGFR TKI cotreatment did not reverse resistance in cell line models of erlotinib resistance. However, a unique vulnerability was identified in one resistant clone, wherein combination of bemcentinib and erlotinib inhibited cell viability and signaling. We also show that AXL is overexpressed in approximately 30% to 40% of nonsmall but rarely in small cell lung cancer. Cell lines have a wide range of AXL expression, with basal activation detected rarely. IMPLICATIONS Our study defines mechanisms of action of AXL in lung cancers which can be used to establish assays to measure drug targetable active AXL complexes in patient tissues and inform the strategy for targeting it's signaling as an anticancer therapy.
Collapse
Affiliation(s)
- Anurima Majumder
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Sina Hosseinian
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Mia Stroud
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Emma Adhikari
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - James J. Saller
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Matthew A. Smith
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Guolin Zhang
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Shruti Agarwal
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | | | - Benjamin S. Meyer
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Fumi Kinose
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Kiah Bowers
- Department of Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Bin Fang
- Department of Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Paul A. Stewart
- Department of Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Eric A. Welsh
- Department of Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Theresa A. Boyle
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | | | - John M. Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| |
Collapse
|
40
|
Bhojwani HR, Joshi UJ. Homology Modelling, Docking-based Virtual Screening, ADME Properties, and Molecular Dynamics Simulation for Identification of Probable Type II Inhibitors of AXL Kinase. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666211004102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
AXL kinase is an important member of the TAM family for kinases which is
involved in most cancers. Considering its role in different cancers due to its pro-tumorigenic effects and its
involvement in the resistance, it has gained importance recently. Majority of research carried out is on Type I
inhibitors and limited studies have been carried out for Type II inhibitors. Taking this into consideration, we
have attempted to build Homology models to identify the Type II inhibitors for the AXL kinase.
Methods:
Homology Models for DFG-out C-helix-in/out state were developed using SWISS Model,
PRIMO, and Prime. These models were validated by different methods and further evaluated for stability
by molecular dynamics simulation using Desmond software. Selected models PED1-EB and PEDI1-EB
were used for the docking-based virtual screening of four compound libraries using Glide software. The
hits identified were subjected to interaction analysis and shortlisted compounds were subjected to Prime
MM-GBSA studies for energy calculation. These compounds were also docked in the DFG-in state to
check for binding and elimination of any compounds that may not be Type II inhibitors. The Prime energies
were calculated for these complexes as well and some compounds were eliminated. ADMET studies
were carried out using Qikprop. Some selected compounds were subjected to molecular dynamics simulation
using Desmond for evaluating the stability of the complexes.
Results:
Out of 78 models inclusive of both DFG-out C-helix-in and DFG-out C-helix-out, 5 models were
identified after different types of evaluation as well as validation studies. 1 model representing each type
(PED1-EB and PEDI1-EB) was selected for the screening studies. The screening studies resulted in the
identification of 29 compounds from the screen on PED1-EB and 10 compounds from the screen on
PEDI1-EB. Hydrogen bonding interactions with Pro621, Met623, and Asp690 were observed for these
compounds primarily. In some compounds, hydrogen bonding with Leu542, Glu544, Lys567, and
Asn677 as well as pi-pi stacking interactions with either Phe622 or Phe691 were also seen. 4 compounds
identified from PED1-EB screen were subjected to molecular dynamics simulation and their interactions
were found to be consistent during the simulation. 2 compounds identified from PEDI1-EB screen were
also subjected to the simulation studies, however, their interactions with Asp690 were not observed for a
significant time and in both cases differed from the docked pose.
Conclusion:
Multiple models of DFG-out conformations of AXL kinase were built, validated and used
for virtual screening. Different compounds were identified in the virtual screening, which may possibly
act as Type II inhibitors for AXL kinase. Some more experimental studies can be done to validate these
findings in future. This study will play a guiding role in the further development of the newer Type II
inhibitors of the AXL kinase for the probable treatment of cancer.
Collapse
Affiliation(s)
- Heena R. Bhojwani
- Department of Pharmaceutical Chemistry, Principal K.M. Kundnani College of Pharmacy, Colaba, Cuffe Parade,
Mumbai 400005, India
| | - Urmila J. Joshi
- Department of Pharmaceutical Chemistry, Principal K.M. Kundnani College of Pharmacy, Colaba, Cuffe Parade,
Mumbai 400005, India
| |
Collapse
|
41
|
Wang Y, Tian Y, Liu S, Wang Z, Xing Q. Prognostic value and immunological role of AXL gene in clear cell renal cell carcinoma associated with identifying LncRNA/RBP/AXL mRNA networks. Cancer Cell Int 2021; 21:625. [PMID: 34838035 PMCID: PMC8626946 DOI: 10.1186/s12935-021-02322-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/09/2021] [Indexed: 01/10/2023] Open
Abstract
Backgrounds This article aimed to explore the prognostic and immunological roles of AXL gene in clear cell renal cell carcinoma (ccRCC) for overall survival (OS) and to identify the LncRNA/RBP/AXL mRNA networks. Methods AXL-related gene expression matrix and clinical data were obtained from The Cancer Genome Atlas (TCGA) dataset and AXL-related pathways were identified by gene set enrichment analysis (GSEA). We performed univariate/multivariate Cox regression analysis to evaluate independent prognostic factors and the relationships between AXL and immunity were also investigated. Results The outcomes of us indicated that the AXL mRNA expression was up-regulated in ccRCC samples and high expression of AXL was associated with worse OS in TCGA dataset (P < 0.01). Further external verification results from HPA, UALCAN, ICGC dataset, GSE6344, GSE14994, and qRT-PCR remained consistent (all P < 0.05). AXL was also identified as an independent prognostic factor for ccRCC by univariate/multivariate Cox regression analysis (both P < 0.05). A nomogram including AXL expression and clinicopathological factors was established by us and GSEA results found that elevated AXL expression was associated with the JAK-STAT, P53, WNT, VEGF and MAPK signaling pathways. In terms of immunity, AXL was dramatically linked to tumor microenvironment, immune cells, immune infiltration, immune checkpoint molecules and tumor mutational burden (TMB). As for its potential mechanisms, we also identified several LncRNA/RBP/AXL mRNA axes. Conclusions AXL was revealed to play prognostic and immunological roles in ccRCC and LncRNA/RBP/AXL mRNA axes were also identified by us for its potential mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02322-y.
Collapse
Affiliation(s)
- Yi Wang
- Department of Urology, Affiliated Hospital of Nantong University, No. 20 West Temple Road, Nantong, 226001, Jiangsu Province, China
| | - Ye Tian
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Shouyong Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
| | - Qianwei Xing
- Department of Urology, Affiliated Hospital of Nantong University, No. 20 West Temple Road, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
42
|
Deng S, Solinas A, Calvisi DF. Cabozantinib for HCC Treatment, From Clinical Back to Experimental Models. Front Oncol 2021; 11:756672. [PMID: 34722310 PMCID: PMC8548824 DOI: 10.3389/fonc.2021.756672] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related mortality worldwide. Patients with early-stage HCC can be treated successfully with surgical resection or liver transplantation. However, the usual late diagnosis of HCC precludes curative treatments, and systemic therapies are the only viable option for inoperable patients. Sorafenib, an orally available multikinase inhibitor, is a systemic therapy approved for treating patients with advanced HCC yet providing limited benefits. Consequently, new drugs have been developed to overcome sorafenib resistance and improve patients' prognoses. A new promising strategy is using c-MET inhibitors, such as cabozantinib, as activation of c-MET occurs in up to 40% of HCC patients. In particular, cabozantinib, in combination with the checkpoint inhibitor atezolizumab, is currently in phase 3 clinical trial for HCC, and the results are eagerly awaited. Herein, we summarize and review the drugs approved for the treatment of advanced HCC, mainly focusing on the clinical and preclinical efficacy evaluation of cabozantinib. Also, we report the available preclinical data on cabozantinib-based combination therapies for HCC, current obstacles for cabozantinib therapy, and the future directions for cabozantinib-based treatment for HCC.
Collapse
Affiliation(s)
- Shanshan Deng
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, United States
| | - Antonio Solinas
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
43
|
Khamko R, Daduang J, Settasatian C, Limpaiboon T. OPCML Exerts Antitumor Effects in Cholangiocarcinoma via AXL/STAT3 Inactivation and Rho GTPase Down-regulation. Cancer Genomics Proteomics 2021; 18:771-780. [PMID: 34697068 DOI: 10.21873/cgp.20296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/AIM Opioid-binding protein/cell adhesion molecule-like (OPCML) plays a crucial role in the suppression of tumor progression in several cancer types. Nevertheless, the association between OPCML functions and cholangiocarcinoma (CCA) progression remains unknown. We aimed to investigate biological functions of OPCML and related signaling pathways in CCA cell lines. MATERIALS AND METHODS Methylation status and ectopic expression of OPCML were determined in CCA cell lines using methylation-specific polymerase chain reaction and pcDNA3.1+/C-(K)DYK-OPCML, respectively. Cell proliferation, migration and invasion were investigated. RESULTS OPCML was found to be epigenetically silenced by DNA methylation. Ectopic expression of OPCML inhibited CCA proliferation by inducing apoptosis via AXL receptor tyrosine kinase/signal transducer and activator of transcription 3 (AXL/STAT3) inactivation. It also suppressed cell migration and invasion via down-regulation of Rho GTPases, ras homolog family member A (RHOA), Rac family small GTPase 1 (RAC1) and cell division cycle 42 (CDC42). CONCLUSION We are the first to unravel the antitumor effects and the related signaling pathways of OPCML in CCA. The loss of OPCML expression due to promoter hypermethylation can cause a decrease in cell death but increase in cell migration and invasion, which may at least in part contribute to CCA progression.
Collapse
Affiliation(s)
- Ricuphan Khamko
- Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand.,Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Jureerut Daduang
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Chatri Settasatian
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Temduang Limpaiboon
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand; .,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
44
|
Contribution of p53 in sensitivity to EGFR tyrosine kinase inhibitors in non-small cell lung cancer. Sci Rep 2021; 11:19667. [PMID: 34608255 PMCID: PMC8490392 DOI: 10.1038/s41598-021-99267-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/13/2021] [Indexed: 11/08/2022] Open
Abstract
The emergence of resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) with activating EGFR mutations is a major hindrance to treatment. We investigated the effects of p53 in primary sensitivity and acquired resistance to EGFR-TKIs in NSCLC cells. Changes in sensitivity to EGFR-TKIs were determined using p53 overexpression or knockdown in cells with activating EGFR mutations. We investigated EMT-related molecules, morphologic changes, and AXL induction to elucidate mechanisms of acquired resistance to EGFR-TKIs according to p53 status. Changes in p53 status affected primary sensitivity as well as acquired resistance to EGFR-TKIs according to cell type. Firstly, p53 silencing did not affect primary and acquired resistance to EGFR-TKIs in PC-9 cells, but it led to primary resistance to EGFR-TKIs through AXL induction in HCC827 cells. Secondly, p53 silencing in H1975 cells enhanced the sensitivity to osimertinib through the emergence of mesenchymal-to-epithelial transition, and the emergence of acquired resistance to osimertinib in p53 knockout cells was much slower than in H1975 cells. Furthermore, two cell lines (H1975 and H1975/p53KO) demonstrated the different mechanisms of acquired resistance to osimertinib. Lastly, the introduction of mutant p53-R273H induced the epithelial-to-mesenchymal transition and exerted resistance to EGFR-TKIs in cells with activating EGFR mutations. These findings indicate that p53 mutations can be associated with primary or acquired resistance to EGFR-TKIs. Thus, the status or mutations of p53 may be considered as routes to improving the therapeutic effects of EGFR-TKIs in NSCLC.
Collapse
|
45
|
Isotretinoin and Thalidomide Down-Regulate c-MYC Gene Expression and Modify Proteins Associated with Cancer in Hepatic Cells. Molecules 2021; 26:molecules26195742. [PMID: 34641286 PMCID: PMC8510077 DOI: 10.3390/molecules26195742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer. The number of cases is increasing and the trend for the next few years is not encouraging. HCC is usually detected in the advanced stages of the disease, and pharmacological therapies are not entirely effective. For this reason, it is necessary to search for new therapeutic options. The objective of this work was to evaluate the effect of the drugs isotretinoin and thalidomide on c-MYC expression and cancer-related proteins in an HCC cellular model. The expression of c-MYC was measured using RT-qPCR and western blot assays. In addition, luciferase activity assays were performed for the c-MYC promoters P1 and P2 using recombinant plasmids. Dose-response-time analyses were performed for isotretinoin or thalidomide in cells transfected with the c-MYC promoters. Finally, a proteome profile analysis of cells exposed to these two drugs was performed and the results were validated by western blot. We demonstrated that in HepG2 cells, isotretinoin and thalidomide reduced c-MYC mRNA expression levels, but this decrease in expression was linked to the regulation of P1 and P1-P2 c-MYC promoter activity in isotretinoin only. Thalidomide did not exert any effect on c-MYC promoters. Also, isotretinoin and thalidomide were capable of inducing and repressing proteins associated with cancer. In conclusion, isotretinoin and thalidomide down-regulate c-MYC mRNA expression and this is partially due to P1 or P2 promoter activity, suggesting that these drugs could be promising options for modulating the expression of oncogenes and tumor suppressor genes in HCC.
Collapse
|
46
|
Therapeutic Targeting of the Gas6/Axl Signaling Pathway in Cancer. Int J Mol Sci 2021; 22:ijms22189953. [PMID: 34576116 PMCID: PMC8469858 DOI: 10.3390/ijms22189953] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 12/14/2022] Open
Abstract
Many signaling pathways are dysregulated in cancer cells and the host tumor microenvironment. Aberrant receptor tyrosine kinase (RTK) pathways promote cancer development, progression, and metastasis. Hence, numerous therapeutic interventions targeting RTKs have been actively pursued. Axl is an RTK that belongs to the Tyro3, Axl, MerTK (TAM) subfamily. Axl binds to a high affinity ligand growth arrest specific 6 (Gas6) that belongs to the vitamin K-dependent family of proteins. The Gas6/Axl signaling pathway has been implicated to promote progression, metastasis, immune evasion, and therapeutic resistance in many cancer types. Therapeutic agents targeting Gas6 and Axl have been developed, and promising results have been observed in both preclinical and clinical settings when such agents are used alone or in combination therapy. This review examines the current state of therapeutics targeting the Gas6/Axl pathway in cancer and discusses Gas6- and Axl-targeting agents that have been evaluated preclinically and clinically.
Collapse
|
47
|
Osaka T, Yamaguchi N, Hara T. [Pharmacological properties and clinical outcomes of the anti-cancer drug, cabozantinib (CABOMETYX ®)]. Nihon Yakurigaku Zasshi 2021; 156:303-311. [PMID: 34470936 DOI: 10.1254/fpj.21045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cabozantinib (CAB) is a receptor tyrosine kinase inhibitor with activity against MET, VEGFR2, and AXL, among others. This drug is considered to exert excellent antitumor effects by inhibiting these targets simultaneously. Significant improvement in the primary endpoint (overall survival or PFS) were observed in patients on CAB in comparison with controls in a phase-III study in patients with renal cell carcinoma, progressed after treatment with anti-angiogenic agents, and in another phase-III study in patients with previously treated, advanced hepatocellular carcinoma. These results led to the approval of CAB in Japan in 2020 as a therapeutic agent for unresectable or metastatic renal cell carcinoma and unresectable hepatocellular carcinoma progressed after cancer chemotherapy, under the trade name of CABOMETYX® (20 mg, and 60 mg tablets). It has been suggested that CAB may modulate the immune system in favor of antitumor immunity and combined use with PD-1 checkpoint inhibitors may exert a synergistic effect. In a phase-III study that examined the efficacy of combination therapy with CAB and nivolumab in treatment-naive patients with advanced renal cell carcinoma, progression-free survival was significantly increased in patients on combination therapy over patients on sunitinib monotherapy. Three global phase-III clinical studies of combination therapy with atezolizumab and CAB in patients with non-small cell lung cancer, castration-resistant prostate cancer, and renal cell carcinoma, are in progress to confirm the efficacy of CAB.
Collapse
Affiliation(s)
- Tsuyoshi Osaka
- Department of Japan Medical Affairs, Japan Oncology Business Unit, Takeda Pharmaceutical Company Limited
| | - Naoya Yamaguchi
- Department of Japan Medical Affairs, Japan Oncology Business Unit, Takeda Pharmaceutical Company Limited
| | - Takahito Hara
- Strategy Planning Office, Takeda Development Center Japan, Takeda Pharmaceutical Company Limited
| |
Collapse
|
48
|
Antibody Conjugates for Sarcoma Therapy: How Far along Are We? Biomedicines 2021; 9:biomedicines9080978. [PMID: 34440182 PMCID: PMC8392509 DOI: 10.3390/biomedicines9080978] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 01/12/2023] Open
Abstract
Sarcomas are one of the most difficult type of cancer to manage and treat because of their extremely heterogeneous molecular and morphological features. Despite the progress made over the years in the establishment of standard protocols for high and low grading/staging sarcoma patients, mostly with chemotherapy and/or radiotherapy, 50% of treated patients experience relapse episodes. Because of this, in the last 20 years, new therapeutic approaches for sarcoma treatment have been evaluated in preclinical and clinical studies. Among them, antibody-based therapies have been the most studied. Immunoconjugates consist of a carrier portion, frequently represented by an antibody, linked to a toxic moiety, i.e., a drug, toxin, or radionuclide. While the efficacy of immunoconjugates is well demonstrated in the therapy of hematological tumors and more recently also of epithelial ones, their potential as therapeutic agents against sarcomas is still not completely explored. In this paper, we summarize the results obtained with immunoconjugates targeting sarcoma surface antigens, considering both preclinical and clinical studies. To date, the encouraging results obtained in preclinical studies allowed nine immunoconjugates to enter clinical trials, demonstrating the validity of immunotherapy as a promising pharmacological tool also for sarcoma therapy.
Collapse
|
49
|
Zdżalik-Bielecka D, Poświata A, Kozik K, Jastrzębski K, Schink KO, Brewińska-Olchowik M, Piwocka K, Stenmark H, Miączyńska M. The GAS6-AXL signaling pathway triggers actin remodeling that drives membrane ruffling, macropinocytosis, and cancer-cell invasion. Proc Natl Acad Sci U S A 2021; 118:e2024596118. [PMID: 34244439 PMCID: PMC8285903 DOI: 10.1073/pnas.2024596118] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AXL, a member of the TAM (TYRO3, AXL, MER) receptor tyrosine kinase family, and its ligand, GAS6, are implicated in oncogenesis and metastasis of many cancer types. However, the exact cellular processes activated by GAS6-AXL remain largely unexplored. Here, we identified an interactome of AXL and revealed its associations with proteins regulating actin dynamics. Consistently, GAS6-mediated AXL activation triggered actin remodeling manifested by peripheral membrane ruffling and circular dorsal ruffles (CDRs). This further promoted macropinocytosis that mediated the internalization of GAS6-AXL complexes and sustained survival of glioblastoma cells grown under glutamine-deprived conditions. GAS6-induced CDRs contributed to focal adhesion turnover, cell spreading, and elongation. Consequently, AXL activation by GAS6 drove invasion of cancer cells in a spheroid model. All these processes required the kinase activity of AXL, but not TYRO3, and downstream activation of PI3K and RAC1. We propose that GAS6-AXL signaling induces multiple actin-driven cytoskeletal rearrangements that contribute to cancer-cell invasion.
Collapse
Affiliation(s)
- Daria Zdżalik-Bielecka
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland;
| | - Agata Poświata
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kamila Kozik
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kamil Jastrzębski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kay Oliver Schink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
| | | | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Harald Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland;
| |
Collapse
|
50
|
Tian M, Chen XS, Li LY, Wu HZ, Zeng D, Wang XL, Zhang Y, Xiao SS, Cheng Y. Inhibition of AXL enhances chemosensitivity of human ovarian cancer cells to cisplatin via decreasing glycolysis. Acta Pharmacol Sin 2021; 42:1180-1189. [PMID: 33149145 PMCID: PMC8209001 DOI: 10.1038/s41401-020-00546-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022] Open
Abstract
Anexelekto (AXL), a member of the TYRO3-AXL-MER (TAM) family of receptor tyrosine kinases (RTK), is overexpressed in varieties of tumor tissues and promotes tumor development by regulating cell proliferation, migration and invasion. In this study, we investigated the role of AXL in regulating glycolysis in human ovarian cancer (OvCa) cells. We showed that the expression of AXL mRNA and protein was significantly higher in OvCa tissue than that in normal ovarian epithelial tissue. In human OvCa cell lines suppression of AXL significantly inhibited cell proliferation, and increased the sensitivity of OvCa cells to cisplatin, which also proved by nude mice tumor formation experiment. KEGG analysis showed that AXL was significantly enriched in the glycolysis pathways of cancer. Changes in AXL expression in OvCa cells affect tumor glycolysis. We demonstrated that the promotion effect of AXL on glycolysis was mediated by phosphorylating the M2 isoform of pyruvate kinase (PKM2) at Y105. AXL expression was significantly higher in cisplatin-resistant OvCa cells A2780/DDP compared with the parental A2780 cells. Inhibition of AXL decreased the level of glycolysis in A2780/DDP cells, and increased the cytotoxicity of cisplatin against A2780/DDP cells, suggesting that AXL-mediated glycolysis was associated with cisplatin resistance in OvCa. In conclusion, this study demonstrates for the first time that AXL is involved in the regulation of the Warburg effect. Our results not only highlight the clinical value of targeting AXL, but also provide theoretical basis for the combination of AXL inhibitor and cisplatin in the treatment of OvCa.
Collapse
Affiliation(s)
- Min Tian
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Xi-Sha Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lan-Ya Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Hai-Zhou Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Da Zeng
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xin-Luan Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518057, China
| | - Yi Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215000, China
| | - Song-Shu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|