1
|
Dastan M, Rajaei Z, Sharifi M, Salehi H. Gallic acid ameliorates LPS-induced memory decline by modulating NF-κB, TNF-α, and Caspase 3 gene expression and attenuating oxidative stress and neuronal loss in the rat hippocampus. Metab Brain Dis 2024; 40:12. [PMID: 39556267 DOI: 10.1007/s11011-024-01441-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/19/2024] [Indexed: 11/19/2024]
Abstract
Neuroinflammation and apoptosis play critical roles in the pathogenesis of Alzheimer's disease (AD), which is responsible for most cases of dementia in the elderly people. Gallic acid is a phenolic compound with radical scavenging, anti-inflammatory and anti-apoptotic activities. This study aimed to explore the protective effects of gallic acid on LPS-induced spatial memory impairment and find the underlying mechanisms. Gallic acid was orally administered (100 mg/kg) to male Wistar rats for 12 days. LPS was injected intraperitoneally at a dose of 1 mg/kg on days 8-12. Morris water maze paradigm was used to evaluate spatial learning and memory. The mRNA level of nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α) and Caspase 3, lipid peroxidation and total thiol level was assessed in the rat hippocampus. Neuronal loss and histological changes were also evaluated in the brain. LPS treatment resulted in spatial learning and memory impairment, upregulation of NF-κB, TNF-α, and Caspase 3 mRNA expression, increased lipid peroxidation, decreased total thiol level, and neuronal loss in the hippocampus. Moreover, treatment with gallic acid at a dosage of 100 mg/kg ameliorated memory decline, reduced the mRNA level of NF-κB, TNF-α, and Caspase 3, decreased lipid peroxidation and increased total thiol level in the hippocampus. Gallic acid also prevented LPS-induced neuronal loss and histological changes in the brain. Conclusively, our study demonstrated that gallic acid exerts neuroprotective effect against LPS-induced memory decline in rats. This outcome could be due to anti-inflammatory, antioxidant, and anti-apoptotic activities of gallic acid.
Collapse
Affiliation(s)
- Maryam Dastan
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ziba Rajaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Kamath AP, Nayak PG, John J, Mutalik S, Balaraman AK, Krishnadas N. Revolutionizing neurotherapeutics: Nanocarriers unveiling the potential of phytochemicals in Alzheimer's disease. Neuropharmacology 2024; 259:110096. [PMID: 39084596 DOI: 10.1016/j.neuropharm.2024.110096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Neurological disorders pose a huge worldwide challenge to the healthcare system, necessitating innovative strategies for targeted drug delivery to the central nervous system. Alzheimer's disease (AD) is an untreatable neurodegenerative condition characterized by dementia and alterations in a patient's physiological and mental states. Since ancient times, medicinal plants have been an important source of bioactive phytochemicals with immense therapeutic potential. This review investigates new and safer alternatives for prevention and treatment of disease related to inevitable side effects associated with synthetic compounds. This review examines how nanotechnology can help in enhancing the delivery of neuroprotective phytochemicals in AD. Nevertheless, despite their remarkable neuroprotective properties, these natural products often have poor therapeutic efficacy due to low bioavailability, limited solubility and imperfect blood brain barrier (BBB) penetration. Nanotechnology produces personalized drug delivery systems which are necessary for solving such problems. In overcoming these challenges, nanotechnology might be employed as a way forward whereby customized medication delivery systems would be established as a result. The use of nanocarriers in the design and application of important phytochemicals is highlighted by this review, which indicate potential for revolutionizing neuroprotective drug delivery. We also explore the complications and possibilities of using nanocarriers to supply nutraceuticals and improve patients' standard of living, and preclinical as well as clinical investigations displaying that these techniques are effective in mitigating neurodegenerative diseases. In order to fight brain diseases and improve patient's health, scientists and doctors can employ nanotechnology with its possible therapeutic interventions.
Collapse
Affiliation(s)
- Akshatha P Kamath
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pawan Ganesh Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Jeena John
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ashok Kumar Balaraman
- Centre for Research and Innovation, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia
| | - Nandakumar Krishnadas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
3
|
Firdous SM, Khan SA, Maity A. Oxidative stress-mediated neuroinflammation in Alzheimer's disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8189-8209. [PMID: 38832985 DOI: 10.1007/s00210-024-03188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
Reactive oxygen species (ROS) are metabolic by-products that constitute an indispensable component of physiological processes, albeit their heightened presence may proffer substantial perils to biological entities. Such a proliferation gives rise to a gradual escalation of oxidative stress within the organism, thereby compromising mitochondrial functionality and inflicting harm upon various bodily systems, with a particular predilection for the central nervous system. In its nascent stages, it is plausible that inflammation has been a facilitator in the progression of the malady. The precise role of inflammation in Alzheimer's disease (AD) remains somewhat enigmatic, although it is conceivable that activated microglia and astrocytes might be implicated in the removal of amyloid-β (Aβ) deposits. Nonetheless, prolonged microglial activation is associated with Tau phosphorylation and Aβ aggregation. Research studies have indicated that AD brains upregulate complementary molecules, inflammatory cytokines, acute phase reacting agents, and other inflammatory mediators that may cause neurodegeneration. In this review, oxidative damage products will be discussed as potential peripheral biomarkers for AD and its early stages. The disordered excretion of pro-inflammatory cytokines, chemokines, oxygen, and nitrogen-reactive species, along with the stimulation of the complement system by glial cells, has the potential to disrupt the functionality of neuronal termini. This perturbation, in turn, culminates in compromised synaptic function, a phenomenon empirically linked to the manifestation of cognitive impairments. The management of neurodegenerative conditions in the context of dementia necessitates therapeutic interventions that specifically target the excessive production of inflammatory and oxidative agents. Furthermore, we shall deliberate upon the function of microglia and oxidative injury in the etiology of AD and the ensuing neurodegenerative processes.
Collapse
Affiliation(s)
- Sayed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, 711316, West Bengal, India.
| | - Sahabaj Ali Khan
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, 711316, West Bengal, India
| | - Amritangshu Maity
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, 711316, West Bengal, India
| |
Collapse
|
4
|
Zima L, Moore AN, Smolen P, Kobori N, Noble B, Robinson D, Hood KN, Homma R, Al Mamun A, Redell JB, Dash PK. The evolving pathophysiology of TBI and the advantages of temporally-guided combination therapies. Neurochem Int 2024; 180:105874. [PMID: 39366429 DOI: 10.1016/j.neuint.2024.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Several clinical and experimental studies have demonstrated that traumatic brain injury (TBI) activates cascades of biochemical, molecular, structural, and pathological changes in the brain. These changes combine to contribute to the various outcomes observed after TBI. Given the breadth and complexity of changes, combination treatments may be an effective approach for targeting multiple detrimental pathways to yield meaningful improvements. In order to identify targets for therapy development, the temporally evolving pathophysiology of TBI needs to be elucidated in detail at both the cellular and molecular levels, as it has been shown that the mechanisms contributing to cognitive dysfunction change over time. Thus, a combination of individual mechanism-based therapies is likely to be effective when maintained based on the time courses of the cellular and molecular changes being targeted. In this review, we will discuss the temporal changes of some of the key clinical pathologies of human TBI, the underlying cellular and molecular mechanisms, and the results from preclinical and clinical studies aimed at mitigating their consequences. As most of the pathological events that occur after TBI are likely to have subsided in the chronic stage of the disease, combination treatments aimed at attenuating chronic conditions such as cognitive dysfunction may not require the initiation of individual treatments at a specific time. We propose that a combination of acute, subacute, and chronic interventions may be necessary to maximally improve health-related quality of life (HRQoL) for persons who have sustained a TBI.
Collapse
Affiliation(s)
- Laura Zima
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Anthony N Moore
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Paul Smolen
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Nobuhide Kobori
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Brian Noble
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Dustin Robinson
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Kimberly N Hood
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Ryota Homma
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Amar Al Mamun
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - John B Redell
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Pramod K Dash
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA; Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
5
|
Khodadadi H, Salles ÉL, Naeini SE, Bhandari B, Rogers HM, Gouron J, Meeks W, Terry AV, Pillai A, Yu JC, Morgan JC, Vaibhav K, Hess DC, Dhandapani KM, Wang LP, Baban B. Boosting Acetylcholine Signaling by Cannabidiol in a Murine Model of Alzheimer's Disease. Int J Mol Sci 2024; 25:11764. [PMID: 39519315 PMCID: PMC11546302 DOI: 10.3390/ijms252111764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is a challenging medical issue that requires efficacious treatment options to improve long-term quality of life. Cannabidiol (CBD) is a cannabis-derived phytocannabinoid with potential health benefits, including reports from our laboratory and others showing a therapeutic role in the pre-clinical treatment of AD; however, the mechanisms whereby CBD affects AD progression remain undefined. Innate lymphoid cells (ILCs) are recently discovered immune cells that initiate and orchestrate inflammatory responses. ILC2, a sub-class of ILCs, is proposed to have a role in cognitive function via unknown mechanisms. In this present study, we explored whether CBD ameliorates AD symptoms via the enhancement of acetylcholine (ACh), a cholinergic neurotransmitter involved in cognition that may regulate ILC2. 5xFAD mice were chronically treated by inhalation of a formulation of broad-spectrum CBD for seven months. ACh production, ILC2s profile, brain histopathology, and long-term behavior were assessed. Together, our studies showed that long-term inhalation of CBD improved cognitive function and reduced senile plaques in a murine AD model, effects that were associated with enhanced ACh production and altered ILC2s distribution within the CNS. These findings indicate that inhaled CBD could offer a cost-effective, non-invasive, and effective treatment for managing AD. The beneficial effects of CBD inhalation may be linked to increased ACh production and an altered distribution of ILC2s, highlighting the need for further research in this area.
Collapse
Affiliation(s)
- Hesam Khodadadi
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.K.); (J.C.M.); (D.C.H.)
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sahar Emami Naeini
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Bidhan Bhandari
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
- The Graduate School, Augusta University, Augusta, GA 30912, USA
| | - Hannah M. Rogers
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jules Gouron
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - William Meeks
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alvin V. Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Anilkumar Pillai
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA;
| | - Jack C. Yu
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - John C. Morgan
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.K.); (J.C.M.); (D.C.H.)
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (K.V.); (K.M.D.)
| | - David C. Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.K.); (J.C.M.); (D.C.H.)
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Krishnan M. Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (K.V.); (K.M.D.)
| | - Lei P. Wang
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Babak Baban
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.K.); (J.C.M.); (D.C.H.)
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
6
|
Khan H, Naseem T, Kaushik P, Narang J, Khan R, Panwar S, Parvez S. Decoding paradoxical links of cytokine markers in cognition: Cross talk between physiology, inflammaging, and Alzheimer's disease- related cognitive decline. Ageing Res Rev 2024; 101:102535. [PMID: 39374831 DOI: 10.1016/j.arr.2024.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Recent research has revolutionized our understanding of memory consolidation by emphasizing the critical role of astrocytes, microglia, and immune cells in through cytokine signaling. Cytokines, compact proteins, play pivotal roles in neuronal development, synaptic transmission, and normal aging. This review explores the cellular mechanisms contributing to cognitive decline in inflammaging and Alzheimer's disease, highlighting the paradoxical effects of most studied cytokines (IL-1, IL-6, TNF-α) in brain function, which act as a double-edged sword in brain physiology, acting both as facilitators of healthy cognitive function and as a potential contributor to cognitive decline.
Collapse
Affiliation(s)
- Hiba Khan
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Talib Naseem
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Siddharth Panwar
- School of Computing and Electrical Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
7
|
Arshavsky YI. Autoimmune hypothesis of Alzheimer's disease: unanswered question. J Neurophysiol 2024; 132:929-942. [PMID: 39163023 DOI: 10.1152/jn.00259.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Alzheimer's disease (AD) was described more than a century ago. However, there are still no effective approaches to its treatment, which may suggest that the search for the cure is not being conducted in the most productive direction. AD begins as selective impairments of declarative memory with no deficits in other cognitive functions. Therefore, understanding of the AD pathogenesis has to include the understanding of this selectivity. Currently, the main efforts aimed at prevention and treatment of AD are based on the dominating hypothesis for the AD pathogenesis: the amyloid hypothesis. But this hypothesis does not explain selective memory impairments since β-amyloid accumulates extracellularly and should be toxic to all types of cerebral neurons, not only to "memory engram neurons." To explain selective memory impairment, I propose the autoimmune hypothesis of AD, based on the analysis of risk factors for AD and molecular mechanisms of memory formation. Memory formation is associated with epigenetic modifications of chromatin in memory engram neurons and, therefore, might be accompanied by the expression of memory-specific proteins recognized by the adaptive immune system as "non-self" antigens. Normally, the brain is protected by the blood-brain barrier (BBB). All risk factors for AD provoke BBB disruptions, possibly leading to an autoimmune reaction against memory engram neurons. This reaction would make them selectively sensitive to tauopathy. If this hypothesis is confirmed, the strategies for AD prevention and treatment would be radically changed.
Collapse
Affiliation(s)
- Yuri I Arshavsky
- BioCircuits Institute, University of California, San Diego, La Jolla, California, United States
| |
Collapse
|
8
|
Chakrabarti KS, Bakhtiari D, Rezaei-Ghaleh N. Bifurcations in coupled amyloid-β aggregation-inflammation systems. NPJ Syst Biol Appl 2024; 10:80. [PMID: 39080352 PMCID: PMC11289389 DOI: 10.1038/s41540-024-00408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
A complex interplay between various processes underlies the neuropathology of Alzheimer's disease (AD) and its progressive course. Several lines of evidence point to the coupling between Aβ aggregation and neuroinflammation and its role in maintaining brain homeostasis during the long prodromal phase of AD. Little is however known about how this protective mechanism fails and as a result, an irreversible and progressive transition to clinical AD occurs. Here, we introduce a minimal model of a coupled system of Aβ aggregation and inflammation, numerically simulate its dynamical behavior, and analyze its bifurcation properties. The introduced model represents the following events: generation of Aβ monomers, aggregation of Aβ monomers into oligomers and fibrils, induction of inflammation by Aβ aggregates, and clearance of various Aβ species. Crucially, the rates of Aβ generation and clearance are modulated by inflammation level following a Hill-type response function. Despite its relative simplicity, the model exhibits enormously rich dynamics ranging from overdamped kinetics to sustained oscillations. We then specify the region of inflammation- and coupling-related parameters space where a transition to oscillatory dynamics occurs and demonstrate how changes in Aβ aggregation parameters could shift this oscillatory region in parameter space. Our results reveal the propensity of coupled Aβ aggregation-inflammation systems to oscillatory dynamics and propose prolonged sustained oscillations and their consequent immune system exhaustion as a potential mechanism underlying the transition to a more progressive phase of amyloid pathology in AD. The implications of our results in regard to early diagnosis of AD and anti-AD drug development are discussed.
Collapse
Affiliation(s)
- Kalyan S Chakrabarti
- Department of Biological Science and Chemistry, Krea University, Sri City, India
| | | | - Nasrollah Rezaei-Ghaleh
- Heinrich Heine University (HHU) Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Physical Biology, Düsseldorf, Germany.
- Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany.
| |
Collapse
|
9
|
Zabot GC, Medeiros EB, Macarini BMN, Peruchi BB, Keller GS, Lídio AV, Boaventura A, de Jesus LC, de Bem Silveira G, Silveira PCL, Chede BC, Réus GZ, Budni J. The involvement of neuroinflammation in an animal model of dementia and depression. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:110999. [PMID: 38552774 DOI: 10.1016/j.pnpbp.2024.110999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/21/2024]
Abstract
Alzheimer's disease (AD) and depression are inflammatory pathologies, leading to increased inflammatory response and neurotoxicity. Therefore, this study aimed to evaluate the effect of the treatment with fluoxetine and/or galantamine and/or donepezil on the levels of proinflammatory and anti-inflammatory cytokines in a mixed animal model of depression and dementia. Adult male Wistar rats underwent chronic mild stress (CMS) protocol for 40 days and were subjected to stereotaxic surgery for intra-hippocampal administration of amyloid-beta (Aꞵ) peptide or artificial cerebrospinal fluid (ACSF) to mimic the dementia animal model. On the 42nd day, animals were treated with water, galantamine, donepezil, and/or fluoxetine, orally for 17 days. On the 57th and 58th days, the Splash and Y-maze tests for behavior analysis were performed. The frontal cortex and hippocampus were used to analyze the tumor necrosis factor alfa (TNF-α), interleukin 1 beta (IL-1ꞵ), IL-6, and IL-10 levels. The results of this study show that animals subjected to CMS and administration of Aꞵ had anhedonia, cognitive impairment, increased TNF-α and IL-1ꞵ levels in the frontal cortex, and reduced IL-10 levels in the hippocampus. All treatment groups were able to reverse the cognitive impairment. Only donepezil did not decrease the TNF-α levels in the hippocampus. Fluoxetine + galantamine and fluoxetine + donepezil reversed the anhedonia. Fluoxetine reversed the anhedonia and IL-1ꞵ levels in the frontal cortex. In addition, fluoxetine + donepezil reversed the reduction of IL-10 levels in the hippocampus. The results indicate a pathophysiological interaction between AD and depression, and the association of medications in the future may be a possible therapeutic strategy to reduce inflammation, especially the fluoxetine-associated treatments.
Collapse
Affiliation(s)
- Gabriel Casagrande Zabot
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Eduarda Behenck Medeiros
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Bárbara Machado Naspolini Macarini
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Bruno Búrigo Peruchi
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gabriela Serafim Keller
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Adrielly Vargas Lídio
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Amanda Boaventura
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Laura Ceolin de Jesus
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gustavo de Bem Silveira
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Beatriz Costa Chede
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gislaine Zilli Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Josiane Budni
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences (PPGCS), University of Southern Santa Catarina (UNESC), Criciúma, Brazil.
| |
Collapse
|
10
|
Le Thuc O, García-Cáceres C. Obesity-induced inflammation: connecting the periphery to the brain. Nat Metab 2024; 6:1237-1252. [PMID: 38997442 DOI: 10.1038/s42255-024-01079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Obesity is often associated with a chronic, low-grade inflammatory state affecting the entire body. This sustained inflammatory state disrupts the coordinated communication between the periphery and the brain, which has a crucial role in maintaining homeostasis through humoural, nutrient-mediated, immune and nervous signalling pathways. The inflammatory changes induced by obesity specifically affect communication interfaces, including the blood-brain barrier, glymphatic system and meninges. Consequently, brain areas near the third ventricle, including the hypothalamus and other cognition-relevant regions, become susceptible to impairments, resulting in energy homeostasis dysregulation and an elevated risk of cognitive impairments such as Alzheimer's disease and dementia. This Review explores the intricate communication between the brain and the periphery, highlighting the effect of obesity-induced inflammation on brain function.
Collapse
Affiliation(s)
- Ophélia Le Thuc
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
11
|
Góral I, Wichur T, Sługocka E, Godyń J, Szałaj N, Zaręba P, Głuch-Lutwin M, Mordyl B, Panek D, Więckowska A. Connecting GSK-3β Inhibitory Activity with IKK-β or ROCK-1 Inhibition to Target Tau Aggregation and Neuroinflammation in Alzheimer's Disease-Discovery, In Vitro and In Cellulo Activity of Thiazole-Based Inhibitors. Molecules 2024; 29:2616. [PMID: 38893493 PMCID: PMC11173485 DOI: 10.3390/molecules29112616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
GSK-3β, IKK-β, and ROCK-1 kinases are implicated in the pathomechanism of Alzheimer's disease due to their involvement in the misfolding and accumulation of amyloid β (Aβ) and tau proteins, as well as inflammatory processes. Among these kinases, GSK-3β plays the most crucial role. In this study, we present compound 62, a novel, remarkably potent, competitive GSK-3β inhibitor (IC50 = 8 nM, Ki = 2 nM) that also exhibits additional ROCK-1 inhibitory activity (IC50 = 2.3 µM) and demonstrates anti-inflammatory and neuroprotective properties. Compound 62 effectively suppresses the production of nitric oxide (NO) and pro-inflammatory cytokines in the lipopolysaccharide-induced model of inflammation in the microglial BV-2 cell line. Furthermore, it shows neuroprotective effects in an okadaic-acid-induced tau hyperphosphorylation cell model of neurodegeneration. The compound also demonstrates the potential for further development, characterized by its chemical and metabolic stability in mouse microsomes and fair solubility.
Collapse
Affiliation(s)
- Izabella Góral
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (I.G.); (T.W.); (E.S.); (J.G.); (N.S.); (P.Z.); (D.P.)
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Lazarza St., 31-530 Krakow, Poland
| | - Tomasz Wichur
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (I.G.); (T.W.); (E.S.); (J.G.); (N.S.); (P.Z.); (D.P.)
| | - Emilia Sługocka
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (I.G.); (T.W.); (E.S.); (J.G.); (N.S.); (P.Z.); (D.P.)
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Lazarza St., 31-530 Krakow, Poland
| | - Justyna Godyń
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (I.G.); (T.W.); (E.S.); (J.G.); (N.S.); (P.Z.); (D.P.)
| | - Natalia Szałaj
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (I.G.); (T.W.); (E.S.); (J.G.); (N.S.); (P.Z.); (D.P.)
| | - Paula Zaręba
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (I.G.); (T.W.); (E.S.); (J.G.); (N.S.); (P.Z.); (D.P.)
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (M.G.-L.); (B.M.)
| | - Barbara Mordyl
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (M.G.-L.); (B.M.)
| | - Dawid Panek
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (I.G.); (T.W.); (E.S.); (J.G.); (N.S.); (P.Z.); (D.P.)
| | - Anna Więckowska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (I.G.); (T.W.); (E.S.); (J.G.); (N.S.); (P.Z.); (D.P.)
| |
Collapse
|
12
|
Lepiarz-Raba I, Hidayat T, Hannan AJ, Jawaid A. Potential Alzheimer's disease drug targets identified through microglial biology research. Expert Opin Drug Discov 2024; 19:587-602. [PMID: 38590098 DOI: 10.1080/17460441.2024.2335210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION Microglia, the primary immune cells in the brain, play multifaceted roles in Alzheimer's disease (AD). Microglia can potentially mitigate the pathological progression of AD by clearing amyloid beta (Aβ) deposits in the brain and through neurotrophic support. In contrast, disproportionate activation of microglial pro-inflammatory pathways, as well as excessive elimination of healthy synapses, can exacerbate neurodegeneration in AD. The challenge, therefore, lies in discerning the precise regulation of the contrasting microglial properties to harness their therapeutic potential in AD. AREAS COVERED This review examines the evidence relevant to the disease-modifying effects of microglial manipulators in AD preclinical models. The deleterious pro-inflammatory effects of microglia in AD can be ameliorated via direct suppression or indirectly through metabolic manipulation, epigenetic targeting, and modulation of the gut-brain axis. Furthermore, microglial clearance of Aβ deposits in AD can be enhanced via strategically targeting microglial membrane receptors, lysosomal functions, and metabolism. EXPERT OPINION Given the intricate and diverse nature of microglial responses throughout the course of AD, therapeutic interventions directed at microglia warrant a tactical approach. This could entail employing therapeutic regimens, which concomitantly suppress pro-inflammatory microglial responses while selectively enhancing Aβ phagocytosis.
Collapse
Affiliation(s)
- Izabela Lepiarz-Raba
- Laboratory for Translational Research in Exposures and Neuropsychiatric Disorders (TREND), Braincity: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Taufik Hidayat
- Laboratory for Translational Research in Exposures and Neuropsychiatric Disorders (TREND), Braincity: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Ali Jawaid
- Laboratory for Translational Research in Exposures and Neuropsychiatric Disorders (TREND), Braincity: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
13
|
Franco-O'Byrne D, Santamaría-García H, Migeot J, Ibáñez A. Emerging Theories of Allostatic-Interoceptive Overload in Neurodegeneration. Curr Top Behav Neurosci 2024. [PMID: 38637414 DOI: 10.1007/7854_2024_471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Recent integrative multilevel models offer novel insights into the etiology and course of neurodegenerative conditions. The predictive coding of allostatic-interoception theory posits that the brain adapts to environmental demands by modulating internal bodily signals through the allostatic-interoceptive system. Specifically, a domain-general allostatic-interoceptive network exerts adaptive physiological control by fine-tuning initial top-down predictions and bottom-up peripheral signaling. In this context, adequate adaptation implies the minimization of prediction errors thereby optimizing energy expenditure. Abnormalities in top-down interoceptive predictions or peripheral signaling can trigger allostatic overload states, ultimately leading to dysregulated interoceptive and bodily systems (endocrine, immunological, circulatory, etc.). In this context, environmental stress, social determinants of health, and harmful exposomes (i.e., the cumulative life-course exposition to different environmental stressors) may interact with physiological and genetic factors, dysregulating allostatic interoception and precipitating neurodegenerative processes. We review the allostatic-interoceptive overload framework across different neurodegenerative diseases, particularly in the behavioral variant frontotemporal dementia (bvFTD). We describe how concepts of allostasis and interoception could be integrated with principles of predictive coding to explain how the brain optimizes adaptive responses, while maintaining physiological stability through feedback loops with multiple organismic systems. Then, we introduce the model of allostatic-interoceptive overload of bvFTD and discuss its implications for the understanding of pathophysiological and neurocognitive abnormalities in multiple neurodegenerative conditions.
Collapse
Affiliation(s)
- Daniel Franco-O'Byrne
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Hernando Santamaría-García
- Global Brain Health Institute, University of California-San Francisco, San Francisco, CA, USA
- Trinity College Dublin, Dublin, Ireland
- Department of Psychiatry, Pontificia Universidad Javeriana, Bogotá, Colombia
- Center of Memory and Cognition Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Joaquín Migeot
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Agustín Ibáñez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile.
- Global Brain Health Institute, University of California-San Francisco, San Francisco, CA, USA.
- Trinity College Dublin, Dublin, Ireland.
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina.
- Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
14
|
Kal S, Mahata S, Jati S, Mahata SK. Mitochondrial-derived peptides: Antidiabetic functions and evolutionary perspectives. Peptides 2024; 172:171147. [PMID: 38160808 PMCID: PMC10838678 DOI: 10.1016/j.peptides.2023.171147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Mitochondrial-derived peptides (MDPs) are a novel class of bioactive microproteins encoded by short open-reading frames (sORF) in mitochondrial DNA (mtDNA). Currently, three types of MDPs have been identified: Humanin (HN), MOTS-c (Mitochondrial ORF within Twelve S rRNA type-c), and SHLP1-6 (small Humanin-like peptide, 1 to 6). The 12 S ribosomal RNA (MT-RNR1) gene harbors the sequence for MOTS-c, whereas HN and SHLP1-6 are encoded by the 16 S ribosomal RNA (MT-RNR2) gene. Special genetic codes are used in mtDNA as compared to nuclear DNA: (i) ATA and ATT are used as start codons in addition to the standard start codon ATG; (ii) AGA and AGG are used as stop codons instead of coding for arginine; (iii) the standard stop codon UGA is used to code for tryptophan. While HN, SHLP6, and MOTS-c are encoded by the H (heavy owing to high guanine + thymine base composition)-strand of the mtDNA, SHLP1-5 are encoded by the L (light owing to less guanine + thymine base composition)-strand. MDPs attenuate disease pathology including Type 1 diabetes (T1D), Type 2 diabetes (T2D), gestational diabetes, Alzheimer's disease (AD), cardiovascular diseases, prostate cancer, and macular degeneration. The current review will focus on the MDP regulation of T2D, T1D, and gestational diabetes along with an emphasis on the evolutionary pressures for conservation of the amino acid sequences of MDPs.
Collapse
Affiliation(s)
- Satadeepa Kal
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sumana Mahata
- Department of Anesthesiology, Riverside University Health System, Moreno Valley, CA, USA
| | - Suborno Jati
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Sushil K Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
15
|
Wang C, Cui X, Dong Z, Liu Y, Xia P, Wang X, Zhang Z, Yu S, Wu S, Liu H, Zong S, Lu Z. Attenuated memory impairment and neuroinflammation in Alzheimer's disease by aucubin via the inhibition of ERK-FOS axis. Int Immunopharmacol 2024; 126:111312. [PMID: 38043266 DOI: 10.1016/j.intimp.2023.111312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/11/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Alzheimer's disease (AD) is a degenerative illness accompanied by cognitive and memory loss. In addition to the widely accepted, convincing amyloid cascade hypothesis, the activation of glial cells and neuroinflammation, especially the microglia-mediated neuroinflammation, has an essential role in the development and progression of AD. Therefore, the anti-inflammatory treatment is becoming a promising therapeutic strategy. Aucubin (Au) is a natural product derived from many plants with anti-inflammatory and antioxidant activities. Up to now, no research has been conducted to investigate the anti-inflammatory effects of Au and its neuroprotective quality on AD and the potential molecular mechanisms of its medical roles. In our study, the results of network pharmacology revealed the potential therapeutic effect of Au on AD. The results of studies in vivo showed that Au improved the behaviors, counteracted cognitive and memory deficits, and ameliorated AD-like pathological features of the mouse brain, e.g., the deposition of Aβ plaques, neuronal damage, and inflammatory responses induced by glial cell overactivation, in APP/PS1 mice. The transcriptome sequencing further confirmed that the pathological symptoms of AD could be reversed by inhibiting the ERK/FOS axis to alleviate the inflammatory response. The in vitro experiments revealed that Au suppressed the BV2 cell activation, inhibited the phosphorylation of ERK1/2 and the expression of c-FOS, and reduced the LPS-induced inflammatory mediator production by BV2 cells and primary astrocytes. Our study suggested that Au exerted its neuroprotective effects by inhibiting the inflammatory responses, which could be a promising treatment of AD.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaolin Cui
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhenfang Dong
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yingchao Liu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Pengcheng Xia
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xueying Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhi Zhang
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Shuyi Yu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuang Wu
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Huan Liu
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Shuai Zong
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Zhiming Lu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
16
|
Chu J, Zhang W, Liu Y, Gong B, Ji W, Yin T, Gao C, Liangwen D, Hao M, Chen C, Zhuang J, Gao J, Yin Y. Biomaterials-based anti-inflammatory treatment strategies for Alzheimer's disease. Neural Regen Res 2024; 19:100-115. [PMID: 37488851 PMCID: PMC10479833 DOI: 10.4103/1673-5374.374137] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 07/26/2023] Open
Abstract
The current therapeutic drugs for Alzheimer's disease only improve symptoms, they do not delay disease progression. Therefore, there is an urgent need for new effective drugs. The underlying pathogenic factors of Alzheimer's disease are not clear, but neuroinflammation can link various hypotheses of Alzheimer's disease; hence, targeting neuroinflammation may be a new hope for Alzheimer's disease treatment. Inhibiting inflammation can restore neuronal function, promote neuroregeneration, reduce the pathological burden of Alzheimer's disease, and improve or even reverse symptoms of Alzheimer's disease. This review focuses on the relationship between inflammation and various pathological hypotheses of Alzheimer's disease; reports the mechanisms and characteristics of small-molecule drugs (e.g., nonsteroidal anti-inflammatory drugs, neurosteroids, and plant extracts); macromolecule drugs (e.g., peptides, proteins, and gene therapeutics); and nanocarriers (e.g., lipid-based nanoparticles, polymeric nanoparticles, nanoemulsions, and inorganic nanoparticles) in the treatment of Alzheimer's disease. The review also makes recommendations for the prospective development of anti-inflammatory strategies based on nanocarriers for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jianjian Chu
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Weicong Zhang
- School of Pharmacy, University College London, London, UK
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baofeng Gong
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Wenbo Ji
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Tong Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Chao Gao
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Danqi Liangwen
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mengqi Hao
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Cuimin Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianhua Zhuang
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| |
Collapse
|
17
|
de Oliveira J, Moreira ELG, de Bem AF. Beyond cardiovascular risk: Implications of Familial hypercholesterolemia on cognition and brain function. Ageing Res Rev 2024; 93:102149. [PMID: 38056504 DOI: 10.1016/j.arr.2023.102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Familial hypercholesterolemia (FH) is a metabolic condition caused mainly by a mutation in the low-density lipoprotein (LDL) receptor gene (LDLR), which is highly prevalent in the population. Besides being an important causative factor of cardiovascular diseases, FH has been considered an early risk factor for Alzheimer's disease. Cognitive and emotional behavioral impairments in LDL receptor knockout (LDLr-/-) mice are associated with neuroinflammation, blood-brain barrier dysfunction, impaired neurogenesis, brain oxidative stress, and mitochondrial dysfunction. Notably, today, LDLr-/- mice, a widely used animal model for studying cardiovascular diseases and atherosclerosis, are also considered an interesting tool for studying dementia. Here, we reviewed the main findings in LDLr-/- mice regarding the relationship between FH and brain dysfunctions and dementia development.
Collapse
Affiliation(s)
- Jade de Oliveira
- Laboratory of investigation on metabolic disorders and neurodegenerative diseases, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil.
| | - Eduardo Luiz Gasnhar Moreira
- Neuroscience Coworking Lab, Department of Physiological Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | - Andreza Fabro de Bem
- Laboratory of Bioenergetics and Metabolism, Department of Physiological Sciences, University of Brasilia, Brasília, Federal District, DF 70910-900, Brazil; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Foundation, Rio de Janeiro, RJ 21040360, Brazil.
| |
Collapse
|
18
|
Duchesne S, Rousseau LS, Belzile-Marsolais F, Welch LA, Cournoyer B, Arseneau M, Lapierre V, Poulin SM, Potvin O, Hudon C. A Scoping Review of Alzheimers Disease Hypotheses: An Array of Uni- and Multi-Factorial Theories. J Alzheimers Dis 2024; 99:843-856. [PMID: 38788067 PMCID: PMC11191496 DOI: 10.3233/jad-230772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/26/2024]
Abstract
Background There is a common agreement that Alzheimers disease (AD) is inherently complex; otherwise, a general disagreement remains on its etiological underpinning, with numerous alternative hypotheses having been proposed. Objective To perform a scoping review of original manuscripts describing hypotheses and theories of AD published in the past decades. Results We reviewed 131 original manuscripts that fulfilled our inclusion criteria out of more than 13,807 references extracted from open databases. Each entry was characterized as having a single or multifactorial focus and assigned to one of 15 theoretical groupings. Impact was tracked using open citation tools. Results Three stages can be discerned in terms of hypotheses generation, with three quarter of studies proposing a hypothesis characterized as being single-focus. The most important theoretical groupings were the Amyloid group, followed by Metabolism and Mitochondrial dysfunction, then Infections and Cerebrovascular. Lately, evidence towards Genetics and especially Gut/Brain interactions came to the fore. Conclusions When viewed together, these multi-faceted reports reinforce the notion that AD affects multiple sub-cellular, cellular, anatomical, and physiological systems at the same time but at varying degree between individuals. The challenge of providing a comprehensive view of all systems and their interactions remains, alongside ways to manage this inherent complexity.
Collapse
Affiliation(s)
- Simon Duchesne
- Department of Radiology and Nuclear Medicine, Université, Laval, Quebec City, QC, Canada
| | - Louis-Simon Rousseau
- CERVO Brain Research Centre, Quebec City, QC, Canada
- School of Psychology, Université, Laval, Quebec City, QC, Canada
| | - Florence Belzile-Marsolais
- CERVO Brain Research Centre, Quebec City, QC, Canada
- School of Psychology, Université, Laval, Quebec City, QC, Canada
| | - Laurie-Ann Welch
- CERVO Brain Research Centre, Quebec City, QC, Canada
- School of Psychology, Université, Laval, Quebec City, QC, Canada
| | | | | | - Véronick Lapierre
- CERVO Brain Research Centre, Quebec City, QC, Canada
- School of Psychology, Université, Laval, Quebec City, QC, Canada
| | | | - Olivier Potvin
- Quebec Heart and Lung Research Institute, Quebec City, QC, Canada
- CERVO Brain Research Centre, Quebec City, QC, Canada
| | - Carol Hudon
- CERVO Brain Research Centre, Quebec City, QC, Canada
- School of Psychology, Université, Laval, Quebec City, QC, Canada
- VITAM Research Centre, Quebec City, QC, Canada
| |
Collapse
|
19
|
Jafarzadeh A, Sheikhi A, Jafarzadeh Z, Nemati M. Differential roles of regulatory T cells in Alzheimer's disease. Cell Immunol 2023; 393-394:104778. [PMID: 37907046 DOI: 10.1016/j.cellimm.2023.104778] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
Regulatory T (Treg) cells interact with a variety of resident cells and infiltrated immune cells in the central nervous system (CNS) to modulate neuroinflammation and neurodegeneration. Extracellular amyloid-β (Aβ) peptide deposition and secondary persistent inflammation due to activation of microglia, astrocytes, and infiltrated immune cells contribute to Alzheimer's disease (AD)-related neurodegeneration. The majority of evidence supports the neuroprotective effects of Treg cells in AD. In the early stages of AD, appropriate Treg cell activity is required for the induction of microglia and astrocyte phagocytic activity in order to clear A deposits and prevent neuroinflammation. Such neuroprotective impacts were in part attributed to the ability of Treg cells to suppress deleterious and/or boost beneficial functions of microglia/astrocytes. In the later stages of AD, an effective Treg cell activity needs to prevent neurotoxicity and neurodegeneration. Treg cells can exert preventive effects on Th1-, and Th17 cell-related pathologic responses, whilst potentiating Th2-mediated protective activity. The impaired Treg cell-related immunomodulatory mechanisms have been described in AD patients and in related animal models which can contribute to the onset and progression of AD. This review aimed to provide a comprehensive figure regarding the role of Treg cells in AD while highlighting potential therapeutic approaches.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Abdolkarim Sheikhi
- Department of Immunology, Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Zahra Jafarzadeh
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
20
|
Chen C, Bao Y, Xing L, Jiang C, Guo Y, Tong S, Zhang J, Chen L, Mao Y. Exosomes Derived from M2 Microglial Cells Modulated by 1070-nm Light Improve Cognition in an Alzheimer's Disease Mouse Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304025. [PMID: 37702115 PMCID: PMC10646245 DOI: 10.1002/advs.202304025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Indexed: 09/14/2023]
Abstract
Near-infrared photobiomodulation has been identified as a potential strategy for Alzheimer's disease (AD). However, the mechanisms underlying this therapeutic effect remain poorly characterize. Herein, it is illustrate that 1070-nm light induces the morphological alteration of microglia from an M1 to M2 phenotype that secretes exosomes, which alleviates the β-amyloid burden to improve cognitive function by ameliorating neuroinflammation and promoting neuronal dendritic spine plasticity. The results show that 4 J cm-2 1070-nm light at a 10-Hz frequency prompts microglia with an M1 inflammatory type to switch to an M2 anti-inflammatory type. This induces secretion of M2 microglial-derived exosomes containing miR-7670-3p, which targets activating transcription factor 6 (ATF6) during endoplasmic reticulum (ER) stress. Moreover, it is found that miR-7670-3p reduces ATF6 expression to further ameliorate ER stress, thus attenuating the inflammatory response and protecting dendritic spine integrity of neurons in the cortex and hippocampus of 5xFAD mice, ultimately leading to improvements in cognitive function. This study highlights the critical role of exosomes derive from 1070-nm light-modulated microglia in treating AD mice, which may provide a theoretical basis for the treatment of AD with the use of near-infrared photobiomodulation.
Collapse
Affiliation(s)
- Chengwei Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghai200040China
- National Center for Neurological DisordersShanghai200040China
- Shanghai Key Laboratory of Brain Function Restoration and Neural RegenerationShanghai200040China
- Neurosurgical Institute of Fudan UniversityShanghai200040China
- Shanghai Clinical Medical Center of NeurosurgeryShanghai200040China
| | - Yuting Bao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghai200040China
- National Center for Neurological DisordersShanghai200040China
- Shanghai Key Laboratory of Brain Function Restoration and Neural RegenerationShanghai200040China
- Neurosurgical Institute of Fudan UniversityShanghai200040China
- Shanghai Clinical Medical Center of NeurosurgeryShanghai200040China
| | - Lu Xing
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghai200040China
- National Center for Neurological DisordersShanghai200040China
- Shanghai Key Laboratory of Brain Function Restoration and Neural RegenerationShanghai200040China
- Neurosurgical Institute of Fudan UniversityShanghai200040China
- Shanghai Clinical Medical Center of NeurosurgeryShanghai200040China
| | - Chengyong Jiang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain ScienceFudan UniversityShanghai200032China
| | - Yu Guo
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghai200040China
- National Center for Neurological DisordersShanghai200040China
- Shanghai Key Laboratory of Brain Function Restoration and Neural RegenerationShanghai200040China
- Neurosurgical Institute of Fudan UniversityShanghai200040China
- Shanghai Clinical Medical Center of NeurosurgeryShanghai200040China
| | - Shuangmei Tong
- Department of Pharmacy, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghai200040China
| | - Jiayi Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain ScienceFudan UniversityShanghai200032China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghai200040China
- National Center for Neurological DisordersShanghai200040China
- Shanghai Key Laboratory of Brain Function Restoration and Neural RegenerationShanghai200040China
- Neurosurgical Institute of Fudan UniversityShanghai200040China
- Shanghai Clinical Medical Center of NeurosurgeryShanghai200040China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghai200040China
- National Center for Neurological DisordersShanghai200040China
- Shanghai Key Laboratory of Brain Function Restoration and Neural RegenerationShanghai200040China
- Neurosurgical Institute of Fudan UniversityShanghai200040China
- Shanghai Clinical Medical Center of NeurosurgeryShanghai200040China
| |
Collapse
|
21
|
Yang Y, Bagyinszky E, An SSA. Patient with PSEN1 Glu318Gly and Other Possible Disease Risk Mutations, Diagnosed with Early Onset Alzheimer's Disease. Int J Mol Sci 2023; 24:15461. [PMID: 37895139 PMCID: PMC10607718 DOI: 10.3390/ijms242015461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
In this manuscript, we introduced a French EOAD patient in Korea who carried the presenilin-1 (PSEN1) Glu318Gly mutations with four possible risk variants, including sortilin-related receptor 1 (SORL1) Glu270Lys, ATP-binding cassette subfamily A member 7 (ABCA7) Val1946Met, translocase of outer mitochondrial membrane 40 (TOMM40) Arg239Trp, and granulin (GRN) Ala505Gly. The patient started to present memory decline and behavioral dysfunction in his early 60s. His brain imaging presented amyloid deposits by positron emission tomography (PET-CT). The multimer detection system (MDS) screening test for plasma for amyloid oligomers was also positive, which supported the AD diagnosis. It was verified that PSEN1 Glu318Gly itself may not impact amyloid production. However, additional variants were found in other AD and non-AD risk genes, as follows: SORL1 Glu270Lys was suggested as a risk mutation for AD and could increase amyloid peptide production and impair endosome functions. ABCA7 Val1946Met was a novel variant that was predicted to be damaging. The GRN Ala505Gly was a variant with uncertain significance; however, it may reduce the granulin levels in the plasma of dementia patients. Pathway analysis revealed that PSEN1 Glu318Gly may work as a risk factor along with the SORL1 and ABCA7 variants since pathway analysis revealed that PSEN1 could directly interact with them through amyloid-related and lipid metabolism pathways. TOMM40 and PSEN1 could have common mechanisms through mitochondrial dysfunction. It may be possible that PSEN1 Glu318Gly and GRN Ala505Gly would impact disease by impairing immune-related pathways, including microglia and astrocyte development, or NFkB-related pathways. Taken together, the five risk factors may contribute to disease-related pathways, including amyloid and lipid metabolism, or impair immune mechanisms.
Collapse
Affiliation(s)
- YoungSoon Yang
- Department of Neurology, Soonchunhyang University College of Medicine, Cheonan Hospital, Cheonan 31151, Republic of Korea;
| | - Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Medical Research Institute, College of Bionano Technology, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
22
|
Jain M, Dhariwal R, Patil N, Ojha S, Tendulkar R, Tendulkar M, Dhanda PS, Yadav A, Kaushik P. Unveiling the Molecular Footprint: Proteome-Based Biomarkers for Alzheimer's Disease. Proteomes 2023; 11:33. [PMID: 37873875 PMCID: PMC10594437 DOI: 10.3390/proteomes11040033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by progressive cognitive decline and memory loss. Early and accurate diagnosis of AD is crucial for implementing timely interventions and developing effective therapeutic strategies. Proteome-based biomarkers have emerged as promising tools for AD diagnosis and prognosis due to their ability to reflect disease-specific molecular alterations. There is of great significance for biomarkers in AD diagnosis and management. It emphasizes the limitations of existing diagnostic approaches and the need for reliable and accessible biomarkers. Proteomics, a field that comprehensively analyzes the entire protein complement of cells, tissues, or bio fluids, is presented as a powerful tool for identifying AD biomarkers. There is a diverse range of proteomic approaches employed in AD research, including mass spectrometry, two-dimensional gel electrophoresis, and protein microarrays. The challenges associated with identifying reliable biomarkers, such as sample heterogeneity and the dynamic nature of the disease. There are well-known proteins implicated in AD pathogenesis, such as amyloid-beta peptides, tau protein, Apo lipoprotein E, and clusterin, as well as inflammatory markers and complement proteins. Validation and clinical utility of proteome-based biomarkers are addressing the challenges involved in validation studies and the diagnostic accuracy of these biomarkers. There is great potential in monitoring disease progression and response to treatment, thereby aiding in personalized medicine approaches for AD patients. There is a great role for bioinformatics and data analysis in proteomics for AD biomarker research and the importance of data preprocessing, statistical analysis, pathway analysis, and integration of multi-omics data for a comprehensive understanding of AD pathophysiology. In conclusion, proteome-based biomarkers hold great promise in the field of AD research. They provide valuable insights into disease mechanisms, aid in early diagnosis, and facilitate personalized treatment strategies. However, further research and validation studies are necessary to harness the full potential of proteome-based biomarkers in clinical practice.
Collapse
Affiliation(s)
- Mukul Jain
- Cell and Developmental Biology Laboratory, Research and Development Cell, Parul University, Vadodara 391760, India; (R.D.); (N.P.)
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India;
| | - Rupal Dhariwal
- Cell and Developmental Biology Laboratory, Research and Development Cell, Parul University, Vadodara 391760, India; (R.D.); (N.P.)
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India;
| | - Nil Patil
- Cell and Developmental Biology Laboratory, Research and Development Cell, Parul University, Vadodara 391760, India; (R.D.); (N.P.)
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India;
| | - Sandhya Ojha
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India;
| | - Reshma Tendulkar
- Vivekanand Education Society, College of Pharmacy, Chembur, Mumbai 400071, India;
| | - Mugdha Tendulkar
- Sardar Vallabhbhai Patel College of Science, Mira Rd (East), Thane 400071, India;
| | | | - Alpa Yadav
- Department of Botany, Indira Gandhi University, Meerpur, Rewari 122502, India;
| | - Prashant Kaushik
- Instituto de Conservacióny Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
23
|
Stöberl N, Maguire E, Salis E, Shaw B, Hall-Roberts H. Human iPSC-derived glia models for the study of neuroinflammation. J Neuroinflammation 2023; 20:231. [PMID: 37817184 PMCID: PMC10566197 DOI: 10.1186/s12974-023-02919-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023] Open
Abstract
Neuroinflammation is a complex biological process that plays a significant role in various brain disorders. Microglia and astrocytes are the key cell types involved in inflammatory responses in the central nervous system. Neuroinflammation results in increased levels of secreted inflammatory factors, such as cytokines, chemokines, and reactive oxygen species. To model neuroinflammation in vitro, various human induced pluripotent stem cell (iPSC)-based models have been utilized, including monocultures, transfer of conditioned media between cell types, co-culturing multiple cell types, neural organoids, and xenotransplantation of cells into the mouse brain. To induce neuroinflammatory responses in vitro, several stimuli have been established that can induce responses in either microglia, astrocytes, or both. Here, we describe and critically evaluate the different types of iPSC models that can be used to study neuroinflammation and highlight how neuroinflammation has been induced and measured in these cultures.
Collapse
Affiliation(s)
- Nina Stöberl
- UK Dementia Research Institute (UK DRI), School of Medicine, Cardiff University, Cardiff, CF10 3AT UK
| | - Emily Maguire
- UK Dementia Research Institute (UK DRI), School of Medicine, Cardiff University, Cardiff, CF10 3AT UK
| | - Elisa Salis
- UK Dementia Research Institute (UK DRI), School of Medicine, Cardiff University, Cardiff, CF10 3AT UK
| | - Bethany Shaw
- UK Dementia Research Institute (UK DRI), School of Medicine, Cardiff University, Cardiff, CF10 3AT UK
| | - Hazel Hall-Roberts
- UK Dementia Research Institute (UK DRI), School of Medicine, Cardiff University, Cardiff, CF10 3AT UK
| |
Collapse
|
24
|
Smolen P, Dash PK, Redell JB. Traumatic brain injury-associated epigenetic changes and the risk for neurodegenerative diseases. Front Neurosci 2023; 17:1259405. [PMID: 37795186 PMCID: PMC10546067 DOI: 10.3389/fnins.2023.1259405] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Epidemiological studies have shown that traumatic brain injury (TBI) increases the risk for developing neurodegenerative diseases (NDs). However, molecular mechanisms that underlie this risk are largely unidentified. TBI triggers widespread epigenetic modifications. Similarly, NDs such as Alzheimer's or Parkinson's are associated with numerous epigenetic changes. Although epigenetic changes can persist after TBI, it is unresolved if these modifications increase the risk of later ND development and/or dementia. We briefly review TBI-related epigenetic changes, and point out putative feedback loops that might contribute to long-term persistence of some modifications. We then focus on evidence suggesting persistent TBI-associated epigenetic changes may contribute to pathological processes (e.g., neuroinflammation) which may facilitate the development of specific NDs - Alzheimer's disease, Parkinson's disease, or chronic traumatic encephalopathy. Finally, we discuss possible directions for TBI therapies that may help prevent or delay development of NDs.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | | | | |
Collapse
|
25
|
Chen MH, Liu XZ, Qu XW, Guo RB, Zhang L, Kong L, Yu Y, Liu Y, Zang J, Li XY, Li XT. ApoE-modified liposomes encapsulating resveratrol and salidroside alleviate manifestations of Alzheimer's disease in APP/PS-1 mice. Drug Dev Ind Pharm 2023; 49:559-571. [PMID: 37649422 DOI: 10.1080/03639045.2023.2252062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a neurodegenerative disease that is associated with aging and is influenced by both genetic and environmental factors. Several studies and clinical trials have demonstrated that resveratrol (Res) and salidroside (Sal) are not only biologically safe but also influence AD biomarker trajectories. However, their clinical applications have been quite limited due to poor specificity, low solubility, and insufficient blood-brain barrier (BBB) penetration. Therefore, we developed a nano-drug delivery system in which Res and Sal were encapsulated in liposomes, which were surface-modified with ApoE (ApoE-Res/Sal-Lips) to compensate for these deficiencies. METHOD In this study, ApoE-Res/Sal-Lips were prepared using a standard thin-film hydration method for liposomes. Then, cellular uptake of the loaded liposomes was assessed in vitro using fluorescent staining assays. A BBB model was constructed to investigate the capacity of the liposomes to cross the BBB in vitro, and the ability of liposomes to target the brain was observed by in vivo imaging. In addition, the neuroprotective effects of the different liposome formulations in APP/PS-1 mice were evaluated by measuring the changes in levels of oxidative, anti-inflammatory, and anti-apoptotic factors in the mice brains. RESULTS In vitro, ApoE-Res/Sal-Lips increased the uptake of Res and Sal by bEnd.3 and N2a cells, enhanced BBB penetration, and improved transport efficiency. In vivo, the ApoE-Res/Sal-Lips were found to alleviate AD pathological symptoms, reduce learning and memory impairments, and improve brain function. CONCLUSION ApoE-Res/Sal-Lips provide a new method for the treatment of AD.
Collapse
Affiliation(s)
- Mu-Han Chen
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Xin-Ze Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Xiu-Wu Qu
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese Medicine, Jinzhong, P.R. China
| | - Rui-Bo Guo
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Lu Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Yang Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Juan Zang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Xiu-Ying Li
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese Medicine, Jinzhong, P.R. China
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| |
Collapse
|
26
|
Liu J, Liu S, Zeng L, Tsilioni I. Amyloid Beta Peptides Lead to Mast Cell Activation in a Novel 3D Hydrogel Model. Int J Mol Sci 2023; 24:12002. [PMID: 37569378 PMCID: PMC10419190 DOI: 10.3390/ijms241512002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disease and the world's primary cause of dementia among the elderly population. The aggregation of toxic amyloid-beta (Aβ) is one of the main pathological hallmarks of the AD brain. Recently, neuroinflammation has been recognized as one of the major features of AD, which involves a network of interactions between immune cells. The mast cell (MC) is an innate immune cell type known to serve as a first responder to pathological changes and crosstalk with microglia and neurons. Although an increased number of mast cells were found near the sites of Aβ deposition, how mast cells are activated in AD is not clear. We developed a 3D culture system to culture MCs and investigated the activation of MCs by Aβ peptides. Because collagen I is the major component of extracellular matrix (ECM) in the brain, we encapsulated human LADR MCs in gels formed by collagen I. We found that 3D-cultured MCs survived and proliferated at the same level as MCs in suspension. Additionally, they can be induced to secrete inflammatory cytokines as well as MC proteases tryptase and chymase by typical MC activators interleukin 33 (IL-33) and IgE/anti-IgE. Culturing with peptides Aβ1-42, Aβ1-40, and Aβ25-35 caused MCs to secrete inflammatory mediators, with Aβ1-42 inducing the maximum level of activation. These data indicate that MCs respond to amyloid deposition to elicit inflammatory responses and demonstrate the validity of collagen gel as a model system to investigate MCs in a 3D environment to understand neuroinflammation in AD.
Collapse
Affiliation(s)
- Jingshu Liu
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; (J.L.)
| | - Sihan Liu
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; (J.L.)
| | - Li Zeng
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; (J.L.)
- Program in Cell, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
- Program in Pharmacology, Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
- Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
- Department of Orthopaedics, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Irene Tsilioni
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; (J.L.)
| |
Collapse
|
27
|
Kong AHY, Wu AJ, Ho OKY, Leung MMK, Huang AS, Yu Y, Zhang G, Lyu A, Li M, Cheung KH. Exploring the Potential of Aptamers in Targeting Neuroinflammation and Neurodegenerative Disorders: Opportunities and Challenges. Int J Mol Sci 2023; 24:11780. [PMID: 37511539 PMCID: PMC10380291 DOI: 10.3390/ijms241411780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Neuroinflammation is the precursor for several neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Targeting neuroinflammation has emerged as a promising strategy to address a wide range of CNS pathologies. These NDDs still present significant challenges in terms of limited and ineffective diagnosis and treatment options, driving the need to explore innovative and novel therapeutic alternatives. Aptamers are single-stranded nucleic acids that offer the potential for addressing these challenges through diagnostic and therapeutic applications. In this review, we summarize diagnostic and therapeutic aptamers for inflammatory biomolecules, as well as the inflammatory cells in NDDs. We also discussed the potential of short nucleotides for Aptamer-Based Targeted Brain Delivery through their unique features and modifications, as well as their ability to penetrate the blood-brain barrier. Moreover, the unprecedented opportunities and substantial challenges of using aptamers as therapeutic agents, such as drug efficacy, safety considerations, and pharmacokinetics, are also discussed. Taken together, this review assesses the potential of aptamers as a pioneering approach for target delivery to the CNS and the treatment of neuroinflammation and NDDs.
Collapse
Affiliation(s)
- Anna Hau-Yee Kong
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aston Jiaxi Wu
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Olivia Ka-Yi Ho
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Maggie Ming-Ki Leung
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Alexis Shiying Huang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong SAR, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong SAR, China
| | - Aiping Lyu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong SAR, China
| | - Min Li
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - King-Ho Cheung
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
28
|
Lake J, Warly Solsberg C, Kim JJ, Acosta-Uribe J, Makarious MB, Li Z, Levine K, Heutink P, Alvarado CX, Vitale D, Kang S, Gim J, Lee KH, Pina-Escudero SD, Ferrucci L, Singleton AB, Blauwendraat C, Nalls MA, Yokoyama JS, Leonard HL. Multi-ancestry meta-analysis and fine-mapping in Alzheimer's disease. Mol Psychiatry 2023; 28:3121-3132. [PMID: 37198259 PMCID: PMC10615750 DOI: 10.1038/s41380-023-02089-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 05/19/2023]
Abstract
Genome-wide association studies (GWAS) of Alzheimer's disease are predominantly carried out in European ancestry individuals despite the known variation in genetic architecture and disease prevalence across global populations. We leveraged published GWAS summary statistics from European, East Asian, and African American populations, and an additional GWAS from a Caribbean Hispanic population using previously reported genotype data to perform the largest multi-ancestry GWAS meta-analysis of Alzheimer's disease and related dementias to date. This method allowed us to identify two independent novel disease-associated loci on chromosome 3. We also leveraged diverse haplotype structures to fine-map nine loci with a posterior probability >0.8 and globally assessed the heterogeneity of known risk factors across populations. Additionally, we compared the generalizability of multi-ancestry- and single-ancestry-derived polygenic risk scores in a three-way admixed Colombian population. Our findings highlight the importance of multi-ancestry representation in uncovering and understanding putative factors that contribute to risk of Alzheimer's disease and related dementias.
Collapse
Affiliation(s)
- Julie Lake
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Caroline Warly Solsberg
- Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jonggeol Jeffrey Kim
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Preventive Neurology Unit, Centre for Prevention Diagnosis and Detection, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Juliana Acosta-Uribe
- Neuroscience Research Institute and the department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Group of Antioquia, University of Antioquia, Medellín, Colombia
| | - Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Zizheng Li
- Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kristin Levine
- Data Tecnica International LLC, Washington, DC, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Peter Heutink
- Alector, Inc. 131 Oyster Point Blvd, Suite 600, South San Francisco, CA, 94080, USA
| | - Chelsea X Alvarado
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Washington, DC, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Dan Vitale
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Washington, DC, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Sarang Kang
- Gwangju Alzheimer's disease and Related Dementia Cohort Research Center, Chosun University, Gwangju, 61452, Korea
- BK FOUR Department of Integrative Biological Sciences, Chosun University, Gwangju, 61452, Korea
| | - Jungsoo Gim
- Gwangju Alzheimer's disease and Related Dementia Cohort Research Center, Chosun University, Gwangju, 61452, Korea
- BK FOUR Department of Integrative Biological Sciences, Chosun University, Gwangju, 61452, Korea
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Korea
| | - Kun Ho Lee
- Gwangju Alzheimer's disease and Related Dementia Cohort Research Center, Chosun University, Gwangju, 61452, Korea
- BK FOUR Department of Integrative Biological Sciences, Chosun University, Gwangju, 61452, Korea
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Korea
- Korea Brain Research Institute, Daegu, 41062, Korea
| | - Stefanie D Pina-Escudero
- Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Washington, DC, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer S Yokoyama
- Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Hampton L Leonard
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Data Tecnica International LLC, Washington, DC, USA.
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA.
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| |
Collapse
|
29
|
Ospondpant D, Xia Y, Lai QWS, Yuen GKW, Yang M, Chanthanam K, Dong TT, Tsim KWK. The extracts of Dracaena cochinchinensis stemwood suppress inflammatory response and phagocytosis in lipopolysaccharide-activated microglial cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154936. [PMID: 37385071 DOI: 10.1016/j.phymed.2023.154936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Neuroinflammation is a pivotal process in the brain that contributes to the development of neurodegenerative diseases, such as Alzheimer's disease (AD). During neuroinflammation, the over-activation of microglial cells can drive the pathological processes underlying AD, including an increase in amyloid β (Aβ) production and accumulation, ultimately leading to neuronal and synaptic loss. Dracaena cochinchinensis (Lour.) S.C. Chen, also known as "Chan-daeng" in Thai, belongs to the Asparagaceae family. In Thai traditional medicine, it has been used as an antipyretic, pain reliever, and anti-inflammatory agent. However, the effects of D. cochinchinensis on neuroinflammation are yet to be determined. PURPOSE We aimed to evaluate the anti-neuroinflammatory activities of D. cochinchinensis stemwood extract in activated microglia. METHODS In this study, lipopolysaccharide (LPS), a potent pro-inflammatory stimulus, was used to activate microglial BV2 cells, as a cell model of neuroinflammation. Our investigation included several techniques, including qRT-PCR, ELISA, Western blotting, phagocytosis, and immunofluorescence staining, to examine the potential anti-inflammatory effects of D. cochinchinensis stemwood. RESULTS D. cochinchinensis stemwood, named DCS, was extracted with ethanol and water. The extracts of DCS showed dose-dependent anti-inflammatory effects, markedly suppressing the LPS-mediated mRNA expression of pro-inflammatory factors, including IL-1β, TNF-α, and iNOS, while increasing expression of the anti-inflammatory biomarker Arg1 in both BV2 microglia and RAW264.7 macrophages. DCS extracts also decreased the protein levels of IL-1β, TNF-α, and iNOS. These findings were correlated with the suppression of phosphorylated proteins of p38, JNK, and Akt in the LPS-activated microglia. Moreover, DCS extracts significantly attenuated excessive phagocytosis of beads and Aβ fibrils during the LPS-mediated microglial activation. CONCLUSION Taken together, our results indicated that DCS extracts had anti-neuroinflammatory properties by suppressing the expression of pro-inflammatory factors, increasing the expression of the anti-inflammatory biomarker Arg1, and modulating excessive phagocytosis in activated microglia. These findings suggested that DCS extract could be a promising natural product for the treatment of neuroinflammatory and neurodegenerative diseases, like AD.
Collapse
Affiliation(s)
- Dusadee Ospondpant
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Yingjie Xia
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Queenie Wing Sze Lai
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Gary Ka-Wing Yuen
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Meixia Yang
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Kanlayakorn Chanthanam
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tina Tingxia Dong
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Karl Wah Keung Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
30
|
de la Peña I, Afable T, Dahilig-Talan VR, Cruz P. Review of Plant Extracts and Active Components: Mechanisms of Action for the Treatment of Obesity-Induced Cognitive Impairment. Brain Sci 2023; 13:929. [PMID: 37371407 DOI: 10.3390/brainsci13060929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Obesity has been shown to negatively impact cognitive functions, but effective treatments for obesity-induced cognitive impairment are lacking. Natural dietary and plant products, functional foods, and plant-derived compounds have gained attention as potential remedies in part due to the nootropic properties of plants and certain plant-derived agents. This review discusses plant extracts and plant-derived substances that have been shown to ameliorate obesity-induced cognitive impairment in animal models. Mechanistic evaluations of their therapeutic effects are also summarized. A literature search was conducted using PubMed and Google Scholar databases, resulting in the review of 27 English language articles meeting the inclusion criteria. The nine plants (e.g., Ashwagandha, Adzuki bean, and olive) and 18 plant-derived substances (e.g., curcumin, Huperzine A, and Roxburgh's jewel orchid polysaccharides) included in this review improved obesity-induced cognitive impairment through several mechanisms, including attenuation of neuroinflammation, improvement in both central and peripheral insulin resistance, enhancement of neuroprotection and neurogenesis, and modulation of the synthesis and release of cognition-associated neurotransmitters. Based on these findings, plants and plant-derived substances may hold promise for the prevention and treatment of obesity-induced cognitive impairment. Further research is warranted to explore the clinical potential of these plant-derived treatments and to elucidate their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Ike de la Peña
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University, Loma Linda, CA 92350, USA
| | - Timothy Afable
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University, Loma Linda, CA 92350, USA
| | | | - Philip Cruz
- Herbanext Laboratories, Inc., Negros South Road, Bago City 6101, Philippines
| |
Collapse
|
31
|
Coradduzza D, Congiargiu A, Chen Z, Cruciani S, Zinellu A, Carru C, Medici S. Humanin and Its Pathophysiological Roles in Aging: A Systematic Review. BIOLOGY 2023; 12:558. [PMID: 37106758 PMCID: PMC10135985 DOI: 10.3390/biology12040558] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Senescence is a cellular aging process in all multicellular organisms. It is characterized by a decline in cellular functions and proliferation, resulting in increased cellular damage and death. These conditions play an essential role in aging and significantly contribute to the development of age-related complications. Humanin is a mitochondrial-derived peptide (MDP), encoded by mitochondrial DNA, playing a cytoprotective role to preserve mitochondrial function and cell viability under stressful and senescence conditions. For these reasons, humanin can be exploited in strategies aiming to counteract several processes involved in aging, including cardiovascular disease, neurodegeneration, and cancer. Relevance of these conditions to aging and disease: Senescence appears to be involved in the decay in organ and tissue function, it has also been related to the development of age-related diseases, such as cardiovascular conditions, cancer, and diabetes. In particular, senescent cells produce inflammatory cytokines and other pro-inflammatory molecules that can participate to the development of such diseases. Humanin, on the other hand, seems to contrast the development of such conditions, and it is also known to play a role in these diseases by promoting the death of damaged or malfunctioning cells and contributing to the inflammation often associated with them. Both senescence and humanin-related mechanisms are complex processes that have not been fully clarified yet. Further research is needed to thoroughly understand the role of such processes in aging and disease and identify potential interventions to target them in order to prevent or treat age-related conditions. OBJECTIVES This systematic review aims to assess the potential mechanisms underlying the link connecting senescence, humanin, aging, and disease.
Collapse
Affiliation(s)
| | | | - Zhichao Chen
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Control Quality Unit, Azienda-Ospedaliera Universitaria (AOU), 07100 Sassari, Italy
| | - Serenella Medici
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
32
|
Penke B, Szűcs M, Bogár F. New Pathways Identify Novel Drug Targets for the Prevention and Treatment of Alzheimer's Disease. Int J Mol Sci 2023; 24:5383. [PMID: 36982456 PMCID: PMC10049476 DOI: 10.3390/ijms24065383] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable, progressive neurodegenerative disorder. AD is a complex and multifactorial disease that is responsible for 60-80% of dementia cases. Aging, genetic factors, and epigenetic changes are the main risk factors for AD. Two aggregation-prone proteins play a decisive role in AD pathogenesis: β-amyloid (Aβ) and hyperphosphorylated tau (pTau). Both of them form deposits and diffusible toxic aggregates in the brain. These proteins are the biomarkers of AD. Different hypotheses have tried to explain AD pathogenesis and served as platforms for AD drug research. Experiments demonstrated that both Aβ and pTau might start neurodegenerative processes and are necessary for cognitive decline. The two pathologies act in synergy. Inhibition of the formation of toxic Aβ and pTau aggregates has been an old drug target. Recently, successful Aβ clearance by monoclonal antibodies has raised new hopes for AD treatments if the disease is detected at early stages. More recently, novel targets, e.g., improvements in amyloid clearance from the brain, application of small heat shock proteins (Hsps), modulation of chronic neuroinflammation by different receptor ligands, modulation of microglial phagocytosis, and increase in myelination have been revealed in AD research.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary
| | - Mária Szűcs
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary
| | - Ferenc Bogár
- ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), Dóm Square 8, H-6720 Szeged, Hungary
| |
Collapse
|
33
|
Vieira ADC, Medeiros EB, Zabot GC, Pereira NDS, do Nascimento NB, Lidio AV, Scheffer ÂK, Rempel LCT, Macarini BMN, Costa MDA, Gonçalves CL, Kucharska E, Rodrigues MS, Moreira JCF, de Oliveira J, Budni J. Neuroprotective effects of combined therapy with memantine, donepezil, and vitamin D in ovariectomized female mice subjected to dementia model. Prog Neuropsychopharmacol Biol Psychiatry 2023; 122:110653. [PMID: 36195205 DOI: 10.1016/j.pnpbp.2022.110653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022]
Abstract
Women older than 60 have a higher risk of dementia, aging-related cognitive decline, and Alzheimer's Disease (AD) than the rest of the population. The main reason is hormonal senescence after menopause, a period characterized by a decline in estrogen levels. Since the effectiveness of drugs currently approved for the treatment of AD is limited, it is necessary to seek the development of new therapeutic strategies. Vitamin D deficiency is prevalent in AD patients and individuals with dementia in general. The supplementation of this vitamin in dementia patients might be an interesting approach for increasing the effectiveness of pre-existing medications for dementia treatment. Thus, the present study aims to investigate the effect of vitamin D treatment associated with memantine and donepezil in female mice submitted to ovariectomy (OVX) for five months and subjected to a dementia animal model induced by intracerebroventricular injection of aggregated amyloid βeta (Aβ1-42). For this purpose, Balb/c mice were divided into five experimental groups, which received 17 days of combined therapy with vitamin D, donepezil, and memantine. Then, animals were subjected to behavioral tests. OVX groups exhibited reduced levels of estradiol (E2) in serum, which was not altered by the combined therapy. Higher levels of vitamin D3 were found in the OVX animals submitted to the triple-association treatment. Mice exposed to both OVX and the dementia animal model presented impairment in short and long-term spatial and habituation memories. Also, female mice exposed to Aβ and OVX exhibited a reduction in brain-derived neurotrophic factor (BDNF) and interleukin-4 (IL-4) levels, and an increase in tumor necrose factor-α (TNFα) levels in the hippocampus. Besides, increased levels of IL-1β in the hippocampus and cerebral cortex were observed, as well as a significant increase in immunoreactivity for glial fibrillary acidic protein (GFAP), an astrocytes marker, in the hippocampus. Notably, triple-association treatment reversed the effects of the exposition of mice to Aβ and OVX in the long-term spatial and habituation memories impairment, as well as reversed changes in TNFα, IL-1β, IL-4, and GFAP immunoreactivity levels in the hippocampus of treated animals. Our results indicate that the therapeutic association of vitamin D, memantine, and donepezil has beneficial effects on memory performance and attenuated the neuroinflammatory response in female mice subjected to OVX associated with a dementia animal model.
Collapse
Affiliation(s)
- Ana Daniela Coutinho Vieira
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Eduarda Behenck Medeiros
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Gabriel Casagrande Zabot
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Nathalia de Souza Pereira
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Natália Baltazar do Nascimento
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Adrielly Vargas Lidio
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Ândrea Kohlrausch Scheffer
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Lisienny Campoli Tono Rempel
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | | | - Maiara de Aguiar Costa
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Cinara Ludvig Gonçalves
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Ewa Kucharska
- Akademia Ignatianum w Krakowie Wydział Pedagogiczny Instytut Nauk o Wychowaniu, Krakow, Poland
| | - Matheus Scarpatto Rodrigues
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - José Cláudio Fonseca Moreira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jade de Oliveira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Josiane Budni
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil.
| |
Collapse
|
34
|
Basta M, Skourti E, Alexopoulou C, Zampetakis A, Ganiaris A, Aligizaki M, Simos P, Vgontzas AN. Cretan Aging Cohort-Phase III: Methodology and Descriptive Characteristics of a Long-Term Longitudinal Study on Predictors of Cognitive Decline in Non-Demented Elderly from Crete, Greece. Healthcare (Basel) 2023; 11:healthcare11050703. [PMID: 36900708 PMCID: PMC10000452 DOI: 10.3390/healthcare11050703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Identifying modifiable factors that may predict long-term cognitive decline in the elderly with adequate daily functionality is critical. Such factors may include poor sleep quality and quantity, sleep-related breathing disorders, inflammatory cytokines and stress hormones, as well as mental health problems. This work reports the methodology and descriptive characteristics of a long-term, multidisciplinary study on modifiable risk factors for cognitive status progression, focusing on the 7-year follow-up. Participants were recruited from a large community-dwelling cohort residing in Crete, Greece (CAC; Cretan Aging Cohort). Baseline assessments were conducted in 2013-2014 (Phase I and II, circa 6-month time interval) and follow-up in 2020-2022 (Phase III). In total, 151 individuals completed the Phase III evaluation. Of those, 71 were cognitively non-impaired (CNI group) in Phase II and 80 had been diagnosed with mild cognitive impairment (MCI). In addition to sociodemographic, lifestyle, medical, neuropsychological, and neuropsychiatric data, objective sleep was assessed based on actigraphy (Phase II and III) and home polysomnography (Phase III), while inflammation markers and stress hormones were measured in both phases. Despite the homogeneity of the sample in most sociodemographic indices, MCI persons were significantly older (mean age = 75.03 years, SD = 6.34) and genetically predisposed for cognitive deterioration (APOE ε4 allele carriership). Also, at follow-up, we detected a significant increase in self-reported anxiety symptoms along with a substantial rise in psychotropic medication use and incidence of major medical morbidities. The longitudinal design of the CAC study may provide significant data on possible modifiable factors in the course of cognitive progression in the community-dwelling elderly.
Collapse
Affiliation(s)
- Maria Basta
- Division of Psychiatry and Behavioral Sciences, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Sleep Research and Treatment Center, Department of Psychiatry, Penn State University, State College, PA 16802, USA
- Correspondence: ; Tel.: +30-2810-392-402; Fax: +30-2810-392-859
| | - Eleni Skourti
- Division of Psychiatry and Behavioral Sciences, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Christina Alexopoulou
- Department of Intensive Care Unit, University Hospital of Heraklion, 71500 Heraklion, Greece
| | - Alexandros Zampetakis
- Division of Psychiatry and Behavioral Sciences, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Andronikos Ganiaris
- Division of Psychiatry and Behavioral Sciences, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Marina Aligizaki
- Division of Psychiatry and Behavioral Sciences, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Panagiotis Simos
- Division of Psychiatry and Behavioral Sciences, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Computational Biomedicine Lab, Institute of Computer Science, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| | - Alexandros N. Vgontzas
- Division of Psychiatry and Behavioral Sciences, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Sleep Research and Treatment Center, Department of Psychiatry, Penn State University, State College, PA 16802, USA
| |
Collapse
|
35
|
Anti-Inflammatory Effects of Flavonoids in Common Neurological Disorders Associated with Aging. Int J Mol Sci 2023; 24:ijms24054297. [PMID: 36901731 PMCID: PMC10001833 DOI: 10.3390/ijms24054297] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Aging reduces homeostasis and contributes to increasing the risk of brain diseases and death. Some of the principal characteristics are chronic and low-grade inflammation, a general increase in the secretion of proinflammatory cytokines, and inflammatory markers. Aging-related diseases include focal ischemic stroke and neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Flavonoids are the most common class of polyphenols and are abundantly found in plant-based foods and beverages. A small group of individual flavonoid molecules (e.g., quercetin, epigallocatechin-3-gallate, and myricetin) has been used to explore the anti-inflammatory effect in vitro studies and in animal models of focal ischemic stroke and AD and PD, and the results show that these molecules reduce the activated neuroglia and several proinflammatory cytokines, and also, inactivate inflammation and inflammasome-related transcription factors. However, the evidence from human studies has been limited. In this review article, we highlight the evidence that individual natural molecules can modulate neuroinflammation in diverse studies from in vitro to animal models to clinical studies of focal ischemic stroke and AD and PD, and we discuss future areas of research that can help researchers to develop new therapeutic agents.
Collapse
|
36
|
Andronie-Cioara FL, Ardelean AI, Nistor-Cseppento CD, Jurcau A, Jurcau MC, Pascalau N, Marcu F. Molecular Mechanisms of Neuroinflammation in Aging and Alzheimer's Disease Progression. Int J Mol Sci 2023; 24:ijms24031869. [PMID: 36768235 PMCID: PMC9915182 DOI: 10.3390/ijms24031869] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/01/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Aging is the most prominent risk factor for late-onset Alzheimer's disease. Aging associates with a chronic inflammatory state both in the periphery and in the central nervous system, the evidence thereof and the mechanisms leading to chronic neuroinflammation being discussed. Nonetheless, neuroinflammation is significantly enhanced by the accumulation of amyloid beta and accelerates the progression of Alzheimer's disease through various pathways discussed in the present review. Decades of clinical trials targeting the 2 abnormal proteins in Alzheimer's disease, amyloid beta and tau, led to many failures. As such, targeting neuroinflammation via different strategies could prove a valuable therapeutic strategy, although much research is still needed to identify the appropriate time window. Active research focusing on identifying early biomarkers could help translating these novel strategies from bench to bedside.
Collapse
Affiliation(s)
- Felicia Liana Andronie-Cioara
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Adriana Ioana Ardelean
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Carmen Delia Nistor-Cseppento
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (C.D.N.-C.); (N.P.)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | | | - Nicoleta Pascalau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (C.D.N.-C.); (N.P.)
| | - Florin Marcu
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
37
|
Silveira PCL, Rodrigues MS, Gelain DP, de Oliveira J. Gold nanoparticles application to the treatment of brain dysfunctions related to metabolic diseases: evidence from experimental studies. Metab Brain Dis 2023; 38:123-135. [PMID: 35922735 DOI: 10.1007/s11011-022-00929-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 02/03/2023]
Abstract
Nanotechnology is an emerging and expanding technology worldwide. The manipulation of materials on a nanometric scale generates new products with unique properties called nanomaterials. Due to its significant expansion, nanotechnology has been applied in several fields of study, including developing materials for biomedical applications, i.e., nanomedicine. The use of nanomaterials, including nanoparticles, in nanomedicine, is promising and has been associated with pharmacokinetics, bioavailability, and therapeutic advantages. In this regard, it is worth mentioning the Gold Nanoparticles (AuNPs). AuNPs' biomedical application is extensively investigated due to their high biocompatibility, simple preparation, catalytic, and redox properties. Experimental studies have pointed out critical therapeutic actions related to AuNPs in different pathophysiological contexts, mainly due to their anti-inflammatory and antioxidant effects. Thus, in this review, we will discuss the main experimental findings related to the therapeutic properties of AuNPs in metabolic, neurodegenerative diseases, and ultimately brain dysfunctions related to metabolic diseases.
Collapse
Affiliation(s)
- Paulo César Lock Silveira
- Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Matheus Scarpatto Rodrigues
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Daniel Pens Gelain
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jade de Oliveira
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
38
|
Azmi NH, Ismail N, Imam MU, Ooi DJ, Oslan SNH. Modulation of High-Fat Diet-Induced Brain Oxidative Stress by Ferulate-Rich Germinated Brown Rice Ethyl Acetate Extract. Molecules 2022; 27:molecules27154907. [PMID: 35956857 PMCID: PMC9369880 DOI: 10.3390/molecules27154907] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
The oxidative stress resulting from the production of reactive oxygen species plays a vital role in inflammatory processes and is associated with neurodegenerative changes. In view of the ability of germinated brown rice (GBR) to improve learning and memory, this present study aimed to investigate the mechanistic basis of GBR’s neuroprotection in a high-fat diet (HFD)-induced oxidative changes in adult Sprague–Dawley rats. Ferulate-rich GBR ethyl acetate extract (GBR-EA; 100 mg/kg and 200 mg/kg body weight) was supplemented orally for the last 3 months of 6 months HFD feeding during the study. GBR-EA supplementation was found to improve lipid profile and serum antioxidant status, when compared to the HFD group. Elevated mRNA expressions of SOD1, SOD2, SOD3, Catalase, and GPX were demonstrated in the frontal cortex and hippocampus of GBR-EA treated animals. The pro-inflammatory changes induced by HFD in the hippocampus were attenuated by GBR-EA through the downregulation of CRP and TNF- α and upregulation of PPAR-γ. GBR also reduced the hippocampal mRNA expression and enzyme level of acetylcholinesterase. In conclusion, this study proposed the possible transcriptomic regulation of antioxidant and inflammation in neurodegenerative processes resulting from high cholesterol consumption, with an emphasis on GBR’s potential to ameliorate such changes.
Collapse
Affiliation(s)
- Nur Hanisah Azmi
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia;
- Correspondence: (N.H.A.); (N.I.)
| | - Norsharina Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Correspondence: (N.H.A.); (N.I.)
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto P.M.B. 2346, Nigeria;
| | - Der Jiun Ooi
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom 42610, Selangor, Malaysia;
| | - Siti Nur Hazwani Oslan
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia;
| |
Collapse
|
39
|
Carvalho DZ, St. Louis EK, Przybelski SA, Morgenthaler TI, Machulda MM, Boeve BF, Petersen RC, Jack CR, Graff-Radford J, Vemuri P, Mielke MM. Sleepiness in Cognitively Unimpaired Older Adults Is Associated With CSF Biomarkers of Inflammation and Axonal Integrity. Front Aging Neurosci 2022; 14:930315. [PMID: 35898322 PMCID: PMC9309557 DOI: 10.3389/fnagi.2022.930315] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Sleepiness has been associated with cognitive decline and dementia in the elderly. Older adults with excessive daytime sleepiness appear to be more vulnerable to longitudinal amyloid PET accumulation before the onset of the dementia. However, it remains unclear whether sleepiness is similarly associated with other biomarkers of Alzheimer's disease (AD), axonal integrity, and inflammation, which may also contribute to neurodegeneration and cognitive decline. Methods In this cross-sectional analysis, we identified 260 cognitively unimpaired adults (>60 years) from the Mayo Clinic Study of Aging, a population-based cohort from Olmsted County (MN), who underwent CSF quantification of AD biomarkers (Aβ42, p-tau, p-tau/Aβ42) in addition to at least one of the following biomarkers [neurofilament light chain (NfL) interleukin-6 (IL-6), IL-10, and tumor necrosis factor-α (TNF-α)]. We fit linear regression models to assess associations between sleepiness, as measured by the Epworth Sleepiness Scale (ESS), and CSF biomarkers, controlling for age, sex, APOε4 status, body mass index, hypertension, dyslipidemia, and prior diagnosis of obstructive sleep apnea. Results Higher ESS scores were associated with higher CSF IL-6 and NfL, but not with the other CSF biomarkers. For every ESS score point increase, there was a 0.009 ([95% CI 0.001-0.016], p = 0.033) increase in the log of IL-6 and 0.01 ([95% CI 0.002-0.018], p = 0.016) increase in the log of NfL. A sensitivity analysis showed an association between ESS scores and log of p-tau/Aβ42 only in participants with an abnormal ratio (>0.023), highly predictive of amyloid positivity. For every ESS score point increase, there was a 0.006 ([95% CI 0.001-0.012], p = 0.021) increase in the log of CSF p-tau/Aβ42. Conclusion Sleepiness was associated with greater CSF IL-6 and NfL levels, which could contribute to neurodegeneration or alternatively cause sleepiness. Higher NfL levels may result from sleep disruption and/or contribute to sleepiness via disturbed connectivity or damage to wake-promoting centers. Associations between sleepiness and p-tau/Aβ42 in participants with abnormal ratio suggest that amyloid positivity contributes to vulnerability to sleep disturbance, which may further amyloid accumulation in a feed-forward loop process. Prospective studies of these markers are needed to determine cause-effect relationships between these associations.
Collapse
Affiliation(s)
- Diego Z. Carvalho
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Sleep Medicine, Division of Pulmonary and Critical Care, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Erik K. St. Louis
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Sleep Medicine, Division of Pulmonary and Critical Care, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Scott A. Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Timothy I. Morgenthaler
- Center for Sleep Medicine, Division of Pulmonary and Critical Care, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Mary M. Machulda
- Department of Psychology, Mayo Clinic, Rochester, MN, United States
| | - Bradley F. Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Sleep Medicine, Division of Pulmonary and Critical Care, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ronald C. Petersen
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Clifford R. Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | | | | | - Michelle M. Mielke
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
40
|
Reducing PDK1/Akt Activity: An Effective Therapeutic Target in the Treatment of Alzheimer's Disease. Cells 2022; 11:cells11111735. [PMID: 35681431 PMCID: PMC9179555 DOI: 10.3390/cells11111735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a common age-related neurodegenerative disease that leads to memory loss and cognitive function damage due to intracerebral neurofibrillary tangles (NFTs) and amyloid-β (Aβ) protein deposition. The phosphoinositide-dependent protein kinase (PDK1)/protein kinase B (Akt) signaling pathway plays a significant role in neuronal differentiation, synaptic plasticity, neuronal survival, and neurotransmission via the axon–dendrite axis. The phosphorylation of PDK1 and Akt rises in the brain, resulting in phosphorylation of the TNF-α-converting enzyme (TACE) at its cytoplasmic tail (the C-terminal end), changing its internalization as well as its trafficking. The current review aimed to explain the mechanisms of the PDK1/Akt/TACE signaling axis that exerts its modulatory effect on AD physiopathology. We provide an overview of the neuropathological features, genetics, Aβ aggregation, Tau protein hyperphosphorylation, neuroinflammation, and aging in the AD brain. Additionally, we summarized the phosphoinositide 3-kinase (PI3K)/PDK1/Akt pathway-related features and its molecular mechanism that is dependent on TACE in the pathogenesis of AD. This study reviewed the relationship between the PDK1/Akt signaling pathway and AD, and discussed the role of PDK1/Akt in resisting neuronal toxicity by suppressing TACE expression in the cell membrane. This work also provides a perspective for developing new therapeutics targeting PDK1/Akt and TACE for the treatment of AD.
Collapse
|
41
|
Aczel D, Gyorgy B, Bakonyi P, BukhAri R, Pinho R, Boldogh I, Yaodong G, Radak Z. The Systemic Effects of Exercise on the Systemic Effects of Alzheimer's Disease. Antioxidants (Basel) 2022; 11:antiox11051028. [PMID: 35624892 PMCID: PMC9137920 DOI: 10.3390/antiox11051028] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive degenerative disorder and a leading cause of dementia in the elderly. The etiology of AD is multifactorial, including an increased oxidative state, deposition of amyloid plaques, and neurofibrillary tangles of the tau protein. The formation of amyloid plaques is considered one of the first signs of the illness, but only in the central nervous system (CNS). Interestingly, results indicate that AD is not just localized in the brain but is also found in organs distant from the brain, such as the cardiovascular system, gut microbiome, liver, testes, and kidney. These observations make AD a complex systemic disorder. Still, no effective medications have been found, but regular physical activity has been considered to have a positive impact on this challenging disease. While several articles have been published on the benefits of physical activity on AD development in the CNS, its peripheral effects have not been discussed in detail. The provocative question arising is the following: is it possible that the beneficial effects of regular exercise on AD are due to the systemic impact of training, rather than just the effects of exercise on the brain? If so, does this mean that the level of fitness of these peripheral organs can directly or indirectly influence the incidence or progress of AD? Therefore, the present paper aims to summarize the systemic effects of both regular exercise and AD and point out how common exercise-induced adaptation via peripheral organs can decrease the incidence of AD or attenuate the progress of AD.
Collapse
Affiliation(s)
- Dora Aczel
- Research Institute of Sport Science, University of Physical Education, 1123 Budapest, Hungary; (D.A.); (B.G.); (P.B.); (R.B.)
| | - Bernadett Gyorgy
- Research Institute of Sport Science, University of Physical Education, 1123 Budapest, Hungary; (D.A.); (B.G.); (P.B.); (R.B.)
| | - Peter Bakonyi
- Research Institute of Sport Science, University of Physical Education, 1123 Budapest, Hungary; (D.A.); (B.G.); (P.B.); (R.B.)
| | - RehAn BukhAri
- Research Institute of Sport Science, University of Physical Education, 1123 Budapest, Hungary; (D.A.); (B.G.); (P.B.); (R.B.)
| | - Ricardo Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil;
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Gu Yaodong
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, 1123 Budapest, Hungary; (D.A.); (B.G.); (P.B.); (R.B.)
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
- Correspondence: ; Tel.: +36-1-3565764; Fax: +36-1-3566337
| |
Collapse
|
42
|
Piccialli I, Tedeschi V, Caputo L, D’Errico S, Ciccone R, De Feo V, Secondo A, Pannaccione A. Exploring the Therapeutic Potential of Phytochemicals in Alzheimer’s Disease: Focus on Polyphenols and Monoterpenes. Front Pharmacol 2022; 13:876614. [PMID: 35600880 PMCID: PMC9114803 DOI: 10.3389/fphar.2022.876614] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/11/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic, complex neurodegenerative disorder mainly characterized by the irreversible loss of memory and cognitive functions. Different hypotheses have been proposed thus far to explain the etiology of this devastating disorder, including those centered on the Amyloid-β (Aβ) peptide aggregation, Tau hyperphosphorylation, neuroinflammation and oxidative stress. Nonetheless, the therapeutic strategies conceived thus far to treat AD neurodegeneration have proven unsuccessful, probably due to the use of single-target drugs unable to arrest the progressive deterioration of brain functions. For this reason, the theoretical description of the AD etiology has recently switched from over-emphasizing a single deleterious process to considering AD neurodegeneration as the result of different pathogenic mechanisms and their interplay. Moreover, much relevance has recently been conferred to several comorbidities inducing insulin resistance and brain energy hypometabolism, including diabetes and obesity. As consequence, much interest is currently accorded in AD treatment to a multi-target approach interfering with different pathways at the same time, and to life-style interventions aimed at preventing the modifiable risk-factors strictly associated with aging. In this context, phytochemical compounds are emerging as an enormous source to draw on in the search for multi-target agents completing or assisting the traditional pharmacological medicine. Intriguingly, many plant-derived compounds have proven their efficacy in counteracting several pathogenic processes such as the Aβ aggregation, neuroinflammation, oxidative stress and insulin resistance. Many strategies have also been conceived to overcome the limitations of some promising phytochemicals related to their poor pharmacokinetic profiles, including nanotechnology and synthetic routes. Considering the emerging therapeutic potential of natural medicine, the aim of the present review is therefore to highlight the most promising phytochemical compounds belonging to two major classes, polyphenols and monoterpenes, and to report the main findings about their mechanisms of action relating to the AD pathogenesis.
Collapse
Affiliation(s)
- Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Stefano D’Errico
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
- *Correspondence: Anna Pannaccione,
| |
Collapse
|
43
|
Liu P, Wang Y, Sun Y, Peng G. Neuroinflammation as a Potential Therapeutic Target in Alzheimer’s Disease. Clin Interv Aging 2022; 17:665-674. [PMID: 35520949 PMCID: PMC9064449 DOI: 10.2147/cia.s357558] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022] Open
Abstract
Although amyloid-β (Aβ) peptide accumulation is considered as a key early event in the pathogenesis of Alzheimer’s disease (AD), the precise pathophysiology of this deadly illness remains unclear and no effective remedies capable of inhibiting disease progression have been discovered. In addition to deposition of extracellular Aβ plaques and intracellular neurofibrillary tangles, neuroinflammation has been identified as the third core characteristic crucial in the pathogenesis of AD. More and more evidence from laboratory and clinical studies have suggested that anti-inflammatory treatments could defer or prevent the occurrence of AD. In this review, we will discuss multifaceted evidence of neuroinflammation presented in AD and the newly emerged anti-inflammatory targets both in pre-clinical and clinical AD.
Collapse
Affiliation(s)
- Ping Liu
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yunyun Wang
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Department of Neurology, Shengzhou People’s Hospital, Shaoxing, People’s Republic of China
| | - Yan Sun
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Guoping Peng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Correspondence: Guoping Peng, Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, People’s Republic of China, Tel +86 13588150613, Email
| |
Collapse
|
44
|
Bogár F, Fülöp L, Penke B. Novel Therapeutic Target for Prevention of Neurodegenerative Diseases: Modulation of Neuroinflammation with Sig-1R Ligands. Biomolecules 2022; 12:363. [PMID: 35327555 PMCID: PMC8945408 DOI: 10.3390/biom12030363] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are characterized by progressive deterioration of the structure and function of cells and their networks in the nervous system. There are currently no drugs or other treatments that can stop the progression of NDDs. NDDs have many similarities and common pathways, e.g., formation of misfolded amyloid proteins, intra- and extracellular amyloid deposits, and chronic inflammation. Initially, the inflammation process has a cytoprotective function; however, an elevated and prolonged immune response has damaging effects and causes cell death. Neuroinflammation has been a target of drug development for treating and curing NDDs. Treatment of different NDDs with non-steroid anti-inflammatory drugs (NSAIDs) has failed or has given inconsistent results. The use of NSAIDs in diagnosed Alzheimer's disease is currently not recommended. Sigma-1 receptor (Sig-1R) is a novel target for NDD drug development. Sig-1R plays a key role in cellular stress signaling, and it regulates endoplasmic reticulum stress and unfolded protein response. Activation of Sig-1R provides neuroprotection in cell cultures and animal studies. Clinical trials demonstrated that several Sig-1R agonists (pridopidine, ANAVEX3-71, fluvoxamine, dextrometorphan) and their combinations have a neuroprotective effect and slow down the progression of distinct NDDs.
Collapse
Affiliation(s)
- Ferenc Bogár
- MTA-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), Dóm Square 8, H-6720 Szeged, Hungary;
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary;
| | - Lívia Fülöp
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary;
| | - Botond Penke
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary;
| |
Collapse
|
45
|
Ning P, Luo A, Mu X, Xu Y, Li T. Exploring the dual character of metformin in Alzheimer's disease. Neuropharmacology 2022; 207:108966. [PMID: 35077762 DOI: 10.1016/j.neuropharm.2022.108966] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/17/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which results in dementia typically in the elderly. The disease is mainly characterized by the deposition of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain. However, only few drugs are available for AD because of its unknown pathological mechanism which limits the development of new drugs. Therefore, it is urgent to identify potential therapeutic strategies for AD. Moreover, research have showed that there is a significant association between Type 2 diabetes mellites (T2DM) and AD, suggesting that the two diseases may share common pathophysiological mechanisms. Such mechanisms include impaired insulin signaling, altered glucose metabolism, inflammation, oxidative stress, and premature aging, which strongly affect cognitive function and increased risk of dementia. Consequently, as a widely used drug for T2DM, metformin also has therapeutic potential for AD in vivo. It has been confirmed that metformin is beneficial on the brain of AD animal models. The mechanisms underlying the effects of metformin in Alzheimer's disease are complex and multifaceted. Metformin may work through mechanisms involving homeostasis of glucose metabolism, decrease of amyloid plaque deposition, normalization of tau protein phosphorylation and enhancement of autophagy. However, in clinical trials, metformin had little effects on patients with mild cognitive impairment or mild AD. Pathological effects and negative clinical results of metformin on AD make the current topic quite controversial. By reviewing the latest progress of related research, this paper summarizes the possible role of metformin in AD. The purpose of this study is not only to determine the potential treatment of AD, but also other related neurodegenerative diseases.
Collapse
Affiliation(s)
- Pingping Ning
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, PR China.
| | - Anling Luo
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, PR China.
| | - Xin Mu
- Department of Neurology, Chengdu First People's Hospital, 18 Wanxiang North Road, Chengdu, Sichuan Province, 610041, PR China.
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, PR China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University/Air Force Medical University, No. 169 Changle West Rd, Xi'an, 710032, PR China.
| |
Collapse
|
46
|
Zimmermann M, Brockmann K. Blood and Cerebrospinal Fluid Biomarkers of Inflammation in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S183-S200. [PMID: 35661021 PMCID: PMC9535573 DOI: 10.3233/jpd-223277] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
Given the clear role of inflammation in the pathogenesis of Parkinson's disease (PD) and its impact on incidence and phenotypical characteristics, this review provides an overview with focus on inflammatory biofluid markers in blood and cerebrospinal fluid (CSF) in PD patient cohorts. In preparation for clinical trials targeting the immune system, we specifically address the following questions: 1) What evidence do we have for pro-inflammatory profiles in blood and in CSF of sporadic and genetic PD patients? 2) Is there a role of anti-inflammatory mediators in blood/CSF? 3) Do inflammatory profiles in blood reflect those in CSF indicative of a cross-talk between periphery and brain? 4) Do blood/CSF inflammatory profiles change over the disease course as assessed in repeatedly taken biosamples? 5) Are blood/CSF inflammatory profiles associated with phenotypical trajectories in PD? 6) Are blood/CSF inflammatory profiles associated with CSF levels of neurodegenerative/PD-specific biomarkers? Knowledge on these questions will inform future strategies for patient stratification and cohort enrichment as well as suitable outcome measures for clinical trials.
Collapse
Affiliation(s)
- Milan Zimmermann
- Center of Neurology, Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
- German Center for Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| | - Kathrin Brockmann
- Center of Neurology, Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
- German Center for Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|