1
|
Wang TY, Yang Q, Cheng XY, Ding JC, Hu PF. Beyond weight loss: the potential of glucagon-like peptide-1 receptor agonists for treating heart failure with preserved ejection fraction. Heart Fail Rev 2025; 30:17-38. [PMID: 39269643 DOI: 10.1007/s10741-024-10438-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome with various phenotypes, and obesity is one of the most common and clinically relevant phenotypes of HFpEF. Obesity contributes to HFpEF through multiple mechanisms, including sodium retention, neurohormonal dysregulation, altered energy substrate metabolism, expansion of visceral adipose tissue, and low-grade systemic inflammation. Glucagon-like peptide-1 (GLP-1) is a hormone in the incretin family. It is produced by specialized cells called neuroendocrine L cells located in the distal ileum and colon. GLP-1 reduces blood glucose levels by promoting glucose-dependent insulin secretion from pancreatic β cells, suppressing glucagon release from pancreatic α cells, and blocking hepatic gluconeogenesis. Recent evidence suggests that GLP-1 receptor agonists (GLP-1 RAs) can significantly improve physical activity limitations and exercise capacity in obese patients with HFpEF. The possible cardioprotective mechanisms of GLP-1 RAs include reducing epicardial fat tissue thickness, preventing activation of the renin-angiotensin-aldosterone system, improving myocardial energy metabolism, reducing systemic inflammation and cardiac oxidative stress, and delaying the progression of atherosclerosis. This review examines the impact of obesity on the underlying mechanisms of HFpEF, summarizes the trial data on cardiovascular outcomes of GLP-1 RAs in patients with type 2 diabetes mellitus, and highlights the potential cardioprotective mechanisms of GLP-1 RAs to give a pathophysiological and clinical rationale for using GLP-1 RAs in obese HFpEF patients.
Collapse
Affiliation(s)
- Tian-Yu Wang
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang Yang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin-Yi Cheng
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun-Can Ding
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peng-Fei Hu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
2
|
Sun Y, Hu Z, Han J, Li G. SP1-mediated transcriptional repression of SFRP5 is correlated with cardiac fibroblast activation and atrial myocyte apoptosis in the development of atrial fibrillation. Exp Cell Res 2024; 443:114326. [PMID: 39536929 DOI: 10.1016/j.yexcr.2024.114326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Secreted frizzled related protein 5 (SFRP5) is a recognized cardioprotective protein with diminished expression in atrial fibrillation (AF). This study investigates SFRP5's function in AF-related cardiac fibrosis and cardiomyocyte apoptosis, exploring the underlying dysregulation causes. Utilizing C57BL/6 mice, mouse cardiac fibroblasts (CFs), and HC-1 mouse atrial myocyte cell line, AF models were induced by angiotensin Ⅱ (Ang Ⅱ). SFRP5 levels were consistently decreased in plasma samples from clinical patients, modeled mice, and CF culture supernatants. Treatment with recombinant SFRP5 restored its levels, mitigating Ang Ⅱ-induced AF in mice and ameliorating atrial tissue fibrosis and oxidative stress. In vitro, SFRP5 recombinant protein suppressed CF activation and fibrosis-related markers. The study identified Sp1 transcription factor (SP1) binding to the SFRP5 promoter, causing transcriptional repression. SP1 knockdown reinstated SFRP5 levels in mice and CFs, thus suppressing fibrosis. Additionally, SP1 knockdown attenuated Ang Ⅱ-induced apoptosis in HC-1 cells, but this effect was counteracted by concurrent SFRP5 knockdown. In conclusion, this investigation underscores that SP1 mediates SFRP5 loss during AF by transcriptional repression, contributing to fibrosis and myocyte apoptosis. These findings illuminate potential therapeutic interventions targeting the SFRP5-SP1 axis in AF-related cardiac complications.
Collapse
Affiliation(s)
- Yanyan Sun
- Department of Cardiology, Henan Provincial Chest Hospital, Zhengzhou, 450000, Henan, PR China.
| | - Zhenzhen Hu
- Department of Cardiology, Henan Provincial Chest Hospital, Zhengzhou, 450000, Henan, PR China
| | - Jie Han
- Department of Cardiology, Henan Provincial Chest Hospital, Zhengzhou, 450000, Henan, PR China
| | - Gang Li
- Department of Cardiology, Henan Provincial Chest Hospital, Zhengzhou, 450000, Henan, PR China
| |
Collapse
|
3
|
Zhang J, Sun J, Gu X, Shen Y, Sun H. Transcriptome sequencing analysis reveals the molecular regulatory mechanism of myocardial hypertrophy induced by angiotensin II. Biochem Pharmacol 2024; 229:116532. [PMID: 39270943 DOI: 10.1016/j.bcp.2024.116532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
The pathogenesis of myocardial hypertrophy remains incompletely understood, highlighting the critical need for in-depth investigation into its pathogenesis and pathophysiology to develop innovative strategies for preventing and treating heart diseases. In this study, a model of angiotensin II (Ang II)-induced myocardial hypertrophy was established using subcutaneous administration with a micropump. Echocardiography, wheat germ agglutinin staining, and western blot analysis were used to evaluate the myocardial hypertrophy model after 5, 10, and 15 days of Ang II treatment. RNA-seq was employed to analyze the differential expression profile of mRNA, followed by bioinformatics analysis. Subsequently, the anti-inflammatory drug meloxicam was utilized to explore its impact on cardiac hypertrophy in mice. The findings demonstrated that mice developed myocardial hypertrophy following subcutaneous administration of Ang II. Transcriptomic analysis revealed significant changes in gene expression in the myocardium induced by Ang II, with the most pronounced differences observed at day 10. Functional analysis and verification of differentially expressed genes indicated that Ang II triggered an inflammatory response in the myocardium, leading to up-regulation of genes associated with fibrosis and apoptosis while decreasing energy metabolism; alterations were also observed in genes related to oxidative stress and calcium ion binding. Treatment with meloxicam improved Ang II-induced myocardial hypertrophy. This study not only elucidated the molecular regulatory mechanism underlying mouse myocardial hypertrophy at a transcriptional level but also provided new insights into clinical prevention and treatment strategies for cardiac diseases such as dilated cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Jingjing Zhang
- Laboratory of General Surgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Jiacheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| |
Collapse
|
4
|
Shaftoe JB, Gillis TE. Effects of hemodynamic load on cardiac remodeling in fish and mammals: the value of comparative models. J Exp Biol 2024; 227:jeb247836. [PMID: 39429041 DOI: 10.1242/jeb.247836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The ability of the vertebrate heart to remodel enables the cardiac phenotype to be responsive to changes in physiological conditions and aerobic demand. Examples include exercise-induced cardiac hypertrophy, and the significant remodeling of the trout heart during thermal acclimation. Such changes are thought to occur in response to a change in hemodynamic load (i.e. the forces that the heart must work against to circulate blood). Variations in hemodynamic load are caused by either a volume overload (high volume of blood returning to the heart, impairing contraction) or a pressure overload (elevated afterload pressure that the heart must contract against). The changes observed in the heart during remodeling are regulated by multiple cellular signaling pathways. The cardiac response to these regulatory mechanisms occurs across levels of biological organization, affecting cardiac morphology, tissue composition and contractile function. Importantly, prolonged exposure to pressure overload can cause a physiological response - that improves function - to transition to a pathological response that causes loss of function. This Review explores the role of changes in hemodynamic load in regulating the remodeling response, and considers the cellular signals responsible for regulating remodeling, incorporating knowledge gained from studying biomedical models and comparative animal models. We specifically focus on the renin-angiotensin system, and the role of nitric oxide, oxygen free radicals and transforming growth factor beta. Through this approach, we highlight the strong conservation of the regulatory pathways of cardiac remodeling, and the specific conditions within endotherms that may be conducive to the development of pathological phenotypes.
Collapse
Affiliation(s)
- Jared B Shaftoe
- Department of Integrative Biology, University of Guelph, Ontario, Canada, N1G 2W1
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
5
|
Alammari AH, Isse FA, O'Croinin C, Davies NM, El-Kadi AOS. Effect of Cannabistilbene I in Attenuating Angiotensin II-Induced Cardiac Hypertrophy: Insights into Cytochrome P450s and Arachidonic Acid Metabolites Modulation. Cannabis Cannabinoid Res 2024. [PMID: 39324890 DOI: 10.1089/can.2024.0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Introduction: This research investigated the impact of Cannabistilbene I on Angiotensin II (Ang II)-induced cardiac hypertrophy and its potential role in cytochrome P450 (CYP) enzymes and arachidonic acid (AA) metabolic pathways. Cardiac hypertrophy, a response to increased stress on the heart, can lead to severe cardiovascular diseases if not managed effectively. CYP enzymes and AA metabolites play critical roles in cardiac function and hypertrophy, making them important targets for therapeutic intervention. Methods: Adult human ventricular cardiomyocyte cell line (AC16) was cultured and treated with Cannabistilbene I in the presence and absence of Ang II. The effects on mRNA expression related to cardiac hypertrophic markers and CYP were analyzed using real-time polymerase chain reaction, while CYP protein levels were measured by Western blot analysis. AA metabolites were quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results: Results showed that Ang II triggered hypertrophy, as evidenced by the increase in hypertrophic marker expression, and enlarged the cell surface area, effects that were alleviated by Cannabistilbene I. Gene expression analysis indicated that Cannabistilbene I upregulated CYP1A1, leading to increased enzymatic activity, as evidenced by 7-ethoxyresorufin-O-deethylase assay. Furthermore, LC-MS/MS analysis of AA metabolites revealed that Ang II elevated midchain (R/S)-hydroxyeicosatetraenoic acid (HETE) concentrations, which were reduced by Cannabistilbene I. Notably, Cannabistilbene I selectively increased 19(S)-HETE concentration and reversed the Ang II-induced decline in 19(S)-HETE, suggesting a unique protective role. Conclusion: This study provides new insights into the potential of Cannabistilbene I in modulating AA metabolites and reducing Ang II-induced cardiac hypertrophy, revealing a new candidate as a therapeutic agent for cardiac hypertrophy.
Collapse
Affiliation(s)
- Ahmad H Alammari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Fadumo Ahmed Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Conor O'Croinin
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Neal M Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
6
|
Telesca M, De Angelis A, Donniacuo M, Bellocchio G, Riemma MA, Mele E, Canonico F, Cianflone E, Torella D, D'Amario D, Patti G, Liantonio A, Imbrici P, De Luca A, Castaldo G, Rossi F, Cappetta D, Urbanek K, Berrino L. Effects of sacubitril-valsartan on aging-related cardiac dysfunction. Eur J Pharmacol 2024; 978:176794. [PMID: 38968980 DOI: 10.1016/j.ejphar.2024.176794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Heart failure (HF) remains a huge medical burden worldwide, with aging representing a major risk factor. Here, we report the effects of sacubitril/valsartan, an approved drug for HF with reduced EF, in an experimental model of aging-related HF with preserved ejection fraction (HFpEF). Eighteen-month-old female Fisher 344 rats were treated for 12 weeks with sacubitril/valsartan (60 mg/kg/day) or with valsartan (30 mg/kg/day). Three-month-old rats were used as control. No differential action of sacubitril/valsartan versus valsartan alone, either positive or negative, was observed. The positive effects of both sacubitril/valsartan and valsartan on cardiac hypertrophy was evidenced by a significant reduction of wall thickness and myocyte cross-sectional area. Contrarily, myocardial fibrosis in aging heart was not reduced by any treatment. Doppler echocardiography and left ventricular catheterization evidenced diastolic dysfunction in untreated and treated old rats. In aging rats, both classical and non-classical renin-angiotensin-aldosterone system (RAAS) were modulated. In particular, with respect to untreated animals, both sacubitril/valsartan and valsartan showed a partial restoration of cardioprotective non-classical RAAS. In conclusion, this study evidenced the favorable effects, by both treatments, on age-related cardiac hypertrophy. The attenuation of cardiomyocyte size and hypertrophic response may be linked to a shift towards cardioprotective RAAS signaling. However, diastolic dysfunction and cardiac fibrosis persisted despite of treatment and were accompanied by myocardial inflammation, endothelial activation, and oxidative stress.
Collapse
Affiliation(s)
- Marialucia Telesca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Maria Donniacuo
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73047, Lecce, Italy
| | - Gabriella Bellocchio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Maria Antonietta Riemma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Elena Mele
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Francesco Canonico
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, 88100, Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Domenico D'Amario
- Department of Translational Medicine, Università del Piemonte Orientale, via Solaroli, 17, 28100, Novara, Italy
| | - Giuseppe Patti
- Department of Translational Medicine, Università del Piemonte Orientale, via Solaroli, 17, 28100, Novara, Italy
| | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131, Naples, Italy; CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80131, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73047, Lecce, Italy.
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131, Naples, Italy; CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80131, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| |
Collapse
|
7
|
Asiwe JN, Ajayi AM, Ben-Azu B, Fasanmade AA. Vincristine attenuates isoprenaline-induced cardiac hypertrophy in male Wistar rats via suppression of ROS/NO/NF-қB signalling pathways. Microvasc Res 2024; 155:104710. [PMID: 38880384 DOI: 10.1016/j.mvr.2024.104710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Vincristine (VCR), a vinca alkaloid with anti-tumor and anti-oxidant properties, is acclaimed to possess cardioprotective action. However, the molecular mechanism underlying this protective effect remains unknown. This study investigated the effects of VCR on isoprenaline (ISO), a beta-adrenergic receptor agonist, induced cardiac hypertrophy in male Wistar rats. Animals were pre-treated with ISO (1 mg/kg) intraperitoneally for 14 days before VCR (25 μg/kg) intraperitoneal injection from days 1 to 28. Thereafter, mechanical, and electrical activities of the hearts of the rats were measured using a non-invasive blood pressure monitor and an electrocardiograph, respectively. After which, the heart was homogenized, and supernatants were assayed for contractile proteins: endothelin-1, cardiac troponin-1, angiotensin-II, and creatine kinase-MB, with markers of oxidative/nitrergic stress (SOD, CAT, MDA, GSH, and NO), inflammation (TNF-a and IL-6, NF-kB), and caspase-3 indicative of VCR reduced elevated blood pressure and reversed the abnormal electrocardiogram. ISO-induced increased endothelin-1, cardiac troponin-1, angiotensin-II, and creatine phosphokinase-MB, which were reversed by VCR. ISO also increased TNF-α, IL-6, NF-kB expression with increased caspase-3-mediated apoptosis in the heart. However, VCR reduced ISO-induced inflammation and apoptosis, with improved endogenous antioxidant agents (GSH, SOD, CAT) relative to ISO controls. Moreso, VCR, protected against ISO-induced histoarchitectural degeneration of cardiac myofibre. The result of this study revealed that VCR treatment significantly reverses ISO-induced cardiac hypertrophic phenotypes, via mechanisms connected to improved levels of proteins involved in excitation-contraction, and suppression of oxido-inflammatory and apoptotic pathways.
Collapse
Affiliation(s)
- Jerome Ndudi Asiwe
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria; Department of Physiology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria.
| | - Abayomi M Ajayi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | | |
Collapse
|
8
|
Yu T, Gao Q, Zhang G, Li T, Liu X, Li C, Zheng L, Sun X, Wu J, Cao H, Bi F, Wang R, Liang H, Li X, Zhou Y, Lv L, Shan H. lncRNA Gm20257 alleviates pathological cardiac hypertrophy by modulating the PGC-1α-mitochondrial complex IV axis. Front Med 2024; 18:664-677. [PMID: 38926249 DOI: 10.1007/s11684-024-1065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/17/2024] [Indexed: 06/28/2024]
Abstract
Pathological cardiac hypertrophy, a major contributor to heart failure, is closely linked to mitochondrial function. The roles of long noncoding RNAs (lncRNAs), which regulate mitochondrial function, remain largely unexplored in this context. Herein, a previously unknown lncRNA, Gm20257, was identified. It markedly increased under hypertrophic stress in vivo and in vitro. The suppression of Gm20257 by using small interfering RNAs significantly induced cardiomyocyte hypertrophy. Conversely, the overexpression of Gm20257 through plasmid transfection or adeno-associated viral vector-9 mitigated angiotensin II-induced hypertrophic phenotypes in neonatal mouse ventricular cells or alleviated cardiac hypertrophy in a mouse TAC model respectively, thus restoring cardiac function. Importantly, Gm20257 restored mitochondrial complex IV level and enhanced mitochondrial function. Bioinformatics prediction showed that Gm20257 had a high binding score with peroxisome proliferator-activated receptor coactivator-1 (PGC-1α), which could increase mitochondrial complex IV. Subsequently, Western blot analysis results revealed that Gm20257 substantially affected the expression of PGC-1α. Further analyses through RNA immunoprecipitation and immunoblotting following RNA pull-down indicated that PGC-1α was a direct downstream target of Gm20257. This interaction was demonstrated to rescue the reduction of mitochondrial complex IV induced by hypertrophic stress and promote the generation of mitochondrial ATP. These findings suggest that Gm20257 improves mitochondrial function through the PGC-1α-mitochondrial complex IV axis, offering a novel approach for attenuating pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Tong Yu
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Qiang Gao
- Department of Physiology, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China
| | - Guofang Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Tianyu Li
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaoshan Liu
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Chao Li
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lan Zheng
- Department of Physiology, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China
| | - Xiang Sun
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jianbo Wu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Huiying Cao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Fangfang Bi
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ruifeng Wang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Haihai Liang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xuelian Li
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuhong Zhou
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lifang Lv
- Department of Physiology, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China.
- The Center of Functional Experiment Teaching, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China.
| | - Hongli Shan
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China.
| |
Collapse
|
9
|
Zhu T, Ye Z, Song J, Zhang J, Zhao Y, Xu F, Wang J, Huang X, Gao B, Li F. Effect of extracellular matrix stiffness on efficacy of Dapagliflozin for diabetic cardiomyopathy. Cardiovasc Diabetol 2024; 23:273. [PMID: 39049086 PMCID: PMC11270890 DOI: 10.1186/s12933-024-02369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Extracellular matrix (ECM) stiffness is closely related to the progress of diabetic cardiomyopathy (DCM) and the response of treatment of DCM to anti-diabetic drugs. Dapagliflozin (Dapa) has been proven to have cardio-protective efficacy for diabetes and listed as the first-line drug to treat heart failure. But the regulatory relationship between ECM stiffness and treatment efficacy of Dapa remains elusive. MATERIALS AND METHODS This work investigated the effect of ECM stiffness on DCM progression and Dapa efficacy using both in vivo DCM rat model and in vitro myocardial cell model with high glucose injury. First, through DCM rat models with various levels of myocardial injury and administration with Dapa treatment for four weeks, the levels of myocardial injury, myocardial oxidative stress, expressions of AT1R (a mechanical signal protein) and the stiffness of myocardial tissues were obtained. Then for mimicking the stiffness of myocardial tissues at early and late stages of DCM, we constructed cell models through culturing H9c2 myocardial cells on the polyacrylamide gels with two stiffness and exposed to a high glucose level and without/with Dapa intervention. The cell viability, reactive oxygen species (ROS) levels and expressions of mechanical signal sensitive proteins were obtained. RESULTS The DCM progression is accompanied by the increased myocardial tissue stiffness, which can synergistically exacerbate myocardial cell injury with high glucose. Dapa can improve the ECM stiffness-induced DCM progression and its efficacy on DCM is more pronounced on the soft ECM, which is related to the regulation pathway of AT1R-FAK-NOX2. Besides, Dapa can inhibit the expression of the ECM-induced integrin β1, but without significant impact on piezo 1. CONCLUSIONS Our study found the regulation and effect of biomechanics in the DCM progression and on the Dapa efficacy on DCM, providing the new insights for the DCM treatment. Additionally, our work showed the better clinical prognosis of DCM under early Dapa intervention.
Collapse
Affiliation(s)
- Tong Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Department of Cardiovasology, Xidian Group Hospital, Xi'an, 710077, P.R. China
| | - Zhaoyang Ye
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jingjing Song
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Junjie Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yuxiang Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jun Wang
- Department of Health Evaluation and Promotion, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Xin Huang
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Bin Gao
- Department of Endocrinology, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, P.R. China.
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
| |
Collapse
|
10
|
Méndez-Fernández A, Fernández-Mora Á, Bernal-Ramírez J, Alves-Figueiredo H, Nieblas B, Salazar-Ramírez F, Maldonado-Ruiz R, Zazueta C, García N, Lozano O, Treviño V, Torre-Amione G, García-Rivas G. Distinguishing pathophysiological features of heart failure with reduced and preserved ejection fraction: A comparative analysis of two mouse models. J Physiol 2024. [PMID: 39018163 DOI: 10.1113/jp286410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/25/2024] [Indexed: 07/19/2024] Open
Abstract
Heart failure (HF) is a heterogeneous condition that can be categorized according to the left ventricular ejection fraction (EF) into HF with reduced (HFrEF) or preserved (HFpEF) EF. Although HFrEF and HFpEF share some common clinical manifestations, the mechanisms underlying each phenotype are often found to be distinct. Identifying shared and divergent pathophysiological features might expand our insights on HF pathophysiology and assist the search for therapies for each HF subtype. In this study, we evaluated and contrasted two new murine models of non-ischaemic HFrEF and cardiometabolic HFpEF in terms of myocardial structure, left ventricular function, gene expression, cardiomyocyte calcium handling, mitochondrial polarization and protein acetylation in a head-to-head fashion. We found that in conditions of similar haemodynamic stress, the HFrEF myocardium underwent a more pronounced hypertrophic and fibrotic remodelling, whereas inflammation was greater in the HFpEF myocardium. We observed opposing features on calcium release, which was diminished in the HFrEF cardiomyocyte but enhanced in the HFpEF cardiomyocyte. Mitochondria were less polarized in both HFrEF and HFpEF cardiomyocytes, reflecting similarly impaired metabolic capacity. Hyperacetylation of cardiac proteins was observed in both models, but it was more accentuated in the HFpEF heart. Despite shared features, unique triggering mechanisms (neurohormonal overactivation in HFrEF vs. inflammation in HFpEF) appear to determine the distinct phenotypes of HF. The findings of the present research stress the need for further exploration of the differential mechanisms underlying each HF subtype, because they might require specific therapeutic interventions. KEY POINTS: The mechanisms underlying heart failure with either reduced (HFrEF) or preserved (HFpEF) ejection fraction are often found to be different. Previous studies comparing pathophysiological traits between HFrEF and HFpEF have been conducted on animals of different ages and strains. The present research contrasted two age-matched mouse models of non-ischaemic HFrEF and cardiometabolic HFpEF to uncover divergent and shared features. We found that upon similar haemodynamic stress, the HFrEF heart experienced a more pronounced hypertrophic and fibrotic remodelling, whereas inflammation appeared to be greater in the HFpEF myocardium. Calcium release was diminished in the HFrEF cardiomyocyte and enhanced in the HFpEF cardiomyocyte. Mitochondria were comparably less polarized in both HFrEF and HFpEF myocytes. Hyperacetylation of proteins was common to both models, but stronger in the HFpEF heart. Casting light on common and distinguishing features might ease the quest for phenotype-specific therapies for heart failure patients.
Collapse
Affiliation(s)
- Abraham Méndez-Fernández
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Ángel Fernández-Mora
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Judith Bernal-Ramírez
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Hugo Alves-Figueiredo
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Bianca Nieblas
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Felipe Salazar-Ramírez
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Roger Maldonado-Ruiz
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ciudad de Mexico, Mexico
| | - Noemí García
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Omar Lozano
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Víctor Treviño
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Guillermo Torre-Amione
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Gerardo García-Rivas
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| |
Collapse
|
11
|
Dhalla NS, Mota KO, Elimban V, Shah AK, de Vasconcelos CML, Bhullar SK. Role of Vasoactive Hormone-Induced Signal Transduction in Cardiac Hypertrophy and Heart Failure. Cells 2024; 13:856. [PMID: 38786079 PMCID: PMC11119949 DOI: 10.3390/cells13100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Heart failure is the common concluding pathway for a majority of cardiovascular diseases and is associated with cardiac dysfunction. Since heart failure is invariably preceded by adaptive or maladaptive cardiac hypertrophy, several biochemical mechanisms have been proposed to explain the development of cardiac hypertrophy and progression to heart failure. One of these includes the activation of different neuroendocrine systems for elevating the circulating levels of different vasoactive hormones such as catecholamines, angiotensin II, vasopressin, serotonin and endothelins. All these hormones are released in the circulation and stimulate different signal transduction systems by acting on their respective receptors on the cell membrane to promote protein synthesis in cardiomyocytes and induce cardiac hypertrophy. The elevated levels of these vasoactive hormones induce hemodynamic overload, increase ventricular wall tension, increase protein synthesis and the occurrence of cardiac remodeling. In addition, there occurs an increase in proinflammatory cytokines and collagen synthesis for the induction of myocardial fibrosis and the transition of adaptive to maladaptive hypertrophy. The prolonged exposure of the hypertrophied heart to these vasoactive hormones has been reported to result in the oxidation of catecholamines and serotonin via monoamine oxidase as well as the activation of NADPH oxidase via angiotensin II and endothelins to promote oxidative stress. The development of oxidative stress produces subcellular defects, Ca2+-handling abnormalities, mitochondrial Ca2+-overload and cardiac dysfunction by activating different proteases and depressing cardiac gene expression, in addition to destabilizing the extracellular matrix upon activating some metalloproteinases. These observations support the view that elevated levels of various vasoactive hormones, by producing hemodynamic overload and activating their respective receptor-mediated signal transduction mechanisms, induce cardiac hypertrophy. Furthermore, the occurrence of oxidative stress due to the prolonged exposure of the hypertrophied heart to these hormones plays a critical role in the progression of heart failure.
Collapse
Affiliation(s)
- Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (V.E.); (S.K.B.)
| | - Karina O. Mota
- Department of Physiology, Center of Biological and Health Sciences, Federal University of Sergipe, Sao Cristóvao 49100-000, Brazil; (K.O.M.); (C.M.L.d.V.)
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (V.E.); (S.K.B.)
| | - Anureet K. Shah
- Department of Nutrition and Food Science, California State University, Los Angeles, CA 90032-8162, USA;
| | - Carla M. L. de Vasconcelos
- Department of Physiology, Center of Biological and Health Sciences, Federal University of Sergipe, Sao Cristóvao 49100-000, Brazil; (K.O.M.); (C.M.L.d.V.)
| | - Sukhwinder K. Bhullar
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (V.E.); (S.K.B.)
| |
Collapse
|
12
|
Liu Y, Li Q, Shao C, She Y, Zhou H, Guo Y, An H, Wang T, Yang J, Wan H. Exploring the Potential Mechanisms of Guanxinshutong Capsules in Treating Pathological Cardiac Hypertrophy based on Network Pharmacology, Computer-Aided Drug Design, and Animal Experiments. ACS OMEGA 2024; 9:18083-18098. [PMID: 38680308 PMCID: PMC11044149 DOI: 10.1021/acsomega.3c10009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/15/2024] [Accepted: 03/08/2024] [Indexed: 05/01/2024]
Abstract
Cardiovascular diseases (CVDs) are significant causes of morbidity and mortality worldwide, and pathological cardiac hypertrophy (PCH) is an essential predictor of many heart diseases. Guanxinshutong capsule (GXST) is a Chinese patent medicine widely used in the clinical treatment of CVD, In our previous research, we identified 111 compounds of GXST. In order to reveal the potential molecular mechanisms by which GXST treats PCH, this study employed network pharmacology methods to screen for the active ingredients of GXST in treating PCH and predicted the potential targets. The results identified 26 active ingredients of GXST and 110 potential targets for PCH. Through a protein-protein interaction (PPI) network, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, we confirmed AKT1, MAPK1, and MAPK3 as the core proteins in GXST treatment of PCH, thus establishing the PI3K/AKT and MAPK signaling pathways as the significant mechanisms of GXST in treating PCH. The results of molecular docking (MD) demonstrate that flavonoid naringenin and diterpenoid tanshinone iia have the highest binding affinity with the core protein. Before performing molecular dynamics simulations (MDSs), the geometric structure of naringenin and tanshinone iia was optimized using density functional theory (DFT) at the B97-3c level, and RESP2 atomic charge calculations were carried out at the B3LYP-D3(BJ)/def2-TZVP level. Further MDS results demonstrated that in the human body environment, the complex of naringenin and tanshinone iii with core proteins exhibited high stability, flexibility, and low binding free energy. Additionally, naringenin and tanshinone iia showed favorable absorption, distribution, metabolism, excretion, and toxicity (ADMET) characteristics and passed the drug similarity (DS) assessment. Ultrasound cardiograms and cardiac morphometric measurements in animal experiments demonstrate that GXST can improve the PCH induced by isoproterenol (ISO). Protein immunoblotting results indicate that GXST increases the expression of P-eNOS and eNOS by activating the PI3K/AKT signaling pathway and the MAPK signaling pathway, further elucidating the mechanism of action of GXST in treating PCH. This study contributes to the elucidation of the key ingredients and molecular mechanisms of GXST in treating PCH.
Collapse
Affiliation(s)
- Yuanfeng Liu
- College
of Life Science, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, China
| | - Qixiang Li
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
| | - Chongyu Shao
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
- Key
Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou, Zhejiang 310053, China
| | - Yong She
- College
of Life Science, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, China
| | - Huifen Zhou
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
- Key
Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou, Zhejiang 310053, China
| | - Yan Guo
- Hangzhou
TCM Hospital Affiliated to Zhejiang Chinese Medical University Hangzhou, Zhejiang 310053, China
| | - Huiyan An
- College
of Life Science, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, China
| | - Ting Wang
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
| | - Jiehong Yang
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
- Key
Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou, Zhejiang 310053, China
| | - Haitong Wan
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
- Key
Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
13
|
Yan T, Song S, Sun W, Ge Y. HAPLN1 knockdown inhibits heart failure development via activating the PKA signaling pathway. BMC Cardiovasc Disord 2024; 24:197. [PMID: 38580957 PMCID: PMC10996236 DOI: 10.1186/s12872-024-03861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/26/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Heart failure (HF) is a heterogeneous syndrome that affects millions worldwide, resulting in substantial health and economic burdens. However, the molecular mechanism of HF pathogenesis remains unclear. METHODS HF-related key genes were screened by a bioinformatics approach.The impacts of HAPLN1 knockdown on Angiotensin II (Ang II)-induced AC16 cells were assessed through a series of cell function experiments. Enzyme-linked immunosorbent assay (ELISA) was used to measure levels of oxidative stress and apoptosis-related factors. The HF rat model was induced by subcutaneous injection isoprenaline and histopathologic changes in the cardiac tissue were assessed by hematoxylin and eosin (HE) staining and echocardiographic index. Downstream pathways regulated by HAPLN1 was predicted through bioinformatics and then confirmed in vivo and in vitro by western blot. RESULTS Six hub genes were screened, of which HAPLN1, FMOD, NPPB, NPPA, and COMP were overexpressed, whereas NPPC was downregulated in HF. Further research found that silencing HAPLN1 promoted cell viability and reduced apoptosis in Ang II-induced AC16 cells. HAPLN1 knockdown promoted left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS), while decreasing left ventricular end-systolic volume (LVESV) in the HF rat model. HAPLN1 knockdown promoted the levels of GSH and suppressed the levels of MDA, LDH, TNF-α, and IL-6. Mechanistically, silencing HAPLN1 activated the PKA pathway, which were confirmed both in vivo and in vitro. CONCLUSION HAPLN1 knockdown inhibited the progression of HF by activating the PKA pathway, which may provide novel perspectives on the management of HF.
Collapse
Affiliation(s)
- Tao Yan
- Department of Cardiology, Zibo Municipal Hospital, Ward 1, No. 139 Huangong Road, Linzi District, Zibo City, Shandong Province, 255400, China
| | - Shushuai Song
- Department of Cardiology, Qingdao Fuwai Cardiovascular Hospital, No. 201 Nanjing Road, Shibei District, Qingdao City, Shandong Province, 266034, China
| | - Wendong Sun
- Department of Cardiology, Zibo Municipal Hospital, No. 139 Huangong Road, Linzi District, Zibo City, Shandong Province, 255400, China
| | - Yiping Ge
- Department of Cardiology, Qingdao Fuwai Cardiovascular Hospital, No. 201 Nanjing Road, Shibei District, Qingdao City, Shandong Province, 266034, China.
| |
Collapse
|
14
|
Thongsepee N, Martviset P, Himakhun W, Chantree P, Sornchuer P, Sangpairoj K, Hiranyachattada S. Cardiovascular Protective Effect of Garcinia dulcis Flower Acetone Extract in 2-Kidney-1-Clip Hypertensive Rats. Adv Pharmacol Pharm Sci 2024; 2024:9916598. [PMID: 38455637 PMCID: PMC10919976 DOI: 10.1155/2024/9916598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/25/2023] [Accepted: 02/03/2024] [Indexed: 03/09/2024] Open
Abstract
Morelloflavone and camboginol are bioactive compounds purified from Garcinia dulcis (GD), which has anti-inflammatory and antihypertensive properties. The objective of this study was to examine the cardiovascular protective effect of GD flower acetone extract in 2-kidney-1-clip (2K1C) hypertensive rats. Male Wistar rats underwent 2K1C or sham operation (SO) and were housed for 4 weeks. Each group of rats, then, was further divided into 2 subgroups receiving oral administration of either 50 mg/kg BW GD extract or corn oil (vehicle) daily for 4 weeks. Noninvasive blood pressure (BP) and body weight were measured weekly throughout the study. Subsequently, the invasive measurement of arterial BP and the heart rate were determined in all anesthetized rats. The baroreceptor reflex sensitivity (BRS) was investigated by injection of either phenylephrine or sodium nitroprusside for bradycardia or tachycardia response, respectively. Histological examination of the heart and thoracic aorta was also performed in order to investigate the general morphology and the tumor necrosis factor alpha (TNF-α) expression. We found that the GD flower extract significantly diminished the BP and restored the impaired BRS. Moreover, it also decreased the TNF-α expression in the cardiac muscle and thoracic aorta of 2K1C when compared to the SO group. Taken together, our data showed that GD flower extract exhibits the cardiovascular protective effect in the 2K1C hypertensive rats.
Collapse
Affiliation(s)
- Nattaya Thongsepee
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani 12120, Thailand
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani 12120, Thailand
| | - Wanwisa Himakhun
- Department of Pathology, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani 12120, Thailand
| | - Phornphan Sornchuer
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani 12120, Thailand
| | - Kant Sangpairoj
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani 12120, Thailand
| | | |
Collapse
|
15
|
Zhang X, Nie Y, Zhang R, Yu J, Ge J. Reduced DNMT1 levels induce cell apoptosis via upregulation of METTL3 in cardiac hypertrophy. Heliyon 2024; 10:e24572. [PMID: 38314261 PMCID: PMC10837504 DOI: 10.1016/j.heliyon.2024.e24572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
DNA methylation is also involved in the development and progression of cardiac diseases. Although studies have shown that DNA methylation and RNA m6A methylation play an important role in the development of myocardial hypertrophy, whether DNA methylation and RNA m6A methylation have a coordinated role in the development of myocardial hypertrophy and influence each other is still unknown. Here, we found that DNMT1 expression was downregulated in TAC mice and Ang II-treated NRCMs. Moreover, DNMT1 overexpression inhibited Ang II-induced apoptosis of NRCMs. Furthermore, we found that the expression of METTL3 was up-regulated after inhibiting the expression of DNMT1 by a DNMT1 inhibitor or small interfering RNA. In addition, ectopic expression DNMT1 inhibited METTL3 expression in NRCMs. Furthermore, METTL3 expression was elevated in NRCMs treated with Ang II, and suppression of METTL3 inhibited cell apoptosis induced by Ang II in NRCMs.In addition, this study revealed that the DNMT1/METTL3 pathway affected Ang II-induced apoptosis in NRCMs. Finally, this study found that DNMT1, but not METTL3, might directly regulated the ANP and BNP expression. Collectively, our findings revealed the role of the DNMT1/METTL3 pathway in cardiac hypertrophy and provided a novel molecular mechanism describing the physiological and pathological processes.
Collapse
Affiliation(s)
| | | | - Rui Zhang
- Department of Cardiac surgery, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Jiquan Yu
- Department of Cardiac surgery, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Jianjun Ge
- Department of Cardiac surgery, The First Affiliated Hospital of USTC, Hefei, 230001, China
| |
Collapse
|
16
|
Wannberg J, Gising J, Henriksson M, Vo DD, Sävmarker J, Sallander J, Gutiérrez-de-Terán H, Larsson J, Hamid S, Ablahad H, Spizzo I, Gaspari TA, Widdop RE, Grönbladh A, Petersen NN, Backlund M, Hallberg M, Larhed M. N-(Heteroaryl)thiophene sulfonamides as angiotensin AT2 receptor ligands. Eur J Med Chem 2024; 265:116122. [PMID: 38199164 DOI: 10.1016/j.ejmech.2024.116122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Two series of N-(heteroaryl)thiophene sulfonamides, encompassing either a methylene imidazole group or a tert-butylimidazolylacetyl group in the meta position of the benzene ring, have been synthesized. An AT2R selective ligand with a Ki of 42 nM was identified in the first series and in the second series, six AT2R selective ligands with significantly improved binding affinities and Ki values of <5 nM were discovered. The binding modes to AT2R were explored by docking calculations combined with molecular dynamics simulations. Although some of the high affinity ligands exhibited fair stability in human liver microsomes, comparable to that observed with C21 undergoing clinical trials, most ligands displayed a very low metabolic stability with t½ of less than 10 min in human liver microsomes. The most promising ligand, with an AT2R Ki value of 4.9 nM and with intermediate stability in human hepatocytes (t½ = 77 min) caused a concentration-dependent vasorelaxation of pre-contracted mouse aorta.
Collapse
Affiliation(s)
- Johan Wannberg
- Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Box 574, SE-751 23, Uppsala, Sweden
| | - Johan Gising
- The Beijer Laboratory, Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Box 591, 751 24, Uppsala, Sweden
| | - Martin Henriksson
- Drug Discovery and Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University, Solna, Sweden
| | - Duc Duy Vo
- Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Box 574, SE-751 23, Uppsala, Sweden
| | - Jonas Sävmarker
- The Beijer Laboratory, Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Box 591, 751 24, Uppsala, Sweden
| | - Jessica Sallander
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751 24, Uppsala, Sweden
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751 24, Uppsala, Sweden
| | - Johanna Larsson
- Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Box 574, SE-751 23, Uppsala, Sweden
| | - Selin Hamid
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, BMC, Uppsala University, Box 591, 751 24, Uppsala, Sweden; Department of Pharmacology and Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Hanin Ablahad
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, BMC, Uppsala University, Box 591, 751 24, Uppsala, Sweden; Department of Pharmacology and Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Iresha Spizzo
- Department of Pharmacology and Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Tracey A Gaspari
- Department of Pharmacology and Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Robert E Widdop
- Department of Pharmacology and Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Alfhild Grönbladh
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, BMC, Uppsala University, Box 591, 751 24, Uppsala, Sweden
| | - Nadia N Petersen
- The Beijer Laboratory, Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Box 591, 751 24, Uppsala, Sweden
| | - Maria Backlund
- Department of Pharmacy, Uppsala University, Uppsala, Sweden and Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Science for Life Laboratory, Uppsala, Sweden
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, BMC, Uppsala University, Box 591, 751 24, Uppsala, Sweden
| | - Mats Larhed
- The Beijer Laboratory, Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Box 591, 751 24, Uppsala, Sweden.
| |
Collapse
|
17
|
Bhullar SK, Dhalla NS. Adaptive and maladaptive roles of different angiotensin receptors in the development of cardiac hypertrophy and heart failure. Can J Physiol Pharmacol 2024; 102:86-104. [PMID: 37748204 DOI: 10.1139/cjpp-2023-0226] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Angiotensin II (Ang II) is formed by the action of angiotensin-converting enzyme (ACE) in the renin-angiotensin system. This hormone is known to induce cardiac hypertrophy and heart failure and its actions are mediated by the interaction of both pro- and antihypertrophic Ang II receptors (AT1R and AT2R). Ang II is also metabolized by ACE 2 to Ang-(1-7), which elicits the activation of Mas receptors (MasR) for inducing antihypertrophic actions. Since heart failure under different pathophysiological situations is preceded by adaptive and maladaptive cardiac hypertrophy, we have reviewed the existing literature to gain some information regarding the roles of AT1R, AT2R, and MasR in both acute and chronic conditions of cardiac hypertrophy. It appears that the activation of AT1R may be involved in the development of adaptive and maladaptive cardiac hypertrophy as well as subsequent heart failure because both ACE inhibitors and AT1R antagonists exert beneficial effects. On the other hand, the activation of both AT2R and MasR may prevent the occurrence of maladaptive cardiac hypertrophy and delay the progression of heart failure, and thus therapy with different activators of these antihypertrophic receptors under chronic pathological stages may prove beneficial. Accordingly, it is suggested that a great deal of effort should be made to develop appropriate activators of both AT2R and MasR for the treatment of heart failure subjects.
Collapse
Affiliation(s)
- Sukhwinder K Bhullar
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
18
|
Wang P, Hao D, Xiong X. Anti-hypertension effect of Wuwei Jiangya decoction via ACE2/Ang1-7/MAS signaling pathway in SHR based on network degree-distribution analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117121. [PMID: 37660954 DOI: 10.1016/j.jep.2023.117121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/28/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wuwei Jiangya decoction (WJD) is a traditional Chinese medicinal formula (Fangji) composed of Gastrodiae Rhizoma, Chuanxiong Rhizoma, Puerariae Lobatae Radix, Cyathulae Radix, and Achyranthis Bidentatae Radix, all of which have been verified to combat hypertension. However, the integrative "shot-gun" mechanism of WJD and its primary active ingredients are still unclear. AIM OF THE STUDY To investigate the anti-hypertensive effects of WJD and its originating ingredients. METHODS Network-based degree distribution analysis combined with in vivo experiments were performed. RESULTS A total of 144 active ingredients in WJD were identified to regulate 84 hypertension-related targets, which are mainly involved in blood pressure and blood vessel diameter regulation. However, for the anti-hypertension effects, "more does not mean better". The majority (76%) of the hubs in the H-network were regulated by no more than four ingredients. We identified 16 primary ingredients that accounted for the therapeutic action against hypertension. For compatibility, the five herbs consistently focused on blood pressure, vascular diameter, and angiogenesis, with the renin-angiotensin system as a primary target. The characteristics of each herb were involved in processes such as lipid localization and oxidative stress, which interact to constitute the regulatory network targeting hypertension, its risk factors, and organ damage. In vivo, WJD significantly reduced systolic blood pressure (SBP), improved left ventricular mass index, and ameliorated cardiac hypertrophy and vascular injury by moderating the renin-angiotensin system via activating the ACE2/Ang-(1-7)/Mas signaling pathway. CONCLUSION WJD can lower SBP and ameliorate cardiac hypertrophy and vascular injury through the ACE2/Ang-(1-7)/Mas pathway, thus providing new insights into the development of traditional Chinese medicine as a therapeutic agent for hypertension.
Collapse
Affiliation(s)
- Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Danli Hao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xingjiang Xiong
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
19
|
Szczepanska-Sadowska E. Interplay of Angiotensin Peptides, Vasopressin, and Insulin in the Heart: Experimental and Clinical Evidence of Altered Interactions in Obesity and Diabetes Mellitus. Int J Mol Sci 2024; 25:1310. [PMID: 38279313 PMCID: PMC10816525 DOI: 10.3390/ijms25021310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
The present review draws attention to the specific role of angiotensin peptides [angiotensin II (Ang II), angiotensin-(1-7) (Ang-(1-7)], vasopressin (AVP), and insulin in the regulation of the coronary blood flow and cardiac contractions. The interactions of angiotensin peptides, AVP, and insulin in the heart and in the brain are also discussed. The intracardiac production and the supply of angiotensin peptides and AVP from the systemic circulation enable their easy access to the coronary vessels and the cardiomyocytes. Coronary vessels and cardiomyocytes are furnished with AT1 receptors, AT2 receptors, Ang (1-7) receptors, vasopressin V1 receptors, and insulin receptor substrates. The presence of some of these molecules in the same cells creates good conditions for their interaction at the signaling level. The broad spectrum of actions allows for the engagement of angiotensin peptides, AVP, and insulin in the regulation of the most vital cardiac processes, including (1) cardiac tissue oxygenation, energy production, and metabolism; (2) the generation of the other cardiovascular compounds, such as nitric oxide, bradykinin (Bk), and endothelin; and (3) the regulation of cardiac work by the autonomic nervous system and the cardiovascular neurons of the brain. Multiple experimental studies and clinical observations show that the interactions of Ang II, Ang(1-7), AVP, and insulin in the heart and in the brain are markedly altered during heart failure, hypertension, obesity, and diabetes mellitus, especially when these diseases coexist. A survey of the literature presented in the review provides evidence for the belief that very individualized treatment, including interactions of angiotensins and vasopressin with insulin, should be applied in patients suffering from both the cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
20
|
Meng LH, Cheng SY, Chen H, Wang YL, Zhang WF, Chen H, Zhao XY, Chen YX. Impacts of angiotensin II on retinal artery changes in apolipoprotein E deficient mice. Int J Ophthalmol 2024; 17:16-24. [PMID: 38239957 PMCID: PMC10754664 DOI: 10.18240/ijo.2024.01.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/20/2023] [Indexed: 01/22/2024] Open
Abstract
AIM To investigate the impacts of angiotensin II (Ang II) on retinal artery changes in apolipoprotein E deficient (apoE-/-) mice. METHODS apoE-/- male mice were infused by minipumps with Ang II at 1000 ng/kg·min (Ang II group) or saline (control group) for 28d. They were underwent ophthalmic fundus examination on day 0, 14, and 28 of infusion. Histopathologic examination, ribonucleic acid (RNA) sequencing and local Ang II measurement of retinas were conducted. RESULTS Ophthalmic fundus examination showed Ang II infusion promoted the formation of retinal arterial aneurysm-like lesions on day 28. Optical coherence tomography revealed the ganglion cell and inner plexiform layer (GCIPL) thickness in the control group was significantly thinner than that in Ang II group (P<0.001). Hematoxylin-eosin staining demonstrated diffused swelling of GCIPL layer and its disordered structure in Ang II group. Transmission electron microscopy showed Ang II infusion caused aggravation of atherosclerotic lesions, including increased swelling, roughness, disorganization of the retinal vasculature, and vacuoles formation. RNA-sequencing and gene ontology enrichment analysis demonstrated that the structure and function of cellular membrane might be disturbed and visual function might be compromised by Ang II. The local level of Ang II was higher in Ang II infusion group but did not show significant differences compared to the control group (P=0.086). CONCLUSION Ang II infusion promotes the formation of retinal arterial aneurysm-like lesions in apoE-/- mice, causing aggravation of atherosclerotic lesions, more severe disorganization of the retinal vasculature and disturbance of the cellular membrane.
Collapse
Affiliation(s)
- Li-Hui Meng
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
- Key Lab of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shi-Yu Cheng
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
- Key Lab of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - He Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
- Key Lab of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yue-Lin Wang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
- Key Lab of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wen-Fei Zhang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
- Key Lab of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Huan Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
- Key Lab of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xin-Yu Zhao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
- Key Lab of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - You-Xin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
- Key Lab of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
21
|
Kim HJ, Hong JH. Multiple Regulatory Signals and Components in the Modulation of Bicarbonate Transporters. Pharmaceutics 2024; 16:78. [PMID: 38258089 PMCID: PMC10820580 DOI: 10.3390/pharmaceutics16010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Bicarbonate transporters are responsible for the appropriate flux of bicarbonate across the plasma membrane to perform various fundamental cellular functions. The functions of bicarbonate transporters, including pH regulation, cell migration, and inflammation, are highlighted in various cellular systems, encompassing their participation in both physiological and pathological processes. In this review, we focused on recently identified modulatory signaling components that regulate the expression and activity of bicarbonate transporters. Moreover, we addressed recent advances in our understanding of cooperative systems of bicarbonate transporters and channelopathies. This current review aims to provide a new, in-depth understanding of numerous human diseases associated with the dysfunction of bicarbonate transporters.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
22
|
Lv C, Zhou L, Meng Y, Yuan H, Geng J. PKD knockdown mitigates Ang II-induced cardiac hypertrophy and ferroptosis via the JNK/P53 signaling pathway. Cell Signal 2024; 113:110974. [PMID: 37972803 DOI: 10.1016/j.cellsig.2023.110974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/18/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Cardiac hypertrophy is studied in relation to energy metabolism, autophagy, and ferroptosis, which are associated with cardiovascular adverse events and chronic heart failure. Protein kinase D (PKD) has been shown to play a degenerative role in cardiac hypertrophy. However, the role of ferroptosis in PKD-involved cardiac hypertrophy remains unclear. METHODS A cardiac hypertrophy model was induced by a subcutaneous injection of angiotensin II (Ang II) for 4 weeks. Adeno-associated virus serotype 9 (AAV9)-PKD or AAV9-Negative control were injected through the caudal vein 2 weeks prior to the injection of Ang II. The degree of cardiac hypertrophy was assessed using echocardiography and by observing cardiomyocyte morphology. Levels of ferroptosis and protein expression in the Jun N-terminal kinase (JNK)/P53 signaling pathway were measured both in vivo and in vitro. RESULTS The results indicated that PKD knockdown reduces Ang II-induced cardiac hypertrophy, enhances cardiac function and inhibits ferroptosis. The involvement of the JNK/P53 pathway in this process was further confirmed by in vivo and in vitro experiments. CONCLUSION In conclusion, our findings suggest that PKD knockdown mitigates Ang II-induced cardiac hypertrophy and ferroptosis via the JNK/P53 signaling pathway.
Collapse
Affiliation(s)
- Chanyuan Lv
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; JiNan Key Laboratory of Cardiovascular Disease, Shandong 250021, China.
| | - Liuyi Zhou
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; JiNan Key Laboratory of Cardiovascular Disease, Shandong 250021, China
| | - Yongkang Meng
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; JiNan Key Laboratory of Cardiovascular Disease, Shandong 250021, China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; JiNan Key Laboratory of Cardiovascular Disease, Shandong 250021, China.
| | - Jing Geng
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; JiNan Key Laboratory of Cardiovascular Disease, Shandong 250021, China.
| |
Collapse
|
23
|
Lymperopoulos A, Borges JI, Stoicovy RA. RGS proteins and cardiovascular Angiotensin II Signaling: Novel opportunities for therapeutic targeting. Biochem Pharmacol 2023; 218:115904. [PMID: 37922976 PMCID: PMC10841918 DOI: 10.1016/j.bcp.2023.115904] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Angiotensin II (AngII), as an octapeptide hormone normally ionized at physiological pH, cannot cross cell membranes and thus, relies on, two (mainly) G protein-coupled receptor (GPCR) types, AT1R and AT2R, to exert its intracellular effects in various organ systems including the cardiovascular one. Although a lot remains to be elucidated about the signaling of the AT2R, AT1R signaling is known to be remarkably versatile, mobilizing a variety of G protein-dependent and independent signal transduction pathways inside cells to produce a biological outcome. Cardiac AT1R signaling leads to hypertrophy, adverse remodeling, fibrosis, while vascular AT1R signaling raises blood pressure via vasoconstriction, but also elicits hypertrophic, vascular growth/proliferation, and pathological remodeling sets of events. In addition, adrenal AT1R is the major physiological stimulus (alongside hyperkalemia) for secretion of aldosterone, a mineralocorticoid hormone that contributes to hypertension, electrolyte abnormalities, and to pathological remodeling of the failing heart. Regulator of G protein Signaling (RGS) proteins, discovered about 25 years ago as GTPase-activating proteins (GAPs) for the Gα subunits of heterotrimeric G proteins, play a central role in silencing G protein signaling from a plethora of GPCRs, including the AngII receptors. Given the importance of AngII and its receptors, but also of several RGS proteins, in cardiovascular homeostasis, the physiological and pathological significance of RGS protein-mediated modulation of cardiovascular AngII signaling comes as no surprise. In the present review, we provide an overview of the current literature on the involvement of RGS proteins in cardiovascular AngII signaling, by discussing their roles in cardiac (cardiomyocyte and cardiofibroblast), vascular (smooth muscle and endothelial cell), and adrenal (medulla and cortex) AngII signaling, separately. Along the way, we also highlight the therapeutic potential of enhancement of, or, in some cases, inhibition of each RGS protein involved in AngII signaling in each one of these cell types.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA.
| | - Jordana I Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA
| | - Renee A Stoicovy
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
24
|
Maranduca MA, Cosovanu MA, Clim A, Pinzariu AC, Filip N, Drochioi IC, Vlasceanu VI, Timofte DV, Nemteanu R, Plesa A, Pertea M, Serban IL. The Renin-Angiotensin System: The Challenge behind Autoimmune Dermatological Diseases. Diagnostics (Basel) 2023; 13:3398. [PMID: 37998534 PMCID: PMC10670244 DOI: 10.3390/diagnostics13223398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Autoimmune dermatological diseases (AIDD) encompass a diverse group of disorders characterized by aberrant immune responses targeting the skin and its associated structures. In recent years, emerging evidence suggests a potential involvement of the renin-angiotensin system (RAS) in the pathogenesis and progression of these conditions. RAS is a multicomponent cascade, primarily known for its role in regulating blood pressure and fluid balance. All of the RAS components play an important role in controlling inflammation and other immune responses. Angiotensin II, the main effector, acts on two essential receptors: Angiotensin Receptor 1 and 2 (AT1R and AT2R). A disturbance in the axis can lead to many pathological processes, including autoimmune (AI) diseases. AT1R activation triggers diverse signaling cascades involved in inflammation, fibrosis and tissue remodeling. Experimental studies have demonstrated the presence of AT1R in various cutaneous cells and immune cells, further emphasizing its potential contribution to the AI processes in the skin. Furthermore, recent investigations have highlighted the role of other RAS components, beyond angiotensin-converting enzyme (ACE) and Ang II, that may contribute to the pathophysiology of AIDD. Alternative pathways involving ACE2, Ang receptors and Ang-(1-7) have been implicated in regulating immune responses and tissue homeostasis within the skin microenvironment. Understanding the intricate involvement of the RAS in AIDD may provide novel therapeutic opportunities. Targeting specific components of the RAS, such as angiotensin receptor blockers (ARBs), ACE inhibitors (ACEIs) or alternative RAS pathway modulators, could potentially ameliorate inflammatory responses, reduce tissue damage and lessen disease manifestations. Further research is warranted to outline the exact mechanisms underlying RAS-mediated immune dysregulation in AIDD. This abstract aims to provide a concise overview of the intricate interplay between the RAS and AIDD. Therefore, we elaborate a systematic review of the potential challenge of RAS in the AIDD, including psoriasis, systemic sclerosis, vitiligo, lupus erythematosus and many more.
Collapse
Affiliation(s)
- Minela Aida Maranduca
- Discipline of Physiology, Department of Morpho-Functional Sciences II, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700115 Iasi, Romania
| | - Mihai Andrei Cosovanu
- Discipline of Physiology, Department of Morpho-Functional Sciences II, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Andreea Clim
- Discipline of Physiology, Department of Morpho-Functional Sciences II, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alin Constantin Pinzariu
- Discipline of Physiology, Department of Morpho-Functional Sciences II, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Nina Filip
- Discipline of Biochemistry, Department of Morpho-Functional Sciences II, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ilie Cristian Drochioi
- Department of Oral and Maxillofacial Surgery and Reconstructive, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700020 Iasi, Romania
| | - Vlad Ionut Vlasceanu
- Discipline of Surgical Semiology, Department of Surgery I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Daniel Vasile Timofte
- Discipline of Surgical Semiology, Department of Surgery I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Roxana Nemteanu
- Medical I Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Alina Plesa
- Medical I Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Mihaela Pertea
- Department of Plastic Surgery and Reconstructive Microsurgery, “Sf. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Ionela Lacramioara Serban
- Discipline of Physiology, Department of Morpho-Functional Sciences II, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
25
|
Allbritton-King JD, García-Cardeña G. Endothelial cell dysfunction in cardiac disease: driver or consequence? Front Cell Dev Biol 2023; 11:1278166. [PMID: 37965580 PMCID: PMC10642230 DOI: 10.3389/fcell.2023.1278166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
The vascular endothelium is a multifunctional cellular system which directly influences blood components and cells within the vessel wall in a given tissue. Importantly, this cellular interface undergoes critical phenotypic changes in response to various biochemical and hemodynamic stimuli, driving several developmental and pathophysiological processes. Multiple studies have indicated a central role of the endothelium in the initiation, progression, and clinical outcomes of cardiac disease. In this review we synthesize the current understanding of endothelial function and dysfunction as mediators of the cardiomyocyte phenotype in the setting of distinct cardiac pathologies; outline existing in vivo and in vitro models where key features of endothelial cell dysfunction can be recapitulated; and discuss future directions for development of endothelium-targeted therapeutics for cardiac diseases with limited existing treatment options.
Collapse
Affiliation(s)
- Jules D. Allbritton-King
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Guillermo García-Cardeña
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
26
|
Dallagnol JCC, Volkovich M, Chatenet D, Allen BG, Hébert TE. G Protein-Biased Agonists for Intracellular Angiotensin Receptors Promote Collagen Secretion in Myofibroblasts. ACS Chem Biol 2023; 18:2050-2062. [PMID: 37611227 DOI: 10.1021/acschembio.3c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Photoactivatable ligands remain valuable tools to study the spatiotemporal aspects of cellular signaling. However, the synthesis, handling, and biological validation of such compounds remain challenging, especially when dealing with peptides. We report an optimized synthetic strategy, where laborious preparation of dimethoxy-nitrobenzyl-tyrosine building blocks was replaced by direct functionalization of amino acid side chains while peptides remained coupled to resin, reducing both preparation time and cost. Our caged peptides were designed to investigate cellular responses mediated by intracellular angiotensin II receptors (iATR) upon interaction with known biased and unbiased ligands. The pathophysiological roles of iATRs remain poorly understood, and we sought to develop ligands to explore this. Initial validation showed that our caged ligands undergo rapid photolysis and produced functionally active peptides upon UV exposure. We also show, for the first time, that different biased ligands (β-arrestin- vs G protein-biased analogues) evoked distinct responses when uncaged in adult rat myofibroblasts. Intracellularly targeted versions of Ang II (unbiased) or G protein-biased analogues (TRV055, TRV056) were more effective than β-arrestin-biased Ang II analogues (SI, TRV026, and TRV27) in inducing collagen secretion, suggesting a divergent role in regulating the fibrotic response.
Collapse
Affiliation(s)
- Juliana C C Dallagnol
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec, Laval H7V 5B7, Québec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal H3G 1Y6, Québec, Canada
- Montreal Heart Institute, Montréal H1T 1C8, Québec, Canada
| | - Mikhail Volkovich
- Department of Pharmacology and Therapeutics, McGill University, Montréal H3G 1Y6, Québec, Canada
- Montreal Heart Institute, Montréal H1T 1C8, Québec, Canada
| | - David Chatenet
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec, Laval H7V 5B7, Québec, Canada
| | - Bruce G Allen
- Montreal Heart Institute, Montréal H1T 1C8, Québec, Canada
- Departments of Biochemistry and Molecular Medicine, Medicine, Pharmacology and Physiology, Université de Montréal, Montréal H3C 3J7, Québec, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal H3G 1Y6, Québec, Canada
| |
Collapse
|
27
|
Dhalla NS, Bhullar SK, Adameova A, Mota KO, de Vasconcelos CML. Status of β 1-Adrenoceptor Signal Transduction System in Cardiac Hypertrophy and Heart Failure. Rev Cardiovasc Med 2023; 24:264. [PMID: 39076390 PMCID: PMC11270071 DOI: 10.31083/j.rcm2409264] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 07/31/2024] Open
Abstract
Although β 1-adrenoceptor ( β 1-AR) signal transduction, which maintains cardiac function, is downregulated in failing hearts, the mechanisms for such a defect in heart failure are not fully understood. Since cardiac hypertrophy is invariably associated with heart failure, it is possible that the loss of β 1-AR mechanisms in failing heart occurs due to hypertrophic process. In this regard, we have reviewed the information from a rat model of adaptive cardiac hypertrophy and maladaptive hypertrophy at 4 and 24 weeks after inducing pressure overload as well as adaptive cardiac hypertrophy and heart failure at 4 and 24 weeks after inducing volume overload, respectively. Varying degrees of alterations in β 1-AR density as well as isoproterenol-induced increases in cardiac function, intracellular Ca 2 + -concentration in cardiomyocytes and adenylyl cyclase activity in crude membranes have been reported under these hypertrophic conditions. Adaptive hypertrophy at 4 weeks of pressure or volume overload showed unaltered or augmented increases in the activities of different components of β 1-AR signaling. On the other hand, maladaptive hypertrophy due to pressure overload and heart failure due to volume overload at 24 weeks revealed depressions in the activities of β 1-AR signal transduction pathway. These observations provide evidence that β 1-AR signal system is either unaltered or upregulated in adaptive cardiac hypertrophy and downregulated in maladaptive cardiac hypertrophy or heart failure. Furthermore, the information presented in this article supports the concept that downregulation of β 1-AR mechanisms in heart failure or maladaptive cardiac hypertrophy is not due to hypertrophic process per se. It is suggested that a complex mechanism involving the autonomic imbalance may be of a critical importance in determining differential alterations in non-failing and failing hearts.
Collapse
Affiliation(s)
- Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, and Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Sukhwinder K. Bhullar
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, and Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Adriana Adameova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University and Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 811 03 Bratislava, Slovakia
| | - Karina Oliveira Mota
- Heart Biophysics Laboratory, Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, 73330 Sergipe, Brazil
| | - Carla Maria Lins de Vasconcelos
- Heart Biophysics Laboratory, Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, 73330 Sergipe, Brazil
| |
Collapse
|
28
|
Dayer N, Ltaief Z, Liaudet L, Lechartier B, Aubert JD, Yerly P. Pressure Overload and Right Ventricular Failure: From Pathophysiology to Treatment. J Clin Med 2023; 12:4722. [PMID: 37510837 PMCID: PMC10380537 DOI: 10.3390/jcm12144722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Right ventricular failure (RVF) is often caused by increased afterload and disrupted coupling between the right ventricle (RV) and the pulmonary arteries (PAs). After a phase of adaptive hypertrophy, pressure-overloaded RVs evolve towards maladaptive hypertrophy and finally ventricular dilatation, with reduced stroke volume and systemic congestion. In this article, we review the concept of RV-PA coupling, which depicts the interaction between RV contractility and afterload, as well as the invasive and non-invasive techniques for its assessment. The current principles of RVF management based on pathophysiology and underlying etiology are subsequently discussed. Treatment strategies remain a challenge and range from fluid management and afterload reduction in moderate RVF to vasopressor therapy, inotropic support and, occasionally, mechanical circulatory support in severe RVF.
Collapse
Affiliation(s)
- Nicolas Dayer
- Department of Cardiology, Lausanne University Hospital and Lausanne University, 1011 Lausanne, Switzerland;
| | - Zied Ltaief
- Department of Adult Intensive Care Medicine, Lausanne University Hospital and Lausanne University, 1011 Lausanne, Switzerland; (Z.L.); (L.L.)
| | - Lucas Liaudet
- Department of Adult Intensive Care Medicine, Lausanne University Hospital and Lausanne University, 1011 Lausanne, Switzerland; (Z.L.); (L.L.)
| | - Benoit Lechartier
- Department of Respiratory Medicine, Lausanne University Hospital and Lausanne University, 1011 Lausanne, Switzerland; (B.L.); (J.-D.A.)
| | - John-David Aubert
- Department of Respiratory Medicine, Lausanne University Hospital and Lausanne University, 1011 Lausanne, Switzerland; (B.L.); (J.-D.A.)
| | - Patrick Yerly
- Department of Cardiology, Lausanne University Hospital and Lausanne University, 1011 Lausanne, Switzerland;
| |
Collapse
|
29
|
Cojocaru E, Cojocaru C, Vlad CE, Eva L. Role of the Renin-Angiotensin System in Long COVID's Cardiovascular Injuries. Biomedicines 2023; 11:2004. [PMID: 37509643 PMCID: PMC10377338 DOI: 10.3390/biomedicines11072004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The renin-angiotensin system (RAS) is one of the biggest challenges of cardiovascular medicine. The significance of the RAS in the chronic progression of SARS-CoV-2 infection and its consequences is one of the topics that are currently being mostly discussed. SARS-CoV-2 undermines the balance between beneficial and harmful RAS pathways. The level of soluble ACE2 and membrane-bound ACE2 are both upregulated by the endocytosis of the SARS-CoV-2/ACE2 complex and the tumor necrosis factor (TNF)-α-converting enzyme (ADAM17)-induced cleavage. Through the link between RAS and the processes of proliferation, the processes of fibrous remodelling of the myocardium are initiated from the acute phase of the disease, continuing into the long COVID stage. In the long term, RAS dysfunction may cause an impairment of its beneficial effects leading to thromboembolic processes and a reduction in perfusion of target organs. The main aspects of ACE2-a key pathogenic role in COVID-19 as well as the mechanisms of RAS involvement in COVID cardiovascular injuries are studied. Therapeutic directions that can be currently anticipated in relation to the various pathogenic pathways of progression of cardiovascular damage in patients with longCOVID have also been outlined.
Collapse
Affiliation(s)
- Elena Cojocaru
- Morpho-Functional Sciences II Department, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristian Cojocaru
- Medical III Department, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristiana-Elena Vlad
- Medical II Department, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- "Dr. C. I. Parhon" Clinical Hospital, 700503 Iasi, Romania
| | - Lucian Eva
- Faculty of Dental Medicine, "Apollonia" University of Iasi, 700511 Iasi, Romania
- "Prof. Dr. Nicolae Oblu" Clinic Emergency Hospital, 700309 Iasi, Romania
| |
Collapse
|
30
|
Bazgir F, Nau J, Nakhaei-Rad S, Amin E, Wolf MJ, Saucerman JJ, Lorenz K, Ahmadian MR. The Microenvironment of the Pathogenesis of Cardiac Hypertrophy. Cells 2023; 12:1780. [PMID: 37443814 PMCID: PMC10341218 DOI: 10.3390/cells12131780] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Pathological cardiac hypertrophy is a key risk factor for the development of heart failure and predisposes individuals to cardiac arrhythmia and sudden death. While physiological cardiac hypertrophy is adaptive, hypertrophy resulting from conditions comprising hypertension, aortic stenosis, or genetic mutations, such as hypertrophic cardiomyopathy, is maladaptive. Here, we highlight the essential role and reciprocal interactions involving both cardiomyocytes and non-myocardial cells in response to pathological conditions. Prolonged cardiovascular stress causes cardiomyocytes and non-myocardial cells to enter an activated state releasing numerous pro-hypertrophic, pro-fibrotic, and pro-inflammatory mediators such as vasoactive hormones, growth factors, and cytokines, i.e., commencing signaling events that collectively cause cardiac hypertrophy. Fibrotic remodeling is mediated by cardiac fibroblasts as the central players, but also endothelial cells and resident and infiltrating immune cells enhance these processes. Many of these hypertrophic mediators are now being integrated into computational models that provide system-level insights and will help to translate our knowledge into new pharmacological targets. This perspective article summarizes the last decades' advances in cardiac hypertrophy research and discusses the herein-involved complex myocardial microenvironment and signaling components.
Collapse
Affiliation(s)
- Farhad Bazgir
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| | - Julia Nau
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| | - Saeideh Nakhaei-Rad
- Stem Cell Biology, and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Ehsan Amin
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Matthew J. Wolf
- Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA;
| | - Jeffry J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA;
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Leibniz Institute for Analytical Sciences, 97078 Würzburg, Germany;
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| |
Collapse
|
31
|
Reiss AB, Ahmed S, Johnson M, Saeedullah U, De Leon J. Exosomes in Cardiovascular Disease: From Mechanism to Therapeutic Target. Metabolites 2023; 13:479. [PMID: 37110138 PMCID: PMC10142472 DOI: 10.3390/metabo13040479] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality globally. In recent decades, clinical research has made significant advances, resulting in improved survival and recovery rates for patients with CVD. Despite this progress, there is substantial residual CVD risk and an unmet need for better treatment. The complex and multifaceted pathophysiological mechanisms underlying the development of CVD pose a challenge for researchers seeking effective therapeutic interventions. Consequently, exosomes have emerged as a new focus for CVD research because their role as intercellular communicators gives them the potential to act as noninvasive diagnostic biomarkers and therapeutic nanocarriers. In the heart and vasculature, cell types such as cardiomyocytes, endothelial cells, vascular smooth muscle, cardiac fibroblasts, inflammatory cells, and resident stem cells are involved in cardiac homeostasis via the release of exosomes. Exosomes encapsulate cell-type specific miRNAs, and this miRNA content fluctuates in response to the pathophysiological setting of the heart, indicating that the pathways affected by these differentially expressed miRNAs may be targets for new treatments. This review discusses a number of miRNAs and the evidence that supports their clinical relevance in CVD. The latest technologies in applying exosomal vesicles as cargo delivery vehicles for gene therapy, tissue regeneration, and cell repair are described.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | | | | | | | | |
Collapse
|
32
|
Cardiovascular Protection with a Long-Acting GLP-1 Receptor Agonist Liraglutide: An Experimental Update. Molecules 2023; 28:molecules28031369. [PMID: 36771035 PMCID: PMC9921762 DOI: 10.3390/molecules28031369] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Angiotensin II (Ang II), a peptide hormone generated as part of the renin-angiotensin system, has been implicated in the pathophysiology of many cardiovascular diseases such as peripheral artery disease, heart failure, hypertension, coronary artery disease and other conditions. Liraglutide, known as an incretin mimetic, is one of the glucagon-like peptide-1 (GLP-1) receptor agonists, and has been proven to be effective in the treatment of cardiovascular disorders beyond adequate glycemic control. The objective of this review is to compile our recent experimental outcomes-based studies, and provide an overview the cardiovascular protection from liraglutide against Ang II- and pressure overload-mediated deleterious effects on the heart. In particular, the mechanisms of action underlying the inhibition of oxidative stress, vascular endothelial dysfunction, hypertension, cardiac fibrosis, left ventricular hypertrophy and heart failure with liraglutide are addressed. Thus, we support the notion that liraglutide continues to be a useful add-on therapy for the management of cardiovascular diseases.
Collapse
|
33
|
He J, Xu D, Wang L, Yu X. Farrerol prevents Angiotensin II-induced cardiac remodeling in vivo and in vitro. Front Pharmacol 2023; 13:1079251. [PMID: 36686707 PMCID: PMC9846078 DOI: 10.3389/fphar.2022.1079251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular disease has become the primary disease that threatens human health and is considered the leading cause of death. Cardiac remodeling, which is associated with cardiovascular disease, mainly manifests as cardiac hypertrophy, fibrosis, inflammation, and oxidative stress. Farrerol plays an important role in treating conditions such as inflammation, endothelial injury and tumors, and we speculated that Farrerol may also play an important role in mitigating cardiac hypertrophy and remodeling. We established a model of myocardial remodeling using Angiotensin II (Ang II) with concurrent intraperitoneal injection of Farrerol as an intervention. We used cardiac ultrasound, immunohistochemistry, Immunofluorescence, Wheat Germ Agglutinin, Dihydroethidium, Western Blot, qPCR and other methods to detect the role of Farrerol in cardiac remodeling. The results showed that Farrerol inhibited Ang II-induced cardiac hypertrophy; decreased the ratio of heart weight to tibia length in mice; reduced inflammation, fibrosis, and oxidative stress; and reduced the size of cardiomyocytes in vivo. Farrerol inhibited Ang II-induced cardiomyocyte hypertrophy, levels of oxidative stress, and the proliferation and migration of fibroblast in vitro. Our results revealed that Farrerol could inhibit Ang II-induced cardiac remodeling. Farrerol may therefore be a candidate drug for the treatment of myocardial remodeling.
Collapse
Affiliation(s)
- Jian He
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dengyue Xu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command of China Medical University, Shenyang, China
| | - Lu Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command of China Medical University, Shenyang, China
| | - Xiaohong Yu
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|