1
|
Sinclair KD. Developmental epigenetics: Understanding genetic and sexually dimorphic responses to parental diet and outcomes following assisted reproduction. J Dairy Sci 2024:S0022-0302(24)01392-4. [PMID: 39701526 DOI: 10.3168/jds.2024-25811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/17/2024] [Indexed: 12/21/2024]
Abstract
The developmental integrity and wellbeing of offspring are influenced by events that occur in utero, particularly around the time of conception. While extraneous factors such as environmental temperature and exposure to environmental chemicals can each have a bearing on these events, the epigenetic mechanisms that direct cellular differentiation during early development in ruminants are best described for studies which have investigated the effects of parental nutrition or pregnancy outcomes following assisted reproduction. In this article the case is made that the genetic constitution of an individual directs epigenetic responses to environmental stimuli, and consideration in this regard is also given to the origins of sexual dimorphism and mechanisms of germline intergenerational inheritance. These aspects are considered in the context of epigenetic modifications that take place during the normal course of gametogenesis and embryogenesis, and again following either dietary or procedural interventions such as embryo culture. A recurring feature of such interventions, irrespective of species, is that one carbon metabolic pathways are invariably disrupted, and this affects the provision of methyl groups for chromatin and RNA methylation. Inter-specific variation in how these pathways operate, both within the liver and in germ cells, indicates that ruminants may be particularly sensitive in this regard. Recent advances in genomic technologies should enable rapid progress in these areas. Knowledge gained can be integrated into breed improvement programs and used to tailor management practices to specific breeds and strains (including sexes) within breeds. Ultimately, consideration should be given to integrating metagenomics into analyses of genetic-directed epigenetic programming of animal development.
Collapse
Affiliation(s)
- Kevin D Sinclair
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, UK, LE12 5RD.
| |
Collapse
|
2
|
Gomez P, García EV, Céspedes García ME, Furnus CC, Barrera AD. Expression patterns of folate metabolism-related enzymes in the bovine oviduct: estrous cycle-dependent modulation and responsiveness to folic acid. Theriogenology 2024; 230:233-242. [PMID: 39342825 DOI: 10.1016/j.theriogenology.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Folate metabolism is required for important biochemical processes that regulate cell functioning, but its role in female reproductive physiology in cattle during peri- and post-conceptional periods has not been thoroughly explored. Previous studies have shown the presence of folate in bovine oviductal fluid, as well as finely regulated gene expression of folate receptors and transporters in bovine oviduct epithelial cells (BOECs). Additionally, extracellular folic acid (FA) affects the transcriptional levels of genes important for the functioning of BOECs. However, it remains unknown whether the anatomical and cyclic features inherent to the oviduct affect regulation of folate metabolism. The present study aimed to characterize the gene expression pattern of folate cycle enzymes in BOECs from different anatomical regions during the estrous cycle and to determine the transcriptional response of these genes to increasing concentrations of exogenous FA. A first PCR screening showed the presence of transcripts encoding dihydrofolate reductase (DHFR), methylenetetrahydrofolate reductase (MTHFR), and methionine synthase (MTR) in bovine reproductive tissues (ovary, oviduct and uterus), with expression levels in oviductal tissues comparable to, or even higher than, those detected in ovarian and uterine tissues. Moreover, expression analysis through RT-qPCR in BOECs from the ampulla and isthmus during different stages of the estrous cycle demonstrated that folate metabolism-related enzymes exhibited cycle-dependent variations. In both anatomical regions, DHFR was upregulated during the preovulatory stage, while MTHFR and MTR exhibited increased expression levels during the postovulatory stage. Under in vitro culture conditions, ampullary and isthmic cells were cultured in the presence of 10, 50, and 100 μM FA for 24 h. Under these conditions, isthmus epithelial cells exhibited a unique transcriptional response to exogenous FA, showing a pronounced increase in MTR expression levels. Our results suggest that the expression of folate metabolism-related genes in BOECs is differentially regulated during the estrous cycle and may respond to exogenous levels of folate. This offers a new perspective on the transcriptional regulation of genes associated with the folate cycle in oviductal cells and provides groundwork for future studies on their functional and epigenetic implications within the oviductal microenvironment.
Collapse
Affiliation(s)
- Paula Gomez
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias y Veterinarias, Universidad Católica de Salta (UCASAL), Campus Castañares, A4400EDD, Salta, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Elina Vanesa García
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias y Veterinarias, Universidad Católica de Salta (UCASAL), Campus Castañares, A4400EDD, Salta, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Mario Exequiel Céspedes García
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias y Veterinarias, Universidad Católica de Salta (UCASAL), Campus Castañares, A4400EDD, Salta, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Cecilia Cristina Furnus
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; IGEVET- Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina
| | - Antonio Daniel Barrera
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias y Veterinarias, Universidad Católica de Salta (UCASAL), Campus Castañares, A4400EDD, Salta, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
3
|
Quarta A, Quarta MT, Mastromauro C, Chiarelli F, Giannini C. Influence of Nutrition on Growth and Development of Metabolic Syndrome in Children. Nutrients 2024; 16:3801. [PMID: 39599588 PMCID: PMC11597107 DOI: 10.3390/nu16223801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Obesity is currently an increasing public health burden due to its related metabolic and cardiovascular complications. In Western countries, a significant number of people are overweight or obese, and this trend is, unfortunately, becoming increasingly common even among the pediatric population. In this narrative review, we analyzed the role of nutrition during growth and its impact on the risk of developing metabolic syndrome and cardiovascular complications later in life. An impactful role in determining the phenotypic characteristics of the offspring is the parental diet carried out before conception. During intrauterine growth, the main risk factors are represented by an unbalanced maternal diet, excessive gestational weight gain, and impaired glycemic status. Breastfeeding, on the other hand, has many beneficial effects, but at the same time the quality of breast milk may be modified if maternal overweight or obesity subsists. Complementary feeding is likewise pivotal because an early introduction before 4 months of age and a high protein intake contribute to weight gain later. Knowledge of these mechanisms may allow early modification of risk factors by implementing targeted preventive strategies.
Collapse
Affiliation(s)
| | | | | | | | - Cosimo Giannini
- Department of Pediatrics, University of Chieti—Pescara, G. D’Annunzio, 66100 Chieti, Italy; (A.Q.); (M.T.Q.); (C.M.); (F.C.)
| |
Collapse
|
4
|
Mekala JR, Nalluri HP, Reddy PN, S B S, N S SK, G V S D SK, Dhiman R, Chamarthy S, Komaragiri RR, Manyam RR, Dirisala VR. Emerging trends and therapeutic applications of monoclonal antibodies. Gene 2024; 925:148607. [PMID: 38797505 DOI: 10.1016/j.gene.2024.148607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Monoclonal antibodies (mAbs) are being used to prevent, detect, and treat a broad spectrum of malignancies and infectious and autoimmune diseases. Over the past few years, the market for mAbs has grown exponentially. They have become a significant part of many pharmaceutical product lines, and more than 250 therapeutic mAbs are undergoing clinical trials. Ever since the advent of hybridoma technology, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some of the benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies, which are affordable versions of therapeutic antibodies. Along with biosimilars, innovations in antibody engineering have helped to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. In the future, mAbs generated by applying next-generation sequencing (NGS) are expected to become a powerful tool in clinical therapeutics. This article describes the methods of mAb production, pre-clinical and clinical development of mAbs, approved indications targeted by mAbs, and novel developments in the field of mAb research.
Collapse
Affiliation(s)
- Janaki Ramaiah Mekala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522502, Guntur, Andhra Pradesh, INDIA.
| | - Hari P Nalluri
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India
| | - Prakash Narayana Reddy
- Department of Microbiology, Dr. V.S. Krishna Government College, Visakhapatnam 530013, India
| | - Sainath S B
- Department of Biotechnology, Vikrama Simhapuri University, Nellore 524320, AP, India
| | - Sampath Kumar N S
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India
| | - Sai Kiran G V S D
- Santhiram Medical College and General Hospital, Nandyal, Kurnool 518501, AP, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Sciences, National Institute of Technology Rourkela-769008, India
| | - Sahiti Chamarthy
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522502, Guntur, Andhra Pradesh, INDIA
| | - Raghava Rao Komaragiri
- Department of CSE, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522302, Andhra Pradesh, INDIA
| | - Rajasekhar Reddy Manyam
- Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amaravati Campus, Amaravati, Andhra Pradesh, India
| | - Vijaya R Dirisala
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India.
| |
Collapse
|
5
|
Muraglia M, Faienza MF, Tardugno R, Clodoveo ML, Matias De la Cruz C, Bermúdez FG, Munizaga MG, Valencia L, Corbo F, Orellana-Manzano A. Breastfeeding: science and knowledge in pediatric obesity prevention. Front Med (Lausanne) 2024; 11:1430395. [PMID: 39399112 PMCID: PMC11466875 DOI: 10.3389/fmed.2024.1430395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
The increasing prevalence of childhood obesity worldwide is a significant concern due to its link to severe health issues in adulthood, such as non-communicable diseases (NCDs). To address this issue, this review evaluates the effectiveness of various preventive measures for childhood obesity, focusing on maternal nutrition and breastfeeding. The study underscores the criticality of the periconceptional period, where the diets of both parents can influence epigenetic modifications that impact the child's metabolic pathways and obesity risks. Breastfeeding is a potent protective mechanism against early-onset obesity, significantly enhancing the infant's metabolic and immune health by modifying DNA methylation and gene expression. Furthermore, the perspective underscores the significance of the Mediterranean diet during the periconceptional period and lactation. This diet can effectively prevent gestational complications and improve breast milk quality, fostering optimal infant development. Recognizing that obesity results from genetic, epigenetic, environmental, and social factors, the paper advocates for a comprehensive, multidisciplinary approach from the earliest stages of life. This approach champions a balanced maternal diet, exclusive breastfeeding, and timely introduction to complementary foods. In conclusion, addressing pediatric obesity requires a multifaceted strategy emphasizing improving prenatal and postnatal nutrition. Further research is necessary to understand the epigenetic mechanisms influenced by nutrition and their long-term effects on children's health. This will help refine interventions that curb the obesity epidemic among future generations.
Collapse
Affiliation(s)
- Marilena Muraglia
- Department of Pharmacy - Drug Science, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A. Moro”, Bari, Italy
| | - Roberta Tardugno
- Department of Pharmacy - Drug Science, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari-Aldo Moro, Bari, Italy
| | - Carmen Matias De la Cruz
- Laboratorio Para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Fátima German Bermúdez
- Laboratorio Para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - María Gabriela Munizaga
- Laboratorio Para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Luz Valencia
- Licenciatura en Nutrición y Dietética, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Filomena Corbo
- Department of Pharmacy - Drug Science, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Andrea Orellana-Manzano
- Laboratorio Para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| |
Collapse
|
6
|
Mirzakhani H. From womb to wellness: early environmental exposures, cord blood DNA methylation and disease origins. Epigenomics 2024; 16:1175-1183. [PMID: 39263926 PMCID: PMC11457657 DOI: 10.1080/17501911.2024.2390823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
Fetal exposures can induce epigenetic modifications, particularly DNA methylation, potentially predisposing individuals to later health issues. Cord blood (CB) DNA methylation provides a unique window into the fetal epigenome, reflecting the intrauterine environment's impact. Maternal factors, including nutrition, smoking and toxin exposure, can alter CB DNA methylation patterns, associated with conditions from obesity to neurodevelopmental disorders. These epigenetic changes underscore prenatal exposures' enduring effects on health trajectories. Technical challenges include tissue specificity issues, limited coverage of current methylation arrays and confounding factors like cell composition variability. Emerging technologies, such as single-cell sequencing, promise to overcome some of these limitations. Longitudinal studies are crucial to elucidate exposure-epigenome interactions and develop prevention strategies. Future research should address these challenges, advance public health initiatives to reduce teratogen exposure and consider ethical implications of epigenetic profiling. Progress in CB epigenetics research promises personalized medicine approaches, potentially transforming our understanding of developmental programming and offering novel interventions to promote lifelong health from the earliest stages of life.
Collapse
Affiliation(s)
- Hooman Mirzakhani
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Dye CK, Alschuler DM, Wu H, Duarte C, Monk C, Belsky DW, Lee S, O’Donnell K, Baccarelli AA, Scorza P. Maternal Adverse Childhood Experiences and Biological Aging During Pregnancy and in Newborns. JAMA Netw Open 2024; 7:e2427063. [PMID: 39120899 PMCID: PMC11316241 DOI: 10.1001/jamanetworkopen.2024.27063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/06/2024] [Indexed: 08/10/2024] Open
Abstract
Importance Adverse childhood experiences (ACEs), potentially traumatic experiences occurring before the age of 18 years, are associated with epigenetic aging later in life and may be transmitted across generations. Objective To test evidence of the transmission of biological embedding of life experience across generations by analyzing maternal ACEs and epigenetic clocks measured in mothers during pregnancy and in their children at birth. Design, Setting, and Participants For this cross-sectional study, data from the Accessible Resource for Integrated Epigenomic Studies (ARIES) substudy of the Avon Longitudinal Study of Parents and Children (ALSPAC) were analyzed. The ALSPAC study recruited 14 541 women who gave birth in the Avon Health District in the UK between April 1, 1991, and December 31, 1992. The ARIES substudy comprised 1018 mother-offspring dyads based on the availability of DNA samples profiled in 2014. Epigenetic age was estimated using DNA methylation-based epigenetic clocks (including Horvath, Hannum, GrimAge, PhenoAge, and DunedinPACE) in mothers during pregnancy and the Knight and Bohlin cord blood epigenetic clocks in newborns. Analyses were performed between October 1, 2022, and November 30, 2023. Exposures A composite measure of maternal ACEs was the primary exposure in both maternal and offspring models; as a secondary analysis, individual ACEs were measured separately. The Edinburgh Postnatal Depression Scale (EPDS) was used to investigate depression during pregnancy as an exposure. Main Outcomes and Measures Changes in epigenetic age acceleration (EAA) were investigated as the primary outcome in maternal models during pregnancy. Changes in epigenetic gestational age acceleration (GAA) were the primary outcome in offspring analyses. Linear regression analyses were used to determine the association between maternal ACEs and both outcomes. Results This study included 883 mother-child dyads. The mean (SD) maternal age at delivery was 29.8 (4.3) years. Pregnant women with higher ACE scores exhibited higher GrimAge EAA (β, 0.22 [95% CI, 0.12 to 0.33] years; P < .001). Maternal ACEs were not associated with GAA in newborns using P < .05 as a cutoff to determine statistical significance. Depression was associated with higher GrimAge EAA (β, 0.06 [95% CI, 0.02 to 0.10] years; P = .01) in mothers during pregnancy, but not in newborns, and did not mediate the association between ACEs and EAA. Conclusions and Relevance The findings of this study suggest that maternal ACEs may be associated with epigenetic aging later in life, including during pregnancy, supporting a role for maternal ACEs in offspring development and health later in life.
Collapse
Affiliation(s)
- Christian K. Dye
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | | | - Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Cristiane Duarte
- Division of Behavioral Medicine, New York State Psychiatric Institute, New York
| | - Catherine Monk
- Department of Psychiatry, Columbia University, New York, New York
- Division of Behavioral Medicine, New York State Psychiatric Institute, New York
- Department of Obstetrics and Gynecology, Columbia University, New York, New York
| | - Daniel W. Belsky
- Department of Epidemiology, Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, New York
| | - Seonjoo Lee
- Department of Psychiatry, Columbia University, New York, New York
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York
| | - Kieran O’Donnell
- Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Pamela Scorza
- Department of Obstetrics and Gynecology, Columbia University, New York, New York
| |
Collapse
|
8
|
Vafaei S, Alkhrait S, Yang Q, Ali M, Al-Hendy A. Empowering Strategies for Lifestyle Interventions, Diet Modifications, and Environmental Practices for Uterine Fibroid Prevention; Unveiling the LIFE UP Awareness. Nutrients 2024; 16:807. [PMID: 38542717 PMCID: PMC10975324 DOI: 10.3390/nu16060807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Uterine fibroids (UFs) are the most common prevalent benign tumor among women of reproductive age, disproportionately affecting women of color. This paper introduces an innovative management strategy for UFs, emphasizing the curbing of disease prevention and progression. Traditionally, medical intervention is deferred until advanced stages, necessitating invasive surgeries such as hysterectomy or myomectomy, leading to high recurrence rates and increased healthcare costs. The strategy, outlined in this review, emphasizes UF disease management and is named LIFE UP awareness-standing for Lifestyle Interventions, Food Modifications, and Environmental Practices for UF Prevention. These cost-effective, safe, and accessible measures hold the potential to prevent UFs, improve overall reproductive health, reduce the need for invasive procedures, and generate substantial cost savings for both individuals and healthcare systems. This review underscores the importance of a proactive UF management method, paving the way for future research and policy initiatives in this domain.
Collapse
Affiliation(s)
| | | | | | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (S.V.); (S.A.); (Q.Y.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (S.V.); (S.A.); (Q.Y.)
| |
Collapse
|
9
|
Hemida MBM, Vuori KA, Borgström NC, Moore R, Rosendahl S, Anturaniemi J, Estrela-Lima A, Hielm-Björkman A. Early life programming by diet can play a role in risk reduction of otitis in dogs. Front Vet Sci 2023; 10:1186131. [PMID: 38026629 PMCID: PMC10657834 DOI: 10.3389/fvets.2023.1186131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Otitis in dogs is often chronic while local treatment primarily consists of flushing, antibiotics, and/or antifungals. We were interested in finding early life variables that associate with otitis later in life, preferably some that could be modified. Methods A cross-sectional hypothesis-driven study with longitudinal data was performed to search for associations between pre- and postnatal exposures, and the incidence of owner-reported otitis in dogs at over 1 year of age. The multivariate logistic regression analysis study included data from 3,064 dogs and explored 26 different early life variables at four early life stages: prenatal, neonatal, postnatal, and puppyhood. We compared two feeding patterns, a non-processed meat-based diet (NPMD, raw) and an ultra-processed carbohydrate-based diet (UPCD, dry). Results We report that eating a NPMD diet significantly decreased the risk of otitis later in life, while eating a UPCD diet significantly increased the risk. This was seen in different life stages of mother or puppy: The maternal diet during pregnancy (p=0.011) and the puppies' diet from 2 to 6 months of age (p=0.019) were both significantly associated with otitis incidence later in life, whereas the puppies' first solid diet, was associated in the same way, but did not reach significance (p=0.072). Also, analyzing food ratios showed that when puppies were consuming >25% of their food as NPMD it significantly decreased their incidence of otitis later in life, while a ratio of >75% UPCD in their diet significantly increased their risk of otitis. Also, if the dog was born in the current family, was exposed to sunlight for more than 1 hour daily, and was raised on a dirt floor during puppyhood, there was a lower risk of otitis development later in life. Discussion The findings only suggest causality, and further studies are required. However, we propose that veterinarians, breeders, and owners can impact otitis risk by modifying factors such as diet and environment.
Collapse
Affiliation(s)
- Manal B. M. Hemida
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Kristiina A. Vuori
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Nona C. Borgström
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Robin Moore
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Sarah Rosendahl
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Anturaniemi
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Alessandra Estrela-Lima
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Anatomy, Pathology and Clinics, School of Veterinary Medicine and Zootechny, Federal University of Bahia, Salvador, Brazil
| | - Anna Hielm-Björkman
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Johansen VBI, Josefsen K, Antvorskov JC. The Impact of Dietary Factors during Pregnancy on the Development of Islet Autoimmunity and Type 1 Diabetes: A Systematic Literature Review. Nutrients 2023; 15:4333. [PMID: 37892409 PMCID: PMC10609322 DOI: 10.3390/nu15204333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
AIMS AND HYPOTHESIS The incidence of type 1 diabetes mellitus in children is considerably increasing in western countries. Thus, identification of the environmental determinants involved could ultimately lead to disease prevention. Here, we aimed to systematically review (PROSPERO ID: CRD42022362522) the current evidence of the association between maternal dietary factors during gestation and the risk of developing type 1 diabetes and/or islet autoimmunity (IA) in murine and human offspring. METHODS In accordance with PRISMA guidelines, the present systematic review searched PubMed and Scopus (n = 343) for different combinations of MeSH terms, such as type 1 diabetes, diet, islet autoimmunity, prenatal, nutrient, gluten, gliadin, vitamin, milk, and fibers. RESULTS We found that the most investigated dietary factors in the present literature were gluten, dietary advanced glycosylated end products (dAGEs), vitamin D, fatty acids, and iron. The results concerning prenatal exposure to a gluten-free environment showed a consistently protective effect on the development of IA. Prenatal exposures to vitamin D and certain fatty acids appeared to protect against the development of IA, whereas in utero iron and fat exposures correlated with increased risks of IA. CONCLUSION We conclude that a definite association is not established for most factors investigated as the literature represents a heterogeneous pool of data, although fetal exposures to some maternal dietary components, such as gluten, show consistent associations with increased risks of IA. We suggest that human prospective dietary intervention studies in both cohort and clinical settings are crucial to better evaluate critical and protective prenatal exposures from the maternal diet during pregnancy.
Collapse
Affiliation(s)
- Valdemar Brimnes Ingemann Johansen
- Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Department of Biology, Faculty of Science, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
- Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark; (K.J.); (J.C.A.)
| | - Knud Josefsen
- Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark; (K.J.); (J.C.A.)
| | - Julie Christine Antvorskov
- Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark; (K.J.); (J.C.A.)
- Steno Diabetes Center, Borgmester Ib Juuls Vej 83, 2730 Herlev, Denmark
| |
Collapse
|
11
|
Elías-López AL, Vázquez-Mena O, Sferruzzi-Perri AN. Mitochondrial dysfunction in the offspring of obese mothers and it's transmission through damaged oocyte mitochondria: Integration of mechanisms. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166802. [PMID: 37414229 DOI: 10.1016/j.bbadis.2023.166802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/23/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
In vivo and in vitro studies demonstrate that mitochondria in the oocyte, are susceptible to damage by suboptimal pre/pregnancy conditions, such as obesity. These suboptimal conditions have been shown to induce mitochondrial dysfunction (MD) in multiple tissues of the offspring, suggesting that mitochondria of oocytes that pass from mother to offspring, can carry information that can programme mitochondrial and metabolic dysfunction of the next generation. They also suggest that transmission of MD could increase the risk of obesity and other metabolic diseases in the population inter- and trans-generationally. In this review, we examined whether MD observed in offspring tissues of high energetic demand, is the result of the transmission of damaged mitochondria from the oocytes of obese mothers to the offspring. The contribution of genome-independent mechanisms (namely mitophagy) in this transmission were also explored. Finally, potential interventions aimed at improving oocyte/embryo health were investigated, to see if they may provide an opportunity to halter the generational effects of MD.
Collapse
Affiliation(s)
- A L Elías-López
- Dirección de Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", México.
| | | | - A N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, UK.
| |
Collapse
|
12
|
Abruzzese GA, Ferreira SR, Ferrer MJ, Silva AF, Motta AB. Prenatal Androgen Excess Induces Multigenerational Effects on Female and Male Descendants. Clin Med Insights Endocrinol Diabetes 2023; 16:11795514231196461. [PMID: 37705939 PMCID: PMC10496475 DOI: 10.1177/11795514231196461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/15/2023] [Indexed: 09/15/2023] Open
Abstract
Background It is still unelucidated how hormonal alterations affect developing organisms and their descendants. Particularly, the effects of androgen levels are of clinical relevance as they are usually high in women with Polycystic Ovary Syndrome (PCOS). Moreover, it is still unknown how androgens may affect males' health and their descendants. Objectives We aimed to evaluate the multigenerational effect of prenatal androgen excess until a second generation at early developmental stages considering both maternal and paternal effects. Design And Methods This is an animal model study. Female rats (F0) were exposed to androgens during pregnancy by injections of 1 mg of testosterone to obtain prenatally hyperandrogenized (PH) animals (F1), leading to a well-known animal model that resembles PCOS features. A control (C) group was obtained by vehicle injections. The PH-F1 animals were crossed with C males (m) or females (f) and C animals were also mated, thus obtaining 3 different mating groups: Cf × Cm, PHf × Cm, Cf × PHm and their offspring (F2). Results F1-PHf presented altered glucose metabolism and lipid profile compared to F1-C females. In addition, F1-PHf showed an increased time to mating with control males compared to the C group. At gestational day 14, we found alterations in glucose and total cholesterol serum levels and in the placental size of the pregnant F1-PHf and Cf mated to F1-PHm. The F2 offspring resulting from F1-PH mothers or fathers showed alterations in their growth, size, and glucose metabolism up to early post-natal development in a sex-dependent manner, being the females born to F1-PHf the most affected ones. Conclusion androgen exposure during intrauterine life leads to programing effects in females and males that affect offspring health in a sex-dependent manner, at least up-to a second generation. In addition, this study suggests paternally mediated effects on the F2 offspring development.
Collapse
Affiliation(s)
- Giselle Adriana Abruzzese
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvana Rocio Ferreira
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
- Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | - Maria José Ferrer
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Aimé Florencia Silva
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Alicia Beatriz Motta
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
13
|
Naomi R, Teoh SH, Halim S, Embong H, Hasain Z, Bahari H, Kumar J. Unraveling Obesity: Transgenerational Inheritance, Treatment Side Effects, Flavonoids, Mechanisms, Microbiota, Redox Balance, and Bioavailability-A Narrative Review. Antioxidants (Basel) 2023; 12:1549. [PMID: 37627544 PMCID: PMC10451614 DOI: 10.3390/antiox12081549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023] Open
Abstract
Obesity is known as a transgenerational vicious cycle and has become a global burden due to its unavoidable complications. Modern approaches to obesity management often involve the use of pharmaceutical drugs and surgeries that have been associated with negative side effects. In contrast, natural antioxidants, such as flavonoids, have emerged as a promising alternative due to their potential health benefits and minimal side effects. Thus, this narrative review explores the potential protective role of flavonoids as a natural antioxidant in managing obesity. To identify recent in vivo studies on the efficiency of flavonoids in managing obesity, a comprehensive search was conducted on Wiley Online Library, Scopus, Nature, and ScienceDirect. The search was limited to the past 10 years; from the search, we identified 31 articles to be further reviewed. Based on the reviewed articles, we concluded that flavonoids offer novel therapeutic strategies for preventing obesity and its associated co-morbidities. This is because the appropriate dosage of flavonoid compounds is able to reduce adipose tissue mass, the formation of intracellular free radicals, enhance endogenous antioxidant defences, modulate the redox balance, and reduce inflammatory signalling pathways. Thus, this review provides an insight into the domain of a natural product therapeutic approach for managing obesity and recapitulates the transgenerational inheritance of obesity, the current available treatments to manage obesity and its side effects, flavonoids and their sources, the molecular mechanism involved, the modulation of gut microbiota in obesity, redox balance, and the bioavailability of flavonoids. In toto, although flavonoids show promising positive outcome in managing obesity, a more comprehensive understanding of the molecular mechanisms responsible for the advantageous impacts of flavonoids-achieved through translation to clinical trials-would provide a novel approach to inculcating flavonoids in managing obesity in the future as this review is limited to animal studies.
Collapse
Affiliation(s)
- Ruth Naomi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Soo Huat Teoh
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Malaysia;
| | - Shariff Halim
- Faculty of Health Sciences, University Technology Mara (UiTM) Pulau Pinang, Bertam Campus, Kepala Batas 13200, Malaysia;
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Zubaidah Hasain
- Unit of Physiology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
14
|
Naomi R, Rusli RNM, Huat TS, Embong H, Bahari H, Kamaruzzaman MA. Early Intervention of Elateriospermum tapos Yoghurt in Obese Dams Mitigates Intergenerational Cognitive Deficits and Thigmotactic Behaviour in Male Offspring via the Modulation of Metabolic Profile. Nutrients 2023; 15:nu15061523. [PMID: 36986254 PMCID: PMC10052004 DOI: 10.3390/nu15061523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Maternal obesity is an intergenerational vicious cycle and one of the primary causes of cognitive deficits and high anxiety levels in offspring, which often manifest independently of sex. It is proven that curbing the intergenerational inheritance of obesity through early intervention during the gestation period has a positive outcome on the body composition, cognitive function, and anxiety level of the offspring. A recent discovery shows that the consumption of Elateriospermum tapos (E. tapos) seed extract modulates body mass and ameliorates stress hormones in obese dams, while a probiotic bacterial strain can cross the placenta and boost a child's memory. Thus, we speculate that probiotics are the best medium to integrate plant extract (E. tapos extract) to access the effect on the child's cognition. Thus, this study aimed to investigate the early intervention of E. tapos yoghurt in obese dams in the cognition and anxiety levels of male offspring. In this study, 40 female rats were fed with a high-fat diet (HFD) to induce obesity before pregnancy, while another 8 rats were fed with standard rat pellets for 16 weeks. Upon successful copulation, treatment was initiated for the obese dams up to the postnatal day (PND) 21. The groups included normal chow and saline (NS), HFD and saline (HS), HFD and yoghurt (HY), HFD and 5 mg/kg E. tapos yoghurt (HYT5), HFD and 50 mg/kg E. tapos yoghurt (HYT50), and HFD and 500 mg/kg E. tapos yoghurt (HYT500). All rats were euthanised on PND 21, and the body mass index (BMI), Lee index, and waist circumference were measured for the male offspring. Hippocampal-dependent memory tests and open field tests were conducted to access for cognition and anxiety status. Fasting blood glucose (FBG), total fat (%), insulin, leptin, lipid profile, and antioxidant parameter on serum and hypothalamus (FRAP and GSH) were accessed on PND 21. The result shows male offspring of 50 mg/kg-supplemented obese dams have comparable total fat (%), lipid profile, insulin level, FBG level, plasma insulin level, recognition index, low anxiety level, and improved hypothalamic FRAP and GSH levels to the normal group. In conclusion, this study highlights that the effect of early intervention of our novel formulation of E. tapos yoghurt in obese dams alleviates cognitive deficits and anxiety in male offspring by modulating metabolic profiles at the dose of 50 mg/kg.
Collapse
Affiliation(s)
- Ruth Naomi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Rusydatul Nabila Mahmad Rusli
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Teoh Soo Huat
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Mohd Amir Kamaruzzaman
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
15
|
Dye CK, Wu H, Monk C, Belsky DW, Alschuler D, Lee S, O’Donnell K, Scorza P. Mother's childhood adversity is associated with accelerated epigenetic aging in pregnancy and in male newborns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.02.530806. [PMID: 36945654 PMCID: PMC10028804 DOI: 10.1101/2023.03.02.530806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Background Adverse childhood experiences (ACEs) are correlated with accelerated epigenetic aging, but it is not clear whether altered epigenetic aging from childhood adversities persists into adulthood and can be transmitted to the next generation. Thus, we tested whether mothers' childhood adversity is associated with accelerated epigenetic aging during pregnancy and in their newborn offspring. Methods Data were from the Avon Longitudinal Study of Parents and Children (ALSPAC) sub-study, Accessible Resource for Integrated Epigenomic Studies (ARIES). Women provided retrospective self-reports during pregnancy of ACE exposure. DNA methylation was measured in mothers during pregnancy and cord blood at birth. Estimates of epigenetic age acceleration were calculated using Principal Components of Horvath, Hannum skin & blood, GrimAge, PhenoAge, and DunedinPACE epigenetic clocks for mothers; and the Knight and Bohlin cord blood clocks for newborns. Associations between a cumulative maternal ACE score and epigenetic age acceleration were estimated using linear regression models, adjusting for maternal age at pregnancy, smoking during pregnancy, education, and pre-pregnancy BMI. Models for offspring were stratified by sex and additionally adjusted for gestation age. Results Mothers' total ACE score was positively associated with accelerated maternal PhenoAge and GrimAge. In newborn offspring, mothers' total ACE score was positively associated with accelerated epigenetic aging in males using the Bohlin clock, but not in females using either epigenetic clock. We found male offsprings' epigenetic age was accelerated in those born to mothers exposed to neglect using the Knight clock; and parental substance abuse using the Bohlin clock. Conclusion Our results show that mothers' ACE exposure is associated with DNAm age acceleration in male offspring, supporting the notion that DNAm age could be a marker of intergenerational biological embedding of mothers' childhood adversity. This is consistent with findings on vulnerability of male fetuses to environmental insults.
Collapse
Affiliation(s)
- Christian K. Dye
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| | - Catherine Monk
- Department of Psychiatry, Columbia University, Columbia University, New York, New York, USA
- Division of Behavioral Medicine, New York State Psychiatric Institute, New York, New York, USA
- Department of Obstetrics and Gynecology, Columbia University, New York, New York, USA
| | - Daniel W. Belsky
- Department of Epidemiology & Butler Columbia Aging Center, Columbia University, New York, New York, USA
| | - Daniel Alschuler
- Division of Behavioral Medicine, New York State Psychiatric Institute, New York, New York, USA
| | - Seonjoo Lee
- Division of Behavioral Medicine, New York State Psychiatric Institute, New York, New York, USA
- Department of Biostatistics, Columbia University, New York, New York, USA
| | - Kieran O’Donnell
- Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Pamela Scorza
- Department of Psychiatry, Columbia University, Columbia University, New York, New York, USA
- Department of Obstetrics and Gynecology, Columbia University, New York, New York, USA
| |
Collapse
|
16
|
Pourjafari F, Ezzatabadipour M, Nematollahi-Mahani SN, Afgar A, Haghpanah T. In utero and postnatal exposure to Foeniculum vulgare and Linum usitatissimum seed extracts: modifications of key enzymes involved in epigenetic regulation and estrogen receptors expression in the offspring's ovaries of NMRI mice. BMC Complement Med Ther 2023; 23:45. [PMID: 36788561 PMCID: PMC9926564 DOI: 10.1186/s12906-023-03875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Early-life exposure to exogenous estrogens such as phytoestrogens (plant-derived estrogens) could affect later health through epigenetic modifications. Foeniculum vulgare (fennel) and Linum usitatissimum (flax) are two common medicinal plants with high phytoestrogen content. Considering the developmental epigenetic programming effect of phytoestrogens, the main goal of the present study was to evaluate the perinatal exposure with life-long exposure to hydroalcoholic extracts of both plants on offspring's ovarian epigenetic changes and estrogen receptors (ESRs) expression level as signaling cascades triggers of phytoestrogens. METHODS Pregnant mice were randomly divided into control (CTL) that received no treatment and extract-treated groups that received 500 mg/kg/day of fennel (FV) and flaxseed (FX) alone or in combination (FV + FX) during gestation and lactation. At weaning, female offspring exposed to extracts prenatally remained on the maternal-doses diets until puberty. Then, the ovaries were collected for morphometric studies and quantitative real-time PCR analysis. RESULTS A reduction in mRNA transcripts of the epigenetic modifying enzymes DNMTs and HDACs as well as estrogen receptors was observed in the FV and FX groups compared to the CTL group. Interestingly, an increase in ESRα/ESRβ ratio along with HDAC2 overexpression was observed in the FV + FX group. CONCLUSION Our findings clearly show a positive relationship between pre and postnatal exposure to fennel and flaxseed extracts, ovarian epigenetic changes, and estrogen receptors expression, which may affect the estrogen signaling pathway. However, due to the high phytoestrogen contents of these extracts, the use of these plants in humans requires more detailed investigations.
Collapse
Affiliation(s)
- Fahimeh Pourjafari
- grid.412105.30000 0001 2092 9755Department of Anatomical Sciences, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Massood Ezzatabadipour
- grid.412105.30000 0001 2092 9755Department of Anatomical Sciences, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Noureddin Nematollahi-Mahani
- grid.412105.30000 0001 2092 9755Department of Anatomical Sciences, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- grid.412105.30000 0001 2092 9755Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Haghpanah
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
17
|
Metayer C, Imani P, Dudoit S, Morimoto L, Ma X, Wiemels JL, Petrick LM. One-Carbon (Folate) Metabolism Pathway at Birth and Risk of Childhood Acute Lymphoblastic Leukemia: A Biomarker Study in Newborns. Cancers (Basel) 2023; 15:1011. [PMID: 36831356 PMCID: PMC9953980 DOI: 10.3390/cancers15041011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Leukemia is the most common cancer in children in industrialized countries, and its initiation often occurs prenatally. Folic acid is a key vitamin in the production and modification of DNA, and prenatal folic acid intake is known to reduce the risk of childhood leukemia. We characterized the one-carbon (folate) metabolism nutrients that may influence risk of childhood acute lymphoblastic leukemia (ALL) among 122 cases diagnosed at age 0-14 years during 1988-2011 and 122 controls matched on sex, age, and race/ethnicity. Using hydrophilic interaction chromatography (HILIC) applied to neonatal dried blood spots, we evaluated 11 folate pathway metabolites, overall and by sex, race/ethnicity, and age at diagnosis. To conduct the prediction analyses, the 244 samples were separated into learning (75%) and test (25%) sets, maintaining the matched pairings. The learning set was used to train classification methods which were evaluated on the test set. High classification error rates indicate that the folate pathway metabolites measured have little predictive capacity for pediatric ALL. In conclusion, the one-carbon metabolism nutrients measured at birth were unable to predict subsequent leukemia in children. These negative findings are reflective of the last weeks of pregnancy and our study does not address the impact of these nutrients at the time of conception or during the first trimester of pregnancy that are critical for the embryo's DNA methylation programming.
Collapse
Affiliation(s)
- Catherine Metayer
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA 94704, USA
| | - Partow Imani
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA 94704, USA
| | - Sandrine Dudoit
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA 94704, USA
- Department of Statistics, University of California, Berkeley, CA 94720, USA
| | - Libby Morimoto
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA 94704, USA
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06510, USA
| | - Joseph L. Wiemels
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lauren M. Petrick
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
- The Bert Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, Ramat Gan 5211401, Israel
| |
Collapse
|
18
|
Stumpf K, Mirpuri J. Maternal Macro- and Micronutrient Intake During Pregnancy: Does It Affect Allergic Predisposition in Offspring? Immunol Allergy Clin North Am 2023; 43:27-42. [PMID: 36411006 DOI: 10.1016/j.iac.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This review article explores the available literature on the association of maternal nutrient intake with development of allergies in offspring. It examines the mechanisms for maternal diet-mediated effects on offspring immunity and dissects recent human and animal studies that evaluate the role of both maternal macro- and micronutrient intake on offspring susceptibility to asthma, eczema, food allergy, and atopy.
Collapse
Affiliation(s)
- Katherine Stumpf
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard- Suite F3.302, Dallas, TX 75390-9063, USA.
| | - Julie Mirpuri
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard- Suite F3.302, Dallas, TX 75390-9063, USA.
| |
Collapse
|
19
|
Núñez-Carro C, Blanco-Blanco M, Villagrán-Andrade KM, Blanco FJ, de Andrés MC. Epigenetics as a Therapeutic Target in Osteoarthritis. Pharmaceuticals (Basel) 2023; 16:156. [PMID: 37259307 PMCID: PMC9964205 DOI: 10.3390/ph16020156] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 08/15/2023] Open
Abstract
Osteoarthritis (OA) is a heterogenous, complex disease affecting the integrity of diarthrodial joints that, despite its high prevalence worldwide, lacks effective treatment. In recent years it has been discovered that epigenetics may play an important role in OA. Our objective is to review the current knowledge of the three classical epigenetic mechanisms-DNA methylation, histone post-translational modifications (PTMs), and non-coding RNA (ncRNA) modifications, including microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs)-in relation to the pathogenesis of OA and focusing on articular cartilage. The search for updated literature was carried out in the PubMed database. Evidence shows that dysregulation of numerous essential cartilage molecules is caused by aberrant epigenetic regulatory mechanisms, and it contributes to the development and progression of OA. This offers the opportunity to consider new candidates as therapeutic targets with the potential to attenuate OA or to be used as novel biomarkers of the disease.
Collapse
Affiliation(s)
- Carmen Núñez-Carro
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Margarita Blanco-Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Karla Mariuxi Villagrán-Andrade
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Francisco J. Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación en Reumatología y Salud, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña (UDC), 15008 A Coruña, Spain
| | - María C. de Andrés
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| |
Collapse
|
20
|
van Zundert S, van der Padt S, Willemsen S, Rousian M, Mirzaian M, van Schaik R, Steegers-Theunissen R, van Rossem L. Periconceptional Maternal Protein Intake from Animal and Plant Sources and the Impact on Early and Late Prenatal Growth and Birthweight: The Rotterdam Periconceptional Cohort. Nutrients 2022; 14:nu14245309. [PMID: 36558467 PMCID: PMC9785913 DOI: 10.3390/nu14245309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Plant-based diets continue to rise in popularity, including among women of reproductive age, while consequences for pregnancy outcomes have hardly been studied. During pregnancy, maternal diet is the only source of proteins for the developing fetus. Hence, we investigated the effects of periconceptional maternal animal and plant protein intake on prenatal growth and birthweight. 501 pregnancies were included from the prospective Rotterdam Periconceptional Cohort. Embryonic growth was depicted by crown-rump length (CRL) and embryonic volume (EV) at 7, 9 and 11 weeks using 3D ultrasound scans. Estimated fetal weight (EFW) at 20 weeks and birthweight were retrieved from medical records and standardized. Multivariable mixed models were used for CRL and EV trajectories, and linear regression for EFW and birthweight. A 10 g/day higher maternal animal protein intake was positively associated with increased embryonic growth (CRL: β = 0.023 √mm, p = 0.052; EV: β = 0.015 ∛cm, p = 0.012). A positive association, albeit non-significant, was found between maternal animal protein intake and EFW, and birthweight. No clear associations emerged between maternal plant protein intake and prenatal growth and birthweight, with effect estimates close to zero. In conclusion, maternal animal protein intake during the periconception period was positively associated with early and late prenatal growth and birthweight, while no associations were found between maternal plant protein intake and prenatal growth and birthweight.
Collapse
Affiliation(s)
- Sofie van Zundert
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Simone van der Padt
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Sten Willemsen
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
- Department of Biostatistics, Erasmus MC, University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Melek Rousian
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Mina Mirzaian
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Ron van Schaik
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Régine Steegers-Theunissen
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
- Correspondence:
| | - Lenie van Rossem
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
21
|
Leroy JLMR, Meulders B, Moorkens K, Xhonneux I, Slootmans J, De Keersmaeker L, Smits A, Bogado Pascottini O, Marei WFA. Maternal metabolic health and fertility: we should not only care about but also for the oocyte! Reprod Fertil Dev 2022; 35:1-18. [PMID: 36592978 DOI: 10.1071/rd22204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metabolic disorders due to obesity and unhealthy lifestyle directly alter the oocyte's microenvironment and impact oocyte quality. Oxidative stress and mitochondrial dysfunction play key roles in the pathogenesis. Acute effects on the fully grown oocytes are evident, but early follicular stages are also sensitive to metabolic stress leading to a long-term impact on follicular cells and oocytes. Improving the preconception health is therefore of capital importance but research in animal models has demonstrated that oocyte quality is not fully recovered. In the in vitro fertilisation clinic, maternal metabolic disorders are linked with disappointing assisted reproductive technology results. Embryos derived from metabolically compromised oocytes exhibit persistently high intracellular stress levels due to weak cellular homeostatic mechanisms. The assisted reproductive technology procedures themselves form an extra burden for these defective embryos. Minimising cellular stress during culture using mitochondrial-targeted therapy could rescue compromised embryos in a bovine model. However, translating such applications to human in vitro fertilisation clinics is not simple. It is crucial to consider the sensitive epigenetic programming during early development. Research in humans and relevant animal models should result in preconception care interventions and in vitro strategies not only aiming at improving fertility but also safeguarding offspring health.
Collapse
Affiliation(s)
- J L M R Leroy
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - B Meulders
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - K Moorkens
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - I Xhonneux
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - J Slootmans
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - L De Keersmaeker
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - A Smits
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - O Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - W F A Marei
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
22
|
Patlar B. On the Role of Seminal Fluid Protein and Nucleic Acid Content in Paternal Epigenetic Inheritance. Int J Mol Sci 2022; 23:ijms232314533. [PMID: 36498858 PMCID: PMC9739459 DOI: 10.3390/ijms232314533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The evidence supports the occurrence of environmentally-induced paternal epigenetic inheritance that shapes the offspring phenotype in the absence of direct or indirect paternal care and clearly demonstrates that sperm epigenetics is one of the major actors mediating these paternal effects. However, in most animals, while sperm makes up only a small portion of the seminal fluid, males also have a complex mixture of proteins, peptides, different types of small noncoding RNAs, and cell-free DNA fragments in their ejaculate. These seminal fluid contents (Sfcs) are in close contact with the reproductive cells, tissues, organs, and other molecules of both males and females during reproduction. Moreover, their production and use are adjusted in response to environmental conditions, making them potential markers of environmentally- and developmentally-induced paternal effects on the next generation(s). Although there is some intriguing evidence for Sfc-mediated paternal effects, the underlying molecular mechanisms remain poorly defined. In this review, the current evidence regarding the links between seminal fluid and environmental paternal effects and the potential pathways and mechanisms that seminal fluid may follow in mediating paternal epigenetic inheritance are discussed.
Collapse
Affiliation(s)
- Bahar Patlar
- Animal Ecology, Department of Zoology, Martin-Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| |
Collapse
|
23
|
Chen X, Lin L, Huang L, Wu M, Tan T, Li Q, Zhong C, Wang H, Wang W, Sun G, Yi N, Yang X, Hao L, Yang H, Yang N. Association of maternal low-carbohydrate-diet score during pregnancy with allergic diseases at 2 years of age. Pediatr Allergy Immunol 2022; 33:e13842. [PMID: 36156822 DOI: 10.1111/pai.13842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/22/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND We prospectively evaluated the association between low-carbohydrate-diet (LCD) score during pregnancy and the risk of allergic diseases in infants up to 2 years. METHODS Participants were from a prospective mother-offspring cohort study in Wuhan, China. LCD score was calculated according to the percentage of dietary energy intake from carbohydrate, protein, and fat assessed in late pregnancy using validated food frequency questionnaires. Allergic diseases, including immunoglobulin E (IgE)-mediated allergic diseases, allergic contact dermatitis, and food allergy, were recorded at 3, 6, 12, and 24 months postpartum follow-up. Poisson regression models were used to calculate relative risks (RRs) and 95% confidence intervals (CIs). RESULTS Among 1636 mother-infant pairs included in the present analysis, 230 infants (14.1%) with IgE-mediated allergic diseases, 77 (4.7%) with allergic contact dermatitis, and 488 (29.8%) with food allergy were, respectively, reported. Independent of total energy intake and other potential confounders, both the lowest quintile (RR, 1.77; 95% CI, 1.13-2.77) and the highest quintile (RR, 1.72; 95% CI, 1.22-2.63), were associated with the risk of IgE-mediated allergic diseases compared with the middle quintile. Among high-carbohydrate-diet pregnant women, substituting 5% of energy from either protein or fat for carbohydrate was associated with a lower risk of IgE-mediated allergic diseases. While among low-carbohydrate-diet pregnant women, substituting 5% of energy from carbohydrate, especially high-quality carbohydrate, for fat was associated with a lower risk of IgE-mediated allergic diseases. CONCLUSION Maternal low carbohydrate-high protein and fat, and high carbohydrate-low protein and fat diet were both associated with an increased risk of allergic diseases in the infants up to 2 years. This study may provide an intervention strategy for allergy prevention in early childhood.
Collapse
Affiliation(s)
- Xi Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lixia Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Wu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianqi Tan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunrong Zhong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huanzhuo Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiming Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoqiang Sun
- Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Nianhua Yi
- Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongying Yang
- Institute of Health Education, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Nianhong Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
A Systematic Review of the Effects of High-Fat Diet Exposure on Oocyte and Follicular Quality: A Molecular Point of View. Int J Mol Sci 2022; 23:ijms23168890. [PMID: 36012154 PMCID: PMC9408717 DOI: 10.3390/ijms23168890] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 12/19/2022] Open
Abstract
Worldwide, infertility affects between 10 and 15% of reproductive-aged couples. Female infertility represents an increasing health issue, principally in developing countries, as the current inclinations of delaying pregnancy beyond 35 years of age significantly decrease fertility rates. Female infertility, commonly imputable to ovulation disorders, can be influenced by several factors, including congenital malformations, hormonal dysfunction, and individual lifestyle choices, such as smoking cigarettes, stress, drug use and physical activity. Moreover, diet-related elements play an important role in the regulation of ovulation. Modern types of diet that encourage a high fat intake exert a particularly negative effect on ovulation, affecting the safety of gametes and the implantation of a healthy embryo. Identifying and understanding the cellular and molecular mechanisms responsible for diet-associated infertility might help clarify the confounding multifaceted elements of infertility and uncover novel, potentially curative treatments. In this view, this systematic revision of literature will summarize the current body of knowledge of the potential effect of high-fat diet (HFD) exposure on oocyte and follicular quality and consequent female reproductive function, with particular reference to molecular mechanisms and pathways. Inflammation, oxidative stress, gene expression and epigenetics represent the main mechanisms associated with mammal folliculogenesis and oogenesis.
Collapse
|
25
|
Ryznar RJ, Phibbs L, Onat E, Van Winkle LJ. Epigenetic Regulation of Development, Cellular Differentiation, and Disease Progression/Protection in Adults. Cells 2022; 11:cells11121907. [PMID: 35741035 PMCID: PMC9221476 DOI: 10.3390/cells11121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Rebecca J. Ryznar
- Department of Biomedical Sciences, Rocky Vista University, Parker, CO 80134, USA
- Correspondence:
| | - Lacie Phibbs
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA; (L.P.); (E.O.)
| | - Erin Onat
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA; (L.P.); (E.O.)
| | - Lon J. Van Winkle
- Department of Medical Humanities, Rocky Vista University, 8401 S. Chambers Road, Parker, CO 80112, USA;
- Department of Biochemistry, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
26
|
Bari MW, Ishiyama S, Matsumoto S, Mochizuki K, Kishigami S. From lessons on the long-term effects of the preimplantation environment on later health to a "modified ART-DOHaD" animal model. Reprod Med Biol 2022; 21:e12469. [PMID: 35781921 PMCID: PMC9243299 DOI: 10.1002/rmb2.12469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/08/2022] [Accepted: 05/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background At its earliest stages, mammalian embryonic development is apparently simple but vulnerable. The environment during the preimplantation period, which only lasts a couple of days, has been implicated in adult health, extending to such early stages the concept of the developmental origin of health and disease (DOHaD). Methods In this review, we first provide a brief history of assisted reproductive technology (ART) focusing on in vitro culture and its outcomes during subsequent development mainly in mice and humans. Further, we introduce the "MEM mouse," a novel type 2 diabetes mouse model generated by in vitro culture of preimplantation embryos in alpha minimum essential medium (αMEM). Main findings The association between ART and its long-term effects has been carefully examined for its application in human infertility treatment. The "MEM mouse" develops steatohepatitis and kidney disease with diabetes into adulthood. Conclusion The close association between the environment of preimplantation and health in postnatal life is being clarified. The approach by which severe mouse phenotypes are successfully induced by manipulating the environment of preimplantation embryos could provide new chronic disease animal models, which we call "modified ART-DOHaD" animal models. This will also offer insights into the mechanisms underlying their long-term effects.
Collapse
Affiliation(s)
- Md Wasim Bari
- Department of Integrated Applied Life ScienceUniversity of YamanashiYamanashiJapan
| | - Shiori Ishiyama
- Department of Integrated Applied Life ScienceUniversity of YamanashiYamanashiJapan
- Faculty of Life and Environmental SciencesUniversity of YamanashiYamanashiJapan
| | - Sachi Matsumoto
- Faculty of Life and Environmental SciencesUniversity of YamanashiYamanashiJapan
| | - Kazuki Mochizuki
- Department of Integrated Applied Life ScienceUniversity of YamanashiYamanashiJapan
- Faculty of Life and Environmental SciencesUniversity of YamanashiYamanashiJapan
| | - Satoshi Kishigami
- Department of Integrated Applied Life ScienceUniversity of YamanashiYamanashiJapan
- Faculty of Life and Environmental SciencesUniversity of YamanashiYamanashiJapan
- Center for advanced Assisted Reproductive TechnologiesUniversity of YamanashiYamanashiJapan
| |
Collapse
|