1
|
Amlashi AT, Ghanizadeh AR, Firouzranjbar S, Moghaddam HM, Navazani M, Isleem HF, Dessouky S, Khishe M. Predicting workability and mechanical properties of bentonite plastic concrete using hybrid ensemble learning. Sci Rep 2025; 15:7686. [PMID: 40044944 PMCID: PMC11882920 DOI: 10.1038/s41598-025-92253-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
Heavy metal contamination in wastewater poses severe environmental challenges, highlighting the urgent need for efficient and cost-effective solutions. While bentonite incorporation in concrete mixtures has shown promise in adsorbing heavy metals, its experimental validation-through Bentonite Plastic Concrete (BPC)-is hindered by high costs, labor-intensive procedures, and the need for specialized equipment. This study overcomes these barriers by introducing hybrid ensemble learning models, optimized with Forensic-Based Investigation Optimization (FBIO), to predict BPC's workability and mechanical properties, including slump (S), tensile strength (TS), and elastic modulus (E). Using input parameters such as gravel, bentonite, silty clay, curing time, sand, cement, and water, models including Random Forest (RF), Adaptive Boosting (ADB), Extreme Gradient Boosting (XGB), and Gradient Boosting Regression Tree (GBRT) were developed. Notably, GBRT-FBIO achieved the highest accuracy for E predictions, while XGB-FBIO excelled for TS and S. Shapley Additive Explanation (SHAP) analysis identified water as the most critical factor influencing slump (+ 0.11) predictions while curing time emerged as the key determinant for TS (+ 0.18) and E (+ 0.12) predictions. Additionally, a user-friendly online tool was developed to enable the real-time application of these models, reducing reliance on costly experimental methods. This work addresses key challenges in experimental BPC testing, offering a transformative computational approach for advancing civil engineering materials research.
Collapse
Affiliation(s)
- Amir Tavana Amlashi
- School of Civil and Environmental Engineering and Construction Management, University of Texas at San Antonio, San Antonio, USA.
| | - Ali Reza Ghanizadeh
- Department of Civil Engineering, Sirjan University of Technology, Sirjan, Iran
| | - Shadi Firouzranjbar
- School of Civil and Environmental Engineering and Construction Management, University of Texas at San Antonio, San Antonio, USA
| | | | - Mohsen Navazani
- School of Civil and Environmental Engineering and Construction Management, University of Texas at San Antonio, San Antonio, USA
| | - Haytham F Isleem
- Jadara University Research Center, Jadara University, Irbid, Jordan.
- Department of computer Science, University of York, York, YO10 5DD, UK.
| | - Samer Dessouky
- School of Civil and Environmental Engineering and Construction Management, University of Texas at San Antonio, San Antonio, USA
| | - Mohammad Khishe
- Department of Electrical Engineering, Imam Khomeini Naval Science University of Nowshahr, Nowshahr, Iran.
- Applied science research center, Applied Science Private University, Amman, Jordan.
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
- Department of Electronics and Communication Engineering, Graphic Era Hill University, Dehradun, India.
| |
Collapse
|
2
|
Euzen C, Chabaux F, Schmitt AD, Eyrolle F, Rixhon G, Preusser F, Perrone T, Boutin R, Badariotti D, Schmitt L. Geochemical analysis of overbank fine sediments of the Upper Rhine (Rhinau island, France): Evidence of metal (Pb, Zn, Cu & Sn) enrichments over the last century. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178678. [PMID: 39946874 DOI: 10.1016/j.scitotenv.2025.178678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 03/05/2025]
Abstract
A geochemical analysis of a well-dated 1.2 m-thick sedimentary sequence collected on the Rhinau island at ~60 km south of Strasbourg (France) has been performed in order to reconstruct the evolution of metal contents in overbank fine sediments of the Upper Rhine over the last 150 years. Data indicate that most of the geochemical variations in major elements as well as in trace elements along the sedimentary profile can be related to variations in the sediment mineralogical composition during deposition. Only Cu, Pb, Zn, and Sn highlight enrichment in the sediments, interpreted as resulting from human releases into the fluvial hydrosystem. Enrichment quantification is made by using diagrams of variation of element X normalized to silica as a function of Al2O3/SiO2. The results point out that each metal has its own enrichment pattern. The enrichment significances and origins are discussed by comparing them with the knowledge of historical contaminant release and/or deposition in the Upper Rhine hydrosystem. Sn enrichment is thus linked to Sn releases by textile industries downstream of Basel, whose activity peaked in ~1940/1950 CE before gradually declining. Pb enrichment, which started to decline in the mid-1980s and disappeared in the 2000s, is explained by the reduction and then cessation in the early 2000s of the two main sources of Pb pollution to the Rhine hydrosystem, namely (i) atmospheric fallout linked to the combustion of leaded gasoline and (ii) Pb flux associated to the Alsacian Potassium Mining rejects into the Rhine river. Cu and Zn enrichments are explained by diverse sources (e.g. agriculture, industries and wastewater treatment plants), whose emissions have reduced over the last decades but can still occur to a significant extent. Overall these results confirm potential and usefulness of our multi-method approach for assessing the effectiveness of public policies to reduce the impact of metal releases into continental hydrosystems, as well as their response time.
Collapse
Affiliation(s)
- Cassandra Euzen
- Laboratoire Image Ville Environnement (LIVE UMR 7362), Université de Strasbourg CNRS ENGEES, 3 rue de l'Argonne, 67083 Strasbourg, France.
| | - François Chabaux
- Institut Terre et Environnement de Strasbourg (ITES UMR 7063), Université de Strasbourg CNRS ENGEES, 5 rue René Descartes, 67000 Strasbourg, France.
| | - Anne-Désirée Schmitt
- Institut Terre et Environnement de Strasbourg (ITES UMR 7063), Université de Strasbourg CNRS ENGEES, 5 rue René Descartes, 67000 Strasbourg, France
| | - Frédérique Eyrolle
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN) - PSE-ENV/STAAR/LRTA - Centre de Cadarache, bat 159, 13115 St Paul-lèz-Durance, France
| | - Gilles Rixhon
- Laboratoire Image Ville Environnement (LIVE UMR 7362), Université de Strasbourg CNRS ENGEES, 3 rue de l'Argonne, 67083 Strasbourg, France
| | - Frank Preusser
- Institute of Earth and Environmental Science, University of Freiburg, Albertstr. 23b, 79104 Freiburg, Germany
| | - Thierry Perrone
- Institut Terre et Environnement de Strasbourg (ITES UMR 7063), Université de Strasbourg CNRS ENGEES, 5 rue René Descartes, 67000 Strasbourg, France
| | - René Boutin
- Institut Terre et Environnement de Strasbourg (ITES UMR 7063), Université de Strasbourg CNRS ENGEES, 5 rue René Descartes, 67000 Strasbourg, France
| | - Dominique Badariotti
- Laboratoire Image Ville Environnement (LIVE UMR 7362), Université de Strasbourg CNRS ENGEES, 3 rue de l'Argonne, 67083 Strasbourg, France
| | - Laurent Schmitt
- Laboratoire Image Ville Environnement (LIVE UMR 7362), Université de Strasbourg CNRS ENGEES, 3 rue de l'Argonne, 67083 Strasbourg, France.
| |
Collapse
|
3
|
Balkrishna A, Ghosh S, Kaushik I, Arya V, Joshi D, Semwal D, Saxena A, Singh S. Sequential distribution, potential sources, and health risk assessment of persistent toxic substances in sewage sludge used as organic fertilizer in Indo-Gangetic region. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2324-2358. [PMID: 39775497 DOI: 10.1007/s11356-024-35706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
This study evaluates the environmental and human health impact of sewage sludge generated in the Indo-Gangetic region (Uttarakhand and Uttar Pradesh) used as organic fertilizer and landfill disposal. The research conducts a comprehensive risk assessment, including physicochemical and heavy metals analysis, on triplicate sludge samples obtained from 30 sewage treatment plants. The study provides both qualitative and quantitative insights into potential hazards associated with sewage sludge. The results indicate varying concentrations (mg/kg) of heavy metals in sewage sludge (expressed in mean ± SD) as determined by inductively coupled plasma mass spectrometry (ICP-MS) with the following order, zinc (966.15 mg/kg ± 279) > chromium (851.23 mg/kg ± 3079) > cadmium (150.07 mg/kg ± 307) > copper (186.09 mg/kg ± 56.25) > arsenic (5.24 mg/kg ± 3.54) > nickel (21.97 mg/kg ± 2.13) > mercury (1.05 mg/kg ± 0.12). The metal pollution indices underscore greater non-compliance in samples from STPs of Uttar Pradesh compared to those from Uttarakhand, with 40% of samples falling into poor to particularly poor categories. Multivariate analysis of samples reveals potential pollution sources, implicating industrial effluents and agricultural runoff, with identified controlling factors being Cu (0.948, p < 0.05); Zn (0.941 p < 0.05); Pb (0.921 p < 0.05); Ni (0.806 p < 0.05); Cd (0.717, p < 0.05); and electrical conductivity (0.620, p < 0.05). Monte Carlo-based uncertainty analysis emphasizes sludge-based chromium (Cd) as the highest risk at 62.86% (p < 0.001), trailed by chromium (59.29%, p < 0.001) for target cancer risk. The study also suggests potential management options, including the application of AI-based sensors for heavy metal monitoring, exploration of improved trapping or diluting technologies, and raising public awareness about stringent rules regarding sewage sludge remediation for effective risk mitigation strategies.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Research Foundation, Haridwar, Uttarakhand, India
- Patanjali Organic Research Institute, Haridwar, Uttarakhand, India
| | - Sourav Ghosh
- Patanjali Research Foundation, Haridwar, Uttarakhand, India.
- Rai Technology University, Bengaluru, India.
| | - Ilika Kaushik
- Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - VedPriya Arya
- Patanjali Research Foundation, Haridwar, Uttarakhand, India
- Patanjali Organic Research Institute, Haridwar, Uttarakhand, India
| | - Divya Joshi
- Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Diksha Semwal
- Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Aditi Saxena
- Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Shelly Singh
- Patanjali Research Foundation, Haridwar, Uttarakhand, India
| |
Collapse
|
4
|
Odirile PT, Obuseng VC, Moshoeshoe M, Tshenyego L, Mbongwe B. Assessment of faecal sludge quality, heavy metal contamination, and ecological risk: implications for sustainable agriculture. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1270. [PMID: 39609291 PMCID: PMC11604698 DOI: 10.1007/s10661-024-13385-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024]
Abstract
Pit latrines represent the predominant form of on-site sanitation in Botswana, posing unique challenges in faecal sludge (FS) management. The key concerns revolve around FS extraction, treatment, and safe disposal. Currently, co-treatment with wastewater is the primary approach, but it strains wastewater treatment plants (WWTPs) and compromises effluent quality. This study comprehensively assesses FS quality from pit latrines and evaluates the potential health risks when used in agriculture for soil improvement/amendment. Systematic sampling of soils at various depth intervals, approximately 30 cm apart, was conducted, followed by extensive laboratory analysis, including determination of heavy metals (copper, iron, lead, cadmium, zinc, manganese, and arsenic) using inductively coupled plasma atomic emission spectroscopy (ICP-OES) and nutrient analysis using ion chromatography (IC). The findings unequivocally demonstrate that FS from VIP (ventilated improved pit) latrines poses no significant health risks due to heavy metal content. Specifically, Geo-accumulation Index (Igeo) values for nickel (Ni), chromium (Cr), and arsenic (As) were consistently negative, indicating negligible risk of environmental contamination. Copper (Cu) concentrations averaged 40.36 mg/kg in samples collected from Mogoditshane and 591.61 mg/kg in those collected from Broadhurst (Gaborone, Botswana) with Igeo values indicating a moderate pollution risk. Nutrient analysis showed high levels of nitrogen (NO3-), with concentrations reaching 4.47 × 103 mg/kg in some samples, and phosphorus (PO43-) levels as high as 3.9 × 104 mg/kg. These findings highlight its agricultural potential for soil amendment, though prudent management is needed to mitigate eutrophication. The study advocates for separate FS treatment, resolving co-treatment operational challenges and enhancing sustainability. Implementing these recommendations promises to address FS management issues, bolster food security, and enhance Botswana's ecological well-being.
Collapse
Affiliation(s)
- Phillimon T Odirile
- Department of Civil Engineering, University of Botswana, Private Bag UB0061, Gaborone, Botswana.
| | - Veronica C Obuseng
- Chemistry Department, University of Botswana, Private Bag UB0022, Gaborone, Botswana
| | - Mohau Moshoeshoe
- Chemistry Department, University of Botswana, Private Bag UB0022, Gaborone, Botswana
- Department of Chemistry and Chemical Technology, National University of Lesotho, Maseru, Lesotho
| | - Lamong Tshenyego
- Department of Civil Engineering, University of Botswana, Private Bag UB0061, Gaborone, Botswana
| | - Bontle Mbongwe
- Department of Environmental Health, School of Public Health, University of Botswana, Gaborone, Botswana
| |
Collapse
|
5
|
Chen R, Yang J, Cai X, Liu Z, Huang W, Shi R, Ma T. Assessing soil remediation effect of Cr and Pb based on bioavailability using DGT, BCR and standardized determination method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175947. [PMID: 39260481 DOI: 10.1016/j.scitotenv.2024.175947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
In the field of soil remediation, the importance of bioavailability of pollutants has not received adequate attention, leading to the excessive application of remediation measures. Therefore, to ensure the safe use of farmland soil, a scientific method is needed to assess labile contaminants and their translocation in plants. To evaluate soil remediation effect based on bioavailability, the concentrations of these heavy metals in soil were analyzed using by the method for total metal content, the Community Bureau of Reference (BCR) extraction, and the diffusive gradients in thin films (DGT) technique. The results reveal that the correlation coefficients between metal concentrations measured by DGT and those accumulated in rice grains are the highest (Cr-R2 = 0.8966, Pb-R2 = 0.9045). However, the capability of method for total metal content to evaluate the remediation effect of heavy metals is very limited. In contrast, although Cr and Pb measured by BCR show a high correlation with HMs in rice plants, the method still falls short in precisely assessing bioavailability. Significantly, DGT proves to be more effective, successfully distinguishing the remediation effects of different treatments. Generally, DGT offers a more accurate and simpler assessment method, underscoring its practical significance for monitoring soil remediation and environmental management.
Collapse
Affiliation(s)
- Rui Chen
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China.
| | - Jingyan Yang
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Xuying Cai
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Zean Liu
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Wenyang Huang
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Rongguang Shi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Tiantian Ma
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| |
Collapse
|
6
|
Tonietti L, Esposito M, Cascone M, Barosa B, Fiscale S, Muscari Tomajoli MT, Sbaffi T, Santomartino R, Covone G, Cordone A, Rotundi A, Giovannelli D. Unveiling the Bioleaching Versatility of Acidithiobacillus ferrooxidans. Microorganisms 2024; 12:2407. [PMID: 39770610 PMCID: PMC11678928 DOI: 10.3390/microorganisms12122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Acidithiobacillus ferrooxidans is a Gram-negative bacterium that thrives in extreme acidic conditions. It has emerged as a key player in biomining and bioleaching technologies thanks to its unique ability to mobilize a wide spectrum of elements, such as Li, P, V, Cr, Fe, Ni, Cu, Zn, Ga, As, Mo, W, Pb, U, and its role in ferrous iron oxidation and reduction. A. ferrooxidans catalyzes the extraction of elements by generating iron (III) ions in oxic conditions, which are able to react with metal sulfides. This review explores the bacterium's versatility in metal and elemental mobilization, with a focus on the mechanisms involved, encompassing its role in the recovery of industrially relevant elements from ores. The application of biomining technologies leveraging the bacterium's natural capabilities not only enhances element recovery efficiency, but also reduces reliance on conventional energy-intensive methods, aligning with the global trend towards more sustainable mining practices. However, its use in biometallurgical applications poses environmental issues through its effect on the pH levels in bioleaching systems, which produce acid mine drainage in rivers and lakes adjacent to mines. This dual effect underscores its potential to shape the future of responsible mining practices, including potentially in space, and highlights the importance of monitoring acidic releases in the environment.
Collapse
Affiliation(s)
- Luca Tonietti
- Department of Science and Technology, University Parthenope, 80143 Naples, Italy; (S.F.); (M.T.M.T.); (A.R.)
- International PhD Programme/UNESCO Chair “Environment, Resources and Sustainable Development”, 80143 Naples, Italy
- Department of Biology, University Federico II, 80126 Naples, Italy; (M.E.); (M.C.); (B.B.); (A.C.)
- INAF-OAC, Osservatorio Astronomico di Capodimonte, 80137 Naples, Italy;
| | - Mattia Esposito
- Department of Biology, University Federico II, 80126 Naples, Italy; (M.E.); (M.C.); (B.B.); (A.C.)
| | - Martina Cascone
- Department of Biology, University Federico II, 80126 Naples, Italy; (M.E.); (M.C.); (B.B.); (A.C.)
| | - Bernardo Barosa
- Department of Biology, University Federico II, 80126 Naples, Italy; (M.E.); (M.C.); (B.B.); (A.C.)
| | - Stefano Fiscale
- Department of Science and Technology, University Parthenope, 80143 Naples, Italy; (S.F.); (M.T.M.T.); (A.R.)
- International PhD Programme/UNESCO Chair “Environment, Resources and Sustainable Development”, 80143 Naples, Italy
| | - Maria Teresa Muscari Tomajoli
- Department of Science and Technology, University Parthenope, 80143 Naples, Italy; (S.F.); (M.T.M.T.); (A.R.)
- International PhD Programme/UNESCO Chair “Environment, Resources and Sustainable Development”, 80143 Naples, Italy
| | - Tomasa Sbaffi
- Molecular Ecology Group (MEG), National Research Council of Italy—Water Research Institute (CNR-IRSA), 28922 Verbania, Italy;
| | - Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH8 9YL, UK;
| | - Giovanni Covone
- INAF-OAC, Osservatorio Astronomico di Capodimonte, 80137 Naples, Italy;
- Department of Physics, University of Naples Federico II, 80126 Naples, Italy
| | - Angelina Cordone
- Department of Biology, University Federico II, 80126 Naples, Italy; (M.E.); (M.C.); (B.B.); (A.C.)
| | - Alessandra Rotundi
- Department of Science and Technology, University Parthenope, 80143 Naples, Italy; (S.F.); (M.T.M.T.); (A.R.)
- INAF-IAPS, Istituto di Astrofisica e Planetologia Spaziali, 00133 Rome, Italy
| | - Donato Giovannelli
- Department of Biology, University Federico II, 80126 Naples, Italy; (M.E.); (M.C.); (B.B.); (A.C.)
- National Research Council, Institute of Marine Biological Resources and Biotechnologies, CNR-IRBIM, 60125 Ancona, Italy
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ 08901, USA
- Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Falmouth, MA 02543, USA
- Earth-Life Science Institute, ELSI, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
7
|
Madesh S, Sudhakaran G, Meenatchi R, Guru A, Arockiaraj J. Interconnected environmental challenges: heavy metal-drug interactions and their impacts on ecosystems. Drug Chem Toxicol 2024; 47:1282-1299. [PMID: 38658397 DOI: 10.1080/01480545.2024.2342956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Industrial expansion and inadequate environmental safety measures are major contributors to environmental contamination, with heavy metals (HMs) and pharmaceutical waste playing crucial roles. Their negative effects are most noticeable in aquatic species and vegetation, where they accumulate in tissues and cause harmful results. Interactions between HMs and pharmaceutical molecules result in the production of metal-drug complexes (MDCs), which have the potential to disturb diverse ecosystems and their interdependence. However, present studies frequently focus on individual pollutants and their effects on specific environmental parameters, leaving out the cumulative effects of pollutants and their processes across several environmental domains. To address this gap, this review emphasizes the environmental sources of HMs, elucidates their emission pathways during anthropogenic activities, investigates the interactions between HMs and pharmaceutical substances, and defines the mechanisms underlying the formation of MDCs across various ecosystems. Furthermore, this review underscores the simultaneous occurrence of HMs and pharmaceutical waste across diverse ecosystems, including the atmosphere, soil, and water resources, and their incorporation into biotic organisms across trophic levels. It is important to note that these complex compounds represent a higher risk than individual contaminants.
Collapse
Affiliation(s)
- S Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Ramu Meenatchi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
8
|
Hu T, Lin Y, Liu Y, Zhao Q, Yu H, Yang Z, Meng F. Microbial electrochemical enhanced composting of sludge and kitchen waste: Electricity generation, composting efficiency and health risk assessment for land use. Heliyon 2024; 10:e35678. [PMID: 39170487 PMCID: PMC11336836 DOI: 10.1016/j.heliyon.2024.e35678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
To realize the energy and resource utilization from organic solid waste, a two-phase microbial desalination cell (TPMDC) was constructed using dewatered sludge and kitchen waste as the anode substrate. The performance of electricity generation and composting efficacy was investigated, along with a comprehensive assessment of the potential health risks associated with the land use of the resulting mixed compost products. Experimental outcomes revealed a maximum open-circuit voltage of 0.893 ± 0.005 V and a maximum volumetric power density of 0.797 ± 0.009 W/m³. After 90 days of composting enhanced by microbial electrochemistry, a significant organic matter removal rate of 31.13 ± 0.44 % was obtained, and the anode substrate electric conductivity was reduced by 30.02 ± 0.04 % based on the anode desalination. Simultaneously, there was an increase in the content of available nitrogen, phosphorus, and potassium, as well as an improvement in the seed germination index. The forms of heavy metals shifted from bioavailable to stable residual states. The non-carcinogenic hazard index (HI) values for heavy metals and polycyclic aromatic hydrocarbons (PAHs) during the land use of compost products were less than 1, and the total carcinogenic risk (TCR) values for heavy metals and PAHs were below the acceptable threshold of 10-4. The occupational population risk of infection from five pathogens was higher than that of the general public, with all risk values ranging from 8.67 × 10-8 to 1, where the highest risk was attributed to occupational exposure to Legionella. These outcomes demonstrated that the mixture of dewatered sludge and kitchen waste was an appropriate anode substrate to enhance TPMDC stability for electricity generation, and its compost products have promising land use suitability and acceptable land use risk, which will provide important guidance for the safe treatment and disposal of organic solid waste.
Collapse
Affiliation(s)
- Tengteng Hu
- Department of Environmental Hygiene, School of Public Health, Harbin Medical University, Harbin, 150081, China
| | - Yunhan Lin
- Department of Environmental Hygiene, School of Public Health, Harbin Medical University, Harbin, 150081, China
| | - Yingyu Liu
- Department of Environmental Hygiene, School of Public Health, Harbin Medical University, Harbin, 150081, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environments (SKLUWRE), Harbin Institute of Technology, Harbin, 150090, China
| | - Hang Yu
- Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University, Dalian, 116026, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom
| | - Fanyu Meng
- Department of Environmental Hygiene, School of Public Health, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
9
|
Sané N, Mbengue M, Ndoye S, Stoll S, Poté J, Le Coustumer P. Effect of Moringa oleifera Seeds Powder on Metallic Trace Elements Concentrations in a Wastewater Treatment Plant in Senegal. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1031. [PMID: 39200641 PMCID: PMC11353780 DOI: 10.3390/ijerph21081031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024]
Abstract
A wastewater treatment plant (WWTP) prototype coupled with Moringa oleifera seeds (MOSs) was developed to evaluate its effectiveness to reduce metallic trace elements (MTEs) in domestic wastewater. The WWTP is composed of a septic tank (F0) where wastewater is treated by biological processes under anaerobic conditions, followed by a bacterial filter (F1) where wastewater is filtered under aerobic conditions, followed by an infiltration well (F2), which provides additional filtration of wastewater before discharge into the soil. MTEs present in waters can bind with humic substances contained in colloid particles and then be eliminated by coagulation-flocculation with a cationic polyelectrolyte. MOSs contain positively charged cationic polymers that can neutralize the colloids contained in waters, which are negatively charged. Based on this observation, 300 mg·L-1 of MOS was added into F0, 50 mg·L-1 into F1, and 50 mg·L-1 into F2 mg·L-1. MOS activation in samples was performed by stirring rapidly for 1.5 min, followed by 5 min of gentle stirring and 3 h of settling. The data analysis shows that wastewater samples had significant concentrations of MTEs, particularly for Cu, Ni, Sr, and Ti, and sediment samples had high amounts of Cr, Cu, Ni, Sr, Ti, and V. The addition of MOS to F0, F1, and F2 samples resulted in reductions in MTE concentration of up to 36%, 71%, 71%, 29%, 93%, 81%, 13%, 52%, and 67% for Co, Cr, Cu, Ni, Pb, Se, Sr, Ti, and V, respectively. The quantified MTEs (As, Co, Cr, Cu, Ni, Pb, Se and V) in treated samples were reported to be lower than UN-EP standards for a safe reuse for irrigation and MOS proved to be as effective as chemical coagulants such as lime and ferric iron for the removal of MTEs contained in wastewater. These results highlight the potential of MOSs as natural coagulants for reducing MTE content in domestic wastewater. This study could be the first to evaluate the effectiveness of MOS in reducing 10 MTEs, including As, Co, Se, Sr, Ti, and V, which are currently understudied. It could also provide a better understanding of the origin of MTEs found in domestic wastewaters and how an effective treatment process can result in high-quality treated wastewaters that can be reused for irrigation without posing health or environmental risks. However, more research on MOSs is needed to determine the type and composition of the coagulant substance found in the seeds, as well as the many mechanisms involved in the decrease in MTEs by MOSs, which is currently understudied. A better understanding of MOS structure is required to determine the optimum alternative for ensuring the optimal effect of MOS paired with WWTP in removing MTEs from domestic wastewaters.
Collapse
Affiliation(s)
- Nini Sané
- Géoressources & Environnement, EA 4592, Université Bordeaux Montaigne, 1 Allée F. Daguin, 33607 Pessac, France
- Laboratoire Eau, Energie, Environnement et Procédés Industriels, Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar-Fann, Dakar 5085, Senegal; (M.M.); (S.N.)
| | - Malick Mbengue
- Laboratoire Eau, Energie, Environnement et Procédés Industriels, Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar-Fann, Dakar 5085, Senegal; (M.M.); (S.N.)
| | - Seyni Ndoye
- Laboratoire Eau, Energie, Environnement et Procédés Industriels, Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar-Fann, Dakar 5085, Senegal; (M.M.); (S.N.)
| | - Serge Stoll
- F.-A. Forel Department, Institute of Environmental Sciences, Faculty of Science, University of Geneva, 66 Boulevard Carl-Vogt, 1205 Geneva, Switzerland; (S.S.); (J.P.)
| | - John Poté
- F.-A. Forel Department, Institute of Environmental Sciences, Faculty of Science, University of Geneva, 66 Boulevard Carl-Vogt, 1205 Geneva, Switzerland; (S.S.); (J.P.)
| | - Philippe Le Coustumer
- Bordeaux Imaging Center, CNRS UAR3420-INSERM US4, Université de Bordeaux, 146 Rue Léo Saignat, CS 61292, CEDEX, 33076 Bordeaux, France;
| |
Collapse
|
10
|
Czerwińska K, Wierońska-Wiśniewska F, Bytnar K, Mikusińska J, Śliz M, Wilk M. The effect of an acidic environment during the hydrothermal carbonization of sewage sludge on solid and liquid products: The fate of heavy metals, phosphorus and other compounds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121637. [PMID: 38968886 DOI: 10.1016/j.jenvman.2024.121637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
The pH of sewage sludge is a crucial factor during the hydrothermal carbonization process that influences the characteristics of the resulting products and migration of certain compounds from the solid to liquid phase. Accordingly, this work is focused on examining the pH impact during the HTC process, in particular, pH equals 2, 3, 4, 5 and 6 on the individual hydrothermally carbonized products generated at 200 °C and 2 h residence time. For this reason, the chemical and physical indicators describing the post-processing liquid and hydrochar were determined. For instance, it was observed that the phosphorus content detected in the liquid, derived at pH2, rose significantly by 80%. Furthermore, decreasing the pH of sewage sludge had a significant impact on the ash content and the calorific value of the hydrochar. Additionally, changes in the specific surface area of hydrochar were noticed: pH = 5 and pH = 6 showed an increase of 20-30%, while for lower pH values a decrease of c.a. 26% was achieved. The distribution of heavy metals between the obtained fractions in the HTC process (solid and liquid) indicated that 92 to almost 100% of the tested heavy metals were transferred to the hydrochar. A significant effect of pH on the distribution between these fractions was observed only for Zn and Ni. For instance, for pH = 2, Zn and Ni in post-processing liquid were 34% and 29%, respectively. In addition, the sequential extraction of heavy metals from hydrochar was also performed in order to identify mobile and non-mobile phases. It was noticed that the acidic environment favours a higher amount of mobile heavy metals in hydrochar. The largest effect was observed for Cd, Pb, Cr and Cu, for which, at pH = 2, their respective amounts in the mobile fraction were 2.7; 3.6; 1.8; 6.2 times higher, compared to the hydrochar without pH correction.
Collapse
Affiliation(s)
- Klaudia Czerwińska
- AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Department of Heat Engineering & Environment Protection, Mickiewicza Avenue 30, 30-059, Krakow, Poland.
| | - Faustyna Wierońska-Wiśniewska
- AGH University of Krakow, Faculty of Energy and Fuels, Department of Fuels Technology, Mickiewicz Avenue 30, 30-059, Krakow, Poland
| | - Krzysztof Bytnar
- AGH University of Krakow, Faculty of Energy and Fuels, Department of Fuels Technology, Mickiewicz Avenue 30, 30-059, Krakow, Poland
| | - Joanna Mikusińska
- AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Department of Heat Engineering & Environment Protection, Mickiewicza Avenue 30, 30-059, Krakow, Poland
| | - Maciej Śliz
- AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Department of Heat Engineering & Environment Protection, Mickiewicza Avenue 30, 30-059, Krakow, Poland
| | - Małgorzata Wilk
- AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Department of Heat Engineering & Environment Protection, Mickiewicza Avenue 30, 30-059, Krakow, Poland
| |
Collapse
|
11
|
Gao S, Dong Y, Jia Q, Wu S, Bai J, Cui C, Li Y, Zou P, An M, Du X, Liu H. Hazards of toxic metal(loid)s: Exploring the ecological and health risk in soil-crops systems with long-term sewage sludge application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174988. [PMID: 39047827 DOI: 10.1016/j.scitotenv.2024.174988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Sewage sludge (SS) is commonly used as agricultural fertilizer worldwide. However, the toxic metal(loid)s in SS raises concerns about soil contamination and the potential risks to human health. This study, conducted since 2007 on the North China Plain, examines the impact of SS use on crops. An experiment was designed with five treatments: conventional fertilization (CK) and four levels of SS application (W1, W2, W3, and W4: 4.5, 9.0, 18.0, and 36.0 t ha-1, respectively). Soil concentrations of eight toxic metal(loid)s (Zn, Cu, Cr, Cd, Ni, Pb, As, and Hg) were analyzed to assess pollution risk using various indices. Health risks associated with maize and wheat grains were also evaluated. Additionally, the impact of long-term SS application on crop yield, soil quality, and human health within a wheat-maize rotation system was examined. SS application increased wheat and maize yields by 5.37 to 19.08 % and 6.97 to 17.94 %, respectively, across treatments W2 to W4. Despite the toxic metal(loid)s in the grains remaining within safe limits, their concentrations showed an upward trend, especially under the W4 treatment. Moreover, SS application significantly increased the soil Zn, Cu, Cr, Cd, Pb, and Hg levels (P < 0.05) without exceeding the national standards. The geo-accumulation index values revealed rising pollution levels for Zn, Cu, Cd, and Hg, which shifted from no contamination to moderate contamination and then to moderate-to-high contamination, yet the overall pollution level remained safe. Soil ecological risks increased from moderate to serious, with Hg posing the greatest risk, particularly under the W4 treatment. Long-term crop intake from the area significantly exposed children and adults to As, contributing 42.12 % and 34.62 % to hazard index (HI), respectively. The HI values for toxic metal(loid)s in these grains surpassed one in both age groups, suggesting health risks from long-term SS cultivated crops.
Collapse
Affiliation(s)
- Shitao Gao
- Beijing City Drainage Refco Group Ltd, Beijing 100044, China; Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs/Changping Soil Quality National Observation and Research Station/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanmei Dong
- Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs/Changping Soil Quality National Observation and Research Station/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingqi Jia
- Beijing City Drainage Refco Group Ltd, Beijing 100044, China; Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs/Changping Soil Quality National Observation and Research Station/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuxia Wu
- Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs/Changping Soil Quality National Observation and Research Station/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiayun Bai
- Beijing City Drainage Refco Group Ltd, Beijing 100044, China; Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs/Changping Soil Quality National Observation and Research Station/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao Cui
- Beijing City Drainage Refco Group Ltd, Beijing 100044, China; Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs/Changping Soil Quality National Observation and Research Station/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying Li
- Beijing City Drainage Refco Group Ltd, Beijing 100044, China; Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs/Changping Soil Quality National Observation and Research Station/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peng Zou
- Heze Kingenta Ecological Engineering Co., Ltd, Shandong 274000, China
| | - Miaoying An
- Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs/Changping Soil Quality National Observation and Research Station/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xinzhong Du
- Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs/Changping Soil Quality National Observation and Research Station/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hongbin Liu
- Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs/Changping Soil Quality National Observation and Research Station/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Heze Kingenta Ecological Engineering Co., Ltd, Shandong 274000, China
| |
Collapse
|
12
|
Najam T, Hashmi I. Monitoring of university wastewater within the sewage system and its performance evaluation through integrated constructed wetlands. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:403. [PMID: 38556601 DOI: 10.1007/s10661-024-12575-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Rapid increase in population and industrialization has not only improved the lifestyle but adversely affected the quality and availability of water leading to ample amount of wastewater generation. The major contribution towards wastewater production is from sewage. Regular monitoring and treatment of sewage water is necessary to conserve and enhance the quality of water. The present study focuses on monitoring of sewage water within the sewage system of a residential university. A total of 16 samples from different manholes were collected for physicochemical and heavy metals analysis and compared with final effluent collected from integrated constructed wetlands (ICWs) to assess its removal efficiency. The mean concentrations of influent and effluent were compared with national environmental quality standards (NEQS) for municipal discharge (pH 6-9, COD 150 mg/L, TSS 200 mg/L and TDS 3500 mg/L) and international agricultural reuse standards (IARS) (pH 6-8, COD <150 mg/L, TSS < 100 mg/L) respectively. Among all physicochemical parameters, influent values for chemical oxygen demand (COD) (169.56-258.36) mg/L exceeded the limit of NEQS for discharge into inland waters, whereas for total suspended solids (TSS) the concentration exceeded for discharge into STP (406 mg/L) and inland waters (202.33 mg/L). However, effluent concentrations for all the parameters were found within the permissible limit set by IARS. The removal efficiency for different parameters such as phosphate- phosphorus (PO43-P), COD, TSS, total dissolved solids (TDS) and total kjeldahl nitrogen (TKN) were 52, 53, 54, 35, and 36%, respectively. Heavy metal concentrations were compared with WHO guidelines among which lead (Pb) in effluent and chromium (Cr) in influent exceeded the limit (Pb 0.01 and Cr 0.05 mg/L). Interpolation results showed that zone 2 was highly contaminated in comparison to zone 1 & 3. Statistical analysis showed that correlation of physicochemical parameters and heavy metals was found significant (p < 0.05).
Collapse
Affiliation(s)
- Talyaa Najam
- School of Civil and Environmental Engineering (SCEE), Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), Sector H-12 Campus, Islamabad, Pakistan
| | - Imran Hashmi
- School of Civil and Environmental Engineering (SCEE), Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), Sector H-12 Campus, Islamabad, Pakistan.
| |
Collapse
|
13
|
Peng H, Yi L, Liu C. Spatial distribution, chemical fractionation and risk assessment of Cr in soil from a typical industry smelting site in Hunan Province, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:113. [PMID: 38478134 DOI: 10.1007/s10653-024-01883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 01/23/2024] [Indexed: 04/12/2024]
Abstract
The closure or relocation of many industrial enterprises has resulted in a significant number of abandoned polluted sites enriched in heavy metals to various degrees, causing a slew of environmental problems. Therefore, it is essential to conduct research on heavy metal contamination in the soil of industrial abandoned sites. In this study, soils at different depths were collected in a smelting site located in Hunan Province, China, to understand the Cr distribution, speciation and possible risks. The results revealed that the high-content Cr and Cr(VI) contamination centers were mainly concentrated near S1 (Sample site 1) and S5. The longitudinal migration law of chromium was relatively complex, not showing a simply uniform trend of decreasing gradually with depth but presenting a certain volatility. The vertical distribution characteristics of chromium and Cr(VI) pollution suggest the need for attention to the pollution from chromium slag in groundwater and deep soil layers. The results of different speciation of Cr extracted by the modified European Community Bureau of Reference (BCR) method showed that Cr existed primarily in the residual state (F4), with a relatively low content in the weak acid extraction state (F1). The correlation analysis indicated that Cr was affected by total Cr, pH, organic matter and total carbon during the longitudinal migration process. The RSP results revealed that the smelting site as a whole had a moderate level of pollution. Soil at depths of 2-5 m was more polluted than other soil layers. Consequently, it is necessary to treat the site soil as a whole, especially the subsoil layer (2-5 m). Health risk assessment demonstrated that the soil chromium pollution was hazardous to both adults and children, and the probability of carcinogenic and non-carcinogenic risk was relatively high in the latter group. As a result, children should be a group of special concern regarding the assessment and remediation of soil contaminated with Cr. This study can provide some insight into the contamination characteristics, ecological and health risks of chromium in contaminated soils and offer a scientific basis for the prevention and control of chromium pollution at abandoned smelting sites.
Collapse
Affiliation(s)
- Hanfang Peng
- School of Geographical Sciences, Hunan Normal University, No. 36 Lushan Road, Changsha, 410081, People's Republic of China
| | - Liwen Yi
- School of Geographical Sciences, Hunan Normal University, No. 36 Lushan Road, Changsha, 410081, People's Republic of China.
- Hunan Key Laboratory of Geospatial Big Data Mining and Application, Hunan Normal University, Changsha, 410081, People's Republic of China.
| | - Chengai Liu
- School of Geographical Sciences, Hunan Normal University, No. 36 Lushan Road, Changsha, 410081, People's Republic of China
| |
Collapse
|
14
|
Urbaniak M, Baran A, Giebułtowicz J, Bednarek A, Serwecińska L. The occurrence of heavy metals and antimicrobials in sewage sludge and their predicted risk to soil - Is there anything to fear? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168856. [PMID: 38042192 DOI: 10.1016/j.scitotenv.2023.168856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
The study assessed the occurrence of legally-monitored heavy metals and unmonitored antimicrobials in sludge from small, medium, large and very large municipal wastewater treatment plants (WWTPs), and the predicted environmental risk and risk of resistance selection associated with sludge administration to soil. The temporal variations of the studied compounds in sludge and associated risks to soil were determined by sampling over a year. Although the highest concentrations of heavy metals were noted in sludge from the largest WWTP, i.e. from 1.50 mg/kg (mean 1.61 mg/kg) for Cd to 2188 mg/kg (mean 1332 mg/kg) for Zn, the obtained values only reached a few percent of the legal limits. The same WWTP also demonstrated lower concentrations of antimicrobials compared to the smaller ones. The highest concentrations of antimicrobials, ranging from 24.04 μg/kg for trimethoprim to 900.24 μg/kg for tetracycline, were found in the small and medium WWTPs. However, due to lack of regulations at the national and EU levels, the results cannot be compared with legal limits. Principal Component Analysis (PCA), cluster and heatmap analysis separated samples according to WWTP size. Small WWTP demonstrated correlation with antimicrobials (tetracycline, trimethoprim, clindamycin, ciprofloxacin and ofloxacin), while the large and very large WWTP revealed correlations with heavy metals (Cu and Cr). The obtained environmental risk quotients confirmed that the heavy metals did not present a threat, measured either as individual risk quotients (RQenv), cumulative risk (RQcumulative) or risk of mixture of heavy metals (RQmix-metals). In the case of antimicrobials, only tetracycline demonstrated moderate RQenv, RQcumulative and RQmix-antimicrobials in the small WWTP sludge, with values of 0.1 to 1. Our findings highlight the importance of monitoring sewage sludge before soil application, especially from small WWTPs, to reduce the potential environmental impact of antimicrobials. They also confirm our previous data regarding the environmental risk associated with various toxic compounds, including emerging contaminants, in the sludge from small WWTPs.
Collapse
Affiliation(s)
- Magdalena Urbaniak
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Poland.
| | - Agnieszka Baran
- University of Agriculture in Krakow, Department of Agriculture and Environmental Chemistry, al. Mickiewicza 21, 31-120 Krakow, Poland.
| | - Joanna Giebułtowicz
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Banacha 1, 02-097 Warsaw, Poland.
| | - Agnieszka Bednarek
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland.
| | - Liliana Serwecińska
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Poland.
| |
Collapse
|
15
|
Liu CHM, Dahms HU, Hsieh CY, Lin ZY, Lin TY, Huang XQ. Bacterial heavy metal resistance related to environmental conditions. CHEMOSPHERE 2024; 347:140539. [PMID: 37951402 DOI: 10.1016/j.chemosphere.2023.140539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
Contaminated water bodies such as rivers provide reservoirs for bacterial resistance. This field study tested the water quality and the bacterial resistance to heavy metals of Qishan River water pollution. Wastewater discharged to environmental surface waters is a major pathway of heavy metals and heavy metal-resistant bacteria. Contaminated water bodies such as rivers provide reservoirs for bacterial resistance. This field study tested the water quality and bacterial resistance to heavy metals of Qishan River water pollution. Guided by our research hypothesis that an overall increase in downstream heavy metal resistance levels was following an increase in human settlements were eight sites sampled along the Qishan River. These were situated upstream and downstream to the confluence of the Qishan River with the Kaoping River. In the laboratory bacterial heavy metal resistance was bio-assayed by disk diffusion and micro-dilution with six widely used heavy metals. The comparison of bacterial resistance was among Qishan River upstream sites (sites 1-6) and downstream sites (sites 7-9). Multi-drug-resistant bacteria and co-resistance against heavy metals and antibacterials appeared at site 8. This research discusses the correlation between environmental factors, and antibacterial and heavy metal resistance. The results provide stakeholders and authorities responsible for environmental pollution with a reference for risk assessment and management of bacterial resistance.
Collapse
Affiliation(s)
- Cheng-Han Michael Liu
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC; University Social Responsibility Project Team, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC; University Social Responsibility Project Team, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC; Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan, ROC; Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC.
| | - Chi-Ying Hsieh
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC; Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC; Water Resources Education and Research Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC.
| | - Zong-Ying Lin
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC; University Social Responsibility Project Team, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC
| | - Tai-Yan Lin
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC; University Social Responsibility Project Team, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC
| | - Xiao-Qian Huang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC
| |
Collapse
|
16
|
Chen Z, Imran M, Jing G, Wang W, Huang B, Li Y, Zhang Y, Yang Y, Lu Q, Zhang Z, Antoniadis V, Shaheen SM, Bolan N, Rinklebe J. Toxic elements pollution risk as affected by various input sources in soils of greenhouses, kiwifruit orchards, cereal fields, and forest/grassland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122639. [PMID: 37778487 DOI: 10.1016/j.envpol.2023.122639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Increasing food demand has led to more intensive farming, which threatens our ecosystem and human health due to toxic elements accumulation. This study aimed to estimate the vulnerability of different agricultural systems with unequal high fertilizer input practices regarding toxic element pollution in the greenhouse, kiwifruit orchard, cereal field, and forest/grassland. Soil samples were collected from 181 sites across Shaanxi Province, China, and analyzed for selected characteristics and toxic elements (As, Cd, Cr, Cu, Hg, Pb, and Zn). The contamination factor (CFx) represents the ratio of the measured value of the toxic element in the soil over the soil background values. The CFx values of all the toxic elements were above background values, while Cd and Hg contamination levels were more severe than those of Zn, Cu, As, Cr, and Pb. Kiwifruit orchards and greenhouse soils were contaminated with Cd, Hg, Cu, and Zn, but cereal fields and forest/grassland soils were contaminated with As, Cd, Hg, and Hg. Overall, the cumulative pollution load (PLI) of toxic elements indicated moderate contamination. The cumulative ecological risk (RI) results indicated that greenhouse (178.81) and forest/grassland (156.25) soils were at moderate ecological risks, whereas kiwifruit orchards (120.97) and cereal field (139.72) soils were at low ecological risks. According to a Pearson correlation analysis, Cd, Hg, Cu, and Zn were substantially linked with soil organic matter (SOM), total nitrogen (TN), total phosphorous (TP), and total potassium (TK). The primary sources of toxic elements were phosphate and potash fertilizers, manure, composts, and pesticides in a greenhouse, kiwifruit orchards, and cereal fields, whereas, in forest/grassland soils parent material and atmospheric deposition were the sources identified by positive matrix factorization (PMF). Furthermore, the partial least square structural equation model (PLS-SEM) demonstrated that agriculture inputs largely influenced toxic elements accumulation. We conclude that high fertilizer inputs in greenhouse soils should be considered carefully so that toxic element pollution may be minimized.
Collapse
Affiliation(s)
- Zhikun Chen
- Key Laboratory of Soil Resource &Biotech Application, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China; Xi 'an Ecological Monitoring and Restoration Engineering Technology Research Center, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China
| | - Muhammad Imran
- Key Laboratory of Soil Resource &Biotech Application, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China; Xi 'an Ecological Monitoring and Restoration Engineering Technology Research Center, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China.
| | - Guanghua Jing
- Key Laboratory of Soil Resource &Biotech Application, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China; Xi 'an Ecological Monitoring and Restoration Engineering Technology Research Center, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China
| | - Weixi Wang
- Key Laboratory of Soil Resource &Biotech Application, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China; Xi 'an Ecological Monitoring and Restoration Engineering Technology Research Center, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China
| | - Biao Huang
- Key Laboratory of Soil Resource &Biotech Application, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China; Xi 'an Ecological Monitoring and Restoration Engineering Technology Research Center, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yingmei Li
- Bio-Agriculture Institute of Shaanxi, Xi'an, 710043, China
| | - Yanxia Zhang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Yizhe Yang
- Shaanxi Province Cultivated Land Quality and Agricultural Environment Protection Workstation, Xi'an, 710003, China
| | - Qiangqiang Lu
- Key Laboratory of Soil Resource &Biotech Application, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China; Xi 'an Ecological Monitoring and Restoration Engineering Technology Research Center, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China
| | - Zhao Zhang
- Key Laboratory of Soil Resource &Biotech Application, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China; Xi 'an Ecological Monitoring and Restoration Engineering Technology Research Center, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| |
Collapse
|
17
|
Li M, Gan YJ, Chen ZQ, Zhang WY, Li XY, Liu HL, Wang XZ. Pollution Status and Associated Risk Assessment of Heavy Metals in Sewage Sludge in the Yangtze River Delta, China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:63. [PMID: 37904061 DOI: 10.1007/s00128-023-03810-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/18/2023] [Indexed: 11/01/2023]
Abstract
The risk assessment of heavy metals (HMs) in sewage sludge (SS) is essential before land application. Six HMs in nineteen SS collected in the Yangtze River Delta were analyzed to assess risks to environment, ecosystem, and human health. HMs concentrations were ranked in the order of Zn > Cu > Cr > Ni > Pb > Cd, with Cu, Zn, and Ni in a total of 16% of samples exceeding the legal standard. Zn showed greatest extractability according to EDTA-extractable concentrations. HMs in 16% of SS samples posed heavy contamination to the environment with Zn as the major pollutant. HMs in 26% of samples posed ecological risk to the ecosystem and Cd was the highest risky HM. The probabilistic health risk assessment revealed that HMs posed carcinogenic risks to all populations, but non-carcinogenic risks only to children. This work will provide fundamental information for land application of SS in this area.
Collapse
Affiliation(s)
- Min Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, China
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, P. R. China
| | - Yun-Jie Gan
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, China
| | - Zi-Qi Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, China
| | - Wan-Ying Zhang
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, P. R. China
| | - Xin-Yu Li
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, P. R. China
| | - Hai-Long Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, China.
| | - Xiao-Zhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, China
| |
Collapse
|
18
|
Tytła M, Widziewicz-Rzońca K. Ecological and human health risk assessment of heavy metals in sewage sludge produced in Silesian Voivodeship, Poland: a case study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1373. [PMID: 37880548 PMCID: PMC10600313 DOI: 10.1007/s10661-023-11987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
This study aimed to assess the potential risks posed by heavy metals in sewage sludge (SS) produced by municipal wastewater treatment plants (WWTPs) in the most industrialized region in Poland, the Silesian Voivodeship. The ecological risk was assessed using three indices: the Geoaccumulation Index (Igeo), Potential Ecological Risk Factor (ER), and Risk Assessment Code (RAC), while the health risk was estimated by using carcinogenic and non-carcinogenic risk indices. The average concentrations of metals in the sludge samples were determined revealing that Zn was the predominant element, whereas Cd and Hg were present in the lowest concentrations. The study showed that the processes used in wastewater treatment plants influenced the overall metal content and chemical speciation. According to Igeo values, the dewatered sludge samples exhibited higher contamination levels of Cd and Zn, while Cu and Pb were upon to a lesser extent. The ER values suggest that Cd and Hg present the highest ecological risk. Considering the chemical forms and RAC values, Ni (26.8-37.2%) and Zn (19.8-27.0%) were identified to cause the most significant risks. The non-carcinogenic risk for adults and children was below acceptable levels. However, the carcinogenic risk associated with Ni (WWTP1) for both demographic groups and Cr and Cd (WWTP2), specifically for children, exceeded the acceptable threshold. Ingestion was the primary route of exposure. Although the dewatered SS met the standards for agricultural use, there is still a risk of secondary pollution to the environment and possible adverse health effects.
Collapse
Affiliation(s)
- Malwina Tytła
- Institute of Environmental Engineering, Polish Academy of Sciences, 41-819, Zabrze, Poland.
| | | |
Collapse
|
19
|
Giwa AS, Maurice NJ, Luoyan A, Liu X, Yunlong Y, Hong Z. Advances in sewage sludge application and treatment: Process integration of plasma pyrolysis and anaerobic digestion with the resource recovery. Heliyon 2023; 9:e19765. [PMID: 37809742 PMCID: PMC10559074 DOI: 10.1016/j.heliyon.2023.e19765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Sewage sludge (SS) is an environmental issue due to its high organic content and ability to release hazardous substances. Most of the treatments available are biological, thermal hydrolysis, mechanical (ultrasound, high pressure, and lysis), chemical with oxidation (mainly ozonation), and alkali pre-treatments. Other treatment methods include landfill, wet oxidation, composting, drying, stabilization, incineration, pyrolysis, carbonization, liquefaction, gasification, and torrefaction. Some of these SS disposal methods damage the ecosystem and underutilize the potential resource value of SS. These challenges must be overcome with an innovative technique for the improvement of SS's nutritional value, energy content, and usability. This review proposes plasma pyrolysis and anaerobic digestion (AD) as promising SS treatment technologies. Plasma pyrolysis pre-treats SS to make it digestible by AD bacteria and immobilizes the heavy metals. The addition of Char to the upstream AD process increases the quantity and quality of biogas produced while enhancing the nutrients in the digestate. These two processes are integrated at high temperatures, thus creating concerns about their energy demand. These challenges are offset by the generated energy that can run the treatment plant or be sold to the grid, generating additional cash. Plasma pyrolysis wastes can also be converted into biochar, organic fertilizer, or soil conditioner. These combined technologies' financial sustainability depends on the treatment facility's circumstances and location. Plasma pyrolysis and AD can treat SS sustainably and provide nutrients and resources. This paper explains the co-process treatment route's techno-economic prospects, challenges, and recommendations for the future application of SS valorization and resource recovery.
Collapse
Affiliation(s)
- Abdulmoseen Segun Giwa
- School of Environment and Civil Engineering, Nanchang Institute of Science and Technology, Nanchang, 330108, China
| | | | - Ai Luoyan
- School of Environment and Civil Engineering, Nanchang Institute of Science and Technology, Nanchang, 330108, China
| | - Xinxin Liu
- School of Environment and Civil Engineering, Nanchang Institute of Science and Technology, Nanchang, 330108, China
| | - Yang Yunlong
- School of Environment and Civil Engineering, Nanchang Institute of Science and Technology, Nanchang, 330108, China
| | - Zhao Hong
- Jiangxi Transportation Institute Company Limited, China
| |
Collapse
|
20
|
Khan SN, Nafees M, Imtiaz M. Assessment of industrial effluents for heavy metals concentration and evaluation of grass ( Phalaris minor) as a pollution indicator. Heliyon 2023; 9:e20299. [PMID: 37809466 PMCID: PMC10560060 DOI: 10.1016/j.heliyon.2023.e20299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023] Open
Abstract
This study was conducted to investigate the impact of industrial activities on heavy metals status in wastewater, sludge and flora on the bank of selected main drains of the Hayatabad Industrial estate, Peshawar. Plants, sludge and wastewater samples of selected sites were collected and analyzed for heavy metals distribution; cadmium (Cd), chromium (Cr), lead (Pb) and zinc (Zn) levels. Bioconcentration factor (BCF) values were calculated for plants (Phalaris minor) grass species found naturally at all sites. The results showed that the levels of metals in wastewater were lower than permissible limits except Cd and the concentration of metals in plants and sludge were within permissible limits when compared to their respective standards. Metal distribution was in the following order; sludge > plants > wastewater and the concentration of metals varied according to the distance from the source with no specific pattern. Sludge samples for all sites showed a high concentration of metals as compared to plants and wastewater samples. In grass samples, Zn was highest and Cd was low for all sites. Metals accumulation in plants was in order of; roots > shoot. Pearson's coefficient correlation showed that Cr in plant roots and Zn in shoots showed significantly high correlation with Cd in sludge while Pb in roots showed significant negative correlation with Zn in sludge. BCF values for Cr, Pb and Zn were >1, showing the phytoremediation potential of plants.
Collapse
Affiliation(s)
- Sara Nawaz Khan
- Department of Environmental Sciences, University of Peshawar, Pakistan
| | - Mohammad Nafees
- Department of Environmental Sciences, University of Peshawar, Pakistan
| | - Muhammad Imtiaz
- Soil and Environmental Sciences Division, Nuclear Institute for Food and Agriculture (NIFA), Tarnab, Peshawar, Pakistan
| |
Collapse
|
21
|
Ahn KH, Shin DC, Lee YE, Jeong Y, Jung J, Kim IT. Biochar Production and Demineralization Characteristics of Food Waste for Fuel Conversion. Molecules 2023; 28:6114. [PMID: 37630366 PMCID: PMC10457951 DOI: 10.3390/molecules28166114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The pyrolysis of food waste has high economic potential and produces several value-added products, such as gas, bio-oil, and biochar. In South Korea, biochar production from food waste is prohibited, because dioxins are generated during combustion caused by the chloride ions arising from the high salt content. This study is the first to examine the water quality and the applicability of food waste-based biochar as solid refuse fuel (SRF) based on a demineralization process. The calorific value increased after demineralization due to the removal of ionic substances and the high carbon content. The chloride ion removal rate after demineralization increased with the increasing pyrolysis temperature. A proximate analysis of biochar indicated that the volatile matter decreased, while ash and fixed carbon increased, with increasing pyrolysis temperature. At 300 °C pyrolysis temperature, all domestic bio-SRF standards were met. The organic matter concentration in water decreased with increasing carbonization temperature, and the concentrations of soluble harmful substances, such as volatile organic compounds (VOCs), were within the standards or non-detectable. These results suggest that biochar can be efficiently generated from food waste while meeting the emission standards for chloride ions, dissolved VOCs, ash, and carbon.
Collapse
Affiliation(s)
- Kwang-Ho Ahn
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyang-daero, Ilsanseo-gu, Goyang-si 10223, Republic of Korea; (K.-H.A.); (Y.-E.L.); (Y.J.); (J.J.)
| | - Dong-Chul Shin
- Department of Smart Construction and Environmental Engineering, Daejin University, 1007 Hoguk-ro, Pocheon-si 11159, Republic of Korea;
| | - Ye-Eun Lee
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyang-daero, Ilsanseo-gu, Goyang-si 10223, Republic of Korea; (K.-H.A.); (Y.-E.L.); (Y.J.); (J.J.)
| | - Yoonah Jeong
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyang-daero, Ilsanseo-gu, Goyang-si 10223, Republic of Korea; (K.-H.A.); (Y.-E.L.); (Y.J.); (J.J.)
| | - Jinhong Jung
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyang-daero, Ilsanseo-gu, Goyang-si 10223, Republic of Korea; (K.-H.A.); (Y.-E.L.); (Y.J.); (J.J.)
| | - I-Tae Kim
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyang-daero, Ilsanseo-gu, Goyang-si 10223, Republic of Korea; (K.-H.A.); (Y.-E.L.); (Y.J.); (J.J.)
| |
Collapse
|
22
|
Yakamercan E, Aygün A. Health risk assessment of metal(loid)s for land application of domestic sewage sludge in city of Bursa, Türkiye. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:733. [PMID: 37231226 DOI: 10.1007/s10661-023-11302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
This study aims to determine the potential health risks (Carcinogenic and non-carcinogenic) of metal(loid)s in sewage sludge samples for agricultural purposes. For this purpose, sewage sludge was collected annually from a domestic wastewater treatment plant, and metal(loid)s were determined by ICP-MS. Metal(loid)s concentration in sludge samples was within the legal standards. No statically significant seasonal variation of metal(loid)s were observed. The total cancer risk and the hazard index (HI) of metal(loid)s through ingestion, dermal, and inhalation exposure from sewage sludge samples were estimated. The main risk contributor to metal(loid)s were Pb, Zn, and Ni. The average HI values were 0.75 (child) and 0.09 (adult). The total carcinogenic risk (TCR) for child and adult was found to be 3.43 × 10-5 and 2.31 × 10-5, respectively. EPA risk assessment model and Monte Carlo Simulation were used to estimate probability and sensitivity distributions for carcinogenic and non-carcinogenic risks. Sensitivity analysis showed that metal(loid)s concentration, exposure duration, exposure frequency, and body weight significantly affect total health risk. The sewage sludge can be applied safely in agriculture due to no important carcinogenic and non-carcinogenic risk for child and adult.
Collapse
Affiliation(s)
- Elif Yakamercan
- Department of Environmental Engineering, Bursa Technical University, Bursa, Türkiye
| | - Ahmet Aygün
- Department of Environmental Engineering, Bursa Technical University, Bursa, Türkiye.
| |
Collapse
|
23
|
Tytła M. Correction: Tytła, M. Assessment of Heavy Metal Pollution and Potential Ecological Risk in Sewage Sludge from Municipal Wastewater Treatment Plant Located in the Most Industrialized Region in Poland-Case Study. Int. J. Environ. Res. Public Health 2019, 16, 2430. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20105795. [PMID: 37239642 DOI: 10.3390/ijerph20105795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/27/2022] [Indexed: 05/28/2023]
Abstract
Missing Funding [...].
Collapse
Affiliation(s)
- Malwina Tytła
- Institute of Environmental Engineering, Polish Academy of Sciences, 34 M. Skłodowskiej-Curie St., 41-819 Zabrze, Poland
| |
Collapse
|
24
|
Oliveira APDS, Assemany P, Covell L, Calijuri ML. Copper multifaceted interferences during swine wastewater treatment in high-rate algal ponds: alterations on nutrient removal, biomass composition and resource recovery. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121364. [PMID: 36849087 DOI: 10.1016/j.envpol.2023.121364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/15/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Microalgae cultivation in swine wastewater (SW) allows the removal of nutrients and biomass production. However, SW is known for its Cu contamination, and its effects on algae cultivation systems such as high-rate algal ponds (HRAPs) are poorly understood. This gap in the literature limits the proposition of adequate concentrations of Cu to optimise SW treatment and resource recovery in HRAPs. For this assessment, 12 HRAPs installed outdoors were operated with 800 L of SW with different Cu concentrations (0.1-4.0 mg/L). Cu's interferences on the growth and composition of biomass and nutrient removal from SW were investigated through mass balance and experimental modelling. The results showed that the concentration of 1.0 mg Cu/L stimulated microalgae growth, and above 3.0 mg Cu/L caused inhibition accompanied by an accumulation of H2O2. Furthermore, Cu affected the contents of lipids and carotenoids observed in the biomass; the highest concentration was observed in the control (16%) and 0.5 mg Cu/L (1.6 mg/g), respectively. An innovative result was verified for nutrient removal, in which increased Cu concentration reduced the N-NH4+ removal rate. In contrast, the soluble P removal rate was enhanced by 2.0 mg Cu/L. Removal of soluble Cu in treated SW reached 91%. However, the action of microalgae in this process was not associated with assimilation but with a pH increase resulting from photosynthesis. A preliminary evaluation of economic viability showed that the commercialisation of biomass considering the concentration of carotenoids obtained in HRAPs with 0.5 mg Cu/L could be economically attractive. In conclusion, Cu affected the different parameters evaluated in this study in a complex way. This can help managers consort nutrient removal, biomass production, and resource recovery, providing information for possible industrial exploitation of the generated bioproducts.
Collapse
Affiliation(s)
| | - Paula Assemany
- Department of Environmental Engineering, Federal University of Lavras (Universidade Federal de Lavras), Lavras, MG, Brazil
| | - Lidiane Covell
- Department of Plant Biology, Federal University of Viçosa (Universidade Federal de Viçosa), Viçosa, MG, Brazil
| | - Maria Lúcia Calijuri
- Department of Civil Engineering, Federal University of Viçosa (Universidade Federal de Viçosa), Viçosa, MG, Brazil
| |
Collapse
|
25
|
Adampourezare M, Hasanzadeh M, Hoseinpourefeizi MA, Seidi F. Iron/iron oxide-based magneto-electrochemical sensors/biosensors for ensuring food safety: recent progress and challenges in environmental protection. RSC Adv 2023; 13:12760-12780. [PMID: 37153517 PMCID: PMC10157298 DOI: 10.1039/d2ra07415j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/09/2023] [Indexed: 05/09/2023] Open
Abstract
Foodborne diseases have arisen due to the globalization of industry and the increase in urban population, which has led to increased demand for food and has ultimately endangered the quality of food. Foodborne diseases have caused some of the most common public health problems and led to significant social and economic issues worldwide. Food quality and safety are affected by microbial contaminants, growth-promoting feed additives (β-agonists and antibiotics), food allergens, and toxins in different stages from harvesting to storage and marketing of products. Electrochemical biosensors, due to their reduced size and portability, low cost, and low consumption of reagents and samples, can quickly provide valuable quantitative and qualitative information about food contamination. In this regard, using nanomaterials can increase the sensitivity of the assessment. Magnetic nanoparticle (MNP)-based biosensors, especially, are receiving significant attention due to their low-cost production, physicochemical stability, biocompatibility, and eco-friendly catalytic characteristics, along with magnetic, biological, chemical and electronic sensing features. Here, we provide a review on the application of iron-based magnetic nanoparticles in the electrochemical sensing of food contamination. The types of nanomaterials used in order to improve the methods and increase the sensitivity of the methods have been discussed. Then, we stated the advantages and limitations of each method and tried to state the research gaps for each platform/method. Finally, the role of microfluidic and smartphone-based methods in the rapid detection of food contamination is stated. Then, various techniques like label-free and labelled regimes for the sensitive monitoring of food contamination were surveyed. Next, the critical role of antibody, aptamer, peptide, enzyme, DNA, cells and so on for the construction of specific bioreceptors for individual and simultaneous recognition by electrochemical methods for food contamination were discussed. Finally, integration of novel technologies such as microfluidic and smartphones for the identification of food contaminations were investigated. It is important to point out that, in the last part of each sub-section, attained results of different reports for each strategy were compared and advantages/limitations were mentioned.
Collapse
Affiliation(s)
- Mina Adampourezare
- Department of Biology, Faculty of Natural Science, University of Tabriz Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | | | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
26
|
Stojković AS, Krstić NS, Đorđević DM, Milivojević M, Krstić IM. Comparative physicochemical analysis of galvanic sludge wastes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:459-468. [PMID: 37017246 DOI: 10.1080/10934529.2023.2196207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
The paper provides the physicochemical analysis of galvanic sludge to determine the presence and concentration of toxic metals. Two sludges sampled from the same factory, but from different technological processes, alkaline galvanic sludge obtained from galvanizing process and acidic sludge generated from the chromium plating process were analyzed. Inductively Coupled Plasma - Optical Emission Spectrometry (ICP-OES) revealed increased concentrations of toxic heavy metal ions Zn2+, Cr3+, Ni2+ and Pb2+ in the sludge from the galvanizing process and Cr3+, Cu2+, Ni2+, Pb2+, Cd2+ and Zn2+ from the chroming process. Moreover, the sludges were further physicochemically characterized by Reflectance Fourier Transform InfraRed Spectrometry (FTIR), Scanning Electron Microscopy with Energy-dispersive X-ray Spectroscopy Analysis (SEM-EDX) and X-ray diffraction (XRD). The results of ICP-OES were corroborated by FTIR. Analysis of FTIR spectra revealed the specific bands indicating the existence of metal oxides in the analyzed sludges, as well as the presence of organic substances, i.e. solvents and surfactants, used in the electroplating process. The analysis was accomplished following international norms and confirmed the increased concentrations of heavy metal ions from both sludges. In line with the regulations of the Environmental Protection Agency (EPA), the results proved the hypothesis that galvanic sludge is hazardous waste.
Collapse
Affiliation(s)
- Ana S Stojković
- Faculty of Occupational Safety, University of Nis, Niš, Serbia
| | - Nenad S Krstić
- Faculty of Sciences and Mathematics, University of Nis, Niš, Serbia
| | | | | | - Ivan M Krstić
- Faculty of Occupational Safety, University of Nis, Niš, Serbia
| |
Collapse
|
27
|
Engin AB, Engin ED, Engin A. Effects of co-selection of antibiotic-resistance and metal-resistance genes on antibiotic-resistance potency of environmental bacteria and related ecological risk factors. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104081. [PMID: 36805463 DOI: 10.1016/j.etap.2023.104081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/23/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
The inadequate elimination of micropollutants in wastewater treatment plants (WWTP), cause to increase in the incidence of antibiotic resistant bacterial strains. Growth of microbial pathogens in WWTP is one of the serious public health problems. The widespread and simultaneous emergence of antibiotic resistance genes (ARGs) and heavy metal resistance genes (HMRGs) in the environment with heavy metals create persistent and selective pressure for co-selection of both genes on environmental microorganisms. Co-localization of ARGs and HMRGs on the same horizontal mobile genetic elements (MGEs) allows the spreading of numerous antibiotic-resistant strains of bacteria in aquatic and terrestrial environment. The biofilm formation and colonization potential of environmental bacteria leads to the co-selection of multi-antibiotic resistance and multi-metal tolerance. Horizontal gene transfer (HGT), co-localization of both ARGs and HMRGs on the same MGEs, and the shared resistomes are important bacteria-associated ecological risks factors, which reduce the effectiveness of antibiotics against bacterial infections.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey.
| | - Evren Doruk Engin
- Ankara University, Biotechnology Institute, Gumusdere Campus, Kecioren, Ankara, Turkey
| | - Atilla Engin
- Gazi University, Faculty of Medicine, Department of General Surgery, Ankara, Turkey
| |
Collapse
|
28
|
du Plessis M, Fourie C, Stone W, Engelbrecht AM. The impact of endocrine disrupting compounds and carcinogens in wastewater: Implications for breast cancer. Biochimie 2023; 209:103-115. [PMID: 36775066 DOI: 10.1016/j.biochi.2023.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/12/2023]
Abstract
The incidence of breast cancer is often associated with geographic variation which indicates that a person's surrounding environment can be an important etiological factor in cancer development. Environmental risk factors can include exposure to sewage- or wastewater, which consist of a complex mixture of pathogens, mutagens and carcinogens. Wastewater contains primarily carbonaceous, nitrogenous and phosphorus compounds, however it can also contain trace amounts of chemical pollutants including toxic metal cations, hydrocarbons and pesticides. More importantly, the contamination of drinking water by wastewater is a potential source of exposure to mammary carcinogens and endocrine disrupting compounds. Organic solvents and other pollutants often found in wastewater have been detected in various tissues, including breast and adipose tissues. Furthermore, these pollutants such as phenolic compounds in some detergents and plastics, as well as parabens and pesticides can mimic estrogen. High estrogen levels are a well-established risk factor for estrogen-receptor (ER) positive breast cancer. Therefore, exposure to wastewater is a risk factor for the initiation, progression and metastasis of breast cancer. Carcinogens present in wastewater can promote tumourigenesis through various mechanisms, including the formation of DNA adducts, gene mutations and oxidative stress. Lastly, the presence of endocrine disrupting compounds in wastewater can have negative implications for ER-positive breast cancers, where these molecules can activate ERα to promote cell proliferation, survival and metastasis. As such, strategies should be implemented to limit exposure, such as providing funding into treatment technologies and implementation of regulations that limit the production and use of these potentially harmful chemicals.
Collapse
Affiliation(s)
- Manisha du Plessis
- Department of Physiological Sciences, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Carla Fourie
- Department of Physiological Sciences, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Wendy Stone
- Stellenbosch University Water Institute, Faculty of Science, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa; African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, South Africa
| |
Collapse
|
29
|
Bezzina JP, Robshaw TJ, Canner AJ, Dawson R, Ogden MD. Adsorption studies of a multi-metal system within acetate media, with a view to sustainable phosphate recovery from sewage sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116279. [PMID: 36170782 DOI: 10.1016/j.jenvman.2022.116279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/20/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Phosphate shortages and the ensuing pressures on food security have led to an interest in processed sewage sludge as a substitute for commercial fertilisers. The presence of heavy metals in this nutrient source causes concerns around environmental release and pollution. This work builds towards a resin-in-pulp sludge detoxification process. It showcases the kinetic and thermodynamic adsorption capabilities of the ion-exchange resins C107E (carboxylic acid functionality), MTS9301 (iminodiacetic acid) and TP214 (thiourea), with respect to Cu(II), Fe(II), Pb(II) and Zn(II), within a simulated sewage sludge weak acid (acetate) leachate. The isotherms produced in this complex system were quite different to those generated when single metals were investigated in isolation, with desorption of lower affinity species clearly observed at higher equilibrium concentration values. Mixed-metal isotherm data were fitted to common two-parameter isotherm models and also a novel modified Langmuir model, which better accounted for the effects of desorption and competition. Kinetic data were also fit to common two-parameter models; results suggesting the system was likely film diffusion-controlled and followed pseudo-2nd-order kinetics. C107E displayed rapid adsorption of lead (t1/2 = 26 ± 3min), and significant uptake of all metals. MTS9301 showed high affinity for copper ions, with concurrent desorption of all the other metals, and also displayed the fastest kinetics (t1/2 = 14.1 ± 0.9, 130 ± 20, 25 ± 5 and 49 ± 6 min for copper, iron(II), lead and zinc, respectively). C107E and MTS9301 showed far slower adsorption for iron(II) than the other three metals, which invited the possibility of kinetic separations. TP214 had reasonable effectiveness in removal of copper, but poor affinity for all other metals. The greatest difficulty in modelling the multi-metal system was the two-stage trends observed in equilibrium experiments, as metal-proton exchanges become metal-metal exchanges. While not having the highest capacity, MTS9301 was recommended as the most appropriate resin for rapid and efficient removal of Cu, Pb and Zn from the acetate medium.
Collapse
Affiliation(s)
- James P Bezzina
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Thomas J Robshaw
- Department of Chemical and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Sheffield, S1 3JD, United Kingdom; Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, United Kingdom.
| | - Adam J Canner
- Department of Chemical and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Sheffield, S1 3JD, United Kingdom
| | - Robert Dawson
- Department of Chemistry, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Mark D Ogden
- Department of Chemical and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Sheffield, S1 3JD, United Kingdom
| |
Collapse
|
30
|
Shashvatt U, Amurrio F, Blaney L. Ligand-Enabled Donnan Dialysis for Phosphorus Recovery from Alum-Laden Waste Activated Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13945-13953. [PMID: 36095332 DOI: 10.1021/acs.est.2c02153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
While many nutrient recovery technologies target liquid waste streams, new strategies are required for effective phosphorus recovery from solid waste. This study reports an innovative ligand-enabled Donnan dialysis process to recover orthophosphate (P(V)) from alum-laden waste activated sludge (WAS). Four ligands, namely acetate, citrate, ethylenediaminetetraacetate (EDTA), and oxalate, were evaluated for P(V) release from a synthetic sludge containing 5 mM P(V) and 25 mM Al(III) and a real, alum-laden WAS with similar contents. Citrate and EDTA released more than 95% of P(V) at doses of 30 mM, outperforming acetate and oxalate. The ligand-based solubilization strategy was coupled with Donnan dialysis to recover P(V) into a clean sodium chloride draw solution. After Donnan dialysis with the synthetic sludge, the P(V) recovery's order was as follows: EDTA (54.4%) > citrate (41.7%) > oxalate (4.3%). The P(V) recovery efficiencies were slightly lower for Donnan dialysis with real, alum-laden WAS, namely 45.1% and 25.2% for EDTA and citrate addition, respectively, due to competitive effects exerted by other dissolved species. These promising results successfully demonstrated the proof-of-concept for ligand-enabled Donnan dialysis.
Collapse
Affiliation(s)
- Utsav Shashvatt
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Engineering Building, Room 314, Baltimore, Maryland 21250, United States
| | - Fabian Amurrio
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Engineering Building, Room 314, Baltimore, Maryland 21250, United States
| | - Lee Blaney
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Engineering Building, Room 314, Baltimore, Maryland 21250, United States
| |
Collapse
|
31
|
Nabuyanda MM, Kelderman P, Sankura MG, Rousseau D, Irvine K. Investigating the effect of Eh and pH on binding forms of Co, Cu, and Pb in wetland sediments from Zambia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115543. [PMID: 35820307 DOI: 10.1016/j.jenvman.2022.115543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
This study investigated binding forms of cobalt (Co), copper (Cu), and lead (Pb) in 28 sediment samples from inlet to outlet of three Zambian wetlands receiving mining effluents. Use was made of a modified Tessier metal binding fractions procedure. Due to storage artefacts, the original aim of investigating the effects of redox potential (Eh) changes, starting from extremely low Eh, was suspended. Instead, use was made of the new, not often explored opportunity for replicate sample division into three categories of varying redox potential and pH. Additionally, in line with the original research aim, two sediments from each wetland were investigated for their response to increasing Eh. The results showed overall high trace metal contents, with a need for remedial actions for Co and Cu in the first, Cu in the second, and Pb in the third wetland. Rather independent of Eh and pH, Co was often found in the residual fraction (F5), as well as in the oxidizable (F4) and reducible (F3) fraction. Cu was generally dominant in F5 and F4 fractions, with low F3 prevalence, indicating a high organic matter affinity. Pb distribution among binding forms showed small variations within and across wetlands, F5, F4, and F3 fractions dominating. In the above observations, statistical analysis showed that, among the 28 sediment samples across wetlands, the influence of Eh and pH on binding forms were generally found to be not significant, being 'overruled' by other sedimentological factors. With increasing Eh, the decrease in the oxidizable (F4) fraction was smaller than expected in eight of 18 tests. The Risk Assessment Code (RAC) method, based on the exchangeable fraction (F1) plus carbonate fraction (F2), showed that some sediments turned from "unsafe" to "safe," and vice versa, with increasing Eh. The "total metals method" does not show bioavailability, whereas RAC does not use the metal contents. Thus, the two methods should be used together to improve the prediction of potential toxicity.
Collapse
Affiliation(s)
- Misery Mulele Nabuyanda
- Department of Water Science and Engineering (WSE), IHE Delft Institute for Water Education, P. O. Box 3015, 2601 DA, Delft, Netherlands.
| | - Peter Kelderman
- Department of Water Science and Engineering (WSE), IHE Delft Institute for Water Education, P. O. Box 3015, 2601 DA, Delft, Netherlands.
| | - Mihret Getahun Sankura
- Hawassa University, College of Forestry and Natural Resources (CFNRs), Dept. of Environmental Science, P.O. Box 128, Shashemene, Ethiopia.
| | - Diederik Rousseau
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Sint-Martens-Latemlaan 2B, Building A, 8500 Kortrijk, Belgium.
| | - Kenneth Irvine
- Department of Water Science and Engineering (WSE), IHE Delft Institute for Water Education, P. O. Box 3015, 2601 DA, Delft, Netherlands; Aquatic Ecology and Water Quality Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
32
|
Cherfouh R, Lucas Y, Derridj A, Merdy P. Metal speciation in sludges: a tool to evaluate risks of land application and to track heavy metal contamination in sewage network. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70396-70407. [PMID: 35589893 DOI: 10.1007/s11356-022-20868-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The agricultural spreading of dehydrated sewage sludge from urban sewage treatment plants is economically profitable provided that the soil agronomic quality and the absence of contamination, in particular of heavy metals, are maintained. We evaluated the variability of sludge between five treatment plants in northern Algeria. We determined parameters that account for their agronomic quality and total content of Ag, Cd, Co, Cr, Cu, Ni, Pb, Ti and Zn. The speciation of metals, which determines their bioavailability, was characterized by sequential extraction into five fractions: easily exchangeable, acid-soluble, bound to carbonates and Fe-sulphides, bound to Fe-Mn oxides, bound to organic matter or sulphides, residual. All the sludges analysed showed satisfactory properties for plant growth. High total Ni contents for three of the sludges indicated that they were not landfillable under French or Chinese regulations. Ni, however, was contained in poorly bioavailable fractions and therefore presented a low risk to soils. In contrast, the total Cu was lower than the regulatory limit values, but mainly contained in very bioavailable fractions whose accumulation over time could reach toxic levels for plants over a period of 3 to 11 years depending on the sludges. These results showed that regulations are not adapted and must take into account the bioavailability with regard to the characteristics of the soils on which to spread. The speciation of metals in the sludge has also, on the one hand, made it possible to identify the zone of the sewerage network in which the sources of contamination must be sought and, on the other hand, has given indications on the possible nature of these sources.
Collapse
Affiliation(s)
- Rabia Cherfouh
- Laboratoire Production, Amélioration Et Protection Des Végétaux Et Des Denrées Alimentaires (LPAPVDA), Université Mouloud Mammeri, BP 17 RP, 15000, Tizi Ouzou, Algeria
| | - Yves Lucas
- Université de Toulon, Aix Marseille Univ, CNRS, IM2NP, Cedex 9, 83041, Toulon, France
| | - Arezki Derridj
- Laboratoire Production, Amélioration Et Protection Des Végétaux Et Des Denrées Alimentaires (LPAPVDA), Université Mouloud Mammeri, BP 17 RP, 15000, Tizi Ouzou, Algeria
| | - Patricia Merdy
- Université de Toulon, Aix Marseille Univ, CNRS, IM2NP, Cedex 9, 83041, Toulon, France.
| |
Collapse
|
33
|
Kumar P, Alamri SAM, Alrumman SA, Eid EM, Adelodun B, Goala M, Choi KS, Kumar V. Foliar use of TiO 2-nanoparticles for okra (Abelmoschus esculentus L. Moench) cultivation on sewage sludge-amended soils: biochemical response and heavy metal accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:66507-66518. [PMID: 35503150 DOI: 10.1007/s11356-022-20526-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Considering its richness in organic and inorganic mineral nutrients, the recycling of sewage sludge (SS) is highly considered as a soil supplement in agriculture. However, the fate of hazardous heavy metal accumulation in the crops cultivated in SS amended soils is always a source of concern. Since nanoparticles are widely recognized to reduce heavy metal uptake by crop plants; thus, the present experiment deals with okra (Abelmoschus esculentus L. Moench) cultivation under the combined application of SS and TiO2-nanoparticles (NPs). Triplicated pot experiments were conducted using different doses of SS and TiO2-NPs such as 0 g/kg SS (control), 50 g/kg SS, 50 g/kg SS + TiO2, 100 g/kg SS, and 100 g/kg SS + TiO2, respectively. The findings of this study indicated that among the doses of treatment combinations investigated, 100 g/kg SS + TiO2 showed a significant (p < 0.05) increase in the okra plant yield (287.87 ± 4.06 g/plant) and other biochemical parameters such as fruit length (13.97 ± 0.54 cm), plant height (75.05 ± 3.18 cm), superoxide dismutase (SOD: 110.68 ± 3.11 μ/mg), catalase (CAT: 81.32 ± 3.52 μ/mg), and chlorophyll content (3.12 ± 0.05 mg/g fwt.). Also, the maximum contents of six heavy metals in the soil and cultivated okra plant tissues (fruit, stem, and root regions) followed the order of Fe > Mn > Cu > Zn > Cr > Cd using the same treatment. Bioaccumulation and health risk assessment indicated that foliar application of TiO2-NPs significantly reduced the fate of heavy metal accumulation under higher doses of SS application. Therefore, the findings of this study suggested that the combined use of SS and TiO2-NPs may be useful in ameliorating the negative consequences of heavy metal accumulation in cultivated okra crops.
Collapse
Affiliation(s)
- Pankaj Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India
| | - Saad A M Alamri
- Biology Department, College of Science, King Khalid University, Abha, 61321, Saudi Arabia
| | - Sulaiman A Alrumman
- Biology Department, College of Science, King Khalid University, Abha, 61321, Saudi Arabia
| | - Ebrahem M Eid
- Biology Department, College of Science, King Khalid University, Abha, 61321, Saudi Arabia
- Botany Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Bashir Adelodun
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, 41566, Korea
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, 240103, Nigeria
| | - Madhumita Goala
- Nehru College, Pailapool, Affiliated Assam University, Cachar, Silchar, 788098, Assam, India
| | - Kyung Sook Choi
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, 240103, Nigeria
| | - Vinod Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India.
| |
Collapse
|
34
|
Tytła M, Widziewicz-Rzońca K, Bernaś Z. A Comparison of Conventional and Ultrasound-Assisted BCR Sequential Extraction Methods for the Fractionation of Heavy Metals in Sewage Sludge of Different Characteristics. Molecules 2022; 27:molecules27154947. [PMID: 35956897 PMCID: PMC9370181 DOI: 10.3390/molecules27154947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to determine the heavy metal (HM: Cd, Cr, Cu, Ni, Pb, Zn, and Hg) content in particular chemical fractions (forms) of sewage sludge with different characteristics (primary and dewatered sludge) using conventional (CSE) and ultrasound-assisted (USE) BCR sequential extraction methods (Community Bureau of Reference, now the Standards, Measurements and Testing Programme). The concentrations of HMs were determined using inductively coupled plasma optical spectrometry (ICP-OES). Only mercury was assayed with cold vapor atomic absorption spectrometry (CVAAS). Ultrasound treatment was conducted in the ultrasonic bath (Sonic 5, Polsonic). The optimal sonication time (30 min) was determined using ERM-CC144 (Joint Research Center; JCR) certified reference material. The conducted experiment revealed that the use of ultrasound waves shortened the extraction time to 4 h and 30 min (Stages I to III). The recoveries (RM) of heavy metals ranged from 62.8% to 130.2% (CSE) and from 79.8% to 135.7% (USE) for primary sludge, and from 87.2% to 113.2% (CSE) and from 87.8% to 112.0% (USE) for dewatered sludge. The only exception was Hg in dewatered sludge. The conducted research revealed minor differences in the concentrations and fractionation patterns for Cd, Ni, and Zn extracted from sludge samples by the tested methods. However, it was confirmed that the above findings do not significantly affect the results of a potential ecological risk assessment (with minor exceptions for Cd and Zn in the primary sludge), which is extremely essential for the natural use of sludge, and especially dewatered sludge (the final sludge). The shorter extraction time and lower energy consumption prove that ultrasound-assisted extraction is a fast and simple method for HM fractionation, and that it provides an alternative to the conventional procedure. Therefore, it can be considered a “green method” for the assessment of the bioavailability and mobility of heavy metals in solid samples.
Collapse
|
35
|
Metal Contents and Pollution Indices Assessment of Surface Water, Soil, and Sediment from the Arieș River Basin Mining Area, Romania. SUSTAINABILITY 2022. [DOI: 10.3390/su14138024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The current study was conducted to assess the level and spatial distribution of metal pollution in surface water, soil, and sediment samples from the Arieș River basin, located in central Romania, an area impacted by various mining and industrial operations. Several pollution indices, spatial distributions, cluster analyses, principal component analyses, and heat maps were applied for evaluating the contamination level with Ni, Cu, Zn, Cd, Pb, Mn, As, and Hg in the area. Based on the results of the Heavy-Metal Pollution Index and of the Heavy-Metal Evaluation Index of the surface-water samples, the middle part of the Arieș River basin, near and downstream of the gold mine impoundment, was characterized by high pollution levels. The metal concentration was higher near the tailing impoundment, with increased levels of Cu, Ni, Zn, and Pb in the soil samples and As, Cd, Pb, Na, K, Ca, Mn, and Al in the sediment samples. Ca (23.7–219 mg/L), Mg (2.55–18.30 mg/L), K (0.64–14.70 mg/L), Al (0.06–22.80 mg/L), and Mn (0.03–22.40 mg/L) had the most remarkable spatial variation among the surface-water samples, while various metal contents fluctuated strongly among the sampling locations. Al varied from 743 to 19.8 mg/kg, Fe from 529 to 11.4 mg/kg, Ca from 2316 to 11.8 mg/kg, and Mg from 967 to 2547 mg/kg in the soil samples, and Al varied from 3106 to 8022 mg/kg, Fe from 314 to 5982 mg/kg, Ca from 1367 to 8308 mg/kg, and Mg from 412 to 1913 mg/kg in the sediment samples. The Potential Ecological Risk Index values for soil and sediments were in the orders Cu > Ni > Pb > Hg > Cr > As > Mn > Zn > Cd and As > Cu > Cr > Cd > Pb > Ni > Hg > Mn > Zn, respectively, and the highest values were found around the gold mine impoundment.
Collapse
|
36
|
Radwan M, Abbas MMM, Afifi MAM, Mohammadein A, Al Malki JS. Fish Parasites and Heavy Metals Relationship in Wild and Cultivated Fish as Potential Health Risk Assessment in Egypt. FRONTIERS IN ENVIRONMENTAL SCIENCE 2022; 10. [DOI: 10.3389/fenvs.2022.890039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Despite wide studies of biomonitoring aquatic environment through dynamics of host–parasite interaction, bio-indicators to track the influence and accumulation of heavy metals on fish are still few. The present study sheds light on the relation between fish parasites and heavy metals as it threatens fish’s health and, as a consequence, that of humans after fish consumption. Samples of Nile tilapia (Oreochromis niloticus) were collected in Burullus Lake, a wild fish source, and from a private fish farm in Kafr El-Sheikh Governorate, in Egypt. They were exposed to various pollutants associated with anthropogenic activities to determine the levels of accumulation of Fe, Zn, and Cu, along with the top three most toxic metals (As, Cd, and Pb) in water and fish tissues of gills, intestine, liver, and muscles in both wild and farmedO. niloticus. The results showed the order of abundance: Fe < Zn < Pb < Cu < As < Cd. In waters of both farmed and wild fish, there was a significant negative relation between parasite prevalence and heavy metals, including Zn, Pb, and As. Also, there was a significant positive relation between parasite prevalence with Cu while no significant relation was found with Fe and Cd. Heavy metal content was significantly higher (p> 0.05) in non-infected than infected farmed and wildO. niloticus. In addition, a significantly decreased concentration (p> 0.05) of essential heavy metal was recorded in wild fish compared to farmed specimens, while non-essential heavy metal was significantly higher (p> 0.05) in wild compared to farmed fish. Bioaccumulation factors (BAF) of different organs ofO. niloticuswere ranked in ascending order: Liver > Gills > Intestine > Muscles. In general, the risk assessment showed safe human consumption of farmed and wild fish under the reported environmental conditions in this study. Moreover, the parasite's presence can be adopted as a surrogate indicator to estimate the potential impact of heavy metal pollution and accumulation.
Collapse
|
37
|
Evaluating the Potential Health Risks of Selected Heavy Metals across Four Wastewater Treatment Water Works in Durban, South Africa. TOXICS 2022; 10:toxics10060340. [PMID: 35736948 PMCID: PMC9228299 DOI: 10.3390/toxics10060340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 12/10/2022]
Abstract
Poor and inadequate sanitation systems have been considered not only a human health issue, but also an environmental threat that instigates climate change. Nine heavy metals-arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn)-were evaluated in influent and effluent water samples from four wastewater treatment plants in the Durban metropolis, KwaZulu-Natal, South Africa. The results indicate that the mean concentrations of all the heavy metals in the influent samples ranged from 0.122 to 1.808 mg/L, while the effluent samples had a concentration ranging from 0.118 to 0.854 mg/L. Iron was found to be in the highest concentration and the concentration of Co was the lowest across the wastewater treatment plants. The levels for most of the heavy metals in this study were found to be above the recommended maximum concentrations in surface and effluent waters as stipulated by the World Health Organization, United States Environmental Protection Agency, Food and Agriculture Organization, and the Department of Water Affairs and Forestry of South Africa. According to the toxicity effect due to non-carcinogenic risks, As, Pb, Cr, and Cd are considered to be of medium risk in this study, indicating that a probable adverse health risk is very likely to occur. Additionally, the cancer risk (RI) values were lower than 10-3, which shows that cancer development is very likely in individuals who are exposed. Cancer development associated with dermal absorption is quite negligible; thereby, it does not raise any concerns.
Collapse
|
38
|
Baskar AV, Bolan N, Hoang SA, Sooriyakumar P, Kumar M, Singh L, Jasemizad T, Padhye LP, Singh G, Vinu A, Sarkar B, Kirkham MB, Rinklebe J, Wang S, Wang H, Balasubramanian R, Siddique KHM. Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153555. [PMID: 35104528 DOI: 10.1016/j.scitotenv.2022.153555] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 04/15/2023]
Abstract
Adsorption is the most widely adopted, effective, and reliable treatment process for the removal of inorganic and organic contaminants from wastewater. One of the major issues with the adsorption-treatment process for the removal of contaminants from wastewater streams is the recovery and sustainable management of spent adsorbents. This review focuses on the effectiveness of emerging adsorbents and how the spent adsorbents could be recovered, regenerated, and further managed through reuse or safe disposal. The critical analysis of both conventional and emerging adsorbents on organic and inorganic contaminants in wastewater systems are evaluated. The various recovery and regeneration techniques of spent adsorbents including magnetic separation, filtration, thermal desorption and decomposition, chemical desorption, supercritical fluid desorption, advanced oxidation process and microbial assisted adsorbent regeneration are discussed in detail. The current challenges for the recovery and regeneration of adsorbents and the methodologies used for solving those problems are covered. The spent adsorbents are managed through regeneration for reuse (such as soil amendment, capacitor, catalyst/catalyst support) or safe disposal involving incineration and landfilling. Sustainable management of spent adsorbents, including processes involved in the recovery and regeneration of adsorbents for reuse, is examined in the context of resource recovery and circular economy. Finally, the review ends with the current drawbacks in the recovery and management of the spent adsorbents and the future directions for the economic and environmental feasibility of the system for industrial-scale application.
Collapse
Affiliation(s)
- Arun V Baskar
- The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Son A Hoang
- The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; Division of Urban Infrastructural Engineering, Mientrung University of Civil Engineering, Phu Yen 56000, Viet Nam
| | - Prasanthi Sooriyakumar
- The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Gurwinder Singh
- The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ajayan Vinu
- The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Jörg Rinklebe
- University of Wuppertal, Germany, Faculty of Architecture und Civil Engineering, Institute of Soil Engineering, Waste- and Water Science, Laboratory of Soil- and Groundwater-Management, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, Republic of Korea.
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, People's Republic of China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, People's Republic of China
| | | | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
39
|
A Review of the Techno-Economic Feasibility of Nanoparticle Application for Wastewater Treatment. WATER 2022. [DOI: 10.3390/w14101550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The increase in heavy metal contamination has led to an increase in studies investigating alternative sustainable ways to treat heavy metals. Nanotechnology has been shown to be an environmentally friendly technology for treating heavy metals and other contaminants from contaminated water. However, this technology is not widely used in wastewater treatment plants (WWTPs) due to high operational costs. The increasing interest in reducing costs by applying nanotechnology in wastewater treatment has resulted in an increase in studies investigating sustainable ways of producing nanoparticles. Certain researchers have suggested that sustainable and cheap raw materials must be used for the production of cheaper nanoparticles. This has led to an increase in studies investigating the production of nanoparticles from plant materials. Additionally, production of nanoparticles through biological methods has also been recognized as a promising, cost-effective method of producing nanoparticles. Some studies have shown that the recycling of nanoparticles can potentially reduce the costs of using freshly produced nanoparticles. This review evaluates the economic impact of these new developments on nanotechnology in wastewater treatment. An in-depth market assessment of nanoparticle application and the economic feasibility of nanoparticle applications in WWTPs is presented. Moreover, the challenges and opportunities of using nanoparticles for heavy metal removal are also discussed.
Collapse
|
40
|
Risk Assessment and Potential Analysis of the Agricultural Use of Sewage Sludge in Central Shanxi Province. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074236. [PMID: 35409915 PMCID: PMC8998293 DOI: 10.3390/ijerph19074236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023]
Abstract
The agricultural use of sewage sludge has become an economic disposal method used worldwide. However, heavy metals contained in sewage sludge have become the crucial limiting factors for this way of disposal. This study showed that regulatory limit values are not enough to determine whether sewage sludge is suitable for agricultural use; risk assessment and potential analysis should be applied. Correlation analysis and hierarchical cluster analysis (HCA) should also be performed to identify heavy metals' sources and show their influence on sewage sludge utilization. Samples were collected from 13 wastewater treatment plants (WWTPs) located in central Shanxi Province. Results indicated that the mean contents of heavy metals in sewage sludge were all less than the limit threshold of China. According to the monomial potential ecological risk coefficient (), the agricultural use of sewage sludge had low ecological risks for all heavy metals, except for Hg and Cd. Based on the potential ecological risk index (RI), only three stations had moderate risk, other nine stations all had higher potential risk. The mean potentials by all heavy metals were all beyond 10 years, which is the limit of the maximum application time specified by China. Combining all heavy metals, only one station's potential was less than 10 years. Although the contents of heavy metals were all within the threshold values, large quantities of sewage sludge are not suitable for agricultural use. Coal-related industries, which were the main sources of Hg and Cd, greatly affected the agricultural use of sewage sludge.
Collapse
|
41
|
Sasidharan R, Kumar A. Magnetic adsorbent developed with alkali-thermal pretreated biogas slurry solids for the removal of heavy metals: optimization, kinetic, and equilibrium study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30217-30232. [PMID: 35000179 DOI: 10.1007/s11356-021-18485-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Discharge of effluents containing heavy metal without adequate treatment causes contamination of water resources and creates environmental and health issues. Adsorption could be applied to remediate heavy metals from wastewater effectively. In this study, a low-cost adsorbent was prepared by magnetic modification of pretreated biogas slurry solids (BSS) to remove heavy metals such as Cu2+, Cd2+, and Pb2+. The temperature (423 K) and time (1.5 h) of pretreatment, the BSS to KOH ratio (1:10 w/v), and the ratio of magnetic iron nanoparticle (MIN) to pretreated BSS (PSS) (1:2 w/w) were optimized for the preparation of adsorbent. The magnetically modified pretreated biogas slurry solid (MMPSS) adsorbent was characterized by BET isotherm, FTIR, XRD, FESEM, VSM, and EDX analysis. MMPSS attained equilibrium at 60 min and showed an adsorption capacity of 26.84 mg/g, 24.79 mg/g, and 23.86 mg/g with removal percentages 89.46%, 82.63%, and 79.54% for Cu2+, Cd2+, and Pb2+, respectively, at 310 K and pH 6 with an initial concentration of 150 mg/L. The adsorption process followed a pseudo second-order model with an R2 value above 0.9 for all metals with a well-approaching equilibrium pattern. The good fit of experimental data by the Langmuir isotherm model implied monolayer adsorption. The metal ions adsorbed onto MMPSS were able to desorb effectively in the presence of HCl and retained 83.01%, 84.66%, and 81.83% of the initial adsorption capacity for Cu2+, Cd2+, and Pb2+ respectively after 5 consecutive cycles.
Collapse
Affiliation(s)
- Roshini Sasidharan
- Environmental Pollution Abatement Laboratory, Department of Chemical Engineering, National Institute of Technology, Rourkela, India, 769008.
| | - Arvind Kumar
- Environmental Pollution Abatement Laboratory, Department of Chemical Engineering, National Institute of Technology, Rourkela, India, 769008
| |
Collapse
|
42
|
De Beni E, Giurlani W, Fabbri L, Emanuele R, Santini S, Sarti C, Martellini T, Piciollo E, Cincinelli A, Innocenti M. Graphene-based nanomaterials in the electroplating industry: A suitable choice for heavy metal removal from wastewater. CHEMOSPHERE 2022; 292:133448. [PMID: 34973258 DOI: 10.1016/j.chemosphere.2021.133448] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/30/2021] [Accepted: 12/24/2021] [Indexed: 05/19/2023]
Abstract
The presence of various heavy metal ions in the industrial waste waters has recently been a challenging issue for human health. Since heavy metals are highly soluble in the aquatic environments and they can be absorbed easily by living organisms, their removal is essential from the environmental point of view. Many studies have been devoted to investigating the environmental behaviour of graphene-based nanomaterials as sorbent agents to remove metals from wastewaters arising by galvanic industries. Among the graphene derivates, especially graphene oxide (GO), due to its abundant oxygen functional groups, high specific area and hydrophilicity, is a high-efficient adsorbent for the removal of heavy and precious metals in aquatic environment. This paper reviews the main graphene, GO, functionalized GO and their composites and its applications in the metals removal process. The influencing factors, adsorption capacities and reuse capability are highlighted for the most extensively used heavy metals, including copper, zinc, nickel, chromium, cobalt and precious metals (i.e., gold, silver, platinum, palladium, rhodium, and ruthenium) in the electroplating process.
Collapse
Affiliation(s)
- Eleonora De Beni
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, (FI), Italy.
| | - Walter Giurlani
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, (FI), Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121, Firenze, Italy
| | - Lorenzo Fabbri
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, (FI), Italy
| | - Roberta Emanuele
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, (FI), Italy
| | - Saul Santini
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, (FI), Italy
| | - Chiara Sarti
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, (FI), Italy
| | - Tania Martellini
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, (FI), Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121, Firenze, Italy
| | | | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, (FI), Italy
| | - Massimo Innocenti
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, (FI), Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121, Firenze, Italy; Center for Colloid and Surface Science (CSGI), Via Della Lastruccia 3, 50019, Sesto Fiorentino, (FI), Italy; Insititute of Chemistry of Organometallic Compounds (ICCOM) - National Research Council (CNR), Via Madonna Del Piano 10, 50019, Sesto Fiorentino, (FI), Italy
| |
Collapse
|
43
|
Sharma P, Nanda K, Yadav M, Shukla A, Srivastava SK, Kumar S, Singh SP. Remediation of noxious wastewater using nanohybrid adsorbent for preventing water pollution. CHEMOSPHERE 2022; 292:133380. [PMID: 34953871 DOI: 10.1016/j.chemosphere.2021.133380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Removal of toxic elements from wastewater effluent has got a lot of attention because of their severe negative effects on human and environmental health. In the past few years, rapid urbanization and industrial activities in developing countries have exacerbated the destruction of the environment. Most of the wastewater effluents are discharged untreated or inadequately treated, which has become a major concern due to its impact on sustainability and the environment. This is imperative to implement, innovative and resourceful wastewater treatment technologies requiring low investment. Among the various treatment technologies, cutting-edge processes in nano-material sciences have recently piqued the interest of scientists. Nanohybrid absorbents have the potential in improving wastewater treatment and increase water supply by utilizing unconventional water resources. Carbon nanotubes, titanium oxide, manganese oxide, activated carbon (AC), magnesium oxide, graphene, ferric oxides, and zinc oxide are examples of nano-adsorbents that are used to eliminate pollutants. This also demonstrated the effective removal of contaminants along with the harmful effects of chemicals, colorants, and metals found in wastewater. The present manuscript examines potential advances in nanotechnology in wastewater treatment for the prevention of water and soil pollution. This systematic review aims to highlight the importance of nanohybrid absorbents treatment technology for wastewater treatment and to explain how nanohybrid absorbents have the potential to revolutionize industrial pollution. There are also other published review articles on this topic but the present review covers an in-depth information on nano-adsorbents and their targeted contaminants.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, 440 020, India.
| | - Kavita Nanda
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India
| | - Mamta Yadav
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India
| | - Ashutosh Shukla
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India
| | - Sudhir Kumar Srivastava
- Chemical Research Laboratory, Department of Chemistry, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208001, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, 440 020, India.
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India.
| |
Collapse
|
44
|
Chaiyarat A, Saejung C. Photosynthetic bacteria with iron oxide nanoparticles as catalyst for cooking oil removal and valuable products recovery with heavy metal co-contamination. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 140:81-89. [PMID: 35074534 DOI: 10.1016/j.wasman.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/18/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Waste cooking oil discharge causes environmental pollution in receiving waters, particularly when associated with heavy metals that can lead to formation of hazardous organometallic compounds. This study combined iron oxide nanomaterial and the anoxygenic photosynthetic bacterium Rhodopseudomonas faecalis PA2 for removal of cooking oil in the presence of heavy metals. R. faecalis PA2, with known capability to generate beneficial substances from several wastes, was capable of cooking oil removal with production of valuable products. Oil removal, biomass, protein, and carotenoid production were 82.38%, 1.48 g/L, 1,600.19 mg/L, and 1,046.33 mg/L, respectively, under optimal conditions (cooking oil as carbon source and 30% inoculum density). Iron (Fe) stimulates growth of R. faecalis; in this study, Fe3O4 nanoparticles were synthesized and used as a catalyst to facilitate interaction and high reactivity between Fe and R. faecalis PA2. Size measurement by transmission electron microscopy (17.44 nm), X-ray diffraction peaks, and magnetic susceptibility confirmed that the synthesized nanoparticles were magnetite Fe3O4. Biomass, protein, and carotenoid production of the Fe3O4 supplemented experiment increased by 61.56%, 70.78%, and 57.2%, respectively, when compared with the control. When different concentrations of heavy metals (Pb, Ni, Co, and Zn) were supplemented in the media containing cooking oil, Fe3O4 addition increased heavy metal tolerance, improved bacterial growth, and enhanced valuable products when compared with the non-supplemented group. This study reports the positive impact of nanoparticle application as a catalyst for valorization of cooking oil waste with heavy metal co-contamination by the photosynthetic bacterium R. faecalis PA2.
Collapse
Affiliation(s)
- Anuwat Chaiyarat
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chewapat Saejung
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
45
|
Mohamad
Nor N, Arivalakan S, Zakaria ND, Nilamani N, Lockman Z, Abdul Razak K. Self-Assembled Iron Oxide Nanoparticle-Modified APTES-ITO Electrode for Simultaneous Stripping Analysis of Cd(II) and Pb(II) Ions. ACS OMEGA 2022; 7:3823-3833. [PMID: 35128290 PMCID: PMC8812099 DOI: 10.1021/acsomega.1c07158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022]
Abstract
Carboxyl (-COOH)-stabilized iron oxide nanoparticles (IONPs) synthesized through co-precipitation were used to modify an indium tin oxide (ITO) electrode, which was chemically functionalized with 3-aminopropyltriethoxysilane (APTES) for heavy metal detection. The effect of soaking time (30, 60, 90, and 120 min) of IONP-COOH self-assembled on an APTES-ITO electrode was studied. Cyclic voltammetry and scanning electron microscopy were applied to analyze the electrochemical properties and morphologies of IONP-COOH/APTES-ITO modified electrode. The modified electrodes were then employed for the simultaneous detection of Cd(II) and Pb(II) by using square wave anodic stripping voltammetry. At 90 min of soaking time, excellent electrochemical performance and larger effective surface area (A e) were obtained. The linear range for the simultaneous detection of Cd(II) and Pb(II) ions using the modified electrode was 10-100 ppb with limits of detection of 0.90 and 0.60 ppb, respectively. The interference study revealed a low interference effect from Cr(III), Hg(II), Zn(II), Cu(II), Mg(II), Na(I), and K(I) toward the simultaneous detection of Cd(II) and Pb(II). Finally, the IONP-COOH/APTES-ITO-modified electrode was applied to analyze seawater samples and was able to simultaneously detect Cd(II) and Pb(II) ions.
Collapse
Affiliation(s)
- Noorhashimah Mohamad
Nor
- School
of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Sarasijah Arivalakan
- School
of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Nor Dyana Zakaria
- NanoBiotechnology
Research and Innovation (NanoBRI), Institute for Research in Molecular
Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Nithiyaa Nilamani
- Centre
for Marine and Coastal Studies, Universiti
Sains Malaysia, 11800 Penang, Malaysia
| | - Zainovia Lockman
- School
of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Khairunisak Abdul Razak
- School
of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
- NanoBiotechnology
Research and Innovation (NanoBRI), Institute for Research in Molecular
Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
46
|
Ahmad A, Chowdhary P, Khan N, Chaurasia D, Varjani S, Pandey A, Chaturvedi P. Effect of sewage sludge biochar on the soil nutrient, microbial abundance, and plant biomass: A sustainable approach towards mitigation of solid waste. CHEMOSPHERE 2022; 287:132112. [PMID: 34523464 DOI: 10.1016/j.chemosphere.2021.132112] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/11/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Soils functions, fertility, and microbial abundance may alter in various ways by the biochar amendments to the soil. This study revealed the way of pyrolysis temperature influences the biochar quality and its addition for improving soil properties. The SS biochar was synthesized via pyrolysis and characterized by SEM and FTIR for studying surface images and chemical functional groups. The biochar upon addition with soil was studied for physiological parameters of plants like seed germination index, root length, shoot length, biomass, metal (loid) analysis of soil, SS and SS biochar, total organic content, C: N ratio, NPK values, etc. Besides, combinations of biochar: soil {1:3 (25% + 75%), 1:1 (50% + 50%), and 3:1 (75% + 25%)} ratios were used for studying the effect of biochar on soil microbial community. The 16S rRNA metagenomic analysis revealed the dominance of phyla: Proteobacteria, Actinobacteria, and Acidobacteria that influence the soil nutrient cycle when applied at ratio 1:3. This study highlights the valorization of SS into biochar and studied the effect of biochar augmentation with soil; its impact on soil nutrients, microbial abundance, and plant biomass enhancement. The greener approach also mitigates and helps in the sustainable management of solid wastes, thus reducing GHGs emissions and improves nutrient cycling.
Collapse
Affiliation(s)
- Anees Ahmad
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Pankaj Chowdhary
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Nawaz Khan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | | | - Ashok Pandey
- Centre for Innovation and Transnational Research, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
47
|
Zieliński W, Korzeniewska E, Harnisz M, Drzymała J, Felis E, Bajkacz S. Wastewater treatment plants as a reservoir of integrase and antibiotic resistance genes - An epidemiological threat to workers and environment. ENVIRONMENT INTERNATIONAL 2021; 156:106641. [PMID: 34015664 DOI: 10.1016/j.envint.2021.106641] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 05/23/2023]
Abstract
Conventional mechanical and biological wastewater treatment is unable to completely eliminate all pollutants, which can therefore enter surface water bodies together with treated wastewater. In addition, bioaerosols produced during wastewater treatment can pose a threat to the health of the wastewater treatment plant staff. In order to control the impact of a wastewater treatment plant (WWTP) on the surrounding environment, including its employees, samples of wastewater and water from a river which received treated wastewater were analysed in terms of their content of antibiotics and heavy metals, levels of selected physiochemical parameters, concentrations of antibiotic-resistance genes (ARGs) and genes of integrases. Furthermore, a quantitative analysis of ARGs in the metagenomic DNA from nasal and throat swabs collected from the WWPT employees was made. Both untreated and treated wastewater samples were dominated by genes of resistance to sulphonamides (sul1, sul2), MLS group of drugs (ermF, ermB) and beta-lactams (blaOXA). A significant increase in the quantities of ARGs and concentrations of antibiotics was observed in the river following the discharge of treated wastewater in comparison to their amounts in the river water upstream from the point of discharge. Moreover, a higher concentration of ARGs was detected in the DNA from swabs obtained from the wastewater treatment plant employees than from ones collected from the control group. Many statistically significant (p < 0.05) correlations between the concentration of the gene of resistance to heavy metals cnrA versus ARGs, and between the ARGs content and the concentrations of heavy metals in both wastewater and river water samples were observed. The study has demonstrated that the mechanical and biological methods of wastewater treatment are not efficient and may affect the transmission of hazardous pollutants to the aquatic environment and to the atmospheric air. It has been shown that an activated sludge bioreactor can be a potential source of the presence of multi-drug resistant microorganisms in the air, which is a health risk to persons working in WWTPs. It has also been found that an environment polluted with heavy metals is where co-selection of antibiotic resistance may occur, in the development of which integrase genes play an essential role.
Collapse
Affiliation(s)
- Wiktor Zieliński
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland.
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland
| | - Justyna Drzymała
- The Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Str., 44-100 Gliwice, Poland
| | - Ewa Felis
- The Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Str., 44-100 Gliwice, Poland; Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2 Str., 44-100 Gliwice, Poland
| | - Sylwia Bajkacz
- The Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Str., 44-100 Gliwice, Poland; Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6 Str., 44-100 Gliwice, Poland
| |
Collapse
|
48
|
Chen Z, Wang D, Dao G, Shi Q, Yu T, Guo F, Wu G. Environmental impact of the effluents discharging from full-scale wastewater treatment plants evaluated by a hybrid fuzzy approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148212. [PMID: 34380271 DOI: 10.1016/j.scitotenv.2021.148212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 06/13/2023]
Abstract
Increasing attention is being paid to the environmental impacts of wastewater treatment plant (WWTP) effluent. In this study, comprehensive environmental impact analyses (EIAs) were performed for the secondary treatment processes, tertiary treatment processes, and entire plants at five full-scale WWTPs in Kunming, China. The EIAs took into account greenhouse gas (GHG) emissions, potential for the effluent to cause eutrophication, ecological risks posed by endocrine disrupting compounds (EDCs) in treated effluent, and the risks posed by heavy metals in excess sludge. A comprehensive assessment toward environmental sustainability was performed using a fuzzy approach. The results indicated that the biological treatment process made the largest contribution (>68% of the total) of the secondary treatment processes to GHG emissions and that electricity consumption made the largest contribution (>64% of the total) of the tertiary treatment processes to GHG emissions. Large numbers of EDCs were removed during the secondary treatment processes, but the potential ecological risks posed by EDCs still require attention. High mercury concentrations were found in excess sludge. The plant that removed the largest proportion of pollutants and produced effluent posing the least ecological risks gave the best comprehensive EIA performance.
Collapse
Affiliation(s)
- Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Dan Wang
- Integrated Research of Energy, Environment and Society (IREES), Energy and Sustainability Research Institute (ESRIG), University of Groningen, Groningen 9747 AG, the Netherlands; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Guohua Dao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Qi Shi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Tong Yu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266000, PR China
| | - Fang Guo
- Kunming Dianchi Water Treatment Co. Ltd., Kunming 650228, PR China
| | - Guangxue Wu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Galway H91 TK33, Ireland.
| |
Collapse
|
49
|
Witkowska D, Słowik J, Chilicka K. Heavy Metals and Human Health: Possible Exposure Pathways and the Competition for Protein Binding Sites. Molecules 2021; 26:molecules26196060. [PMID: 34641604 PMCID: PMC8511997 DOI: 10.3390/molecules26196060] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Heavy metals enter the human body through the gastrointestinal tract, skin, or via inhalation. Toxic metals have proven to be a major threat to human health, mostly because of their ability to cause membrane and DNA damage, and to perturb protein function and enzyme activity. These metals disturb native proteins’ functions by binding to free thiols or other functional groups, catalyzing the oxidation of amino acid side chains, perturbing protein folding, and/or displacing essential metal ions in enzymes. The review shows the physiological and biochemical effects of selected toxic metals interactions with proteins and enzymes. As environmental contamination by heavy metals is one of the most significant global problems, some detoxification strategies are also mentioned.
Collapse
|
50
|
Asirifi I, Kaetzl K, Werner S, Saba CKS, Abagale FK, Amoah P, Marschner B. Pathogen and heavy metal contamination in urban agroecosystems of northern Ghana: Influence of biochar application and wastewater irrigation. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:1097-1109. [PMID: 34197639 DOI: 10.1002/jeq2.20260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
The benefit of biochar as a soil fertility enhancer is well known and has been broadly investigated. Equally, many tropical and subtropical countries use wastewater for irrigation in urban agriculture. To assess the related health risks, we determined pathogen and heavy metal fate associated with biochar application and wastewater irrigation in the urban agriculture of northern Ghana. Rice (Oryza L.) husk biochar (20 t ha-1 ), N-P-K 15-15-15 fertilizer (212.5 kg ha-1 ), and their combinations were evaluated in a field-based experiment. Untreated wastewater and tap water served as irrigation water. Red amaranth (Amaranthus cruentus L.) was used as a test crop and was grown in wet (WS) and dry (DS) cropping seasons. Irrigation water, soil, and vegetables were analyzed for heavy metals, Escherichia coli, fecal coliform, helminth eggs, and Salmonella spp. Unlike the pathogens, analyzed heavy metals from irrigation water and soil were below the FAO/WHO permissible standard for agricultural activities. Wastewater irrigation caused E. coli concentrations ranging from 0.5 to 0.6 (WS) and from 0.7 to 0.8 (DS) log10 colony forming units per gram fresh weight (CFU gFW -1 ) on vegetables and from 1.7 to 2.1 (WS) and from 0.6 to 1.0 (DS) log10 CFU per gram dry weight (gDW -1 ) in soil. Average log10 CFU gFW -1 rates of 6.19 and 3.44 fecal coliform were found on vegetables, whereas in soil, 4.26 and 4.58 log10 CFU gDW -1 were observed in WS and DS, respectively. Helminth egg populations were high in wastewater and were transferred to the crops and soil. Biochar did not affect bacteria contamination. Pathogen contamination on vegetables and in soil were directly linked to the irrigation water, with minimal or no difference observed from biochar application.
Collapse
Affiliation(s)
- Isaac Asirifi
- Institute of Geography, Soil Science and Soil Ecology, Ruhr-Univ. Bochum, Bochum, Germany
| | - Korbinian Kaetzl
- Grassland Science and Renewable Plant Resources, Universität Kassel, Witzenhausen, Germany
- Competence Centre for Climate Change Mitigation and Adaptation (CliMA), Univ. Kassel, Kassel, Germany
| | - Steffen Werner
- Institute of Geography, Soil Science and Soil Ecology, Ruhr-Univ. Bochum, Bochum, Germany
| | - Courage K S Saba
- Biotechnology Dep., Univ. for Development Studies, Faculty of Agriculture, Tamale, Ghana
| | - Felix K Abagale
- School of Agriculture Engineering, Univ. for Development Studies, Tamale, Ghana
| | - Philip Amoah
- International Water Management Institute, PMB CT, 112, Cantonments, Accra, Ghana
| | - Bernd Marschner
- Institute of Geography, Soil Science and Soil Ecology, Ruhr-Univ. Bochum, Bochum, Germany
| |
Collapse
|