1
|
Pfeifer CS, Lucena FS, Logan MG, Nair D, Lewis SH. Current approaches to produce durable biomaterials: Trends in polymeric materials for restorative dentistry applications. Dent Mater 2024:S0109-5641(24)00293-8. [PMID: 39424526 DOI: 10.1016/j.dental.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Dental caries continues to be a public health issue, especially more evident in underserved populations throughout the U.S. Unfortunately, especially with an aging population, hundreds of thousands of resin composite restorations are replaced each year due to recurring decay and fracture. According to several cohort studies, the average life span of this type of restoration is 10 years or less, depending on the caries risk level of the patient and the complexity of the restorative procedure. Any new material development must depart from the simple restoration of form paradigm, in which the filling is simply inert/biocompatible. This review will discuss novel antibiofilm structures, based on a targeted approach specifically against dysbiotic bacteria. Biofilm coalescence can be prevented by using glycosyl transferase - GTF inhibitors, in a non-bactericidal approach. On the tooth substrate side, MMP-inhibiting molecules can improve the stability of the collagen in the hybrid layer. This review will also discuss the importance of testing the materials in a physiologically relevant environment, mimicking the conditions in the mouth in terms of mechanical loading, bacterial challenge, and the presence of saliva. Ultimately, the goal of materials development is to achieve durable restorations, capable of adapting to the oral environment and resisting challenges that go beyond mechanical demands. That way, we can prevent the unnecessary loss of additional tooth structure that comes with every re-treatment. CLINICAL SIGNIFICANCE: While proper restorative technique and patient education in terms of diet and oral hygiene are crucial factors in increasing the longevity of esthetic direct restorations, materials better able to resist and interact with the conditions of the oral environment are still needed. Reproducing the success of dental amalgams with esthetic materials continues to be the Holy Grail of materials development.
Collapse
Affiliation(s)
- Carmem S Pfeifer
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA.
| | - Fernanda S Lucena
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA
| | - Matthew G Logan
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA
| | - Devatha Nair
- University of Colorado Anschutz Medical Campus, School of Dental Medicine, Department of Craniofacial Biology, 17500 E 19th Ave, Aurora, CO 80014, USA
| | - Steven H Lewis
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA
| |
Collapse
|
2
|
Garziano M, Cano Fiestas M, Vanetti C, Strizzi S, Murno ML, Clerici M, Biasin M. SARS-CoV-2 natural infection, but not vaccine-induced immunity, elicits cross-reactive immunity to OC43. Heliyon 2024; 10:e37928. [PMID: 39391514 PMCID: PMC11466580 DOI: 10.1016/j.heliyon.2024.e37928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Background The recent SARS-CoV-2 pandemic renewed interest toward other non-severe acute respiratory syndrome human coronaviruses. Among these, OC43 is a seasonal human coronavirus widely diffused in the population (90 % seroprevalence in adults) which is responsible for mild respiratory symptoms. As OC43 protective immunity is short lasting, we investigated whether humoral immunity to SARS-CoV-2, induced by vaccination or spontaneous infection, protects against OC43 re-infection at either systemic or mucosal level. Methods A neutralization assay was conducted against "wild type" SARS-CoV-2 lineage B.1 (EU) and OC43 in VeroE6 cell lines using plasma and saliva samples from 49 subjects who were never infected and received three BNT162b2 RNA vaccine doses (SARS-CoV-2-vaccinated: SV) and from 25 SARS-CoV-2-infected and vaccinated subjects (SIV). The assays were performed right before (T0), fifteen days (T1) and three months (T2) after the third dose administration (SV) or post-infection (SIV). Results After the third vaccination dose was administered, SARS-CoV-2-specific neutralizing activity (NA) significantly augmented in SV saliva (p < 0.05) and plasma (p < 0.0001); yet, this NA was not protective against OC43. Conversely, in SIV, at T1, natural infection significantly increased NA against both SARS-CoV-2 (p < 0.01) and OC43 (p < 0.05) at systemic as well as mucosal level; still, this cross-reactivity vanished at T2. Of note, NA against SARS-CoV-2 and OC43 was shown to be higher in SIV compared to SV in plasma and saliva, as well; though, statistically significant differences were evident only in the oral mucosa at T1 (p < 0.05). Conclusions Our findings show that SARS-CoV-2 spontaneous infection triggers a more comprehensive and cross-reactive immunity than vaccine-induced immunity, protecting against OC43 at the systemic and mucosal levels. These results support the development of a pan-coronavirus vaccine able to prompt cross-reactive immunity even against seasonal coronaviruses, which could have enormous economic and health benefits globally.
Collapse
Affiliation(s)
- Micaela Garziano
- Laboratory of Immunobiology, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Mario Cano Fiestas
- Laboratory of Immunobiology, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Claudia Vanetti
- Laboratory of Immunobiology, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Sergio Strizzi
- Laboratory of Immunobiology, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Maria Luisa Murno
- Laboratory of Immunobiology, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Don C. Gnocchi Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation, Milan, Italy
| | - Mara Biasin
- Laboratory of Immunobiology, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Tsutsumi T, Taira S, Matsuda R, Kageyama C, Wada M, Kitayama T, Morioka N, Morita K, Tsuboi K, Yamazaki N, Kido J, Nagata T, Dohi T, Tokumura A. Lysophospholipase D activity on oral mucosa cells in whole mixed human saliva involves in production of bioactive lysophosphatidic acid from lysophosphatidylcholine. Prostaglandins Other Lipid Mediat 2024; 174:106881. [PMID: 39134206 DOI: 10.1016/j.prostaglandins.2024.106881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
We reported that lysophosphatidic acid (LPA) is present at 0.8 μM in mixed human saliva (MS). In this study, we examined the distribution, origin, and enzymatic generation pathways of LPA in MS. LPA was distributed in the medium and cell pellet fraction; a true level of soluble LPA in MS was about 150 nM. The soluble LPA was assumed to be generated by ecto-type lysophospholipase D on exfoliated cells in MS from LPC that originated mainly from the major salivary gland saliva. Our results with the albumin-back extraction procedures suggest that a significant pool of LPA is kept in the outer layer of the plasma membranes of detached oral mucosal cells. Such pool of LPA may contribute to wound healing in upper digestive organs including oral cavity. We obtained evidence that the choline-producing activity in MS was mainly due to Ca2+-activated lysophospholipase D activity of glycerophosphodiesterase 7.
Collapse
Affiliation(s)
- Toshihiko Tsutsumi
- Department of Pharmaceutical Sciences, Kyushu University of Medical Science, Nobeoka 882-8508, Japan
| | - Satoshi Taira
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Risa Matsuda
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Chieko Kageyama
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Mamiko Wada
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Tomoya Kitayama
- Department of Pharmacy and Pharmaceutical Sciences, Mucogawa Women's University, Nishinomiya, Hyogo 663-8179, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Katsuya Morita
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi, Hiroshima 734-8553, Japan
| | - Kazuhito Tsuboi
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Naoshi Yamazaki
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Junichi Kido
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Toshihiko Nagata
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Toshihiro Dohi
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8553, Japan; Faculty of Nursing, Hiroshima Bunka Gakuen University, Kure 737-0004, Japan
| | - Akira Tokumura
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan; Department of Life Science, Faculty of Pharmacy, Yasuda Women's University, Hiroshima 730-0153, Japan.
| |
Collapse
|
4
|
Ren W, Hong W, Yang J, Zou J, Chen L, Zhou Y, Lei H, Alu A, Que H, Gong Y, Bi Z, He C, Fu M, Peng D, Yang Y, Yu W, Tang C, Huang Q, Yang M, Li B, Li J, Wang J, Ma X, Hu H, Cheng W, Dong H, Lei J, Chen L, Zhou X, Li J, Wang W, Lu G, Shen G, Yang L, Yang J, Wang Z, Jia G, Su Z, Shao B, Miao H, Yiu-Nam Lau J, Wei Y, Zhang K, Dai L, Lu S, Wei X. SARS-CoV-2 Delta and Omicron variants resist spike cleavage by human airway trypsin-like protease. J Clin Invest 2024; 134:e174304. [PMID: 39286971 PMCID: PMC11405045 DOI: 10.1172/jci174304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/25/2024] [Indexed: 09/19/2024] Open
Abstract
Soluble host factors in the upper respiratory tract can serve as the first line of defense against SARS-CoV-2 infection. In this study, we described the identification and function of a human airway trypsin-like protease (HAT), capable of reducing the infectivity of ancestral SARS-CoV-2. Further, in mouse models, HAT analogue expression was upregulated by SARS-CoV-2 infection. The antiviral activity of HAT functioned through the cleavage of the SARS-CoV-2 spike glycoprotein at R682. This cleavage resulted in inhibition of the attachment of ancestral spike proteins to host cells, which inhibited the cell-cell membrane fusion process. Importantly, exogenous addition of HAT notably reduced the infectivity of ancestral SARS-CoV-2 in vivo. However, HAT was ineffective against the Delta variant and most circulating Omicron variants, including the BQ.1.1 and XBB.1.5 subvariants. We demonstrate that the P681R mutation in Delta and P681H mutation in the Omicron variants, adjacent to the R682 cleavage site, contributed to HAT resistance. Our study reports what we believe to be a novel soluble defense factor against SARS-CoV-2 and resistance of its actions in the Delta and Omicron variants.
Collapse
Affiliation(s)
- Wenyan Ren
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jun Zou
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanan Zhou
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Hong Lei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanqiu Gong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Minyang Fu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dandan Peng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yun Yang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Wenhai Yu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Cong Tang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Qing Huang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Mengli Yang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Bai Li
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Jingmei Li
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Junbin Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongbo Hu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haohao Dong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Lei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xikun Zhou
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiong Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guangwen Lu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guobo Shen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinliang Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenling Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guowen Jia
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaoming Su
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Shao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hanpei Miao
- Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Guangzhou, Guangdong, China
| | - Johnson Yiu-Nam Lau
- Department of Biology and School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kang Zhang
- National Clinical Eye Research Center, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of AI in Medicine and Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Lunzhi Dai
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Li J, Song H, Zhang L, Li J, Yang Y, Cui X, Mahfuza A, Cao Y, Hu X, Li C, Zhao Q, Tian S. Interaction of diesel exhaust particulate matter with mucins in simulated saliva fluids: Bioaccessibility of heavy metals and potential health risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135811. [PMID: 39298947 DOI: 10.1016/j.jhazmat.2024.135811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Air pollution is one of the major environmental risks threatening human health, diesel exhaust particulate matter (DEPM) is an important source of urban air pollution, and oral ingestion is the primary route of exposure to atmospheric particulate matter. This study examined the bioaccessibility of Cr, Fe, and Zn in DEPM within simulated saliva fluids through in vitro experiments, interactions between the particles and mucins, and the mechanisms underlying the oxidative damage they cause. The results indicated that the interaction between DEPM and mucins altered the dispersibility, surface charge, and wettability of the particles, leading to increased release of heavy metals. Protein adsorption experiments and characterizations revealed that the adsorption of mucin by the particles resulted in a complexation reaction between the metals in the DEPM and the mucins, accompanied by fluorescence quenching of the protein. In addition, free radical assays and correlation analyses revealed that environmentally persistent free radicals generated by DEPM induce the production of reactive oxygen species (O2·-, HOOH, and·OH), which damage the secondary structure of mucins and increase the risk of oral diseases. Our study is the first to reveal the interaction between DEPM and mucins in saliva, elucidating the mechanisms of DEPM-induced oxidative damage. This is significant for understanding the oral health risks posed by the ingestion of atmospheric particulate matter.
Collapse
Affiliation(s)
- Jiao Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Haorang Song
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Linfeng Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yanlin Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xiangfen Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Anjum Mahfuza
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Xuewei Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Chen Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
6
|
de Souza BM, Braga AS, Vertuan M, Sassaki S, Araújo TT, Santos PSDS, Buzalaf MAR, Magalhães AC. Influence of irradiated dentin, biofilm and different artificial saliva formulations on root dentin demineralization. Heliyon 2024; 10:e36334. [PMID: 39247326 PMCID: PMC11378960 DOI: 10.1016/j.heliyon.2024.e36334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
The aim of this study was evaluated the influence of radiation as well as of new formulations of artificial saliva on the development of root dentin lesions. Bovine root samples were divided into: irradiated (70 Gy) dentin or not; the type of biofilm (from irradiated patient-experimental or non-irradiated patient-control) and the type of artificial saliva (for the condition irradiated dentin/biofilm from irradiated patient): Control Artificial Saliva (inorganic); Control Saliva + 1 mg/ml hemoglobin; Control Saliva +0.1 mg/ml cystatin; Control Saliva + hemoglobin + cystatin; Bioextra (positive control) and deionized water (DiW, negative control) (n = 12/group). Biofilm was produced using human biofilm and McBain saliva (0.2 % of sucrose, 37o C and 5 % CO2); the treatments were done 1x/day, for 5 days. Colony-forming units (CFU) counting was performed; demineralization was quantified by transversal microradiography. Two-way ANOVA/Bonferroni or Sidak test for the comparison between biofilm x dentin and ANOVA/Tukey or Kruskal-Wallis/Dunn for comparing artificial saliva were done (p < 0.05). The type of biofilm had no influence on CFU and demineralization. Sound dentin under control biofilm presented the lowest Lactobacillus ssp. and Streptococcus mutans CFU and the lowest mean mineral loss (R) (25.6 ± 2.2; 23.7 ± 2.9 %) compared to irradiated dentin (26.1 ± 2.8; 28.1 ± 3.3, p < 0.004) for both types of biofilms (experimental and control, respectively). Bioextra was the only artificial saliva that reduced R (10.8 ± 2.5 %) and Lesion Depth (LD) (35 ± 15 μm) compared to DiW (17.3 ± 3.3 %, 81 ± 18 μm, p < 0.0001). Irradiation has impact on caries development; the experimental saliva were unable to reduce its occurrence.
Collapse
Affiliation(s)
- Beatriz Martines de Souza
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Aline Silva Braga
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Mariele Vertuan
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Susan Sassaki
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Tamara Teodoro Araújo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Paulo Sergio da Silva Santos
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | | | - Ana Carolina Magalhães
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| |
Collapse
|
7
|
Gavila P, Ajrithirong P, Chumnanprai S, Kalpongnukul N, Pisitkun T, Chantarangsu S, Sriwattanapong K, Tagami J, Porntaveetus T. Salivary proteomic signatures in severe dental fluorosis. Sci Rep 2024; 14:18372. [PMID: 39112609 PMCID: PMC11306554 DOI: 10.1038/s41598-024-69409-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
The relationship between dental fluorosis and alterations in the salivary proteome remains inadequately elucidated. This study aimed to investigate the salivary proteome and fluoride concentrations in urine and drinking water among Thai individuals afflicted with severe dental fluorosis. Thirty-seven Thai schoolchildren, aged 6-16, were stratified based on Thylstrup and Fejerskov fluorosis index scores: 10 with scores ranging from 5 to 9 (SF) and 27 with a score of 0 (NF). Urinary and water fluoride levels were determined using an ion-selective fluoride electrode. Salivary proteomic profiling was conducted via LC-MS/MS, followed by comprehensive bioinformatic analysis. Results revealed significantly elevated urinary fluoride levels in the SF group (p = 0.007), whereas water fluoride levels did not significantly differ between the two cohorts. Both groups exhibited 104 detectable salivary proteins. The NF group demonstrated notable upregulation of LENG9, whereas the SF group displayed upregulation of LDHA, UBA1, S100A9, H4C3, and LCP1, all associated with the CFTR ion channel. Moreover, the NF group uniquely expressed 36 proteins, and Gene Ontology and pathway analyses suggested a link with various aspects of immune defense. In summary, the study hypothesized that the CFTR ion channel might play a predominant role in severe fluorosis and highlighted the depletion of immune-related salivary proteins, suggesting compromised immune defense in severe fluorosis. The utility of urinary fluoride might be a reliable indicator for assessing excessive fluoride exposure.
Collapse
Affiliation(s)
- Patcharaporn Gavila
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Intercountry Centre for Oral Health, Department of Health, Ministry of Public Health, Chiangmai, 50000, Thailand
- Graduate Program in Geriatric and Special Patients Care, Clinical Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Penpitcha Ajrithirong
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supoj Chumnanprai
- Intercountry Centre for Oral Health, Department of Health, Ministry of Public Health, Chiangmai, 50000, Thailand
| | - Nuttiya Kalpongnukul
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Soranun Chantarangsu
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kanokwan Sriwattanapong
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Junji Tagami
- Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
- Graduate Program in Geriatric and Special Patients Care, Clinical Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
8
|
di Cologna NDM, Andresen S, Samaddar S, Archer-Hartmann S, Rogers AM, Kajfasz JK, Ganguly T, Garcia BA, Saengpet I, Peterson AM, Azadi P, Szymanski CM, Lemos JA, Abranches J. Post-translational modification by the Pgf glycosylation machinery modulates Streptococcus mutans OMZ175 physiology and virulence. Mol Microbiol 2024; 122:133-151. [PMID: 37972006 PMCID: PMC11096274 DOI: 10.1111/mmi.15190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Streptococcus mutans is commonly associated with dental caries and the ability to form biofilms is essential for its pathogenicity. We recently identified the Pgf glycosylation machinery of S. mutans, responsible for the post-translational modification of the surface-associated adhesins Cnm and WapA. Since the four-gene pgf operon (pgfS-pgfM1-pgfE-pgfM2) is part of the S. mutans core genome, we hypothesized that the scope of the Pgf system goes beyond Cnm and WapA glycosylation. In silico analyses and tunicamycin sensitivity assays suggested a functional overlap between the Pgf machinery and the rhamnose-glucose polysaccharide synthesis pathway. Phenotypic characterization of pgf mutants (ΔpgfS, ΔpgfE, ΔpgfM1, ΔpgfM2, and Δpgf) revealed that the Pgf system is important for biofilm formation, surface charge, membrane stability, and survival in human saliva. Moreover, deletion of the entire pgf operon (Δpgf strain) resulted in significantly impaired colonization in a rat oral colonization model. Using Cnm as a model, we showed that Cnm is heavily modified with N-acetyl hexosamines but it becomes heavily phosphorylated with the inactivation of the PgfS glycosyltransferase, suggesting a crosstalk between these two post-translational modification mechanisms. Our results revealed that the Pgf machinery contributes to multiple aspects of S. mutans pathobiology that may go beyond Cnm and WapA glycosylation.
Collapse
Affiliation(s)
| | - Silke Andresen
- Department of Microbiology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Sandip Samaddar
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL, USA
| | | | - Ashley Marie Rogers
- Department of Microbiology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Jessica K. Kajfasz
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL, USA
| | - Tridib Ganguly
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL, USA
| | - Bruna A. Garcia
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL, USA
| | - Irene Saengpet
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL, USA
| | - Alexandra M. Peterson
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Christine M. Szymanski
- Department of Microbiology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - José A. Lemos
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL, USA
| | - Jacqueline Abranches
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL, USA
| |
Collapse
|
9
|
Ahmad P, Hussain A, Siqueira WL. Mass spectrometry-based proteomic approaches for salivary protein biomarkers discovery and dental caries diagnosis: A critical review. MASS SPECTROMETRY REVIEWS 2024; 43:826-856. [PMID: 36444686 DOI: 10.1002/mas.21822] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dental caries is a multifactorial chronic disease resulting from the intricate interplay among acid-generating bacteria, fermentable carbohydrates, and several host factors such as saliva. Saliva comprises several proteins which could be utilized as biomarkers for caries prevention, diagnosis, and prognosis. Mass spectrometry-based salivary proteomics approaches, owing to their sensitivity, provide the opportunity to investigate and unveil crucial cariogenic pathogen activity and host indicators and may demonstrate clinically relevant biomarkers to improve caries diagnosis and management. The present review outlines the published literature of human clinical proteomics investigations on caries and extensively elucidates frequently reported salivary proteins as biomarkers. This review also discusses important aspects while designing an experimental proteomics workflow. The protein-protein interactions and the clinical relevance of salivary proteins as biomarkers for caries, together with uninvestigated domains of the discipline are also discussed critically.
Collapse
Affiliation(s)
- Paras Ahmad
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ahmed Hussain
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Walter L Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
10
|
Ashford JR. Impaired oral health: a required companion of bacterial aspiration pneumonia. FRONTIERS IN REHABILITATION SCIENCES 2024; 5:1337920. [PMID: 38894716 PMCID: PMC11183832 DOI: 10.3389/fresc.2024.1337920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Laryngotracheal aspiration has a widely-held reputation as a primary cause of lower respiratory infections, such as pneumonia, and is a major concern of care providers of the seriously ill orelderly frail patient. Laryngeal mechanical inefficiency resulting in aspiration into the lower respiratory tract, by itself, is not the cause of pneumonia. It is but one of several factors that must be present simultaneously for pneumonia to develop. Aspiration of oral and gastric contentsoccurs often in healthy people of all ages and without significant pulmonary consequences. Inthe seriously ill or elderly frail patient, higher concentrations of pathogens in the contents of theaspirate are the primary catalyst for pulmonary infection development if in an immunocompromised lower respiratory system. The oral cavity is a complex and ever changing eco-environment striving to maintain homogeneity among the numerous microbial communities inhabiting its surfaces. Poor maintenance of these surfaces to prevent infection can result inpathogenic changes to these microbial communities and, with subsequent proliferation, can altermicrobial communities in the tracheal and bronchial passages. Higher bacterial pathogen concentrations mixing with oral secretions, or with foods, when aspirated into an immunecompromised lower respiratory complex, may result in bacterial aspiration pneumonia development, or other respiratory or systemic diseases. A large volume of clinical evidence makes it clear that oral cleaning regimens, when used in caring for ill or frail patients in hospitals and long-term care facilities, drastically reduce the incidence of respiratory infection and death. The purpose of this narrative review is to examine oral health as a required causative companionin bacterial aspiration pneumonia development, and the effectiveness of oral infection control inthe prevention of this disease.
Collapse
|
11
|
Nazir S. Salivary biomarkers: The early diagnosis of Alzheimer's disease. Aging Med (Milton) 2024; 7:202-213. [PMID: 38725701 PMCID: PMC11077336 DOI: 10.1002/agm2.12282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 12/19/2023] [Indexed: 05/12/2024] Open
Abstract
The precise identification of Alzheimer's disease and other prevalent neurodegenerative diseases remains a difficult issue that requires the development of early detection of the disease and inexpensive biomarkers that can replace the present cerebrospinal fluid and imaging biomarkers. Blood biomarkers, such as amyloid and neurofilament light, have been emphasized as an important and practical tool in a testing or examination procedure thanks to advancements in ultra-sensitive detection techniques. Although saliva is not currently being researched for neurodegenerative diseases, it is an important source of biomarkers that can be used for the identification of diseases and has some advantages over other biofluids. While this may be true for most people, getting saliva from elderly people presents some significant challenges. In this overview, we will first discuss how saliva is created and how aging-related illnesses may affect the amount and kind of saliva produced. The findings support the use of salivary amyloid protein, tau species, and novel biomarkers in the diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Sophia Nazir
- Wolfson Nanomaterials and Devices Laboratory, School of Computing, Electronics and MathematicsPlymouth UniversityDevonUK
| |
Collapse
|
12
|
Mattos-Graner RO, Klein MI, Alves LA. The complement system as a key modulator of the oral microbiome in health and disease. Crit Rev Microbiol 2024; 50:138-167. [PMID: 36622855 DOI: 10.1080/1040841x.2022.2163614] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023]
Abstract
In this review, we address the interplay between the complement system and host microbiomes in health and disease, focussing on oral bacteria known to contribute to homeostasis or to promote dysbiosis associated with dental caries and periodontal diseases. Host proteins modulating complement activities in the oral environment and expression profiles of complement proteins in oral tissues were described. In addition, we highlight a sub-set of bacterial proteins involved in complement evasion and/or dysregulation previously characterized in pathogenic species (or strains), but further conserved among prototypical commensal species of the oral microbiome. Potential roles of these proteins in host-microbiome homeostasis and in the emergence of commensal strain lineages with increased virulence were also addressed. Finally, we provide examples of how commensal bacteria might exploit the complement system in competitive or cooperative interactions within the complex microbial communities of oral biofilms. These issues highlight the need for studies investigating the effects of the complement system on bacterial behaviour and competitiveness during their complex interactions within oral and extra-oral host sites.
Collapse
Affiliation(s)
- Renata O Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Marlise I Klein
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Lívia Araújo Alves
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
- School of Dentistry, Cruzeiro do Sul University (UNICSUL), Sao Paulo, Brazil
| |
Collapse
|
13
|
Araujo TT, Carvalho TS, Dionizio A, Rodrigues CMVBF, Henrique-Silva F, Chiaratti M, Santos A, Alves L, Ferro M, Buzalaf MAR. Acquired Pellicle and Biofilm Engineering by Rinsing with Hemoglobin Solution. Caries Res 2024; 58:162-172. [PMID: 38432208 DOI: 10.1159/000537976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/04/2024] [Indexed: 03/05/2024] Open
Abstract
INTRODUCTION The identification of acid-resistant proteins, including hemoglobin (Hb), within the acquired enamel pellicle (AEP) led to the proposition of the "acquired pellicle engineering" concept, which involves the modification of the AEP by incorporating specific proteins, presenting a novel strategy to prevent dental demineralization. OBJECTIVE Combining in vivo and in vitro proof-of-concept protocols, we sought to reveal the impact of AEP engineering with Hb protein on the biofilm microbiome and enamel demineralization. METHODS In the in vivo studies, 10 volunteers, in 2 independent experiments, rinsed (10 mL,1 min) with deionized water-negative control or 1.0 mg/mL Hb. The AEP and biofilm formed along 2 or 3 h, respectively, were collected. AEP was analyzed by quantitative shotgun-label-free proteomics and biofilm by 16S-rRNA next-generation sequencing (NGS). In in vitro study, a microcosm biofilm protocol was employed. Seventy-two bovine enamel specimens were treated with (1) phosphate-buffered solution (PBS), (2) 0.12% chlorhexidine, (3) 500 ppm NaF, (4) 1.0 mg/mL Hb, (5) 2.0 mg/mL Hb, and (6) 4.0 mg/mL Hb. The biofilm was cultivated for 5 days. Resazurin, colony forming units (CFU), and transversal microradiography were performed. RESULTS Proteomics and NGS analysis revealed that Hb increased proteins with antioxidant, antimicrobial, acid-resistance, hydroxyapatite-affinity, calcium-binding properties and showed a reduction in oral pathogenic bacteria. In vitro experiments demonstrated that the lowest Hb concentration was the most effective in reducing bacterial activity, CFU, and enamel demineralization compared to PBS. CONCLUSION These findings suggest that Hb could be incorporated into anticaries dental products to modify the oral microbiome and control caries, highlighting its potential for AEP and biofilm microbiome engineering.
Collapse
Affiliation(s)
- Tamara T Araujo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Thamyris S Carvalho
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | - Flavio Henrique-Silva
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Marcos Chiaratti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Angélica Santos
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Lindomar Alves
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Milene Ferro
- Department of General and Applied Biology, Paulista State University (UNESP), Rio Claro, Brazil
| | - Marília A R Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| |
Collapse
|
14
|
Kaibori Y, Tamoto S, Okuda S, Matsuo K, Nakayama T, Nagakubo D. CCL28: A Promising Biomarker for Assessing Salivary Gland Functionality and Maintaining Healthy Oral Environments. BIOLOGY 2024; 13:147. [PMID: 38534417 DOI: 10.3390/biology13030147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024]
Abstract
The oral cavity serves as the primary path through which substances from the outside world enter our body. Therefore, it functions as a critical component of host defense. Saliva is essential for maintaining a stable oral environment by catching harmful agents, including pathogens, allergens, and chemicals, in the air or food. CCL28, highly expressed in mucosal tissues, such as the colon and salivary glands, is a chemokine that attracts CCR10/CCR3 expressing cells. However, the role of CCL28 in salivary gland formation remains unclear. In this study, we investigated the salivary gland structure in CCL28-deficient mice. Histological analysis showed decreased staining intensity of Alcian blue, which detects acidic mucous, reduced expression of MUC2, and higher infiltration of gram-positive bacteria in the salivary glands of CCL28-deficient mice. In addition, CCL28-deficient mice contained ectopically MUC2-expressed cells in the ducts and reduced the expression of cytokeratin 18, a marker for ductal cells, within the submandibular glands, resulting in decreased duct numbers. Additionally, the submandibular glands of CCL28-deficient mice showed reduced expression of several stem cell markers. These results suggest that CCL28 regulates saliva production via proper differentiation of salivary gland stem cells and could be a valuable biomarker of salivary gland function.
Collapse
Affiliation(s)
- Yuichiro Kaibori
- Division of Health and Hygienic Sciences, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Hyogo, Japan
- Laboratory of Analytics for Biomolecules, Faculty of Pharmaceutical Science, Setsunan University, 45-1 Nagaotoge-cho, Hirakata-shi 573-0101, Osaka, Japan
| | - Saho Tamoto
- Division of Health and Hygienic Sciences, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Hyogo, Japan
| | - Sayoko Okuda
- Division of Health and Hygienic Sciences, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Hyogo, Japan
| | - Kazuhiko Matsuo
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Osaka, Japan
| | - Takashi Nakayama
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Osaka, Japan
| | - Daisuke Nagakubo
- Division of Health and Hygienic Sciences, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Hyogo, Japan
| |
Collapse
|
15
|
Contini C, Fadda L, Lai G, Masala C, Olianas A, Castagnola M, Messana I, Iavarone F, Bizzarro A, Masullo C, Solla P, Defazio G, Manconi B, Diaz G, Cabras T. A top-down proteomic approach reveals a salivary protein profile able to classify Parkinson's disease with respect to Alzheimer's disease patients and to healthy controls. Proteomics 2024; 24:e2300202. [PMID: 37541286 DOI: 10.1002/pmic.202300202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease with motor and non-motor symptoms. Diagnosis is complicated by lack of reliable biomarkers. To individuate peptides and/or proteins with diagnostic potential for early diagnosis, severity and discrimination from similar pathologies, the salivary proteome in 36 PD patients was investigated in comparison with 36 healthy controls (HC) and 35 Alzheimer's disease (AD) patients. A top-down platform based on HPLC-ESI-IT-MS allowed characterizing and quantifying intact peptides, small proteins and their PTMs (overall 51). The three groups showed significantly different protein profiles, PD showed the highest levels of cystatin SA and antileukoproteinase and the lowest of cystatin SN and some statherin proteoforms. HC exhibited the lowest abundance of thymosin β4, short S100A9, cystatin A, and dimeric cystatin B. AD patients showed the highest abundance of α-defensins and short oxidized S100A9. Moreover, different proteoforms of the same protein, as S-cysteinylated and S-glutathionylated cystatin B, showed opposite trends in the two pathological groups. Statherin, cystatins SA and SN classified accurately PD from HC and AD subjects. α-defensins, histatin 1, oxidized S100A9, and P-B fragments were the best classifying factors between PD and AD patients. Interestingly statherin and thymosin β4 correlated with defective olfactory functions in PD patients. All these outcomes highlighted implications of specific proteoforms involved in the innate-immune response and inflammation regulation at oral and systemic level, suggesting a possible panel of molecular and clinical markers suitable to recognize subjects affected by PD.
Collapse
Affiliation(s)
- Cristina Contini
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Laura Fadda
- Department of Medical Sciences and Public Health, Institute of Neurology, Cagliari, Italy
| | - Greca Lai
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Carla Masala
- Department of Biomedical Sciences University of Cagliari, Cittadella Univ. Monserrato, Monserrato, Italy
| | - Alessandra Olianas
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Massimo Castagnola
- Proteomics Laboratory. European Center for Brain Research, (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Irene Messana
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Rome, Italy
| | - Federica Iavarone
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - Alessandra Bizzarro
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
- Department of Geriatrics, Orthopaedics and Rheumatology, Rome, Italy
| | - Carlo Masullo
- Department of Neuroscience, Neurology Section, Università Cattolica del Sacro Cuore Rome, Rome, Italy
| | - Paolo Solla
- Neurological Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Giovanni Defazio
- Department of Medical Sciences and Public Health, Institute of Neurology, Cagliari, Italy
| | - Barbara Manconi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Giacomo Diaz
- Department of Biomedical Sciences University of Cagliari, Cittadella Univ. Monserrato, Monserrato, Italy
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| |
Collapse
|
16
|
Ellis S, Way R, Nel M, Burleigh A, Doykov I, Kembou-Ringert J, Woodall M, Masonou T, Case KM, Ortez AT, McHugh TD, Casal A, McCoy LE, Murdan S, Hynds RE, Gilmour KC, Grandjean L, Cortina-Borja M, Heywood WE, Mills K, Smith CM. Salivary IgA and vimentin differentiate in vitro SARS-CoV-2 infection: A study of 290 convalescent COVID-19 patients. Mucosal Immunol 2024; 17:124-136. [PMID: 38007005 PMCID: PMC11139657 DOI: 10.1016/j.mucimm.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
SARS-CoV-2 initially infects cells in the nasopharynx and oral cavity. The immune system at these mucosal sites plays a crucial role in minimizing viral transmission and infection. To develop new strategies for preventing SARS-CoV-2 infection, this study aimed to identify proteins that protect against viral infection in saliva. We collected 551 saliva samples from 290 healthcare workers who had tested positive for COVID-19, before vaccination, between June and December 2020. The samples were categorized based on their ability to block or enhance infection using in vitro assays. Mass spectrometry and enzyme-linked immunosorbent assay experiments were used to identify and measure the abundance of proteins that specifically bind to SARS-CoV-2 antigens. Immunoglobulin (Ig)A specific to SARS-CoV-2 antigens was detectable in over 83% of the convalescent saliva samples. We found that concentrations of anti-receptor-binding domain IgA >500 pg/µg total protein in saliva correlate with reduced viral infectivity in vitro. However, there is a dissociation between the salivary IgA response to SARS-CoV-2, and systemic IgG titers in convalescent COVID-19 patients. Then, using an innovative technique known as spike-baited mass spectrometry, we identified novel spike-binding proteins in saliva, most notably vimentin, which correlated with increased viral infectivity in vitro and could serve as a therapeutic target against COVID-19.
Collapse
Affiliation(s)
- Samuel Ellis
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Rosie Way
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Miranda Nel
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Alice Burleigh
- UCL Great Ormond Street Institute of Child Health, London, UK; Centre for Adolescent Rheumatology, University College London, London, UK
| | - Ivan Doykov
- UCL Great Ormond Street Institute of Child Health, London, UK
| | | | | | - Tereza Masonou
- UCL Great Ormond Street Institute of Child Health, London, UK
| | | | | | - Timothy D McHugh
- UCL Centre for Clinical Microbiology, Royal Free Hospital, London, UK
| | - Antonio Casal
- Department of Pharmaceutics, UCL School of Pharmacy, London, UK
| | - Laura E McCoy
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | | | - Robert E Hynds
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Kimberly C Gilmour
- UCL Great Ormond Street Institute of Child Health, London, UK; Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Louis Grandjean
- UCL Great Ormond Street Institute of Child Health, London, UK; Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | | | - Wendy E Heywood
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Kevin Mills
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Claire M Smith
- UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
17
|
Palkowitz AL, Tuna T, Kaufmann R, Buhl EM, Wolfart S, Fischer H. Functionalization of a zirconia surface by covalently immobilized fibronectin and its effects on resistance to thermal, acid, and mechanical exposure. J Biomed Mater Res B Appl Biomater 2024; 112:e35390. [PMID: 38356151 DOI: 10.1002/jbm.b.35390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/08/2024] [Accepted: 01/27/2024] [Indexed: 02/16/2024]
Abstract
Silane chemistry has emerged as a powerful tool for surface modification, offering a versatile means to enhance the properties of various substrates, such as dental implant abutment materials. In this study, we investigated the stability of the 3-aminopropyldiisopropylethoxysilane (APDS) layer on yttria-partially stabilized zirconia (Y-TZP) surfaces after mechanical, acid, and thermal treatment in order to simulate fluctuations within the oral cavity. To accomplish that, the viability of human gingival fibroblasts on APDS-modified surfaces after applied treatment strategies was assessed by live/dead staining. Moreover, the hydrolysis stability and enzymatic degradation resistance of crosslinked fibronectin to the APDS layer was examined by immunostaining and western blot. The results revealed that the applied modifications were not affected by the different treatment conditions and could withstand the fluctuations in the oral cavity. Furthermore, crosslinked fibronectin on silanized Y-TZP was stable against hydrolysis over 21 days and enzymatic degradation. We thus can conclude that the proposed functionalization method has high potential to tolerate harmful effects within the oral cavity and remains unchanged on the surface.
Collapse
Affiliation(s)
- Alena L Palkowitz
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Taskin Tuna
- Department of Prosthodontics and Biomaterials, RWTH Aachen University Hospital, Aachen, Germany
| | - Robert Kaufmann
- DWI Leibniz-Institute for Interactive Materials, RWTH Aachen University, Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Stefan Wolfart
- Department of Prosthodontics and Biomaterials, RWTH Aachen University Hospital, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
18
|
Lei T, Yang Z, Jiang C, Wang X, Yang W, Yang X, Xie R, Tong F, Xia X, Huang Q, Du Y, Huang Y, Gao H. Mannose-Integrated Nanoparticle Hitchhike Glucose Transporter 1 Recycling to Overcome Various Barriers of Oral Delivery for Alzheimer's Disease Therapy. ACS NANO 2024; 18:3234-3250. [PMID: 38214975 DOI: 10.1021/acsnano.3c09715] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A brain-targeting nanodelivery system has been a hot topic and has undergone rapid progression. However, due to various obstacles such as the intestinal epithelial barrier (IEB) and the blood-brain barrier (BBB), few nanocarriers can achieve brain-targeting through oral administration. Herein, an intelligent oral brain-targeting nanoparticle (FTY@Man NP) constructed from a PLGA-PEG skeleton loaded with fingolimod (FTY) and externally modified with mannose was designed in combination with a glucose control strategy for the multitarget treatment of Alzheimer's disease (AD). The hydrophilic and electronegative properties of the nanoparticle facilitated its facile penetration through the mucus barrier, while the mannose ligand conferred IEB targeting abilities to the nanoparticle. Subsequently, glycemic control allowed the mannose-integrated nanoparticle to hitchhike the glucose transporter 1 (GLUT1) circulation across the BBB. Finally, the released FTY modulated the polarity of microglia from pro-inflammatory M1 to anti-inflammatory M2 and normalized the activated astrocyte, enhancing the clearance of toxic protein Amyloid-β (Aβ) while alleviating oxidative stress and neuroinflammation. Notably, both in vitro and in vivo results have consistently demonstrated that the oral administration of FTY@Man NP could effectively traverse the multiple barriers, thereby exerting significant therapeutic effects. This breakthrough holds the promise of realizing a highly effective orally administered treatment for AD.
Collapse
Affiliation(s)
- Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zixiao Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chaoqing Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaorong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wenqin Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaotong Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rou Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fan Tong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qianqian Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yufan Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Brodzikowska A, Kochańska B, Bogusławska-Kapała A, Strużycka I, Górski B, Miskiewicz A. Assessment of the Salivary Concentrations of Selected Immunological Components in Adult Patients in the Late Period after Allogeneic Hematopoietic Stem Cell Transplantation-A Translational Study. Int J Mol Sci 2024; 25:1457. [PMID: 38338734 PMCID: PMC10855433 DOI: 10.3390/ijms25031457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024] Open
Abstract
(1) The aim of the study was to analyze the salivary concentrations of lysozyme, lactoferrin, and sIgA antibodies in adult patients in the late period after allogeneic stem cell transplantation (alloHSCT). The relationship between these concentrations and the salivary secretion rate and the time elapsed after alloHSCT was investigated. The relationship between the concentrations of lysozyme, lactoferrin, and sIgA and the titer of the cariogenic bacteria S. mutans and L. acidophilus was assessed. (2) The study included 54 individuals, aged 19 to 67 (SD = 40.06 ± 11.82; Me = 39.5), who were 3 to 96 months after alloHSCT. The concentrations of lysozyme, lactoferrin, and sIgA were assessed in mixed whole resting saliva (WRS) and mixed whole stimulated saliva (WSS). (3) The majority of patients had very low or low concentrations of the studied salivary components (WRS-lysozyme: 52, lactoferrin: 36, sIgA: 49 patients; WSS-lysozyme: 51, lactoferrin: 25, sIgA: 51 patients). The levels of lactoferrin in both WRS and WSS were statistically significantly higher in the alloHSCT group than in the control group (CG) (alloHSCT patients-WRS: M = 40.18 μg/mL; WSS: M = 27.33 μg/mL; CG-WRS: M = 17.58 μg/mL; WSS: 10.69 μg/mL). No statistically significant correlations were observed between lysozyme, lactoferrin, and sIgA concentrations and the time after alloHSCT. In the group of patients after alloHSCT a negative correlation was found between the resting salivary flow rate and the concentration of lactoferrin and sIgA. The stimulated salivary flow rate correlated negatively with lactoferrin and sIgA concentrations. Additionally, the number of S. mutans colonies correlated positively with the concentration of lysozyme and sIgA. (4) The concentrations of non-specific and specific immunological factors in the saliva of patients after alloHSCT may differ when compared to healthy adults; however, the abovementioned differences did not change with the time after transplantation.
Collapse
Affiliation(s)
- Aniela Brodzikowska
- Department of Conservative Dentistry, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Barbara Kochańska
- Department of Conservative Dentistry, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | | | - Izabela Strużycka
- Department of Comprehensive Dental Care, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.B.-K.); (I.S.)
| | - Bartłomiej Górski
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, 02-091 Warsaw, Poland; (B.G.); (A.M.)
| | - Andrzej Miskiewicz
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, 02-091 Warsaw, Poland; (B.G.); (A.M.)
| |
Collapse
|
20
|
Hsu CM, Tsai MS, Yang YH, Lin KM, Wang YT, Huang SY, Lin MH, Huang EI, Chang GH, Liu CY, Tsai YT. Epiglottitis in Patients With Preexisting Autoimmune Diseases: A Nationwide Case-Control Study in Taiwan. EAR, NOSE & THROAT JOURNAL 2024; 103:NP40-NP48. [PMID: 34328820 DOI: 10.1177/01455613211033689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES The role of autoimmune diseases on the risk for acute epiglottitis remains uncertain. This study aimed to delineate the association between epiglottitis and autoimmune diseases using population database. METHODS A population-based retrospective study was conducted to analyze claims data from Taiwan National Health Insurance Research Database collected over January, 2000, to December, 2013. RESULTS In total, 2339 patients with epiglottitis were matched with 9356 controls without epiglottitis by sex, age, socioeconomic status, and urbanization level. The correlation between autoimmune diseases and epiglottitis was analyzed by multivariate logistic regression. Compared with controls, patients with epiglottitis were much more likely to have preexisting Sjögren syndrome (adjusted odds ratio [aOR]: 2.37; 95% CI: 1.14-4.91; P = .021). In addition, polyautoimmunity was associated with increased risk of epiglottitis (aOR: 2.08; 95% CI: 1.14-3.80; P = .018), particularly in those aged >50 years (aOR: 2.61; 95% CI: 1.21-5.66; P = .015). CONCLUSIONS Among autoimmune diseases, we verify the association between epiglottitis and Sjögren syndrome in Taiwan. Furthermore, we present the novel discovery that patients with epiglottitis have an increased risk of polyautoimmunity, particularly those aged >50 years.
Collapse
Affiliation(s)
- Cheng-Ming Hsu
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chiayi
| | - Ming-Shao Tsai
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chiayi
| | - Yao-Hsu Yang
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chiayi
| | - Ko-Ming Lin
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi
| | - Yun-Ting Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chiayi
| | - Shu-Yi Huang
- Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi
| | - Meng-Hung Lin
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi
| | - Ethan I Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chiayi
| | - Geng-He Chang
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chiayi
| | - Chia-Yen Liu
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi
| | - Yao-Te Tsai
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chiayi
| |
Collapse
|
21
|
Jang H, Matsuoka M, Freire M. Oral mucosa immunity: ultimate strategy to stop spreading of pandemic viruses. Front Immunol 2023; 14:1220610. [PMID: 37928529 PMCID: PMC10622784 DOI: 10.3389/fimmu.2023.1220610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023] Open
Abstract
Global pandemics are most likely initiated via zoonotic transmission to humans in which respiratory viruses infect airways with relevance to mucosal systems. Out of the known pandemics, five were initiated by respiratory viruses including current ongoing coronavirus disease 2019 (COVID-19). Striking progress in vaccine development and therapeutics has helped ameliorate the mortality and morbidity by infectious agents. Yet, organism replication and virus spread through mucosal tissues cannot be directly controlled by parenteral vaccines. A novel mitigation strategy is needed to elicit robust mucosal protection and broadly neutralizing activities to hamper virus entry mechanisms and inhibit transmission. This review focuses on the oral mucosa, which is a critical site of viral transmission and promising target to elicit sterile immunity. In addition to reviewing historic pandemics initiated by the zoonotic respiratory RNA viruses and the oral mucosal tissues, we discuss unique features of the oral immune responses. We address barriers and new prospects related to developing novel therapeutics to elicit protective immunity at the mucosal level to ultimately control transmission.
Collapse
Affiliation(s)
- Hyesun Jang
- Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, United States
| | - Michele Matsuoka
- Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, United States
| | - Marcelo Freire
- Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, United States
- Division of Infectious Diseases and Global Public Health Department of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
22
|
Serrao S, Contini C, Guadalupi G, Olianas A, Lai G, Messana I, Castagnola M, Costanzo G, Firinu D, Del Giacco S, Manconi B, Cabras T. Salivary Cystatin D Interactome in Patients with Systemic Mastocytosis: An Exploratory Study. Int J Mol Sci 2023; 24:14613. [PMID: 37834061 PMCID: PMC10572539 DOI: 10.3390/ijms241914613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Mastocytosis, a rare blood disorder characterized by the proliferation of clonal abnormal mast cells, has a variegated clinical spectrum and diagnosis is often difficult and delayed. Recently we proposed the cathepsin inhibitor cystatin D-R26 as a salivary candidate biomarker of systemic mastocytosis (SM). Its C26 variant is able to form multiprotein complexes (mPCs) and since protein-protein interactions (PPIs) are crucial for studying disease pathogenesis, potential markers, and therapeutic targets, we aimed to define the protein composition of the salivary cystatin D-C26 interactome associated with SM. An exploratory affinity purification-mass spectrometry method was applied on pooled salivary samples from SM patients, SM patient subgroups with and without cutaneous symptoms (SM+C and SM-C), and healthy controls (Ctrls). Interactors specifically detected in Ctrls were found to be implicated in networks associated with cell and tissue homeostasis, innate system, endopeptidase regulation, and antimicrobial protection. Interactors distinctive of SM-C patients participate to PPI networks related to glucose metabolism, protein S-nitrosylation, antibacterial humoral response, and neutrophil degranulation, while interactors specific to SM+C were mainly associated with epithelial and keratinocyte differentiation, cytoskeleton rearrangement, and immune response pathways. Proteins sensitive to redox changes, as well as proteins with immunomodulatory properties and activating mast cells, were identified in patients; many of them were involved directly in cytoskeleton rearrangement, a process crucial for mast cell activation. Although preliminary, these results demonstrate that PPI alterations of the cystatin D-C26 interactome are associated with SM and provide a basis for future investigations based on quantitative proteomic analysis and immune validation.
Collapse
Affiliation(s)
- Simone Serrao
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (S.S.); (G.G.); (A.O.); (G.L.); (B.M.)
| | - Cristina Contini
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (S.S.); (G.G.); (A.O.); (G.L.); (B.M.)
| | - Giulia Guadalupi
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (S.S.); (G.G.); (A.O.); (G.L.); (B.M.)
| | - Alessandra Olianas
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (S.S.); (G.G.); (A.O.); (G.L.); (B.M.)
| | - Greca Lai
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (S.S.); (G.G.); (A.O.); (G.L.); (B.M.)
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy;
| | - Massimo Castagnola
- Proteomics Laboratory, European Center for Brain Research, (IRCCS) Santa Lucia Foundation, 00168 Rome, Italy;
| | - Giulia Costanzo
- Department of Medical Sciences and Public Health, 09124 Cagliari, Italy; (G.C.); (D.F.); (S.D.G.)
| | - Davide Firinu
- Department of Medical Sciences and Public Health, 09124 Cagliari, Italy; (G.C.); (D.F.); (S.D.G.)
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, 09124 Cagliari, Italy; (G.C.); (D.F.); (S.D.G.)
| | - Barbara Manconi
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (S.S.); (G.G.); (A.O.); (G.L.); (B.M.)
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (S.S.); (G.G.); (A.O.); (G.L.); (B.M.)
| |
Collapse
|
23
|
Palma-Hidalgo JM, Belanche A, Jiménez E, Newbold CJ, Denman SE, Yáñez-Ruiz DR. Multi-omics in vitro study of the salivary modulation of the goat rumen microbiome. Animal 2023; 17:100895. [PMID: 37515965 DOI: 10.1016/j.animal.2023.100895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/31/2023] Open
Abstract
Ruminants are able to produce large quantities of saliva which enter into the rumen and salivary components exert different physiological functions. Although previous research has indicated that salivary immunoglobulins can partially modulate the rumen microbial activity, the role of the salivary components other than ions on the rumen microbial ecosystem has not been thoroughly investigated in ruminants. To investigate this modulatory activity, a total of 16 semi-continuous in vitro cultures with oats hay and concentrate were used to incubate rumen fluid from four donor goats with autoclaved saliva (AUT) as negative control, saliva from the same rumen fluid donor (OWN) as positive control, and either goat (GOAT) or sheep (SHEEP) saliva as experimental interventions. Fermentation was monitored throughout 7 days of incubation and the microbiome and metabolome were analysed at the end of this incubation by Next-Generation sequencing and liquid chromatography coupled with mass spectrometry, respectively. Characterisation of the proteome and metabolome of the different salivas used for the incubation showed a high inter-animal variability in terms of metabolites and proteins, including immunoglobulins. Incubation with AUT saliva promoted lower fermentative activity in terms of gas production (-9.4%) and highly divergent prokaryotic community in comparison with other treatments (OWN, GOAT and SHEEP) suggesting a modulatory effect derived from the presence of bioactive salivary components. Microbial alpha-diversity at amplicon sequence variant (ASV) level was unaffected by treatment. However, some differences were found in the microbial communities across treatments, which were mostly caused by a greater abundance of Proteobacteria and Rikenellacea in the AUT treatment and lower of Prevotellaceae. These bacteria, which are key in the rumen metabolism, had greater abundances in GOAT and SHEEP treatments. Incubation with GOAT saliva led to a lower protozoal concentration and propionate molar proportion indicating a capacity to modulate the rumen microbial ecosystem. The metabolomics analysis showed that the AUT samples were clustered apart from the rest indicating different metabolic pathways were promoted in this treatment. These results suggest that specific salivary components contribute to host-associated role in selecting the rumen commensal microbiota and its activity. These findings could open the possibility of developing new strategies to modulate the saliva composition as a way to manipulate the rumen function and activity.
Collapse
Affiliation(s)
- Juan Manuel Palma-Hidalgo
- Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain; Scotland's Rural College (SRUC), Peter Wilson Building King's Buildings, W Mains Rd, Edinburgh EH9 3JG, United Kingdom
| | - Alejandro Belanche
- Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain; Departamento de Producción Animal y Ciencia de los Alimentos, IA2, Universidad de Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Elisabeth Jiménez
- Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Charles J Newbold
- Scotland's Rural College (SRUC), Peter Wilson Building King's Buildings, W Mains Rd, Edinburgh EH9 3JG, United Kingdom
| | - Stuart E Denman
- CSIRO Livestock Industries, Queensland Bioscience Precinct, St Lucia, Qld, Australia
| | - David R Yáñez-Ruiz
- Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
24
|
Zhang B, Zhu L, Pan H, Cai L. Biocompatible smart micro/nanorobots for active gastrointestinal tract drug delivery. Expert Opin Drug Deliv 2023; 20:1427-1441. [PMID: 37840310 DOI: 10.1080/17425247.2023.2270915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION Oral delivery is the most commonly used route of drug administration owing to good patient compliance. However, the gastrointestinal (GI) tract contains multiple physiological barriers that limit the absorption efficiency of conventional passive delivery systems resulting in a low drug concentration reaching the diseased sites. Micro/nanorobots can convert energy to self-propulsive force, providing a novel platform to actively overcome GI tract barriers for noninvasive drug delivery and treatment. AREAS COVERED In this review, we first describe the microenvironments and barriers in the different compartments of the GI tract. Afterward, the applications of micro/nanorobots to overcome GI tract barriers for active drug delivery are highlighted and discussed. Finally, we summarize and discuss the challenges and future prospects of micro/nanorobots for further clinical applications. EXPERT OPINION Micro/nanorobots with the ability to autonomously propel themselves and to load, transport, and release payloads on demand are ideal carriers for active oral drug delivery. Although there are many challenges to be addressed, micro/nanorobots have great potential to introduce a new era of drug delivery for precision therapy.
Collapse
Affiliation(s)
- Baozhen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lizhen Zhu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
25
|
Ye J, Liu L, Lan W, Xiong J. Targeted release of soybean peptide from CMC/PVA hydrogels in simulated intestinal fluid and their pharmacokinetics. Carbohydr Polym 2023; 310:120713. [PMID: 36925260 DOI: 10.1016/j.carbpol.2023.120713] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/21/2023]
Abstract
Carboxymethyl cellulose (CMC)/polyvinyl alcohol (PVA) hydrogels loaded with soybean peptide (SPE) were fabricated via a freeze-thaw method. These hydrogels conquer barriers in simulated gastric fluid (SGF), and then release SPE in simulated intestinal fluid (SIF). The results of in vitro SPE release from these hydrogels showed that in SGF only a little of the SPE released, but in SIF the SPE was completely released. The released SPE had scavenging rates for DPPH and ABTS free radicals of 41.68 and 31.43 %. The pharmacokinetic model of SPE release from the hydrogels in SIF was studied. When the hydrogels are moved from SGF to SIF, the sorption of the shrinkage hydrogel network is entirely controlled by stress-induced relaxations. There are swollen and shrunken regions during SPE release. For SPE release into the SIF, SPE has to be freed from the weak bonds in the swollen regions by changes in the conformation of CMC and PVA. The release rate of SPE was found to be governed by the diffusion and swelling rate of the shrinkage hydrogel network. The Korsmeyer-Peppas equation diffusion exponents (n) for SPE release from the hydrogels are >2.063, indicating a super case II transport. These data demonstrate CMC/PVA hydrogels have potential applications in oral peptide delivery.
Collapse
Affiliation(s)
- Jun Ye
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Luying Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wu Lan
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jian Xiong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
26
|
Kumari S, Samara M, Ampadi Ramachandran R, Gosh S, George H, Wang R, Pesavento RP, Mathew MT. A Review on Saliva-Based Health Diagnostics: Biomarker Selection and Future Directions. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2023:1-18. [PMID: 37363139 PMCID: PMC10243891 DOI: 10.1007/s44174-023-00090-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023]
Abstract
The human body has a unique way of saying when something is wrong with it. The molecules in the body fluids can be helpful in the early detection of diseases by enabling health and preventing disease progression. These biomarkers enabling better healthcare are becoming an extensive area of research interest. Biosensors that detect these biomarkers are becoming the future, especially Point Of Care (POC) biosensors that remove the need to be physically present in the hospital. Detection of complex and systemic diseases using biosensors has a long way to go. Saliva-based biosensors are gaining attention among body fluids due to their non-invasive collection and ability to detect periodontal disease and identify systemic diseases. The possibility of saliva-based diagnostic biosensors has gained much publicity, with companies sending home kits for ancestry prediction. Saliva-based testing for covid 19 has revealed effective clinical use and relevance of the economic collection. Based on universal biomarkers, the detection of systemic diseases is a booming research arena. Lots of research on saliva-based biosensors is available, but it still poses challenges and limitations as POC devices. This review paper talks about the relevance of saliva and its usefulness as a biosensor. Also, it has recommendations that need to be considered to enable it as a possible diagnostic tool. Graphical Abstract
Collapse
Affiliation(s)
- Swati Kumari
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL USA
| | - Mesk Samara
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL USA
| | | | - Sujoy Gosh
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL USA
| | - Haritha George
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL USA
| | - Rong Wang
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL USA
| | - Russell P. Pesavento
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL USA
| | - Mathew T. Mathew
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL USA
| |
Collapse
|
27
|
Ahmadian M, Maleki Kambakhsh S, Einollahi N, Babazadeh S, Tofangchiha M, D'Amato G, Patini R. Salivary Protein and Electrolyte Profiles during Primary Teeth Eruption: A Cross-Sectional Study. Diagnostics (Basel) 2023; 13:diagnostics13071335. [PMID: 37046552 PMCID: PMC10093475 DOI: 10.3390/diagnostics13071335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
This study aimed to assess the qualitative changes in the saliva during the process of primary teeth eruption. This cross-sectional study was conducted on 147 children from 2 to 48 months, of which 49 were in group A (no erupted primary teeth), 53 were in group B (at least one active erupting primary tooth), and 45 were in group C (eruption of all 20 primary teeth was completed). Salivary proteins were evaluated by sodium dodecyl sulfate electrophoresis with polyacrylamide gel, while the concentrations of salivary sodium, potassium, chloride, and calcium ions were evaluated by ion selective electrodes. The data were analyzed using ANOVA and Bonferroni tests (alpha = 0.05). The concentration of proteins with molecular weights of 20-30 KDa was significantly higher in group A, and it gradually decreased with age. The concentration of proteins with molecular weights of 50-60 KDa in group B was significantly lower than those of groups A and C. The calcium ion concentration in group A was significantly higher than that of the other groups. The concentration of potassium ions was minimal in group C. The proteins and electrolyte profiles of the subjects' saliva changed in the process of primary tooth eruption. The highest concentrations of proteins such as statherin, histatin, P-B peptide, and cystatin and the lowest concentrations of proteins such as amylase were present in group B.
Collapse
Affiliation(s)
- Mina Ahmadian
- School of Dentistry, Qazvin University of Medical Sciences, Qazvin 34199-15315, Iran
| | - Sara Maleki Kambakhsh
- School of Dentistry, Qazvin University of Medical Sciences, Qazvin 34199-15315, Iran
- Dental Caries Prevention Research Center, Qazvin University of Medical Sciences, Qazvin 34199-15315, Iran
| | - Nahid Einollahi
- Department of Clinical Laboratory Sciences, Faculty of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran 14197-33141, Iran
| | - Saber Babazadeh
- Dental Caries Prevention Research Center, Qazvin University of Medical Sciences, Qazvin 34199-15315, Iran
- Department of Community Oral Health, School of Dentistry, Mashhad University of Medical Sciences, Mashhad 91779-48959, Iran
| | - Maryam Tofangchiha
- Dental Caries Prevention Research Center, Qazvin University of Medical Sciences, Qazvin 34199-15315, Iran
| | - Giuseppe D'Amato
- Unicamillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Romeo Patini
- Department of Head, Neck and Sense Organs, School of Dentistry, Catholic University of Sacred Heart, 00135 Rome, Italy
| |
Collapse
|
28
|
Boto de los Bueis A, de la Fuente M, Montejano-Milner R, del Hierro Zarzuelo A, Vecino E, Acera A. A Pilot Study of a Panel of Ocular Inflammation Biomarkers in Patients with Primary Sjögren’s Syndrome. Curr Issues Mol Biol 2023; 45:2881-2894. [PMID: 37185712 PMCID: PMC10136698 DOI: 10.3390/cimb45040188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Ocular diseases have a strong impact on individuals, the effects of which extend from milder visual impairment to blindness. Due to this and to their prevalence, these conditions constitute important health, social and economic challenges. Thus, improvements in their early detection and diagnosis will help dampen the impact of these conditions, both on patients and on healthcare systems alike. In this sense, identifying tear biomarkers could establish better non-invasive approaches to diagnose these diseases and to monitor responses to therapy. With this in mind, we developed a solid phase capture assay, based on antibody microarrays, to quantify S100A6, MMP-9 and CST4 in human tear samples, and we used these arrays to study tear samples from healthy controls and patients with Sjögren’s Syndrome, at times concomitant with rheumatoid arthritis. Our results point out that the detection of S100A6 in tear samples seems to be positively correlated to rheumatoid arthritis, consistent with the systemic nature of this autoinflammatory pathology. Thus, we provide evidence that antibody microarrays may potentially help diagnose certain pathologies, possibly paving the way for significant improvements in the future care of these patients.
Collapse
Affiliation(s)
| | - Miguel de la Fuente
- Experimental Ophthalmo-Biology Group (GOBE), Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Rafael Montejano-Milner
- Ophthalmology Service, Hospital Universitario Príncipe de Asturias, 28805 Alcala de Henares, Spain
| | | | - Elena Vecino
- Experimental Ophthalmo-Biology Group (GOBE), Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Arantxa Acera
- Experimental Ophthalmo-Biology Group (GOBE), Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48001 Bilbao, Spain
| |
Collapse
|
29
|
Martin LE, Gutierrez VA, Torregrossa AM. The role of saliva in taste and food intake. Physiol Behav 2023; 262:114109. [PMID: 36740133 PMCID: PMC10246345 DOI: 10.1016/j.physbeh.2023.114109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Saliva is well-described in oral food processing, but its role in taste responsiveness remains understudied. Taste stimuli must dissolve in saliva to reach their receptor targets. This allows the constituents of saliva the opportunity to interact with taste stimuli and their receptors at the most fundamental level. Yet, despite years of correlational data suggesting a role for salivary proteins in food preference, there were few experimental models to test the role of salivary proteins in taste-driven behaviors. Here we review our experimental contributions to the hypothesis that salivary proteins can alter taste function. We have developed a rodent model to test how diet alters salivary protein expression, and how salivary proteins alter diet acceptance and taste. We have found that salivary protein expression is modified by diet, and these diet-induced proteins can, in turn, increase the acceptance of a bitter diet. The change in acceptance is in part mediated by a change in taste signaling. Critically, we have documented increased detection threshold, decreased taste nerve signaling, and decreased oromotor responding to quinine when animals have increases in a subset of salivary proteins compared to control conditions.
Collapse
Affiliation(s)
- Laura E Martin
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, 97331, USA
| | | | - Ann-Marie Torregrossa
- Department of Psychology, State University of New York at Buffalo, Buffalo, New York, 14216, USA; University at Buffalo Center for Ingestive Behavior Research, Buffalo, New York, 14216, USA.
| |
Collapse
|
30
|
Hyvärinen E, Kashyap B, Kullaa AM. Oral Sources of Salivary Metabolites. Metabolites 2023; 13:metabo13040498. [PMID: 37110157 PMCID: PMC10145445 DOI: 10.3390/metabo13040498] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
The oral cavity is very diverse, where saliva plays an important role in maintaining oral health. The metabolism of saliva has been used to investigate oral diseases as well as general diseases, mainly to detect diagnostic biomarkers. There are many sources of salivary metabolites in the mouth. The online English language search and PubMed databases were searched to retrieve relevant studies on oral salivary metabolites. The physiological balance of the mouth is influenced by many factors that are reflected in the salivary metabolite profile. Similarly, the dysbiosis of microbes can alter the salivary metabolite profile, which may express oral inflammation or oral diseases. This narrative review highlights the factors to be considered when examining saliva and its use as a diagnostic biofluid for different diseases. Salivary metabolites, mainly small molecular metabolites may enter the bloodstream and cause illness elsewhere in the body. The importance of salivary metabolites produced in the oral cavity as risk factors for general diseases and their possible relationship to the body’s function are also discussed.
Collapse
|
31
|
Upadhyay M, Shrivastava P, Verma K, Joshi B. Recent advancements in identification and detection of saliva as forensic evidence: a review. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2023. [DOI: 10.1186/s41935-023-00336-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Abstract
Background
Saliva is the most common biological evidence found at any crime scene next to blood. It is a clear liquid which makes it immune to any possible evidence of alteration by the perpetrator. In forensics, saliva is used as biological evidence and is very helpful in determining various aspects of an individual such as sex, individuality, ABO blood groups, microbial signature, biomarkers, or habits like smoking.
Main body
Saliva shares a great resemblance with plasma as it encompasses similar organic or inorganic compound contents. In forensic casework, identifying any evidence is the primary goal to establish the groundwork for further investigation. Saliva may be found in the form of a pool or stained form, but its identification is challenging because of its transparency. It has been widely used as an informative tool in forensic situations like poisoning, hanging, or cases of drug abuse, etc. for more than two decades now. Over the years, many proposed ways or methods have been identified and described, which helped in the detection and identification of saliva as evidence.
Conclusion
This review article represents the significance of saliva as important forensic evidence, along with the different forms it may be encountered at the crime scene. The use of diverse collection and detection methods, over the past few decades, has been discussed. An attempt has been made to collect the available data, highlighting the merit and demerits of different identification techniques. The relevant data has been collected from all the published and reported literature (1987–2021).
Collapse
|
32
|
The Role of the Mycobiome in Women’s Health. J Fungi (Basel) 2023; 9:jof9030348. [PMID: 36983516 PMCID: PMC10051763 DOI: 10.3390/jof9030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/19/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Although the human bacteriome and virome have gained a great deal of attention over the years, the human mycobiome has been far more neglected despite having significant value and implications in human health. In women, mycobiome profiles in breastmilk, vaginal regions, the gut, skin, and the oral cavity can provide insight into women’s health, diseases, and microbiome dysbiosis. Analyses of mycobiome composition under factors, such as health, age, diet, weight, and drug exposure (including antibiotic therapies), help to elucidate the various roles of women’s mycobiome in homeostasis, microbiome interactions (synergistic and antagonistic), and health. This review summarizes the most recent updates to mycobiome knowledge in these critical areas.
Collapse
|
33
|
Bashir S, Fitaihi R, Abdelhakim HE. Advances in formulation and manufacturing strategies for the delivery of therapeutic proteins and peptides in orally disintegrating dosage forms. Eur J Pharm Sci 2023; 182:106374. [PMID: 36623699 DOI: 10.1016/j.ejps.2023.106374] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/08/2023]
Abstract
Therapeutic proteins and peptides (TPPs) are increasingly favoured above small drug molecules due to their high specificity to the site of action and reduced adverse effects resulting in increased use of these agents for medical treatments and therapies. Consequently, there is a need to formulate TPPs in dosage forms that are accessible and suitable for a wide range of patient groups as the use of TPPs becomes increasingly prevalent in healthcare settings worldwide. Orally disintegrating dosage forms (ODDF) are formulations that can ensure easy-to-administer medication to a wider patient population including paediatrics, geriatrics and people in low-resource countries. There are many challenges involved in developing suitable pharmaceutical strategies to protect TPPs during formulation and manufacturing, as well as storage, and maintenance of a cold-chain during transportation. This review will discuss advances being made in the research and development of pharmaceutical and manufacturing strategies used to incorporate various TPPs into ODDF systems.
Collapse
Affiliation(s)
- Shazia Bashir
- School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Rawan Fitaihi
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; Department of Pharmaceutics, College of pharmacy, King Saud University, Riyadh, KSA
| | - Hend E Abdelhakim
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
34
|
Kunrath MF, Dahlin C. Does saliva contamination interfere or stimulate regenerative processes applying current biomaterials on oral surgical sites? Br Dent J 2023; 234:305-307. [PMID: 36899235 DOI: 10.1038/s41415-023-5573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 03/12/2023]
Abstract
Innovative dental biomaterials have been developed in order to stimulate higher biocompatibility and faster healing times using responsive surfaces for regenerative procedures. However, saliva is one of the fluids to interact with these biomaterials in the first instance. Studies have revealed significant negative effects on the biomaterials' properties, biocompatibility and bacterial colonisation after saliva contact. Nevertheless, the current literature is unclear about the profound effects of saliva on regenerative procedures. The scientific community urges further detailed studies associating innovative biomaterials/saliva/microbiology/immunology in order to clarify clinical outcomes. This paper discusses and provides information about the challenges of research using human saliva, the lack of standardisation in protocols applying saliva, and tentative applications of saliva proteins associated with innovative dental biomaterials.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, PO Box 412, SE 405 30, Göteborg, Sweden; Department of Dentistry, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, PO Box 412, SE 405 30, Göteborg, Sweden; Department of Oral, Maxillofacial Surgery and Research and Development, NU Hospital Organisation, Trollhättan, Sweden
| |
Collapse
|
35
|
Habibi N, Bissonnette C, Pei P, Wang D, Chang A, Raymond JE, Lahann J, Mallery SR. Mucopenetrating Janus Nanoparticles For Field-Coverage Oral Cancer Chemoprevention. Pharm Res 2023; 40:749-764. [PMID: 36635487 PMCID: PMC10036282 DOI: 10.1007/s11095-022-03465-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/18/2022] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Oral squamous cell carcinoma (OSCC), is associated with high morbidity and mortality. Preemptive interventions have been postulated to provide superior therapeutic options, but their implementation has been restricted by the availability of broadly applicable local delivery systems. METHODS We address this challenge by engineering a delivery vehicle, Janus nanoparticles (JNP), that combine the dual mucoadhesive properties of a first cationic chitosan compartment with a second hydrophobic poly(lactide-co-glycolide) release compartment. JNP are designed to avoid rapid mucus clearance while ensuring stable loading and controlled release of the IL-6 receptor antagonist, tocilizumab (TCZ). RESULTS The JNP featured defined and monodispersed sizes with an average diameter of 327 nm and a PDI of 0.245, high circularities above 0.90 and supported controlled release of TCZ and effective internalization by oral keratinocytes. TCZ released from JNP retained its biological activity and effectively reduced both, soluble and membrane-bound IL-6Rα (71% and 50%). In full-thickness oral mucosal explants, 76% of the JNP breached the stratum corneum and in 41% were observed in the basal cell layer indicating excellent mucopenetrating properties. When tested in an aggressive OSCC xenograft model, TCZ-loaded JNP showed high levels of xenograft inhibition and outperformed all control groups with respect to inhibition of tumor cell proliferation, reduction in tumor size and reduced expression of the proto-oncogene ERG. CONCLUSION By combining critically required, yet orthogonal properties within the same nanoparticle design, the JNP in this study, demonstrate promise as precision delivery platforms for intraoral field-coverage chemoprevention, a vastly under-researched area of high clinical importance.
Collapse
Affiliation(s)
- Nahal Habibi
- Biointerfaces Institute, Departments of Chemical Engineering, Material Science and Engineering, Biomedical Engineering, and Macromolecular Science and Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48105, USA
| | - Caroline Bissonnette
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, 305 W. 12th Ave, Columbus, OH, 43210, USA
- Department of Stomatology, Faculty of Dentistry, University of Montreal, Montreal, QC, Canada
| | - Ping Pei
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, 305 W. 12th Ave, Columbus, OH, 43210, USA
| | - Daren Wang
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, 305 W. 12th Ave, Columbus, OH, 43210, USA
| | - Albert Chang
- Biointerfaces Institute, Departments of Chemical Engineering, Material Science and Engineering, Biomedical Engineering, and Macromolecular Science and Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48105, USA
| | - Jeffery E Raymond
- Biointerfaces Institute, Departments of Chemical Engineering, Material Science and Engineering, Biomedical Engineering, and Macromolecular Science and Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48105, USA
| | - Joerg Lahann
- Biointerfaces Institute, Departments of Chemical Engineering, Material Science and Engineering, Biomedical Engineering, and Macromolecular Science and Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48105, USA.
| | - Susan R Mallery
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, 305 W. 12th Ave, Columbus, OH, 43210, USA.
- The Ohio State University Comprehensive Cancer, 460 W. 10th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
36
|
Haghshenas MR, Ghaderi H, Daneste H, Ghaderi A. Immunological and biological dissection of normal and tumoral salivary glands. Int Rev Immunol 2023; 42:139-155. [PMID: 34378486 DOI: 10.1080/08830185.2021.1958806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Salivary glands naturally play central roles in oral immunity. The salivary glands microenvironment inevitable may be exposed to exogenous factors consequently triggering the initiation and formation of various malignant and benign tumors. Mesenchymal stem cells are recruited into salivary gland microenvironment, interact with tumor cells, and induce inhibitory cytokines as well as cells with immunosuppressive phenotypes such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). The immune components and tumor immune responses in malignant and benign SGTs are still under investigation. Immune responses may directly play a limiting role in tumor growth and expansion, or may participate in formation of a rich milieu for tumor growth in cooperation with other cellular and regulatory molecules. Immune checkpoint molecules (e.g. PDLs, HLA-G and LAG3) are frequently expressed on tumor cells and/or tumor-infiltrating lymphocytes (TILs) in salivary gland microenvironment, and an increase in their expression is associated with T cell exhaustion, immune tolerance and tumor immune escape. Chemokines and chemokine receptors have influential roles on aggressive behaviors of SGTs, and thereby they could be candidate targets for cancer immunotherapy. To present a broad knowledge on salivary glands, this review first provides a brief description on immunological functions of normal salivary glands, and then describe the SGT's tumor microenvironment, by focusing on mesenchymal stem cells, immune cell subsets, immune checkpoint molecules, chemokines and chemokine receptors, and finally introduces immune checkpoint inhibitors as well as potential targets for cancer therapy.
Collapse
Affiliation(s)
- Mohammad Reza Haghshenas
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Daneste
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
37
|
Hyvärinen E, Solje E, Vepsäläinen J, Kullaa A, Tynkkynen T. Salivary Metabolomics in the Diagnosis and Monitoring of Neurodegenerative Dementia. Metabolites 2023; 13:metabo13020233. [PMID: 36837852 PMCID: PMC9968225 DOI: 10.3390/metabo13020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Millions of people suffer with dementia worldwide. However, early diagnosis of neurodegenerative diseases/dementia (NDD) is difficult, and no specific biomarkers have been found. This study aims to review the applications of salivary metabolomics in diagnostics and the treatment monitoring of NDD A literature search of suitable studies was executed so that a total of 29 original research articles were included in the present review. Spectroscopic methods, mainly nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry, give us a broad view of changes in salivary metabolites in neurodegenerative diseases. The role of different salivary metabolites in brain function is discussed. Further studies with larger patient cohorts should be carried out to investigate the association between salivary metabolites and brain function and thus learn more about the complicated pathways in the human body.
Collapse
Affiliation(s)
- Eelis Hyvärinen
- Institute of Dentistry, University of Eastern Finland, 70210 Kuopio, Finland
| | - Eino Solje
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, 70210 Kuopio, Finland
- Neuro Center, Neurology, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Jouko Vepsäläinen
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | - Arja Kullaa
- Institute of Dentistry, University of Eastern Finland, 70210 Kuopio, Finland
- Correspondence: ; Tel.: +358-44-515-0452
| | - Tuulia Tynkkynen
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
38
|
Wang X, Li J, Zhang S, Zhou W, Zhang L, Huang X. pH-activated antibiofilm strategies for controlling dental caries. Front Cell Infect Microbiol 2023; 13:1130506. [PMID: 36949812 PMCID: PMC10025512 DOI: 10.3389/fcimb.2023.1130506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Dental biofilms are highly assembled microbial communities surrounded by an extracellular matrix, which protects the resident microbes. The microbes, including commensal bacteria and opportunistic pathogens, coexist with each other to maintain relative balance under healthy conditions. However, under hostile conditions such as sugar intake and poor oral care, biofilms can generate excessive acids. Prolonged low pH in biofilm increases proportions of acidogenic and aciduric microbes, which breaks the ecological equilibrium and finally causes dental caries. Given the complexity of oral microenvironment, controlling the acidic biofilms using antimicrobials that are activated at low pH could be a desirable approach to control dental caries. Therefore, recent researches have focused on designing novel kinds of pH-activated strategies, including pH-responsive antimicrobial agents and pH-sensitive drug delivery systems. These agents exert antibacterial properties only under low pH conditions, so they are able to disrupt acidic biofilms without breaking the neutral microenvironment and biodiversity in the mouth. The mechanisms of low pH activation are mainly based on protonation and deprotonation reactions, acids labile linkages, and H+-triggered reactive oxygen species production. This review summarized pH-activated antibiofilm strategies to control dental caries, concentrating on their effect, mechanisms of action, and biocompatibility, as well as the limitation of current research and the prospects for future study.
Collapse
Affiliation(s)
- Xiuqing Wang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jingling Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shujun Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Wen Zhou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- *Correspondence: Xiaojing Huang,
| |
Collapse
|
39
|
Maruyama Y, Seki T, Ando S, Tanabe H, Mori H. Analysis of IGHA1 and other salivary proteins post half marathon in female participants. PeerJ 2023; 11:e15075. [PMID: 37193030 PMCID: PMC10183162 DOI: 10.7717/peerj.15075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/24/2023] [Indexed: 05/18/2023] Open
Abstract
Background High-intensity exercise (HIE), such as that in marathons and triathlons, suppresses transient local and systemic immunity. Serum and salivary immunoglobulin heavy constant alpha 1 (IGHA1) are major markers of immunosuppression by HIE. Although much is known about the systemic immunosuppressive response, little is known about its local response in the oral cavity, lungs, bronchial tubes, and skin. The oral cavity allows bacteria or viruses to enter the body. Saliva covers the epidermis of the oral cavity and plays an important role in the local stress response by preventing infection. In this study, we examined the properties of saliva secreted during the local stress response for half-marathon (HM) induced IGHA1 protein expression using quantitative proteomics. Methods The Exercise Group (ExG) (19 healthy female university students) participated in a HM race. The Non-Exercise Group (NExG) (16 healthy female university students) did not participate in the ExG. The ExG saliva samples were collected 1 h pre and 2 h and 4 h post-HM. The NExG saliva samples were collected at the same time intervals. The saliva volume, protein concentration, and relative IGHA1 expression were analyzed. In addition, 1 h pre and 2 h post- HM saliva samples were analyzed by iTRAQ. The identified factors in iTRAQ were analyzed for the ExG and the NExG using western blotting. Results We identified kallikrein 1 (KLK1), immunoglobulin kappa chain (IgK), and cystatin S (CST4) as suppression factors, as well as IGHA1, which has been reported to be an immunological stress marker. IGHA1 (p = 0.003), KLK1 (p = 0.011), IGK (p = 0.002), and CST4 (p = 0.003) were suppressed 2 h post-HM compared with their levels pre HM, and IGHA1 (p < 0.001), KLK1 (p = 0.004), and CST4 (p = 0.006) were suppressed 4 h post-HM. There was also a positive correlation between IGHA1, IGK, and CST4 levels at 2 and 4 h post-HM. In addition, KLK1 and IGK levels at 2 h post-HM were positively correlated. Conclusion Our study demonstrated that the salivary proteome is regulated, and antimicrobial proteins are suppressed post-HM. These results suggest that oral immunity was transiently suppressed post-HM. The positive correlation of each protein at 2 and 4 h post-HM suggests that the suppressed state was similarly regulated up to 4 h after a HM. The proteins identified in this study may have applications as stress markers for recreational runners and individuals who perform moderate to HIE on a regular basis.
Collapse
Affiliation(s)
- Yosuke Maruyama
- Faculty of Health and Welfare Science Department of Nutritional Sciences, Nayoro City University, Nayoro, Hokkaido, Japan
| | - Tomoaki Seki
- National Institute of Fitness and Sports Kanoya, Kanoya, Kagoshima, Japan
| | - Seiichi Ando
- Clinical Nutrition and Internal Medicine, Kobe Women’s University, Kobe, Hyogo, Japan
| | - Hiroki Tanabe
- Faculty of Health and Welfare Science Department of Nutritional Sciences, Nayoro City University, Nayoro, Hokkaido, Japan
| | - Hitoshi Mori
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
40
|
Parlak HM, Buber E, Gur AT, Karabulut E, Akalin FA. Statherin and alpha-amylase levels in saliva from patients with gingivitis and periodontitis. Arch Oral Biol 2023; 145:105574. [DOI: 10.1016/j.archoralbio.2022.105574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022]
|
41
|
Rinecker J, Roesch R, Krippgans S, Nieberler M, Stark L, Stangl S, Haller B, Fritsche K, Multhoff G, Knopf A, Winter C, Wollenberg B, Wirth M. Comparing TIMP-1 and Hsp70 in Blood and Saliva as Potential Prognostic Markers in HNSCC. Biomedicines 2022; 10:biomedicines10123225. [PMID: 36551979 PMCID: PMC9775946 DOI: 10.3390/biomedicines10123225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Currently, there is no clinically used liquid biomarker in head and neck squamous cell carcinoma (HNSCC) patients. One reason could be the limited shedding of tumor material in early disease stages. Molecular diagnostics assessing both blood and especially saliva could potentially improve the accuracy of biomarkers. In this prospective study, two markers, tissue inhibitor of metalloprotease-1 (TIMP-1) and heat shock protein 70 (Hsp70), were analyzed in HNSCC patients. The purpose of the study was to evaluate differences between saliva and serum as sample material. Further, their prognostic and predictive value and usefulness for early detection was assessed. (2) Methods: A total of 73 HNSCC patients were prospectively monitored by collecting blood and saliva before, during, and after therapy, as well as in the follow-up period between 2018 and 2021. In total, 212 serum and 194 saliva samples were collected. A control group consisting of 40 subjects (15 patients with local infections in the head and neck area and 25 without infections) were examined as well. The collected samples were evaluated for the two proteins by using an enzyme-linked immunosorbent assay (ELISA). (3) RESULTS: The TIMP-1 concentration correlated significantly in blood and saliva, whereas the Hsp70 concentration did not. Saliva TIMP-1 was significantly higher in tumor patients compared to the control group (p = 0.013). High pretreatment TIMP-1 saliva levels were associated with significantly poorer disease-free survival (DFS) (p = 0.02). A high saliva TIMP-1/Hsp70 ratio was significantly associated with poorer DFS (HR: 1.4; 95% CI: 1.04-1.88; p = 0.026) and a high TIMP-1 serum concentration was significantly associated with poorer PFS (HR: 1.9; 95% CI: 1.2, 2.8; p = 0.003) and poorer overall survival (OS) (HR: 2.9; 95% CI: 1.4, 5.9; p = 0.003) in the Cox proportional hazards model. The saliva TIMP-1 to Hsp70 ratio was significantly higher at the time of recurrence (p = 0.015). Conclusion: TIMP-1 in serum is a promising prognostic marker for HNSCC. Saliva TIMP-1 and the saliva TIMP-1 to Hsp70 ratio provides additional information on the disease-free survival.
Collapse
Affiliation(s)
- Jakob Rinecker
- Department of Otorhinolaryngology, Head and Neck Surgery, Technical, School of Medicine, University of Munich, 81675 Munich, Germany
| | - Romina Roesch
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Sara Krippgans
- Department of Oral and Maxillofacial Surgery, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Markus Nieberler
- Department of Oral and Maxillofacial Surgery, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Leonhard Stark
- Department of Otorhinolaryngology, Head and Neck Surgery, Technical, School of Medicine, University of Munich, 81675 Munich, Germany
| | - Stefan Stangl
- Department of Radiation Oncology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Bernhard Haller
- Institute of AI and Informatics in Medicine, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Kristin Fritsche
- Department of Vascular and Endovascular Surgery, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Gabriele Multhoff
- Department of Radiation Oncology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Andreas Knopf
- Department of Otolaryngology Head and Neck Surgery, Albert—Ludwigs-University of Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Christof Winter
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Barbara Wollenberg
- Department of Otorhinolaryngology, Head and Neck Surgery, Technical, School of Medicine, University of Munich, 81675 Munich, Germany
| | - Markus Wirth
- Department of Otorhinolaryngology, Head and Neck Surgery, Technical, School of Medicine, University of Munich, 81675 Munich, Germany
- Correspondence:
| |
Collapse
|
42
|
Lactoferrin and the development of salivary stones: a pilot study. Biometals 2022; 36:657-665. [PMID: 36396778 PMCID: PMC10181970 DOI: 10.1007/s10534-022-00465-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/05/2022] [Indexed: 11/19/2022]
Abstract
AbstractSalivary stones (sialoliths) are calcified structures located in the ductal system of the major salivary glands. Their exact cause is not clear but in general they are characterized by concentric inorganic (hydroxyapatite) layers. The formation is a slow intermittent process which may result in enlargement of the sialolith causing obstruction of saliva secretion resulting in mealtime related pain and swelling of the affected salivary gland. Various studies reported the presence of organic material such as proteins and lipids in the core of sialoliths. In the present study the protein composition of twenty submandibular sialoliths was analyzed. It was found that proteins contributed on average 5% to the dry weight of submandibular stones whereby small salivary stones contained more extractable proteins than large salivary stones. Using a combination of SDS-PAGE gel electrophoresis and Western blotting, we identified α-amylase (in all stones; 100%), lysozyme (95%), lactoferrin (85%), secretory-IgA (75%), MUC7 (60%), complement C4 (60%) and C-reactive protein (35%). The presence, and the combinations, of lactoferrin, lysozyme, s-IgA and α-amylase in sialoliths was confirmed by ELISA. The gradually increasing size of a sialolith might provoke a local inflammatory response in the duct of the submandibular gland whereby the relatively low concentrations of lactoferrin and lysozyme may originate from neutrophils. The interaction of lactoferrin with s-IgA could contribute to the accumulation of lactoferrin in sialoliths. In summary, these results suggest a new pathophysiological role for lactoferrin, in the formation of sialoliths.
Collapse
|
43
|
Kraaij S, de Visscher JGAM, Apperloo RC, Nazmi K, Bikker FJ, Brand HS. Lactoferrin and the development of salivary stones: a pilot study. Biometals 2022. [PMID: 36396778 DOI: 10.1007/s10534-022-00465-7/tables/2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Salivary stones (sialoliths) are calcified structures located in the ductal system of the major salivary glands. Their exact cause is not clear but in general they are characterized by concentric inorganic (hydroxyapatite) layers. The formation is a slow intermittent process which may result in enlargement of the sialolith causing obstruction of saliva secretion resulting in mealtime related pain and swelling of the affected salivary gland. Various studies reported the presence of organic material such as proteins and lipids in the core of sialoliths. In the present study the protein composition of twenty submandibular sialoliths was analyzed. It was found that proteins contributed on average 5% to the dry weight of submandibular stones whereby small salivary stones contained more extractable proteins than large salivary stones. Using a combination of SDS-PAGE gel electrophoresis and Western blotting, we identified α-amylase (in all stones; 100%), lysozyme (95%), lactoferrin (85%), secretory-IgA (75%), MUC7 (60%), complement C4 (60%) and C-reactive protein (35%). The presence, and the combinations, of lactoferrin, lysozyme, s-IgA and α-amylase in sialoliths was confirmed by ELISA. The gradually increasing size of a sialolith might provoke a local inflammatory response in the duct of the submandibular gland whereby the relatively low concentrations of lactoferrin and lysozyme may originate from neutrophils. The interaction of lactoferrin with s-IgA could contribute to the accumulation of lactoferrin in sialoliths. In summary, these results suggest a new pathophysiological role for lactoferrin, in the formation of sialoliths.
Collapse
Affiliation(s)
- Saskia Kraaij
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers, Location VUmc, and Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands.
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands.
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Room 12N-37, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
| | - Jan G A M de Visscher
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers, Location VUmc, and Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Ruben C Apperloo
- Department of Oral and Maxillofacial Surgery, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Henk S Brand
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| |
Collapse
|
44
|
Descriptive evaluation of antibody responses to severe acute respiratory coronavirus virus 2 (SARS-CoV-2) infection in plasma and gingival crevicular fluid in a nursing home cohort-Arkansas, June-August 2020. Infect Control Hosp Epidemiol 2022; 43:1610-1617. [PMID: 34802478 PMCID: PMC9379264 DOI: 10.1017/ice.2021.484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To characterize and compare severe acute respiratory coronavirus virus 2 (SARS-CoV-2)-specific immune responses in plasma and gingival crevicular fluid (GCF) from nursing home residents during and after natural infection. DESIGN Prospective cohort. SETTING Nursing home. PARTICIPANTS SARS-CoV-2-infected nursing home residents. METHODS A convenience sample of 14 SARS-CoV-2-infected nursing home residents, enrolled 4-13 days after real-time reverse transcription polymerase chain reaction diagnosis, were followed for 42 days. After diagnosis, plasma SARS-CoV-2-specific pan-Immunoglobulin (Ig), IgG, IgA, IgM, and neutralizing antibodies were measured at 5 time points, and GCF SARS-CoV-2-specific IgG and IgA were measured at 4 time points. RESULTS All participants demonstrated immune responses to SARS-CoV-2 infection. Among 12 phlebotomized participants, plasma was positive for pan-Ig and IgG in all 12 participants. Neutralizing antibodies were positive in 11 participants; IgM was positive in 10 participants, and IgA was positive in 9 participants. Among 14 participants with GCF specimens, GCF was positive for IgG in 13 participants and for IgA in 12 participants. Immunoglobulin responses in plasma and GCF had similar kinetics; median times to peak antibody response were similar across specimen types (4 weeks for IgG; 3 weeks for IgA). Participants with pan-Ig, IgG, and IgA detected in plasma and GCF IgG remained positive throughout this evaluation, 46-55 days after diagnosis. All participants were viral-culture negative by the first detection of antibodies. CONCLUSIONS Nursing home residents had detectable SARS-CoV-2 antibodies in plasma and GCF after infection. Kinetics of antibodies detected in GCF mirrored those from plasma. Noninvasive GCF may be useful for detecting and monitoring immunologic responses in populations unable or unwilling to be phlebotomized.
Collapse
|
45
|
Jayasinghe TN, Harrass S, Erdrich S, King S, Eberhard J. Protein Intake and Oral Health in Older Adults-A Narrative Review. Nutrients 2022; 14:4478. [PMID: 36364741 PMCID: PMC9653899 DOI: 10.3390/nu14214478] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 08/31/2023] Open
Abstract
Oral health is vital to general health and well-being for all ages, and as with other chronic conditions, oral health problems increase with age. There is a bi-directional link between nutrition and oral health, in that nutrition affects the health of oral tissues and saliva, and the health of the mouth may affect the foods consumed. Evidence suggests that a healthy diet generally has a positive impact on oral health in older adults. Although studies examining the direct link between oral health and protein intake in older adults are limited, some have explored the relationship via malnutrition, which is also prevalent among older adults. Protein-energy malnutrition (PEM) may be associated with poor oral health, dental caries, enamel hypoplasia, and salivary gland atrophy. This narrative review presents the theoretical evidence on the impact of dietary protein and amino acid composition on oral health, and their combined impact on overall health in older adults.
Collapse
Affiliation(s)
- Thilini N. Jayasinghe
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sanaa Harrass
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sharon Erdrich
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shalinie King
- School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joerg Eberhard
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
46
|
Nocera AL, Mueller SK, Workman AD, Wu D, McDonnell K, Sadow PM, Amiji MM, Bleier BS. Cystatin SN is a potent upstream initiator of epithelial-derived type 2 inflammation in chronic rhinosinusitis. J Allergy Clin Immunol 2022; 150:872-881. [PMID: 35660375 PMCID: PMC9547833 DOI: 10.1016/j.jaci.2022.04.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Cystatin SN (CST1) and cystatin SA (CST2) are cysteine protease inhibitors that protect against allergen, viral, and bacterial proteases. Cystatins are overexpressed in the setting of allergic rhinitis and chronic rhinosinusitis with nasal polyps (CRSwNP); however, their role in promoting type 2 inflammation remains poorly characterized. OBJECTIVE The purpose of this study was to use integrated poly-omics and a murine exposure model to explore the link between cystatin overexpression in CRSwNP and type 2 inflammation. METHODS In this institutional review board- and institutional animal care and use committee-approved study, we compared tissue, exosome, and mucus CST1 and CST2 between CRSwNP and controls (n = 10 per group) by using matched whole exome sequencing, transcriptomic, proteomic, posttranslational modification, histologic, functional, and bioinformatic analyses. C57/BL6 mice were dosed with 3.9 μg/mL of CST1 or PBS intranasally for 5 to 18 days in the presence or absence of epithelial ABCB1a knockdown. Inflammatory cytokines were quantified by using Quansys multiplex assays or ELISAs. RESULTS Of the 1305 proteins quantified, CST1 and CST2 were among the most overexpressed protease inhibitors in tissue, exosome, and mucus samples; they were localized to the epithelial layer. Multiple posttranslational modifications were identified in the polyp tissue. Exosomal CST1 and CST2 were strongly and significantly correlated with eosinophils and Lund-Mackay scores. Murine type 2 cytokine secretion and TH2 cell infiltration increased in a time-dependent manner following CST1 exposure and was abrogated by epithelial knockdown of ABCB1a, a regulator of epithelial cytokine secretion. CONCLUSION CST1 is a potent upstream initiator of epithelial-derived type 2 inflammation in CRSwNP. Therapeutic strategies targeting CST activity and its associated posttranslational modifications deserve further interrogation.
Collapse
Affiliation(s)
- Angela L Nocera
- Department of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Mass; Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Mass
| | - Sarina K Mueller
- Department of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Mass; Department of Otolaryngology/Head and Neck Surgery, University of Erlangen-Nuremberg, Nuremberg, Germany
| | - Alan D Workman
- Department of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Mass
| | - Dawei Wu
- Department of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Mass
| | - Kristen McDonnell
- Department of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Mass
| | - Peter M Sadow
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Mass
| | - Benjamin S Bleier
- Department of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Mass.
| |
Collapse
|
47
|
Gutierrez-Camacho JR, Avila-Carrasco L, Martinez-Vazquez MC, Garza-Veloz I, Zorrilla-Alfaro SM, Gutierrez-Camacho V, Martinez-Fierro ML. Oral Lesions Associated with COVID-19 and the Participation of the Buccal Cavity as a Key Player for Establishment of Immunity against SARS-CoV-2. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11383. [PMID: 36141654 PMCID: PMC9517300 DOI: 10.3390/ijerph191811383] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Some oral lesions have been described in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); the possibility has been raised that the buccal lesions observed in patients with the coronavirus disease 2019 (COVID-19) are due to this virus and the patient's systemic condition. The aim of this review was to integrate the knowledge related to the oral lesions associated with COVID-19 and the participation of the buccal cavity in the establishment of immunity against SARS-CoV-2. METHODS A literature search on the manifestations of buccal lesions from the beginning of the pandemic until October 2021 was carried out by using the PubMed database. A total of 157 scientific articles were selected from the library, which included case reports and reports of lesions appearing in patients with COVID-19. RESULTS Oral lesions included erosions, ulcers, vesicles, pustules, plaques, depapillated tongue, and pigmentations, among others. The oral cavity is a conducive environment for the interaction of SARS-CoV-2 with the mucosal immune system and target cells; direct effects of the virus in this cavity worsen the antiviral inflammatory response of underlying oral disorders, immunodeficiencies, and autoimmunity primarily. CONCLUSIONS The oral cavity is an accessible and privileged environment for the interaction of SARS-CoV-2 with the mucosal immune system and target cells; the direct effects of the virus in this cavity worsen the antiviral inflammatory response of underlying oral disorders, in particular those related to immunodeficiencies and autoimmunity.
Collapse
|
48
|
Diagnosis, Prevention, and Treatment of Radiotherapy-Induced Xerostomia: A Review. JOURNAL OF ONCOLOGY 2022; 2022:7802334. [PMID: 36065305 PMCID: PMC9440825 DOI: 10.1155/2022/7802334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
Abstract
In patients with head and neck cancer, irradiation (IR)-sensitive salivary gland (SG) tissue is highly prone to damage during radiotherapy (RT). This leads to SG hypofunction and xerostomia. Xerostomia is defined as the subjective complaint of dry mouth, which can cause other symptoms and adversely affect the quality of life. In recent years, diagnostic techniques have constantly improved with the emergence of more reliable and valid questionnaires as well as more accurate equipment for saliva flow rate measurement and imaging methods. Preventive measures such as the antioxidant MitoTEMPO, botulinum toxin (BoNT), and growth factors have been successfully applied in animal experiments, resulting in positive outcomes. Interventions, such as the new delivery methods of pilocarpine, edible saliva substitutes, acupuncture and electrical stimulation, gene transfer, and stem cell transplantation, have shown potential to alleviate or restore xerostomia in patients. The review summarizes the existing and new diagnostic methods for xerostomia, along with current and potential strategies for reducing IR-induced damage to SG function. We also aim to provide guidance on the advantages and disadvantages of the diagnostic methods. Additionally, most prevention and treatment methods remain in the stage of animal experiments, suggesting a need for further clinical research, among which we believe that antioxidants, gene transfer, and stem cell transplantation have broad prospects.
Collapse
|
49
|
Lu F, Zhu Y, Zhang G, Liu Z. Renovation as innovation: Repurposing human antibacterial peptide LL-37 for cancer therapy. Front Pharmacol 2022; 13:944147. [PMID: 36081952 PMCID: PMC9445486 DOI: 10.3389/fphar.2022.944147] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/22/2022] [Indexed: 01/10/2023] Open
Abstract
In many organisms, antimicrobial peptides (AMPs) display wide activities in innate host defense against microbial pathogens. Mammalian AMPs include the cathelicidin and defensin families. LL37 is the only one member of the cathelicidin family of host defense peptides expressed in humans. Since its discovery, it has become clear that they have pleiotropic effects. In addition to its antibacterial properties, many studies have shown that LL37 is also involved in a wide variety of biological activities, including tissue repair, inflammatory responses, hemotaxis, and chemokine induction. Moreover, recent studies suggest that LL37 exhibits the intricate and contradictory effects in promoting or inhibiting tumor growth. Indeed, an increasing amount of evidence suggests that human LL37 including its fragments and analogs shows anticancer effects on many kinds of cancer cell lines, although LL37 is also involved in cancer progression. Focusing on recent information, in this review, we explore and summarize how LL37 contributes to anticancer effect as well as discuss the strategies to enhance delivery of this peptide and selectivity for cancer cells.
Collapse
|
50
|
Johnstone KF, Herzberg MC. Antimicrobial peptides: Defending the mucosal epithelial barrier. FRONTIERS IN ORAL HEALTH 2022; 3:958480. [PMID: 35979535 PMCID: PMC9376388 DOI: 10.3389/froh.2022.958480] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The recent epidemic caused by aerosolized SARS-CoV-2 virus illustrates the importance and vulnerability of the mucosal epithelial barrier against infection. Antimicrobial proteins and peptides (AMPs) are key to the epithelial barrier, providing immunity against microbes. In primitive life forms, AMPs protect the integument and the gut against pathogenic microbes. AMPs have also evolved in humans and other mammals to enhance newer, complex innate and adaptive immunity to favor the persistence of commensals over pathogenic microbes. The canonical AMPs are helictical peptides that form lethal pores in microbial membranes. In higher life forms, this type of AMP is exemplified by the defensin family of AMPs. In epithelial tissues, defensins, and calprotectin (complex of S100A8 and S100A9) have evolved to work cooperatively. The mechanisms of action differ. Unlike defensins, calprotectin sequesters essential trace metals from microbes, which inhibits growth. This review focuses on defensins and calprotectin as AMPs that appear to work cooperatively to fortify the epithelial barrier against infection. The antimicrobial spectrum is broad with overlap between the two AMPs. In mice, experimental models highlight the contribution of both AMPs to candidiasis as a fungal infection and periodontitis resulting from bacterial dysbiosis. These AMPs appear to contribute to innate immunity in humans, protecting the commensal microflora and restricting the emergence of pathobionts and pathogens. A striking example in human innate immunity is that elevated serum calprotectin protects against neonatal sepsis. Calprotectin is also remarkable because of functional differences when localized in epithelial and neutrophil cytoplasm or released into the extracellular environment. In the cytoplasm, calprotectin appears to protect against invasive pathogens. Extracellularly, calprotectin can engage pathogen-recognition receptors to activate innate immune and proinflammatory mechanisms. In inflamed epithelial and other tissue spaces, calprotectin, DNA, and histones are released from degranulated neutrophils to form insoluble antimicrobial barriers termed neutrophil extracellular traps. Hence, calprotectin and other AMPs use several strategies to provide microbial control and stimulate innate immunity.
Collapse
Affiliation(s)
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|