1
|
Hutchins T, Sanyal A, Esencan D, Lafyatis R, Jacobe H, Torok KS. Characterization of Endothelial Cell Subclusters in Localized Scleroderma Skin with Single-Cell RNA Sequencing Identifies NOTCH Signaling Pathway. Int J Mol Sci 2024; 25:10473. [PMID: 39408800 PMCID: PMC11477421 DOI: 10.3390/ijms251910473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Localized scleroderma (LS) is an autoimmune disease characterized by inflammation and fibrosis, leading to severe cutaneous manifestations such as skin hardening, tightness, discoloration, and other textural changes that may result in disability. While LS shares similar histopathologic features and immune-fibroblast interactions with systemic sclerosis (SSc), its molecular mechanisms remain understudied. Endothelial cells (EC) are known to play a crucial role in SSc but have not been investigated in LS. Single-cell RNA sequencing (scRNA-seq) now allows for detailed examination of this cell type in the primary organ of interest for scleroderma, the skin. In this study, we analyzed skin-isolated cells from 27 LS patients (pediatric and adult) and 17 healthy controls using scRNA-seq. Given the known role of EC damage as an initial event in SSc and the histologic and clinical skin similarities to LS, we focused primarily on endothelial cells. Our analysis identified eight endothelial subclusters within the dataset, encompassing both disease and healthy samples. Interaction analysis revealed that signaling from diseased endothelial cells was predicted to promote fibrosis through SELE interaction with FGFBP1 and other target genes. We also observed high levels of JAG in arterial endothelial cells and NOTCH in capillary endothelial cells, indicating the activation of a signaling pathway potentially responsible for epidermal abnormalities and contributing to LS pathogenesis. In summary, our scRNA-seq analysis identified potential disease-propagating endothelial cell clusters with upregulated pathways in LS skin, highlighting their importance in disease progression.
Collapse
Affiliation(s)
- Theresa Hutchins
- Department of Pediatrics (Rheumatology), University of Pittsburgh, Pittsburgh, PA 15224, USA; (T.H.); (A.S.); (D.E.)
| | - Anwesha Sanyal
- Department of Pediatrics (Rheumatology), University of Pittsburgh, Pittsburgh, PA 15224, USA; (T.H.); (A.S.); (D.E.)
| | - Deren Esencan
- Department of Pediatrics (Rheumatology), University of Pittsburgh, Pittsburgh, PA 15224, USA; (T.H.); (A.S.); (D.E.)
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Heidi Jacobe
- Department of Dermatology, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Kathryn S. Torok
- Department of Pediatrics (Rheumatology), University of Pittsburgh, Pittsburgh, PA 15224, USA; (T.H.); (A.S.); (D.E.)
| |
Collapse
|
2
|
Wang Z, Wu T, Hu H, Alabed AAA, Cui G, Sun L, Sun Z, Wang Y, Li P. Plasma exosomes carrying mmu-miR-146a-5p and Notch signalling pathway-mediated synaptic activity in schizophrenia. J Psychiatry Neurosci 2024; 49:E265-E281. [PMID: 39209459 PMCID: PMC11374447 DOI: 10.1503/jpn.230118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/13/2024] [Accepted: 05/25/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Schizophrenia is characterized by a complex interplay of genetic and environmental factors, leading to alterations in various molecular pathways that may contribute to its pathogenesis. Recent studies have shown that exosomal microRNAs could play essential roles in various brain disorders; thus, we sought to explore the potential molecular mechanisms through which microRNAs in plasma exosomes are involved in schizophrenia. METHODS We obtained sequencing data sets (SUB12404730, SUB12422862, and SUB12421357) and transcriptome sequencing data sets (GSE111708, GSE108925, and GSE18981) from mouse models of schizophrenia using the Sequence Read Archive and the Gene Expression Omnibus databases, respectively. We performed differential expression analysis on mRNA to identify differentially expressed genes. We conducted Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses to determine differentially expressed genes. Subsequently, we determined the intersection of differentially expressed microRNAs in plasma exosomes and in prefrontal cortex tissue. We retrieved downstream target genes of mmu-miR-146a-5p from TargetScan and used Cytoscape to visualize and map the microRNA-target gene regulatory network. We conducted in vivo experiments using MK-801-induced mouse schizophrenia models and in vitro experiments using cultured mouse neurons. The role of plasma exosomal miR-146a-5p in schizophrenia was validated using a cell counting kit, detection of lactate dehydrogenase, dual-luciferase assay, quantitative reverse transcription polymerase chain reaction, and Western blot analysis. RESULTS Differential genes were mainly enriched in synaptic regulation-related functions and pathways and were associated with neuronal degeneration. We found that mmu-miR-146a-5p was highly expressed in both prefrontal cortical tissue and plasma exosomes, which may be transferred to lobe cortical vertebral neurons, leading to the synergistic dysregulation of gene network functions and, therefore, promoting schizophrenia development. We found that mmu-miR-146a-5p may inhibit the Notch signalling pathway-mediated synaptic activity of mouse pyramidal neurons in the lobe cortex by targeting NOTCH1, which in turn could promote the onset and development of schizophrenia in mice. LIMITATIONS The study's findings are based on animal models and in vitro experiments, which may not fully replicate the complexity of human schizophrenia. CONCLUSION Our findings suggest that mmu-miR-146a-5p in plasma-derived exosomes may play an important role in the pathogenesis of schizophrenia. Our results provide new insights into the underlying molecular mechanisms of the disease.
Collapse
Affiliation(s)
- Zhichao Wang
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Tong Wu
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Houjia Hu
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Alabed Ali A Alabed
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Guangcheng Cui
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Lei Sun
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Zhenghai Sun
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Yuchen Wang
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Ping Li
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| |
Collapse
|
3
|
Wu D, Jiang T, Zhang S, Huang M, Zhu Y, Chen L, Zheng Y, Zhang D, Yu H, Yao G, Sun L. Blockade of Notch1 Signaling Alleviated Podocyte Injury in Lupus Nephritis Via Inhibition of NLRP3 Inflammasome Activation. Inflammation 2024; 47:649-663. [PMID: 38085465 DOI: 10.1007/s10753-023-01935-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 05/07/2024]
Abstract
To explore the role of Notch1 pathway in the pathogenesis of podocyte injury, and to provide novel strategy for podocyte repair in lupus nephritis (LN). Bioinformatics analysis and immunofluorescence assay were applied to determine the expression and localization of Notch1 intracellular domain1 (NICD1) in kidneys of LN patients and MRL/lpr mice. The stable podocyte injury model in vitro was established by puromycin aminonucleoside (PAN) treatment. Expression of inflammasome activation related gene was detected by qPCR. The podocytes with PAN treatment were cultured with or without N-S-phenyl-glycine-t-butylester (DAPT), an inhibitor of Notch1 pathway. NICD1, Wilm'stumor1 (WT1), nucleotide-binding oligomerization domain-like receptors 3 (NLRP3), and absent in melanoma-like receptors 2 (AIM2) were detected by western blot. In vivo, MRL/lpr mice were administrated with DAPT or vehicle. The LN symptoms were assessed. The podocyte injury was evaluated, and the NLRP3 in podocytes of mice was detected. Notch1 pathway was overactivated in glomeruli of LN patients. NICD1 was colocalized with podocytes of LN patients and MRL/lpr mice. The inflammasome-related genes were significantly increased in podocytes with PAN treatment. NICD1 and NLRP3 were significantly decreased, while WT1 was significantly increased in injured podocytes treated with DAPT in vitro. In vivo, lupus-like symptoms were alleviated in DAPT treatment group. Notch1 pathway was inhibited in kidneys of mice treated with DAPT. The renal inflammation was reduced and the podocyte injury was mitigated in DAPT treatment group. The NLRP3 was decreased in podocytes of mice treated with DAPT. Notch1 pathway was overactivated in podocytes of LN patients and MRL/lpr mice. Blockade of Notch1 pathway reduced renal inflammation and alleviated podocyte injury via inhibition of NLRP3 inflammasome activation in LN.
Collapse
Affiliation(s)
- Dan Wu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Tingting Jiang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Shiyi Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Mengxi Huang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Ying Zhu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Liang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Conversion therapy center for Hepatobiliary and Pancreatic Tumors, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Yuanyuan Zheng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Dongdong Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Honghong Yu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Genhong Yao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, People's Republic of China.
| |
Collapse
|
4
|
Janssen AWM, van Heck JIP, Stienstra R, Aarntzen EHJG, van Diepen JA, Riksen NP, Tack CJ. Arterial wall inflammation assessed by 18F-FDG-PET/CT is higher in individuals with Type 1 diabetes and associated with circulating inflammatory proteins. Cardiovasc Res 2023; 119:1942-1951. [PMID: 37079728 PMCID: PMC10439710 DOI: 10.1093/cvr/cvad058] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 04/22/2023] Open
Abstract
AIMS The article investigates whether chronic hyperglycaemia in Type 1 diabetes (T1D) is associated with a proinflammatory immune signature and with arterial wall inflammation, driving the development of atherosclerosis. METHODS AND RESULTS Patients with T1D (n = 41), and healthy age-, sex-, and body mass index-matched controls (n = 20) were recruited. Arterial wall inflammation and haematopoietic activity were measured with 2'-deoxy-2'-(18F)-fluoro-D-glucose (18F-FDG) positron emission tomography/computed tomography. In addition, flow cytometry of circulating leucocytes was performed as well as targeted proteomics to measure circulating inflammatory markers. 18F-FDG uptake in the wall of the abdominal aorta, carotid arteries, and iliac arteries was higher in T1D compared with that in the healthy controls. Also, 18F-FDG uptake in the bone marrow and spleen was higher in patients with T1D. CCR2 and CD36 expressions on circulating monocytes were higher in patients with T1D, as well as several circulating inflammatory proteins. In addition, several circulating inflammatory markers (osteoprotegerin, transforming growth factor-alpha, CX3CL1, and colony-stimulating factor-1) displayed a positive correlation with FDG uptake. Within T1D, no differences were found between people with a high and low HbA1c. CONCLUSION These findings strengthen the concept that chronic hyperglycaemia in T1D induces inflammatory changes that fuel arterial wall inflammation leading to atherosclerosis. The degree of hyperglycaemia appears to play a minor role in driving this inflammatory response in patients with T1D.
Collapse
Affiliation(s)
- Anna W M Janssen
- Department of Internal Medicine (463), Radboud University Medical Center, PO Box 9101, Geert Grooteplein 8, Nijmegen 6500 HB, The Netherlands
| | - Julia I P van Heck
- Department of Internal Medicine (463), Radboud University Medical Center, PO Box 9101, Geert Grooteplein 8, Nijmegen 6500 HB, The Netherlands
| | - Rinke Stienstra
- Department of Internal Medicine (463), Radboud University Medical Center, PO Box 9101, Geert Grooteplein 8, Nijmegen 6500 HB, The Netherlands
- Division of Human Nutrition and Health, Wageningen University and Research Division of Human Nutrition and Health (Bode 62), P.O. Box 176700 AA, Wageningen, The Netherlands
| | - Erik H J G Aarntzen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA Nijmegen, The Netherlands
| | - Janna A van Diepen
- Department of Internal Medicine (463), Radboud University Medical Center, PO Box 9101, Geert Grooteplein 8, Nijmegen 6500 HB, The Netherlands
| | - Niels P Riksen
- Department of Internal Medicine (463), Radboud University Medical Center, PO Box 9101, Geert Grooteplein 8, Nijmegen 6500 HB, The Netherlands
| | - Cees J Tack
- Department of Internal Medicine (463), Radboud University Medical Center, PO Box 9101, Geert Grooteplein 8, Nijmegen 6500 HB, The Netherlands
| |
Collapse
|
5
|
Hata J, Harigane Y, Matsuoka K, Akaihata H, Yaginuma K, Meguro S, Hoshi S, Sato Y, Ogawa S, Uemura M, Kojima Y. Mechanism of Androgen-Independent Stromal Proliferation in Benign Prostatic Hyperplasia. Int J Mol Sci 2023; 24:11634. [PMID: 37511400 PMCID: PMC10380833 DOI: 10.3390/ijms241411634] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a chronic proliferative disease showing stromal-dominant proliferation. However, the detailed proliferation mechanism has remained unclear. Although aging and androgen have been reported as definitive risk factors for BPH, recent studies have focused on the involvement of androgen-independent factors. Androgen-independent factors include ischemia, oxidative stress, metabolic syndrome, infection, autoimmune reactions, and inflammation, with inflammation in BPH tissues playing a central role in the BPH proliferative process. Inflammation in BPH tissues by various factors finally leads to tissue remodeling and stromal proliferation through the wound healing process of the prostate. To elucidate the proliferative mechanism of BPH, a study using whole-genome gene expression analysis in a stromal-dominant BPH rat model was performed and showed that immune response-related pathways and complement classical pathways are activated. Furthermore, expression analysis using this BPH rat model showed that the autoimmune reaction triggered complement pathway activation in the proliferative process of BPH. BPH is a multifactorial disease, and understanding the role of androgen-independent factors including immune responses contributes to elucidating the pathogenesis of BPH. Androgen-independent factors may lead to new therapeutic targets for BPH, and further development of this research is expected.
Collapse
Affiliation(s)
- Junya Hata
- Department of Urology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 9601295, Japan
| | - Yuki Harigane
- Department of Urology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 9601295, Japan
| | - Kanako Matsuoka
- Department of Urology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 9601295, Japan
| | - Hidenori Akaihata
- Department of Urology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 9601295, Japan
| | - Kei Yaginuma
- Department of Urology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 9601295, Japan
| | - Satoru Meguro
- Department of Urology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 9601295, Japan
| | - Seiji Hoshi
- Department of Urology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 9601295, Japan
| | - Yuichi Sato
- Department of Urology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 9601295, Japan
| | - Soichiro Ogawa
- Department of Urology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 9601295, Japan
| | - Motohide Uemura
- Department of Urology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 9601295, Japan
| | - Yoshiyuki Kojima
- Department of Urology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 9601295, Japan
| |
Collapse
|
6
|
Neto BV, Tavares V, da Silva JB, Liz-Pimenta J, Marques IS, Carvalho L, Salgado L, Pereira D, Medeiros R. Thrombogenesis-associated genetic determinants as predictors of thromboembolism and prognosis in cervical cancer. Sci Rep 2023; 13:9519. [PMID: 37308506 DOI: 10.1038/s41598-023-36161-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
Venous thromboembolism (VTE) is a leading cause of death among cancer patients. Khorana score (KS) is the most studied tool to predict cancer-related VTE, however, it exerts poor sensitivity. Several single-nucleotide polymorphisms (SNPs) have been associated with VTE risk in the general population, but whether they are predictors of cancer-related VTE is a matter of discussion. Compared to other solid tumours, little is known about VTE in the setting of cervical cancer (CC) and whether thrombogenesis-related polymorphisms could be valuable biomarkers in patients with this neoplasia. This study aims to analyse the effect of VTE occurrence on the prognosis of CC patients, explore the predictive capability of KS and the impact of thrombogenesis-related polymorphisms on CC-related VTE incidence and patients' prognosis regardless of VTE. A profile of eight SNPs was evaluated. A retrospective hospital-based cohort study was conducted with 400 CC patients under chemoradiotherapy. SNP genotyping was carried on by using TaqMan® Allelic Discrimination methodology. Time to VTE occurrence and overall survival were the two measures of clinical outcome evaluated. The results indicated that VTE occurrence (8.5%) had a significant impact on the patient's survival (log-rank test, P < 0.001). KS showed poor performance (KS ≥ 3, χ2, P = 0.191). PROCR rs10747514 and RGS7 rs2502448 were significantly associated with the risk of CC-related VTE development (P = 0.021 and P = 0.006, respectively) and represented valuable prognostic biomarkers regardless of VTE (P = 0.004 and P = 0.010, respectively). Thus, thrombogenesis-related genetic polymorphisms may constitute valuable biomarkers among CC patients allowing a more personalized clinical intervention.
Collapse
Affiliation(s)
- Beatriz Vieira Neto
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072, Porto, Portugal
- FMUP, Faculty of Medicine, University of Porto, 4200-072, Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172, Porto, Portugal
| | - Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072, Porto, Portugal
- FMUP, Faculty of Medicine, University of Porto, 4200-072, Porto, Portugal
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172, Porto, Portugal
| | - José Brito da Silva
- Oncology Department, Portuguese Institute of Oncology of Porto (IPOP), 4200-072, Porto, Portugal
| | - Joana Liz-Pimenta
- FMUP, Faculty of Medicine, University of Porto, 4200-072, Porto, Portugal
- Department of Medical Oncology, Centro Hospitalar de Trás-os-Montes e Alto Douro (CHTMAD), 5000-508, Vila Real, Portugal
| | - Inês Soares Marques
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072, Porto, Portugal
- FCUP, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Luísa Carvalho
- External Radiotherapy Department, Portuguese Institute of Oncology of Porto (IPOP), 4200-072, Porto, Portugal
| | - Lurdes Salgado
- External Radiotherapy Department, Portuguese Institute of Oncology of Porto (IPOP), 4200-072, Porto, Portugal
| | - Deolinda Pereira
- Oncology Department, Portuguese Institute of Oncology of Porto (IPOP), 4200-072, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072, Porto, Portugal.
- FMUP, Faculty of Medicine, University of Porto, 4200-072, Porto, Portugal.
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
- FCUP, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal.
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172, Porto, Portugal.
- CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, 4200-150, Porto, Portugal.
| |
Collapse
|
7
|
Chen F, Ning Y, Liu J, Lian M, Wang J, Dan H. miRNA miR-147a targets ZEB2 to regulate ox-LDL-induced monocyte adherence to HUVECs, atherosclerotic plaque formation and stability in atherosclerosis. J Biol Chem 2023; 299:104657. [DOI: 10.1016/j.jbc.2023.104657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
|
8
|
Notch Signaling in Acute Inflammation and Sepsis. Int J Mol Sci 2023; 24:ijms24043458. [PMID: 36834869 PMCID: PMC9967996 DOI: 10.3390/ijms24043458] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Notch signaling, a highly conserved pathway in mammals, is crucial for differentiation and homeostasis of immune cells. Besides, this pathway is also directly involved in the transmission of immune signals. Notch signaling per se does not have a clear pro- or anti-inflammatory effect, but rather its impact is highly dependent on the immune cell type and the cellular environment, modulating several inflammatory conditions including sepsis, and therefore significantly impacts the course of disease. In this review, we will discuss the contribution of Notch signaling on the clinical picture of systemic inflammatory diseases, especially sepsis. Specifically, we will review its role during immune cell development and its contribution to the modulation of organ-specific immune responses. Finally, we will evaluate to what extent manipulation of the Notch signaling pathway could be a future therapeutic strategy.
Collapse
|
9
|
Jinna N, Rida P, Su T, Gong Z, Yao S, LaBarge M, Natarajan R, Jovanovic-Talisman T, Ambrosone C, Seewaldt V. The DARC Side of Inflamm-Aging: Duffy Antigen Receptor for Chemokines (DARC/ACKR1) as a Potential Biomarker of Aging, Immunosenescence, and Breast Oncogenesis among High-Risk Subpopulations. Cells 2022; 11:cells11233818. [PMID: 36497078 PMCID: PMC9740232 DOI: 10.3390/cells11233818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
The proclivity of certain pre-malignant and pre-invasive breast lesions to progress while others do not continues to perplex clinicians. Clinicians remain at a crossroads with effectively managing the high-risk patient subpopulation owing to the paucity of biomarkers that can adequately risk-stratify and inform clinical decisions that circumvent unnecessary administration of cytotoxic and invasive treatments. The immune system mounts the most important line of defense against tumorigenesis and progression. Unfortunately, this defense declines or "ages" over time-a phenomenon known as immunosenescence. This results in "inflamm-aging" or the excessive infiltration of pro-inflammatory chemokines, which alters the leukocyte composition of the tissue microenvironment, and concomitant immunoediting of these leukocytes to diminish their antitumor immune functions. Collectively, these effects can foster the sequelae of neoplastic transformation and progression. The erythrocyte cell antigen, Duffy antigen receptor for chemokines(DARC/ACKR1), binds and internalizes chemokines to maintain homeostatic levels and modulate leukocyte trafficking. A negative DARC status is highly prevalent among subpopulations of West African genetic ancestry, who are at higher risk of developing breast cancer and disease progression at a younger age. However, the role of DARC in accelerated inflamm-aging and malignant transformation remains underexplored. Herein, we review compelling evidence suggesting that DARC may be protective against inflamm-aging and, therefore, reduce the risk of a high-risk lesion progressing to malignancy. We also discuss evidence supporting that immunotherapeutic intervention-based on DARC status-among high-risk subpopulations may evade malignant transformation and progression. A closer look into this unique role of DARC could glean deeper insight into the immune response profile of individual high-risk patients and their predisposition to progress as well as guide the administration of more "cyto-friendly" immunotherapeutic intervention to potentially "turn back the clock" on inflamm-aging-mediated oncogenesis and progression.
Collapse
Affiliation(s)
- Nikita Jinna
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Padmashree Rida
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA
| | - Tianyi Su
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA
| | - Zhihong Gong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mark LaBarge
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | - Christine Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Victoria Seewaldt
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Correspondence:
| |
Collapse
|
10
|
Nasser S, Abdallah DM, Ahmed KA, Abdel-Mottaleb Y, El-Abhar HS. The novel anti-colitic effect of β-adrenergic receptors via modulation of PS1/BACE-1/Aβ axis and NOTCH signaling in an ulcerative colitis model. Front Pharmacol 2022; 13:1008085. [PMID: 36386153 PMCID: PMC9641009 DOI: 10.3389/fphar.2022.1008085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2023] Open
Abstract
Although dysautonomia was documented in inflammatory bowel disease, with activation of the stress-related sympathetic system, the role of agonists/antagonists of the adrenergic receptors is not conclusive. Moreover, ulcerative colitis was recently linked to dementia, but the potential role of the presenilin 1(PS1)/BACE-1/beta-amyloid (Aβ) axis has not been evaluated. Hence, we investigated the impact of mirabegron (β3-agonist) and/or carvedilol (β1/β2 antagonist) on iodoacetamide-induced ulcerative colitis with emphasis on the novel pathomechanism of the PS1/BACE-1/Aβ axis in ulcerative colitis, and its relation to the inflammatory cascade, fibrotic processes, and the gut barrier dysfunction. Ulcerated rats were either left untreated or treated for 8 days with mirabegron and/or carvedilol. Besides minimizing colon edema and weight loss, and improving colon structure, mirabegron and/or carvedilol abated colonic PS1/BACE-1/Aβ axis and the NOTCH1/NICD/HES1 hub besides the inflammatory cascade GSK3-β/NF-κΒ/TNF-α, and the oxidative stress marker malondialdehyde. The anti-fibrotic effect was verified by boosting SMAD-7 and inhibiting TGF-β1, α-SMA immunoexpression, and MTC staining. Moreover, the drugs improved the gut barrier function, attested by the increased goblet cells and expression of E-cadherin, and the inhibited expression of p (Y654)-β-catenin to preserve the E-cadherin/β-catenin adherens junction (AJ). These signaling pathways may be orchestrated by the replenished PPAR-γ, a transcription factor known for its anti-colitic effect. Conclusion: Besides maintaining the gut barrier, mirabegron and/or carvedilol mediated their anti-colitic effect by their anti-oxidant, anti-inflammatory, and anti-fibrotic capacities. The therapeutic effect of these drugs depends partly on suppressing the harmful signaling pathways PS1/BACE-1/Aβ, NOTCH1/NICD/HES1, GSK3-β/NF-κΒ/TNF-α, and TGF-1β/α-SMA while enhancing PPAR-γ, SMAD-7, mucus, and AJ.
Collapse
Affiliation(s)
- Salma Nasser
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), New Cairo, Egypt
| | - Dalaal M. Abdallah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Kawkab A. Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Yousra Abdel-Mottaleb
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), New Cairo, Egypt
| | - Hanan S. El-Abhar
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), New Cairo, Egypt
| |
Collapse
|
11
|
Aquila G, Alaimo A, Marracino L, Martino V, Camponogara F, Vieceli Dalla Sega F, Fortini F, Pannuti A, Zanotti C, Malagutti N, Pelucchi S, Rizzo P. Characterization of the Notch pathway in nasal polyps of patients with chronic rhinosinusitis: A pilot study. Physiol Rep 2022; 10:e15403. [PMID: 36029197 PMCID: PMC9419157 DOI: 10.14814/phy2.15403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023] Open
Abstract
Chronic rhinosinusitis with nasal polyps is a widespread pathology characterized by persistent inflammation of nasal and paranasal mucosa. Although it represents one of the most frequent diseases of the nasal cavities, its etiology is still not completely elucidated. There is evidence suggesting that the Notch signaling, a highly conserved intercellular pathway known to regulate many cellular processes, including inflammation, is implicated in nasal polyps formation. The purpose of this study was to investigate the expression of genes of the Notch pathway in nasal polyps from patients with chronic rhinosinusitis. Nasal polyps and adjacent mucosa tissue were obtained from 10 patients. RNA was analyzed by quantitative reverse transcriptase-polymerase chain reaction for the expression level of (1) Notch pathway components such as receptors (NOTCH1-4), ligands (DLL4, JAGGED-1), and target genes (HEY1, 2, and HES1) and (2) genes providing information on the pathogenesis of polyposis (C-MYC and SCGB1A1) and on eosinophils content (CCL26, IL5, and SAA2). We report a Notch-driven gene expression pattern in nasal polyps which correlates with the expression of genes highly expressed in eosinophils, whose presence is an important parameter to define the pathophysiologic diversity characterizing nasal polyps. Taken together, our results suggest a role for Notch signaling in the pathophysiology of polyposis. Further studies are needed to elucidate the role of Notch in nasal polyps formation and to establish whether it could represent a novel therapeutic target for this pathology.
Collapse
Affiliation(s)
- Giorgio Aquila
- Department of Medical SciencesUniversity of FerraraFerraraItaly
| | - Alessandra Alaimo
- Department of Ear, Nose and ThroatUniversity Hospital of FerraraFerraraItaly
| | - Luisa Marracino
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA)University of FerraraFerraraItaly
| | - Valeria Martino
- Department of Medical SciencesUniversity of FerraraFerraraItaly
| | - Francesca Camponogara
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA)University of FerraraFerraraItaly
| | - Francesco Vieceli Dalla Sega
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA)University of FerraraFerraraItaly
| | - Francesca Fortini
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA)University of FerraraFerraraItaly
| | - Antonio Pannuti
- University of Hawaii Cancer Center, University of HawaiiHonoluluHawaiiUSA
| | - Claudia Zanotti
- Department of Neuroscience DNS, Section of OtolaryngologyUniversity of PadovaPadovaItaly
| | - Nicola Malagutti
- Department of Ear, Nose and ThroatUniversity Hospital of FerraraFerraraItaly
| | - Stefano Pelucchi
- Department of Ear, Nose and ThroatUniversity Hospital of FerraraFerraraItaly
| | - Paola Rizzo
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA)University of FerraraFerraraItaly
| |
Collapse
|
12
|
Taylor HA, Przemylska L, Clavane EM, Meakin PJ. BACE1: More than just a β-secretase. Obes Rev 2022; 23:e13430. [PMID: 35119166 PMCID: PMC9286785 DOI: 10.1111/obr.13430] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/04/2022] [Accepted: 01/16/2022] [Indexed: 02/06/2023]
Abstract
β-site amyloid precursor protein cleaving enzyme-1 (BACE1) research has historically focused on its actions as the β-secretase responsible for the production of β-amyloid beta, observed in Alzheimer's disease. Although the greatest expression of BACE1 is found in the brain, BACE1 mRNA and protein is also found in many cell types including pancreatic β-cells, adipocytes, hepatocytes, and vascular cells. Pathologically elevated BACE1 expression in these cells has been implicated in the development of metabolic diseases, including type 2 diabetes, obesity, and cardiovascular disease. In this review, we examine key questions surrounding the BACE1 literature, including how is BACE1 regulated and how dysregulation may occur in disease, and understand how BACE1 regulates metabolism via cleavage of a myriad of substrates. The phenotype of the BACE1 knockout mice models, including reduced weight gain, increased energy expenditure, and enhanced leptin signaling, proposes a physiological role of BACE1 in regulating energy metabolism and homeostasis. Taken together with the weight loss observed with BACE1 inhibitors in clinical trials, these data highlight a novel role for BACE1 in regulation of metabolic physiology. Finally, this review aims to examine the possibility that BACE1 inhibitors could provide a innovative treatment for obesity and its comorbidities.
Collapse
Affiliation(s)
- Hannah A Taylor
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lena Przemylska
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Eva M Clavane
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Paul J Meakin
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
13
|
Resveratrol attenuates atherosclerotic endothelial injury through the Pin1/Notch1 pathway. Toxicol Appl Pharmacol 2022; 446:116047. [DOI: 10.1016/j.taap.2022.116047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/24/2022] [Accepted: 05/01/2022] [Indexed: 01/09/2023]
|
14
|
Kumar A, Grams TR, Bloom DC, Toth Z. Signaling Pathway Reporter Screen with SARS-CoV-2 Proteins Identifies nsp5 as a Repressor of p53 Activity. Viruses 2022; 14:v14051039. [PMID: 35632779 PMCID: PMC9145535 DOI: 10.3390/v14051039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
The dysregulation of host signaling pathways plays a critical role in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and viral pathogenesis. While a number of viral proteins that can block type I IFN signaling have been identified, a comprehensive analysis of SARS-CoV-2 proteins in the regulation of other signaling pathways that can be critical for viral infection and its pathophysiology is still lacking. Here, we screened the effect of 21 SARS-CoV-2 proteins on 10 different host signaling pathways, namely, Wnt, p53, TGFβ, c-Myc, Hypoxia, Hippo, AP-1, Notch, Oct4/Sox2, and NF-κB, using a luciferase reporter assay. As a result, we identified several SARS-CoV-2 proteins that could act as activators or inhibitors for distinct signaling pathways in the context of overexpression in HEK293T cells. We also provided evidence for p53 being an intrinsic host restriction factor of SARS-CoV-2. We found that the overexpression of p53 is capable of reducing virus production, while the main viral protease nsp5 can repress the transcriptional activity of p53, which depends on the protease function of nsp5. Taken together, our results provide a foundation for future studies, which can explore how the dysregulation of specific signaling pathways by SARS-CoV-2 proteins can control viral infection and pathogenesis.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA;
| | - Tristan R. Grams
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (T.R.G.); (D.C.B.)
| | - David C. Bloom
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (T.R.G.); (D.C.B.)
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA;
- UF Genetics Institute, Gainesville, FL 32610, USA
- UF Health Cancer Center, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
15
|
Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ, Han M. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther 2022; 7:131. [PMID: 35459215 PMCID: PMC9033871 DOI: 10.1038/s41392-022-00955-7] [Citation(s) in RCA: 292] [Impact Index Per Article: 146.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease driven by traditional and nontraditional risk factors. Genome-wide association combined with clonal lineage tracing and clinical trials have demonstrated that innate and adaptive immune responses can promote or quell atherosclerosis. Several signaling pathways, that are associated with the inflammatory response, have been implicated within atherosclerosis such as NLRP3 inflammasome, toll-like receptors, proprotein convertase subtilisin/kexin type 9, Notch and Wnt signaling pathways, which are of importance for atherosclerosis development and regression. Targeting inflammatory pathways, especially the NLRP3 inflammasome pathway and its regulated inflammatory cytokine interleukin-1β, could represent an attractive new route for the treatment of atherosclerotic diseases. Herein, we summarize the knowledge on cellular participants and key inflammatory signaling pathways in atherosclerosis, and discuss the preclinical studies targeting these key pathways for atherosclerosis, the clinical trials that are going to target some of these processes, and the effects of quelling inflammation and atherosclerosis in the clinic.
Collapse
Affiliation(s)
- Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Zi-Yang Cui
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xiao-Fu Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Dan-Dan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Rui-Juan Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China.
| |
Collapse
|
16
|
Francis CR, Kushner EJ. Trafficking in blood vessel development. Angiogenesis 2022; 25:291-305. [PMID: 35449244 PMCID: PMC9249721 DOI: 10.1007/s10456-022-09838-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/03/2022] [Indexed: 02/17/2023]
Abstract
Blood vessels demonstrate a multitude of complex signaling programs that work in concert to produce functional vasculature networks during development. A known, but less widely studied, area of endothelial cell regulation is vesicular trafficking, also termed sorting. After moving through the Golgi apparatus, proteins are shuttled to organelles, plugged into membranes, recycled, or degraded depending on the internal and extrinsic cues. A snapshot of these protein-sorting systems can be viewed as a trafficking signature that is not only unique to endothelial tissue, but critically important for blood vessel form and function. In this review, we will cover how vesicular trafficking impacts various aspects of angiogenesis, such as sprouting, lumen formation, vessel stabilization, and secretion, emphasizing the role of Rab GTPase family members and their various effectors.
Collapse
Affiliation(s)
- Caitlin R Francis
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Erich J Kushner
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA.
| |
Collapse
|
17
|
Singh V, Akash R, Chaudhary G, Singh R, Choudhury S, Shukla A, Prabhu SN, Gangwar N, Garg SK. Sepsis downregulates aortic Notch signaling to produce vascular hyporeactivity in mice. Sci Rep 2022; 12:2941. [PMID: 35190630 PMCID: PMC8861011 DOI: 10.1038/s41598-022-06949-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 02/02/2022] [Indexed: 11/25/2022] Open
Abstract
Inhibition of Notch signaling in macrophages is known to reduce inflammation, however, its role in regulating vascular hyporeactivity in sepsis is unknown. Thus we aimed to evaluate the effect of sepsis on vascular Notch signaling. Polymicrobial sepsis was induced by caecal ligation and puncture (CLP) in mice. mRNA expressions of Notch receptors (Notch1,3) and ligands (Jag1, Dll4), and downstream effector genes (Hey1, MLCK, MYPT1) were assessed by RT-qPCR. Protein level of activated Notch (NICD) was assessed by Western blot and immuno-histochemistry. Isometric tension in isolated aortic rings was measured by wire myography.CLP down-regulated aortic expression of Notch3, Jag1 and Dll4 as compared to control mice. Additionally, the protein level of NICD was found to be lesser in aortic tissue sections from CLP mice. Expression of Hey1 and MLCK were attenuated whereas MYPT1 expression was increased in septic mouse aorta. DAPT pretreatment did not improve CLP-induced vascular hyporeactivity to NA, CaCl2 and high K+ (80 mM), rather significantly attenuated the aortic response to these vasoconstrictors in control mice. Treatment with 1400 W reversed attenuated Notch3 (but not Jag1 and MLCK) expression in septic mouse aorta. In conclusion, sepsis significantly attenuated the Notch (especially Notch3) signaling in mouse aorta along with reduction in contractile gene expression and vasoconstriction response. Further, iNOS/NO pathway was involved in sepsis-induced down-regulation of Notch3 receptor. Thus systemic inhibition of Notch signaling during sepsis may have serious impact on sepsis-induced vascular hyporeactivity.
Collapse
Affiliation(s)
- Vandana Singh
- Smooth Muscle Pharmacology and Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Raut Akash
- Smooth Muscle Pharmacology and Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Gaurav Chaudhary
- Smooth Muscle Pharmacology and Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Rajneesh Singh
- Smooth Muscle Pharmacology and Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Soumen Choudhury
- Smooth Muscle Pharmacology and Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India.
| | - Amit Shukla
- Smooth Muscle Pharmacology and Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Shyama N Prabhu
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, Mathura, 281001, India
| | - Neeraj Gangwar
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, Mathura, 281001, India
| | - Satish K Garg
- Smooth Muscle Pharmacology and Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| |
Collapse
|
18
|
Zhu X, Wang Z, Sun YE, Liu Y, Wu Z, Ma B, Cheng L. Neuroprotective Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells From Different Donors on Spinal Cord Injury in Mice. Front Cell Neurosci 2022; 15:768711. [PMID: 35087378 PMCID: PMC8787356 DOI: 10.3389/fncel.2021.768711] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) is caused by an external force, leading to severe dysfunction of the limbs below the injured segment. The inflammatory response plays a vital role in the prognosis of SCI. Human umbilical cord mesenchymal stem cell (hUCMSC) transplantation can promote repair of SCI by reducing the inflammatory response. We previously showed that hUCMSCs from 32 donors had different inhibitory abilities on BV2 cell proliferation. In this study, three experimental groups were established, and the mice were injected with different lines of hUCMSCs. Hind limb motor function, hematoxylin-eosin (H&E) staining, immunohistochemistry, Western blot (WB), qualitative real-time polymerase chain reaction (qRT-PCR), and RNA sequencing and correlation analysis were used to investigate the effects of hUCMSC transplantation on SCI mice and the underlying mechanisms. The results showed that the therapeutic effects of the three hUCMSC lines were positively correlated with their inhibitory abilities of BV2 cell proliferation rates in vitro. The MSC_A line had a better therapeutic effect on improving the hind limb motor function and greater effect on reducing the expression of glial fibrillary acidic protein (Gfap) and ionized calcium binding adaptor molecule 1 (Iba1) and increasing the expression of neuronal nuclei (NeuN). Differentially expressed genes including Zbtb16, Per3, and Hif3a were probably the key genes involved in the protective mechanism by MSC_A after nerve injury. qRT-PCR results further verified that Zbtb16, Per3, and Hif3a expressions reduced by SCI could be reversed by MSC_A application. These results suggest that the effect of hUCMSCs transplantation on acute SCI depends on their inhibitory abilities to inflammation reaction after nerve injury, which may help to shape future use of hUCMSCs combined with improving the effectiveness of clinical transformation.
Collapse
Affiliation(s)
- Xu Zhu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Zhen Wang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Yi Eve Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Yuchen Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Bei Ma
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
- *Correspondence: Bei Ma,
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
- Liming Cheng,
| |
Collapse
|
19
|
Marquez-Exposito L, Rodrigues-Diez RR, Rayego-Mateos S, Fierro-Fernandez M, Rodrigues-Diez R, Orejudo M, Santos-Sanchez L, Blanco EM, Laborda J, Mezzano S, Lamas S, Lavoz C, Ruiz-Ortega M. Deletion of delta-like 1 homologue accelerates renal inflammation by modulating the Th17 immune response. FASEB J 2021; 35:e21213. [PMID: 33368614 DOI: 10.1096/fj.201903131r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Preclinical studies have demonstrated that activation of the NOTCH pathway plays a key role in the pathogenesis of kidney damage. There is currently no information on the role of the Delta-like homologue 1 (DLK1), a NOTCH inhibitor, in the regulation of renal damage. Here, we investigated the contribution of DLK1 to experimental renal damage and the underlying molecular mechanisms. Using a Dlk1-null mouse model in the experimental renal damage of unilateral ureteral obstruction, we found activation of NOTCH, as shown by increased nuclear translocation of the NOTCH1 intracellular domain, and upregulation of Dlk2/hey-1 expression compared to wild-type (WT) littermates. NOTCH1 over-activation in Dlk1-null injured kidneys was associated with a higher inflammatory response, characterized by infiltration of inflammatory cells, mainly CD4/IL17A + lymphocytes, and activation of the Th17 immune response. Furthermore, pharmacological NOTCH blockade inhibited the transcription factors controlling Th17 differentiation and gene expression of the Th17 effector cytokine IL-17A and other related-inflammatory factors, linked to a diminution of inflammation in the injured kidneys. We propose that the non-canonical NOTCH ligand DLK1 acts as a NOTCH antagonist in renal injury regulating the Th17-mediated inflammatory response.
Collapse
Affiliation(s)
- Laura Marquez-Exposito
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz. Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Raul R Rodrigues-Diez
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz. Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz. Universidad Autónoma de Madrid, Madrid, Spain.,Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida IRBLleida, Lleida, Spain
| | | | - Raquel Rodrigues-Diez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Macarena Orejudo
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz. Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Laura Santos-Sanchez
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz. Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Eva Maria Blanco
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Jorge Laborda
- Biochemistry and Molecular Biology Branch, Department of Inorganic and Organic Chemistry and Biochemistry, University of Castilla-La Mancha, Spanish National Research Council (CSIC), Albacete, Spain
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Santiago Lamas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Carolina Lavoz
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz. Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| |
Collapse
|
20
|
Zheng PF, Yin RX, Guan YZ, Wei BL, Liu CX, Deng GX. Association between SLC44A4-NOTCH4 SNPs and serum lipid levels in the Chinese Han and Maonan ethnic groups. Nutr Metab (Lond) 2020; 17:105. [PMID: 33317561 PMCID: PMC7737288 DOI: 10.1186/s12986-020-00533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/03/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The current research was to assess the relationship of the solute carrier family 44 member 4 (SLC44A4) rs577272, notch receptor 4 (NOTCH4) rs3134931 SNPs and serum lipid levels in the Han and Maonan ethnic groups. METHODS The genetic makeup of the SLC44A4 rs577272 and NOTCH4 rs3134931 SNPs in 2467 unrelated subjects (Han, 1254; Maonan,1213) was obtained by using polymerase chain reaction and restriction fragment length polymorphism technique, combined with gel electrophoresis, and confirmed by direct sequencing. RESULTS The genotype frequencies of SLC44A4 rs577272 and NOTCH4 rs3134931 SNPs were different between Han and Maonan populations (P < 0.05); respectively. The SLC44A4 rs577272 SNP was associated with total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-C) levels in Maonan group. The NOTCH4 rs3134931 SNP was associated with triglyceride (TG) in Han; and TG and low-density lipoprotein cholesterol (LDL-C) levels in Maonan groups (P < 0.025-0.001). Stratified analysis according to gender showed that the SLC44A4 rs577272 SNP was associated with TC and HDL-C in Han and Maonan females; TC in Maonan males, meanwhile, the NOTCH4 rs3134931 SNP was associated with TG and HDL-C in Han males; TG in Han females; TG and LDL-C in Maonan males; and TG, HDL-C and LDL-C in Maonan females. Linkage disequilibrium analysis showed that the most common haplotype was rs577272G-rs3134931A (> 50%) in both Han and Maonan groups. The haplotype of rs577272G-rs3134931A was associated with TG and HDL-C in Han; and TC, TG and HDL-C in Maonan ethnic groups. CONCLUSIONS These results suggest that the relationship among SLC44A4 rs577272, NOTCH4 rs3134931 SNPs and serum lipid parameters may vary depending on the gender and/or ethnicity/race in some populations. Haplotypes could explain more changes in serum lipid parameters than any single SNP alone particularly for TC, TG and HDL-C.
Collapse
Affiliation(s)
- Peng-Fei Zheng
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China. .,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Disease Control and Prevention, Nanning, 530021, Guangxi, People's Republic of China. .,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, Guangxi, People's Republic of China.
| | - Yao-Zong Guan
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Bi-Liu Wei
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Chun-Xiao Liu
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Guo-Xiong Deng
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| |
Collapse
|
21
|
Gratton R, Tricarico PM, d’Adamo AP, Bianco AM, Moura R, Agrelli A, Brandão L, Zupin L, Crovella S. Notch Signaling Regulation in Autoinflammatory Diseases. Int J Mol Sci 2020; 21:E8847. [PMID: 33238371 PMCID: PMC7700323 DOI: 10.3390/ijms21228847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/13/2020] [Accepted: 11/21/2020] [Indexed: 12/22/2022] Open
Abstract
Notch pathway is a highly conserved intracellular signaling route that modulates a vast variety of cellular processes including proliferation, differentiation, migration, cell fate and death. Recently, the presence of a strict crosstalk between Notch signaling and inflammation has been described, although the precise molecular mechanisms underlying this interplay have not yet been fully unravelled. Disruptions in Notch cascade, due both to direct mutations and/or to an altered regulation in the core components of Notch signaling, might lead to hypo- or hyperactivation of Notch target genes and signaling molecules, ultimately contributing to the onset of autoinflammatory diseases. To date, alterations in Notch signaling have been reported as associated with three autoinflammatory disorders, therefore, suggesting a possible role of Notch in the pathogenesis of the following diseases: hidradenitis suppurativa (HS), Behçet disease (BD), and giant cell arteritis (GCA). In this review, we aim at better characterizing the interplay between Notch and autoinflammatory diseases, trying to identify the role of this signaling route in the context of these disorders.
Collapse
Affiliation(s)
- Rossella Gratton
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (A.P.d.); (A.M.B.); (R.M.); (L.B.); (L.Z.)
| | - Paola Maura Tricarico
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (A.P.d.); (A.M.B.); (R.M.); (L.B.); (L.Z.)
| | - Adamo Pio d’Adamo
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (A.P.d.); (A.M.B.); (R.M.); (L.B.); (L.Z.)
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Anna Monica Bianco
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (A.P.d.); (A.M.B.); (R.M.); (L.B.); (L.Z.)
| | - Ronald Moura
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (A.P.d.); (A.M.B.); (R.M.); (L.B.); (L.Z.)
| | - Almerinda Agrelli
- Department of Pathology, Federal University of Pernambuco, Recife 50670-901, Brazil;
| | - Lucas Brandão
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (A.P.d.); (A.M.B.); (R.M.); (L.B.); (L.Z.)
| | - Luisa Zupin
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (A.P.d.); (A.M.B.); (R.M.); (L.B.); (L.Z.)
| | - Sergio Crovella
- Department of Biological and Environmental Sciences, College of Arts and Sciences, University of Qatar, Doha 2713, Qatar;
| |
Collapse
|
22
|
Implications of venous thromboembolism GWAS reported genetic makeup in the clinical outcome of ovarian cancer patients. THE PHARMACOGENOMICS JOURNAL 2020; 21:222-232. [PMID: 33161412 DOI: 10.1038/s41397-020-00201-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022]
Abstract
Ovarian cancer (OC) represents the most lethal gynaecological neoplasia. Conversely, venous thromboembolism (VTE) and OC are intricately connected, with many haemostatic components favouring OC progression. In light of this bilateral relationship, genome-wide association studies (GWAS) have reported several single-nucleotide polymorphisms (SNPs) associated with VTE risk that could be used as predictors of OC clinical outcome for better therapeutic management strategies. Thus, the present study aimed to analyse the impact of VTE GWAS-identified SNPs on the clinical outcome of 336 epithelial ovarian cancer (EOC) patients. Polymorphism genotyping was performed using the TaqMan® Allelic Discrimination methodology. Carriers with the ZFPM2 rs4734879 G allele presented a significantly higher 5-year OS, 10-year OS and disease-free survival (DFS) compared to AA genotype patients with FIGO I/II stages (P = 0.009, P = 0.001 and P = 0.003, respectively). Regarding SLC19A2 rs2038024 polymorphism, carriers with the CC genotype presented a significantly lower 5-year OS, 10-year OS and DFS compared to A allele carriers in the same FIGO subgroup (P < 0.001, P = 0.004 and P = 0.005, respectively). As for CNTN6 rs6764623 polymorphism, carriers with the CC genotype presented a significantly lower 5-year OS compared to A allele carriers with FIGO I/II stages (P = 0.015). As for OTUD7A rs7164569, F11 rs4253417 and PROCR rs10747514, no significant impact on EOC patients' survival was observed. However, future studies are required to validate these results and uncover the biological mechanisms underlying our results.
Collapse
|
23
|
Shafi O. Switching of vascular cells towards atherogenesis, and other factors contributing to atherosclerosis: a systematic review. Thromb J 2020; 18:28. [PMID: 33132762 PMCID: PMC7592591 DOI: 10.1186/s12959-020-00240-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
Background Onset, development and progression of atherosclerosis are complex multistep processes. Many aspects of atherogenesis are not yet properly known. This study investigates the changes in vasculature that contribute to switching of vascular cells towards atherogenesis, focusing mainly on ageing. Methods Databases including PubMed, MEDLINE and Google Scholar were searched for published articles without any date restrictions, involving atherogenesis, vascular homeostasis, aging, gene expression, signaling pathways, angiogenesis, vascular development, vascular cell differentiation and maintenance, vascular stem cells, endothelial and vascular smooth muscle cells. Results Atherogenesis is a complex multistep process that unfolds in a sequence. It is caused by alterations in: epigenetics and genetics, signaling pathways, cell circuitry, genome stability, heterotypic interactions between multiple cell types and pathologic alterations in vascular microenvironment. Such alterations involve pathological changes in: Shh, Wnt, NOTCH signaling pathways, TGF beta, VEGF, FGF, IGF 1, HGF, AKT/PI3K/ mTOR pathways, EGF, FOXO, CREB, PTEN, several apoptotic pathways, ET - 1, NF-κB, TNF alpha, angiopoietin, EGFR, Bcl - 2, NGF, BDNF, neurotrophins, growth factors, several signaling proteins, MAPK, IFN, TFs, NOs, serum cholesterol, LDL, ephrin, its receptor pathway, HoxA5, Klf3, Klf4, BMPs, TGFs and others.This disruption in vascular homeostasis at cellular, genetic and epigenetic level is involved in switching of the vascular cells towards atherogenesis. All these factors working in pathologic manner, contribute to the development and progression of atherosclerosis. Conclusion The development of atherosclerosis involves the switching of gene expression towards pro-atherogenic genes. This happens because of pathologic alterations in vascular homeostasis. When pathologic alterations in epigenetics, genetics, regulatory genes, microenvironment and vascular cell biology accumulate beyond a specific threshold, then the disease begins to express itself phenotypically. The process of biological ageing is one of the most significant factors in this aspect as it is also involved in the decline in homeostasis, maintenance and integrity.The process of atherogenesis unfolds sequentially (step by step) in an interconnected loop of pathologic changes in vascular biology. Such changes are involved in 'switching' of vascular cells towards atherosclerosis.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
24
|
Bi S, Liu R, Shen Y, Gu J. Bioinformatics analysis of key genes and miRNAs associated with Stanford type A aortic dissection. J Thorac Dis 2020; 12:4842-4853. [PMID: 33145057 PMCID: PMC7578500 DOI: 10.21037/jtd-20-1337] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Aortic dissection is one of the most detrimental cardiovascular diseases with a high risk of mortality and morbidity. This study aimed to examine the key genes and microRNAs associated with Stanford type A aortic dissection (AAD). Methods The expression data of AAD and healthy samples were downloaded from two microarray datasets in the Gene Expression Omnibus (GEO) database to identify highly preserved modules by weighted gene co-expression network analysis (WGCNA). Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRNAs) were selected and functionally annotated. The predicted interactions between the DEGs and DEmiRNAs were further illustrated. Results In two highly preserved modules, 459 DEGs were identified. These DEGs were functionally enriched in the HIF1, Notch, and PI3K/Akt pathways. Furthermore, 6 DEmiRNAs that were enriched in the regulation of vasculature development and HIF1 pathway, were predicted to target 23 DEGs. Conclusions Our study presented several promising modulators, both DEGs and DEmiRNAs, as well as possible pathological pathways for AAD, which narrows the scope for further fundamental research.
Collapse
Affiliation(s)
- Siwei Bi
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Ruiqi Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yinzhi Shen
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Unni P A, Sudhakaran SL, Pillai GG. Review on druggable targets of key age-associated properties regulated by therapeutic agents. Chem Biol Drug Des 2020; 96:1069-1083. [PMID: 32679616 DOI: 10.1111/cbdd.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/27/2020] [Accepted: 07/05/2020] [Indexed: 11/28/2022]
Abstract
Aging is a biological process which accounts for the deterioration of effective physiological functions. The malfunctioning of vital organ systems leads to the onset of neurodegenerative, cardiovascular, and immunomodulatory diseases in the elder population. Age-dependent mitochondrial dysfunctions trigger the production of reactive oxygen species, which serve as a major contributing factor for the onset of age-associated diseases. The increasing burden of age-related pathologies explicates the relevance of identifying novel therapeutic agents with enhanced potency and bioavailability. Key information on the biological mechanisms of significant age-related diseases aids in understanding relevant druggable targets essential for the initiation and progression of the disease. This review provides detailed insights into the druggable targets of key anti-aging properties of therapeutic agents such as anti-oxidant, immunomodulation, cardioprotection, anti-melanogenic, and anti-elastase properties. This information aids in the development of novel therapeutic agents/ supplements with enhanced efficacy.
Collapse
Affiliation(s)
- Ambili Unni P
- School of Biosciences and Technology, VIT, Vellore, India
| | | | - Girinath G Pillai
- School of Biosciences and Technology, VIT, Vellore, India.,Nyro Research India, Kochi, Kerala, India
| |
Collapse
|
26
|
Campos-Estrada C, González-Herrera F, Greif G, Carillo I, Guzmán-Rivera D, Liempi A, Robello C, Kemmerling U, Castillo C, Maya JD. Notch receptor expression in Trypanosoma cruzi-infected human umbilical vein endothelial cells treated with benznidazole or simvastatin revealed by microarray analysis. Cell Biol Int 2020; 44:1112-1123. [PMID: 31943572 DOI: 10.1002/cbin.11308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/10/2020] [Indexed: 11/09/2022]
Abstract
Chagas disease is a vector-borne disease caused by the protozoan parasite Trypanosoma cruzi. Current therapy involves benznidazole. Benznidazole and other drugs can modify gene expression patterns, improving the response to the inflammatory influx induced by T. cruzi and decreasing the endothelial activation or immune cell recruitment, among other effects. Here, we performed a microarray analysis of human umbilical vein endothelial cells (HUVECs) treated with benznidazole and the anti-inflammatory drugs acetylsalicylic acid or simvastatin and infected with T. cruzi. Parasitic infection produces differential expression of a set of genes in HUVECs treated with benznidazole alone or a combination with simvastatin or acetylsalicylic acid. The differentially expressed genes were involved in inflammation, adhesion, cardiac function, and remodeling. Notch1 and high mobility group B1 were genes of interest in this analysis due to their importance in placental development, cardiac development, and inflammation. Quantitative polymerase chain reaction confirmation of these two genes indicated that both are upregulated in the presence of benznidazole.
Collapse
Affiliation(s)
- Carolina Campos-Estrada
- Facultad de Farmacia, Universidad de Valparaíso, Av. Gran Bretaña 1093, Playa Ancha, Valparaíso, Región de Valparaíso, 2360102, Chile
| | - Fabiola González-Herrera
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| | - Gonzalo Greif
- Molecular Biology Unit, Pasteur Institute and Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125, Montevideo, 11800, Uruguay
| | - Ileana Carillo
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| | - Daniela Guzmán-Rivera
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| | - Ana Liempi
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| | - Carlos Robello
- Molecular Biology Unit, Pasteur Institute and Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125, Montevideo, 11800, Uruguay
| | - Ulrike Kemmerling
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| | - Christian Castillo
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| | - Juan Diego Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| |
Collapse
|
27
|
Conrad D, Wilker S, Schneider A, Karabatsiakis A, Pfeiffer A, Kolassa S, Freytag V, Vukojevic V, Vogler C, Milnik A, Papassotiropoulos A, J.‐F. de Quervain D, Elbert T, Kolassa I. Integrated genetic, epigenetic, and gene set enrichment analyses identify NOTCH as a potential mediator for PTSD risk after trauma: Results from two independent African cohorts. Psychophysiology 2020; 57:e13288. [PMID: 30328613 PMCID: PMC7379258 DOI: 10.1111/psyp.13288] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022]
Abstract
The risk of developing posttraumatic stress disorder (PTSD) increases with the number of traumatic event types experienced (trauma load) in interaction with other psychobiological risk factors. The NOTCH (neurogenic locus notch homolog proteins) signaling pathway, consisting of four different trans-membrane receptor proteins (NOTCH1-4), constitutes an evolutionarily well-conserved intercellular communication pathway (involved, e.g., in cell-cell interaction, inflammatory signaling, and learning processes). Its association with fear memory consolidation makes it an interesting candidate for PTSD research. We tested for significant associations of common genetic variants of NOTCH1-4 (investigated by microarray) and genomic methylation of saliva-derived DNA with lifetime PTSD risk in independent cohorts from Northern Uganda (N1 = 924) and Rwanda (N2 = 371), and investigated whether NOTCH-related gene sets were enriched for associations with lifetime PTSD risk. We found associations of lifetime PTSD risk with single nucleotide polymorphism (SNP) rs2074621 (NOTCH3) (puncorrected = 0.04) in both cohorts, and with methylation of CpG site cg17519949 (NOTCH3) (puncorrected = 0.05) in Rwandans. Yet, none of the (epi-)genetic associations survived multiple testing correction. Gene set enrichment analyses revealed enrichment for associations of two NOTCH pathways with lifetime PTSD risk in Ugandans: NOTCH binding (pcorrected = 0.003) and NOTCH receptor processing (pcorrected = 0.01). The environmental factor trauma load was significant in all analyses (all p < 0.001). Our integrated methodological approach suggests NOTCH as a possible mediator of PTSD risk after trauma. The results require replication, and the precise underlying pathophysiological mechanisms should be illuminated in future studies.
Collapse
Affiliation(s)
- Daniela Conrad
- Clinical Psychology and NeuropsychologyUniversity of KonstanzKonstanzGermany
- Clinical & Biological Psychology, Institute of Psychology and EducationUlm UniversityUlmGermany
| | - Sarah Wilker
- Clinical & Biological Psychology, Institute of Psychology and EducationUlm UniversityUlmGermany
| | - Anna Schneider
- Clinical & Biological Psychology, Institute of Psychology and EducationUlm UniversityUlmGermany
| | - Alexander Karabatsiakis
- Clinical & Biological Psychology, Institute of Psychology and EducationUlm UniversityUlmGermany
| | - Anett Pfeiffer
- Clinical Psychology and NeuropsychologyUniversity of KonstanzKonstanzGermany
| | | | - Virginie Freytag
- Division of Molecular NeuroscienceUniversity of BaselBaselSwitzerland
- Transfaculty Research Platform Molecular and Cognitive NeurosciencesUniversity of BaselBaselSwitzerland
| | - Vanja Vukojevic
- Division of Molecular NeuroscienceUniversity of BaselBaselSwitzerland
- Transfaculty Research Platform Molecular and Cognitive NeurosciencesUniversity of BaselBaselSwitzerland
- Department Biozentrum, Life Sciences Training FacilityUniversity of BaselBaselSwitzerland
- Psychiatric University ClinicsUniversity of BaselBaselSwitzerland
| | - Christian Vogler
- Division of Molecular NeuroscienceUniversity of BaselBaselSwitzerland
- Transfaculty Research Platform Molecular and Cognitive NeurosciencesUniversity of BaselBaselSwitzerland
- Psychiatric University ClinicsUniversity of BaselBaselSwitzerland
| | - Annette Milnik
- Division of Molecular NeuroscienceUniversity of BaselBaselSwitzerland
- Transfaculty Research Platform Molecular and Cognitive NeurosciencesUniversity of BaselBaselSwitzerland
- Psychiatric University ClinicsUniversity of BaselBaselSwitzerland
| | - Andreas Papassotiropoulos
- Division of Molecular NeuroscienceUniversity of BaselBaselSwitzerland
- Transfaculty Research Platform Molecular and Cognitive NeurosciencesUniversity of BaselBaselSwitzerland
- Department Biozentrum, Life Sciences Training FacilityUniversity of BaselBaselSwitzerland
- Psychiatric University ClinicsUniversity of BaselBaselSwitzerland
| | - Dominique J.‐F. de Quervain
- Transfaculty Research Platform Molecular and Cognitive NeurosciencesUniversity of BaselBaselSwitzerland
- Psychiatric University ClinicsUniversity of BaselBaselSwitzerland
- Division of Cognitive NeuroscienceUniversity of BaselBaselSwitzerland
| | - Thomas Elbert
- Clinical Psychology and NeuropsychologyUniversity of KonstanzKonstanzGermany
| | - Iris‐Tatjana Kolassa
- Clinical & Biological Psychology, Institute of Psychology and EducationUlm UniversityUlmGermany
| |
Collapse
|
28
|
Brennen WN, Isaacs JT. Mesenchymal stem cells and the embryonic reawakening theory of BPH. Nat Rev Urol 2019; 15:703-715. [PMID: 30214054 DOI: 10.1038/s41585-018-0087-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The prostate is the only organ in a man that continues to grow with age. John McNeal proposed, 40 years ago, that this BPH is characterized by an age-related reinitiation of benign neoplastic growth selectively in developmentally abortive distal ducts within the prostate transition-periurethral zone (TPZ), owing to a reawakening of inductive stroma selectively within these zones. An innovative variant of this hypothesis is that, owing to its location, the TPZ is continuously exposed to urinary components and/or autoantigens, which produces an inflammatory TPZ microenvironment that promotes recruitment of bone marrow-derived mesenchymal stem cells (MSCs) and generates a paracrine-inductive stroma that reinitiates benign neoplastic nodular growth. In support of this hypothesis, MSCs infiltrate human BPH tissue and have the ability to stimulate epithelial stem cell growth. These results provide a framework for defining both the aetiology of BPH in ageing men and insights into new therapeutic approaches.
Collapse
Affiliation(s)
- W Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, MD, USA.
| | - John T Isaacs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, MD, USA. .,Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
29
|
Hans CP, Sharma N, Sen S, Zeng S, Dev R, Jiang Y, Mahajan A, Joshi T. Transcriptomics Analysis Reveals New Insights into the Roles of Notch1 Signaling on Macrophage Polarization. Sci Rep 2019; 9:7999. [PMID: 31142802 PMCID: PMC6541629 DOI: 10.1038/s41598-019-44266-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/29/2019] [Indexed: 12/24/2022] Open
Abstract
Naïve macrophages (Mφ) polarize in response to various environmental cues to a spectrum of cells that have distinct biological functions. The extreme ends of the spectrum are classified as M1 and M2 macrophages. Previously, we demonstrated that Notch1 deficiency promotes Tgf-β2 dependent M2-polarization in a mouse model of abdominal aortic aneurysm. The present studies aimed to characterize the unique set of genes regulated by Notch1 signaling in macrophage polarization. Bone marrow derived macrophages isolated from WT or Notch1+/- mice (n = 12) were differentiated to Mφ, M1 or M2-phenotypes by 24 h exposure to vehicle, LPS/IFN-γ or IL4/IL13 respectively and total RNA was subjected to RNA-Sequencing (n = 3). Bioinformatics analyses demonstrated that Notch1 haploinsufficiency downregulated the expression of 262 genes at baseline level, 307 genes with LPS/IFN-γ and 254 genes with IL4/IL13 treatment. Among these, the most unique genes downregulated by Notch1 haploinsufficiency included fibromodulin (Fmod), caspase-4, Has1, Col1a1, Alpl and Igf. Pathway analysis demonstrated that extracellular matrix, macrophage polarization and osteogenesis were the major pathways affected by Notch1 haploinsufficiency. Gain and loss-of-function studies established a strong correlation between Notch1 haploinsufficiency and Fmod in regulating Tgf-β signaling. Collectively, our studies suggest that Notch1 haploinsufficiency increases M2 polarization through these newly identified genes.
Collapse
Affiliation(s)
- Chetan P Hans
- Department of Cardiovascular Medicine, University of Missouri, Columbia, USA.
- Medical Pharmacology and Physiology, University of Missouri, Columbia, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, USA.
| | - Neekun Sharma
- Department of Cardiovascular Medicine, University of Missouri, Columbia, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, USA
| | - Sidharth Sen
- MU Informatics Institute, University of Missouri, Columbia, USA
| | - Shuai Zeng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, USA
| | - Rishabh Dev
- Department of Cardiovascular Medicine, University of Missouri, Columbia, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, USA
| | - Yuexu Jiang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, USA
| | - Advitiya Mahajan
- Department of Cardiovascular Medicine, University of Missouri, Columbia, USA
| | - Trupti Joshi
- MU Informatics Institute, University of Missouri, Columbia, USA
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, USA
- Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, USA
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, USA
| |
Collapse
|
30
|
Riffo-Campos AL, Fuentes-Trillo A, Tang WY, Soriano Z, De Marco G, Rentero-Garrido P, Adam-Felici V, Lendinez-Tortajada V, Francesconi K, Goessler W, Ladd-Acosta C, Leon-Latre M, Casasnovas JA, Chaves FJ, Navas-Acien A, Guallar E, Tellez-Plaza M. In silico epigenetics of metal exposure and subclinical atherosclerosis in middle aged men: pilot results from the Aragon Workers Health Study. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0084. [PMID: 29685964 DOI: 10.1098/rstb.2017.0084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2017] [Indexed: 12/14/2022] Open
Abstract
We explored the association of metal levels with subclinical atherosclerosis and epigenetic changes in relevant biological pathways. Whole blood DNA Infinium Methylation 450 K data were obtained from 23 of 73 middle age men without clinically evident cardiovascular disease (CVD) who participated in the Aragon Workers Health Study in 2009 (baseline visit) and had available baseline urinary metals and subclinical atherosclerosis measures obtained in 2010-2013 (follow-up visit). The median metal levels were 7.36 µg g-1, 0.33 µg g-1, 0.11 µg g-1 and 0.07 µg g-1, for arsenic (sum of inorganic and methylated species), cadmium, antimony and tungsten, respectively. Urine cadmium and tungsten were associated with femoral and carotid intima-media thickness, respectively (Pearson's r = 0.27; p = 0.03 in both cases). Among nearest genes to identified differentially methylated regions (DMRs), 46% of metal-DMR genes overlapped with atherosclerosis-DMR genes (p < 0.001). Pathway enrichment analysis of atherosclerosis-DMR genes showed a role in inflammatory, metabolic and transport pathways. In in silico protein-to-protein interaction networks among proteins encoded by 162 and 108 genes attributed to atherosclerosis- and metal-DMRs, respectively, with proteins known to have a role in atherosclerosis pathways, we observed hub proteins in the network associated with both atherosclerosis and metal-DMRs (e.g. SMAD3 and NOP56), and also hub proteins associated with metal-DMRs only but with relevant connections with atherosclerosis effectors (e.g. SSTR5, HDAC4, AP2A2, CXCL12 and SSTR4). Our integrative in silico analysis demonstrates the feasibility of identifying epigenomic regions linked to environmental exposures and potentially involved in relevant pathways for human diseases. While our results support the hypothesis that metal exposures can influence health due to epigenetic changes, larger studies are needed to confirm our pilot results.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.
Collapse
Affiliation(s)
- Angela L Riffo-Campos
- Area of Cardiometabolic Risk, Institute for Biomedical Research Hospital Clinic of Valencia, Menendez Pelayo 4 Accesorio, 46010 Valencia, Spain
| | - Azahara Fuentes-Trillo
- Genomics and Genetic Diagnostic Unit, Institute for Biomedical Research Hospital Clinic of Valencia, Menendez Pelayo 4 Accesorio, 46010 Valencia, Spain
| | - Wan Y Tang
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Zoraida Soriano
- Instituto de Investigación Sanitaria de Aragon, 50009 Zaragoza, Spain
| | - Griselda De Marco
- Genomics and Genetic Diagnostic Unit, Institute for Biomedical Research Hospital Clinic of Valencia, Menendez Pelayo 4 Accesorio, 46010 Valencia, Spain
| | - Pilar Rentero-Garrido
- Genomics and Genetic Diagnostic Unit, Institute for Biomedical Research Hospital Clinic of Valencia, Menendez Pelayo 4 Accesorio, 46010 Valencia, Spain
| | - Victoria Adam-Felici
- Genomics and Genetic Diagnostic Unit, Institute for Biomedical Research Hospital Clinic of Valencia, Menendez Pelayo 4 Accesorio, 46010 Valencia, Spain
| | - Veronica Lendinez-Tortajada
- Genomics and Genetic Diagnostic Unit, Institute for Biomedical Research Hospital Clinic of Valencia, Menendez Pelayo 4 Accesorio, 46010 Valencia, Spain
| | | | - Walter Goessler
- Institute of Chemistry, University of Graz, 8010 Graz, Austria
| | | | - Montse Leon-Latre
- Instituto de Investigación Sanitaria de Aragon, 50009 Zaragoza, Spain.,Servicio Aragones de Salud, 50071 Zaragoza, Spain
| | - Jose A Casasnovas
- Instituto de Investigación Sanitaria de Aragon, 50009 Zaragoza, Spain.,Instituto Aragonés de Ciencias de Salud, 50009 Zaragoza, Spain.,Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - F Javier Chaves
- Genomics and Genetic Diagnostic Unit, Institute for Biomedical Research Hospital Clinic of Valencia, Menendez Pelayo 4 Accesorio, 46010 Valencia, Spain
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Eliseo Guallar
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD 21205, USA.,Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Maria Tellez-Plaza
- Area of Cardiometabolic Risk, Institute for Biomedical Research Hospital Clinic of Valencia, Menendez Pelayo 4 Accesorio, 46010 Valencia, Spain .,Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
31
|
Norum HM, Michelsen AE, Lekva T, Arora S, Otterdal K, Olsen MB, Kong XY, Gude E, Andreassen AK, Solbu D, Karason K, Dellgren G, Gullestad L, Aukrust P, Ueland T. Circulating delta-like Notch ligand 1 is correlated with cardiac allograft vasculopathy and suppressed in heart transplant recipients on everolimus-based immunosuppression. Am J Transplant 2019; 19:1050-1060. [PMID: 30312541 DOI: 10.1111/ajt.15141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 02/06/2023]
Abstract
Cardiac allograft vasculopathy (CAV) causes heart failure after heart transplantation (HTx), but its pathogenesis is incompletely understood. Notch signaling, possibly modulated by everolimus (EVR), is essential for processes involved in CAV. We hypothesized that circulating Notch ligands would be dysregulated after HTx. We studied circulating delta-like Notch ligand 1 (DLL1) and periostin (POSTN) and CAV in de novo HTx recipients (n = 70) randomized to standard or EVR-based, calcineurin inhibitor-free immunosuppression and in maintenance HTx recipients (n = 41). Compared to healthy controls, plasma DLL1 and POSTN were elevated in de novo (P < .01; P < .001) and maintenance HTx recipients (P < .001; P < .01). Use of EVR was associated with a treatment effect for DLL1. For de novo HTx recipients, a change in DLL1 correlated with a change in CAV at 1 (P = .021) and 3 years (P = .005). In vitro, activation of T cells increased DLL1 secretion, attenuated by EVR. In vitro data suggest that also endothelial cells and vascular smooth muscle cells (VSMCs) could contribute to circulating DLL1. Immunostaining of myocardial specimens showed colocalization of DLL1 with T cells, endothelial cells, and VSMCs. Our findings suggest a role of DLL1 in CAV progression, and that the beneficial effect of EVR on CAV could reflect a suppressive effect on DLL1. Trial registration numbers-SCHEDULE trial: ClinicalTrials.gov NCT01266148; NOCTET trial: ClinicalTrials.gov NCT00377962.
Collapse
Affiliation(s)
- Hilde M Norum
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Medical Faculty, University of Oslo, Oslo, Norway.,Division of Emergencies and Critical Care, Department for Research and Development, Oslo University Hospital, Oslo, Norway
| | - Annika E Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Medical Faculty, University of Oslo, Oslo, Norway
| | - Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Satish Arora
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Center for Heart Failure Research, Medical Faculty, University of Oslo, Oslo, Norway
| | - Kari Otterdal
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Maria Belland Olsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Xiang Yi Kong
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Medical Faculty, University of Oslo, Oslo, Norway
| | - Einar Gude
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Arne K Andreassen
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | - Kristjan Karason
- Sahlgrenska University Hospital, Transplant Institute, Gothenburg, Sweden.,Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Göran Dellgren
- Sahlgrenska University Hospital, Transplant Institute, Gothenburg, Sweden.,Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden.,Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Gullestad
- Institute of Clinical Medicine, Medical Faculty, University of Oslo, Oslo, Norway.,Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Medical Faculty, University of Oslo, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Medical Faculty, University of Oslo, Oslo, Norway.,K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway
| |
Collapse
|
32
|
Ray PR, Khan J, Wangzhou A, Tavares-Ferreira D, Akopian AN, Dussor G, Price TJ. Transcriptome Analysis of the Human Tibial Nerve Identifies Sexually Dimorphic Expression of Genes Involved in Pain, Inflammation, and Neuro-Immunity. Front Mol Neurosci 2019; 12:37. [PMID: 30890918 PMCID: PMC6412153 DOI: 10.3389/fnmol.2019.00037] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/31/2019] [Indexed: 12/21/2022] Open
Abstract
Sex differences in gene expression are important contributors to normal physiology and mechanisms of disease. This is increasingly apparent in understanding and potentially treating chronic pain where molecular mechanisms driving sex differences in neuronal plasticity are giving new insight into why certain chronic pain disorders preferentially affect women vs. men. Large transcriptomic resources are now available and can be used to mine for sex differences to gather insight from molecular profiles using donor cohorts. We performed in-depth analysis of 248 human tibial nerve (hTN) transcriptomes from the GTEx Consortium project to gain insight into sex-dependent gene expression in the peripheral nervous system (PNS). We discover 149 genes with sex differential gene expression. Many of the more abundant genes in men are associated with inflammation and appear to be primarily expressed by glia or immune cells, with some genes downstream of Notch signaling. In women, we find the differentially expressed transcription factor SP4 that is known to drive a regulatory program, and may impact sex differences in PNS physiology. Many of these 149 differentially expressed (DE) genes have some previous association with chronic pain but few of them have been explored thoroughly. Additionally, using clinical data in the GTEx database, we identify a subset of DE, sexually dimorphic genes in diseases associated with chronic pain: arthritis and Type II diabetes. Our work creates a unique resource that identifies sexually dimorphic gene expression in the human PNS with implications for discovery of sex-specific pain mechanisms.
Collapse
Affiliation(s)
- Pradipta R. Ray
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, United States
| | - Jawad Khan
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, United States
| | - Andi Wangzhou
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, United States
| | - Diana Tavares-Ferreira
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, United States
| | - Armen N. Akopian
- Department of Endodontics, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, United States
| | - Theodore J. Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
33
|
Dergilev KV, Zubkova ЕS, Beloglazova IB, Menshikov МY, Parfyonova ЕV. Notch signal pathway - therapeutic target for regulation of reparative processes in the heart. TERAPEVT ARKH 2018; 90:112-121. [PMID: 30701843 DOI: 10.26442/00403660.2018.12.000014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Notch signaling pathway is a universal regulator of cell fate in embryogenesis and in maintaining the cell homeostasis of adult tissue. Through local cell-cell interactions, he controls neighboring cells behavior and determines their capacity for self-renewal, growth, survival, differentiation, and apoptosis. Recent studies have shown that the control of regenerative processes in the heart is also carried out with the participation of Notch system. At the heart of Notch regulates migration bone marrow progenitors and stimulates the proliferation of cardiomyocytes, cardiac progenitor cell activity, limits cardiomyocyte hypertrophy and fibrosis progression and stimulates angiogenesis. Notch signaling pathway may be regarded as a very promising target for the development of drugs for the stimulation of regeneration in the myocardium.
Collapse
Affiliation(s)
- K V Dergilev
- National Medical Research Center for Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Е S Zubkova
- National Medical Research Center for Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - I B Beloglazova
- National Medical Research Center for Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - М Yu Menshikov
- National Medical Research Center for Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Е V Parfyonova
- National Medical Research Center for Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia.,M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
34
|
Sanguansermsri P, Jenkinson HF, Thanasak J, Chairatvit K, Roytrakul S, Kittisenachai S, Puengsurin D, Surarit R. Comparative proteomic study of dog and human saliva. PLoS One 2018; 13:e0208317. [PMID: 30513116 PMCID: PMC6279226 DOI: 10.1371/journal.pone.0208317] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 11/15/2018] [Indexed: 11/18/2022] Open
Abstract
Saliva contains many proteins that have an important role in biological process of the oral cavity and is closely associated with many diseases. Although the dog is a common companion animal, the composition of salivary proteome and its relationship with that of human are unclear. In this study, shotgun proteomics was used to compare the salivary proteomes of 7 Thai village dogs and 7 human subjects. Salivary proteomes revealed 2,532 differentially expressed proteins in dogs and humans, representing various functions including cellular component organization or biogenesis, cellular process, localization, biological regulation, response to stimulus, developmental process, multicellular organismal process, metabolic process, immune system process, apoptosis and biological adhesion. The oral proteomes of dogs and humans were appreciably different. Proteins related to apoptosis processes and biological adhesion were predominated in dog saliva. Drug-target network predictions by STITCH Version 5.0 showed that dog salivary proteins were found to have potential roles in tumorigenesis, anti-inflammation and antimicrobial processes. In addition, proteins related to regeneration and healing processes such as fibroblast growth factor and epidermal growth factor were also up-regulated in dogs. These findings provide new information on dog saliva composition and will be beneficial for the study of dog saliva in diseased and health conditions in the future.
Collapse
Affiliation(s)
- Phutsa Sanguansermsri
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
- Department of Clinical Medicine and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | | | - Jitkamol Thanasak
- Department of Clinical Medicine and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Kongthawat Chairatvit
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | - Suthathip Kittisenachai
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | | | - Rudee Surarit
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
35
|
Binesh A, Devaraj SN, Halagowder D. Molecular interaction of NFκB and NICD in monocyte-macrophage differentiation is a target for intervention in atherosclerosis. J Cell Physiol 2018; 234:7040-7050. [PMID: 30478968 DOI: 10.1002/jcp.27458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/29/2018] [Indexed: 12/29/2022]
Abstract
The activation of two transcription factors, NFκB and NICD (notch intracellular domain), plays a crucial role in different stages of atherosclerotic disease progression, from early endothelial activation by modified lipids like oxidized low-density lipoprotein (oxyLDL) to the imminent rupture of the atherosclerotic plaque. Inflammatory mediators and the notch pathway proteins were upregulated in atherogenic diet-induced rats and the same was confirmed by the differentiation of monocyte to macrophage on exposure to oxyLDL. The inflammatory transcription factor NFκB and the notch signaling transcription factor NICD were analysed for their molecular interaction in monocyte to macrophage differentiation. Inhibition of NFκB by dexamethasone in monocyte to macrophage differentiation resulted in a concomitant downregulation of NICD, whereas inhibition of NICD by N-(N-[3, 5-difluorophenacetyl])-l-alanyl)-S-phenylglycine t-butyl ester (DAPT), a γ-secretase inhibitor, did not significantly influence the expression of NFκB, but downregulated macrophage differentiation. These findings revealed that NFκB inhibition using dexamethasone regulated NICD, which turned down macrophage differentiation. Thus, inhibition of both NFκB-NICD is a potential target for intervention in atherosclerosis.
Collapse
Affiliation(s)
- Ambika Binesh
- Department of Zoology, Unit of Biochemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| | | | - Devaraj Halagowder
- Department of Zoology, Unit of Biochemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
36
|
Wang Q, Li D, Han Y, Ding X, Xu T, Tang B. MicroRNA-146 protects A549 and H1975 cells from LPS-induced apoptosis and inflammation injury. J Biosci 2018; 42:637-645. [PMID: 29229881 DOI: 10.1007/s12038-017-9715-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pneumonia is an inflammatory condition affecting the lungs, in which pro-inflammatory cytokines are secreted. It has been shown that microRNA-146 (miR-146) is involved in the regulation of immune and inflammatory responses. The present study explored the protective effects of miR-146 overexpression on lipopolysaccharide (LPS)-mediated injury in A549 and H1975 cells. In this study, A549 and H1975 cells were transfected with miR-146 mimic or inhibitor, and then were subjected with LPS. Thereafter, cell viability, colony formation capacity, apoptosis, the release of proinflammatory factors, Sirt1 expression, and the expression of NF-κB and Notch pathway proteins were respectively assessed. As a result, miR- 146 overexpression exerted protective functions on LPS-damaged A549 and H1975 cells, as evidenced by the increases in cell viability and colony number, the decrease in apoptotic cell rate, as well as the down-regulations of IL-1, IL-6, and TNF-α. Sirt1 can be positively regulated by miR-146. Furthermore, miR-146 overexpression blocked NF-κB and Notch pathways, while these blocking effects were abolished when Sirt1 was silenced. The findings in the current study indicated that miR-146 protected A549 and H1975 cells from LPS-induced apoptosis and inflammation injury. miR-146 exerted protective functions might be via up-regulation of Sirt1 and thereby blocking NF-κB and Notch pathways.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Respiratory, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | | | | | | | | | | |
Collapse
|
37
|
Guan YJ, Li J, Yang X, Du S, Ding J, Gao Y, Zhang Y, Yang K, Chen Q. Evidence that miR-146a attenuates aging- and trauma-induced osteoarthritis by inhibiting Notch1, IL-6, and IL-1 mediated catabolism. Aging Cell 2018; 17:e12752. [PMID: 29575548 PMCID: PMC5946074 DOI: 10.1111/acel.12752] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2018] [Indexed: 12/26/2022] Open
Abstract
Primary osteoarthritis (OA) is associated with aging, while post-traumatic OA (PTOA) is associated with mechanical injury and inflammation. It is not clear whether the two types of osteoarthritis share common mechanisms. We found that miR-146a, a microRNA-associated with inflammation, is activated by cyclic load in the physiological range but suppressed by mechanical overload in human articular chondrocytes. Furthermore, miR-146a expression is decreased in the OA lesions of human articular cartilage. To understand the role of miR-146a in osteoarthritis, we systemically characterized mice in which miR-146a is either deficient in whole body or overexpressed in chondrogenic cells specifically. miR-146a-deficient mice develop early onset of OA characterized by cartilage degeneration, synovitis, and osteophytes. Conversely, miR-146a chondrogenic overexpressing mice are resistant to aging-associated OA. Loss of miR-146a exacerbates articular cartilage degeneration during PTOA, while chondrogenic overexpression of miR-146a inhibits PTOA. Thus, miR-146a inhibits both OA and PTOA in mice, suggesting a common protective mechanism initiated by miR-146a. miR-146a suppresses IL-1β of catabolic factors, and we provide evidence that miR-146a directly inhibits Notch1 expression. Therefore, such inhibition of Notch1 may explain suppression of inflammatory mediators by miR-146a. Chondrogenic overexpression of miR-146a or intra-articular administration of a Notch1 inhibitor alleviates IL-1β-induced catabolism and rescues joint degeneration in miR-146a-deficient mice, suggesting that miR-146a is sufficient to protect OA pathogenesis by inhibiting Notch signaling in the joint. Thus, miR-146a may be used to counter both aging-associated OA and mechanical injury-/inflammation-induced PTOA.
Collapse
Affiliation(s)
- Ying-Jie Guan
- Bone and Joint Research Center; The First Affiliated Hospital and Frontier Institute of Science and Technology; Xi'an JiaoTong University; Xi'an China
- Cell and Molecular Biology Laboratory; Department of Orthopaedics; Alpert Medical School of Brown University/Rhode Island Hospital; Providence RI USA
| | - Jing Li
- Bone and Joint Research Center; The First Affiliated Hospital and Frontier Institute of Science and Technology; Xi'an JiaoTong University; Xi'an China
| | - Xu Yang
- Department of Orthopaedics; Affiliated Hospital of Medical College of Qingdao University; Qingdao China
| | - Shaohua Du
- Cell and Molecular Biology Laboratory; Department of Orthopaedics; Alpert Medical School of Brown University/Rhode Island Hospital; Providence RI USA
| | - Jing Ding
- Cell and Molecular Biology Laboratory; Department of Orthopaedics; Alpert Medical School of Brown University/Rhode Island Hospital; Providence RI USA
| | - Yun Gao
- Cell and Molecular Biology Laboratory; Department of Orthopaedics; Alpert Medical School of Brown University/Rhode Island Hospital; Providence RI USA
| | - Ying Zhang
- Cell and Molecular Biology Laboratory; Department of Orthopaedics; Alpert Medical School of Brown University/Rhode Island Hospital; Providence RI USA
| | - Kun Yang
- Cell and Molecular Biology Laboratory; Department of Orthopaedics; Alpert Medical School of Brown University/Rhode Island Hospital; Providence RI USA
| | - Qian Chen
- Bone and Joint Research Center; The First Affiliated Hospital and Frontier Institute of Science and Technology; Xi'an JiaoTong University; Xi'an China
- Cell and Molecular Biology Laboratory; Department of Orthopaedics; Alpert Medical School of Brown University/Rhode Island Hospital; Providence RI USA
| |
Collapse
|
38
|
Wyss JC, Kumar R, Mikulic J, Schneider M, Aebi JD, Juillerat-Jeanneret L, Golshayan D. Targeted γ-secretase inhibition of Notch signaling activation in acute renal injury. Am J Physiol Renal Physiol 2018; 314:F736-F746. [DOI: 10.1152/ajprenal.00414.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Notch pathway has been reported to control tissue damage in acute kidney diseases. To investigate potential beneficial nephroprotective effects of targeting Notch, we developed chemically functionalized γ-secretase inhibitors (GSIs) targeting γ-glutamyltranspeptidase (γ-GT) and/or γ-glutamylcyclotransferase (γ-GCT), two enzymes overexpressed in the injured kidney, and evaluated them in in vivo murine models of acute tubular and glomerular damage. Exposure of the animals to disease-inducing drugs together with the functionalized GSIs improved proteinuria and, to some extent, kidney dysfunction. The expression of genes involved in the Notch pathway, acute inflammatory stress responses, and the renin-angiotensin system was enhanced in injured kidneys, which could be downregulated upon administration of functionalized GSIs. Immunohistochemistry staining and Western blots demonstrated enhanced activation of Notch1 as detected by its cleaved active intracellular domain during acute kidney injury, and this was downregulated by concomitant treatment with the functionalized GSIs. Thus targeted γ-secretase-based prodrugs developed as substrates for γ-GT/γ-GCT have the potential to selectively control Notch activation in kidney diseases with subsequent regulation of the inflammatory stress response and the renin-angiotensin pathways.
Collapse
Affiliation(s)
- Jean-Christophe Wyss
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Rajesh Kumar
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Josip Mikulic
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Manfred Schneider
- Medicinal Chemistry, Roche Pharma Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche, Basel, Switzerland
| | - Johannes D. Aebi
- Medicinal Chemistry, Roche Pharma Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche, Basel, Switzerland
| | - Lucienne Juillerat-Jeanneret
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- University Institute of Pathology, CHUV and UNIL, Lausanne, Switzerland
| | - Dela Golshayan
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
39
|
Inhibition of nuclear translocation of notch intracellular domain (NICD) by diosgenin prevented atherosclerotic disease progression. Biochimie 2018; 148:63-71. [DOI: 10.1016/j.biochi.2018.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 02/20/2018] [Indexed: 01/04/2023]
|
40
|
Attenuated Notch signaling in schizophrenia and bipolar disorder. Sci Rep 2018; 8:5349. [PMID: 29593239 PMCID: PMC5871764 DOI: 10.1038/s41598-018-23703-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022] Open
Abstract
The Notch signaling pathway plays a crucial role in neurodevelopment and in adult brain homeostasis. We aimed to further investigate Notch pathway activity in bipolar disorder (BD) and schizophrenia (SCZ) by conducting a pathway analysis. We measured plasma levels of Notch ligands (DLL1 and DLK1) using enzyme immunoassays in a large sample of patients (SCZ n = 551, BD n = 246) and healthy controls (HC n = 639). We also determined Notch pathway related gene expression levels by microarray analyses from whole blood in a subsample (SCZ n = 338, BD n = 241 and HC n = 263). We found significantly elevated Notch ligand levels in plasma in both SCZ and BD compared to HC. Significant gene expression findings included increased levels of RFNG and KAT2B (p < 0.001), and decreased levels of PSEN1 and CREBBP in both patient groups (p < 0.001). RBPJ was significantly lower in SCZ vs HC (p < 0.001), and patients using lithium had higher levels of RBPJ (p < 0.001). We provide evidence of altered Notch signaling in both SCZ and BD compared to HC, and suggest that Notch signaling pathway may be disturbed in these disorders. Lithium may ameliorate aberrant Notch signaling. We propose that drugs targeting Notch pathway could be relevant in the treatment of psychotic disorders.
Collapse
|
41
|
Emerging role of various signaling pathways in the pathogenesis and therapeutics of atherosclerosis. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.rvm.2017.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
42
|
Sachdeva J, Mahajan A, Cheng J, Baeten JT, Lilly B, Kuivaniemi H, Hans CP. Smooth muscle cell-specific Notch1 haploinsufficiency restricts the progression of abdominal aortic aneurysm by modulating CTGF expression. PLoS One 2017; 12:e0178538. [PMID: 28562688 PMCID: PMC5451061 DOI: 10.1371/journal.pone.0178538] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/15/2017] [Indexed: 02/06/2023] Open
Abstract
Aims Infiltration of macrophages and apoptosis of vascular smooth muscle cells (VSMCs) promote the development of abdominal aortic aneurysm (AAA). Previously, we demonstrated that global Notch1 deficiency prevents the formation of AAA in a mouse model. Herein, we sought to explore the cell-specific roles of Notch1 in AAA development. Methods and results Cell-specific Notch1 haploinsufficient mice, generated on Apoe-/- background using Cre-lox technology, were infused with angiotensin II (1000 ng/min/kg) for 28 days. Notch1 haploinsufficiency in myeloid cells (n = 9) prevented the formation of AAA attributed to decreased inflammation. Haploinsufficiency of Notch1 in SMCs (n = 14) per se did not prevent AAA formation, but histoarchitectural traits of AAA including elastin degradation and aortic remodeling, were minimal in SMC-Notch1+/-;Apoe-/- mice compared to Apoe-/- mice (n = 33). Increased immunostaining of the contractile SMC-phenotype markers and concomitant decreased expression of synthetic SMC-phenotype markers were observed in the aortae of SMC-Notch1+/-;Apoe-/- mice. Expression of connective tissue growth factor (CTGF), a matrix-associated protein that modulates the synthetic VSMC phenotype, increased in the abdominal aorta of Apoe-/- mice and in the adventitial region of the abdominal aorta in human AAA. Notch1 haploinsufficiency decreased the expression of Ctgf in the aorta and in vitro cell culture system. In vitro studies on SMCs using the Notch1 intracellular domain (NICD) plasmid, dominant negative mastermind-like (dnMAML), or specific siRNA suggest that Notch1, not Notch3, directly modulates the expression of CTGF. Conclusions Our data suggest that lack of Notch1 in SMCs limits dilation of the abdominal aorta by maintaining contractile SMC-phenotype and preventing matrix-remodeling.
Collapse
MESH Headings
- Animals
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Cells, Cultured
- Coculture Techniques
- Connective Tissue Growth Factor/metabolism
- Haploinsufficiency
- Matrix Metalloproteinases/biosynthesis
- Mice
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Receptor, Notch1/metabolism
Collapse
Affiliation(s)
| | - Advitiya Mahajan
- Cardiology, Medical Pharmacology & Physiology and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | - Jeeyun Cheng
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Jeremy T. Baeten
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Brenda Lilly
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Helena Kuivaniemi
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Chetan P. Hans
- Ohio State University, Columbus, Ohio, United States of America
- Cardiology, Medical Pharmacology & Physiology and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
43
|
Gao L, Fu S, Wang W, Xie C, Zhang Y, Gong F. Notch4 signaling pathway in a Kawasaki disease mouse model induced by Lactobacillus casei cell wall extract. Exp Ther Med 2017; 13:3438-3442. [PMID: 28587423 PMCID: PMC5450570 DOI: 10.3892/etm.2017.4434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 02/17/2017] [Indexed: 01/01/2023] Open
Abstract
The present study aimed to explore the role of the Notch4 signaling pathway in a mouse model of Kawasaki disease (KD) induced by Lactobacillus casei cell wall extract (LCWE). BALB/c male mice (4–6 weeks old) were intraperitoneally injected with 500 µg LCWE in phosphate-buffered saline (PBS) or PBS alone (control group). At days 3, 7, 14 and 28, the numbers of circulating endothelial progenitor cells (EPCs) in the peripheral blood and the expression of Notch4 on the surface of EPCs were detected. In addition, the levels of vascular cell adhesion molecule 1 (VCAM-1) and P-selectin in the roots of coronary arteries were evaluated. The results demonstrated that the level of circulating EPCs increased significantly at day 3, decreased progressively from day 3 onwards, and recovered to the normal level at day 28. Furthermore, the expression of Notch4 on the surface of EPCs was evidently higher in the KD model compared with that in the control group at day 7. In the endothelial cells of the coronary artery root, the protein levels of VCAM-1 and P-selectin protein increased in the KD model. In conclusion, the Notch4 signaling pathway participated in the coronary artery lesions in the KD animal model induced by LCWE.
Collapse
Affiliation(s)
- Lichao Gao
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Songling Fu
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Wei Wang
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Chunhong Xie
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Yiying Zhang
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Fangqi Gong
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
44
|
van den Bosch TPP, Kannegieter NM, Hesselink DA, Baan CC, Rowshani AT. Targeting the Monocyte-Macrophage Lineage in Solid Organ Transplantation. Front Immunol 2017; 8:153. [PMID: 28261211 PMCID: PMC5312419 DOI: 10.3389/fimmu.2017.00153] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/30/2017] [Indexed: 01/04/2023] Open
Abstract
There is an unmet clinical need for immunotherapeutic strategies that specifically target the active immune cells participating in the process of rejection after solid organ transplantation. The monocyte–macrophage cell lineage is increasingly recognized as a major player in acute and chronic allograft immunopathology. The dominant presence of cells of this lineage in rejecting allograft tissue is associated with worse graft function and survival. Monocytes and macrophages contribute to alloimmunity via diverse pathways: antigen processing and presentation, costimulation, pro-inflammatory cytokine production, and tissue repair. Cross talk with other recipient immune competent cells and donor endothelial cells leads to amplification of inflammation and a cytolytic response in the graft. Surprisingly, little is known about therapeutic manipulation of the function of cells of the monocyte–macrophage lineage in transplantation by immunosuppressive agents. Although not primarily designed to target monocyte–macrophage lineage cells, multiple categories of currently prescribed immunosuppressive drugs, such as mycophenolate mofetil, mammalian target of rapamycin inhibitors, and calcineurin inhibitors, do have limited inhibitory effects. These effects include diminishing the degree of cytokine production, thereby blocking costimulation and inhibiting the migration of monocytes to the site of rejection. Outside the field of transplantation, some clinical studies have shown that the monoclonal antibodies canakinumab, tocilizumab, and infliximab are effective in inhibiting monocyte functions. Indirect effects have also been shown for simvastatin, a lipid lowering drug, and bromodomain and extra-terminal motif inhibitors that reduce the cytokine production by monocytes–macrophages in patients with diabetes mellitus and rheumatoid arthritis. To date, detailed knowledge concerning the origin, the developmental requirements, and functions of diverse specialized monocyte–macrophage subsets justifies research for therapeutic manipulation. Here, we will discuss the effects of currently prescribed immunosuppressive drugs on monocyte/macrophage features and the future challenges.
Collapse
Affiliation(s)
- Thierry P P van den Bosch
- Department of Internal Medicine, Section of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Nynke M Kannegieter
- Department of Internal Medicine, Section of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Section of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Section of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Ajda T Rowshani
- Department of Internal Medicine, Section of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| |
Collapse
|
45
|
Hjelmgren O, Gellerman K, Kjelldahl J, Lindahl P, Bergström GML. Increased Vascularization in the Vulnerable Upstream Regions of Both Early and Advanced Human Carotid Atherosclerosis. PLoS One 2016; 11:e0166918. [PMID: 27973542 PMCID: PMC5156420 DOI: 10.1371/journal.pone.0166918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/13/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Vascularization of atherosclerotic plaques has been linked to plaque vulnerability. The aim of this study was to test if the vascularization was increased in upstream regions of early atherosclerotic carotid plaques and also to test if the same pattern of vascularization was seen in complicated, symptomatic plaques. METHODS We enrolled 45 subjects with early atherosclerotic lesions for contrast enhanced ultrasound and evaluated the percentage of plaque area in a longitudinal ultrasound section which contained contrast agent. Contrast-agent uptake was evaluated in both the upstream and downstream regions of the plaque. We also collected carotid endarterectomy specimens from 56 subjects and upstream and downstream regions were localized using magnetic resonance angiography and analyzed using histopathology and immunohistochemistry. RESULTS Vascularization was increased in the upstream regions of early carotid plaques compared with downstream regions (30% vs. 23%, p = 0.033). Vascularization was also increased in the upstream regions of advanced atherosclerotic lesions compared with downstream regions (4.6 vs. 1.4 vessels/mm2, p = 0.001) and was associated with intra-plaque hemorrhage and inflammation. CONCLUSIONS Vascularization is increased in the upstream regions of both early and advanced plaques and is in advanced lesions mainly driven by inflammation.
Collapse
Affiliation(s)
- Ola Hjelmgren
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- * E-mail:
| | - Karl Gellerman
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Josefin Kjelldahl
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Per Lindahl
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Göran M. L. Bergström
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
46
|
Fazio C, Ricciardiello L. Inflammation and Notch signaling: a crosstalk with opposite effects on tumorigenesis. Cell Death Dis 2016; 7:e2515. [PMID: 27929540 PMCID: PMC5260996 DOI: 10.1038/cddis.2016.408] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 10/08/2016] [Accepted: 11/07/2016] [Indexed: 01/09/2023]
Abstract
The Notch cascade is a fundamental and highly conserved pathway able to control cell-fate. The Notch pathway arises from the interaction of one of the Notch receptors (Notch1–4) with different types of ligands; in particular, the Notch pathway can be activated canonically (through the ligands Jagged1, Jagged2, DLL1, DLL3 or DLL4) or non-canonically (through various molecules shared by other pathways). In the context of tumor biology, the deregulation of Notch signaling is found to be crucial, but it is still not clear if the activation of this pathway exerts a tumor-promoting or a tumor suppressing function in different cancer settings. Untill now, it is well known that the inflammatory compartment is critically involved in tumor progression; however, inflammation, which occurs as a physiological response to damage, can also drive protective processes toward carcinogenesis. Therefore, the role of inflammation in cancer is still controversial and needs to be further clarified. Interestingly, recent literature reports that some of the signaling molecules modulated by the cells of the immune system also belong to or interact with the canonical and non-canonical Notch pathways, delineating a possible link between Notch activation and inflammatory environment. In this review we analyze the hypothesis that specific inflammatory conditions can control the activation of the Notch pathway in terms of biological effect, partially explaining the dichotomy of both phenomena. For this purpose, we detail the molecular links reported in the literature connecting inflammation and Notch signaling in different types of tumor, with a particular focus on colorectal carcinogenesis, which represents a perfect example of context-dependent interaction between malignant transformation and immune response.
Collapse
Affiliation(s)
- Chiara Fazio
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
47
|
Jeurissen MLJ, Walenbergh SMA, Houben T, Hendrikx T, Li J, Oligschlaeger Y, van Gorp PJ, Gijbels MJJ, Bitorina A, Nessel I, Radtke F, Vooijs M, Theys J, Shiri-Sverdlov R. Myeloid DLL4 Does Not Contribute to the Pathogenesis of Non-Alcoholic Steatohepatitis in Ldlr-/- Mice. PLoS One 2016; 11:e0167199. [PMID: 27898698 PMCID: PMC5127569 DOI: 10.1371/journal.pone.0167199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 11/10/2016] [Indexed: 01/17/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized by liver steatosis and inflammation. Currently, the underlying mechanisms leading to hepatic inflammation are not fully understood and consequently, therapeutic options are poor. Non-alcoholic steatohepatitis (NASH) and atherosclerosis share the same etiology whereby macrophages play a key role in disease progression. Macrophage function can be modulated via activation of receptor-ligand binding of Notch signaling. Relevantly, global inhibition of Notch ligand Delta-Like Ligand-4 (DLL4) attenuates atherosclerosis by altering the macrophage-mediated inflammatory response. However, the specific contribution of macrophage DLL4 to hepatic inflammation is currently unknown. We hypothesized that myeloid DLL4 deficiency in low-density lipoprotein receptor knock-out (Ldlr-/-) mice reduces hepatic inflammation. Irradiated Ldlr-/- mice were transplanted (tp) with bone marrow from wild type (Wt) or DLL4f/fLysMCre+/0 (DLL4del) mice and fed either chow or high fat, high cholesterol (HFC) diet for 11 weeks. Additionally, gene expression was assessed in bone marrow-derived macrophages (BMDM) of DLL4f/fLysMCreWT and DLL4f/fLysMCre+/0 mice. In contrast to our hypothesis, inflammation was not decreased in HFC-fed DLL4del-transplanted mice. In line, in vitro, there was no difference in the expression of inflammatory genes between DLL4-deficient and wildtype bone marrow-derived macrophages. These results suggest that myeloid DLL4 deficiency does not contribute to hepatic inflammation in vivo. Since, macrophage-DLL4 expression in our model was not completely suppressed, it can’t be totally excluded that complete DLL4 deletion in macrophages might lead to different results. Nevertheless, the contribution of non-myeloid Kupffer cells to notch signaling with regard to the pathogenesis of steatohepatitis is unknown and as such it is possible that, DLL4 on Kupffer cells promote the pathogenesis of steatohepatitis.
Collapse
Affiliation(s)
- Mike L. J. Jeurissen
- Departments of Molecular Genetics, Pathology and Radiotherapy, School of Nutrition and Translational Research in Metabolism (NUTRIM), School for Cardiovascular Diseases (CARIM) and MAASTRO/School for Developmental Biology & Oncology (GROW), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Sofie M. A. Walenbergh
- Departments of Molecular Genetics, Pathology and Radiotherapy, School of Nutrition and Translational Research in Metabolism (NUTRIM), School for Cardiovascular Diseases (CARIM) and MAASTRO/School for Developmental Biology & Oncology (GROW), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tom Houben
- Departments of Molecular Genetics, Pathology and Radiotherapy, School of Nutrition and Translational Research in Metabolism (NUTRIM), School for Cardiovascular Diseases (CARIM) and MAASTRO/School for Developmental Biology & Oncology (GROW), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tim Hendrikx
- Departments of Molecular Genetics, Pathology and Radiotherapy, School of Nutrition and Translational Research in Metabolism (NUTRIM), School for Cardiovascular Diseases (CARIM) and MAASTRO/School for Developmental Biology & Oncology (GROW), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jieyi Li
- Departments of Molecular Genetics, Pathology and Radiotherapy, School of Nutrition and Translational Research in Metabolism (NUTRIM), School for Cardiovascular Diseases (CARIM) and MAASTRO/School for Developmental Biology & Oncology (GROW), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Yvonne Oligschlaeger
- Departments of Molecular Genetics, Pathology and Radiotherapy, School of Nutrition and Translational Research in Metabolism (NUTRIM), School for Cardiovascular Diseases (CARIM) and MAASTRO/School for Developmental Biology & Oncology (GROW), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Patrick J. van Gorp
- Departments of Molecular Genetics, Pathology and Radiotherapy, School of Nutrition and Translational Research in Metabolism (NUTRIM), School for Cardiovascular Diseases (CARIM) and MAASTRO/School for Developmental Biology & Oncology (GROW), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marion J. J. Gijbels
- Departments of Molecular Genetics, Pathology and Radiotherapy, School of Nutrition and Translational Research in Metabolism (NUTRIM), School for Cardiovascular Diseases (CARIM) and MAASTRO/School for Developmental Biology & Oncology (GROW), Maastricht University Medical Centre+, Maastricht, The Netherlands
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Albert Bitorina
- Departments of Molecular Genetics, Pathology and Radiotherapy, School of Nutrition and Translational Research in Metabolism (NUTRIM), School for Cardiovascular Diseases (CARIM) and MAASTRO/School for Developmental Biology & Oncology (GROW), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Isabell Nessel
- Departments of Molecular Genetics, Pathology and Radiotherapy, School of Nutrition and Translational Research in Metabolism (NUTRIM), School for Cardiovascular Diseases (CARIM) and MAASTRO/School for Developmental Biology & Oncology (GROW), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Experimental Cancer Research Institute, Lausanne, Switzerland
| | - Marc Vooijs
- Departments of Molecular Genetics, Pathology and Radiotherapy, School of Nutrition and Translational Research in Metabolism (NUTRIM), School for Cardiovascular Diseases (CARIM) and MAASTRO/School for Developmental Biology & Oncology (GROW), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jan Theys
- Departments of Molecular Genetics, Pathology and Radiotherapy, School of Nutrition and Translational Research in Metabolism (NUTRIM), School for Cardiovascular Diseases (CARIM) and MAASTRO/School for Developmental Biology & Oncology (GROW), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ronit Shiri-Sverdlov
- Departments of Molecular Genetics, Pathology and Radiotherapy, School of Nutrition and Translational Research in Metabolism (NUTRIM), School for Cardiovascular Diseases (CARIM) and MAASTRO/School for Developmental Biology & Oncology (GROW), Maastricht University Medical Centre+, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
48
|
Prendergast ÁM, Kuck A, van Essen M, Haas S, Blaszkiewicz S, Essers MAG. IFNα-mediated remodeling of endothelial cells in the bone marrow niche. Haematologica 2016; 102:445-453. [PMID: 27742772 PMCID: PMC5394972 DOI: 10.3324/haematol.2016.151209] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/06/2016] [Indexed: 12/26/2022] Open
Abstract
In the bone marrow, endothelial cells are a major component of the hematopoietic stem cell vascular niche and are a first line of defense against inflammatory stress and infection. The primary response of an organism to infection involves the synthesis of immune-modulatory cytokines, including interferon alpha. In the bone marrow, interferon alpha induces rapid cell cycle entry of hematopoietic stem cells in vivo. However, the effect of interferon alpha on bone marrow endothelial cells has not been described. Here, we demonstrate that acute interferon alpha treatment leads to rapid stimulation of bone marrow endothelial cells in vivo, resulting in increased bone marrow vascularity and vascular leakage. We find that activation of bone marrow endothelial cells involves the expression of key inflammatory and endothelial cell-stimulatory markers. This interferon alpha-mediated activation of bone marrow endothelial cells is dependent in part on vascular endothelial growth factor signaling in bone marrow hematopoietic cell types, including hematopoietic stem cells. Thus, this implies a role for hematopoietic stem cells in remodeling of the bone marrow niche in vivo following inflammatory stress. These data increase our current understanding of the relationship between hematopoietic stem cells and the bone marrow niche under inflammatory stress and also clarify the response of bone marrow niche endothelial cells to acute interferon alpha treatment in vivo.
Collapse
Affiliation(s)
- Áine M Prendergast
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Deutsches Krebsforschungszentrum, Heidelberg, Germany.,Hematopoietic Stem Cells and Stress Group, Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Andrea Kuck
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Deutsches Krebsforschungszentrum, Heidelberg, Germany.,Hematopoietic Stem Cells and Stress Group, Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Mieke van Essen
- Hematopoietic Stem Cells and Stress Group, Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Simon Haas
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Deutsches Krebsforschungszentrum, Heidelberg, Germany.,Hematopoietic Stem Cells and Stress Group, Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Sandra Blaszkiewicz
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Deutsches Krebsforschungszentrum, Heidelberg, Germany.,Hematopoietic Stem Cells and Stress Group, Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Marieke A G Essers
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Deutsches Krebsforschungszentrum, Heidelberg, Germany .,Hematopoietic Stem Cells and Stress Group, Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| |
Collapse
|
49
|
Cai Z, Zhao B, Deng Y, Shangguan S, Zhou F, Zhou W, Li X, Li Y, Chen G. Notch signaling in cerebrovascular diseases (Review). Mol Med Rep 2016; 14:2883-98. [PMID: 27574001 PMCID: PMC5042775 DOI: 10.3892/mmr.2016.5641] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 07/22/2016] [Indexed: 12/30/2022] Open
Abstract
The Notch signaling pathway is a crucial regulator of numerous fundamental cellular processes. Increasing evidence suggests that Notch signaling is involved in inflammation and oxidative stress, and thus in the progress of cerebrovascular diseases. In addition, Notch signaling in cerebrovascular diseases is associated with apoptosis, angiogenesis and the function of blood-brain barrier. Despite the contradictory results obtained to date as to whether Notch signaling is harmful or beneficial, the regulation of Notch signaling may provide a novel strategy for the treatment of cerebrovascular diseases.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Bin Zhao
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yanqing Deng
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Shouqin Shangguan
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Faming Zhou
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Wenqing Zhou
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xiaoli Li
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yanfeng Li
- Department of Neurology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Guanghui Chen
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
50
|
Nus M, Martínez-Poveda B, MacGrogan D, Chevre R, D'Amato G, Sbroggio M, Rodríguez C, Martínez-González J, Andrés V, Hidalgo A, de la Pompa JL. Endothelial Jag1-RBPJ signalling promotes inflammatory leucocyte recruitment and atherosclerosis. Cardiovasc Res 2016; 112:568-580. [PMID: 27496872 DOI: 10.1093/cvr/cvw193] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/21/2016] [Indexed: 11/13/2022] Open
Abstract
Aim To determine the role of NOTCH during the arterial injury response and the subsequent chronic arterial-wall inflammation underlying atherosclerosis. Methods and results We have generated a mouse model of endothelial-specific (Cdh5-driven) depletion of the Notch effector recombination signal binding protein for immunoglobulin kappa J region (RBPJ) [(ApoE-/-); homozygous RBPJk conditional mice (RBPJflox/flox); Cadherin 5-CreERT, tamoxifen inducible driver mice (Cdh5-CreERT)]. Endothelial-specific deletion of RBPJ or systemic deletion of Notch1 in athero-susceptible ApoE-/- mice fed a high-cholesterol diet for 6 weeks resulted in reduced atherosclerosis in the aortic arch and sinus. Intravital microscopy revealed decreased leucocyte rolling on the endothelium of ApoE-/-; RBPJflox/flox; Cdh5-CreERT mice, correlating with a lowered content of leucocytes and macrophages in the vascular wall. Transcriptome analysis revealed down-regulation of proinflammatory and endothelial activation pathways in atherosclerotic tissue of RBPJ-mutant mice. During normal Notch activation, Jagged1 signalling up-regulation in endothelial cells promotes nuclear translocation of the Notch1 intracellular domain (N1ICD) and its physical interaction with nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). This N1ICD-NF-κB interaction is required for reciprocal transactivation of target genes, including vascular cell adhesion molecule-1. Conclusions Notch signalling pathway inactivation decreases leucocyte rolling, thereby preventing endothelial dysfunction and vascular inflammation. Attenuation of Notch signalling might provide a treatment strategy for atherosclerosis.
Collapse
Affiliation(s)
- Meritxell Nus
- Intercellular Signalling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain.,Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, West Forvie Building, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
| | - Beatriz Martínez-Poveda
- Intercellular Signalling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Donal MacGrogan
- Intercellular Signalling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Rafael Chevre
- Molecular and Genetic Cardiovascular Pathophysiology Laboratory, CNIC, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Gaetano D'Amato
- Intercellular Signalling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Mauro Sbroggio
- Intercellular Signalling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Cristina Rodríguez
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB Sant Pau. Sant Antoni María Claret 167, 08025 Barcelona, Spain
| | - José Martínez-González
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB Sant Pau. Sant Antoni María Claret 167, 08025 Barcelona, Spain
| | - Vicente Andrés
- Molecular and Genetic Cardiovascular Pathophysiology Laboratory, CNIC, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Andrés Hidalgo
- Imaging Cardiovascular Inflammation and the Immune Response Laboratory, CNIC, Melchor Fernández Almagro 3, 28029 Madrid, Spain.,Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Pettenkoferstr. 9, 80336 Munich, Germany
| | - José Luis de la Pompa
- Intercellular Signalling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|