1
|
Kong L, Chen Z, Jia Z, Deng Q, Zhu P, Xu Y, She Z. Development of single nucleotide polymorphisms in key genes of taurine and betaine metabolism in Crassostrea hongkongensis and their association with content-related traits. RESEARCH SQUARE 2024:rs.3.rs-5097219. [PMID: 39764131 PMCID: PMC11702833 DOI: 10.21203/rs.3.rs-5097219/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Background Taurine and betaine are important nutrients in Crassostrea hongkongensis and have many important biological properties. To investigate the characteristics of taurine and betaine contents and identify SNPs associated with traits in the C.hongkongensis, we cloned the full-length cDNA of key genes in taurine and betaine (unpublished data) metabolism, determined taurine and betaine content and gene expression in different tissues and months of specimen collection, and developed SNPs in the gene coding region. Results We cloned the full-length cDNA of cysteine dioxygenase (ChCDO) and cysteine sulfite decarboxylase (ChCSAD), which are key genes involved in taurine metabolism in C. hongkongensis, and found that betaine and taurine contents and the expression of key genes were regulated by seawater salinity. A total of 47 SNP markers were developed in the coding regions of ChCSAD, ChCDO, ChCDH, ChBADH, and ChBHMT using gene fragment resequencing and FLDAS-PCR. Through association analysis in a population of C. hongkongensis in the Maowei Sea, Guangxi, nine SNPs were found to be associated with taurine content, and one SNP was associated with betaine content. Haploid and linkage disequilibrium analyses showed that SNPs in ChCDO formed one linkage group with three haplotypes: ACACA, GTTTG, and GTACA. The average taurine content of the corresponding individuals was 873.88, 838.99, and 930.72 ng/g, respectively, indicating the GTACA haplotype has a significant advantage in terms of taurine content. Conclusions We identified SNPs associated with taurine and betaine contents in C.hongkongensis for the first time, and found the GTACA haplotype in the ChCDO coding region has a significant advantage in taurine content. These loci and haplotypes can serve as potential molecular markers for the molecular breeding of C. hongkongensis.
Collapse
|
2
|
Tyagi SC. Epigenetics of Homocystinuria, Hydrogen Sulfide, and Circadian Clock Ablation in Cardiovascular-Renal Disease. Curr Issues Mol Biol 2024; 46:13783-13797. [PMID: 39727952 PMCID: PMC11726923 DOI: 10.3390/cimb46120824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/28/2024] Open
Abstract
Morning-time heart attacks are associated with an ablation in the sleep-time dip in blood pressure, the mechanism of which is unknown. The epigenetic changes are the hallmark of sleep and circadian clock disruption and homocystinuria (HHcy). The homocystinuria causes ablation in the dip in blood pressure during sleep. Interestingly, HHcy is generated during the epigenetic gene turning off and turning on (i.e., imprinting) by methylation of the DNA promoter. The mitochondrial sulfur metabolism by 3-mercaptopyruvate sulfur transferase (3MST), ATP citrate lyase (ACYL), and epigenetic rhythmic methylation are regulated by folate 1-carbon metabolism (FOCM), i.e., the methionine (M)-SAM-SAH-Hcy, adenosine, and uric acid cycle. Epigenetic gene writer (DNMT), gene eraser (TET/FTO), and editor de-aminase (ADAR) regulate the rhythmic, i.e., reversible methylation/demethylation of H3K4, H3K9, H4K20, m6A, and m5C. The mitochondrial ATP citrate cycle and creatine kinase (CK) regulate chromatin transcription, maturation, and accessibility as well as muscle function. The transcription is regulated by methylation. The maturation and accessibility are controlled by acetylation. However, it is unclear whether a high fat dysbiotic diet (HFD) causes dysrhythmic expression of the gene writer, eraser, and editor, creating hyperuricemia and cardiac and renal dysfunction. We hypothesized that an HFD increases the gene writer (DNMT1) and editor (ADAR), decreases the eraser (TET/FTO), and increases uric acid to cause chronic diseases. This increases the levels of H3K4, H3K9, H4K20, m6A, and m5C. Interestingly, the DNMT1KO mitigates. Further, the DNMT1KO and ADAR inhibition attenuate HFD-induced NGAL/FGF23/TMPRSS2/MMP2, 9, 13, and uric acid levels and improve cardiac and renal remodeling. Although the novel role of nerve endings by the Piezo channels (i.e., the combination of ENaC, VDAC, TRPV, K+, and Mg2+ channels) in the interoception is suggested, interestingly, we and others have shown mechanisms independent of the nerve, by interoception, such as the cargo of the exosome in denervation models of heart failure. If proper and appropriate levels of these enzymes are available to covert homocysteine to hydrogen sulfide (H2S) during homocystinuria, then the H2S can potentially serve as a newer form of treatment for morning heart attacks and renal sulfur transsulfuration transport diseases.
Collapse
Affiliation(s)
- Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
3
|
Gerasimova E, Enikeev D, Yakovlev A, Zakharov A, Sitdikova G. Chronic Hyperhomocysteinemia Impairs CSD Propagation and Induces Cortical Damage in a Rat Model of Migraine with Aura. Biomolecules 2024; 14:1379. [PMID: 39595556 PMCID: PMC11591878 DOI: 10.3390/biom14111379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Hyperhomocysteinemia (hHCY) is a metabolic disorder characterized by elevated levels of homocysteine in plasma. hHCY correlates with a high risk of migraine headaches, especially migraine with aura. Cortical spreading depression (CSD) is a wave of depolarization passing through neurons and glial cells of the cortex and is considered an electrophysiological correlate of migraine aura. The aim of the present study was to analyze neuronal activity and CSD in the somatosensory cortex of rats in vivo with prenatal hHCY and to assess cortex viability after 2 h of CSD generation. Female rats were fed a diet high in methionine, and their offspring with high homocysteine levels in plasma were further used in experiments. Recurrent CSD was evoked by local KCl application on the dura surface. Neuronal viability was assessed by measuring the activity of lactate dehydrogenase (LDH) in the brain and 2,3,5-triphenyltetrazolium chloride staining of the somatosensory cortex after two hours of CSD generation. Animals with hHCY exhibited higher neuronal activity, and more CSDs were generated in response to KCl, indicating higher cortical excitability. Propagation of recurrent CSD was impaired in supragranular cortical layers, and the recovery of multiple unit activity and evoked sensory potentials after CSD was delayed in the hHCY group. Finally, in animals with prenatal hHCY, an ischemic focus was identified as a consequence of multiple CSDs, along with elevated levels of LDH activity in brain tissues, suggestive of diminished neuronal viability. These findings imply that prolonged elevated levels of homocysteine may not only predispose to migraine with aura but also potentially elevate the risk of migrainous infarction.
Collapse
Affiliation(s)
- Elena Gerasimova
- Department of Neuroscience, Sirius University of Science and Technology, 354340 Sirius, Russia;
| | - Daniel Enikeev
- Department of Neuroscience, Sirius University of Science and Technology, 354340 Sirius, Russia;
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
| | - Aleksey Yakovlev
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia; (A.Y.); (G.S.)
| | - Andrey Zakharov
- Department of Normal Physiology, Kazan State Medical University, 49 Butlerova Str., 420012 Kazan, Russia;
- Department of Medical Physics, Institute of Physics, Kazan Federal University, 16a Kremlyovskaya Str., 420008 Kazan, Russia
| | - Guzel Sitdikova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia; (A.Y.); (G.S.)
| |
Collapse
|
4
|
Zilli Vieira CL, Liu CS, Rudke AP, Wang Y, Wang VA, Schwartz JD, Vokonas P, Koutrakis P. Detrimental impact of solar and geomagnetic activity on plasma B-complex vitamins in the VA normative aging study cohort. Sci Rep 2024; 14:24065. [PMID: 39402061 PMCID: PMC11479262 DOI: 10.1038/s41598-024-56916-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/12/2024] [Indexed: 10/17/2024] Open
Abstract
It has been hypothesized that ultraviolet (UV) radiation can lead to depletion of plasma folate and B12 vitamin, but few studies have investigated effects of other parameters of solar and geomagnetic activity (SGA). We investigated the association between four SGA parameters-interplanetary magnetic field (IMF), sunspot number (SSN), Kp index, and ground shortwave solar radiation (SWR)-and three plasma B-complex vitamins-folate, B6, and B12-in 910 participants from the Normative Aging Study (NAS) between 1998 and 2017. Mixed-effects regression models were used for 1- to 28-moving day averages of SGA exposure, adjusted for covariates. We compared the impact of SGA in individuals under higher and lower B-complex supplementation (> or < 50th quartile). Our findings show that increases in solar activity variables IMF and SSN were found to be significantly associated with decreases in B12 vitamin. IMF and SSN were associated with decrease in folate levels, especially in individuals under higher levels of B-complex supplementation. No associations were found for SWR and Kp index. To our knowledge, this is the first study that demonstrated the detrimental impact of solar activity on plasma B12 and folate in a large cohort. These findings have clinical implications during periods of high solar activity.
Collapse
Affiliation(s)
- Carolina L Zilli Vieira
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Landmark Center Room 420, Boston, MA, 02115, USA.
| | - Cristina Su Liu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Landmark Center Room 420, Boston, MA, 02115, USA
| | - Anderson P Rudke
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Landmark Center Room 420, Boston, MA, 02115, USA
| | - Yichen Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Landmark Center Room 420, Boston, MA, 02115, USA
| | - Veronica A Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Landmark Center Room 420, Boston, MA, 02115, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Landmark Center Room 420, Boston, MA, 02115, USA
| | - Pantel Vokonas
- VA Normative Aging Study, Veterans Affairs Boston Healthcare System and the Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Landmark Center Room 420, Boston, MA, 02115, USA
| |
Collapse
|
5
|
Sharma S, Bhadra R, Selvam S, Sambashivaiah S. Vitamin B12 status and skeletal muscle function among elderly: A literature review and pilot study on the effect of oral vitamin B12 supplementation in improving muscle function. Aging Med (Milton) 2024; 7:480-489. [PMID: 39234201 PMCID: PMC11369341 DOI: 10.1002/agm2.12346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Objectives The objective of this study is to understand the role of vitamin B12 supplementation in improving skeletal muscle function among the elderly. Methods A literature review in the Medline database was conducted to understand the association between vitamin B12 and muscle function in Section A. In Section B, 28 healthy elderly participants aged ≥60 years were recruited in a cross-sectional design for estimation of plasma vitamin B12 status and assessment of upper limb muscle strength Maximal voluntary contraction (MVC) and muscle quality (expressed as MVC/total muscle mass). Participants were grouped based on vitamin B12 status into vitamin B12-depleted (<148 pmol/L) and replete (≥148 pmol/L) groups. In a quasi-experimental study design, the vitamin B12-depleted group (n = 14) received daily oral vitamin B12 supplementation of 100 μg for 3 months. All the study measures were repeated post-supplementation. Results Vitamin B12 deficiency was identified to contribute adversely to muscle strength, quality, and physical performance among older people in the extensive literature review. The pilot intervention study showed significant improvement in MVC and muscle quality (p < 0.050) post-vitamin B12 supplementation, comparable to the vitamin B12-replete group. Conclusions Vitamin B12 may have a crucial role in the maintenance of muscle function. 3-month oral vitamin B12 supplementation among subclinical vitamin B12 deficient elderly improved muscle strength and quality and reached levels similar to the vitamin B12 replete group.
Collapse
Affiliation(s)
- Sowmya Sharma
- Department of PhysiologySt. John's Medical CollegeBangaloreIndia
| | - Rohini Bhadra
- Division of Clinical Physiology, Department of PhysiologySt. John's Medical College & St. John's Research InstituteBangaloreIndia
| | - Sumithra Selvam
- Division of Epidemiology, Biostatistics and Population HealthSt John's Research InstituteBangaloreIndia
| | | |
Collapse
|
6
|
Mirrafiei A, Radkhah P, Chambari M, Davarzani S, Babaee N, Djafarian K, Shab-Bidar S. Higher dietary methyl donor micronutrient consumption is associated with higher muscle strength in adults: a cross-sectional study. Br J Nutr 2024; 131:1926-1933. [PMID: 38443195 DOI: 10.1017/s0007114524000424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Methyl donor micronutrients might affect muscle strength via DNA methylation. We aimed to evaluate the combined relationship of dietary methyl donor micronutrients containing betaine, choline, methionine, vitamin B12, vitamin B6 and folate on muscle strength. This cross-sectional study was conducted on 267 subjects including 113 men and 154 women. Dietary intake of micronutrients was assessed utilising a validated 168-item semi-quantitative FFQ, and methyl donor micronutrient score (MDMS) was calculated. The muscle strength of the participants was measured using a digital handgrip dynamometer. The association was determined using linear regression analysis. The mean age of participants was 36·8 ± 13·2 years. After taking into account potential confounding variables, there was no significant association between dietary methyl donor micronutrient score (MDMS) and the mean left-hand muscle strength (β: 0·07, se: 0·05, P = 0·07); however, the changes were significant in the mean right-hand muscle strength (β: 0·09, se: 0·04, P = 0·03). There was also a significant positive relationship between mean muscle strength and methyl donors' intake after fully adjusting for potential confounders (β: 0·08, se: 0·04, P = 0·04). In conclusion, our findings revealed that higher dietary methyl donor micronutrient consumption is associated with enhanced muscle strength. As a result, advice on a higher intake of methyl donor-rich foods including grains, nuts, dairy products and seafood might be recommended by dietitians as a general guideline to adhere to. Additional prospective studies are needed to confirm the findings.
Collapse
Affiliation(s)
- Amin Mirrafiei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Parisa Radkhah
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahla Chambari
- Department of Nutrition Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Samira Davarzani
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Nadia Babaee
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
7
|
Zhao J, Lu Q, Zhang X. Associations of serum vitamin B12 and its biomarkers with musculoskeletal health in middle-aged and older adults. Front Endocrinol (Lausanne) 2024; 15:1387035. [PMID: 38808112 PMCID: PMC11130390 DOI: 10.3389/fendo.2024.1387035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction The effects of vitamin B12 metabolism on musculoskeletal health and the exact mechanism have not been fully determined. Our study aimed to assess the association of vitamin B12 and its biomarkers with musculoskeletal health in middle-aged and older adults. Methods The data from the National Health and Nutrition Examination Survey 2001-2002 were used to investigate the effects of serum vitamin B12 and its biomarkers (homocysteine and methylmalonic acid) on skeletal muscle health. Bone mineral density (BMD), lean mass, gait speed and knee extensor strength were used as indicators for musculoskeletal health. Results Serum vitamin B12 level was positively correlated with the total and appendicular lean mass (β = 584.83, P = 0.044; β = 291.65, P = 0.043) in older adults over 65 years of age. In the full population, plasma homocysteine was associated with total lean mass, appendicular lean mass, gait speed, and knee extensor strength (all P < 0.05). Among older adults over 65 years of age, homocysteine level was significantly negatively correlated with gait speed and knee extensor strength (β = -12.75, P = 0.019; β = -0.06, P <0.001). Plasma methylmalonic acid was negatively associated with total BMD and femur BMD in the full population (β = -0.01, P = 0.018; β = -0.01, P = 0.004). In older adults, methylmalonic acid significantly affected total BMD, femur BMD and knee extensor strength (β = -0.01, P = 0.048; β = -0.01, P = 0.025; β = -7.53, P = 0.015). Conclusions Vitamin B12 and its biomarkers are closely related to BMD, body composition, muscle strength and physical function in middle-aged and older adults. Vitamin B12 may be an important indicator of musculoskeletal health in the elderly.
Collapse
Affiliation(s)
- Jiao Zhao
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qi Lu
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xianfeng Zhang
- Department of Endocrinology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Guo Y, Su J, Jiang S, Xu Y, Dou B, Li T, Zhu J, He K. Transcriptomics and metabonomics study on the effect of exercise combined with curcumin supplementation on breast cancer in mice. Heliyon 2024; 10:e28807. [PMID: 38576560 PMCID: PMC10990956 DOI: 10.1016/j.heliyon.2024.e28807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
Curcumin and exercise have been reported to show good anti-tumour effects. However, relevant research on the combined effects of physical exercise and curcumin supplementation on cancer and the underlying mechanisms is still lacking. The current study aimed to construct an anti-breast tumour mouse model using the combined effects of curcumin treatment and swimming exercise. Transcriptomic and metabolomic techniques were used to screen for differentially expressed genes and metabolites, evaluate the anticancer effects, and analyse the molecular regulatory mechanisms related to metabolism. Observation of the mouse phenotypes, including tumour appearance, in-vivo tumour imaging, and HE staining results of pathological sections, suggested a more obvious inhibitory effect of the combination of curcumin administration and exercise intervention on breast cancer than that of a single treatment. The combination treatment group had a total of 445 differentially expressed (154 upregulated and 291 downregulated) genes. Functional enrichment analysis showed the calcium signalling pathway, Wnt signalling pathway, PI3K Akt signalling pathway, and IL-17 signalling pathway to significantly participate in the anti-breast cancer process of curcumin-exercise combination treatment. Results of the intergroup differential metabolite analysis showed that the combined effect of curcumin and exercise involves two unique pathways, namely the amino sugar and nucleotide sugar metabolism, which includes chitosan, d-glucosamine 6-phosphate, l-fucose, and N-acetyl beta-mannosamine, and the amino acid biosynthesis, which includes dl-isoleucine, dl-tyrosine, and homocysteine. Collectively, the top-ranked genes and metabolites with the highest degree of associations were further revealed by O2PLS analysis. Overall, the study helped reveal the mechanism of action of curcumin-exercise combination treatment on breast cancer at multi-omics level.
Collapse
Affiliation(s)
- Yong Guo
- Post-doctoral Research Station, Harbin Sport University, Harbin, Heilongjiang, 150008, China
| | - Jinxing Su
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, 230600, China
- Traditional Chinese Medicine Research Centre, School of Life Sciences, Anhui University, Hefei, Anhui, 230600, China
| | - Shangquan Jiang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, 230600, China
- Traditional Chinese Medicine Research Centre, School of Life Sciences, Anhui University, Hefei, Anhui, 230600, China
| | - Yan Xu
- School of Sports Human Science, Harbin Sport University, Harbin, Heilongjiang, 150008, China
| | - Binbin Dou
- Graduate School, Harbin Sport University, Harbin, Heilongjiang, 150008, China
| | - Ting Li
- School of Sports Human Science, Harbin Sport University, Harbin, Heilongjiang, 150008, China
| | - Jiabin Zhu
- Winter Olympics Academy, Harbin Sport University, Harbin, Heilongjiang, 150008, China
| | - Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, 230600, China
- Traditional Chinese Medicine Research Centre, School of Life Sciences, Anhui University, Hefei, Anhui, 230600, China
| |
Collapse
|
9
|
Ding P, Song Y, Yang Y, Zeng C. NLRP3 inflammasome and pyroptosis in cardiovascular diseases and exercise intervention. Front Pharmacol 2024; 15:1368835. [PMID: 38681198 PMCID: PMC11045953 DOI: 10.3389/fphar.2024.1368835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
NOD-like receptor protein 3 (NLRP3) inflammasome is an intracellular sensing protein complex that possesses NACHT, leucine-rich repeat, and pyrin domain, playing a crucial role in innate immunity. Activation of the NLRP3 inflammasome leads to the production of pro-inflammatory cellular contents, such as interleukin (IL)-1β and IL-18, and induction of inflammatory cell death known as pyroptosis, thereby amplifying or sustaining inflammation. While a balanced inflammatory response is beneficial for resolving damage and promoting tissue healing, excessive activation of the NLRP3 inflammasome and pyroptosis can have harmful effects. The involvement of the NLRP3 inflammasome has been observed in various cardiovascular diseases (CVD). Indeed, the NLRP3 inflammasome and its associated pyroptosis are closely linked to key cardiovascular risk factors including hyperlipidemia, diabetes, hypertension, obesity, and hyperhomocysteinemia. Exercise compared with medicine is a highly effective measure for both preventing and treating CVD. Interestingly, emerging evidence suggests that exercise improves CVD and inhibits the activity of NLRP3 inflammasome and pyroptosis. In this review, the activation mechanisms of the NLRP3 inflammasome and its pathogenic role in CVD are critically discussed. Importantly, the purpose is to emphasize the crucial role of exercise in managing CVD by suppressing NLRP3 inflammasome activity and proposes it as the foundation for developing novel treatment strategies.
Collapse
Affiliation(s)
- Ping Ding
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuanming Song
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yang Yang
- Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, China
| | - Cheng Zeng
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
10
|
Suszyńska-Zajczyk J, Witucki Ł, Perła-Kaján J, Jakubowski H. Diet-induced hyperhomocysteinemia causes sex-dependent deficiencies in offspring musculature and brain function. Front Cell Dev Biol 2024; 12:1322844. [PMID: 38559811 PMCID: PMC10979824 DOI: 10.3389/fcell.2024.1322844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Hyperhomocysteinemia (HHcy), characterized by elevated homocysteine (Hcy) levels, is a known risk factor for cardiovascular, renal, and neurological diseases, as well as pregnancy complications. Our study aimed to investigate whether HHcy induced by a high-methionine (high-Met) diet exacerbates cognitive and behavioral deficits in offspring and leads to other breeding problems. Dietary HHcy was induced four weeks before mating and continued throughout gestation and post-delivery. A battery of behavioral tests was conducted on offspring between postnatal days (PNDs) 5 and 30 to assess motor function/activity and cognition. The results were correlated with brain morphometric measurements and quantitative analysis of mammalian target of rapamycin (mTOR)/autophagy markers. The high-Met diet significantly increased parental and offspring urinary tHcy levels and influenced offspring behavior in a sex-dependent manner. Female offspring exhibited impaired cognition, potentially related to morphometric changes observed exclusively in HHcy females. Male HHcy pups demonstrated muscle weakness, evidenced by slower surface righting, reduced hind limb suspension (HLS) hanging time, weaker grip strength, and decreased activity in the beaker test. Western blot analyses indicated the downregulation of autophagy and the upregulation of mTOR activity in HHcy cortexes. HHcy also led to breeding impairments, including reduced breeding rate, in-utero fetal death, lower pups' body weight, and increased mortality, likely attributed to placental dysfunction associated with HHcy. In conclusion, a high-Met diet impairs memory and cognition in female juveniles and weakens muscle strength in male pups. These effects may stem from abnormal placental function affecting early neurogenesis, the dysregulation of autophagy-related pathways in the cortex, or epigenetic mechanisms of gene regulation triggered by HHcy during embryonic development.
Collapse
Affiliation(s)
- Joanna Suszyńska-Zajczyk
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Łukasz Witucki
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Joanna Perła-Kaján
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
- Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers University, New Jersey Medical School, International Center for Public Health, Newark, NJ, United States
| |
Collapse
|
11
|
Aslam MA, Ma EB, Huh JY. Pathophysiology of sarcopenia: Genetic factors and their interplay with environmental factors. Metabolism 2023; 149:155711. [PMID: 37871831 DOI: 10.1016/j.metabol.2023.155711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Sarcopenia is a geriatric disorder characterized by a progressive decline in muscle mass and function. This disorder has been associated with a range of adverse health outcomes, including fractures, functional deterioration, and increased mortality. The pathophysiology of sarcopenia is highly complex and multifactorial, involving both genetic and environmental factors as key contributors. This review consolidates current knowledge on the genetic factors influencing the pathogenesis of sarcopenia, particularly focusing on the altered gene expression of structural and metabolic proteins, growth factors, hormones, and inflammatory cytokines. While the influence of environmental factors such as physical inactivity, chronic diseases, smoking, alcohol consumption, and sleep disturbances on sarcopenia is relatively well understood, there is a dearth of studies examining their mechanistic roles. Therefore, this review emphasizes the interplay between genetic and environmental factors, elucidating their cumulative role in exacerbating the progression of sarcopenia beyond their individual effects. The unique contribution of this review lies in synthesizing the latest evidence on the genetic factors and their interaction with environmental factors, aiming to inform the development of novel therapeutic or preventive interventions for sarcopenia.
Collapse
Affiliation(s)
- Muhammad Arif Aslam
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Eun Bi Ma
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Joo Young Huh
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
12
|
Majumder A. Targeting Homocysteine and Hydrogen Sulfide Balance as Future Therapeutics in Cancer Treatment. Antioxidants (Basel) 2023; 12:1520. [PMID: 37627515 PMCID: PMC10451792 DOI: 10.3390/antiox12081520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
A high level of homocysteine (Hcy) is associated with oxidative/ER stress, apoptosis, and impairment of angiogenesis, whereas hydrogen sulfide (H2S) has been found to reverse this condition. Recent studies have shown that cancer cells need to produce a high level of endogenous H2S to maintain cell proliferation, growth, viability, and migration. However, any novel mechanism that targets this balance of Hcy and H2S production has yet to be discovered or exploited. Cells require homocysteine metabolism via the methionine cycle for nucleotide synthesis, methylation, and reductive metabolism, and this pathway supports the high proliferative rate of cancer cells. Although the methionine cycle favors cancer cells for their survival and growth, this metabolism produces a massive amount of toxic Hcy that somehow cancer cells handle very well. Recently, research showed specific pathways important for balancing the antioxidative defense through H2S production in cancer cells. This review discusses the relationship between Hcy metabolism and the antiapoptotic, antioxidative, anti-inflammatory, and angiogenic effects of H2S in different cancer types. It also summarizes the historical understanding of targeting antioxidative defense systems, angiogenesis, and other protective mechanisms of cancer cells and the role of H2S production in the genesis, progression, and metastasis of cancer. This review defines a nexus of diet and precision medicine in targeting the delicate antioxidative system of cancer and explores possible future therapeutics that could exploit the Hcy and H2S balance.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
13
|
Alkaissi H, McFarlane SI. Hyperhomocysteinemia and Accelerated Aging: The Pathogenic Role of Increased Homocysteine in Atherosclerosis, Osteoporosis, and Neurodegeneration. Cureus 2023; 15:e42259. [PMID: 37605676 PMCID: PMC10440097 DOI: 10.7759/cureus.42259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 08/23/2023] Open
Abstract
Cardiovascular diseases and osteoporosis, seemingly unrelated disorders that occur with advanced age, share major pathogenetic mechanisms contributing to accelerated atherosclerosis and bone loss. Hyperhomocysteinemia (hHcy) is among these mechanisms that can cause both vascular and bone disease. In its more severe form, hHcy can present early in life as homocystinuria, an inborn error of metabolic pathways of the sulfur-containing amino acid methionine. In its milder forms, hHcy may go undiagnosed and untreated into adulthood. As such, hHcy may serve as a potential therapeutic target for cardiovascular disease, osteoporosis, thrombophilia, and neurodegeneration, collectively representing accelerated aging. Multiple trials to lower cardiovascular risk and improve bone density with homocysteine-lowering agents, yet none has proven to be clinically meaningful. To understand this unmet clinical need, this review will provide mechanistic insight into the pathogenesis of vascular and bone disease in hHcy, using homocystinuria as a model for accelerated atherosclerosis and bone density loss, a model for accelerated aging.
Collapse
Affiliation(s)
- Hussam Alkaissi
- Internal Medicine, Kings County Hospital Center, Brooklyn, USA
- Internal Medicine, Veterans Affairs Medical Center, Brooklyn, USA
- Internal Medicine, State University of New York Downstate Medical Center, Brooklyn, USA
| | - Samy I McFarlane
- Endocrinology, State University of New York Downstate Medical Center, Brooklyn, USA
| |
Collapse
|
14
|
Associations between Serum Folate Concentrations and Functional Disability in Older Adults. Antioxidants (Basel) 2023; 12:antiox12030619. [PMID: 36978867 PMCID: PMC10045063 DOI: 10.3390/antiox12030619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Folate may have beneficial effects on physical function through its antioxidant effect. Thus, we investigated the associations between serum folate and functional disability in older adults. Data from the National Health and Nutrition Examination Survey 2011–2018 were used. Serum folate included 5-methyltetrahydrofolate and total folate. Five domains of functional disability, including lower extremity mobility (LEM), instrumental activities of daily living (IADL), activities of daily living (ADL), leisure and social activities (LSA), and general physical activities (GPA), were self-reported. Multivariable-adjusted logistic regression models and restricted cubic splines were employed. 5-Methyltetrahydrofolate was inversely associated with IADL and GPA disability, and the multivariate-adjusted ORs (95% CIs) in the highest versus lowest quartiles were 0.65 (0.46–0.91) and 0.70 (0.50–0.96), respectively. The total folate was also inversely associated with IADL (OR quartile 4vs1 = 0.65, 95% CI: 0.46–0.90) and GPA (OR quartile 3vs1 = 0.66, 95% CI: 0.44–0.99) disability. The dose–response relationships showed a gradual decrease in the risk of IADL and GPA disability as serum folate increased. In the sex, age, BMI, and alcohol consumption subgroup analyses, we saw that the associations were primarily found in females, under 80 years old, normal weight, and non-drinkers. Sensitivity analyses further confirmed the robustness of our results. Our results indicated that serum folate concentrations were negatively associated with IADL and GPA disability, especially in females. In other subgroup analyses, we discovered that these negative associations were primarily prevalent in participants under 80 years old, normal weight, and non-drinkers.
Collapse
|
15
|
Garibotto G, Picciotto D, Verzola D, Valli A, Sofia A, Costigliolo F, Saio M, Viazzi F, Esposito P. Homocysteine exchange across skeletal muscle in patients with chronic kidney disease. Physiol Rep 2023; 11:e15573. [PMID: 36945836 PMCID: PMC10031238 DOI: 10.14814/phy2.15573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 03/23/2023] Open
Abstract
Sites and mechanisms regulating the supply of homocysteine (Hcy) to the circulation are unexplored in humans. We studied the exchange of Hcy across the forearm in CKD patients (n = 17, eGFR 20 ± 2 ml/min), in hemodialysis (HD)-treated patients (n = 14) and controls (n = 9). Arterial Hcy was ~ 2.5 folds increased in CKD and HD patients (p < 0.05-0.03 vs. controls). Both in controls and in patients Hcy levels in the deep forearm vein were consistently greater (+~7%, p < 0.05-0.01) than the corresponding arterial levels, indicating the occurrence of Hcy release from muscle. The release of Hcy from the forearm was similar among groups. In all groups arterial Hcy varied with its release from muscle (p < 0.03-0.02), suggesting that muscle plays an important role on plasma Hcy levels. Forearm Hcy release was inversely related to folate plasma level in all study groups but neither to vitamin B12 and IL-6 levels nor to muscle protein net balance. These data indicate that the release of Hcy from peripheral tissue metabolism plays a major role in influencing its Hcy plasma levels in humans and patients with CKD, and that folate is a major determinant of Hcy release.
Collapse
Affiliation(s)
| | - Daniela Picciotto
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Daniela Verzola
- Department of Internal MedicineUniversity of GenovaGenovaItaly
| | - Alessando Valli
- Department of Internal MedicineUniversity of GenovaGenovaItaly
| | - Antonella Sofia
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Francesca Costigliolo
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Michela Saio
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Francesca Viazzi
- Department of Internal MedicineUniversity of GenovaGenovaItaly
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Pasquale Esposito
- Department of Internal MedicineUniversity of GenovaGenovaItaly
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San MartinoGenoaItaly
| |
Collapse
|
16
|
Rajabian N, Ikhapoh I, Shahini S, Choudhury D, Thiyagarajan R, Shahini A, Kulczyk J, Breed K, Saha S, Mohamed MA, Udin SB, Stablewski A, Seldeen K, Troen BR, Personius K, Andreadis ST. Methionine adenosyltransferase2A inhibition restores metabolism to improve regenerative capacity and strength of aged skeletal muscle. Nat Commun 2023; 14:886. [PMID: 36797255 PMCID: PMC9935517 DOI: 10.1038/s41467-023-36483-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
We investigate the age-related metabolic changes that occur in aged and rejuvenated myoblasts using in vitro and in vivo models of aging. Metabolic and signaling experiments reveal that human senescent myoblasts and myoblasts from a mouse model of premature aging suffer from impaired glycolysis, insulin resistance, and generate Adenosine triphosphate by catabolizing methionine via a methionine adenosyl-transferase 2A-dependant mechanism, producing significant levels of ammonium that may further contribute to cellular senescence. Expression of the pluripotency factor NANOG downregulates methionine adenosyltransferase 2 A, decreases ammonium, restores insulin sensitivity, increases glucose uptake, and enhances muscle regeneration post-injury. Similarly, selective inhibition of methionine adenosyltransferase 2 A activates Akt2 signaling, repairs pyruvate kinase, restores glycolysis, and enhances regeneration, which leads to significant enhancement of muscle strength in a mouse model of premature aging. Collectively, our investigation indicates that inhibiting methionine metabolism may restore age-associated impairments with significant gain in muscle function.
Collapse
Affiliation(s)
- Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Izuagie Ikhapoh
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Shahryar Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Debanik Choudhury
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Ramkumar Thiyagarajan
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - Aref Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Joseph Kulczyk
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Kendall Breed
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Shilpashree Saha
- Department of Biomedical Engineering, University at Buffalo, Amherst, NY, USA
| | - Mohamed Alaa Mohamed
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Susan B Udin
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Aimee Stablewski
- Gene Targeting and Transgenic Shared Resource, Roswell Park Comprehensive Cancer Institute, Buffalo, NY, USA
| | - Kenneth Seldeen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - Bruce R Troen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - Kirkwood Personius
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA.
- Department of Biomedical Engineering, University at Buffalo, Amherst, NY, USA.
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA.
- Cell, Gene and Tissue Engineering (CGTE) Center, School of Engineering and Applied Sciences, University at Buffalo, Amherst, NY, USA.
| |
Collapse
|
17
|
Parthasarathy S, Soundararajan P, Sakthivelu M, Karuppiah KM, Velusamy P, Gopinath SC, Pachaiappan R. The role of prognostic biomarkers and their implications in early detection of preeclampsia: A systematic review. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Kositsawat J, Vogrin S, French C, Gebauer M, Candow DG, Duque G, Kirk B. Relationship Between Plasma Homocysteine and Bone Density, Lean Mass, Muscle Strength and Physical Function in 1480 Middle-Aged and Older Adults: Data from NHANES. Calcif Tissue Int 2023; 112:45-54. [PMID: 36344761 PMCID: PMC9813058 DOI: 10.1007/s00223-022-01037-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Hyperhomocysteinemia induces oxidative stress and chronic inflammation (both of which are catabolic to bone and muscle); thus, we examined the association between homocysteine and body composition and physical function in middle-aged and older adults. Data from the National Health and Nutrition Examination Survey was used to build regression models. Plasma homocysteine (fluorescence immunoassay) was used as the exposure and bone mineral density (BMD; dual-energy X-ray absorptiometry; DXA), lean mass (DXA), knee extensor strength (isokinetic dynamometer; newtons) and gait speed (m/s) were used as outcomes. Regression models were adjusted for confounders (age, sex, race/Hispanic origin, height, fat mass %, physical activity, smoking status, alcohol intakes, cardiovascular disease, diabetes, cancer and vitamin B12). All models accounted for complex survey design by using sampling weights provided by NHANES. 1480 adults (median age: 64 years [IQR: 56, 73]; 50.3% men) were included. In multivariable models, homocysteine was inversely associated with knee extensor strength (β = 0.98, 95% CI 0.96, 0.99, p = 0.012) and gait speed (β = 0.85, 95% CI 0.78, 0.94, p = 0.003) and borderline inversely associated with femur BMD (β = 0.84, 95% CI 0.69, 1.03, p = 0.086). In the sub-group analysis of older adults (≥ 65 years), homocysteine was inversely associated with gait speed and femur BMD (p < 0.05) and the slope for knee extensor strength and whole-body BMD were in the same direction. No significant associations were observed between homocysteine and total or appendicular lean mass in the full or sub-group analysis. We found inverse associations between plasma homocysteine and muscle strength/physical function, and borderline significant inverse associations for femur BMD.
Collapse
Affiliation(s)
| | - Sara Vogrin
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, 176 Furlong Road, St. Albans, VIC, 3021, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, VIC, 3021, Australia
| | - Chloe French
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, 176 Furlong Road, St. Albans, VIC, 3021, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, VIC, 3021, Australia
- School of Health Sciences, University of Manchester, Manchester, UK
| | - Maria Gebauer
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, 176 Furlong Road, St. Albans, VIC, 3021, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, VIC, 3021, Australia
- University Hospital of Guadalajara, Guadalajara, Spain
| | - Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Canada
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, 176 Furlong Road, St. Albans, VIC, 3021, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, VIC, 3021, Australia
| | - Ben Kirk
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, 176 Furlong Road, St. Albans, VIC, 3021, Australia.
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, VIC, 3021, Australia.
| |
Collapse
|
19
|
The Impacts of Combined Blood Flow Restriction Training and Betaine Supplementation on One-Leg Press Muscular Endurance, Exercise-Associated Lactate Concentrations, Serum Metabolic Biomarkers, and Hypoxia-Inducible Factor-1α Gene Expression. Nutrients 2022; 14:nu14235040. [PMID: 36501070 PMCID: PMC9739923 DOI: 10.3390/nu14235040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The purpose of this investigation was to compare the impacts of a potential blood flow restriction (BFR)-betaine synergy on one-leg press performance, lactate concentrations, and exercise-associated biomarkers. Eighteen recreationally trained males (25 ± 5 y) were randomized to supplement 6 g/day of either betaine anhydrous (BET) or cellulose placebo (PLA) for 14 days. Subsequently, subjects performed four standardized sets of one-leg press and two additional sets to muscular failure on both legs (BFR [LL-BFR; 20% 1RM at 80% arterial occlusion pressure] and high-load [HL; 70% 1RM]). Toe-tip lactate concentrations were sampled before (PRE), as well as immediately (POST0), 30 min (POST30M), and 3 h (POST3H) post-exercise. Serum homocysteine (HCY), growth hormone (GH) and insulin-like growth factor-1 concentrations were additionally assessed at PRE and POST30M. Analysis failed to detect any significant between-supplement differences for total repetitions completed. Baseline lactate changes (∆) were significantly elevated from POST0 to POST30 and from POST30 to POST3H (p < 0.05), whereby HL additionally demonstrated significantly higher ∆Lactate versus LL-BFR (p < 0.001) at POST3H. Although serum ∆GH was not significantly impacted by supplement or condition, serum ∆IGF-1 was significantly (p = 0.042) higher in BET versus PLA and serum ∆HCY was greater in HL relative to LL-BFR (p = 0.044). Although these data fail to support a BFR-betaine synergy, they otherwise support betaine’s anabolic potential.
Collapse
|
20
|
Fu L, Wang Y, Hu YQ. Causal effects of B vitamins and homocysteine on obesity and musculoskeletal diseases: A Mendelian randomization study. Front Nutr 2022; 9:1048122. [PMID: 36505230 PMCID: PMC9731309 DOI: 10.3389/fnut.2022.1048122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives Although homocysteine (Hcy) increases the risk of cardiovascular diseases, its effects on obesity and musculoskeletal diseases remain unclear. We performed a Mendelian randomization study to estimate the associations between Hcy and B vitamin concentrations and their effects on obesity and musculoskeletal-relevant diseases in the general population. Methods We selected independent single nucleotide polymorphisms of Hcy (n = 44,147), vitamin B12 (n = 45,576), vitamin B6 (n = 1864), and folate (n = 37,465) at the genome-wide significance level as instruments and applied them to the studies of summary-level data for fat and musculoskeletal phenotypes from the UK Biobank study (n = 331,117), the FinnGen consortium (n = 218,792), and other consortia. Two-sample Mendelian randomization (MR) approaches were utilized in this study. The inverse variance weighting (IVW) was adopted as the main analysis. MR-PRESSO, MR-Egger, the weighted median estimate, bidirectional MR, and multivariable MR were performed as sensitivity methods. Results Higher Hcy concentrations were robustly associated with an increased risk of knee osteoarthritis [odds ratio (OR) 1.119; 95% confidence interval (CI) 1.032-1.214; P = 0.007], hospital-diagnosed osteoarthritis (OR 1.178; 95% CI 1.012-1.37; P = 0.034), osteoporosis with pathological fracture (OR 1.597; 95% CI 1.036-2.46; P = 0.034), and soft tissue disorder (OR 1.069; 95% CI 1.001-1.141; P = 0.045) via an inverse variance weighting method and other MR approaches. Higher vitamin B12 levels were robustly associated with decreased body fat percentage and its subtypes (all P < 0.05). Bidirectional analyses showed no reverse causation. Multivariable MR analyses and other sensitivity analyses showed directionally similar results. Conclusions There exist significant causal effects of vitamin B12 in the serum and Hcy in the blood on fat and musculoskeletal diseases, respectively. These findings may have an important insight into the pathogenesis of obesity and musculoskeletal diseases and other possible future therapies.
Collapse
Affiliation(s)
- Liwan Fu
- Center for Non-Communicable Disease Management, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China,*Correspondence: Liwan Fu
| | - Yuquan Wang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue-Qing Hu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China,Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China,Yue-Qing Hu
| |
Collapse
|
21
|
Lu B, Shen L, Zhu H, Xi L, Wang W, Ouyang X. Association between serum homocysteine and sarcopenia among hospitalized older Chinese adults: a cross-sectional study. BMC Geriatr 2022; 22:896. [PMID: 36424548 PMCID: PMC9685861 DOI: 10.1186/s12877-022-03632-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Hyperhomocysteinemia (HHcy) is considered to increase the risk of sarcopenia (S) and remains controversial. In this study, we aimed to investigate the prevalence of S among older Chinese adults and explore whether homocysteine (Hcy) was independently associated with S. METHODS This cross-sectional study was performed among older adults hospitalized in the Geriatric Hospital of Nanjing Medical University between June 2017 and December 2021. We measured all participants' serum Hcy levels, hand grip strength, gait speed and appendicular skeletal muscle index(ASMI) using bioelectrical impedance analysis (BIA). S was defined based on the criteria of the Asian Working Group for Sarcopenia 2 (AWGS2), which included muscle mass (ASMI< 7.0 kg/m2 for men and ASMI< 5.7 kg/m2 for women by BIA) and low muscle strength (handgrip strength < 28 kg for men and < 18 kg for women), and/or gait speed < 1.0 m/s. HHcy defined as Hcy ≥10 μmol/L. The strength of the association between Hcy and the risk of S was analyzed by multivariate logistic regression using three models that adjusted for possible confounding variables to calculate the odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS Among the 441 subjects, 161 (36.5%) were diagnosed with S, and 343 (77.8%) were diagnosed with HHcy. A significant association was detected between S and serum Hcy per 1-μmol/L increase after adjustment for age, gender, education, smoking, body mass index (BMI), Mini Nutritional Assessment Short Form (MNA-SF), alanine aminotransferase (ALT), C-reactive protein (CRP), hemoglobin (Hb), albumin (ALB), diabetes, kidney disease, and statin use (OR = 1.07, 95% CI = 1.03-1.12, P = 0.002). The OR for S in the HHcy group (≥10 μmol/L) was nearly 5-fold that in the normal Hcy group (OR 4.96, 95% CI 2.67-9.24, P < 0.001). In a gender-based subgroup analysis that adjusted for age, education, smoking, BMI, MNA-SF, ALT, CRP, Hb, and ALB, female subjects with HHcy had an increased risk of S (OR 10.35, 95% CI 2.84-37.68, P < 0.001). CONCLUSIONS Our results demonstrated that elevated Hcy levels have an independent association with S in older adults. This suggests that the downward adjustment of HHcy (cutoff value < 10 μmol/l) might decrease the risk of S.
Collapse
Affiliation(s)
- Bing Lu
- grid.89957.3a0000 0000 9255 8984Department of Geriatrics, Geriatric Hospital of Nanjing Medical University, 65 Jiangsu Road, Nanjing, 210024 China
| | - Lingyu Shen
- grid.89957.3a0000 0000 9255 8984Chronic Disease and Health Management Research Center, Geriatric Hospital of Nanjing Medical University, 65 Jiangsu Road, Nanjing, 210024 China
| | - Haiqiong Zhu
- grid.89957.3a0000 0000 9255 8984Department of Geriatrics, Geriatric Hospital of Nanjing Medical University, 65 Jiangsu Road, Nanjing, 210024 China
| | - Ling Xi
- grid.89957.3a0000 0000 9255 8984Department of Geriatrics, Geriatric Hospital of Nanjing Medical University, 65 Jiangsu Road, Nanjing, 210024 China
| | - Wei Wang
- grid.89957.3a0000 0000 9255 8984Chronic Disease and Health Management Research Center, Geriatric Hospital of Nanjing Medical University, 65 Jiangsu Road, Nanjing, 210024 China
| | - Xiaojun Ouyang
- grid.89957.3a0000 0000 9255 8984Department of Geriatrics, Geriatric Hospital of Nanjing Medical University, 65 Jiangsu Road, Nanjing, 210024 China
| |
Collapse
|
22
|
Singh M, Pushpakumar S, Zheng Y, Homme RP, Smolenkova I, Mokshagundam SPL, Tyagi SC. Hydrogen sulfide mitigates skeletal muscle mitophagy-led tissue remodeling via epigenetic regulation of the gene writer and eraser function. Physiol Rep 2022; 10:e15422. [PMID: 35986494 PMCID: PMC9391604 DOI: 10.14814/phy2.15422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 05/29/2023] Open
Abstract
Ketone bodies (KB) serve as the food for mitochondrial biogenetics. Interestingly, probiotics are known to promote KB formation in the gut (especially those that belong to the Lactobacillus genus). Furthermore, Lactobacillus helps produce folate that lowers the levels of homocysteine (Hcy); a hallmark non-proteinogenic amino acid that defines the importance of epigenetics, and its landscape. In this study, we decided to test whether hydrogen sulfide (H2 S), another Hcy lowering agent regulates the epigenetic gene writer DNA methyltransferase (DNMT), eraser FTO and TET2, and thus mitigates the skeletal muscle remodeling. We treated hyperhomocysteinemic (HHcy, cystathionine beta-synthase heterozygote knockout; CBS+/- ) mice with NaHS (the H2 S donor). The results suggested multi-organ damage by HHcy in the CBS+/- mouse strain compared with WT control mice (CBS+/+ ). H2 S treatment abrogated most of the HHcy-induced damage. The levels of gene writer (DNMT2) and H3K9 (methylation) were higher in the CBS+/- mice, and the H2 S treatment normalized their levels. More importantly, the levels of eraser FTO, TET, and associated GADD45, and MMP-13 were decreased in the CBS+/- mice; however, H2 S treatment mitigated their respective decrease. These events were associated with mitochondrial fission, i.e., an increase in DRP1, and mitophagy. Although the MMP-2 level was lower in CBS+/- compared to WT but H2 S could further lower it in the CBS+/- mice. The MMPs levels were associated with an increase in interstitial fibrosis in the CBS+/- skeletal muscle. Due to fibrosis, the femoral artery blood flow was reduced in the CBS+/- mice, and that was normalized by H2 S. The bone and muscle strengths were found to be decreased in the CBS+/- mice but the H2 S treatment normalized skeletal muscle strength in the CBS+/- mice. Our findings suggest that H2 S mitigates the mitophagy-led skeletal muscle remodeling via epigenetic regulation of the gene writer and eraser function.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
| | - Sathnur Pushpakumar
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
| | - Yuting Zheng
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
| | - Rubens P. Homme
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
| | - Irina Smolenkova
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
| | - Sri Prakash L. Mokshagundam
- Division of Endocrinology, Metabolism and Diabetes and Robley Rex VA Medical CenterUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
| | - Suresh C. Tyagi
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
| |
Collapse
|
23
|
Ding Y, Wang L, Sun J, Shi Y, Li G, Luan X, Zheng G, Zhang G. Remnant Cholesterol and Dyslipidemia Are Risk Factors for Guillain–Barré Syndrome and Severe Guillain–Barré Syndrome by Promoting Monocyte Activation. Front Immunol 2022; 13:946825. [PMID: 35911688 PMCID: PMC9326451 DOI: 10.3389/fimmu.2022.946825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundGuillain–Barré syndrome (GBS) is the most common severe acute paralytic neuropathy, with a mortality rate of 5% and permanent sequelae rate of 10%. Currently, the cause of GBS remains unclear. Therefore, we sought to determine potential predictors for GBS and its severity.MethodsA case–control study was performed at Tiantan Hospital in Beijing from January 2017 to December 2021. Laboratory and clinical characteristics were assessed in recruited GBS patients and healthy control individuals (matched by sex and age). The potential risk factors for GBS and severe GBS were assessed using a logistic regression analysis. The mRNA levels of toll-like receptor 4 (TLR4), toll-like receptor 2 (TLR2) and nuclear factor κB (NF-κB) in GBS patients and control PBMCs were detected by fluorescence quantitative PCR. THP-1 cells were costimulated with LPS and free cholesterol to demonstrate the effect of free cholesterol on monocyte activation.ResultsA total of 147 GBS patients and 153 healthy individuals were included in the study. Logistic regression analyses showed that preceding infection, alcohol consumption, remnant cholesterol, homocysteine and the dyslipidemia index were correlated with a higher risk of GBS. In contrast, increased HDL cholesterol was correlated with a lower risk of GBS. Moreover, remnant cholesterol and the dyslipidemia index were significantly correlated with severe GBS. The mRNA levels of TLR4, TLR2 and NF-κB in the PBMCs of GBS patients were significantly higher than those of healthy individuals. LPS activated THP-1 cells, and free cholesterol treatment increased the expression of TLR4, TLR2, NF-κB and IL-1β mRNA in LPS-activated THP-1 cells.ConclusionDyslipidemia was correlated with the risk of GBS and severe GBS. Remnant cholesterol may promote the activation of monocytes in GBS patients. It may be valuable to control lipid levels in the prevention of GBS and severe GBS.
Collapse
Affiliation(s)
- Yaowei Ding
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lijuan Wang
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jialu Sun
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yijun Shi
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guoge Li
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin Luan
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guanghui Zheng
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guojun Zhang
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Guojun Zhang,
| |
Collapse
|
24
|
Su Y, Elshorbagy A, Turner C, Refsum H, Kwok T. The Association of Circulating Amino Acids and Dietary Inflammatory Potential with Muscle Health in Chinese Community-Dwelling Older People. Nutrients 2022; 14:nu14122471. [PMID: 35745201 PMCID: PMC9229609 DOI: 10.3390/nu14122471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/06/2023] Open
Abstract
Amino acids (AAs) and dietary inflammatory potential play essential roles in muscle health. We examined the associations of dietary inflammatory index (DII) of habitual diet with serum AA profile, and ascertained if the associations between DII and muscle outcomes were mediated by serum AAs, in 2994 older Chinese community-dwelling men and women (mean age 72 years) in Hong Kong. Higher serum branched chain AAs (BCAAs), aromatic AAs and total glutathione (tGSH) were generally associated with better muscle status at baseline. A more pro-inflammatory diet, correlating with higher serum total homocysteine and cystathionine, was directly (90.2%) and indirectly (9.8%) through lower tGSH associated with 4-year decline in hand grip strength in men. Higher tGSH was associated with favorable 4-year changes in hand grip strength, gait speed and time needed for 5-time chair stands in men and 4-year change in muscle mass in women. Higher leucine and isoleucine were associated with decreased risk of sarcopenia in men; the associations were abolished after adjustment for BMI. In older men, perturbations in serum sulfur AAs metabolism may be biomarkers of DII related adverse muscle status, while the lower risk of sarcopenia with higher BCAAs may partly be due to preserved BMI.
Collapse
Affiliation(s)
- Yi Su
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China;
| | - Amany Elshorbagy
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria 21526, Egypt;
- Department of Pharmacology, University of Oxford, Oxford OX1 2JD, UK;
| | - Cheryl Turner
- Department of Pharmacology, University of Oxford, Oxford OX1 2JD, UK;
| | - Helga Refsum
- Institute of Basic Medical Sciences, Department of Nutrition, University of Oslo, 0316 Oslo, Norway;
| | - Timothy Kwok
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China
- Jockey Club Centre for Osteoporosis Care and Control, The Chinese University of Hong Kong, Hong Kong 999077, China
- Correspondence: ; Tel.: +852-2632-3128; Fax: +852-2637-3852
| |
Collapse
|
25
|
Abstract
Frailty is a complex syndrome affecting a growing sector of the global population as medical developments have advanced human mortality rates across the world. Our current understanding of frailty is derived from studies conducted in the laboratory as well as the clinic, which have generated largely phenotypic information. Far fewer studies have uncovered biological underpinnings driving the onset and progression of frailty, but the stage is set to advance the field with preclinical and clinical assessment tools, multiomics approaches together with physiological and biochemical methodologies. In this article, we provide comprehensive coverage of topics regarding frailty assessment, preclinical models, interventions, and challenges as well as clinical frameworks and prevalence. We also identify central biological mechanisms that may be at play including mitochondrial dysfunction, epigenetic alterations, and oxidative stress that in turn, affect metabolism, stress responses, and endocrine and neuromuscular systems. We review the role of metabolic syndrome, insulin resistance and visceral obesity, focusing on glucose homeostasis, adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and nicotinamide adenine dinucleotide (NAD+ ) as critical players influencing the age-related loss of health. We further focus on how immunometabolic dysfunction associates with oxidative stress in promoting sarcopenia, a key contributor to slowness, weakness, and fatigue. We explore the biological mechanisms involved in stem cell exhaustion that affect regeneration and may contribute to the frailty-associated decline in resilience and adaptation to stress. Together, an overview of the interplay of aging biology with genetic, lifestyle, and environmental factors that contribute to frailty, as well as potential therapeutic targets to lower risk and slow the progression of ongoing disease is covered. © 2022 American Physiological Society. Compr Physiol 12:1-46, 2022.
Collapse
Affiliation(s)
- Laís R. Perazza
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| | - Holly M. Brown-Borg
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - LaDora V. Thompson
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Choi JH, Seo JW, Lee MY, Lee YT, Yoon KJ, Park CH. Association between Elevated Plasma Homocysteine and Low Skeletal Muscle Mass in Asymptomatic Adults. Endocrinol Metab (Seoul) 2022; 37:333-343. [PMID: 35144330 PMCID: PMC9081311 DOI: 10.3803/enm.2021.1202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/02/2021] [Accepted: 11/29/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Homocysteine has been drawing attention with a closed linkage with skeletal muscle. However, the association of hyperhomocysteinemia with decreased skeletal muscle mass remains unclear. We aimed to investigate the association of hyperhomocysteinemia with low skeletal muscle mass (LMM) in asymptomatic adults. METHODS This was a cross-sectional study of 114,583 community-dwelling adults without cancer, stroke, or cardiovascular diseases who underwent measurements of plasma homocysteine and body composition analysis from 2012 to 2018. Hyperhomocysteinemia was defined as >15 μmol/L. Skeletal muscle mass index (SMI) was calculated based on appendicular muscle mass (kg)/height (m)2. Participants were classified into three groups based on SMI: "normal," "mildly low," and "severely low." RESULTS The prevalence of hyperhomocysteinemia was the highest in subjects with severely LMM (12.9%), followed by those with mildly LMM (9.8%), and those with normal muscle mass (8.5%) (P for trend <0.001). In a multivariable logistic regression model, hyperhomocysteinemia was significantly associated with having a mildly LMM (odds ratio [OR], 1.305; 95% confidence interval [CI], 1.224 to 1.392) and severely LMM (OR, 1.958; 95% CI, 1.667 to 2.286), respectively. One unit increment of log-transformed homocysteine was associated with 1.360 and 2.169 times higher risk of having mildly LMM and severely LMM, respectively. CONCLUSION We demonstrated that elevated homocysteine has an independent association with LMM in asymptomatic adults, supporting that hyperhomocysteinemia itself can be a risk for decline in skeletal musculature.
Collapse
Affiliation(s)
- Jae-Hyeong Choi
- Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin-Woo Seo
- Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mi-Yeon Lee
- Division of Biostatistics, Department of R&D Management, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yong-Taek Lee
- Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung Jae Yoon
- Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chul-Hyun Park
- Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
27
|
The Biological Role of Vitamins in Athletes’ Muscle, Heart and Microbiota. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031249. [PMID: 35162272 PMCID: PMC8834970 DOI: 10.3390/ijerph19031249] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
Physical activity, combined with adequate nutrition, is considered a protective factor against cardiovascular disease, musculoskeletal disorders, and intestinal dysbiosis. Achieving optimal performance requires a significantly high energy expenditure, which must be correctly supplied to avoid the occurrence of diseases such as muscle injuries, oxidative stress, and heart pathologies, and a decrease in physical performance during competition. Moreover, in sports activities, the replenishment of water, vitamins, and minerals consumed during training is essential for safeguarding athletes’ health. In this scenario, vitamins play a pivotal role in numerous metabolic reactions and some muscle biochemical adaptation processes induced by sports activity. Vitamins are introduced to the diet because the human body is unable to produce these micronutrients. The aim of this review is to highlight the fundamental role of vitamin supplementation in physical activity. Above all, we focus on the roles of vitamins A, B6, D, E, and K in the prevention and treatment of cardiovascular disorders, muscle injuries, and regulation of the microbiome.
Collapse
|
28
|
Lu WH, Giudici KV, Rolland Y, Guyonnet S, Mangin JF, Vellas B, de Souto Barreto P. Associations Between Nutritional Deficits and Physical Performance in Community-Dwelling Older Adults. Front Nutr 2021; 8:771470. [PMID: 34859035 PMCID: PMC8632557 DOI: 10.3389/fnut.2021.771470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/08/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Whether multiple nutritional deficiencies have a synergic effect on mobility loss remains unknown. This study aims to evaluate associations between multi-nutritional deficits and physical performance evolution among community-dwelling older adults. Methods: We included 386 participants from the Multidomain Alzheimer Preventive Trial (MAPT) (75.6 ± 4.5 years) not receiving omega-3 polyunsaturated fatty acid (PUFA) supplementation and who had available data on nutritional deficits. Baseline nutritional deficits were defined as plasma 25 hydroxyvitamin D <20 ng/ml, plasma homocysteine >14 μmol/L, or erythrocyte omega-3 PUFA index ≤ 4.87% (lower quartile). The Short Physical Performance Battery (SPPB), gait speed, and chair rise time were used to assess physical performance at baseline and after 6, 12, 24, 36, 48, and 60 months. We explored if nutrition-physical performance associations varied according to the presence of low-grade inflammation (LGI) and brain imaging indicators. Results: Within-group comparisons showed that physical function (decreased SPPB and gait speed, increased chair rise time) worsened over time, particularly in participants with ≥2 nutritional deficits; however, no between-group differences were observed when individuals without deficit and those with either 1 or ≥2 deficits were compared. Our exploratory analysis on nutritional deficit-LGI interactions showed that, among people with ≥2 deficits, chair rise time was increased over time in participants with LGI (adjusted mean difference: 3.47; 95% CI: 1.03, 5.91; p = 0.017), compared with individuals with no LGI. Conclusions: Accumulated deficits on vitamin D, homocysteine, and omega-3 PUFA were not associated with physical performance evolution in older adults, but they determined declined chair rise performance in subjects with low-grade inflammation. Clinical Trial Registration: [https://clinicaltrials.gov/ct2/show/NCT00672685], identifier [NCT00672685].
Collapse
Affiliation(s)
- Wan-Hsuan Lu
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), Toulouse, France
- Maintain Aging Research Team, CERPOP, INSERM, Université Paul Sabatier, Toulouse, France
| | - Kelly Virecoulon Giudici
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), Toulouse, France
| | - Yves Rolland
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), Toulouse, France
- Maintain Aging Research Team, CERPOP, INSERM, Université Paul Sabatier, Toulouse, France
| | - Sophie Guyonnet
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), Toulouse, France
- Maintain Aging Research Team, CERPOP, INSERM, Université Paul Sabatier, Toulouse, France
| | - Jean-François Mangin
- CATI Multicenter Neuroimaging Platform, Neurospin, CEA, Gif-sur-Yvette, France
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette, France
| | - Bruno Vellas
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), Toulouse, France
- Maintain Aging Research Team, CERPOP, INSERM, Université Paul Sabatier, Toulouse, France
| | - Philipe de Souto Barreto
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), Toulouse, France
- Maintain Aging Research Team, CERPOP, INSERM, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
29
|
Panza E, Vellecco V, Iannotti FA, Paris D, Manzo OL, Smimmo M, Mitilini N, Boscaino A, de Dominicis G, Bucci M, Di Lorenzo A, Cirino G. Duchenne's muscular dystrophy involves a defective transsulfuration pathway activity. Redox Biol 2021; 45:102040. [PMID: 34174560 PMCID: PMC8246642 DOI: 10.1016/j.redox.2021.102040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/20/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most frequent X chromosome-linked disease caused by mutations in the gene encoding for dystrophin, leading to progressive and unstoppable degeneration of skeletal muscle tissues. Despite recent advances in the understanding of the molecular processes involved in the pathogenesis of DMD, there is still no cure. In this study, we aim at investigating the potential involvement of the transsulfuration pathway (TSP), and its by-end product namely hydrogen sulfide (H2S), in primary human myoblasts isolated from DMD donors and skeletal muscles of dystrophic (mdx) mice. In myoblasts of DMD donors, we demonstrate that the expression of key genes regulating the H2S production and TSP activity, including cystathionine γ lyase (CSE), cystathionine beta-synthase (CBS), 3 mercaptopyruvate sulfurtransferase (3-MST), cysteine dioxygenase (CDO), cysteine sulfonic acid decarboxylase (CSAD), glutathione synthase (GS) and γ -glutamylcysteine synthetase (γ-GCS) is reduced. Starting from these findings, using Nuclear Magnetic Resonance (NMR) and quantitative Polymerase Chain Reaction (qPCR) we show that the levels of TSP-related metabolites such as methionine, glycine, glutathione, glutamate and taurine, as well as the expression levels of the aforementioned TSP related genes, are significantly reduced in skeletal muscles of mdx mice compared to healthy controls, at both an early (7 weeks) and overt (17 weeks) stage of the disease. Importantly, the treatment with sodium hydrosulfide (NaHS), a commonly used H2S donor, fully recovers the impaired locomotor activity in both 7 and 17 old mdx mice. This is an effect attributable to the reduced expression of pro-inflammatory markers and restoration of autophagy in skeletal muscle tissues. In conclusion, our study uncovers a defective TSP pathway activity in DMD and highlights the role of H2S-donors for novel and safe adjuvant therapy to treat symptoms of DMD.
Collapse
Affiliation(s)
- E Panza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - V Vellecco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - F A Iannotti
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli (NA), Italy
| | - D Paris
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli (NA), Italy
| | - O L Manzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy; Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - M Smimmo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - N Mitilini
- UOSC, Pathological Anatomy, A. Cardarelli Hospital, Naples, Italy
| | - A Boscaino
- UOSC, Pathological Anatomy, A. Cardarelli Hospital, Naples, Italy
| | - G de Dominicis
- UOSC, Pathological Anatomy, A. Cardarelli Hospital, Naples, Italy
| | - M Bucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.
| | - A Di Lorenzo
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - G Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
30
|
Chori BS, Danladi B, Inyang BA, Okoh MP, Nwegbu MM, Alli AL, Odili AN. Hyperhomocysteinemia and its relations to conventional risk factors for cardiovascular diseases in adult Nigerians: the REMAH study. BMC Cardiovasc Disord 2021; 21:102. [PMID: 33602121 PMCID: PMC7890880 DOI: 10.1186/s12872-021-01913-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Evidence linking homocysteine (Hcy) with cardiovascular diseases (CVD) or its risk factors are limited in a sub-Saharan black population. OBJECTIVE We set out to evaluate the association between Hcy and hypertension and other CVD risk factors in a population of adult Nigerians. METHODS Data of 156 adults aged 18-70 years was accessed from the North Central study site of the REmoving the MAsk on Hypertension (REMAH) study. Homocysteine, blood glucose and lipid profile in whole blood/serum were measured using standard laboratory methods. Hypertension was diagnosed if average of 5 consecutive blood pressure (BP) measurements obtained using a mercury sphygmomanometer was equal to or higher than 140 systolic and/or 90 mmHg diastolic or the individual is on antihypertensive medication. Hyperhomocysteinemia (HHcy) was defined as Hcy > 10 µmol/L. RESULTS Of the 156 participants, 72 (43.5%) were hypertensive, of whom 18 had HHcy. Subjects with HHcy were significantly (p < 0.05) older (41.5 vs. 40.6yrs), had lower HDL-cholesterol (0.6 vs. 0.8 mmol/L) and higher systolic (145.5 vs. 126.0 mmHg) and diastolic BP (92.9 vs. 79.6 mmHg), compared to those without HHcy. Intake of alcohol and a 1 yr increase in age were respectively and significantly (p < 0.05) associated with a 1.54 and 0.10 µmol/L increase in Hcy. In a multivariable model adjusted for age, sex and body mass index, a 1 µmol/L increase in Hcy, was associated with a 1.69 mmHg and 1.34 mmHg increase in systolic and diastolic pressure (p < 0.0001) respectively; and a 0.01 mmol/L decrease in HDL-cholesterol (p < 0.05). CONCLUSION HHcy occurs among hypertensive Nigerians and it is independently associated with age, HDL-cholesterol, systolic and diastolic BP.
Collapse
Affiliation(s)
- Babangida S Chori
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Abuja, Abuja, Nigeria
- Circulatory Health Research Laboratory, Old Anatomy Block (Beside School of Nursing and Midwifery), University of Abuja Teaching Hospital, Gwagwalada, Abuja, Nigeria
| | - Benjamin Danladi
- Circulatory Health Research Laboratory, Old Anatomy Block (Beside School of Nursing and Midwifery), University of Abuja Teaching Hospital, Gwagwalada, Abuja, Nigeria
| | - Bassey A Inyang
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Abuja, Abuja, Nigeria
| | - Michael P Okoh
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Abuja, Abuja, Nigeria
| | - Maxwell M Nwegbu
- Department of Chemical Pathology, College of Health Sciences, Faculty of Basic Clinical Sciences, University of Abuja, Abuja, Nigeria
| | - Adewale L Alli
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Abuja, Abuja, Nigeria
| | - Augustine N Odili
- Circulatory Health Research Laboratory, Old Anatomy Block (Beside School of Nursing and Midwifery), University of Abuja Teaching Hospital, Gwagwalada, Abuja, Nigeria.
| |
Collapse
|
31
|
Álvarez-Sánchez N, Álvarez-Ríos AI, Guerrero JM, García-García FJ, Rodríguez-Mañas L, Cruz-Chamorro I, Lardone PJ, Carrillo-Vico A. Homocysteine and C-Reactive Protein Levels Are Associated With Frailty in Older Spaniards: The Toledo Study for Healthy Aging. J Gerontol A Biol Sci Med Sci 2021; 75:1488-1494. [PMID: 31304964 DOI: 10.1093/gerona/glz168] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 01/12/2023] Open
Abstract
High-sensitivity C-reactive protein (hsCRP) and homocysteine (Hcy) are inflammation markers but are also related to cardiovascular diseases, disability, or higher risk of death. Although inflammation is considered to be associated with frailty, data regarding the association between hsCRP or Hcy and frailty are controversial or scarce, especially with respect to their association with prefrailty. Thus, our objective was to study the association of hsCRP and Hcy with prefrailty and frailty in 1,211 Spanish men and women aged 65-98 years from the Toledo Study for Healthy Aging (TSHA) cohort, classified according to Fried's criteria. Hcy was independently associated with frailty (odds ratio [OR] = 1.06; 95% confidence interval [CI]: 1.01-1.12), whereas hsCRP was independently associated with both prefrailty (OR = 1.03; 95% CI: 1.01-1.06) and frailty (OR = 1.07; 95% CI: 1.02-1.12). Furthermore, both markers were positively correlated with the number of Fried's criteria that were met and were independently associated with the criteria of exhaustion (Hcy: OR = 1.03, 95% CI: 1.00-1.06), weakness (hsCRP: OR = 1.03, 95% CI: 1.01-1.05), and low physical activity (hsCRP: OR = 1.04, 95% CI: 1.02-1.06). Thus, our results highlight the importance of inflammation in age-related physical decline and, in particular, its association with fatigue, low strength, and decreased physical activity.
Collapse
Affiliation(s)
- Nuria Álvarez-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Spain
| | | | - Juan Miguel Guerrero
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Spain.,Department of Clinical Biochemistry, Virgen del Rocío University Hospital, Sevilla, Spain.,Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Spain
| | | | - Leocadio Rodríguez-Mañas
- Servicio de Geriatría y Fundación para la Investigación Biomédica, Hospital Universitario de Getafe Madrid, Spain
| | - Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Spain.,Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Spain
| | - Patricia Judith Lardone
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Spain.,Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Spain.,Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Spain
| |
Collapse
|
32
|
Grootswagers P, Mensink M, Berendsen AAM, Deen CPJ, Kema IP, Bakker SJL, Santoro A, Franceschi C, Meunier N, Malpuech-Brugère C, Bialecka-Debek A, Rolf K, Fairweather-Tait S, Jennings A, Feskens EJM, de Groot LCPGM. Vitamin B-6 intake is related to physical performance in European older adults: results of the New Dietary Strategies Addressing the Specific Needs of the Elderly Population for Healthy Aging in Europe (NU-AGE) study. Am J Clin Nutr 2021; 113:781-789. [PMID: 33515034 PMCID: PMC8024000 DOI: 10.1093/ajcn/nqaa368] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/13/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Maintenance of high physical performance during aging might be supported by an adequate dietary intake of niacin, vitamins B-6 and B-12, and folate because these B vitamins are involved in multiple processes related to muscle functioning. However, not much is known about the association between dietary intake of these B vitamins and physical performance. OBJECTIVES The objectives of this study were to investigate the association between dietary intake of niacin, vitamins B-6 and B-12, and folate and physical performance in older adults and to explore mediation by niacin status and homocysteine concentrations. METHODS We used baseline data from the New Dietary Strategies Addressing the Specific Needs of the Elderly Population for Healthy Aging in Europe (NU-AGE) trial, which included n = 1249 healthy older adults (aged 65-79 y) with complete data on dietary intake measured with 7-d food records and questionnaires on vitamin supplement use and physical performance measured with the short physical performance battery and handgrip dynamometry. Associations were assessed by adjusted linear mixed models. RESULTS Intake of vitamin B-6 was related to lower chair rise test time [β: -0.033 ± 0.016 s (log); P = 0.043]. Vitamin B-6 intake was also significantly associated with handgrip strength, but for this association, a significant interaction effect between vitamin B-6 intake and physical activity level was found. In participants with the lowest level of physical activity, higher intake of vitamin B-6 tended to be associated with greater handgrip strength (β: 1.5 ± 0.8 kg; P = 0.051), whereas in participants in the highest quartile of physical activity, higher intake was associated with lower handgrip strength (β: -1.4 ± 0.7 kg; P = 0.041). No evidence was found for an association between intake of niacin, vitamin B-12, or folate and physical performance or for mediation by niacin status or homocysteine concentrations. CONCLUSIONS Vitamin B-6 intake was associated with better chair rise test time in a population of European healthy older adults and also with greater handgrip strength in participants with low physical activity only. Homocysteine concentrations did not mediate these associations. The NU-AGE trial was registered at clinicaltrials.gov as NCT01754012.
Collapse
Affiliation(s)
| | - Marco Mensink
- Division of Human Nutrition and Health, Wageningen University, Wageningen, Netherlands
| | - Agnes A M Berendsen
- Division of Human Nutrition and Health, Wageningen University, Wageningen, Netherlands
| | - Carolien P J Deen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Aurelia Santoro
- Department of Experimental, Diagnostic, and Specialty Medicine and CIG Interdepartmental Center “L. Galvani,” Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic, and Specialty Medicine and CIG Interdepartmental Center “L. Galvani,” Alma Mater Studiorum, University of Bologna, Bologna, Italy,Department of Experimental, Diagnostic, and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy,Department of Applied Mathematics, Institute of Information Technology, Mathematics, and Mechanics, Lobachevsky State University of Nizhny Novgorod–National Research University, Nizhny Novgorod, Russia
| | | | - Corinne Malpuech-Brugère
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Agata Bialecka-Debek
- Department of Human Nutrition, Warsaw University of Life Sciences–SGGW, Warsaw, Poland
| | - Katarzyna Rolf
- Department of Human Nutrition, Warsaw University of Life Sciences–SGGW, Warsaw, Poland
| | - Susan Fairweather-Tait
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Amy Jennings
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Edith J M Feskens
- Division of Human Nutrition and Health, Wageningen University, Wageningen, Netherlands
| | | |
Collapse
|
33
|
Rawashdeh SI, Al-Mistarehi AH, Yassin A, Rabab'ah W, Skaff H, Ibdah R. A Concurrent Ischemic Stroke, Myocardial Infarction, and Aortic Thrombi in a Young Patient with Hyperhomocysteinemia: A Case Report. Int Med Case Rep J 2020; 13:581-590. [PMID: 33192104 PMCID: PMC7653271 DOI: 10.2147/imcrj.s279603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/21/2020] [Indexed: 12/31/2022] Open
Abstract
We are presenting a case report of a previously healthy 39-year-old man who was found to have acute inferior ST-elevation myocardial infarction (STEMI) and acute large right middle cerebral artery (MCA) ischemic stroke with hemorrhagic transformation. Transesophageal echocardiogram and chest CT angiogram revealed two thrombi; one attached to the wall of the ascending aorta just above the right coronary artery sinus, and one at the origin of the brachiocephalic trunk. The occlusion of the coronary artery and right MCA most likely could be because of embolization from these thrombi. Extensive workup looking for underlying etiology and risk factors for these concurrent vascular events in this young man revealed hyperhomocysteinemia along with unfavorable lipid profile, and family history of premature coronary artery disease which increased the suspicion of familial hypercholesterolemia. Besides, the presence of vitamin B12 and folate deficiencies. The elevated serum homocysteine is likely a major risk factor for thromboembolism in this patient. The patient received antithrombotics and vitamin supplementations and gradually improved without any worsening of the stroke's hemorrhagic transformation. We suggest that hyperhomocysteinemia needs to be considered in the differential etiology of vascular events in young people or those with no significant history of major vascular risk factors. Besides, vitamin supplementation could be a cost-effective, safe, and efficient way to decrease elevated serum homocysteine levels and prevent vascular complications. As well as this case report demonstrates that antithrombotics can safely be used after stroke's hemorrhagic transformation without neurological deterioration or aggravation of hemorrhagic transformation.
Collapse
Affiliation(s)
- Sukaina I Rawashdeh
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Abdel-Hameed Al-Mistarehi
- Department of Public Health and Family Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmed Yassin
- Division of Neurology, Department of Neurosciences, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Walaa Rabab'ah
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Hussam Skaff
- Department of Diagnostic Radiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Rasheed Ibdah
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
34
|
Sarcopenia Severity Based on Computed Tomography Image Analysis in Patients with Cirrhosis. Nutrients 2020; 12:nu12113463. [PMID: 33187310 PMCID: PMC7696263 DOI: 10.3390/nu12113463] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/25/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Standardized sex-specific cut-offs for sarcopenia in cirrhosis are needed to identify the risk of clinical complications and to discriminate the severity of sarcopenia. We aimed to compare clinical characteristics between patients with cirrhosis categorized according to the severity of sarcopenia. Computed tomography images were taken at the 3rd lumbar vertebra from 603 patients with cirrhosis and 129 adult donors for living liver transplantation. Patients with skeletal muscle index (SMI) two standard deviations (SD) below the sex-specific mean value of young donors (18-40 years old) were categorized as having severe sarcopenia whereas patients with SMI between -1 and -2 SD of the sex-specific young adult mean values were categorized as having sarcopenia. In the cirrhosis group, 408 patients (68%) were male with the mean age of 57 ± 0.4 years, and MELD score of 14 ± 0.4. Patients were divided into three groups: severe-sarcopenic (SMI < 30 cm2/m2 in females and <42 cm2/m2 in males), sarcopenic (30 ≤ SMI < 37 cm2/m2 in females and 42 ≤ SMI < 50 cm2/m2 in males) and non-sarcopenic (SMI ≥ 37 cm2/m2 in females and ≥50 cm2/m2 in males). Patients with cirrhosis and severe sarcopenia had lower muscle radiodensity and higher plasma neutrophil as well as neutrophil to lymphocyte ratio levels than both non- and sarcopenic groups. The frequency of alcohol-induced cirrhosis, refractory ascites, hepatic encephalopathy, CRP > 20 mg/mL, and severe malnutrition was also higher in severe-sarcopenic patients. The interval between sarcopenia and severe sarcopenia may reflect a window of opportunity in which to intervene and mitigate muscle wasting to improve patient outcomes.
Collapse
|
35
|
Tyagi SC, Stanisic D, Singh M. Epigenetic memory: gene writer, eraser and homocysteine. Mol Cell Biochem 2020; 476:507-512. [PMID: 33030620 DOI: 10.1007/s11010-020-03895-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
Naturally chromatin remodeling is highly organized, consisting of histone acetylation (opening/relaxation of the compact chromatin structure), DNA methylation (inhibition of the gene expression activity) and sequence rearrangement by shifting. All this is essentially required for proper "in-printing and off-printing" of genes thus ensuring the epigenetic memory process. Any imbalance in ratios of DNA methyltransferase (DNMT, gene writer), fat-mass obesity-associated protein (FTO, gene eraser) and product (function) homocysteine (Hcy) could lead to numerous diseases. Interestingly, a similar process also happens in stem cells during embryogenesis and development. Despite gigantic unsuccessful efforts undertaken thus far toward the conversion of a stem cell into a functional cardiomyocyte, there has been hardly any study that shows successful conversion of a stem cell into a multinucleated cardiomyocyte. We have shown nuclear hypertrophy during heart failure, however; the mechanism(s) of epigenetic memory, regulation of genes during fertilization, embryogenesis, development and during adulthood remain far from understanding. In addition, there may be a connection of aging, loosing of the memory leading to death, and presumably to reincarnation. This review highlights some of these pertinent issues facing the discipline of biology as a whole today.
Collapse
Affiliation(s)
- Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Dragana Stanisic
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.,Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000, Kragujevac, Serbia
| | - Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
36
|
Singh M, George AK, Eyob W, Homme RP, Stansic D, Tyagi SC. High-methionine diet in skeletal muscle remodeling: epigenetic mechanism of homocysteine-mediated growth retardation. Can J Physiol Pharmacol 2020; 99:56-63. [PMID: 32799662 DOI: 10.1139/cjpp-2020-0093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epigenetic DNA methylation (1-carbon metabolism) is crucial for gene imprinting/off-printing that ensures epigenetic memory but also generates a copious amount of homocysteine (Hcy), unequivocally. That is why during pregnancy, expectant mothers are recommended "folic acid" preemptively to avoid birth defects in the young ones because of elevated Hcy levels (i.e., hyperhomocysteinemia (HHcy)). As we know, children born with HHcy have several musculoskeletal abnormalities, including growth retardation. Here, we focus on the gut-dysbiotic microbiome implication(s) that we believe instigates the "1-carbon metabolism" and HHcy causing growth retardation along with skeletal muscle abnormalities. We test our hypothesis whether high-methionine diet (HMD) (an amino acid that is high in red meat), a substrate for Hcy, can cause skeletal muscle and growth retardation, and treatment with probiotics (PB) to mitigate skeletal muscle dysfunction. To test this, we employed cystathionine β-synthase, CBS deficient mouse (CBS+/-) fed with/without HMD and with/without a probiotic (Lactobacillus rhamnosus) in drinking water for 16 weeks. Matrix metalloproteinase (MMP) activity, a hallmark of remodeling, was measured by zymography. Muscle functions were scored via electric stimulation. Our results suggest that compared to the wild-type, CBS+/- mice exhibited reduced growth phenotype. MMP-2 activity was robust in CBS+/- and HMD effects were successfully attenuated by PB intervention. Electrical stimulation magnitude was decreased in CBS+/- and CBS+/- treated with HMD. Interestingly; PB mitigated skeletal muscle growth retardation and atrophy. Collectively, results imply that individuals with mild/moderate HHcy seem more prone to skeletal muscle injury and its dysfunction.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Akash K George
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Wintana Eyob
- College of Arts and Sciences, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Rubens P Homme
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Dragana Stansic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
37
|
Boccanegra B, Verhaart IEC, Cappellari O, Vroom E, De Luca A. Safety issues and harmful pharmacological interactions of nutritional supplements in Duchenne muscular dystrophy: considerations for Standard of Care and emerging virus outbreaks. Pharmacol Res 2020; 158:104917. [PMID: 32485610 PMCID: PMC7261230 DOI: 10.1016/j.phrs.2020.104917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
Abstract
At the moment, little treatment options are available for Duchenne muscular dystrophy (DMD). The absence of the dystrophin protein leads to a complex cascade of pathogenic events in myofibres, including chronic inflammation and oxidative stress as well as altered metabolism. The attention towards dietary supplements in DMD is rapidly increasing, with the aim to counteract pathology-related alteration in nutrient intake, the consequences of catabolic distress or to enhance the immunological response of patients as nowadays for the COVID-19 pandemic emergency. By definition, supplements do not exert therapeutic actions, although a great confusion may arise in daily life by the improper distinction between supplements and therapeutic compounds. For most supplements, little research has been done and little evidence is available concerning their effects in DMD as well as their preventing actions against infections. Often these are not prescribed by clinicians and patients/caregivers do not discuss the use with their clinical team. Then, little is known about the real extent of supplement use in DMD patients. It is mistakenly assumed that, since compounds are of natural origin, if a supplement is not effective, it will also do no harm. However, supplements can have serious side effects and also have harmful interactions, in terms of reducing efficacy or leading to toxicity, with other therapies. It is therefore pivotal to shed light on this unclear scenario for the sake of patients. This review discusses the supplements mostly used by DMD patients, focusing on their potential toxicity, due to a variety of mechanisms including pharmacodynamic or pharmacokinetic interactions and contaminations, as well as on reports of adverse events. This overview underlines the need for caution in uncontrolled use of dietary supplements in fragile populations such as DMD patients. A culture of appropriate use has to be implemented between clinicians and patients' groups.
Collapse
Affiliation(s)
- Brigida Boccanegra
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Ingrid E C Verhaart
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands; Duchenne Parent Project, the Netherlands
| | - Ornella Cappellari
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Elizabeth Vroom
- Duchenne Parent Project, the Netherlands; World Duchenne Organisation (UPPMD), the Netherlands
| | - Annamaria De Luca
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
38
|
Chen Y, Su X, Qin Q, Yu Y, Jia M, Zhang H, Li H, Pei L. New insights into phenotypic switching of VSMCs induced by hyperhomocysteinemia: Role of endothelin-1 signaling. Biomed Pharmacother 2020; 123:109758. [DOI: 10.1016/j.biopha.2019.109758] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022] Open
|
39
|
Behrouzi P, Grootswagers P, Keizer PLC, Smeets ETHC, Feskens EJM, de Groot LCPGM, van Eeuwijk FA. Dietary Intakes of Vegetable Protein, Folate, and Vitamins B-6 and B-12 Are Partially Correlated with Physical Functioning of Dutch Older Adults Using Copula Graphical Models. J Nutr 2020; 150:634-643. [PMID: 31858107 PMCID: PMC7056616 DOI: 10.1093/jn/nxz269] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/14/2019] [Accepted: 10/09/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND In nutritional epidemiology, dealing with confounding and complex internutrient relations are major challenges. An often-used approach is dietary pattern analyses, such as principal component analysis, to deal with internutrient correlations, and to more closely resemble the true way nutrients are consumed. However, despite these improvements, these approaches still require subjective decisions in the preselection of food groups. Moreover, they do not make efficient use of multivariate dietary data, because they detect only marginal associations. We propose the use of copula graphical models (CGMs) to model and make statistical inferences regarding complex associations among variables in multivariate data, where associations between all variables can be learned simultaneously. OBJECTIVE We aimed to reconstruct nutritional intake and physical functioning networks in Dutch older adults by applying a CGM. METHODS We addressed this issue by uncovering the pairwise associations between variables while correcting for the effect of remaining variables. More specifically, we used a CGM to infer the precision matrix, which contains all the conditional independence relations between nodes in the graph. The nonzero elements of the precision matrix indicate the presence of a direct association. We applied this method to reconstruct nutrient-physical functioning networks from the combined data of 4 studies (Nu-Age, ProMuscle, ProMO, and V-Fit, total n = 662, mean ± SD age = 75 ± 7 y). The method was implemented in the R package nutriNetwork which is freely available at https://cran.r-project.org/web/packages/nutriNetwork. RESULTS Greater intakes of vegetable protein and vitamin B-6 were partially correlated with higher scores on the total Short Physical Performance Battery (SPPB) and the chair rise test. Greater intakes of vitamin B-12 and folate were partially correlated with higher scores on the chair rise test and the total SPPB, respectively. CONCLUSIONS We determined that vegetable protein, vitamin B-6, folate, and vitamin B-12 intakes are partially correlated with improved functional outcome measurements in Dutch older adults.
Collapse
Affiliation(s)
- Pariya Behrouzi
- Biometris, Mathematical and Statistical Methods, Wageningen University and Research, Wageningen, Netherlands
| | - Pol Grootswagers
- Department of Human Nutrition, Wageningen University and Research, Wageningen, Netherlands
| | - Paul L C Keizer
- Biometris, Mathematical and Statistical Methods, Wageningen University and Research, Wageningen, Netherlands
| | - Ellen T H C Smeets
- Department of Human Nutrition, Wageningen University and Research, Wageningen, Netherlands
| | - Edith J M Feskens
- Department of Human Nutrition, Wageningen University and Research, Wageningen, Netherlands
| | | | - Fred A van Eeuwijk
- Biometris, Mathematical and Statistical Methods, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
40
|
Elevated cerebrospinal fluid homocysteine is associated with blood-brain barrier disruption in amyotrophic lateral sclerosis patients. Neurol Sci 2020; 41:1865-1872. [DOI: 10.1007/s10072-020-04292-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/11/2020] [Indexed: 12/12/2022]
|
41
|
Azzini E, Ruggeri S, Polito A. Homocysteine: Its Possible Emerging Role in At-Risk Population Groups. Int J Mol Sci 2020; 21:ijms21041421. [PMID: 32093165 PMCID: PMC7073042 DOI: 10.3390/ijms21041421] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/30/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Increased plasma homocysteine is a risk factor for several pathological disorders. The present review focused on the role of homocysteine (Hcy) in different population groups, especially in risk conditions (pregnancy, infancy, old age), and on its relevance as a marker or etiological factor of the diseases in these age groups, focusing on the nutritional treatment of elevated Hcy levels. In pregnancy, Hcy levels were investigated in relation to the increased risk of adverse pregnancy outcomes such as small size for gestational age at birth, preeclampsia, recurrent abortions, low birth weight, or intrauterine growth restriction. In pediatric populations, Hcy levels are important not only for cardiovascular disease, obesity, and renal disease, but the most interesting evidence concerns study of elevated levels of Hcy in autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). Finally, a focus on the principal pathologies of the elderly (cardiovascular and neurodegenerative disease, osteoporosis and physical function) is presented. The metabolism of Hcy is influenced by B vitamins, and Hcy-lowering vitamin treatments have been proposed. However, clinical trials have not reached a consensus about the effectiveness of vitamin supplementation on the reduction of Hcy levels and improvement of pathological condition, especially in elderly patients with overt pathologies, suggesting that other dietary and non-dietary factors are involved in high Hcy levels. The importance of novel experimental designs focusing on intra-individual variability as a complement to the typical case-control experimental designs and the study of interactions between different factors it should be emphasized.
Collapse
|
42
|
Ma T, Sun XH, Yao S, Chen ZK, Zhang JF, Xu WD, Jiang XY, Wang XF. Genetic Variants of Homocysteine Metabolism, Homocysteine, and Frailty - Rugao Longevity and Ageing Study. J Nutr Health Aging 2020; 24:198-204. [PMID: 32003411 DOI: 10.1007/s12603-019-1304-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Recently, elevated homocysteine was reported to be associated with frailty in cross-sectional studies. However, whether homocysteine is causally associated with frailty is unknown. Here, we explore the inter-relationships between five non-synonymous genetic variants of homocysteine metabolic four genes, plasma homocysteine levels, and frailty. METHOD Data of 1480 individuals aged 70-87 years from the ageing arm of Rugao Longevity and Ageing Study were used. Five variants of the four homocysteine metabolic enzyme genes were genotyped. Frailty was defined using Fried's phenotype criteria. RESULTS The percentage of high homocysteine (>15μmol/L) is 33.3%. Two functional variants that decrease methylenetetrahydrofolate reductase (MTHFR) activities, C677T (Ala222Val, rs1801133) and A1298C (Glu429Ala, rs1801131), were significantly associated with increased homocysteine levels (β=-1.16, p=0.01; and β=1.46, p<0.001, respectively). In addition, homocysteine increase gradually from CC-CC, CC-AC, CT-AC, CT-AA, CC-AA, to TT-AA genotypes of the C677T-A1298C combinations. The five polymorphisms in the homocysteine metabolic gene was not associated with frailty. However, homocysteine was significantly associated with frailty with an OR of 2.27 (95% 1.36-3.78) for high homocysteine after adjusting for multiple confounding factors. CONCLUSION Elevated homocysteine is not a causal factor but a biomarker that manifests greater possibility of frailty in high risk elderly individuals for prevention.
Collapse
Affiliation(s)
- T Ma
- Professor Xiao-Feng Wang, Unit of epidemiology, MOE Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai 200433, China; E-mail address: . Xiao-Yan Jiang, Key laboratory of Arrhythmias of the Ministry of education of China, Tongji University school of Medicine, shanghai 200092, People's republic of China; E-mail address:
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Laha A, Singh M, George AK, Homme RP, Tyagi SC. Dysregulation of 1-carbon metabolism and muscle atrophy: potential roles of forkhead box O proteins and PPARγ co-activator-1α. Can J Physiol Pharmacol 2019; 97:1013-1017. [DOI: 10.1139/cjpp-2019-0227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Homocysteine, a non-proteinogenic amino acid but an important metabolic intermediate is generated as an integral component for the “1-carbon metabolism” during normal physiology. It is catabolized to cysteine via the transulfuration pathway resulting in the generation of hydrogen sulfide, a naturally endogenous byproduct. Genetics or metabolic derangement can alter homocysteine concentration leading to hyperhomocysteinemia (HHcy), a physiologically unfavorable condition that causes serious medical conditions including muscle wasting. HHcy environment can derail physiological processes by targeting biomolecules such as Akt; however, not much is known regarding the effects of HHcy on regulation of transcription factors such as forkhead box O (FOXO) proteins. Recently, hydrogen sulfide has been shown to be highly effective in alleviating the effects of HHcy by serving as an antiapoptotic factor, but role of FOXO and its interaction with hydrogen sulfide are yet to be established. In this review, we discuss role(s) of HHcy in skeletal muscle atrophy and how HHcy interact with FOXO and peroxisome proliferator-activated receptor gamma coactivator 1-alpha expressions that are relevant in musculoskeletal atrophy. Further, therapeutic intervention with hydrogen sulfide for harnessing its beneficial effects might help mitigate the dysregulated 1-carbon metabolism that happens to be the hallmark of HHcy-induced pathologies such as muscle atrophy.
Collapse
Affiliation(s)
- Anwesha Laha
- Department of Physiology, University of Louisville School of Medicine, Louisville 40202, Kentucky, USA
- Department of Physiology, University of Louisville School of Medicine, Louisville 40202, Kentucky, USA
| | - Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville 40202, Kentucky, USA
- Department of Physiology, University of Louisville School of Medicine, Louisville 40202, Kentucky, USA
| | - Akash K. George
- Department of Physiology, University of Louisville School of Medicine, Louisville 40202, Kentucky, USA
- Department of Physiology, University of Louisville School of Medicine, Louisville 40202, Kentucky, USA
| | - Rubens P. Homme
- Department of Physiology, University of Louisville School of Medicine, Louisville 40202, Kentucky, USA
- Department of Physiology, University of Louisville School of Medicine, Louisville 40202, Kentucky, USA
| | - Suresh C. Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville 40202, Kentucky, USA
- Department of Physiology, University of Louisville School of Medicine, Louisville 40202, Kentucky, USA
| |
Collapse
|
44
|
George AK, Majumder A, Ice H, Homme RP, Eyob W, Tyagi SC, Singh M. Genes and genetics in hyperhomocysteinemia and the "1-carbon metabolism": implications for retinal structure and eye functions. Can J Physiol Pharmacol 2019; 98:51-60. [PMID: 31369712 DOI: 10.1139/cjpp-2019-0236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Homocysteine (Hcy), a sulfur-containing nonproteinogenic amino acid, is generated as a metabolic intermediate. Hcy constitutes an important part of the "1-carbon metabolism" during methionine turnover. Elevated levels of Hcy known as hyperhomocysteinemia (HHcy) results from vitamin B deficiency, lack of exercise, smoking, excessive alcohol intake, high-fat and methionine-rich diet, and the underlying genetic defects. These factors directly affect the "1-carbon metabolism (methionine-Hcy-folate)" of a given cell. In fact, the Hcy levels are determined primarily by dietary intake, vitamin status, and the genetic blueprint of the susceptible individual. Although Hcy performs an important role in cellular functions, genetic alterations in any of the key enzymes responsible for the "1-carbon metabolism" could potentially upset the metabolic cycle, thus causing HHcy environment in susceptible people. As such, HHcy relates to several clinical conditions like atherosclerosis, myocardial infarction, stroke, cognitive impairment, dementia, Parkinson's disease, multiple sclerosis, epilepsy, and ocular disorders, among others. This article summarizes the findings from our laboratory and public database regarding genetics of HHcy and its effects on ocular disorders, their respective management during dysregulation of the 1-carbon metabolism.
Collapse
Affiliation(s)
- Akash K George
- Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Avisek Majumder
- Department of Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA
| | - Hayley Ice
- Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Rubens P Homme
- Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Wintana Eyob
- College of Arts and Sciences, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Mahavir Singh
- Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| |
Collapse
|
45
|
Cu/Zn-superoxide dismutase and wild-type like fALS SOD1 mutants produce cytotoxic quantities of H 2O 2 via cysteine-dependent redox short-circuit. Sci Rep 2019; 9:10826. [PMID: 31346243 PMCID: PMC6658568 DOI: 10.1038/s41598-019-47326-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
The Cu/Zn−superoxide dismutase (SOD1) is a ubiquitous enzyme that catalyzes the dismutation of superoxide radicals to oxygen and hydrogen peroxide. In addition to this principal reaction, the enzyme is known to catalyze, with various efficiencies, several redox side-reactions using alternative substrates, including biological thiols, all involving the catalytic copper in the enzyme’s active-site, which is relatively surface exposed. The accessibility and reactivity of the catalytic copper is known to increase upon SOD1 misfolding, structural alterations caused by a mutation or environmental stresses. These competing side-reactions can lead to the formation of particularly toxic ROS, which have been proposed to contribute to oxidative damage in amyotrophic lateral sclerosis (ALS), a neurodegenerative disease that affects motor neurons. Here, we demonstrated that metal-saturated SOD1WT (holo-SOD1WT) and a familial ALS (fALS) catalytically active SOD1 mutant, SOD1G93A, are capable, under defined metabolic circumstances, to generate cytotoxic quantities of H2O2 through cysteine (CSH)/glutathione (GSH) redox short-circuit. Such activity may drain GSH stores, therefore discharging cellular antioxidant potential. By analyzing the distribution of thiol compounds throughout the CNS, the location of potential hot-spots of ROS production can be deduced. These hot-spots may constitute the origin of oxidative damage to neurons in ALS.
Collapse
|
46
|
Hyperhomocysteinemia Associated with Low Muscle Mass, Muscle Function in Elderly Hemodialysis Patients: An Analysis of Multiple Dialysis Centers. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9276097. [PMID: 31281847 PMCID: PMC6590600 DOI: 10.1155/2019/9276097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/23/2019] [Indexed: 11/18/2022]
Abstract
Background The hyperhomocysteinemia was with high prevalence and has been considered as a risk factor for cardiovascular disease in hemodialysis patients. These patients also experienced a high risk of muscle wasting caused by the comorbidity, malnutrition, and low physical activity. We investigated the associations of homocysteinemia with muscle mass, muscle function in elderly hemodialysis patients. Methods A clinical cross-sectional study was conducted on 138 hemodialysis patients aged 65 years and above in seven hospital-based hemodialysis centers in Taiwan. The data on anthropometry, laboratory, and 3-day dietary intake was examined. The skeletal muscle mass (SMM) was measured by the bioelectrical impedance analysis; the SMM was adjusted by height or weight as SMMHt2 (kg/m2) and SMMWt (%). Muscle function was defined as handgrip strength (HGS) (kg) measured by handgrip dynamometer. Statistical analyses were conducted using simple regression and multivariable stepwise regression analysis. Results In the total sample, 74.6 % of hemodialysis patients were hyperhomocysteinemia (≥ 15 μmol/L). The means of SMMHt2, SMMWt, arm lean mass, hand grip strength, and muscle quality were 8.7 ± 1.2, 37.7 ± 5.6, 1.7 ± 0.5, 21.1 ± 7.4, and 10.0 ± 3.0, respectively. The multivariable stepwise regression analysis showed that homocysteinemia level was significantly inversely associated with SMMWt (B-coeff. = -0.03, p = 0.02) in hemodialysis patients above 65 years old, but not with muscle function. Conclusions Hyperhomocysteinemia is common and associated with decreased muscle mass in the elderly hemodialysis patients. Future studies are suggested to explore the impact of the homocysteine-lowering therapy on muscle decline.
Collapse
|
47
|
Chen X, Miller NM, Afghah Z, Geiger JD. Development of AD-Like Pathology in Skeletal Muscle. JOURNAL OF PARKINSON'S DISEASE AND ALZHEIMER'S DISEASE 2019; 6:10.13188/2376-922x.1000028. [PMID: 32190732 PMCID: PMC7079679 DOI: 10.13188/2376-922x.1000028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Effective therapeutic strategy against Alzheimer's disease (AD) requires early detection of AD; however, clinical diagnosis of Alzheimer's disease (AD) is not precise and a definitive diagnosis of AD is only possible via postmortem examination for AD pathological hallmarks including senile plaques composed of Aβ and neuro fibrillary tangles composed of phosphorylated tau. Although a variety of biomarker has been developed and used in clinical setting, none of them robustly predicts subsequent clinical course of AD. Thus, it is essential to identify new biomarkers that may facilitate the diagnosis of early stages of AD, prediction of subsequent clinical course, and development of new therapeutic strategies. Given that pathological hallmarks of AD including Aβaccumulation and the presence of phosphorylated tau are also detected in peripheral tissues, AD is considered a systemic disease. Without the protection of blood-brain barrier, systemic factors can affect peripheral tissues much earlier than neurons in brain. Here, we will discuss the development of AD-like pathology in skeletal muscle and the potential use of skeletal muscle biopsy (examination for Aβaccumulation and phosphorylated tau) as a biomarker for AD.
Collapse
Affiliation(s)
- X Chen
- Department of Biomedical Sciences, University of North Dakota, USA
| | - NM Miller
- Department of Biomedical Sciences, University of North Dakota, USA
| | - Z Afghah
- Department of Biomedical Sciences, University of North Dakota, USA
| | - JD Geiger
- Department of Biomedical Sciences, University of North Dakota, USA
| |
Collapse
|
48
|
Prenatal hyperhomocysteinemia induces oxidative stress and accelerates ‘aging’ of mammalian neuromuscular synapses. Int J Dev Neurosci 2019; 75:1-12. [DOI: 10.1016/j.ijdevneu.2019.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/06/2019] [Accepted: 03/21/2019] [Indexed: 01/17/2023] Open
|
49
|
Vidoni ML, Pettee Gabriel K, Luo ST, Simonsick EM, Day RS. Relationship between Homocysteine and Muscle Strength Decline: The Baltimore Longitudinal Study of Aging. J Gerontol A Biol Sci Med Sci 2019; 73:546-551. [PMID: 28958086 DOI: 10.1093/gerona/glx161] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 08/18/2017] [Indexed: 12/30/2022] Open
Abstract
Background Decreased muscle strength is strongly associated with future mobility limitations in older adults. Homocysteine is a risk factor for vascular disease and may exacerbate muscle strength decline. The present study aimed to examine the association between homocysteine levels and muscle strength in adults aged 50 years or older. Methods Data were from 1,101 participants of The Baltimore Longitudinal Study of Aging between December 2004 and March 2015. Muscle strength was measured using grip strength. Mixed effects linear regression was used to estimate the association between homocysteine and muscle strength in men and women, separately. Results Total mean follow-up time was 4.7 ± 3.1 years, range from 0 to 10.1 years. Baseline mean grip strength was 39.9 kg for men and 25.5 kg for women. Grip strength declined over the follow-up time for both men and women. Among women, there was a significant inverse relationship between homocysteine and grip strength, where grip strength declined as a function of increasing homocysteine over time (β = -0.05, p = .031). Among men, an increase of 1 μmol/L in homocysteine was associated with -0.10 kg decrease in grip strength, though not significantly. Conclusions In this study of healthy older adults aged 50 years or older, higher homocysteine was related to lower muscle strength in women. This is the first study to characterize the relationship over a long follow-up period. Future research should focus on assessing homocysteine as a marker of physical function decline and translating the relationship into clinical and public health practice.
Collapse
Affiliation(s)
- Michelle L Vidoni
- Division of Epidemiology, Human Genetics, and Environmental Science, The University of Texas Health Science Center at Houston School of Public Health
| | - Kelley Pettee Gabriel
- Division of Epidemiology, Human Genetics, and Environmental Science, The University of Texas Health Science Center at Houston School of Public Health in Austin
| | - Sheng T Luo
- Division of Biostatistics, The University of Texas Health Science Center at Houston School of Public Health
| | - Eleanor M Simonsick
- Division of Geriatric Medicine and Gerontology, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - R Sue Day
- Division of Epidemiology, Human Genetics, and Environmental Science, Michael and Susan Dell Center for Healthy Living, The University of Texas Health Science Center at Houston School of Public Health
| |
Collapse
|
50
|
Guest NS, Horne J, Vanderhout SM, El-Sohemy A. Sport Nutrigenomics: Personalized Nutrition for Athletic Performance. Front Nutr 2019; 6:8. [PMID: 30838211 PMCID: PMC6389634 DOI: 10.3389/fnut.2019.00008] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
An individual's dietary and supplement strategies can influence markedly their physical performance. Personalized nutrition in athletic populations aims to optimize health, body composition, and exercise performance by targeting dietary recommendations to an individual's genetic profile. Sport dietitians and nutritionists have long been adept at placing additional scrutiny on the one-size-fits-all general population dietary guidelines to accommodate various sporting populations. However, generic "one-size-fits-all" recommendations still remain. Genetic differences are known to impact absorption, metabolism, uptake, utilization and excretion of nutrients and food bioactives, which ultimately affects a number of metabolic pathways. Nutrigenomics and nutrigenetics are experimental approaches that use genomic information and genetic testing technologies to examine the role of individual genetic differences in modifying an athlete's response to nutrients and other food components. Although there have been few randomized, controlled trials examining the effects of genetic variation on performance in response to an ergogenic aid, there is a growing foundation of research linking gene-diet interactions on biomarkers of nutritional status, which impact exercise and sport performance. This foundation forms the basis from which the field of sport nutrigenomics continues to develop. We review the science of genetic modifiers of various dietary factors that impact an athlete's nutritional status, body composition and, ultimately athletic performance.
Collapse
Affiliation(s)
- Nanci S Guest
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.,Nutrigenomix Inc., Toronto, ON, Canada
| | - Justine Horne
- Department of Health and Rehabilitation Sciences, University of Western Ontario, London, ON, Canada
| | - Shelley M Vanderhout
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.,Nutrigenomix Inc., Toronto, ON, Canada
| | - Ahmed El-Sohemy
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.,Nutrigenomix Inc., Toronto, ON, Canada
| |
Collapse
|