1
|
Wei S, Zhong Y, Wen W, Yu C, Lu R, Luo S. Transcriptome Analysis Identifies Key Genes Involved in Response and Recovery to High Heat Stress Induced by Fire in Schima superba. Genes (Basel) 2024; 15:1108. [PMID: 39202467 PMCID: PMC11353729 DOI: 10.3390/genes15081108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
Fire-resistant tree species play a crucial role in forest fire prevention, utilizing several physiological and molecular mechanisms to respond to extreme heat stress. Many transcription factors (TFs) and genes are known to be involved in the regulatory network of heat stress response in plants. However, their roles in response to high temperatures induced by fire remain less understood. In this study, we investigated Schima superba, a fire-resistant tree, to elucidate these mechanisms. Leaves of S. superba seedlings were exposed to fire stimulation for 10 s, 30 s, and 1 min, followed by a 24-h recovery period. Fifteen transcriptomes were assembled to identify key molecular and biological pathways affected by high temperatures. Differentially expressed genes (DEGs) analysis revealed essential candidate genes and TFs involved in the heat stress response, including members of the ethylene-responsive factors, WRKY, MYB, bHLH, and Nin-like families. Genes related to heat shock proteins/factors, lipid metabolism, antioxidant enzymes, dehydration responses, and hormone signal transduction were differentially expressed after heat stress and recovery, underscoring their roles in cellular process and recovery after heat stress. This study advances our understanding of plant response and defense strategies against extreme abiotic stresses.
Collapse
Affiliation(s)
- Shujing Wei
- Guangdong Academy of Forestry, Guangzhou 510520, China; (S.W.)
| | - Yingxia Zhong
- Guangdong Academy of Forestry, Guangzhou 510520, China; (S.W.)
| | - Wen Wen
- Guangzhou Institute of Environmental Protection Science, Guangzhou 510520, China;
| | - Chong Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Ruisen Lu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Sisheng Luo
- Guangdong Academy of Forestry, Guangzhou 510520, China; (S.W.)
| |
Collapse
|
2
|
Yuan J, Wang Q, Wang X, Yuan B, Wang G, Wang F, Wang J. Genetic and Physiological Insights into Salt Resistance in Rice through Analysis of Germination, Seedling Traits, and QTL Identification. Life (Basel) 2024; 14:1030. [PMID: 39202773 PMCID: PMC11355933 DOI: 10.3390/life14081030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/17/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Understanding the genetic basis of salt resistance in crops is crucial for agricultural productivity. This study investigates the phenotypic and genetic basis of salt stress response in rice (Oryza sativa L.), focusing on germination and seedling traits. Under salt stress conditions, significant differences were observed in seed germination and seedling traits between parental LH99 (Indica rice LuHui 99) and SN265 (japonica rice ShenNong 265). Transgressive segregation was evident within the RIL population, indicating complex genetic interactions. Nine QTLs were detected at germination and seedling stages under salt stress, namely qSGE5 and qSGE7 for seed germination energy (SGE); qSGP7 for seed germination percentage (SGP); qSSH7, qSSH9-1, and qSSH9-2 for seeding height (SSH); qSRN6 for root number (SRN); and qSDW6 and qSDW9 for dry weight (SDW). Among them, qSSH9-1 and qSDW9 were localized in the same interval, derived from the salt-resistant parent SN265. PCA revealed distinct trait patterns under salt stress, captured by six PCs explaining 81.12% of the total variance. PC composite scores were used to localize a QTL associated with early salt resistance in rice qESC9, which was located in the same interval as qSSH9-1 and qSDW9, and was subsequently unified under the name qESC9, an important QTL for early-growth salt tolerance in rice. Correlation analysis also confirmed a relationship between alleles of qESC9 and the resistance to salt, underscoring the critical role this locus plays in the determination of overall salt tolerance in rice. Physiological analyses of extreme phenotype lines highlighted the importance of ion exclusion mechanisms in salt-resistant lines, while salt-susceptible lines exhibited elevated oxidative stress and impaired antioxidant defense, contributing to cellular damage. This comprehensive analysis sheds light on the genetic and physiological mechanisms underlying salt stress response in rice, providing valuable insights for breeding programs aimed at enhancing salt resistance in rice.
Collapse
Affiliation(s)
- Jie Yuan
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Qi Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Jilin Provincial Key Laboratory of Agricultural Biotechnology, Changchun 130033, China
| | - Xueying Wang
- Rice Research Institute of Shenyang Agricultural University/Key Laboratory of Rice Biology & Genetic Breeding in Northeast China (Ministry of Agriculture and Rural Areas), Shenyang 110866, China
| | - Bo Yuan
- Rice Research Institute of Shenyang Agricultural University/Key Laboratory of Rice Biology & Genetic Breeding in Northeast China (Ministry of Agriculture and Rural Areas), Shenyang 110866, China
| | - Guojiao Wang
- Rice Research Institute of Shenyang Agricultural University/Key Laboratory of Rice Biology & Genetic Breeding in Northeast China (Ministry of Agriculture and Rural Areas), Shenyang 110866, China
| | - Fengbin Wang
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Jiayu Wang
- Rice Research Institute of Shenyang Agricultural University/Key Laboratory of Rice Biology & Genetic Breeding in Northeast China (Ministry of Agriculture and Rural Areas), Shenyang 110866, China
| |
Collapse
|
3
|
Aparna, Skarzyńska A, Pląder W, Pawełkowicz M. Impact of Climate Change on Regulation of Genes Involved in Sex Determination and Fruit Production in Cucumber. PLANTS (BASEL, SWITZERLAND) 2023; 12:2651. [PMID: 37514264 PMCID: PMC10385340 DOI: 10.3390/plants12142651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Environmental changes, both natural and anthropogenic, mainly related to rising temperatures and water scarcity, are clearly visible around the world. Climate change is important for crop production and is a major issue for the growth and productivity of cucumbers. Processes such as sex determination, flower morphogenesis and fruit development in cucumbers are highly sensitive to various forms of stress induced by climatic changes. It is noteworthy that many factors, including genetic factors, transcription factors, phytohormones and miRNAs, are crucial in regulating these processes and are themselves affected by climate change. Changes in the expression and activity of these factors have been observed as a consequence of climatic conditions. This review focuses primarily on exploring the effects of climate change and abiotic stresses, such as increasing temperature and drought, on the processes of sex determination, reproduction, and fruit development in cucumbers at the molecular level. In addition, it highlights the existing research gaps that need to be addressed in order to improve our understanding of the complex interactions between climate change and cucumber physiology. This, in turn, may lead to strategies to mitigate the adverse effects and enhance cucumber productivity in a changing climate.
Collapse
Affiliation(s)
- Aparna
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Agnieszka Skarzyńska
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Wojciech Pląder
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Magdalena Pawełkowicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| |
Collapse
|
4
|
Bhardwaj R, Lone JK, Pandey R, Mondal N, Dhandapani R, Meena SK, Khan S. Insights into morphological and physio-biochemical adaptive responses in mungbean ( Vigna radiata L.) under heat stress. Front Genet 2023; 14:1206451. [PMID: 37396038 PMCID: PMC10308031 DOI: 10.3389/fgene.2023.1206451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Mungbean (Vigna radiata L. Wilczek) is an important food legume crop which contributes significantly to nutritional and food security of South and Southeast Asia. The crop thrives in hot and humid weather conditions, with an optimal temperature range of 28°-35°C, and is mainly cultivated under rainfed environments. However, the rising global temperature has posed a serious threat to mungbean cultivation. Optimal temperature is a vital factor in cellular processes, and every crop species has evolved with its specific temperature tolerance ability. Moreover, variation within a crop species is inevitable, given the diverse environmental conditions under which it has evolved. For instance, various mungbean germplasm can grow and produce seeds in extreme ambient temperatures as low as 20°C or as high as 45°C. This range of variation in mungbean germplasm for heat tolerance plays a crucial role in developing heat tolerant and high yielding mungbean cultivars. However, heat tolerance is a complex mechanism which is extensively discussed in this manuscript; and at the same time individual genotypes have evolved with various ways of heat stress tolerance. Therefore, to enhance understanding towards such variability in mungbean germplasm, we studied morphological, anatomical, physiological, and biochemical traits which are responsive to heat stress in plants with more relevance to mungbean. Understanding heat stress tolerance attributing traits will help in identification of corresponding regulatory networks and associated genes, which will further help in devising suitable strategies to enhance heat tolerance in mungbean. The major pathways responsible for heat stress tolerance in plants are also discussed.
Collapse
Affiliation(s)
- Ragini Bhardwaj
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali Vidyapith University, Tonk Rajasthan, India
| | - Jafar K Lone
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Renu Pandey
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Nupur Mondal
- Shivaji College, University of Delhi, New Delhi, India
| | - R Dhandapani
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Surendra Kumar Meena
- Division of Crop Improvement, ICAR-Indian Grassland and Research Institute, Jhansi, India
| | - Suphiya Khan
- Department of Bioscience and Biotechnology, Banasthali Vidyapith University, Tonk Rajasthan, India
| |
Collapse
|
5
|
González-Gordo S, Palma JM, Corpas FJ. Small Heat Shock Protein ( sHSP) Gene Family from Sweet Pepper ( Capsicum annuum L.) Fruits: Involvement in Ripening and Modulation by Nitric Oxide (NO). PLANTS (BASEL, SWITZERLAND) 2023; 12:389. [PMID: 36679102 PMCID: PMC9861568 DOI: 10.3390/plants12020389] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 06/01/2023]
Abstract
Small heat shock proteins (sHSPs) are usually upregulated in plants under diverse environmental stresses. These proteins have been suggested to function as molecular chaperones to safeguard other proteins from stress-induced damage. The ripening of pepper (Capsicum annuum L.) fruit involves important phenotypic, physiological, and biochemical changes, which have associated endogenous physiological nitro-oxidative stress, but they can also be significantly affected by environmental conditions, such as temperature. Based on the available pepper genome, a total of 41 sHSP genes were identified in this work, and their distributions in the 12 pepper chromosomes were determined. Among these genes, only 19 sHSP genes were found in the transcriptome (RNA-Seq) of sweet pepper fruits reported previously. This study aims to analyze how these 19 sHSP genes present in the transcriptome of sweet pepper fruits are modulated during ripening and after treatment of fruits with nitric oxide (NO) gas. The time-course expression analysis of these genes during fruit ripening showed that 6 genes were upregulated; another 7 genes were downregulated, whereas 6 genes were not significantly affected. Furthermore, NO treatment triggered the upregulation of 7 sHSP genes and the downregulation of 3 sHSP genes, whereas 9 genes were unchanged. These data indicate the diversification of sHSP genes in pepper plants and, considering that sHSPs are important in stress tolerance, the observed changes in sHSP expression support that pepper fruit ripening has an associated process of physiological nitro-oxidative stress, such as it was previously proposed.
Collapse
Affiliation(s)
| | | | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
6
|
Sharma M, Mathur J. Phytoaccumulation of zinc from contaminated soil using ornamental plants species Helianthus annuus L. and Tagetes erecta L. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022:1-17. [PMID: 36448490 DOI: 10.1080/15226514.2022.2149692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Intensive research on hyperaccumulator plant species provides an alternative method to cleanup heavy metal contaminated sites using these plants. Helianthus annuus and Tagetes erecta are suitable hyperaccumulator plant species for removing zinc (Zn) from contaminated soil because of their high phytoremediation effectiveness. The present study focused on to evaluate comparative efficacy of Zn accumulation using H. annuus and T. erecta. Plantlets were exposed to different Zn concentrations (10, 50, 100, 300, and 500 mg kg-1) for 20, 40, and 60 days while changes in morphological, biochemical, and enzyme activity markers were evaluated. The concentration of Zn in various plant parts was determined using an atomic absorption spectrophotometer (AAS). After 60 days H. annuus showed greatest accumulation of Zn in the root and shoot (216.7 and 109.5 mg kg-1), whereas the Zn accumulation T. erecta (209.5 and 97.84 mg kg-1) was found comparatively less in the root and shoot. The result showed increased polyphenol and proline concentrations with increasing Zn concentrations which were maximal in H. annuus 6.642 mg g-1 and 25.474 µmol g-1, respectively. At 60 days, APX (4.145 mM mg-1), CAT (2.558 mM mg-1), and GR (52.23 mM mg-1) antioxidant enzymatic activities were observed with higher concentrations. Analysis of ultrastructure confirmed Zn transport and localization in root and shoot tissues examined through FESEM-EDX, Fluorescence microscopy, and optical microscopy. The present research findings concluded with the high amount of removal of Zn from contaminated soil using H. annuus and T. erecta for ecofriendly approach to soil cleanup followed by sustainable agriculture.
Collapse
Affiliation(s)
- Mamta Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, India
| | - Jyoti Mathur
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, India
| |
Collapse
|
7
|
Islam MJ, Uddin MJ, Hossain MA, Henry R, Begum MK, Sohel MAT, Mou MA, Ahn J, Cheong EJ, Lim YS. Exogenous putrescine attenuates the negative impact of drought stress by modulating physio-biochemical traits and gene expression in sugar beet (Beta vulgaris L.). PLoS One 2022; 17:e0262099. [PMID: 34995297 PMCID: PMC8741020 DOI: 10.1371/journal.pone.0262099] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/17/2021] [Indexed: 11/19/2022] Open
Abstract
Drought tolerance is a complex trait controlled by many metabolic pathways and genes and identifying a solution to increase the resilience of plants to drought stress is one of the grand challenges in plant biology. This study provided compelling evidence of increased drought stress tolerance in two sugar beet genotypes when treated with exogenous putrescine (Put) at the seedling stage. Morpho-physiological and biochemical traits and gene expression were assessed in thirty-day-old sugar beet seedlings subjected to drought stress with or without Put (0.3, 0.6, and 0.9 mM) application. Sugar beet plants exposed to drought stress exhibited a significant decline in growth and development as evidenced by root and shoot growth characteristics, photosynthetic pigments, antioxidant enzyme activities, and gene expression. Drought stress resulted in a sharp increase in hydrogen peroxide (H2O2) (89.4 and 118% in SBT-010 and BSRI Sugar beet 2, respectively) and malondialdehyde (MDA) (35.6 and 27.1% in SBT-010 and BSRI Sugar beet 2, respectively). These changes were strongly linked to growth retardation as evidenced by principal component analysis (PCA) and heatmap clustering. Importantly, Put-sprayed plants suffered from less oxidative stress as indicated by lower H2O2 and MDA accumulation. They better regulated the physiological processes supporting growth, dry matter accumulation, photosynthetic pigmentation and gas exchange, relative water content; modulated biochemical changes including proline, total soluble carbohydrate, total soluble sugar, and ascorbic acid; and enhanced the activities of antioxidant enzymes and gene expression. PCA results strongly suggested that Put conferred drought tolerance mostly by enhancing antioxidant enzymes activities that regulated homeostasis of reactive oxygen species. These findings collectively provide an important illustration of the use of Put in modulating drought tolerance in sugar beet plants.
Collapse
Affiliation(s)
- Md Jahirul Islam
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
- Physiology and Sugar Chemistry Division, Bangladesh Sugarcrop Research institute, Ishurdi, Pabna, Bangladesh
| | - Md Jalal Uddin
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, Tromsø, Norway
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, Australia
| | - Mst. Kohinoor Begum
- Physiology and Sugar Chemistry Division, Bangladesh Sugarcrop Research institute, Ishurdi, Pabna, Bangladesh
| | - Md. Abu Taher Sohel
- Agronomy and Farming System Division, Bangladesh Sugarcrop Research Institute, Ishurdi, Pabna, Bangladesh
| | - Masuma Akter Mou
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Juhee Ahn
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Eun Ju Cheong
- Division of Forest Science, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Korea
| | - Young-Seok Lim
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
8
|
Antioxidant enzymatic activities and profiling of gene expression associated with organophosphate stress tolerance in Solanum melongena L.cv. Longai. 3 Biotech 2021; 11:510. [PMID: 34926108 DOI: 10.1007/s13205-021-03061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022] Open
Abstract
The tolerance mechanism of chemical pesticide is necessary to combat the pest infestation challenges. This study intended to analyze the responses of enzymatic activity and expression level of an antioxidant gene to organophosphate pesticide stress. The alteration of anti-oxidative correlated with pesticide treatment in eggplant (S. melongena L.cv. Longai) using varying concentrations (0, 50, 100, 150 and 200 ppm) of malathion (PM) and tatafen (PTF) each. The enzyme activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were observed to be elevated with pesticide treatment in eggplant seedling. FeSOD (iron SOD), CAT and APX genes associated in defense mechanisms were significantly expressed under PM and PTF stress which contributed to stress tolerance to the plant. The different concentration of both pesticide stresses altered the expression level of mRNA, FeSOD, CAT and APX genes in comparison to the non-treated plant. While mRNA level of three antioxidant genes were evaluated and found to be APX gene expression was more potent than the CAT and FeSOD gene subjected to different concentrations of PM and PTF in eggplant. The current experiment highlights the presence of minimum level of pesticide concentration impacted positively towards the plant growth and metabolism, while high level of pesticide concentration impacted negatively. In summary, antioxidant enzymes activity responded to both pesticide stresses at an early stage of exposure and their gene expression profiles provided more details about their complex interaction and effectively scavenge reactive oxygen species. This allows the plant to maintain growth under pesticide stress.
Collapse
|
9
|
Malangisha GK, Li C, Yang H, Mahmoud A, Ali A, Wang C, Yang Y, Yang J, Hu Z, Zhang M. Permissive action of H 2O 2 mediated ClUGT75 expression for auxin glycosylation and Al 3+- tolerance in watermelon. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:77-90. [PMID: 34340025 DOI: 10.1016/j.plaphy.2021.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/04/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Although Al3+-toxicity is one of the limiting factors for crop production in acidic soils, little is known about the Al3+-tolerance mechanism in watermelon, a fairly acid-tolerant crop. This work aimed to identify the interaction between the H2O2 scavenging pathway and auxin glycosylation relevant to watermelon Al3+-tolerance. By analyzing expressions of hormone-related ClUGTs and antioxidant enzyme genes in Al3+-tolerant (ZJ) and Al3+-sensitive (NBT) cultivars, we identified ClUGT75s (B1, B2, and D1) and ClSOD1-2-ClCAT as crucial components associated with Al3+-tolerance. Al3+-stress significantly increased H2O2 content by 92.7% in NBT and 42.3% in ZJ, accompanied by less Al3+-, auxin (IAA and IBA), and MDA contents in ZJ than NBT. These findings coincided with significant ClSOD1-2 expression and stable dismutation activity in NBT than ZJ. Hence, higher H2O2 content in the root apex of NBT than ZJ correlated with a significant increase in auxin content and ClSOD1-2 up-regulation. Moreover, Al3+-activated ClUGT75D1 and ClUGT75B2 in ZJ coincided with no considerable change in IBA content, suggesting that glycosylation-mediated changes in IBA content might be relevant to Al3+-tolerance in watermelon. Furthermore, exogenous H2O2 and IBA indicated ClUGT75D1 modulating IBA is likely dependent on H2O2 background. We hypothesize that a higher H2O2 level in NBT represses ClUGT75, resulting in increased auxin than those in ZJ roots. Thus, excess in both H2O2 and auxin aggravated the inhibition of root elongation under Al3+-stress. Our findings provide insights on the permissive action of H2O2 in the mediation of auxin glycosylation by ClUGT75 in root apex for Al3+-tolerance in watermelon.
Collapse
Affiliation(s)
- Guy Kateta Malangisha
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China; Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, PR China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, PR China; Faculté des Sciences Agronomiques, Université de Lubumbashi, /UNILU, Lubumbashi, République Démocratique Du Congo/PO Box 1825, PR China
| | - Cheng Li
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Haiyang Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Ahmed Mahmoud
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Abid Ali
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Chi Wang
- Agriculture, Rural Development and Water Conservancy Bureau of Wenling, Wenling, 317500, PR China
| | - Yubin Yang
- Agriculture, Rural Development and Water Conservancy Bureau of Wenling, Wenling, 317500, PR China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China; Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, PR China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, PR China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China; Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, PR China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, PR China.
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China; Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, PR China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, PR China
| |
Collapse
|
10
|
Osorio Zambrano MA, Castillo DA, Rodríguez Pérez L, Terán W. Cacao ( Theobroma cacao L.) Response to Water Stress: Physiological Characterization and Antioxidant Gene Expression Profiling in Commercial Clones. FRONTIERS IN PLANT SCIENCE 2021; 12:700855. [PMID: 34552605 PMCID: PMC8450537 DOI: 10.3389/fpls.2021.700855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
The increase in events associated with drought constraints plant growth and crop performance. Cacao (Theobroma cacao L.) is sensitive to water deficit stress (DS), which limits productivity. The aim of this research was to characterise the response of seven (CCN51, FEAR5, ICS1, ICS60, ICS95, EET8, and TSH565) commercially important cacao clones to severe and temporal water deficit stress. Ten-month-old cacao trees were submitted to two treatments: well-watered and water-stressed until the leaf water potential (Ψ leaf) reached values between -3.0 and -3.5 MPa. The effects of hydric stress on water relations, gas exchange, photochemical activity, membrane integrity and oxidative stress-related gene expression were evaluated. All clones showed decreases in Ψ leaf, but TSH565 had a higher capacity to maintain water homeostasis in leaves. An initial response phase consisted of stomatal closure, a general mechanism to limit water loss: as a consequence, the photosynthetic rate dropped by approximately 98% on average. In some clones, the photosynthetic rate reached negative values at the maximum stress level, evidencing photorespiration and was confirmed by increased intracellular CO2. A second and photosynthetically limited phase was characterized by a drop in PSII quantum efficiency, which affected all clones. On average, all clones were able to recover after 4 days of rewatering. Water deficit triggered oxidative stress at the early phase, as evidenced by the upregulation of oxidative stress markers and genes encoding ROS scavenging enzymes. The effects of water deficit stress on energy metabolism were deduced given the upregulation of fermentative enzyme-coding genes. Altogether, our results suggest that the EET8 clone was the highest performing under water deficit while the ICS-60 clone was more susceptible to water stress. Importantly, the activation of the antioxidant system and PSII repair mechanism seem to play key roles in the observed differences in tolerance to water deficit stress among clones.
Collapse
Affiliation(s)
| | | | | | - Wilson Terán
- Plant and Crop Biology, Department of Biology, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
11
|
Martínez C, Valenzuela JL, Jamilena M. Genetic and Pre- and Postharvest Factors Influencing the Content of Antioxidants in Cucurbit Crops. Antioxidants (Basel) 2021; 10:894. [PMID: 34199481 PMCID: PMC8228042 DOI: 10.3390/antiox10060894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 11/16/2022] Open
Abstract
Cucurbitaceae is one of the most economically important plant families, and includes some worldwide cultivated species like cucumber, melons, and squashes, and some regionally cultivated and feral species that contribute to the human diet. For centuries, cucurbits have been appreciated because of their nutritional value and, in traditional medicine, because of their ability to alleviate certain ailments. Several studies have demonstrated the remarkable contents of valuable compounds in cucurbits, including antioxidants such as polyphenols, flavonoids, and carotenoids, but also tannins and terpenoids, which are abundant. This antioxidant power is beneficial for human health, but also in facing plant diseases and abiotic stresses. This review brings together data on the antioxidant properties of cucurbit species, addressing the genetic and pre- and postharvest factors that regulate the antioxidant content in different plant organs. Environmental conditions, management, storage, and pre- and postharvest treatments influencing the biosynthesis and activity of antioxidants, together with the biodiversity of this family, are determinant in improving the antioxidant potential of this group of species. Plant breeding, as well as the development of innovative biotechnological approaches, is also leading to new possibilities for exploiting cucurbits as functional products.
Collapse
Affiliation(s)
| | | | - Manuel Jamilena
- Department of Biology and Geology, Agrifood Campus of International Excellence (CeiA3) and CIAIMBITAL Reseach Center, University of Almería, 04120 Almería, Spain; (C.M.); (J.L.V.)
| |
Collapse
|
12
|
Ramzan M, Sana S, Javaid N, Shah AA, Ejaz S, Malik WN, Yasin NA, Alamri S, Siddiqui MH, Datta R, Fahad S, Tahir N, Mubeen S, Ahmed N, Ali MA, El Sabagh A, Danish S. Mitigation of bacterial spot disease induced biotic stress in Capsicum annuum L. cultivars via antioxidant enzymes and isoforms. Sci Rep 2021; 11:9445. [PMID: 33941790 PMCID: PMC8093210 DOI: 10.1038/s41598-021-88797-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/16/2021] [Indexed: 11/08/2022] Open
Abstract
Bacterial spot, caused by a group of Xanthomonads (Xanthomonas spp.), is a devastating disease. It can adversely affect the Capsicum annum productivity. Scientists are working on the role of antioxidants to meet this challenge. However, research is lacking on the role of antioxidant enzymes and their isoforms in the non-compatible pathogen and host plant interaction and resistance mechanisms in capsicum varieties. The present study was conducted to ascertain the defensive role of antioxidant enzymes and their isoforms in chilli varieties Hybrid, Desi, Serrano, Padron, and Shehzadi against bacterial spot disease-induced Xanthomonas sp. The seedlings were inoculated with bacterial pathogen @ 107 CFU/mL, and samples were harvested after regular intervals of 24 h for 4 days followed by inoculation. Total plant proteins were extracted in phosphate buffer and quantified through Bradford assay. The crude protein extracts were analyzed through quantitative enzymatic assays in order to document activity levels of various antioxidant enzymes, including peroxidase (POD), Catalase (CAT), Ascorbate peroxidase (APX), and Superoxide dismutase (SOD). Moreover, the profiles appearance of these enzymes and their isoforms were determined using native polyacrylamide gel electrophoresis (PAGE) analysis. These enzymes exhibited maximum activity in Hybrid (HiR) cultivar followed by Desi (R), Serrano (S), Padron, and Shehzadi (HS). Both the number of isoforms and expression levels were higher in highly resistant cultivars compared to susceptible and highly susceptible cultivars. The induction of POD, CAT, and SOD occurs at the early stages of growth in resistant Capsicum cultivars. At the same time, APX seems to make the second line of antioxidant defense mechanisms. We found that modulating antioxidant enzymes and isoforms activity at the seedling stage was an important mechanism for mitigating plant growth inhibition in the resistant ones.
Collapse
Affiliation(s)
- Musarrat Ramzan
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Sundas Sana
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Nida Javaid
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Anis Ali Shah
- Department of Botany, University of Narowal, Narowal, 51801, Pakistan
| | - Samina Ejaz
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Waqas Nazir Malik
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Nasim Ahmad Yasin
- Senior Superintendent Gardens, Resident Officer-II Office Department, University of the Punjab, Lahore, 54590, Pakistan
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, 61300, Brno, Czech Republic.
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, China.
- Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan.
| | - Nazia Tahir
- Department of Agriculture, AbdulWali Khan University, Mardan, Pakistan
- Institute of Agriculture Resource and Regional Planning, Graduate School of Chinese Academy of Agriculture Sciences China, Changchun, China
| | - Sidra Mubeen
- Department of Chemistry, The Women University Multan, Punjab, 60800, Pakistan
| | - Niaz Ahmed
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Arif Ali
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Ayman El Sabagh
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafr El-Shaikh, Egypt
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
13
|
Doğru A. Effects of heat stress on photosystem II activity and antioxidant enzymes in two maize cultivars. PLANTA 2021; 253:85. [PMID: 33788056 DOI: 10.1007/s00425-021-03611-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The main reason for the maize genotype "DKC7221" to be heat tolerant is to have higher photosynthetic activity under heat stress conditions. The genotype "P3167" is sensitive to high temperature because of the heat-induced inhibition in photosynthetic electron transport reactions. In the present study, the effect of heat stress (45 ºC for 20 min) on some physiological changes was investigated through a chlorophyll afluorescence technique, and some endogenous resistance mechanisms (activities of some antioxidant enzymes, free proline, and reduced ascorbate contents) in two maize cultivars (Zea mays L. cvs. P3167 and DKC7221). Chlorophyll fluorescence measurements demonstrated that heat stress led to the reduction in the efficiency of the Hill reaction, accumulation of inactive reaction centers, inhibition of electron flow from reaction centers to the plastoquinone pool, and induction of non-photochemical dissipation of absorbed light energy. Changes in Φo/(1 - Φo), SFIABS and PIABS indicated that electron transport reactions in P3167 were almost completely inhibited by heat stress. In DKC7221, however, photosynthetic electron transport reactions were maintained under heat stress conditions. As a result of impairment in the photosynthetic efficiency in P3167 under heat stress, oxidative stress appeared as shown by lower antioxidant activity, accumulation of H2O2, malondialdehyde, and formazon and photooxidative injuries in chlorophyll pigments in the leaf tissue. DKC7221, on the other hand, had a higher antioxidant efficiency and lower oxidative damage under heat stress. FeSOD activity was found to be responsible for the dismutation of superoxide radicals in both maize genotypes under heat stress. As a result, it may be concluded that the genotype DKC7221 is more tolerant to heat stress than P3167.
Collapse
Affiliation(s)
- Ali Doğru
- Faculty of Arts and Sciences, Department of Biology, Sakarya University, Esentepe, 54187, Sakarya, Turkey.
| |
Collapse
|
14
|
Jakovljević D, Momčilović J, Bojović B, Stanković M. The Short-Term Metabolic Modulation of Basil ( Ocimum basilicum L. cv. 'Genovese') after Exposure to Cold or Heat. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10030590. [PMID: 33801088 PMCID: PMC8004128 DOI: 10.3390/plants10030590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/06/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Chilling stress in spring and mid-season heat stress are important environmental stresses that can significantly affect plant productivity. The objectives of this study were to understand the effects of cold (4 and 10 °C) or heat (30 and 40 °C) stress on biochemical and physiological traits in leaves and roots of basil (Ocimum basilicum L. cv. 'Genovese') young plants. After short-time exposure to mild and severe temperature stresses, both photosynthetic pigments' and protein, as well as enzymatic and non-enzymatic defense components in basil leaves and roots, were quantified and compared with the control non-stressed plants. It was shown that both cold and heat treatment increase the content of chlorophyll a, chlorophyll b, and carotenoids. Chilling correlated with higher content of soluble proteins in leaves, whereas the concentration of these osmoprotectants in roots was higher under both cold and heat stress. For all tested antioxidant enzymes, higher activity was measured in leaves, and activity was related to temperature stress. SOD, CAT, A-POX, and P-POX activities was induced under heat stress, while the higher activity of SOD, CAT, P-POX, and G-POX was recorded under cold stress, compared to the control. In addition to the induced activity of enzymatic components, the content of secondary metabolites including total phenolics, flavonoids, and total anthocyanins, was several times higher compared to the non-stressed plants. Furthermore, total phenolic content was higher in roots than in leaves. Significant positive correlation can be seen among photosynthetic pigments, SOD, total phenolics, and flavonoids under severe temperature stress (4 or 40 °C) in basil leaves, while for roots, positive correlation was found in the content of secondary metabolites and activity of CAT or peroxidases. Obtained results are discussed in terms of phenotyping of O. basilicum cv. 'Genovese' response to heat and chilling stress, which should contribute to a better understanding of merged responses to cold and heat tolerance of this valuable crop.
Collapse
|
15
|
Singh P, Singh RK, Li HB, Guo DJ, Sharma A, Lakshmanan P, Malviya MK, Song XP, Solanki MK, Verma KK, Yang LT, Li YR. Diazotrophic Bacteria Pantoea dispersa and Enterobacter asburiae Promote Sugarcane Growth by Inducing Nitrogen Uptake and Defense-Related Gene Expression. Front Microbiol 2021; 11:600417. [PMID: 33510724 PMCID: PMC7835727 DOI: 10.3389/fmicb.2020.600417] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/27/2020] [Indexed: 12/27/2022] Open
Abstract
Sugarcane is a major crop in tropical and subtropical regions of the world. In China, the application of large amounts of nitrogen (N) fertilizer to boost sugarcane yield is commonplace, but it causes substantial environmental damages, particularly soil, and water pollution. Certain rhizosphere microbes are known to be beneficial for sugarcane production, but much of the sugarcane rhizosphere microflora remains unknown. We have isolated several sugarcane rhizosphere bacteria, and 27 of them were examined for N-fixation, plant growth promotion, and antifungal activity. 16S rRNA gene sequencing was used to identify these strains. Among the isolates, several strains were found to have a relatively high activity of nitrogenase and ACC deaminase, the enzyme that reduces ethylene production in plants. These strains were found to possess nifH and acdS genes associated with N-fixation and ethylene production, respectively. Two of these strains, Pantoea dispersa-AA7 and Enterobacter asburiae-BY4 showed maximum plant growth promotion (PGP) and nitrogenase activity, and thus they were selected for detailed analysis. The results show that they colonize different sugarcane tissues, use various growth substrates (carbon and nitrogen), and tolerate various stress conditions (pH and osmotic stress). The positive effect of AA7 and BY4 strains on nifH and stress-related gene (SuCAT, SuSOD, SuPAL, SuCHI, and SuGLU) expression and the induction of defense-related processes in two sugarcane varieties, GT11 and GXB9, showed their potential for stress amelioration and PGP. Both bacterial strains increased several sugarcane physiological parameters. i.e., plant height, shoot weight, root weight, leaf area, chlorophyll content, and photosynthesis, in plants grown under greenhouse conditions. The ability of rhizobacteria on N-fixing in sugarcane was also confirmed by a 15N isotope-dilution study, and the estimate indicates a contribution of 21-35% of plant nitrogen by rhizobacterial biological N fixation (BNF). This is the first report of sugarcane growth promotion by N-fixing rhizobacteria P. dispersa and E. asburiae strains. Both strains could be used as biofertilizer for sugarcane to minimize nitrogen fertilizer use and better disease management.
Collapse
Affiliation(s)
- Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China.,State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bio Resources, College of Agriculture, Guangxi University, Nanning, China
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China.,State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bio Resources, College of Agriculture, Guangxi University, Nanning, China
| | - Hai-Bi Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi South Subtropical Agricultural Science Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Dao-Jun Guo
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China.,State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bio Resources, College of Agriculture, Guangxi University, Nanning, China
| | - Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Prakash Lakshmanan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China.,Interdisciplinary Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China.,Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Mukesh K Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Xiu-Peng Song
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Manoj K Solanki
- Department of Food Quality and Safety, The Volcani Center, Institute for Post-Harvest and Food Sciences, Agricultural Research Organization, Rishon LeZion, Israel
| | - Krishan K Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Li-Tao Yang
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China.,State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bio Resources, College of Agriculture, Guangxi University, Nanning, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China.,State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bio Resources, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
16
|
Daniel D, de Alkimin GD, Nunes B. Single and combined effects of the drugs salicylic acid and acetazolamide: Adverse changes in physiological parameters of the freshwater macrophyte, Lemna gibba. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 79:103431. [PMID: 32479818 DOI: 10.1016/j.etap.2020.103431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceutical drugs are among the most used chemicals, for human and veterinary medicines, aquaculture and agriculture. Pharmaceuticals are biologically active molecules, having also environmental persistence, thereby exerting biological effects on non-target species. Among the most used pharmaceuticals, one may find salicylic acid (SA), a non-steroid anti-inflammatory drugs (NSAIDs), and acetazolamide (ACZ), a diuretic drug that acts by inhibiting the activity of carbonic anhydrase (CA). In this work, single and combined effects of SA and ACZ were assessed in the aquatic macrophyte Lemna gibba L., focusing on physiological parameters, namely photosynthetic pigments, (chlorophyll a, b and total (Chl a, b and TChl) as well as carotenoids (Car)). In addition, chemical biomarkers, namely, glutathione S-transferases (GSTs), catalase (CAT) and carbonic anhydrase (CA) activities, were also determined. The highest concentrations of ACZ, caused a decrease in the contents of all chlorophylls; this effect was however reverted by SA exposure. Both ACZ and SA levels caused a decrease in CA activity. Nevertheless, when in combination, this inhibition was not observed in plants exposed to the lowest concentration of these drugs. In conclusion, both pharmaceuticals have the capacity to cause alterations in L. gibba enzymatic activity and photosynthetic pigments content. Additionally, SA seems to exert a protective effect on this species against deleterious effects caused by ACZ.
Collapse
Affiliation(s)
- David Daniel
- Departamento De Biologia, Universidade De Aveiro, Campusde Santiago, 3810-193 Aveiro, Portugal
| | - Gilberto Dias de Alkimin
- Departamento De Biologia, Universidade De Aveiro, Campusde Santiago, 3810-193 Aveiro, Portugal; Centro De Estudos Do Ambiente e Do Mar (CESAM), Universidade De Aveiro, Campus De Santiago, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Departamento De Biologia, Universidade De Aveiro, Campusde Santiago, 3810-193 Aveiro, Portugal; Centro De Estudos Do Ambiente e Do Mar (CESAM), Universidade De Aveiro, Campus De Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
17
|
Malangisha GK, Yang Y, Moustafa-Farag M, Fu Q, Shao W, Wang J, Shen L, Huai Y, Lv X, Shi P, Ali A, Lin Y, Khan J, Ren Y, Yang J, Hu Z, Zhang M. Subcellular distribution of aluminum associated with differential cell ultra-structure, mineral uptake, and antioxidant enzymes in root of two different Al +3-resistance watermelon cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:613-625. [PMID: 32853854 DOI: 10.1016/j.plaphy.2020.06.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 06/04/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Crop plants, such as watermelon, suffer from severe Aluminum (Al3+)-toxicity in acidic soils with their primary root elongation being first arrested. However, the significance of apoplastic or symplastic Al3+-toxicity in watermelon root is scarcely reported. In this work, we identified a medium fruit type (ZJ) and a small fruit type (NBT) as Al+3-tolerant and sensitive based on their differential primary root elongation rate respectively, and used them to show the effects of symplastic besides apoplastic Al distribution in the watermelon's root. Although the Al content was higher in the root of NBT than ZJ, Al+3 allocated in their apoplast, vacuole and plastid fractions were not significantly different between the two cultivars. Thus, only a few proportion of Al+3 differentially distributed in the nucleus and mitochondria corresponded to interesting differential morphological and physiological disorders recorded in the root under Al+3-stress. The symplastic amount of Al+3 substantially induced the energy efficient catalase pathway in ZJ, and the energy consuming ascorbate peroxidase pathway in NBT. These findings coincided with obvious starch granule visibility in the root ultra-structure of ZJ than NBT, suggesting a differential energy was used in supporting the root elongation and nutrient uptake for Al+3-tolerance in the two cultivars. This work provides clues that could be further investigated in the identification of genetic components and molecular mechanisms associated with Al+3-tolerance in watermelon.
Collapse
Affiliation(s)
- Guy Kateta Malangisha
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, PR China; Faculté des Sciences Agronomiques, Université de Lubumbashi, /UNILU, Lubumbashi, 1825, RD Congo
| | - Yubin Yang
- Agriculture, Rural area and water conservancy bureau of Wenling, Wenling, 317500, PR China
| | - Mohamed Moustafa-Farag
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China; Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Qiang Fu
- School of Continuing Education, Zhejiang University, Hangzhou, 310058, PR China
| | - Weiqiang Shao
- Zhejiang Wuwangnong agricultural seed industry science Research institute, Hangzhou, 310000, PR China
| | - Jianke Wang
- Zhejiang Wuwangnong agricultural seed industry science Research institute, Hangzhou, 310000, PR China
| | - Li Shen
- Zhejiang Wuwangnong agricultural seed industry science Research institute, Hangzhou, 310000, PR China
| | - Yan Huai
- Zhejiang Agricultural Technology Extension Center, 310020, PR China
| | - Xiaolong Lv
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Pibiao Shi
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Abid Ali
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Yi Lin
- Agriculture, Rural area and water conservancy bureau of Wenling, Wenling, 317500, PR China
| | - Jehanzeb Khan
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Yongyuan Ren
- Zhejiang Wuwangnong agricultural seed industry science Research institute, Hangzhou, 310000, PR China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, PR China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, PR China.
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, PR China
| |
Collapse
|
18
|
Lin HH, Lin KH, Huang MY, Su YR. Use of Non-Destructive Measurements to Identify Cucurbit Species ( Cucurbita maxima and Cucurbita moschata) Tolerant to Waterlogged Conditions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1226. [PMID: 32961858 PMCID: PMC7570360 DOI: 10.3390/plants9091226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Limited information is available regarding the physiology of squash plants grown under waterlogging stress. The objectives of this study were to investigate the growth and physiological performances of three cucurbit species, Cucurbita maxima cultivar (cv.) OK-101 (OK) and Cucurbita moschata cv. Early Price (EP) and Strong Man (SM), in response to waterlogging conditions, and to develop a precise, integrated, and quantitative non-destructive measurement of squash genotypes under stress. All tested plants were grown in a growth chamber under optimal irrigation and growth conditions for a month, and the pot plants were then subjected to non-waterlogging (control) and waterlogging treatments for periods of 1, 3, 7, and 13 days (d), followed by a 3-d post-waterlogging recovery period after water drainage. Plants with phenotypes, such as fresh weight (FW), dry weight (DW), and dry matter (DM) of shoots and roots, and various physiological systems, including relative water content (RWC), soil and plant analysis development (SPAD) chlorophyll meter, ratio of variable/maximal fluorescence (Fv/Fm), quantum photosynthetic yield (YII), normalized difference vegetation index (NDVI), and photochemical reflectance index (PRI) values, responded differently to waterlogging stress in accordance with the duration of the stress period and subsequent recovery period. When plants were treated with stress for 13 d, all plants exhibited harmful effects to their leaves compared with the control, but EP squash grew better than SM and OK squashes and exhibited stronger tolerance to waterlogging and showed less injury. Changes in the fresh weight, dry weight, and dry matter of shoots and roots indicated that OK plants suffered more severely than EP plants at the 3-d drainage period. The values of RWC, SPAD, Fv/Fm, YII, NDVI, and PRI in both SM and OK plants remarkably decreased at waterlogging at the 13-d time point compared with controls under identical time periods. However, the increased levels of SPAD, Fv/Fm, YII, NDVI, and PRI observed on 7 d or 13 d of waterlogging afforded the EP plant leaf with improved waterlogged tolerance. Significant and positive correlations were observed among NDVI and PRI with SPAD, Fv/Fm, and YII, indicating that these photosynthetic indices can be useful for developing non-destructive estimations of chlorophyll content in squashes when screening for waterlogging-tolerant plants, for establishing development practices for their cultivation in fields, and for enhanced cultivation during waterlogging in frequently flooded areas.
Collapse
Affiliation(s)
- Hsin-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei 11114, Taiwan; (K.-H.L.); (Y.-R.S.)
| | - Kuan-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei 11114, Taiwan; (K.-H.L.); (Y.-R.S.)
| | - Meng-Yuan Huang
- Department of Life Sciences, National Chung-Hsing University, Taichung 40227, Taiwan;
| | - Yi-Ru Su
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei 11114, Taiwan; (K.-H.L.); (Y.-R.S.)
| |
Collapse
|
19
|
Ismaiel MMS, Piercey-Normore MD. Gene transcription and antioxidants production in Arthrospira (Spirulina) platensis grown under temperature variation. J Appl Microbiol 2020; 130:891-900. [PMID: 32780445 DOI: 10.1111/jam.14821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/05/2020] [Accepted: 08/07/2020] [Indexed: 11/30/2022]
Abstract
AIM To investigate the transcription of selected antioxidants and relevant genes under varying temperature conditions, and to identify the optimum temperature for antioxidants production by Arthrospira platensis. METHODS AND RESULTS The dry weight (DW), pigment production, antioxidants production and gene transcription were examined in A. platensis growing under three temperatures of 23, 30 and 37°C. The cyanobacterial DW was highest in the high temperatures (30 and 37°C), while the pigments, such as Chl a, carotenoids, C-phycocyanin and total phycobiliprotein contents, showed their maximum value at 30°C. The total soluble protein and carbohydrate contents were highest at 30°C. Lipid peroxidation, as a marker for thermal stress, was high at 23°C, while higher temperatures remarkably reduced lipid peroxidation levels. Antioxidants activity was increased by 1·5-fold at 30°C and temperature fluctuations induced the antioxidant enzyme activities. The transcriptional abundance of heat shock protein (HSP90), glutamate synthase (GOGAT), delta-9 desaturase (desC), iron-superoxide dismutase (FeSOD) and the large subunit of Rubisco (rbcL) genes was measured under the same temperatures. CONCLUSION The optimal temperature for growth, biochemical constituents and antioxidants of A. platensis is 30°C while some antioxidant enzyme activity increased at lower and higher temperatures. SIGNIFICANCE AND IMPACT OF THE STUDY The study showed the significance of temperature for growth, enzymatic and non-enzymatic antioxidants and gene expression in A. platensis. This contributes to the knowledge of culturing A. platensis to harvest specific antioxidants or as an antioxidant-rich food source.
Collapse
Affiliation(s)
- M M S Ismaiel
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - M D Piercey-Normore
- School of Science and the Environment, Memorial University of NL (Grenfell Campus), Corner Brook, NL, A2H 5G4, Canada
| |
Collapse
|
20
|
Gomes RS, Machado Júnior R, de Almeida CF, Chagas RR, de Oliveira RL, Delazari FT, da Silva DJH. Brazilian germplasm of winter squash (Cucurbita moschata D.) displays vast genetic variability, allowing identification of promising genotypes for agro-morphological traits. PLoS One 2020; 15:e0230546. [PMID: 32516347 PMCID: PMC7282630 DOI: 10.1371/journal.pone.0230546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/14/2020] [Indexed: 01/10/2023] Open
Abstract
Winter squash fruits (Cucurbita moschata D.) are among the best sources of vitamin A precursors and constitute sources of bioactive components such as phenolic compounds and flavonoids. Approximately 70% of C. moschata seed oil is made up of unsaturated fatty acids, with high levels of monounsaturated fatty acids and components such as vitamin E and carotenoids, which represent a promising nutritional aspect in the production of this vegetable. C. moschata germplasm expresses high genetic variability, especially in Brazil. We assessed 91 C. moschata accessions, from different regions of Brazil, and maintained at the Federal University of Viçosa (UFV) Vegetable Germplasm Bank, to identify early-flowering accessions with high levels of carotenoids in the fruit pulp and high yields of seed and seed oil. Results showed that the accessions have high variability in the number and mass of seeds per fruit, number of accumulated degree-days for flowering, total carotenoid content, and fruit productivity, which allowed selection for considerable gains in these characteristics. Analysis of the correlation between these characteristics provided information that will assist in selection to improve this crop. Cluster analysis resulted in the formation of 16 groups, confirming the variability of the accessions. Per se analysis identified accessions BGH-6749, BGH-5639, and BGH-219 as those with the earliest flowering. Accessions BGH-5455A and BGH-5598A had the highest carotenoid content, with averages greater than 170.00 μg g-1 of fresh mass. With a productivity of 0.13 t ha-1, accessions BGH-5485A, BGH-4610A, and BGH-5472A were the most promising for seed oil production. These last two accessions corresponded to those with higher seed productivity, averaging 0.58 and 0.54 t ha-1, respectively. This study confirms the high potential of this germplasm for use in breeding for promotion of earlier flowering and increase in total content of fruit pulp carotenoids and in seed and seed oil productivity.
Collapse
Affiliation(s)
- Ronaldo Silva Gomes
- Agronomy Department, Federal University of Viçosa-UFV, Viçosa, MG, Brazil
- * E-mail:
| | | | | | | | | | | | | |
Collapse
|
21
|
Katam R, Shokri S, Murthy N, Singh SK, Suravajhala P, Khan MN, Bahmani M, Sakata K, Reddy KR. Proteomics, physiological, and biochemical analysis of cross tolerance mechanisms in response to heat and water stresses in soybean. PLoS One 2020; 15:e0233905. [PMID: 32502194 PMCID: PMC7274410 DOI: 10.1371/journal.pone.0233905] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/14/2020] [Indexed: 01/11/2023] Open
Abstract
Water stress (WS) and heat stress (HS) have a negative effect on soybean plant growth and crop productivity. Changes in the physiological characteristics, proteome, and specific metabolites investigated on molecular and cellular functions were studied in two soybean cultivars exposed to different heat and water stress conditions independently and in combination. Leaf protein composition was studied using 2-DE and complemented with MALDI TOF mass spectrometry. While the two cultivars displayed genetic variation in response to water and heat stress, thirty-nine proteins were significantly altered in their relative abundance in response to WS, HS and combined WS+HS in both cultivars. A majority of these proteins were involved in metabolism, response to heat and photosynthesis showing significant cross-tolerance mechanisms. This study revealed that MED37C, a probable mediator of RNA polymerase transcription II protein, has potential interacting partners in Arabidopsis and signified the marked impact of this on the PI-471938 cultivar. Elevated activities in antioxidant enzymes indicate that the PI-471938 cultivar can restore the oxidation levels and sustain the plant during the stress. The discovery of this plant's development of cross-stress tolerance could be used as a guide to foster ongoing genetic modifications in stress tolerance.
Collapse
Affiliation(s)
- Ramesh Katam
- Department of Biological Sciences, Florida A&M University, Tallahassee, Florida, United States of America
| | - Sedigheh Shokri
- Department of Biological Sciences, Florida A&M University, Tallahassee, Florida, United States of America
- Department of Horticulture Sciences, College of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Nitya Murthy
- Department of Biological Sciences, Florida A&M University, Tallahassee, Florida, United States of America
- Kentucky College of Optometry, University of Pikeville, Pikeville, Kentucky, United States of America
| | - Shardendu K. Singh
- Mississippi State University, Mississippi, Mississippi, United States of America
| | - Prashanth Suravajhala
- Bioclues.org, Hyderabad, India
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Mudassar Nawaz Khan
- Institute of Biotechnology & Genetic Engineering, University of Agriculture, Peshawar, Pakistan
| | - Mahya Bahmani
- Department of Agronomy and Plant Breeding, College of Agricultural Sciences & Engineering, University of Tehran, Tehran, Iran
| | - Katsumi Sakata
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi City, Gunma, Japan
| | - Kambham Raja Reddy
- Mississippi State University, Mississippi, Mississippi, United States of America
| |
Collapse
|
22
|
Singh I, Debnath S, Gautam A, Yadava P. Characterization of contrasting genotypes reveals general physiological and molecular mechanisms of heat-stress adaptation in maize ( Zea mays L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:921-929. [PMID: 32377042 PMCID: PMC7196591 DOI: 10.1007/s12298-020-00801-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/28/2019] [Accepted: 03/17/2020] [Indexed: 05/29/2023]
Abstract
In order to dissect the adaptation response of maize to heat-stress, we characterized and juxtaposed different physio-biochemical parameters for two contrasting genotypes, namely DTPYC9F119 (heat-stress tolerant) and K64R (heat-stress susceptible) under 6 days heat treatment (38/28 °C). Chlorophyll a and b content was found to be reduced under high temperature in both the genotypes, but, it was reduced more prominently in the susceptible genotype (K64R). Net photosynthetic rate was significantly reduced under high temperature in K64R but this reduction was relatively lower in case of DTPYC9F119. Stomatal conductance was increased under stress treatment in both the genotypes but the rate of increase was lower in tolerant one (DTPYC9F119). Activity of anti-oxidant enzymes (viz. catalase, peroxidase and superoxide dismutase) and their gene expression was increased in both the genotypes under heat-stress condition. Thus, the heat-stress tolerant genotype has evolved some strategies like modulation of anti-oxidant gene expression, lower transpiration rate, lower increase of internal CO2 concentration which could make sustain a basic level of photosynthesis even under high temperature stress, etc. that may contribute to its tolerance trait.
Collapse
Affiliation(s)
- Ishwar Singh
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012 India
| | - Suprokash Debnath
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012 India
- Indian Council of Agricultural Research- Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012 India
| | - Anuradha Gautam
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012 India
- Amity Institute of Biotechnology, Amity University, Noida, 201313 India
| | - Pranjal Yadava
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012 India
| |
Collapse
|
23
|
Liu Y, Wu C, Hu X, Gao H, Wang Y, Luo H, Cai S, Li G, Zheng Y, Lin C, Zhu Q. Transcriptome profiling reveals the crucial biological pathways involved in cold response in Moso bamboo (Phyllostachys edulis). TREE PHYSIOLOGY 2020; 40:538-556. [PMID: 31860727 DOI: 10.1093/treephys/tpz133] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 05/20/2023]
Abstract
Most bamboo species including Moso bamboo (Phyllostachys edulis) are tropical or subtropical plants that greatly contribute to human well-being. Low temperature is one of the main environmental factors restricting bamboo growth and geographic distribution. Our knowledge of the molecular changes during bamboo adaption to cold stress remains limited. Here, we provided a general overview of the cold-responsive transcriptional profiles in Moso bamboo by systematically analyzing its transcriptomic response under cold stress. Our results showed that low temperature induced strong morphological and biochemical alternations in Moso bamboo. To examine the global gene expression changes in response to cold, 12 libraries (non-treated, cold-treated 0.5, 1 and 24 h at -2 °C) were sequenced using an Illumina sequencing platform. Only a few differentially expressed genes (DEGs) were identified at early stage, while a large number of DEGs were identified at late stage in this study, suggesting that the majority of cold response genes in bamboo are late-responsive genes. A total of 222 transcription factors from 24 different families were differentially expressed during 24-h cold treatment, and the expressions of several well-known C-repeat/dehydration responsive element-binding factor negative regulators were significantly upregulated in response to cold, indicating the existence of special cold response networks. Our data also revealed that the expression of genes related to cell wall and the biosynthesis of fatty acids were altered in response to cold stress, indicating their potential roles in the acquisition of bamboo cold tolerance. In summary, our studies showed that both plant kingdom-conserved and species-specific cold response pathways exist in Moso bamboo, which lays the foundation for studying the regulatory mechanisms underlying bamboo cold stress response and provides useful gene resources for the construction of cold-tolerant bamboo through genetic engineering in the future.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chu Wu
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Hu
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongye Gao
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yue Wang
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Luo
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sen Cai
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guowei Li
- College of Life Science, Shandong Normal University, Jinan 250000, China
| | - Yushan Zheng
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Qiang Zhu
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
24
|
Antoniou C, Xenofontos R, Chatzimichail G, Christou A, Kashfi K, Fotopoulos V. Exploring the Potential of Nitric Oxide and Hydrogen Sulfide (NOSH)-Releasing Synthetic Compounds as Novel Priming Agents against Drought Stress in Medicago sativa Plants. Biomolecules 2020; 10:biom10010120. [PMID: 31936819 PMCID: PMC7023404 DOI: 10.3390/biom10010120] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 01/24/2023] Open
Abstract
Land plants are continuously exposed to multiple abiotic stress factors like drought, heat, and salinity. Nitric oxide (NO) and hydrogen sulfide (H2S) are two well-examined signaling molecules that act as priming agents, regulating the response of plants to stressful conditions. Several chemical donors exist that provide plants with NO and H2S separately. NOSH is a remarkable novel donor as it can donate NO and H2S simultaneously to plants, while NOSH-aspirin additionally provides the pharmaceutical molecule acetylsalicylic acid. The current study aimed to investigate the potential synergistic effect of these molecules in drought-stressed Medicago sativa L. plants by following a pharmacological approach. Plants were initially pre-treated with both donors (NOSH and NOSH-aspirin) via foliar spraying, and were then subsequently exposed to a moderate water deficit while NO and H2S inhibitors (cPTIO and HA, respectively) were also employed. Phenotypic and physiological data showed that pre-treatment with NOSH synthetic compounds induced acclimation to subsequent drought stress and improved the recovery following rewatering. This was accompanied by modified reactive-oxygen and nitrogen-species signaling and metabolism, as well as attenuation of cellular damage, as evidenced by altered lipid peroxidation and proline accumulation levels. Furthermore, real-time RT-qPCR analysis revealed the differential regulation of multiple defense-related transcripts, including antioxidant enzymes. Overall, the present study proposed a novel role for NOSH compounds as efficient plant priming agents against environmental constraints through the coordinated regulation of multiple defense components, thus opening new horizons in the field of chemical priming research toward the use of target-selected compounds for stress tolerance enhancement.
Collapse
Affiliation(s)
- Chrystalla Antoniou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus; (C.A.); (R.X.); (G.C.)
| | - Rafaella Xenofontos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus; (C.A.); (R.X.); (G.C.)
| | - Giannis Chatzimichail
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus; (C.A.); (R.X.); (G.C.)
| | - Anastasis Christou
- Agricultural Research Institute, Ministry of Agriculture, Rural Development and Natural Recourses, P.O. Box 22016, 1516 Nicosia, Cyprus;
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10016, USA
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus; (C.A.); (R.X.); (G.C.)
- Correspondence: ; Tel.: +357-25-002418; Fax: +357-25-002632
| |
Collapse
|
25
|
Lima EMD, Cassaro KDODS, Silva CLD, Silva MDA, Poltronieri MP, Nascimento AMD, Andrade TUD, Bissoli NS, Brasil GA. Eight weeks of treatment with nandrolone decanoate in female rats promotes disruption in the redox homeostasis and impaired renal function. Life Sci 2019; 242:117227. [PMID: 31881226 DOI: 10.1016/j.lfs.2019.117227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/11/2019] [Accepted: 12/23/2019] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Misuse of AAS is emergent among both genders, however, few studies were performed evaluating AAS effects on female body and none evaluate the impact of nandrolone decanoate (ND) in renal function. AIM Determine the effects of chronic treatment with ND on kidney function of female rats and evaluate the influence of oxidative stress on it. MATERIAL AND METHODS Female rats were separated into two groups (n = 8 each), the treated group (DECA), which received ND at a dose of 20 mg/kg/week (i.m), and the control group (C), which was treated with the vehicle (peanut oil, i.m.). All treatments were performed during eight weeks. After this period, 24 h urine, blood and organs (heart, gastrocnemius muscle, liver and kidney) were collected. Organ hypertrophy was calculated, and kidney collagen content was evaluated. AOPP, TBARS, SOD and catalase activity were determined in the kidney. Moreover, proteinuria and creatinine clearance were also investigated. KEY-FINDINGS Hypertrophy was observed in the liver, gastrocnemius muscle, heart and kidney. Kidney hypertrophy was followed by a reduced organ function and an increase in collagen deposition. Oxidative stress upsurge occurred in both proteins and lipids, followed by a reduction in SOD activity. SIGNIFICANCE Administration of DN in rats was followed by renal damage and kidney fibrosis due to increased oxidative stress on that organ.
Collapse
Affiliation(s)
- Ewelyne Miranda de Lima
- Department of Pharmaceutical Sciences, University of Vila Velha - UVV, Vila Velha, Espírito Santo, Brazil
| | | | - Cristiane Lyrio da Silva
- Department of Pharmaceutical Sciences, University of Vila Velha - UVV, Vila Velha, Espírito Santo, Brazil
| | - Mirian de Almeida Silva
- Department of Pharmaceutical Sciences, University of Vila Velha - UVV, Vila Velha, Espírito Santo, Brazil
| | | | | | - Tadeu Uggere de Andrade
- Department of Pharmaceutical Sciences, University of Vila Velha - UVV, Vila Velha, Espírito Santo, Brazil
| | - Nazaré Souza Bissoli
- Health Sciences Center, Department of Physiology and Pharmacology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Girlandia Alexandre Brasil
- Department of Pharmaceutical Sciences, University of Vila Velha - UVV, Vila Velha, Espírito Santo, Brazil.
| |
Collapse
|
26
|
Production, physiology, and molecular characterization of sorghum (Sorghum bicolor (L.) Moench) genotypes under the interactions of abiotic stresses. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Aguirre-Dugua X, Castellanos-Morales G, Paredes-Torres LM, Hernández-Rosales HS, Barrera-Redondo J, Sánchez-de la Vega G, Tapia-Aguirre F, Ruiz-Mondragón KY, Scheinvar E, Hernández P, Aguirre-Planter E, Montes-Hernández S, Lira-Saade R, Eguiarte LE. Evolutionary Dynamics of Transferred Sequences Between Organellar Genomes in Cucurbita. J Mol Evol 2019; 87:327-342. [PMID: 31701178 DOI: 10.1007/s00239-019-09916-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022]
Abstract
Twenty-nine DNA regions of plastid origin have been previously identified in the mitochondrial genome of Cucurbita pepo (pumpkin; Cucurbitaceae). Four of these regions harbor homolog sequences of rbcL, matK, rpl20-rps12 and trnL-trnF, which are widely used as molecular markers for phylogenetic and phylogeographic studies. We extracted the mitochondrial copies of these regions based on the mitochondrial genome of C. pepo and, along with published sequences for these plastome markers from 13 Cucurbita taxa, we performed phylogenetic molecular analyses to identify inter-organellar transfer events in the Cucurbita phylogeny and changes in their nucleotide substitution rates. Phylogenetic reconstruction and tree selection tests suggest that rpl20 and rbcL mitochondrial paralogs arose before Cucurbita diversification whereas the mitochondrial matK and trnL-trnF paralogs emerged most probably later, in the mesophytic Cucurbita clade. Nucleotide substitution rates increased one order of magnitude in all the mitochondrial paralogs compared to their original plastid sequences. Additionally, mitochondrial trnL-trnF sequences obtained by PCR from nine Cucurbita taxa revealed higher nucleotide diversity in the mitochondrial than in the plastid copies, likely related to the higher nucleotide substitution rates in the mitochondrial region and loss of functional constraints in its tRNA genes.
Collapse
Affiliation(s)
- Xitlali Aguirre-Dugua
- Unidad de Biotecnología Y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios 1, Col. Los Reyes Iztacala, 54090, Tlalnepantla, Estado de México, Mexico.
| | - Gabriela Castellanos-Morales
- Departamento de Conservación de La Biodiversidad, El Colegio de La Frontera Sur, Unidad Villahermosa, Carretera Villahermosa-Reforma km. 15.5, Ranchería El Guineo 2a Sección, 86280, Villahermosa, Tabasco, Mexico
| | - Leslie M Paredes-Torres
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior S/N Anexo Al Jardín Botánico, 04510, Ciudad de México, Mexico
| | - Helena S Hernández-Rosales
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior S/N Anexo Al Jardín Botánico, 04510, Ciudad de México, Mexico
| | - Josué Barrera-Redondo
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior S/N Anexo Al Jardín Botánico, 04510, Ciudad de México, Mexico
| | - Guillermo Sánchez-de la Vega
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior S/N Anexo Al Jardín Botánico, 04510, Ciudad de México, Mexico
| | - Fernando Tapia-Aguirre
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior S/N Anexo Al Jardín Botánico, 04510, Ciudad de México, Mexico
| | - Karen Y Ruiz-Mondragón
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior S/N Anexo Al Jardín Botánico, 04510, Ciudad de México, Mexico
| | - Enrique Scheinvar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior S/N Anexo Al Jardín Botánico, 04510, Ciudad de México, Mexico
| | - Paulina Hernández
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior S/N Anexo Al Jardín Botánico, 04510, Ciudad de México, Mexico
| | - Erika Aguirre-Planter
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior S/N Anexo Al Jardín Botánico, 04510, Ciudad de México, Mexico
| | - Salvador Montes-Hernández
- Campo Experimental Bajío, Instituto Nacional de Investigaciones Forestales, Agrícolas Y Pecuarias (INIFAP), Km 6.5 Carretera Celaya-San Miguel de Allende, 38110, Celaya, Gto., Mexico
| | - Rafael Lira-Saade
- Unidad de Biotecnología Y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios 1, Col. Los Reyes Iztacala, 54090, Tlalnepantla, Estado de México, Mexico.
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior S/N Anexo Al Jardín Botánico, 04510, Ciudad de México, Mexico.
| |
Collapse
|
28
|
Surgun-Acar Y, Zemheri-Navruz F. 24-Epibrassinolide promotes arsenic tolerance in Arabidopsis thaliana L. by altering stress responses at biochemical and molecular level. JOURNAL OF PLANT PHYSIOLOGY 2019; 238:12-19. [PMID: 31121523 DOI: 10.1016/j.jplph.2019.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/26/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
In this study, the effect of 24-Epibrassinolide (EBL) on antioxidant system in Arabidopsis thaliana were investigated under arsenate [As(V)] stress. The enzyme activity of superoxide dismutase (SOD) and catalase (CAT), total antioxidant status, malondialdehyde (MDA) level and free proline content, as well as the expression levels of SOD isoforms (Cu-ZnSODs, FeSODs and MnSOD), CAT isoforms (CAT1, CAT2 and CAT3), some heat shock proteins (Hsp70-4 and Hsp90-1) and proline biosynthesis (P5CS1 and P5CS2) genes were determined in rosette leaves of eight-week old plants under exposure of 100 and 200 μM As(V) and/or 1 μM EBL treatments for 24 h. Total SOD and CAT enzyme activities increased as a result of 100 μM As(V) + EBL treatments compared to 100 μM As(V) treatment. Total antioxidant and proline levels increased in plants subjected to As(V), and the treatment of EBL together with stress caused further increase. As the MDA level increased in As-treated plants, 100 μM As(V) + EBL treatment decreased MDA level. Transcript levels of CSD1, CSD2, FSD1, FSD2, MSD1 and CAT2 genes increased as a result of combined treatment of EBL and As(V) compared to control and alone stress treatments (except CSD1 gene). Expression level of CSD3, CAT1 and CAT3 genes were downregulated in response to As(V) and/or EBL treatments. EBL application alone and in combination with As(V) elevated the expression level of P5CS1 gene dramatically. Treatment with 100 μM As(V) and EBL increased the transcript level of Hsp70-4 and Hsp90-1 genes in leaves compared to 100 μM As(V) treatment. To our best knowledge, this is the first detailed study to evaluate the improving effect of EBL on antioxidant defense system at biochemical and transcriptional level in A. thaliana plants under As(V) stress.
Collapse
Affiliation(s)
- Yonca Surgun-Acar
- Department of Agricultural Biotechnology, Faculty of Agriculture, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| | - Fahriye Zemheri-Navruz
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, Bartın, Turkey.
| |
Collapse
|
29
|
Potential Use of Sweet Potato (Ipomoea batatas (L.) Lam.) to Suppress Three Invasive Plant Species in Agroecosystems (Ageratum conyzoides L., Bidens pilosa L., and Galinsoga parviflora Cav.). AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9060318] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sweet potato (Ipomoea batatas (L.) Lam.) is a logical candidate crop to suppress invasive plants, but additional information is needed to support its potential application as a suppressive ground cover. The current study utilized a de Wit replacement series incorporating five ratios of sweet potato grown in the field in combination with one of three invasive plants (Ageratum conyzoides L., Bidens pilosa L., and Galinsoga parviflora Cav.) in replicated 9 m2 plots. Stem length, total biomass, and leaf area were higher for monoculture-grown sweet potato than these parameters for any of the invasive plants grown in monoculture. In mixed culture, the plant height, branch, leaf, inflorescence, seed, and biomass of all invasive plants were suppressed by sweet potato. The relative yield parameter indicated that intraspecific competition was greater than interspecific competition for sweet potato, while the reverse was true for invasive species. The net photosynthetic rate was higher for sweet potato than for B. pilosa and G. parviflora but not A. conyzoides. Superoxide dismutase and peroxidase activities of each of the three invasive plants were reduced in mixture with sweet potato. Our results demonstrated that these three invasive plants were significantly suppressed by sweet potato competition due to the rapid growth and phenotypic plasticity of sweet potato.
Collapse
|
30
|
Chakrabarty A, Banik N, Bhattacharjee S. Redox-regulation of germination during imbibitional oxidative and chilling stress in an indica rice cultivar ( Oryza sativa L., Cultivar Ratna). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:649-665. [PMID: 31168230 PMCID: PMC6522599 DOI: 10.1007/s12298-019-00656-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 05/26/2023]
Abstract
Imbibitional oxidative stress of different magnitude, imposed by treatment with different titer of H2O2 (both elevated, 20 mM and low, 500 µM) to an indica rice cultivar (Oryza sativa L., Cultivar Ratna) caused formation of differential redox cues at the metabolic interface, as evident from significant alteration of ROS/antioxidant ratio, efficacy of ascorbate-glutathione cycle, radical scavenging property, modulation of total thiol content and expression of oxidative membrane protein and lipid damages as biomarkers of oxidative stress. All the redox parameters examined, substantiate the experimental outcome that treatment with elevated concentration of H2O2 caused serious loss of redox homeostasis and germination impairment, whereas low titre H2O2 treatment not only restored redox homeostasis but also improve germination and post-germinative growth. The inductive pulse of H2O2 (500 µM) exhibited significantly better performance of ascorbate-glutathione pathway, which was otherwise down-regulated significantly in 20 mM H2O2 treatment-raised seedlings. A comparison between imbibitional chilling stress-raised experimental rice seedlings with 20 mM H2O2 treated rice seedling revealed similar kind of generation of redox cues and oxidative stress response. Further, imbibitional H2O2 treatments in rice also revealed a dose-dependent regulation of expression of genes of Halliwell-Asada pathway enzymes, which is in consonance with the redox metabolic response of germinating rice seeds. In conclusion, a dose-dependent regulation of H2O2 mediated redox cues and redox regulatory properties during germination in rice are suggested, the knowledge of which may be exploited as a promising seed priming technology.
Collapse
Affiliation(s)
- Ananya Chakrabarty
- UGC Centre for Advanced Study, Plant Physiology and Biochemistry Research Laboratory, Department of Botany, The University of Burdwan, Burdwan, West Bengal India
| | - Nabanita Banik
- UGC Centre for Advanced Study, Plant Physiology and Biochemistry Research Laboratory, Department of Botany, The University of Burdwan, Burdwan, West Bengal India
| | - Soumen Bhattacharjee
- UGC Centre for Advanced Study, Plant Physiology and Biochemistry Research Laboratory, Department of Botany, The University of Burdwan, Burdwan, West Bengal India
| |
Collapse
|
31
|
Rout JR, Kerry RG, Panigrahi D, Sahoo SL, Pradhan C, Ram SS, Chakraborty A, Sudarshan M. Biochemical, molecular, and elemental profiling of Withania somnifera L. with response to zinc stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:4116-4129. [PMID: 30560532 DOI: 10.1007/s11356-018-3926-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Zn stress seriously induces various toxic responses in Withania somnifera L., when accumulated above the threshold level which was confirmed by investigating the responses of protein, expression of antioxidant enzymes, and elemental profiling on accumulation of Zn. Zn was supplemented in the form of ZnSO4 (0, 25, 50, 100, and 200 μM) through MS liquid medium and allowed to grow the in vitro germinated plants for 7 and 14 days. The study revealed that when the application of Zn increased, a significant reduction of growth characteristics was noticed with alterations of proteins (both disappearance and de novo synthesis). The activity of CAT, SOD, and GPX were increased up to certain concentrations and then declined, which confirmed through in-gel activity under different treatments. RT-PCR was conducted by taking three sets of genes from CAT (RsCat, Catalase1, Cat1) and SOD (SodCp, TaSOD1.2, MnSOD) and found that gene RsCat from CAT and MnSOD from SOD have shown maximum expression of desired genes under Zn stress, which indicate plant's stress tolerance mechanisms. The proton-induced X-ray emission study confirmed an increasing order of uptake of Zn in plants by suppressing and expressing other elemental constituents which cause metal homeostasis. This study provides insights into molecular mechanisms associated with Zn causing toxicity to plants; however, cellular and subcellular studies are essential to explore molecule-molecule interaction during Zn stress in plants.
Collapse
Affiliation(s)
- Jyoti Ranjan Rout
- School of Biological Sciences, AIPH University, Bhubaneswar, Odisha, 752101, India.
- Biochemistry and Molecular Biology Laboratory, Post Graduate Department of Botany, Utkal University, VaniVihar, Bhubaneswar, Odisha, 751004, India.
| | - Rout George Kerry
- Post Graduate Department of Biotechnology, Utkal University, VaniVihar, Bhubaneswar, Odisha, 751004, India
| | - Debasna Panigrahi
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Santi Lata Sahoo
- Biochemistry and Molecular Biology Laboratory, Post Graduate Department of Botany, Utkal University, VaniVihar, Bhubaneswar, Odisha, 751004, India
| | - Chinmay Pradhan
- Biochemistry and Molecular Biology Laboratory, Post Graduate Department of Botany, Utkal University, VaniVihar, Bhubaneswar, Odisha, 751004, India
| | - Shidharth Sankar Ram
- UGC-DAE Consortium of Scientific Research, Kolkata Centre, Bidhan Nagar, Salt Lake, Kolkata, 700098, India
| | - Anindita Chakraborty
- UGC-DAE Consortium of Scientific Research, Kolkata Centre, Bidhan Nagar, Salt Lake, Kolkata, 700098, India
| | - Mathummal Sudarshan
- UGC-DAE Consortium of Scientific Research, Kolkata Centre, Bidhan Nagar, Salt Lake, Kolkata, 700098, India
| |
Collapse
|
32
|
Zhang C, Shi S, Liu Z, Yang F, Yin G. Drought tolerance in alfalfa (Medicago sativa L.) varieties is associated with enhanced antioxidative protection and declined lipid peroxidation. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:226-240. [PMID: 30537610 DOI: 10.1016/j.jplph.2018.10.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 05/23/2023]
Abstract
Drought stress is considered the most adverse factor restricting plant survival, growth, and productivity. The identification of the key adaptive mechanisms to drought stress is essential to enhance the drought resistance of plants. In this study, differential responses of three alfalfa varieties to drought, including Medicago sativa L. cv. Longzhong (drought-tolerant), Longdong (moderate drought-tolerant), and Gannong No. 3 (drought-sensitive), were comparatively studied at morphological, physio-biochemical, and transcriptional levels after a 12-day period of drought stress simulated by -1.2 MPa polyethylene glycol (PEG-6000). The results showed that prolonged drought stress dramatically decreased growth and photosynthetic capacity of three alfalfa varieties while it increased the accumulation of malondialdehyde (MDA), reactive oxygen species (ROS), osmolytes and antioxidants including reduced ascorbate and glutathione, ascorbate peroxidase (APX) activities, and gene expression of antioxidative enzymes (MsCu/Zn-SOD, MsFeSOD, MtPOD, MsGPX, MsAPX, MsMDAR, MtDHAR, and MsGR). Nine days of treatment and some key traits, including the maximum quantum yield of photosystem II (Fv/Fm), the levels of MDA, O2-, and H2O2, the redox states of ascorbate and glutathione, APX activity, and the transcript levels of MsFeSOD, MsGR, and MsMDAR, might contribute to differentiating the drought stress tolerance in alfalfa. Overall, drought-tolerant Longzhong showed the highest water retention, photosynthetic performance, and osmoregulation capacity, the lowest lipid peroxidation, and the highest antioxidant enzyme activities and gene expression, which were mainly involved in the ascorbate-glutathione cycle to maintain the balance between the generation and scavenging of intracellular ROS. These findings highlight that enhanced antioxidative protection and declined lipid peroxidation play an important role in alfalfa tolerance against drought.
Collapse
Affiliation(s)
- Cuimei Zhang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shangli Shi
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Zhen Liu
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, 730070, China
| | - Fan Yang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, 730070, China
| | - Guoli Yin
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
33
|
Çelik Ö, Çakır BC, Atak Ç. Identification of the antioxidant defense genes which may provide enhanced salt tolerance in Oryza sativa L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:85-99. [PMID: 30804632 PMCID: PMC6352531 DOI: 10.1007/s12298-018-0618-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 05/10/2023]
Abstract
Antioxidative mechanisms are important to protect cells from the hazardous effects of reactive oxygen species (ROS). Salt stress is one of the environmental stress factors that leads to accumulation of ROS at toxic levels. In this study, we analyzed the responses of two rice (Oryza sativa L.) cultivars against NaCl stress at enzymatic and transcriptional levels. In 14 day-old-seedlings, different antioxidant enzyme activities were observed. These findings were also supported by transcriptional analyses of the responsible genes. According to the results, Cyt-APX, CAT A, Cyt-GR1 and proline metabolism-related genes were differentially expressed between two rice varieties under different salt concentrations. Their regulational differences cause different salt sensitivities of the varieties. By this study, we provided an insight into understanding of the correlation between antioxidant defence genes and ROS enzymes under salt stress.
Collapse
Affiliation(s)
- Özge Çelik
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, İstanbul Kültür University, Ataköy, 34156 Istanbul, Turkey
| | - Bilgin Candar Çakır
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Çimen Atak
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, İstanbul Kültür University, Ataköy, 34156 Istanbul, Turkey
| |
Collapse
|
34
|
Kurt-Gür G, Demirci H, Sunulu A, Ordu E. Stress response of NAD +-dependent formate dehydrogenase in Gossypium hirsutum L. grown under copper toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31679-31690. [PMID: 30209765 DOI: 10.1007/s11356-018-3145-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Cotton (Gossypium hirsutum L.), which is not directly involved in the food chain, appears to be a suitable candidate to remove heavy metals from the food chain and to be a commercial plant which could be planted in contaminated soils. The key point of this approach is selection of the right genotype, which has heavy metal resistance or hyperaccumulation properties. Therefore, in the present study, two G. hirsutum genotypes, Erşan-92 and N-84S, were grown under copper stress and investigated to obtain further insights about the heavy metal tolerance mechanisms of plants by focusing on the expression of NAD+-dependent formate dehydrogenase (FDH). In accordance with the results, which were obtained from RT-PCR analysis and activity measurements, in the Erşan-92 root tissue, FDH activity increased significantly with increasing metal concentrations and a 6.35-fold higher FDH activity was observed in the presence of 100-μM Cu. As opposed to Erşan-92, the maximum FDH activity in the roots of N-84S, which were untreated with copper as the control plants, was measured as 0.0141-U mg-1 g-1 FW, and the activity decreased significantly with the increasing metal concentrations. The metallothionein (GhMT3a) transcript level of the plants grown in a medium containing different Cu concentrations showed nearly the same pattern as that of the FDH gene transcription. It was observed that while the tolerance of N-84S in the lower Cu concentration reduces remarkably, Erşan-92 continues to struggle up to 100-μM Cu. The results of the SOD analysis also confirm this activity of Erşan-92 against the Cu stress.
Collapse
Affiliation(s)
- Günseli Kurt-Gür
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| | - Hasan Demirci
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| | - Akın Sunulu
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| | - Emel Ordu
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey.
| |
Collapse
|
35
|
Kaur H, Sirhindi G, Bhardwaj R, Alyemeni MN, Siddique KHM, Ahmad P. 28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt- and temperature-induced oxidative stress in Brassica juncea. Sci Rep 2018; 8:8735. [PMID: 29880861 PMCID: PMC5992199 DOI: 10.1038/s41598-018-27032-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/18/2018] [Indexed: 01/08/2023] Open
Abstract
Brassinosteroids (BRs) are a group of naturally occurring plant steroid hormones that can induce plant tolerance to various plant stresses by regulating ROS production in cells, but the underlying mechanisms of this scavenging activity by BRs are not well understood. This study investigated the effects of 28-homobrassinolide (28-HBL) seed priming on Brassica juncea seedlings subjected to the combined stress of extreme temperatures (low, 4 °C or high, 44 °C) and salinity (180 mM), either alone or supplemented with 28-HBL treatments (0, 10−6, 10−9, 10−12 M). The combined temperature and salt stress treatments significantly reduced shoot and root lengths, but these improved when supplemented with 28-HBL although the response was dose-dependent. The combined stress alone significantly increased H2O2 content, but was inhibited when supplemented with 28-HBL. The activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APOX), glutathione reductase (GR), dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) increased in response to 28-HBL. Overall, the 28-HBL seed priming treatment improved the plant’s potential to combat the toxic effects imposed by the combined temperature and salt stress by tightly regulating the accumulation of ROS, which was reflected in the improved redox state of antioxidants.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Botany, Punjabi University, Patiala, 147002, Punjab, India.,Department of Botanical & Environmental Sciences, GNDU, Amritsar, Punjab, India
| | - Geetika Sirhindi
- Department of Botany, Punjabi University, Patiala, 147002, Punjab, India
| | - Renu Bhardwaj
- Department of Botanical & Environmental Sciences, GNDU, Amritsar, Punjab, India
| | - M N Alyemeni
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture and UWA School of Agriculture & Environment, The University of Western Australia, LB 5005, Perth, WA, 6001, Australia
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia. .,Department of Botany, S.P. College, Srinagar, 190001, Jammu and Kashmir, India.
| |
Collapse
|
36
|
Abstract
Increases in ambient temperatures have been a severe threat to crop production in many countries around the world under climate change. Chloroplasts serve as metabolic centers and play a key role in physiological adaptive processes to heat stress. In addition to expressing heat shock proteins that protect proteins from heat-induced damage, metabolic reprogramming occurs during adaptive physiological processes in chloroplasts. Heat stress leads to inhibition of plant photosynthetic activity by damaging key components functioning in a variety of metabolic processes, with concomitant reductions in biomass production and crop yield. In this review article, we will focus on events through extensive and transient metabolic reprogramming in response to heat stress, which included chlorophyll breakdown, generation of reactive oxygen species (ROS), antioxidant defense, protein turnover, and metabolic alterations with carbon assimilation. Such diverse metabolic reprogramming in chloroplasts is required for systemic acquired acclimation to heat stress in plants.
Collapse
Affiliation(s)
- Qing-Long Wang
- The National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| | - Juan-Hua Chen
- The National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| | - Ning-Yu He
- The National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| | - Fang-Qing Guo
- The National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
37
|
Jia L, Tian J, Wei S, Zhang X, Xu X, Shen Z, Shen W, Cui J. Hydrogen gas mediates ascorbic acid accumulation and antioxidant system enhancement in soybean sprouts under UV-A irradiation. Sci Rep 2017; 7:16366. [PMID: 29180683 PMCID: PMC5703957 DOI: 10.1038/s41598-017-16021-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/06/2017] [Indexed: 01/22/2023] Open
Abstract
The soybean sprout is a nutritious and delicious vegetable that is rich in ascorbic acid (AsA). Hydrogen gas (H2) may have potential applications in the vegetable processing industry. To investigate whether H2 is involved in the regulation of soybean sprouts AsA biosynthesis under UV irradiation, we set 4 different treatments: white light(W), W+HRW, UV-A and UV-A+HRW. The results showed that H2 significantly blocked the UV-A-induced accumulation of ROS, decreased TBARS content and enhanced SOD and APX activity in soybean sprouts. We also observed that the UV-A induced accumulation of AsA was enhanced more intensely when co-treated with HRW. Molecular analyses showed that UV-A+HRW significantly up-regulated AsA biosynthesis and recycling genes compared to UV-A in soybean sprouts. These data demonstrate that the H2 positively regulates soybean sprouts AsA accumulation under UV-A and that this effect is mediated via the up-regulation of AsA biosynthesis and recycling genes.
Collapse
Affiliation(s)
- Li Jia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jiyuan Tian
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shengjun Wei
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiaoyan Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xuan Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
38
|
Xu J, Wang G, Wang J, Li Y, Tian L, Wang X, Guo W. The lysin motif-containing proteins, Lyp1, Lyk7 and LysMe3, play important roles in chitin perception and defense against Verticillium dahliae in cotton. BMC PLANT BIOLOGY 2017; 17:148. [PMID: 28870172 PMCID: PMC5583995 DOI: 10.1186/s12870-017-1096-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 08/23/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Lysin motif (LysM)-containing proteins are important pattern recognition receptors (PRRs) in plants, which function in the perception of microbe-associated molecular patterns (MAMPs) and in the defense against pathogenic attack. To date, the LysM genes have not been systematically analyzed in cotton or effectively utilized for disease resistance. RESULTS Here, we identified 29, 30, 60, and 56 LysM genes in the four sequenced cotton species, diploid Gossypium raimondii, diploid G. arboreum, tetraploid G. hirsutum acc. TM-1, and G. barbadense acc. 3-79, respectively. These LysM genes were classified into four groups with different structural characteristics and a variety of expression patterns in different organs and tissues when induced by chitin or Verticillium dahliae. We further characterized three genes, Lyp1, Lyk7 and LysMe3, which showed significant increase in expression in response to chitin signals, V. dahliae challenge and several stress-related signaling compounds. Lyp1, Lyk7 and LysMe3 proteins were localized to the plasma membrane, and silencing of their expression in cotton drastically impaired salicylic acid, jasmonic acid, and reactive oxygen species generation, impaired defense gene activation, and compromised resistance to V. dahliae. CONCLUSION Our results indicate that Lyp1, Lyk7, and LysMe3 are important PRRs that function in the recognition of chitin signals to activate the downstream defense processes and induce cotton defense mechanisms against V. dahliae.
Collapse
Affiliation(s)
- Jun Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province People’s Republic of China
| | - Guilin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province People’s Republic of China
| | - Jing Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province People’s Republic of China
| | - Yongqing Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province People’s Republic of China
| | - Liangliang Tian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province People’s Republic of China
| | - Xinyu Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province People’s Republic of China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province People’s Republic of China
| |
Collapse
|
39
|
Antoniou C, Chatzimichail G, Xenofontos R, Pavlou JJ, Panagiotou E, Christou A, Fotopoulos V. Melatonin systemically ameliorates drought stress-induced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline metabolism. J Pineal Res 2017; 62. [PMID: 28226194 DOI: 10.1111/jpi.12401] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/17/2017] [Indexed: 12/11/2022]
Abstract
Recent reports have uncovered the multifunctional role of melatonin in plant physiological responses under optimal and suboptimal environmental conditions. In this study, we explored whether melatonin pretreatment could provoke priming effects in alfalfa (Medicago sativa L.) plants subsequently exposed to prolonged drought stress (7 days), by withholding watering. Results revealed that the rhizospheric application of melatonin (10 μmol L-1 ) remarkably enhanced the drought tolerance of alfalfa plants, as evidenced by the observed plant tolerant phenotype, as well as by the higher levels of chlorophyll fluorescence and stomatal conductance, compared with nontreated drought-stressed plants. In addition, lower levels of lipid peroxidation (MDA content) as well as of both H2 O2 and NO contents in primed compared with nonprimed stressed plants suggest that melatonin pretreatment resulted in the systemic mitigation of drought-induced nitro-oxidative stress. Nitro-oxidative homeostasis was achieved by melatonin through the regulation of reactive oxygen (SOD, GR, CAT, APX) and nitrogen species (NR, NADHde) metabolic enzymes at the enzymatic and/or transcript level. Moreover, melatonin pretreatment resulted in the limitation of cellular redox disruption through the regulation of the mRNA levels of antioxidant and redox-related components (ADH, AOX, GST7, GST17), as well via osmoprotection through the regulation of proline homeostasis, at both the enzymatic (P5CS) and gene expression level (P5CS, P5CR). Overall, novel results highlight the importance of melatonin as a promising priming agent for the enhancement of plant tolerance to drought conditions through the regulation of nitro-oxidative and osmoprotective homeostasis.
Collapse
Affiliation(s)
- Chrystalla Antoniou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Giannis Chatzimichail
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Rafaella Xenofontos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Jan J Pavlou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Evangelia Panagiotou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Anastasis Christou
- Agricultural Research Institute, Ministry of Agriculture, Rural Development and Natural Recourses, Nicosia, Cyprus
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| |
Collapse
|
40
|
Elansary HO, Yessoufou K, Abdel-Hamid AME, El-Esawi MA, Ali HM, Elshikh MS. Seaweed Extracts Enhance Salam Turfgrass Performance during Prolonged Irrigation Intervals and Saline Shock. FRONTIERS IN PLANT SCIENCE 2017; 8:830. [PMID: 28659932 PMCID: PMC5466987 DOI: 10.3389/fpls.2017.00830] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/03/2017] [Indexed: 05/11/2023]
Abstract
The negative effects of the ongoing climate change include unusual prolonged droughts and increased salinity pressures on the agricultural lands. Consequently, crops are facing unprecedented environmental pressure, and this calls for more research toward controlling such major stresses. The current study investigates the effects of seaweed extract sprays of Ascophyllum nodosum (5 and 7 mL·L-1; 6 day intervals) on Paspalum vaginatum Salam' during prolonged irrigation intervals (2 and 6 day) and saline growing conditions (1 and 49.7 dS·m-1) for 6 weeks in containers under greenhouse conditions. Control plants showed reduced turf quality, photochemical efficiency, root length and dry weight, total non-structural carbohydrates, and K and Ca compositions. Seaweed extracts increased turf quality, leaf photochemical efficiency, root length and dry weight, total non-structural carbohydrates, K, Ca, and proline in treated plants during prolonged irrigation intervals as well as saline shock conditions. There were also increases in the antioxidant defensive mechanisms such as catalase (CAT), superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities and non-enzymatic antioxidants as well as reduced lipid peroxidation. The application of SWE at 7 mL·L-1 showed higher performance in treated plants during prolonged irrigation intervals as well as saline conditions. Our findings imply that several mechanisms including drought tolerance, osmotic adjustment and antioxidant defense system may interact to enhance the performance of plants in the face of environmental stress following SWE treatments.
Collapse
Affiliation(s)
- Hosam O. Elansary
- Floriculture, Ornamental Horticulture and Garden Design Department, Faculty of Agriculture (El-Shatby), Alexandria UniversityAlexandria, Egypt
- Department of Geography, Environmental Management and Energy Studies, University of JohannesburgJohannesburg, South Africa
- *Correspondence: Hosam O. Elansary
| | - Kowiyou Yessoufou
- Department of Geography, Environmental Management and Energy Studies, University of JohannesburgJohannesburg, South Africa
| | - Amal M. E. Abdel-Hamid
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams UniversityCairo, Egypt
| | | | - Hayssam M. Ali
- Botany and Microbiology Department, College of Science, King Saud UniversityRiyadh, Saudi Arabia
- Timber Trees Research Department, Agriculture Research Center, Sabahia Horticulture Research Station, Horticulture Research InstituteAlexandria, Egypt
- Hayssam M. Ali
| | - Mohamed S. Elshikh
- Botany and Microbiology Department, College of Science, King Saud UniversityRiyadh, Saudi Arabia
| |
Collapse
|
41
|
Zhang X, Yu HJ, Zhang XM, Yang XY, Zhao WC, Li Q, Jiang WJ. Effect of nitrogen deficiency on ascorbic acid biosynthesis and recycling pathway in cucumber seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:222-230. [PMID: 27459340 DOI: 10.1016/j.plaphy.2016.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/29/2016] [Accepted: 07/09/2016] [Indexed: 05/27/2023]
Abstract
L-Ascorbic acid (AsA, ascorbate) is one of the most abundant natural antioxidants, and it is an important factor in the nutritional quality of cucumber. In this work, key enzymes involved in the ascorbic acid biosynthesis and recycling pathway in cucumber seedlings under nitrogen deficiency were investigated at the levels of transcription and enzyme activity. The activities of myo-inositol oxygenase (MIOX) and transcript levels of MIOXs increased dramatically, while the activities of ascorbate oxidase (AO) and glutathione reductase (GR) and transcript levels of AOs and GR2 decreased significantly in N-limited leaves, as did the ascorbate concentration, in nitrogen-deficient cucumber seedlings. The activities of other enzymes and transcript levels of other genes involved in the ascorbate recycling pathway and ascorbate synthesis pathways decreased or remained unchanged under nitrogen deficiency. These results indicate that nitrogen deficiency induced genes involved in the ascorbate-glutathione recycling and myo-inositol pathway in cucumber leaves. Thus, the AO, GR and MIOX involved in the pathways might play roles in AsA accumulation.
Collapse
Affiliation(s)
- Xue Zhang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hong Jun Yu
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiao Meng Zhang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xue Yong Yang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen Chao Zhao
- Beijing Key Laboratory for Agriculture Application and New Technology, Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Qiang Li
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wei Jie Jiang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China.
| |
Collapse
|
42
|
Chen G, Ma C, Mukherjee A, Musante C, Zhang J, White JC, Dhankher OP, Xing B. Tannic acid alleviates bulk and nanoparticle Nd2O3 toxicity in pumpkin: a physiological and molecular response. Nanotoxicology 2016; 10:1243-53. [DOI: 10.1080/17435390.2016.1202349] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, China,
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA, and
| | - Chuanxin Ma
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA, and
| | - Arnab Mukherjee
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Craig Musante
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Jianfeng Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, China,
| | - Jason C. White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA, and
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA, and
| |
Collapse
|
43
|
Transcriptome analysis in different rice cultivars provides novel insights into desiccation and salinity stress responses. Sci Rep 2016; 6:23719. [PMID: 27029818 PMCID: PMC4814823 DOI: 10.1038/srep23719] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/14/2016] [Indexed: 01/18/2023] Open
Abstract
Drought and salinity are the major environmental factors that affect rice productivity. Comparative transcriptome analysis between tolerant and sensitive rice cultivars can provide insights into the regulatory mechanisms involved in these stress responses. In this study, the comparison of transcriptomes of a drought-tolerant [Nagina 22 (N22)] and a salinity-tolerant (Pokkali) rice cultivar with IR64 (susceptible cultivar) revealed variable transcriptional responses under control and stress conditions. A total of 801 and 507 transcripts were exclusively differentially expressed in N22 and Pokkali rice cultivars, respectively, under stress conditions. Gene ontology analysis suggested the enrichment of transcripts involved in response to abiotic stress and regulation of gene expression in stress-tolerant rice cultivars. A larger number of transcripts encoding for members of NAC and DBP transcription factor (TF) families in N22 and members of bHLH and C2H2 TF families in Pokkali exhibited differential regulation under desiccation and salinity stresses, respectively. Transcripts encoding for thioredoxin and involved in phenylpropanoid metabolism were up-regulated in N22, whereas transcripts involved in wax and terpenoid metabolism were up-regulated in Pokkali. Overall, common and cultivar-specific stress-responsive transcripts identified in this study can serve as a helpful resource to explore novel candidate genes for abiotic stress tolerance in rice.
Collapse
|
44
|
Bahuguna RN, Jha J, Pal M, Shah D, Lawas LMF, Khetarpal S, Jagadish KSV. Physiological and biochemical characterization of NERICA-L-44: a novel source of heat tolerance at the vegetative and reproductive stages in rice. PHYSIOLOGIA PLANTARUM 2015; 154:543-59. [PMID: 25302555 DOI: 10.1111/ppl.12299] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 09/07/2014] [Accepted: 09/26/2014] [Indexed: 05/19/2023]
Abstract
The predicted increase in the frequency and magnitude of extreme heat spikes under future climate can reduce rice yields significantly. Rice sensitivity to high temperatures during the reproductive stage is well documented while the same during the vegetative stage is more speculative. Hence, to identify and characterize novel heat-tolerant donors for both the vegetative and reproductive stages, 71 rice accessions, including approximately 75% New Rice for Africa (NERICAs), were phenotyped across field experiments during summer seasons in Delhi, India, and in a controlled environment study at International Rice Research Institute, Philippines. NERICA-L-44 (NL-44) recorded high seedling survival (52%) and superior growth and greater reproductive success exposed to 42.2°C (sd ± 2.3) under field conditions. NL-44 and the heat-tolerant check N22 consistently displayed lower membrane damage and higher antioxidant enzymes activity across leaves and spikelets. NL-44 recorded 50-60% spikelet fertility, while N22 recorded 67-79% under controlled environment temperature of 38°C (sd±1.17), although both had about 87% fertility under extremely hot field conditions. N22 and NL-44, exposed to heat stress (38°C), had similar pollen germination percent and number of pollen tubes reaching the ovary. NL-44 maintained low hydrogen peroxide production and non-photochemical quenching (NPQ) with high photosynthesis while N22 avoided photosystem II damage through high NPQ under high-temperature stress. NL-44 with its reproductive stage resilience to extreme heat stress, better antioxidant scavenging ability in both vegetative tissue and spikelets and superior yield and grain quality is identified as a novel donor for increasing heat tolerance at both the vegetative and reproductive stages in rice.
Collapse
Affiliation(s)
- Rajeev N Bahuguna
- Indian Agricultural Research Institute (PUSA), New Delhi, 110012, India
- Crop and Environmental Sciences Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Jyoti Jha
- Indian Agricultural Research Institute (PUSA), New Delhi, 110012, India
| | - Madan Pal
- Indian Agricultural Research Institute (PUSA), New Delhi, 110012, India
| | - Divya Shah
- Indian Agricultural Research Institute (PUSA), New Delhi, 110012, India
| | - Lovely M F Lawas
- Crop and Environmental Sciences Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | | | - Krishna S V Jagadish
- Crop and Environmental Sciences Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
45
|
Ramm C, Wachholtz M, Amundsen K, Donze T, Heng-Moss T, Twigg P, Palmer NA, Sarath G, Baxendale F. Transcriptional Profiling of Resistant and Susceptible Buffalograsses in Response to Blissus occiduus (Hemiptera: Blissidae) Feeding. JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:1354-62. [PMID: 26470264 DOI: 10.1093/jee/tov067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/26/2015] [Indexed: 05/07/2023]
Abstract
Understanding plant resistance mechanisms at a molecular level would provide valuable insights into the biological pathways impacted by insect feeding, and help explain specific plant tolerance mechanisms. As a first step in this process, we conducted next-generation sequencing using RNA extracted from chinch bug-tolerant and -susceptible buffalograss genotypes at 7 and 14 d after chinch bug feeding. Sequence descriptions and gene ontology terms were assigned to 1,701 differentially expressed genes. Defense-related transcripts were differentially expressed within the chinch bug-tolerant buffalograss, Prestige, and susceptible buffalograss, 378. Interestingly, four peroxidase transcripts had higher basal expression in tolerant control plants compared with susceptible control plants. Defense-related transcripts, including two peroxidase genes, two catalase genes, several cytochrome P450 transcripts, a glutathione s-transferase, and a WRKY gene were upregulated within the Prestige transcriptome in response to chinch bug feeding. The majority of observed transcripts with oxidoreductase activity, including nine peroxidase genes and a catalase gene, were downregulated in 378 in response to initial chinch bug feeding. The observed difference in transcript expression between these two buffalograss genotypes provides insight into the mechanism(s) of resistance, specifically buffalograss tolerance to chinch bug feeding.
Collapse
Affiliation(s)
- Crystal Ramm
- Department of Entomology, University of Nebraska, Lincoln, NE 68583
| | | | - Keenan Amundsen
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583
| | - Teresa Donze
- Department of Entomology, University of Nebraska, Lincoln, NE 68583
| | - Tiffany Heng-Moss
- Department of Entomology, University of Nebraska, Lincoln, NE 68583.
| | - Paul Twigg
- Department of Biology, University of Nebraska, Kearney, NE 68449
| | - Nathan A Palmer
- Grain, Forage and Bioenergy Research Unit, USDA-ARS & Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583
| | - Gautam Sarath
- Grain, Forage and Bioenergy Research Unit, USDA-ARS & Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583
| | - Fred Baxendale
- Department of Entomology, University of Nebraska, Lincoln, NE 68583
| |
Collapse
|
46
|
Chakraborty A, Bhattacharjee S. Differential competence of redox-regulatory mechanism under extremes of temperature determines growth performances and cross tolerance in two indica rice cultivars. JOURNAL OF PLANT PHYSIOLOGY 2015; 176:65-77. [PMID: 25588693 DOI: 10.1016/j.jplph.2014.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 10/23/2014] [Accepted: 10/25/2014] [Indexed: 06/04/2023]
Abstract
The present study investigated the relationship between reactive oxygen species (ROS) accumulation (total and individual), antioxidant and radical scavenging capacity (total and individual), transcript abundance of some antioxidative genes and oxidative damages to membrane protein and lipid in germinating tissues of a salt resistant (SR26B) and salt sensitive (Ratna) rice cultivars under extremes of temperature to elucidate redox-regulatory mechanism governing differential oxidative stress tolerance associated with better growth and yield potential and identification of cross tolerance, if any. Imbibitional heat and chilling stress caused disruption of redox-homeostasis and oxidative damage to a newly assembled membrane system by increasing pro-oxidant/antioxidant ratio and by aggravating membrane lipid peroxidation and protein oxidation [measured in terms of accumulation of thiobarbituric acid reactive substances (TBARS), free carbonyl content (CO groups), and membrane protein thiol level (MPTL)]. A concomitant increase in accumulation of individual ROS (superoxide and hydrogen peroxide) and significant reduction of radical scavenging activity (assessed in terms of ABTS, FRAP and DPPH methods), non-enzymatic and enzymatic anti-oxidative defense [assessed in terms of total thiol content and activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), ascorbate peroxidase (EC 1.11.1.11), and glutathione reductase (EC 1.6.4.2)] are also noticed in both the salt sensitive (Ratna) and resistant (SR26B) germinating tissues of rice cultivars. When compared, salt resistant cultivar SR26B was found to suffer significantly less redox-imbalance and related oxidative damages to membrane protein and lipid as compared to salt sensitive cultivar Ratna. The salt tolerant cultivar SR26B resisted imbibitional chilling and heat stress due to its early preparedness to combat oxidative stress by up-regulation of gene expression of anti-oxidative enzymes and better capacity of redox-regulation and mitigation of oxidative damage to membrane protein and lipid as compared to salt sensitive cultivar Ratna, under the same magnitude of imbibitional heat and chilling stress. A model for redox-homeostasis in which the ROS-antioxidant interaction acts as a metabolic interface for up-regulation of gene expression necessary for cross tolerance is also proposed.
Collapse
Affiliation(s)
- Ananya Chakraborty
- Plant Physiology and Biochemistry Research Laboratory, Centre for Advanced Study, Department of Botany, University of Burdwan, Burdwan, West Bengal-713104, India
| | - Soumen Bhattacharjee
- Plant Physiology and Biochemistry Research Laboratory, Centre for Advanced Study, Department of Botany, University of Burdwan, Burdwan, West Bengal-713104, India.
| |
Collapse
|