1
|
Li X, Ma L, Yang W, Xu K. Knockdown of CYP6SZ3 and CYP6AEL1 genes increases the susceptibility of Lasioderma serricorne to ethyl formate and benzothiazole. Front Physiol 2024; 15:1503953. [PMID: 39633644 PMCID: PMC11615064 DOI: 10.3389/fphys.2024.1503953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Insect cytochrome P450 monooxygenases (CYPs) play crucial roles in the metabolic detoxification of insecticides. Ethyl formate and benzothiazole have recently regained popularity as fumigants due to rising resistance to phosphine in the stored-product pests. However, the mechanisms underlying tolerance to these two fumigants in Lasioderma serricorne, a major global insect pest of stored products, remain poorly understood. In this study, two CYP genes, named CYP6SZ3 and CYP6AEL1, were identified from L. serricorne, belonging to the CYP6 family and containing five conserved domains characteristic of CYP proteins. Spatiotemporal expression analysis revealed that both genes were predominantly expressed in the larval stage and showed the highest expression in the foregut. Upon exposure to ethyl formate and benzothiazole, both genes were upregulated, with significantly increased transcription levels following treatment. RNA interference-mediated silencing of CYP6SZ3 and CYP6AEL1 led to increased susceptibility and significantly higher mortality of L. serricorne when exposed to these fumigants. Homology modeling and molecular docking analyses showed stable binding of these fumigants to CYP6SZ3 and CYP6AEL1 proteins, with binding free energies from -26.88 to -94.68 kcal mol-1. These findings suggest that the induction of CYP6SZ3 and CYP6AEL1 is likely involved in the detoxification of ethyl formate and benzothiazole in L. serricorne.
Collapse
Affiliation(s)
| | | | | | - Kangkang Xu
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, Guiyang University, Guiyang, China
| |
Collapse
|
2
|
Chen Q, Li Y, Fang Z, Wu Q, Tan L, Weng Q. CYP4BN4v7 regulates the population density dependent oocyte maturity rate in bean beetles. Sci Rep 2024; 14:28574. [PMID: 39562601 PMCID: PMC11576951 DOI: 10.1038/s41598-024-79866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024] Open
Abstract
The bean beetle (Callosobruchus maculatus) clearly exhibits population density-dependent polymorphism. Cytochrome P450 (CYP) is involved in many aspects of the physiological activities of insects. However, the role of CYP in population density-dependent polymorphisms remains unknown. The terminal oocyte maturity rate of high-population-density individuals (H) was faster than that of low-population-density individuals (L). A total of 56 CYP-like genes were identified from transcriptomic and genomic data, including seven clan 2 CYP-like genes, seven mitochondrial CYP-like genes, 19 clan 3 CYP-like genes, and 23 clan 4 CYP-like genes. Gene duplication might occur in CYP9Z4-like, CYP345A1-like, CYP345A2-like, CYP349A1-like, CYP349A2-like, and CYP4BN4-like. Thirteen and two CYP-like genes were up-regulated and down-regulated, respectively, in H. Among these CYP-like genes, CYP4BN4v7-like was the most abundant CYP. CYP4BN4v7-like was more highly expressed in the head than in the thorax and abdomen. Its mRNA levels in the head, thorax, and abdomen were greater in H than in L. After RNA interference decreased its mRNA level, the terminal oocyte maturity rate decreased. Moreover, the expression level of insulin-like peptide 1 (ILP1), which plays a vital role in regulating terminal oocyte development, decreased in the head. In conclusion, CYP4BN4v7-like modulated the population density-dependent terminal oocyte maturity rate by regulating the expression of ILP1.
Collapse
Affiliation(s)
- Qianquan Chen
- School of Life Sciences, Guizhou Normal University, Gui'an, Guizhou, China.
| | - Yongqin Li
- School of Life Sciences, Guizhou Normal University, Gui'an, Guizhou, China
| | - Zheng Fang
- School of Life Sciences, Guizhou Normal University, Gui'an, Guizhou, China
| | - Qingshan Wu
- School of Life Sciences, Guizhou Normal University, Gui'an, Guizhou, China
| | - Leitao Tan
- School of Life Sciences, Guizhou Normal University, Gui'an, Guizhou, China.
| | - Qingbei Weng
- School of Life Sciences, Guizhou Normal University, Gui'an, Guizhou, China.
- Qiannan Normal University for Nationalities, Duyun, Guizhou, China.
| |
Collapse
|
3
|
Li WT, Lin JY, Liu JJ, Hafeez M, Deng SW, Chen HY, Ren RJ, Rana MS, Wang RL. Molecular insights into the functional analysis of P450 CYP321A7 gene in the involvement of detoxification of lambda-cyhalothrin in Spodoptera frugiperda. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106009. [PMID: 39084775 DOI: 10.1016/j.pestbp.2024.106009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Fall armyworm, Spodoptera frugiperda (J. E. Smith), is a widely recognized global agricultural pest that has significantly reduced crop yields all over the world. S. frugiperda has developed resistance to various insecticides. Insect cytochrome P450 monooxygenases (CYPs or P450s) play an important role in detoxifying insecticides, leading to increased resistance in insect populations. However, the function of the specific P450 gene for lambda-cyhalothrin resistance in S. frugiperda was unclear. Herein, the expression patterns of 40 P450 genes in the susceptible and lambda-cyhalothrin-resistant populations were analyzed. Among them, CYP321A7 was found to be overexpressed in the resistant population, specifically LRS (resistance ratio = 25.38-fold) derived from a lambda-cyhalothrin-susceptible (SS) population and FLRS (a population caught from a field, resistance ratio = 63.80-fold). Elevated enzyme activity of cytochrome P450 monooxygenases (P450s) was observed for LRS (2.76-fold) and the FLRS (4.88-fold) as compared to SS, while no significant differences were observed in the activities of glutathione S-transferases and esterases. Furthermore, the knockdown of CYP321A7 gene by RNA interference significantly increased the susceptibility to lambda-cyhalothrin. Remarkably, the knockdown of CYP321A7 reduced the enzymatic activity of P450 by 43.7%, 31.9%, and 22.5% in SS, LRS, and FLRS populations, respectively. Interestingly, fourth-instar larvae treated with lambda-cyhalothrin at the LC30 dosage had a greater mortality rate due to RNA interference-induced suppression of CYP321A7 (with increases of 61.1%, 50.0%, and 45.6% for SS, LRS, and FLRS populations, respectively). These findings suggest a link between lambda-cyhalothrin resistance and continual overexpression of CYP321A7 in S. frugiperda larvae, emphasizing the possible importance of CYP321A7 in lambda-cyhalothrin detoxification in S. frugiperda.
Collapse
Affiliation(s)
- Wan-Ting Li
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Jia-Yu Lin
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Jia-Jie Liu
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Hafeez
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA; USDA-ARS Horticultural Crops Research Unit, 3420 NW Orchard Avenue, Corvallis, OR 97330, USA
| | - Shi-Wen Deng
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Hong-Yu Chen
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Rong-Jie Ren
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Shoaib Rana
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Rui-Long Wang
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Guan L, Wang X, Wan S, Wang Y, Zhang X, Wang S, Li C, Tang B. The Role of TcCYP6K1 and TcCYP9F2 Influences Trehalose Metabolism under High-CO 2 Stress in Tribolium castaneum (Coleoptera). INSECTS 2024; 15:502. [PMID: 39057235 PMCID: PMC11276637 DOI: 10.3390/insects15070502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Cytochrome P450 monooxygenases (CYP), crucial detoxification enzymes in insects, are involved in the metabolism of endogenous substances as well as the activation and degradation of exogenous compounds. In this study, T. castaneum was utilized to investigate the roles of TcCYP6K1 and TcCYP9F2 genes influencing in the trehalose metabolism pathway under high-CO2 stress. By predicting the functional sequences of TcCYP6K1 and TcCYP9F2 genes and analyzing their spatiotemporal expression patterns, it was discovered that both genes belong to the CYP3 group and exhibit high expression levels during the larval stage, decreasing during the pupal stage, while showing high expression in the fatty body, intestine, and malpighian tubules. Furthermore, following the knockdown of TcCYP6K1 and TcCYP9F2 genes in combination with treating larvae with 75% CO2, it was observed that larval mortality increased, and glycogen content significantly decreased, while trehalose content increased significantly. Additionally, membrane-bound trehalase enzyme activity declined, TPS gene expression was significantly upregulated, GS gene expression was significantly downregulated, and ATP content showed a marked decrease. In conclusion, CYP genes are critical responsive genes of T. castaneum to high CO2 levels, potentially impacting the insect's resistance to carbon dioxide through their involvement in the synthesis or breakdown of the carbohydrate metabolism pathway. These findings could serve as a theoretical basis for the utilization of novel pesticides in low-oxygen grain storage techniques and offer new insights for environmentally friendly pest control strategies in grain storage.
Collapse
Affiliation(s)
- Liwen Guan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (L.G.); (X.W.); (S.W.); (S.W.)
| | - Xianzhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (L.G.); (X.W.); (S.W.); (S.W.)
| | - Sijing Wan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (L.G.); (X.W.); (S.W.); (S.W.)
| | - Yuanyuan Wang
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005, China; (Y.W.); (X.Z.)
| | - Xinyu Zhang
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005, China; (Y.W.); (X.Z.)
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (L.G.); (X.W.); (S.W.); (S.W.)
| | - Can Li
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005, China; (Y.W.); (X.Z.)
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (L.G.); (X.W.); (S.W.); (S.W.)
| |
Collapse
|
5
|
Xiao D, Yao J, Gao X, Zhu KY. Clathrin-dependent endocytosis plays a critical role in larval and pupal development, and female oocyte production in the red flour beetle (Tribolium castaneum). PEST MANAGEMENT SCIENCE 2023; 79:1731-1742. [PMID: 36617731 DOI: 10.1002/ps.7348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/14/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Clathrin-dependent endocytosis is a vesicular transport process by which cells take macromolecules from the extracellular space to the intracellular space. It plays important roles in various cellular functions, but its biological significance in insect development and reproduction has not been well studied. RESULTS We characterized and functionally analyzed four major clathrin-dependent endocytic pathway genes (TcChc, TcAP50, TcVhaSFD, TcRab7) in Tribolium castaneum. RNA interference (RNAi) by injecting double-stranded RNA (dsRNA) targeting each gene at three doses (50, 100, or 200 ng per insect) in 20-day-old larvae led to 100% larval mortality. When the expressions of TcChc, TcVhaSFD, and TcRab7 were suppressed by injecting their respective dsRNAs at each dose in 1-day-old pupae, the adults that emerged from the dsRNA-injected pupae were deformed, with the absence of wing development. The deformed adults died within 2 days after eclosion. When the expression of TcAP50 was suppressed by injecting its dsRNA into 1-day-old pupae, although no apparent deformed adults were observed, all the adults died within 35 days after eclosion. In addition, when the expressions of TcChc and TcVhaSFD were suppressed by injecting their respective dsRNAs at a reduced dose (10 ng per insect) in 5-day-old pupae, the ovarian development and oocyte production in the resultant females were completely inhibited. CONCLUSION Our results indicate that clathrin-dependent endocytosis is essential for insect development and reproduction. The results from this study can help researchers identify potential molecular targets for developing novel strategies for insect pest management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Da Xiao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, Kansas, USA
| | - Jianxiu Yao
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, Kansas, USA
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
6
|
Ren Y, Su Y, Wang W, Li F, Sun H, Li B. Characterization of the sublethal toxicity and transcriptome-wide biological changes induced by λ-cyhalothrin in Bombyx mori. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36988380 DOI: 10.1002/tox.23798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
λ-Cyhalothrin (λ-cyh) is widely used in agricultural production and has been reported to cause damages to numerous nontarget insects. As an important economic and model insect of Lepidoptera, Bombyx mori was extremely sensitive to λ-cyh, and pesticide drift often leads to silkworm poisoning. However, little is known about the persistence of sublethal effects or the potential recovery from short-term exposure to sublethal doses of pesticides. In this study, we estimated the sublethal effects caused by short-term exposure (24 h) of λ-cyh LC1 , LC10 , LC25 , and LC50 , respectively, and investigated the persistent negative effects on the growth, survival, and pupal metamorphosis of silkworm larvae. Silkworm growth was mostly retarded after λ-cyh exposure, with dose-dependent recovery observed at delayed time points. Relative to the control, the treatment groups showed significantly higher larval mortalities and abnormal pupa rates. Additionally, transcriptome sequencing was conducted to investigate the effects of λ-cyh LC10 on the normal physiological functions in the midgut of B. mori. A total of 2697 differentially expressed genes were identified, and 57.1% of DEGs were down-regulated. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis further revealed that energy and nutrient metabolisms were negatively affected. Moreover, we demonstrated that sublethal λ-cyh inhibited the oxidative phosphorylation pathway by reducing the expression of mitochondrial electron transport chain complex genes and consequently the synthesis of ATP. This study has provided useful transcriptome-wide expression resources to facilitate the overall knowledge of the molecular basis of sublethal toxicity caused by λ-cyh in the midgut of B. mori.
Collapse
Affiliation(s)
- Yuying Ren
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Yue Su
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Wanwan Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
- Sericulture Institute of Soochow University, Suzhou, 215123, China
| | - Haina Sun
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
- Sericulture Institute of Soochow University, Suzhou, 215123, China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
- Sericulture Institute of Soochow University, Suzhou, 215123, China
| |
Collapse
|
7
|
Xue H, Fu B, Huang M, He C, Liang J, Yang J, Wei X, Liu S, Du T, Ji Y, Yin C, Gong P, Hu J, Du H, Zhang R, Wang C, Khajehali J, Su Q, Yang X, Zhang Y. CYP6DW3 Metabolizes Imidacloprid to Imidacloprid-urea in Whitefly ( Bemisia tabaci). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2333-2343. [PMID: 36705580 DOI: 10.1021/acs.jafc.2c08353] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bemisia tabaci has developed high resistance to many insecticides and causes substantial agricultural and economic losses annually. The insecticide resistance of whitefly has been widely reported in previous studies; however, the underlying mechanism remains little known. In this study, we cloned two P450 genes: CYP6DW3 and CYP6DW5v1; these genes were markedly overexpressed in imidacloprid-resistant whitefly populations compared with susceptible populations, and knockdown of these genes decreased the imidacloprid resistance of whitefly. Moreover, heterologous expression of whitefly P450 genes in SF9 cells and metabolic studies showed that the CYP6DW3 protein could metabolize 14.11% imidacloprid and produced imidacloprid-urea in vitro. Collectively, the expression levels of CYP6DW3 and CYP6DW5v1 are positively correlated with imidacloprid resistance in B. tabaci. Our study further reveals that cytochrome P450 enzymes affect the physiological activities related to resistance in insects, which helps scholars more deeply understand the resistance mechanism, and contributes to the development of integrated pest management framework.
Collapse
Affiliation(s)
- Hu Xue
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, P. R. China
| | - Mingjiao Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, P. R. China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuegao Wei
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaonan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng Yin
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peipan Gong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - JinYu Hu
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rong Zhang
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao Wang
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jahangir Khajehali
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Qi Su
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P. R. China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youjun Zhang
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
8
|
Siddiqui JA, Fan R, Naz H, Bamisile BS, Hafeez M, Ghani MI, Wei Y, Xu Y, Chen X. Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. Front Physiol 2023; 13:1112278. [PMID: 36699674 PMCID: PMC9868318 DOI: 10.3389/fphys.2022.1112278] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Threatening the global community is a wide variety of potential threats, most notably invasive pest species. Invasive pest species are non-native organisms that humans have either accidentally or intentionally spread to new regions. One of the most effective and first lines of control strategies for controlling pests is the application of insecticides. These toxic chemicals are employed to get rid of pests, but they pose great risks to people, animals, and plants. Pesticides are heavily used in managing invasive pests in the current era. Due to the overuse of synthetic chemicals, numerous invasive species have already developed resistance. The resistance development is the main reason for the failure to manage the invasive species. Developing pesticide resistance management techniques necessitates a thorough understanding of the mechanisms through which insects acquire insecticide resistance. Insects use a variety of behavioral, biochemical, physiological, genetic, and metabolic methods to deal with toxic chemicals, which can lead to resistance through continuous overexpression of detoxifying enzymes. An overabundance of enzymes causes metabolic resistance, detoxifying pesticides and rendering them ineffective against pests. A key factor in the development of metabolic resistance is the amplification of certain metabolic enzymes, specifically esterases, Glutathione S-transferase, Cytochromes p450 monooxygenase, and hydrolyses. Additionally, insect guts offer unique habitats for microbial colonization, and gut bacteria may serve their hosts a variety of useful services. Most importantly, the detoxification of insecticides leads to resistance development. The complete knowledge of invasive pest species and their mechanisms of resistance development could be very helpful in coping with the challenges and effectively developing effective strategies for the control of invasive species. Integrated Pest Management is particularly effective at lowering the risk of chemical and environmental contaminants and the resulting health issues, and it may also offer the most effective ways to control insect pests.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Ruidong Fan
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Hira Naz
- Research and Development Centre for Fine Chemicals, National Key Laboratory of Green Pesticides, Guizhou University, Guiyang, China
| | - Bamisope Steve Bamisile
- Department of Entomology, South China Agricultural University, Guangzhou, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Muhammad Hafeez
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Imran Ghani
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Yiming Wei
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Xiaoyulong Chen
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
- College of Science, Tibet University, Lhasa, China
| |
Collapse
|
9
|
Shyam-Sundar N, Ramasubramanian R, Karthi S, Senthil-Nathan S, Chanthini KMP, Sivanesh H, Stanley-Raja V, Ramkumar G, Narayanan KR, Mahboob S, Al-Ghanim KA, Abdel-Megeed A, Krutmuang P. Effects of phytocompound Precocene 1 on the expression and functionality of the P450 gene in λ-cyhalothrin-resistant Spodoptera litura (Fab.). Front Physiol 2022; 13:900570. [PMID: 36439259 PMCID: PMC9684723 DOI: 10.3389/fphys.2022.900570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 09/13/2022] [Indexed: 10/25/2023] Open
Abstract
Spodoptera litura (Fabricius) is an agriculturally significant polyphagous insect pest that has evolved a high level of resistance to conventional insecticides. A dietary assay was used in this work to assess the resilience of field populations of S. litura to λ-cyhalothrin. Analysis of the function and expression of the cytochrome P450 gene was used to test the sensitivity of S. litura larvae to sub-lethal concentrations of the insecticidal plant chemical Precocene 1, both by itself and in combination with λ-cyhalothrin. The activity of esterase enzymes (α and β) was found to decrease 48 h post treatment with Precocene 1. The activity of GST enzyme and cytochrome P450 increased with Precocene 1 treatment post 48 h, however. Expression studies revealed the modulation by Precocene 1 of cytochrome P450 genes, CYP4M16, CYP4M15, CYP4S8V4, CYP4G31, and CYP4L10. While CYP4M16 expression was stimulated the most by the synergistic Precocene 1 + λ-cyhalothrin treatment, expression of CYP4G31 was the most down-regulated by Precocene 1 exposure. Hence, it is evident that λ-cyhalothrin-resistant pest populations are still sensitive to Precocene 1 at a sublethal concentration that is nevertheless capable of hindering their development. Precocene 1 can therefore be considered a potent candidate for the effective management of insecticide-resilient S. litura.
Collapse
Affiliation(s)
- Narayanan Shyam-Sundar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Ramakrishnan Ramasubramanian
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Sengodan Karthi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Kanagaraj Muthu-Pandian Chanthini
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Haridoss Sivanesh
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Vethamonickam Stanley-Raja
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Govindaraju Ramkumar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | | | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Ahmed Abdel-Megeed
- Department of Plant Protection, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
10
|
Ghramh HA, Sadiq N, Naqqash MN, Abid AD, Shahzad S, Saeed S, Iqbal N, Khan KA. Transgenerational effects of lambda-cyhalothrin on Musca domestica L. (Diptera: Muscidae). Sci Rep 2022; 12:19228. [PMID: 36357409 PMCID: PMC9649667 DOI: 10.1038/s41598-022-23492-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
The hormetic effect may cause disease control measures to fail due to inadequate treatment of human disease vectors such as houseflies. Age-stage, two-sex life table is used for accurate estimation of the hermetic impacts on insects as it allows to study sub-lethal or transgenerational effects. Pyrethroids insecticides are primarily used for the management of houseflies. This study used lambda-cyhalothrin (a pyrethroid insecticide) to quantify its transgenerational impacts on houseflies. Life table parameters of a progeny of adult houseflies exposed to LC10, LC30, and LC50 of lambda-cyhalothrin were computed. Statistically higher fecundity (71.31 per female) was observed in control treatment, while it was the adults exposed to LC50 recorded the lowest progeny. Significantly higher values for intrinsic rate of growth (r), limiting rate of growth (λ), and net reproductive rate (Ro) (0.16, 1.16, and 31.38 per day, respectively) were recorded for the control treatment of the study. Contrarily, lower values for λ, Ro, and r were (0.10, 1.10, and 9.24 per day, respectively) were noted in the LC50 treatment. Decreased population parameters suggest that lambda-cyhalothrin can be successfully used in indoor environments to control houseflies.
Collapse
Affiliation(s)
- Hamed A. Ghramh
- grid.412144.60000 0004 1790 7100Research Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha, 61413 Saudi Arabia ,grid.412144.60000 0004 1790 7100Unit of Bee Research and Honey Production, King Khalid University, P. O. Box 9004, Abha, 61413 Saudi Arabia ,grid.412144.60000 0004 1790 7100Biology Department, Faculty of Science, King Khalid University, P. O. Box 9004, 61413 Abha, Saudi Arabia
| | - Nauman Sadiq
- grid.512629.b0000 0004 5373 1288Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000 Pakistan
| | - Muhammad Nadir Naqqash
- grid.512629.b0000 0004 5373 1288Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000 Pakistan
| | - Allah Ditta Abid
- Department of Plant Protection, Ministry of National Food Security and Research, Islamabad, Pakistan
| | - Sohail Shahzad
- Department of Plant Protection, Ministry of National Food Security and Research, Islamabad, Pakistan
| | - Shafqat Saeed
- grid.512629.b0000 0004 5373 1288Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000 Pakistan
| | - Naeem Iqbal
- grid.512629.b0000 0004 5373 1288Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000 Pakistan
| | - Khalid Ali Khan
- grid.412144.60000 0004 1790 7100Research Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha, 61413 Saudi Arabia ,grid.412144.60000 0004 1790 7100Unit of Bee Research and Honey Production, King Khalid University, P. O. Box 9004, Abha, 61413 Saudi Arabia ,grid.412144.60000 0004 1790 7100Applied College, King Khalid University, P. O. Box 9004, Abha, 61413 Saudi Arabia
| |
Collapse
|
11
|
Liao M, Li S, Wu H, Gao Q, Shi S, Huang Y, Cao H. Transcriptomic analysis of Sitophilus zeamais in response to limonene fumigation. PEST MANAGEMENT SCIENCE 2022; 78:4774-4782. [PMID: 35900300 DOI: 10.1002/ps.7097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 07/04/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Frequent application of chemical fumigants has contributed to the development of resistance in stored-product pests. Essential oils provide a novel and environmentally friendly alternative to conventional chemical pesticides. In this work, the fumigant activity of Taxodium 'zhongshansha' essential oil (TZEO) and main active components against Sitophilus zeamais were evaluated. In addition, the molecular mechanisms mediating the fumigant activity of limonene were assessed. RESULTS TZEO showed strong fumigant activity against Sitophilus zeamais, with a 50% lethal concentration (LC50 ) of 22.90 μL L-1 air in 24 h. The main components of TZEO were identified using gas chromatography-mass spectrometry, the main active ingredient (limonene) showed an LC50 of 9.93 μL L-1 air in 24 h which had a serious dose-time-effect. The LC50 value of the positive control (aluminum phosphide) was 1.91 μL L-1 . In total, 3982 up-regulated and 3067 down-regulated genes were sequenced in limonene-fumigated Sitophilus zeamais, the genes related to metabolic detoxification were significantly enriched. The mortality rate of 7 day-old Sitophilus zeamais adult mediated with knockdown of SzCYP6MS5 and SzCYP6MS6 raised up to 65.67% and 67.65% after fumigation with limonene in 24 h, respectively. The results showed that SzCYP6MS5 and SzCYP6MS6 are closely involved to the detoxification of limonene. CONCLUSION In this study, candidate genes affected by limonene treatment in Sitophilus zeamais were identified. These findings provided insights into the systemic metabolic response of Sitophilus zeamais to limonene and established a basis for the development of limonene as a botanical pesticide for the control of stored-product pests. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Liao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Shengnan Li
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hailong Wu
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Quan Gao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Su Shi
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yong Huang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Haiqun Cao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
12
|
Ettinger CL, Byrne FJ, de Souza Pacheco I, Brown DJ, Walling LL, Atkinson PW, Redak RA, Stajich JE. Transcriptome and population structure of glassy-winged sharpshooters (Homalodisca vitripennis) with varying insecticide resistance in southern California. BMC Genomics 2022; 23:721. [PMID: 36273137 PMCID: PMC9587601 DOI: 10.1186/s12864-022-08939-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/13/2022] [Indexed: 12/02/2022] Open
Abstract
Background Homalodisca vitripennis Germar, the glassy-winged sharpshooter, is an invasive insect in California and a critical threat to agriculture through its transmission of the plant pathogen, Xylella fastidiosa. Quarantine, broad-spectrum insecticides, and biological control have been used for population management of H. vitripennis since its invasion and subsequent proliferation throughout California. Recently wide-spread neonicotinoid resistance has been detected in populations of H. vitripennis in the southern portions of California’s Central Valley. In order to better understand potential mechanisms of H. vitripennis neonicotinoid resistance, we performed RNA sequencing on wild-caught insecticide-resistant and relatively susceptible sharpshooters to profile their transcriptome and population structure. Results We identified 81 differentially expressed genes with higher expression in resistant individuals. The significant largest differentially expressed candidate gene linked to resistance status was a cytochrome P450 gene with similarity to CYP6A9. Furthermore, we observed an over-enrichment of GO terms representing functions supportive of roles in resistance mechanisms (cytochrome P450s, M13 peptidases, and cuticle structural proteins). Finally, we saw no evidence of broad-scale population structure, perhaps due to H. vitripennis' relatively recent introduction to California or due to the relatively small geographic scale investigated here. Conclusions In this work, we characterized the transcriptome of insecticide-resistant and susceptible H. vitripennis and identified candidate genes that may be involved in resistance mechanisms for this species. Future work should seek to build on the transcriptome profiling performed here to confirm the role of the identified genes, particularly the cytochrome P450, in resistance in H. vitripennis. We hope this work helps aid future population management strategies for this and other species with growing insecticide resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08939-1.
Collapse
Affiliation(s)
- Cassandra L Ettinger
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA.
| | - Frank J Byrne
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | | | - Dylan J Brown
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | - Linda L Walling
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA.,Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Peter W Atkinson
- Department of Entomology, University of California, Riverside, Riverside, CA, USA.,Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Richard A Redak
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA. .,Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
13
|
Pathak J, Ramasamy GG, Agrawal A, Srivastava S, Basavaarya BR, Muthugounder M, Muniyappa VK, Maria P, Rai A, Venkatesan T. Comparative Transcriptome Analysis to Reveal Differentially Expressed Cytochrome P450 in Response to Imidacloprid in the Aphid Lion, Chrysoperla zastrowi sillemi (Esben-Petersen). INSECTS 2022; 13:900. [PMID: 36292848 PMCID: PMC9604014 DOI: 10.3390/insects13100900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The aphid lion, Chrysoperla zastrowi sillemi (Neuroptera: Chrysopidae) is a highly effective beneficial predator of many agricultural pests and has developed resistance to several insecticides. Understanding the molecular mechanism of insecticide resistance in the predators is crucial for its effective application in IPM programs. Therefore, transcriptomes of imidacloprid-resistant and susceptible strains have been assessed using RNA-seq. Cytochrome P450 is one of the important gene families involved in xenobiotic metabolism. Hence, our study focused on the CYP gene family where mining, nomenclature, and phylogenetic analysis revealed a total of 95 unique CYP genes with considerable expansion in CYP3 and CYP4 clans. Further, differential gene expression (DGE) analysis revealed ten CYP genes from CYP3 and CYP4 clans to be differentially expressed, out of which nine genes (CYP4419A1, CYP4XK1, CYP4416A10, CYP4416A-fragment8, CYP6YL1, CYP6YH6, CYP9GK-fragment16, CYP9GN2, CYP9GK6) were downregulated and one (CYP9GK3) was upregulated in the resistant strain as compared to the susceptible strain. Expression validation by quantitative real-time PCR (qRT-PCR) is consistent with the DGE results. The expansion and differential expression of CYP genes may be an indicator of the capacity of the predator to detoxify a particular group of insecticides.
Collapse
Affiliation(s)
- Jyoti Pathak
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Gandhi Gracy Ramasamy
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Aditi Agrawal
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Subhi Srivastava
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Bhusangar Raghavendra Basavaarya
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Mohan Muthugounder
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Venugopal Kundalagurki Muniyappa
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Pratheepa Maria
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistical Research Institute, Pusa, New Delhi 110012, India
| | - Thiruvengadam Venkatesan
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| |
Collapse
|
14
|
Zhang Y, Yu R, Tang J, Du L, Wang Y, Wang J, Liu L, Gao S, Li B. Three cytochrome P450 CYP4 family genes regulated by the CncC signaling pathway mediate phytochemical susceptibility in the red flour beetle, Tribolium castaneum. PEST MANAGEMENT SCIENCE 2022; 78:3508-3518. [PMID: 35576327 DOI: 10.1002/ps.6991] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/16/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Insect cytochrome P450 monooxygenases (P450s) play a crucial role in phytochemical metabolism and tolerance. Three P450 genes (TcCYP4Q3, TcCYP4Q5, and TcCYP4Q7) are associated with the response of eugenol in Tribolium castaneum. However, the responding mechanisms of these P450 genes to eugenol remain unknown. RESULTS Here, spatiotemporal expression profiling revealed that TcCYP4Q3 and TcCYP4Q5 were most highly expressed in late adult, while TcCYP4Q7 was predominantly expressed in late larva; and all of these three P450 genes were mainly expressed in the fat body of larvae. Furthermore, the expressions of these three P450 genes were significantly up-regulated after exposure to eugenol, and depletion of them enhanced the susceptibility of beetles to eugenol. Interestingly, RNA interference (RNAi) against the CncC gene, a transcription factor of CncC signaling pathway associated with regulation of insect P450s in response to phytochemicals, reduced the transcripts of these three P450 genes following exposure to eugenol. Investigation of CncC signaling pathway showed that this pathway could be activated by eugenol. CONCLUSION Altogether, the results indicate that these three P450 genes are regulated by CncC signaling pathway to participate in the susceptibility of Tribolium castaneum to phytochemicals. These findings will aid implications for the development of novel therapeutics to control pest. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yonglei Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Runnan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jing Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Liheng Du
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yihan Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jiatao Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Linsu Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shanshan Gao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
15
|
Bailey E, Field L, Rawlings C, King R, Mohareb F, Pak KH, Hughes D, Williamson M, Ganko E, Buer B, Nauen R. A near-chromosome level genome assembly of the European hoverfly, Sphaerophoria rueppellii (Diptera: Syrphidae), provides comparative insights into insecticide resistance-related gene family evolution. BMC Genomics 2022; 23:198. [PMID: 35279098 PMCID: PMC8917705 DOI: 10.1186/s12864-022-08436-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/11/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Sphaerophoria rueppellii, a European species of hoverfly, is a highly effective beneficial predator of hemipteran crop pests including aphids, thrips and coleopteran/lepidopteran larvae in integrated pest management (IPM) programmes. It is also a key pollinator of a wide variety of important agricultural crops. No genomic information is currently available for S. rueppellii. Without genomic information for such beneficial predator species, we are unable to perform comparative analyses of insecticide target-sites and genes encoding metabolic enzymes potentially responsible for insecticide resistance, between crop pests and their predators. These metabolic mechanisms include several gene families - cytochrome P450 monooxygenases (P450s), ATP binding cassette transporters (ABCs), glutathione-S-transferases (GSTs), UDP-glycosyltransferases (UGTs) and carboxyl/choline esterases (CCEs). METHODS AND FINDINGS In this study, a high-quality near-chromosome level de novo genome assembly (as well as a mitochondrial genome assembly) for S. rueppellii has been generated using a hybrid approach with PacBio long-read and Illumina short-read data, followed by super scaffolding using Hi-C data. The final assembly achieved a scaffold N50 of 87Mb, a total genome size of 537.6Mb and a level of completeness of 96% using a set of 1,658 core insect genes present as full-length genes. The assembly was annotated with 14,249 protein-coding genes. Comparative analysis revealed gene expansions of CYP6Zx P450s, epsilon-class GSTs, dietary CCEs and multiple UGT families (UGT37/302/308/430/431). Conversely, ABCs, delta-class GSTs and non-CYP6Zx P450s showed limited expansion. Differences were seen in the distributions of resistance-associated gene families across subfamilies between S. rueppellii and some hemipteran crop pests. Additionally, S. rueppellii had larger numbers of detoxification genes than other pollinator species. CONCLUSION AND SIGNIFICANCE This assembly is the first published genome for a predatory member of the Syrphidae family and will serve as a useful resource for further research into selectivity and potential tolerance of insecticides by beneficial predators. Furthermore, the expansion of some gene families often linked to insecticide resistance and selectivity may be an indicator of the capacity of this predator to detoxify IPM selective insecticides. These findings could be exploited by targeted insecticide screens and functional studies to increase effectiveness of IPM strategies, which aim to increase crop yields by sustainably and effectively controlling pests without impacting beneficial predator populations.
Collapse
Affiliation(s)
- Emma Bailey
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK.
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK.
- The Bioinformatics Group, Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, UK.
| | - Linda Field
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Christopher Rawlings
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Rob King
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Fady Mohareb
- The Bioinformatics Group, Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, UK
| | - Keywan-Hassani Pak
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - David Hughes
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Martin Williamson
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Eric Ganko
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, Durham, NC, USA
| | - Benjamin Buer
- Bayer AG, Crop Science Division, R&D, Monheim, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Monheim, Germany
| |
Collapse
|
16
|
Bailey E, Field L, Rawlings C, King R, Mohareb F, Pak KH, Hughes D, Williamson M, Ganko E, Buer B, Nauen R. A scaffold-level genome assembly of a minute pirate bug, Orius laevigatus (Hemiptera: Anthocoridae), and a comparative analysis of insecticide resistance-related gene families with hemipteran crop pests. BMC Genomics 2022; 23:45. [PMID: 35012450 PMCID: PMC8751118 DOI: 10.1186/s12864-021-08249-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Orius laevigatus, a minute pirate bug, is a highly effective beneficial predator of crop pests including aphids, spider mites and thrips in integrated pest management (IPM) programmes. No genomic information is currently available for O. laevigatus, as is the case for the majority of beneficial predators which feed on crop pests. In contrast, genomic information for crop pests is far more readily available. The lack of publicly available genomes for beneficial predators to date has limited our ability to perform comparative analyses of genes encoding potential insecticide resistance mechanisms between crop pests and their predators. These mechanisms include several gene/protein families including cytochrome P450s (P450s), ATP binding cassette transporters (ABCs), glutathione S-transferases (GSTs), UDP-glucosyltransferases (UGTs) and carboxyl/cholinesterases (CCEs). METHODS AND FINDINGS In this study, a high-quality scaffold level de novo genome assembly for O. laevigatus has been generated using a hybrid approach with PacBio long-read and Illumina short-read data. The final assembly achieved a scaffold N50 of 125,649 bp and a total genome size of 150.98 Mb. The genome assembly achieved a level of completeness of 93.6% using a set of 1658 core insect genes present as full-length genes. Genome annotation identified 15,102 protein-coding genes - 87% of which were assigned a putative function. Comparative analyses revealed gene expansions of sigma class GSTs and CYP3 P450s. Conversely the UGT gene family showed limited expansion. Differences were seen in the distributions of resistance-associated gene families at the subfamily level between O. laevigatus and some of its targeted crop pests. A target site mutation in ryanodine receptors (I4790M, PxRyR) which has strong links to diamide resistance in crop pests and had previously only been identified in lepidopteran species was found to also be present in hemipteran species, including O. laevigatus. CONCLUSION AND SIGNIFICANCE This assembly is the first published genome for the Anthocoridae family and will serve as a useful resource for further research into target-site selectivity issues and potential resistance mechanisms in beneficial predators. Furthermore, the expansion of gene families often linked to insecticide resistance may be an indicator of the capacity of this predator to detoxify selective insecticides. These findings could be exploited by targeted pesticide screens and functional studies to increase effectiveness of IPM strategies, which aim to increase crop yields by sustainably, environmentally-friendly and effectively control pests without impacting beneficial predator populations.
Collapse
Affiliation(s)
- Emma Bailey
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK.
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK.
- The Bioinformatics Group, Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, UK.
| | - Linda Field
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Christopher Rawlings
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Rob King
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Fady Mohareb
- The Bioinformatics Group, Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, UK
| | - Keywan-Hassani Pak
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - David Hughes
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Martin Williamson
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Eric Ganko
- Syngenta Biotechnology Inc, Research Triangle Park, NC, USA
| | - Benjamin Buer
- Bayer AG, Crop Science Division, R&D, Monheim, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Monheim, Germany
| |
Collapse
|
17
|
Kim IY, Choi B, Park WR, Kim YJ, Kim BE, Mun S, Choi HS, Kim DK. Nuclear receptor HR96 up-regulates cytochrome P450 for insecticide detoxification in Tribolium castaneum. PEST MANAGEMENT SCIENCE 2022; 78:230-239. [PMID: 34472702 DOI: 10.1002/ps.6626] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Red flour beetle, Tribolium castaneum (T. castaneum), is a major agricultural pest that causes significant damage to stored grains and products. Although hormone receptor 96 (HR96) is known to be the single ortholog corresponding to mammalian constitutive androstane receptor and pregnane X receptor, the structural features of Tribolium HR96 (TcHR96) and its role in insecticide-mediated transcription control of cytochrome P450 enzyme genes in T. castaneum have not been elucidated yet. RESULTS We cloned full-length complementary DNA encoding TcHR96 and revealed the role of TcHR96 in transcriptional control of cytochrome P450 enzyme genes. Interestingly, genome-wide transcriptome analysis of HR96-deficient beetles using RNA sequencing showed a positive correlation between TcHR96 and gene transcription of metabolizing enzymes involved in phase I detoxification processes. Moreover, TcHR96 overexpression significantly increased the promoter activity of genes encoding phase I P450 enzymes such as CYP4Q4, CYP4G7, CYP4BR3, and CYP345A1. Chromatin immunoprecipitation analysis showed that TcHR96 could directly bind to the promoter of gene encoding CYP345A1, an enzyme for metabolizing insecticides in T. castaneum. Furthermore, imidacloprid, a neonicotinoid insecticide, significantly increased gene expression of phase I P450 enzymes in old larvae of T. castaneum, which were reversed by TcHR96 knockdown. Finally, TcHR96 knockdown significantly decreased the resistance of old larvae to imidacloprid concomitant with reduction of imidacloprid-mediated phase I P450 enzyme gene expression. CONCLUSION TcHR96 plays a major role in transcriptional control of P450 enzyme for imidacloprid detoxification. Controlling TcHR96 might facilitate the regulation of insecticide tolerance in T. castaneum, thus providing a promising new strategy to manage pest beetle populations. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- In-Young Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Byungyoon Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Woo-Ram Park
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Yu-Ji Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Bo-Eun Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Seulgi Mun
- Department of Applied Biology, Chonnam National University, Gwangju, South Korea
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
18
|
Qasim M, Xiao H, He K, Omar MAA, Hussain D, Noman A, Rizwan M, Khan KA, Al-Zoubi OM, Alharbi SA, Wang L, Li F. Host-pathogen interaction between Asian citrus psyllid and entomopathogenic fungus (Cordyceps fumosorosea) is regulated by modulations in gene expression, enzymatic activity and HLB-bacterial population of the host. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109112. [PMID: 34153507 DOI: 10.1016/j.cbpc.2021.109112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022]
Abstract
The host-pathogen interaction has been explored by several investigations, but the impact of fungal pathogens against insect resistance is still ambiguous. Therefore, we assessed the enzymatic activity and defense-related gene expression of Asian citrus psyllid (ACP) nymphal and adult populations on Huanglongbing-diseased citrus plants under the attack of Cordyceps fumosorosea. Overall, five enzymes viz. superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione S-transferase (GST), carboxylesterase (CarE), and four genes, namely SOD, 16S, CYP4C68, CYP4BD1, were selected for respective observations from ACP populations. Enzymatic activity of four enzymes (SOD, POD, GST, CarE) was significantly decreased after 5-days post-treatment (dpt) and 3-dpt fungal exposure in fungal treated ACP adult and nymphal populations, respectively, whereas the activity of CAT was boosted substantially post-treatment time schedule. Besides, we recorded drastic fluctuations in the expression of CYP4 genes among fungal treated ACP populations. After 24 hours post-treatment (hpt), expression of both CYP4 genes was boosted in fungal treated populations than controlled populations (adult and nymph). After 3-dpt, however, the expression of CYP4 genes was declined in the given populations. Likewise, fungal attack deteriorated the resistance of adult and nymphal of ACP population, as SOD expression was down-regulated in fungal-treated adult and nymphs after 5-dpt and 3-dpt exposure, respectively. Moreover, bacterial expression via the 16S gene was significantly increased in fungal-treated adult and nymphal ACP populations with increasing post-treatment time. Overall, our data illustrate that the fungal application disrupted the insect defense system. The expression of these genes and enzymes suppress the immune function of adult and nymphal ACP populations. As it is reported first time that the applications of C. fumosorosea against ACP reduce insect resistance by interfering with the CYP4 and SOD system. Therefore, we propose new strategies to discover the role of certain toxic compounds from fungus, which can reduce insect resistance, focusing on resistance-related genes and enzymes.
Collapse
Affiliation(s)
- Muhammad Qasim
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Huamei Xiao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, College of Life Sciences and Resource Environment, Yichun University, Yichun 336000, PR China
| | - Kang He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China
| | - Mohamed A A Omar
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China
| | - Dilbar Hussain
- Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad 38850, Pakistan
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38040, Pakistan
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), Unit of Bee Research and Honey Production, Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Fei Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
19
|
Fung CY, Zhu KY, Major K, Poynton HC, Huff Hartz KE, Wellborn G, Lydy MJ. The contribution of detoxification pathways to pyrethroid resistance in Hyalella azteca. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117158. [PMID: 33895574 DOI: 10.1016/j.envpol.2021.117158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/28/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Chronic exposure to pyrethroid insecticides can result in strong selective pressures on non-target species in aquatic systems and drive the evolution of resistance and population-level changes. Characterizing the underlying mechanisms of resistance is essential to better understanding the potential consequences of contaminant-driven microevolution. The current study found that multiple mechanisms enhance the overall tolerance of Hyalella azteca to the pyrethroid permethrin. In H. azteca containing mutations in the voltage-gated sodium channel (VGSC), both adaptation and acclimation played a role in mitigating the adverse effects of pyrethroid exposures. Pyrethroid resistance is primarily attributed to the heritable mutation at a single locus of the VGSC, resulting in reduced target-site sensitivity. However, additional pyrethroid tolerance was conferred through enhanced enzyme-mediated detoxification. Cytochrome P450 monooxygenases (CYP450) and general esterases (GE) significantly contributed to the detoxification of permethrin in H. azteca. Over time, VGSC mutated H. azteca retained most of their pyrethroid resistance, though there was some increased sensitivity from parent to offspring when reared in the absence of pyrethroid exposure. Permethrin median lethal concentrations (LC50s) declined from 1809 ng/L in parent (P0) individuals to 1123 ng/L in the first filial (F1) generation, and this reduction in tolerance was likely related to alterations in acclimation mechanisms, rather than changes to target-site sensitivity. Enzyme bioassays indicated decreased CYP450 and GE activity from P0 to F1, whereas the VGSC mutation was retained. The permethrin LC50s in resistant H. azteca were still two orders-of-magnitude higher than non-resistant populations indicating that the largest proportion of resistance was maintained through the inherited VGSC mutation. Thus, the noted variation in tolerance in H. azteca is likely associated with inducible traits controlling enzyme pathways. A better understanding of the mechanistic and genomic basis of acclimation is necessary to more accurately predict the ecological and evolutionary consequences of contaminant-driven change in H. azteca.
Collapse
Affiliation(s)
- Courtney Y Fung
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA.
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA.
| | - Kaley Major
- School for the Environment, University of Massachusetts, Boston, Massachusetts, 02125, USA.
| | - Helen C Poynton
- School for the Environment, University of Massachusetts, Boston, Massachusetts, 02125, USA.
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA.
| | - Gary Wellborn
- Department of Biology, University of Oklahoma, Norman, OK, 73019, USA.
| | - Michael J Lydy
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA.
| |
Collapse
|
20
|
Comparative Proteomics Analysis of Phosphine-Resistant and Phosphine-Susceptible Sitophilus oryzae (Coleoptera: Curculionidae). APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A proteomic method combining two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF) was used to compare the protein expression profiles of phosphine-resistant (PH3-R) and -susceptible (PH3-S) strains of Sitophilus oryzae. Thirty-nine differentially expressed protein spots were identified between the PH3-R and PH3-S strains; 20 protein spots were upregulated, and 19 protein spots were downregulated in the PH3-R strain compared with their expression in the PH3-S strain. In particular, cytochrome oxidase subunit I showed 15-fold higher expression in the PH3-R strain than in the PH3-S strain. Additionally, citrate synthase 2, delta-1-pyrolline-5-carboxylate dehydrogenase, and triose-phosphate isomerase were highly expressed in the PH3-R strain. In summary, our study has improved understanding of the molecular mechanisms of phosphine resistance in the rice weevil.
Collapse
|
21
|
Wolz M, Schrader A, Müller C. Direct and delayed effects of exposure to a sublethal concentration of the insecticide λ-cyhalothrin on food consumption and reproduction of a leaf beetle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143381. [PMID: 33172643 DOI: 10.1016/j.scitotenv.2020.143381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic pollution such as the application of pesticides poses a major threat to many (non-target) organisms. However, little is known about the persistence of harmful effects or potential recovery in response to a period of exposure to a sublethal insecticide dose. Adults of the mustard leaf beetle, Phaedon cochleariae (Coleoptera: Chrysomelidae), were either exposed to a sublethal concentration of the pyrethroid λ-cyhalothrin for two weeks or kept unexposed as control. During, immediately after and at a delayed time after the exposure, consumption and reproduction, i.e., number of eggs laid and hatching success, were assessed. In addition, long-term effects on unexposed offspring were investigated. Exposure to λ-cyhalothrin reduced the consumption during the insecticide exposure, but led to compensatory feeding in females at a delayed time after exposure. The reproductive output of females was impaired during and directly after λ-cyhalothrin exposure. At the delayed time point there was no clear evidence for a recovery, as the reproduction of heavier females was still negatively affected, while lighter females showed an enhanced reproduction. Persistent negative effects on unexposed offspring had been found when collected from parents directly after a λ-cyhalothrin exposure period. In contrast, in the present experiment neither negative effects on life-history traits nor on consumption were observed in unexposed offspring derived from parents at the delayed time after λ-cyhalothrin exposure. Moreover, eggs of offspring from insecticide-exposed parents showed a higher hatching success than those of offspring of unexposed parents, which may indicate transgenerational hormesis. Our results highlight that λ-cyhalothrin exposure has persistent negative effects on fitness parameters of the exposed generation. However, offspring may not be harmed if their parents had sufficient time to recover after such an insecticide exposure. Taken together, our study emphasises that the time-course of exposure to this anthropogenic pollution is crucial when determining the consequences on life-history.
Collapse
Affiliation(s)
- Marina Wolz
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 24, 33615 Bielefeld, Germany
| | - Alia Schrader
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 24, 33615 Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 24, 33615 Bielefeld, Germany.
| |
Collapse
|
22
|
Nagar G, Upadhaya D, Sharma AK, Kumar R, Fular A, Ghosh S. Association between overexpression of cytochrome P450 genes and deltamethrin resistance in Rhipicephalus microplus. Ticks Tick Borne Dis 2020; 12:101610. [PMID: 33285351 DOI: 10.1016/j.ttbdis.2020.101610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022]
Abstract
Cytochrome P450 monooxygenases mediated metabolic detoxification has been recognized as one of the mechanisms involved in resistance to pyrethroids, which is a class of pesticides that includes acaricides such as deltamethrin. Several cytochrome P450 (CYP) genes were identified in arthropod pests which are upregulated in response to exposure to pesticides used as acaricides. However, to date, limited information is available with respect to CYP genes and their response to acaricide exposure in ticks. We cloned and sequenced four CYP genes, the CYP41, CYP3006G8, CYP319A1 and CYP4W1 from reference susceptible IVRI-I strain of Rhipicephalus microplus. The expression pattern of the genes was investigated using qPCR in reference susceptible IVRI-I, pyrethroid-resistant IVRI-IV and multi-acaricide resistant IVRI-V strains. The effect of a single exposure of deltamethrin, at a concentration of 2600 μg/mL and 299.7 μg/mL on IVRI-IV and IVRI-V strains, respectively, on the expression of the four CYP genes was evaluated. In IVRI-IV strain, the CYP41 gene was highly overexpressed (FC 8.72) while CYP3006G8 was underexpressed with FC of 0.06. All the four genes were overexpressed in IVRI-V strain. After exposure to deltamethrin, the CYP3006G8 transcript levels were significantly upregulated at all time intervals in both resistant strains with the highest FC of 11.62 at 12 h in IVRI-IV and 13.38 at 3 h in IVRI-V. Our results suggest that the constitutive overexpression of CYP41 and deltamethrin induced upregulation of CYP3006G8 contribute to the development of pyrethroid resistance, specifically deltamethrin, in these two reference strains.
Collapse
Affiliation(s)
- Gaurav Nagar
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, U.P., India
| | - Deepak Upadhaya
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, U.P., India
| | - Anil Kumar Sharma
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, U.P., India
| | - Rinesh Kumar
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, U.P., India
| | - Ashutosh Fular
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, U.P., India
| | - Srikant Ghosh
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, U.P., India.
| |
Collapse
|
23
|
Wu L, Zhang ZF, Yu Z, Yu R, Ma E, Fan YL, Liu TX, Feyereisen R, Zhu KY, Zhang J. Both LmCYP4G genes function in decreasing cuticular penetration of insecticides in Locusta migratoria. PEST MANAGEMENT SCIENCE 2020; 76:3541-3550. [PMID: 32419293 DOI: 10.1002/ps.5914] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/15/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cuticular hydrocarbons (CHCs) have a critical role in preventing desiccation and penetration of xenobiotics in insects. Previous studies have shown that cytochrome P450 subfamily 4G (CYP4G) enzymes are oxidative decarbonylases, essential for CHC biosynthesis. However, it is unclear whether there are functional differences between the two CYP4G genes in most insects. In Locusta migratoria, we identified two CYP4G genes (LmCYP4G62 and LmCYP4G102). LmCYP4G102 plays a critical role in the synthesis of CHCs, but the function of LmCYP4G62 is unknown. RESULTS We identified, characterized, and compared two LmCYP4G genes, based on L. migratoria transcriptomic and genomic databases. RT-qPCR showed that both were highly expressed in tissues with which oenocytes are associated, the integument and fat body. Immunostaining indicated that LmCYP4G62 and LmCYP4G102 were highly abundant in oenocytes in these tissues. However, the two enzymes had a different subcellular distribution, with LmCYP4G62 localized on the plasma membrane and LmCYP4G102 dispersed throughout the oenocyte cytoplasm, presumably on the endoplasmic reticulum. RNA interference-mediated gene silencing against each of the two genes resulted in reduced CHC contents, in all classes for LmCYP4G102, but mostly shorter chain CHCs for LmCYP4G62. Silencing of both genes resulted in increased insecticide penetration through the cuticle, and increased locust susceptibility to desiccation and insecticides. CONCLUSION Our studies suggest that both LmCYP4G62 and LmCYP4G102 contribute to hydrocarbon biosynthesis and play key roles in protecting locusts from water loss and insecticide penetration, but they are not fully redundant. Further, the two LmCYP4G genes might be used as new targets for insect pest management. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lixian Wu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Zhan-Feng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Zhitao Yu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Rongrong Yu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Enbo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - René Feyereisen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen1017, Denmark
- Department of Plant and Crops, Ghent University, Ghent, Belgium
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|
24
|
Wang K, Liu M, Wang Y, Song W, Tang P. Identification and functional analysis of cytochrome P450 CYP346 family genes associated with phosphine resistance in Tribolium castaneum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104622. [PMID: 32711762 DOI: 10.1016/j.pestbp.2020.104622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/21/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Resistance to phosphine fumigation has been frequently reported in insect pests of stored products and remains one of the obstacles in controlling these pests, including Tribolium castaneum. In this study, six field populations of T. castaneum were collected from different localities in China. Bioassay data showed that SZ population was strongly resistant to phosphine, followed by moderate-resistance populations WL and SF and three susceptible populations JX, YN, and ML. In addition, synergism assays showed that piperonyl butoxide significantly increased the toxicity of phosphine in resistant population SZ. Furthermore, CYP346B subfamily genes, CYP346B1, CYP346B2, and CYP346B3, were significantly overexpressed in resistant populations. Expression of CYP346B1, CYP346B2, and CYP346B3 were significantly upregulated following exposure to phosphine. RNAi assays showed that depletions on the expression levels of CYP346B1, CYP346B2, and CYP346B3 resulted in an increase of susceptibility to phosphine in T. castaneum, respectively. Our data demonstrated that CYP346B subfamily genes in T. castaneum were associated with the resistance of phosphine. Moreover, the study also increased our understanding of the molecular basis of phosphine resistance in stored pest insects.
Collapse
Affiliation(s)
- Kangxu Wang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Manwen Liu
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Yazhou Wang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Wei Song
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Peian Tang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
25
|
Rösner J, Wellmeyer B, Merzendorfer H. Tribolium castaneum: A Model for Investigating the Mode of Action of Insecticides and Mechanisms of Resistance. Curr Pharm Des 2020; 26:3554-3568. [PMID: 32400327 DOI: 10.2174/1381612826666200513113140] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/02/2020] [Indexed: 11/22/2022]
Abstract
The red flour beetle, Tribolium castaneum, is a worldwide insect pest of stored products, particularly food grains, and a powerful model organism for developmental, physiological and applied entomological research on coleopteran species. Among coleopterans, T. castaneum has the most fully sequenced and annotated genome and consequently provides the most advanced genetic model of a coleopteran pest. The beetle is also easy to culture and has a short generation time. Research on this beetle is further assisted by the availability of expressed sequence tags and transcriptomic data. Most importantly, it exhibits a very robust response to systemic RNA interference (RNAi), and a database of RNAi phenotypes (iBeetle) is available. Finally, classical transposonbased techniques together with CRISPR/Cas-mediated gene knockout and genome editing allow the creation of transgenic lines. As T. castaneum develops resistance rapidly to many classes of insecticides including organophosphates, methyl carbamates, pyrethroids, neonicotinoids and insect growth regulators such as chitin synthesis inhibitors, it is further a suitable test system for studying resistance mechanisms. In this review, we will summarize recent advances in research focusing on the mode of action of insecticides and mechanisms of resistance identified using T. castaneum as a pest model.
Collapse
Affiliation(s)
- Janin Rösner
- Department of Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57068 Siegen, Germany
| | - Benedikt Wellmeyer
- Department of Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57068 Siegen, Germany
| | - Hans Merzendorfer
- Department of Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57068 Siegen, Germany
| |
Collapse
|
26
|
Liao M, Shi S, Wu H, Yang Q, Zhu Z, Xiao J, Huang Y, Cao H. Effects of terpinen-4-ol fumigation on protein levels of detoxification enzymes in Tribolium confusum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21653. [PMID: 31859418 DOI: 10.1002/arch.21653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/24/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Terpinen-4-ol has high fumigating activity to stored-grain pests including Tribolium confusum. To understand the detoxification of terpinen-4-ol in insects, proteomic analysis was performed to identify related proteins and pathways in response to terpinen-4-ol fumigation in T. confusum. By using isobaric tags for relative and absolute quantitation (iTRAQ)-based strategy, 4,618 proteins were obtained from T. confusum adults in the present study. Comparative proteomic analysis showed that 148 proteins were upregulated and 137 proteins were downregulated in beetles under the LC50 of terpinen-4-ol treatment for 24 hr. According to functional classifications, differentially expressed proteins (DEPs) were enriched in xenobiotic metabolism pathways. In the detoxification pathway, the levels of 25 cytochrome P450s, 5 glutathione S-transferases, and 2 uridine diphosphate (UDP)-glucuronosyltransferases were changed, most of which were upregulated in T. confusum exposed to terpinen-4-ol. The results indicated that terpinen-4-ol was potentially metabolized and detoxified by enzymes like P450s in T. confusum.
Collapse
Affiliation(s)
- Min Liao
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Su Shi
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hailong Wu
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Qianqian Yang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Zeng Zhu
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Jinjing Xiao
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yong Huang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Haiqun Cao
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
27
|
Hafeez M, Qasim M, Ali S, Yousaf HK, Waqas M, Ali E, Ahmad MA, Jan S, Bashir MA, Noman A, Wang M, Gharmh HA, Khan KA. Expression and functional analysis of P450 gene induced tolerance/resistance to lambda-cyhalothrin in quercetin fed larvae of beet armyworm Spodoptera exigua (Hübner). Saudi J Biol Sci 2020; 27:77-87. [PMID: 31889821 PMCID: PMC6933212 DOI: 10.1016/j.sjbs.2019.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/04/2022] Open
Abstract
Beet armyworm, Spodoptera exigua (Hübner) is an agronomical important and most devastating polyphagous pest that damages a variety of crops around the globe including China. Quercetin is one of the abundant dietary flavonoids and the important defense allelochemicals in plants. Therefore, the changes in insect detoxification enzymes activities in response to plants allelochemicals may result increased the sensitivity to insecticides. In this study, we examined the induced effect of quercetin on larval tolerance to lambda-cyhalothrin in S. exigua. Application of cytochrome P450 inhibitor piperonyl butoxide (PBO) significantly synergized the lambda-cyhalothrin toxicity in quercetin-fed S. exigua larvae. Moreover, larval weight significantly reduced in quercetin, lambda-cyhalothrin, and quercetin + lambda-cyhalothrin treatment. Furthermore, our results showed that the P450 detoxification enzyme effectively increased in all treatments as compared to the control. Quantitative Real-time PCR analysis revealed that expression level of CYP6AE10 significantly upregulated in larvae treated with quercetin, lambda-cyhalothrin and quercetin + lambda-cyhalothrin in the midgut and fat body respectively. In addition, RNAi mediated knockdown of CYP6AE10 in S. exigua larvae significantly decreased the transcription level of target cytochrome P450 gene followed by the exposure with quercetin, lambda-cyhalothrin, and quercetin + lambda-cyhalothrin. Similarly, the knockdown of CYP6AE10 by the injection of dsRNA led to increased mortality after the treatment with respective chemicals. Overall, these data showed that P450s might possibly play an important role in the metabolic adaptation of S. exigua larvae to its host plant defense allelochemicals as well as insecticides. In conclusion, S. exigua can take benefit from its host plant's secondary metabolites to elaborate its defense against synthetic insecticides.
Collapse
Affiliation(s)
- Muhammad Hafeez
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, Hubei 430070, PR China
| | - Muhammad Qasim
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Sajjad Ali
- Department of Botany, Bacha Khan University, Charsadda 24630, Pakistan
| | - Hafiz Kamran Yousaf
- College of Plant Protection Department of Entomology, China Agriculture University, Beijing 100193, China
| | - Muhammad Waqas
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, Hubei 430070, PR China
| | - Ehsan Ali
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, Hubei 430070, PR China
| | - Muhammad Afaq Ahmad
- College of Plant Health and Medicine, Qingdao Agricultural University, China
| | - Saad Jan
- Department of Agriculture Entomology Section, Bacha Khan University, Charsadda 24630, Pakistan
| | - Muhammad Amjad Bashir
- Department of Plant Protection, Faculty of Agriculture Sciences, Ghazi University, Dera Ghazi Khan 32200, Punjab, Pakistan
| | - Ali Noman
- Department of Botany Government College University, Faisalabad 38040, Pakistan
| | - Mo Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, Hubei 430070, PR China
| | - Hamed A. Gharmh
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
28
|
Chen N, Pei XJ, Li S, Fan YL, Liu TX. Involvement of integument-rich CYP4G19 in hydrocarbon biosynthesis and cuticular penetration resistance in Blattella germanica (L.). PEST MANAGEMENT SCIENCE 2020; 76:215-226. [PMID: 31149772 DOI: 10.1002/ps.5499] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/08/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cuticle penetration plays an important role as a mechanism of insecticide resistance, but the underlying molecular mechanism remains poorly understood. In Blattella germanica, the cytochrome P450 gene, CYP4G19, is overexpressed in a pyrethroid-resistant strain. Here, we investigated whether CYP4G19 is involved in the biosynthesis of hydrocarbons and further contributes to cuticular penetration resistance in B. germanica. RESULTS Compared with the susceptible strain, pyrethroid-resistant cockroaches showed lower cuticular permeability with Eosin Y staining. Removal of epicuticular lipids, mainly nonpolar hydrocarbons, with a hexane wash intensified the cuticular permeability and decreased the resistance index of the resistant strain. CYP4G19 was predominately expressed in the abdominal integument and could be upregulated by desiccation stress or short exposure to beta-cypermethrin. Overexpression of CYP4G19 in the resistant strain was positively correlated with a higher level of cuticular hydrocarbons (CHCs). RNAi-mediated knockdown of CYP4G19 significantly decreased its expression and caused a reduction in CHCs. Meanwhile, CYP4G19 suppression resulted in a non-uniform array of the lipid layer, enhanced cuticle permeability, and compromised insecticide tolerance. CONCLUSION Our findings confirm that CYP4G19 is involved in hydrocarbon production and appears to contribute to hydrocarbon-based penetration resistance in B. germanica. This study highlights the lipid-based penetration resistance, advancing our understanding of the molecular mechanism underlying P450-mediated cuticular penetration resistance in insects. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiao-Jin Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
29
|
Ferdenache M, Bezzar-Bendjazia R, Marion-Poll F, Kilani-Morakchi S. Transgenerational effects from single larval exposure to azadirachtin on life history and behavior traits of Drosophila melanogaster. Sci Rep 2019; 9:17015. [PMID: 31745147 PMCID: PMC6863814 DOI: 10.1038/s41598-019-53474-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/01/2019] [Indexed: 01/07/2023] Open
Abstract
Azadirachtin is one of the successful botanical pesticides in agricultural use with a broad-spectrum insecticide activity, but its possible transgenerational effects have not been under much scrutiny. The effects of sublethal doses of azadirachtin on life-table traits and oviposition behaviour of a model organism in toxicological studies, D. melanogaster, were evaluated. The fecundity and oviposition preference of flies surviving to single azadirachtin-treated larvae of parental generation was adversely affected and resulted in the reduction of the number of eggs laid and increased aversion to this compound over two successive generations. In parental generation, early exposure to azadirachtin affects adult's development by reducing the number of organisms, delay larval and pupal development; male biased sex ratio and induced morphological alterations. Moreover, adult's survival of the two generations was significantly decreased as compared to the control. Therefore, Single preimaginal azadirachtin treatment can affect flies population dynamics via transgenerational reductions in survival and reproduction capacity as well as reinforcement of oviposition avoidance which can contribute as repellent strategies in integrated pest management programs. The transgenerational effects observed suggest a possible reduction both in application frequency and total amount of pesticide used, would help in reducing both control costs and possible ecotoxicological risks.
Collapse
Affiliation(s)
- M Ferdenache
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University of Annaba, 23000, Annaba, Algeria
- Evolution, Génomes, Comportement, Ecologie. CNRS, IRD, Univ Paris-Sud. Université Paris-Saclay, F-91198, Gif-sur-Yvette, France
| | - R Bezzar-Bendjazia
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University of Annaba, 23000, Annaba, Algeria
| | - F Marion-Poll
- Evolution, Génomes, Comportement, Ecologie. CNRS, IRD, Univ Paris-Sud. Université Paris-Saclay, F-91198, Gif-sur-Yvette, France
- AgroParisTech, Paris, France
| | - S Kilani-Morakchi
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University of Annaba, 23000, Annaba, Algeria.
| |
Collapse
|
30
|
Xiong W, Gao S, Mao J, Wei L, Xie J, Liu J, Bi J, Song X, Li B. CYP4BN6 and CYP6BQ11 mediate insecticide susceptibility and their expression is regulated by Latrophilin in Tribolium castaneum. PEST MANAGEMENT SCIENCE 2019; 75:2744-2755. [PMID: 30788896 DOI: 10.1002/ps.5384] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/01/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Many insect cytochrome P450 proteins (CYPs) are involved in the metabolic detoxification of exogenous compounds such as plant toxins and insecticides. Tribolium castaneum, the red flour beetle, is a major agricultural pest that damages stored grains and cereal products. With the completion of the sequencing of its genome, two T. castaneum species-specific CYP genes, CYP4BN6, and CYP6BQ11, were identified. However, it is unknown whether the functions of most CYPs are shared by TcCYP4BN6 and TcCYP6BQ11, and the upstream regulatory mechanism of these two CYPs remains elusive. RESULTS QRT-PCR analysis indicated that TcCYP4BN6 and TcCYP6BQ11 were both most highly expressed at the late pupal stage and were mainly observed in the head and gut, respectively, of adults. Moreover, the transcripts of these two CYPs were significantly induced by dichlorvos and carbofuran, and RNA interference (RNAi) targeting of each of them enhanced the susceptibility of beetles to these two insecticides. Intriguingly, knockdown of the latrophilin (lph) gene, which has been reported to be related to the insecticide susceptibility, reduced the expression of TcCYP4BN6 and TcCYP6BQ11 after insecticide treatment, suggesting that these two CYP genes are regulated by lph to participate in insecticide susceptibility in T. castaneum. CONCLUSION These results shed new light on the function and mechanism of CYP genes associated with insecticide susceptibility and could facilitate research on appropriate and sustainable pest control management. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenfeng Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shanshan Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Jinjuan Mao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Luting Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jia Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Juanjuan Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jingxiu Bi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaowen Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
31
|
Xiong W, Gao S, Lu Y, Wei L, Mao J, Xie J, Cao Q, Liu J, Bi J, Song X, Li B. Latrophilin participates in insecticide susceptibility through positively regulating CSP10 and partially compensated by OBPC01 in Tribolium castaneum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 159:107-117. [PMID: 31400772 DOI: 10.1016/j.pestbp.2019.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 06/10/2023]
Abstract
Latrophilin (LPH) is an adhesion G protein-coupled receptor (aGPCR) that participates in multiple essential physiological processes. Our previous studies have shown that lph is not only indispensable for the development and reproduction of red flour beetles (Tribolium castaneum), but also for their resistance against dichlorvos or carbofuran insecticides. However, the regulatory mechanism of lph-mediated insecticide susceptibility remains unclear. Here, we revealed that knockdown of lph in beetles resulted in opposing changes in two chemoreception genes, chemosensory protein 10 (CSP10) and odorant-binding protein C01 (OBPC01), in which the expression of TcCSP10 was downregulated, whereas the expression of TcOBPC01 was upregulated. TcCSP10 and TcOBPC01 were expressed at the highest levels in early pupal and late larval stages, respectively. High levels of expression of both these genes were observed in the heads (without antennae) of adults. TcCSP10 and TcOBPC01 were significantly induced by dichlorvos or carbofuran between 12 and 72 h (hrs) after exposure, suggesting that they are likely associated with increasing the binding affinity of insecticides, leading to a decrease in sensitivity to the insecticides. Moreover, once these two genes were knocked down, the susceptibility of the beetles to dichlorvos or carbofuran was enhanced. Additionally, RNA interference (RNAi) targeting of lph followed by exposure to dichlorvos or carbofuran also caused the opposing expression levels of TcCSP10 and TcOBPC01 compared to the expression levels of wild-type larvae treated with insecticides alone. All these results indicate that lph is involved in insecticide susceptibility through positively regulating TcCSP10; and the susceptibility could also further partially compensated for through the negative regulation of TcOBPC01 when lph was knockdown in the red flour beetle. Our studies shed new light on the molecular regulatory mechanisms of lph related to insecticide susceptibility.
Collapse
Affiliation(s)
- Wenfeng Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Rui-Jin Hospital, Department of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shanshan Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Yaoyao Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Luting Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jinjuan Mao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jia Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Quanquan Cao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; Marine Biodiversity, Exploitation and Conservation, University of Montpellier, France.
| | - Juanjuan Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jingxiu Bi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Xiaowen Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
32
|
Liu SW, Elzaki MEA, Staehelin C, Ma ZH, Qin Z, Wang RL. Exposure to herbicides reduces larval sensitivity to insecticides in Spodoptera litura (Lepidoptera: Noctuidae). INSECT SCIENCE 2019; 26:711-720. [PMID: 30239122 DOI: 10.1111/1744-7917.12642] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
Herbicides and insecticides are widely used in modern agriculture. It has been reported in various studies that application of insecticides can increase tolerance of herbivorous insects to insecticides. However, limited information exists on susceptibility to insecticides when insects are exposed to herbicides. This study was conducted to investigate the potential impact of the herbicides trifluralin and 2-methyl-4-chlorophenoxyacetic acid sodium salt (MCPA-Na) on the susceptibility of the nocturnal moth Spodoptera litura to the insecticides λ-cyhalothrin, phoxim and bifenthrin. We found that larvae exposed to trifluralin or MCPA-Na became significantly less susceptible to both insecticides than non-exposed control larvae. Herbicide-treated larvae did not show altered growth under the used test conditions. However, heads of herbicide-treated larvae showed increased expression of the acetylcholinesterase genes SlAce1 and SlAce2. Moreover, the fat body and midgut of herbicide-treated larvae displayed elevated expression of detoxification genes (the carboxylesterase gene SlCarE; the glutathione S-transferase genes SlGSTe2 and SlGSTe3; the cytochrome P450 monooxygenase genes CYP6B48, CYP9A40 and CYP321B1). The CYP6B48 gene exhibited highest inducibility. In conclusion, the data of this study suggest that exposure of S. litura larvae to herbicides may stimulate detoxification mechanisms that compromise the efficacy of insecticides.
Collapse
Affiliation(s)
- Shi-Wei Liu
- Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | | | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou, China
| | - Zhi-Hui Ma
- Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhong Qin
- Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Rui-Long Wang
- Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
33
|
Antony B, Johny J, Abdelazim MM, Jakše J, Al-Saleh MA, Pain A. Global transcriptome profiling and functional analysis reveal that tissue-specific constitutive overexpression of cytochrome P450s confers tolerance to imidacloprid in palm weevils in date palm fields. BMC Genomics 2019; 20:440. [PMID: 31151384 PMCID: PMC6545022 DOI: 10.1186/s12864-019-5837-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 05/23/2019] [Indexed: 01/30/2023] Open
Abstract
Background Cytochrome P450-dependent monooxygenases (P450s), constituting one of the largest and oldest gene superfamilies found in many organisms from bacteria to humans, play a vital role in the detoxification and inactivation of endogenous toxic compounds. The use of various insecticides has increased over the last two decades, and insects have developed resistance to most of these compounds through the detoxifying function of P450s. In this study, we focused on the red palm weevil (RPW), Rhynchophorus ferrugineus, the most devastating pest of palm trees worldwide, and demonstrated through functional analysis that upregulation of P450 gene expression has evolved as an adaptation to insecticide stress arising from exposure to the neonicotinoid-class systematic insecticide imidacloprid. Results Based on the RPW global transcriptome analysis, we identified 101 putative P450 genes, including 77 likely encoding protein coding genes with ubiquitous expression. A phylogenetic analysis revealed extensive functional and species-specific diversification of RPW P450s, indicating that multiple CYPs actively participated in the detoxification process. We identified highly conserved paralogs of insect P450s that likely play a role in the development of resistance to imidacloprid: Drosophila Cyp6g1 (CYP6345J1) and Bemisia tabaci CYP4C64 (CYP4LE1). We performed a toxicity bioassay and evaluated the induction of P450s, followed by the identification of overexpressed P450s, including CYP9Z82, CYP6fra5, CYP6NR1, CYP6345J1 and CYP4BD4, which confer cross-resistance to imidacloprid. In addition, under imidacloprid insecticide stress in a date palm field, we observed increased expression of various P450 genes, with CYP9Z82, CYP4BD4, CYP6NR1 and CYP6345J1 being the most upregulated detoxification genes in RPWs. Expression profiling and cluster analysis revealed P450 genes with multiple patterns of induction and differential expression. Furthermore, we used RNA interference to knock down the overexpressed P450s, after which a toxicity bioassay and quantitative expression analysis revealed likely candidates involved in metabolic resistance against imidacloprid in RPW. Ingestion of double-stranded RNA (dsRNA) successfully knocked down the expression of CYP9Z82, CYP6NR1 and CYP345J1 and demonstrated that silencing of CYP345J1 and CYP6NR1 significantly decreased the survival rate of adult RPWs treated with imidacloprid, indicating that overexpression of these two P450s may play an important role in developing tolerance to imidacloprid in a date palm field. Conclusion Our study provides useful background information on imidacloprid-specific induction and overexpression of P450s, which may enable the development of diagnostic tools/markers for monitoring the spread of insecticide resistant RPWs. The observed trend of increasing tolerance to imidacloprid in the date palm field therefore indicated that strategies for resistance management are urgently needed. Electronic supplementary material The online version of this article (10.1186/s12864-019-5837-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Binu Antony
- Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Chair of Date Palm Research, Riyadh, 11451, Saudi Arabia.
| | - Jibin Johny
- Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Chair of Date Palm Research, Riyadh, 11451, Saudi Arabia
| | - Mahmoud M Abdelazim
- Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Chair of Date Palm Research, Riyadh, 11451, Saudi Arabia
| | - Jernej Jakše
- Biotechnical Faculty, Agronomy Department, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Mohammed Ali Al-Saleh
- Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Chair of Date Palm Research, Riyadh, 11451, Saudi Arabia
| | - Arnab Pain
- BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, 23955-6900, Saudi Arabia
| |
Collapse
|
34
|
Sun Z, Xu C, Chen S, Shi Q, Wang H, Wang R, Song Y, Zeng R. Exposure to Herbicides Prime P450-Mediated Detoxification of Helicoverpa armigera against Insecticide and Fungal Toxin. INSECTS 2019; 10:insects10010028. [PMID: 30641934 PMCID: PMC6359087 DOI: 10.3390/insects10010028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 11/16/2022]
Abstract
With the long-term and large-scale use, herbicides have been well known to influence tritrophic interactions, particularly natural enemies of pests in agro-ecosystems. On the other hand, herbivorous insects, especially the generalist pests, have developed antagonistic interaction to different insecticides, toxic plant secondary metabolites, and even heavy metals. However, whether exposure to herbicides would affect resistance of insects against insecticides is largely unknown, especially in agricultural pests. Here, we first reported that pre-exposure to two widely used herbicides butachlor and haloxyfop-methyl for 48 h can prime the resistance of a generalist agricultural pest Helicoverpa armigera Hübner against insecticide methomyl and fungal toxin aflatoxin B1. In addition, there were no significant differences between control and herbicides-treated caterpillars on weight gain, pupal weight, and pupation rates, suggesting that exposure to herbicides induces resistance of H. armigera accompanied with no fitness cost. Moreover, by determining detoxifying enzyme activities and toxicity bioassay with additional inhibitor of cytochrome P450 piperonyl butoxide (PBO), we showed that exposure to herbicides might prime P450-mediated detoxification of H. armigera against insecticide. Based on these results, we propose that exposure to herbicides prime resistance of H. armigera against insecticide and fungal toxin by eliciting a clear elevation of predominantly P450 monooxygenase activities in the midgut and fat body.
Collapse
Affiliation(s)
- Zhongxiang Sun
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China.
| | - Cuicui Xu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shi Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qi Shi
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Huanhuan Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Rumeng Wang
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yuanyuan Song
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Rensen Zeng
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
35
|
Chen C, Shan T, Liu Y, Wang C, Shi X, Gao X. Identification and functional analysis of a cytochrome P450 gene involved in imidacloprid resistance in Bradysia odoriphaga Yang et Zhang. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 153:129-135. [PMID: 30744886 DOI: 10.1016/j.pestbp.2018.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 05/20/2023]
Abstract
Insect cytochrome P450 monooxygenases played an important role in detoxifying insecticides which potentially contributed to the metabolic resistance to insecticides. Bradysia odoriphaga, as a major pest of Chinese chive, was reported to be highly tolerant to neonicotinoid insecticides imidacloprid. In this study, a novel P450 gene, CYP6FV12, was cloned from B. odoriphaga. The full-length cDNA sequence of CYP6FV12 is 2520 bp long and its open reading frame (ORF) encodes 519 amino acids. Quantitative real-time PCR showed that the highest expression of CYP6FV12 was observed in fourth-instar larvae, which is 154.32-fold higher than that of eggs. Highest expression of CYP6FV12 was observed in the midgut, followed by fat body, which was 13.67 and 5.42-fold higher than that in cuticle, respectively. The expression of CYP6FV12 was significantly up-regulated in B. odoriphaga larvae after exposed to imidacloprid at the concentrations of 10, 30, 50, and 70 mg/L. Moreover, RNAi mediated silencing of CYP6FV12 increased mortality by 28.62% when the fourth-instar larvae were treated with imidacloprid. This is the first systematic study on isolated P450s gene involved in imidacloprid resistance in B. odoriphaga and increased our understanding of the molecular mechanisms of insecticide detoxification in this pest insect.
Collapse
Affiliation(s)
- Chengyu Chen
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Tisheng Shan
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Ying Liu
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Cuicui Wang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xueyan Shi
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
36
|
Pitombeira de Figueirêdo L, Daam MA, Mainardi G, Mariën J, Espíndola ELG, van Gestel CAM, Roelofs D. The use of gene expression to unravel the single and mixture toxicity of abamectin and difenoconazole on survival and reproduction of the springtail Folsomia candida. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:342-350. [PMID: 30352348 DOI: 10.1016/j.envpol.2018.10.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Pesticides risk assessments have traditionally focused on the effects on standard parameters, such as mortality, reproduction and development. However, one of the first signs of adverse effects that occur in organisms exposed to stress conditions is an alteration in their genomic expression, which is specific to the type of stress, sensitive to very low contaminant concentrations and responsive in a few hours. The aim of the present study was to evaluate the single and binary mixture toxicity of commercial products of abamectin (Kraft® 36 EC) and difenoconazole (Score® 250 EC) to Folsomia candida. Laboratory toxicity tests were conducted to access the effects of these pesticides on springtail survival, reproduction and gene expression. The reproduction assays gave EC50 and EC10 values, respectively, of 6.3 and 1.4 mg a.s./kg dry soil for abamectin; 1.0 and 0.12 mg a.s./kg dry soil for Kraft® 36 EC; and 54 and 23 mg a.s./kg dry soil for Score® 250 EC. Technical difenoconazole did not have any effect at the concentrations tested. No significant differences in gene expression were found between the abamectin concentrations tested (EC10 and EC50) and the solvent control. Exposure to Kraft® 36 EC, however, significantly induced Cyp6 expression at the EC50 level, while VgR was significantly downregulated at both the EC10 and EC50. Exposure to the simple pesticide mixture of Kraft® 36 EC + Score® 250 EC caused significant up regulation of ABC transporter, and significant down regulation of VgR relative to the controls. GABA receptor also showed significant down-regulation between the EC10 and EC50 mixture treatments. Results of the present study demonstrate that pesticide-induced gene expression effects precede and occur at lower concentrations than organism-level responses. Integrating "omic" endpoints in traditional bioassays may thus be a promising way forward in pesticide toxicity evaluations.
Collapse
Affiliation(s)
- Livia Pitombeira de Figueirêdo
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil; Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands.
| | - Michiel A Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal
| | - Giulia Mainardi
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands
| | - Janine Mariën
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands
| | - Evaldo L G Espíndola
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Cornelis A M van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands
| | - Dick Roelofs
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands
| |
Collapse
|
37
|
Zhang H, Zhao M, Liu Y, Zhou Z, Guo J. Identification of cytochrome P450 monooxygenase genes and their expression in response to high temperature in the alligatorweed flea beetle Agasicles hygrophila (Coleoptera: Chrysomelidae). Sci Rep 2018; 8:17847. [PMID: 30552348 PMCID: PMC6294762 DOI: 10.1038/s41598-018-35993-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/08/2018] [Indexed: 01/21/2023] Open
Abstract
Cytochrome P450 monooxygenases (P450s) are a large class of enzymes that play essential roles in metabolic processes such as hormone synthesis and the catabolism of toxins and other chemicals in insects. In the present study, we identified 82 P450 genes using comprehensive RNA sequencing in the flea beetle Agasicles hygrophila, and all of the sequences were validated by cloning and sequencing. Phylogenetic analysis showed that the P450 genes in A. hygrophila fell into the mitochondrial clan, CYP2 clan, CYP3 clan and CYP4 clan and were classified into 20 families and 48 subfamilies. Most A. hygrophila P450 genes had high sequence homology with those from other coleopteran insects. To understand the effects of high temperatures on the metabolic processes of female and male adults, we studied the effects of two temperature regimes (constant temperature of 28 °C for 20 h with a 4-h period of high temperatures of 30 °C and 39 °C) on the expression levels of P450 genes in A. hygrophila using RT-PCR and qRT-PCR. The results showed that there were no differences in expression in 30 P450 genes between the control and high-temperature-treated A. hygrophila adults, while 22 P450 genes showed up-regulated expression and 19 P450 genes were down-regulated in A. hygrophila female adults after high-temperature treatment. For A. hygrophila male adults exposed to high temperatures, we found that 8 P450 genes had higher expression levels and 12 P450 genes had lower expression levels under the same conditions. The P450 genes are candidates that showed significantly different expression levels after high-temperature treatments in A. hygrophila adults, and further studies are needed to determine their possible roles in metabolic processes during the response to elevated temperatures.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meiting Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiran Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianying Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
38
|
Lee YH, Park JC, Hwang UK, Lee JS, Han J. Adverse effects of the insecticides chlordecone and fipronil on population growth and expression of the entire cytochrome P450 (CYP) genes in the freshwater rotifer Brachionus calyciflorus and the marine rotifer Brachionus plicatilis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 202:181-187. [PMID: 30055411 DOI: 10.1016/j.aquatox.2018.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 05/07/2023]
Abstract
Chlordecone and fipronil are used as an insecticide and have been widely detected in the aquatic environments. However, their toxicity is still poorly investigated in aquatic invertebrates. In this study, we examined effects of chlordecone and fipronil on population growth and transcriptional regulation of the entire cytochrome P450 (CYP) genes in the freshwater rotifer Brachionus calyciflorus and the marine rotifer B. plicatilis. In B. calyciflorus, a 24 h-no observed effect concentration (NOEC-24 h) and a 24 h-median lethal concentration (LC50-24 h) of chlordecone were determined as 100 μg/L and 193.8 μg/L, respectively, while NOEC-24 h and LC50-24 h of fipronil were determined as 1000 μg/L and 2033.0 μg/L, respectively. In B. plicatilis, NOEC-24 h and LC50-24 h of chlordecone were 100 μg/L and 291.0 μg/L, respectively, while NOEC-24 h and LC50-24 h of fipronil were determined as 1000 μg/L and 5735.0 μg/L, respectively. Moreover, retardation in the population growth were observed in response to chlordecone and fipronil in both rotifer species, suggesting that chlordecone and fipronil have a potential adverse effects on life cycle parameters of two rotifer species. Additionally, modulation in the expressions of the entire CYP genes were demonstrated in response to chlordecone and fipronil at 24 h period. These results provide the better understanding on how chlordecone and fipronil can affect in population growth of two rotifers and CYP gene expressions in chlordecone- and fipronil-exposed rotifers.
Collapse
Affiliation(s)
- Young Hwan Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Un-Ki Hwang
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon 46083, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
39
|
Kalsi M, Palli SR. Cap n collar transcription factor regulates multiple genes coding for proteins involved in insecticide detoxification in the red flour beetle, Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 90:43-52. [PMID: 28951207 DOI: 10.1016/j.ibmb.2017.09.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 05/21/2023]
Abstract
In invertebrates, a heterodimer of xenobiotic transcription factors, cap n collar C isoform (CncC) and muscle aponeurosis fibromatosis (Maf) mediate cellular defense. In insects, these proteins regulate expression of genes involved in insecticide detoxification. In the current study, we performed sequencing of cDNA copied from RNA isolated from Tribolium castaneum pyrethroid resistant strain (QTC279) beetles injected with CncC or green fluorescence protein (GFP, control) dsRNA. Differential expression analysis of sequences identified 662 genes that showed a decrease and 91 genes that showed an increase in expression (p value ≤ 0.01 and log2 fold change of ≥ 1.5) in CncC knockdown insects when compared to their expression in control insects. We selected a subset of 27 downregulated genes and verified their differential expression using qRT-PCR. This subset of 27 genes included 21 genes with a predicted function in xenobiotic detoxification. RNAi and insecticide bioassays were employed to study the function of six of these genes coding for CYP4G7, CYP4G14, GST-1 and four ABC transporters, ABCA-UB, ABCA-A1 and ABCA-A1L and ABCA-9B involved in all three phases of insecticide detoxification. These data suggest that CncC regulates genes coding for proteins involved in detoxification of insecticides.
Collapse
Affiliation(s)
- Megha Kalsi
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
40
|
Müller T, Prosche A, Müller C. Sublethal insecticide exposure affects reproduction, chemical phenotype as well as offspring development and antennae symmetry of a leaf beetle. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:709-717. [PMID: 28719883 DOI: 10.1016/j.envpol.2017.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
The area of agriculturally used land and following to that the use of pesticides are steadily increasing. Insecticides do not only reduce pest organisms on crops but can also affect non-target organisms when present in sublethal concentrations in the environment. We investigated the effects of an exposure to sublethal pyrethroid (lambda-cyhalothrin) concentrations, at doses 20 and 60 times lower than the LC50, respectively, on reproductive traits and adult cuticular hydrocarbon (CHC) profiles of a leaf beetle (Phaedon cochleariae Fabricius). Furthermore, we tested for effects on growth and antennae symmetry of the offspring generation that was not exposed to the insecticide. Sublethal insecticide concentrations decreased the egg number produced by the adults and the hatching rate. Moreover, the chemical phenotype (CHC profile) of adults was altered in dependence of the insecticide treatment, with sex-specific effects. In the unexposed offspring of insecticide-exposed parents, a prolonged development time and a fluctuating asymmetry of the females' antennae were detected, revealing transgenerational effects. The insecticide effects on the CHC profiles of the parental generation might have been caused by changes in CHC precursors, which were potentially induced by the insecticide treatment of the insect diet. Such altered CHC pattern may have implications for intraspecific communication, e.g., in mate choice, as well as in an interspecific way, e.g., in interactions with other arthropod species. The observed detrimental transgenerational effects might be explainable by a reduced investment in the offspring, maternal transfer or epigenetic processes. An asymmetry of the antennae may lead to defects in the reception of chemical signals. In conclusion, the results disclose that, besides detrimental (transgenerational) effects on reproduction and development, an exposure to sublethal insecticide concentrations can impair the chemical communication between individuals, with impacts on the sender (i.e., the CHC profile) and the receiver (i.e., caused by asymmetry of the antennae).
Collapse
Affiliation(s)
- Thorben Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Alexander Prosche
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|
41
|
Wang RL, Zhu-Salzman K, Baerson SR, Xin XW, Li J, Su YJ, Zeng RS. Identification of a novel cytochrome P450 CYP321B1 gene from tobacco cutworm (Spodoptera litura) and RNA interference to evaluate its role in commonly used insecticides. INSECT SCIENCE 2017; 24:235-247. [PMID: 26782704 DOI: 10.1111/1744-7917.12315] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/07/2016] [Indexed: 06/05/2023]
Abstract
Insect cytochrome P450 monooxygenases (CYPs or P450s) play an important role in detoxifying insecticides leading to resistance in insect populations. A polyphagous pest, Spodoptera litura, has developed resistance to a wide range of insecticides. In the present study, a novel P450 gene, CYP321B1, was cloned from S. litura. The function of CYP321B1 was assessed using RNA interference (RNAi) and monitoring resistance levels for three commonly used insecticides, including chlorpyrifos, β-cypermethrin and methomyl. The full-length complementary DNA sequence of CYP321B1 is 1814 bp long with an open reading frame of 1 488 bp encoding 495 amino acid residues. Quantitative reverse-transcriptase polymerase chain reaction analyses during larval and pupal development indicated that CYP321B1 expression was highest in the midgut of fifth-instar larvae, followed by fat body and cuticle. The expression of CYP321B1 in the midgut was up-regulated by chlorpyrifos, β-cypermethrin and methomyl with both lethal concentration at 15% (LC15 ) (50, 100 and 150 μg/mL, respectively) and 50%(LC50 ) dosages (100, 200 and 300 μg/mL, respectively). Addition of piperonyl butoxide (PBO) significantly increased the toxicity of chlorpyrifos, β-cypermethrin and methomyl to S. litura, suggesting a marked synergism of the three insecticides with PBO and P450-mediated detoxification. RNAi-mediated silencing of CYP321B1 further increased mortality by 25.6% and 38.9% when the fifth-instar larvae were exposed to chlorpyrifos and β-cypermethrin, respectively, at the LC50 dose levels. The results demonstrate that CYP321B1 might play an important role in chlorpyrifos and β-cypermethrin detoxification in S. litura.
Collapse
Affiliation(s)
- Rui-Long Wang
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou, China
| | | | - Scott R Baerson
- United States Department of Agriculture-Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi, USA
| | - Xiao-Wei Xin
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jun Li
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Yi-Juan Su
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou, China
| | - Ren-Sen Zeng
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
42
|
Cong L, Chen F, Yu S, Ding L, Yang J, Luo R, Tian H, Li H, Liu H, Ran C. Transcriptome and Difference Analysis of Fenpropathrin Resistant Predatory Mite, Neoseiulus barkeri (Hughes). Int J Mol Sci 2016; 17:E704. [PMID: 27240349 PMCID: PMC4926325 DOI: 10.3390/ijms17060704] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 12/31/2022] Open
Abstract
Several fenpropathrin-resistant predatory mites have been reported. However, the molecular mechanism of the resistance remains unknown. In the present study, the Neoseiulus barkeri (N. barkeri) transcriptome was generated using the Illumina sequencing platform, 34,211 unigenes were obtained, and 15,987 were manually annotated. After manual annotation, attentions were attracted to resistance-related genes, such as voltage-gated sodium channel (VGSC), cytochrome P450s (P450s), and glutathione S-transferases (GSTs). A polymorphism analysis detected two point mutations (E1233G and S1282G) in the linker region between VGSC domain II and III. In addition, 43 putative P450 genes and 10 putative GST genes were identified from the transcriptome. Among them, two P450 genes, NbCYP4EV2 and NbCYP4EZ1, and four GST genes, NbGSTd01, NbGSTd02, NbGSTd03 and NbGSTm03, were remarkably overexpressed 3.64-46.69-fold in the fenpropathrin resistant strain compared to that in the susceptible strain. These results suggest that fenpropathrin resistance in N. barkeri is a complex biological process involving many genetic changes and provide new insight into the N. barkeri resistance mechanism.
Collapse
Affiliation(s)
- Lin Cong
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China.
| | - Fei Chen
- Sinofert Holdings Limited, Henan Branch, Zhengzhou 450000, China.
| | - Shijiang Yu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China.
| | - Lili Ding
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China.
| | - Juan Yang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China.
| | - Ren Luo
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China.
| | - Huixia Tian
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China.
| | - Hongjun Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China.
| | - Haoqiang Liu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China.
| | - Chun Ran
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China.
| |
Collapse
|
43
|
Insecticide Resistance and Management Strategies in Urban Ecosystems. INSECTS 2016; 7:insects7010002. [PMID: 26751480 PMCID: PMC4808782 DOI: 10.3390/insects7010002] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/24/2015] [Accepted: 12/28/2015] [Indexed: 01/02/2023]
Abstract
The increased urbanization of a growing global population makes imperative the development of sustainable integrated pest management (IPM) strategies for urban pest control. This emphasizes pests that are closely associated with the health and wellbeing of humans and domesticated animals. Concurrently there are regulatory requirements enforced to minimize inadvertent exposures to insecticides in the urban environment. Development of insecticide resistance management (IRM) strategies in urban ecosystems involves understanding the status and mechanisms of insecticide resistance and reducing insecticide selection pressure by combining multiple chemical and non-chemical approaches. In this review, we will focus on the commonly used insecticides and molecular and physiological mechanisms underlying insecticide resistance in six major urban insect pests: house fly, German cockroach, mosquitoes, red flour beetle, bed bugs and head louse. We will also discuss several strategies that may prove promising for future urban IPM programs.
Collapse
|