1
|
Arellano‐García LI, Milton‐Laskibar I, Martínez JA, Arán‐González M, Portillo MP. Comparative effects of viable Lactobacillus rhamnosus GG and its heat-inactivated paraprobiotic in the prevention of high-fat high-fructose diet-induced non-alcoholic fatty liver disease in rats. Biofactors 2025; 51:e2116. [PMID: 39135211 PMCID: PMC11680974 DOI: 10.1002/biof.2116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 12/29/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver alterations worldwide, being gut microbiota dysbiosis one of the contributing factors to its development. The aim of this research is to compare the potential effects of a viable probiotic (Lactobacillus rhamnosus GG) with those exerted by its heat-inactivated paraprobiotic counterpart in a dietary rodent model of NAFLD. The probiotic administration effectively prevented the hepatic lipid accumulation induced by a high-fat high-fructose diet feeding, as demonstrated by chemical (lower TG content) and histological (lower steatosis grade and lobular inflammation) analyses. This effect was mainly mediated by the downregulation of lipid uptake (FATP2 protein expression) and upregulating liver TG release to bloodstream (MTTP activity) in rats receiving the probiotic. By contrast, the effect of the paraprobiotic preventing diet-induced liver lipid accumulation was milder, and mainly derived from the downregulation of hepatic de novo lipogenesis (SREBP-1c protein expression and FAS activity) and TG assembly (DGAT2 and AQP9 protein expression). The obtained results demonstrate that under these experimental conditions, the effects induced by the administration of viable L. rhamnosus GG preventing liver lipid accumulation in rats fed a diet rich in saturated fat and fructose differ from those induced by its heat-inactivated paraprobiotic counterpart.
Collapse
Affiliation(s)
- Laura Isabel Arellano‐García
- Nutrition and Obesity Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy and Lucio Lascaray Research CentreUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos IIIMadridSpain
| | - Iñaki Milton‐Laskibar
- Nutrition and Obesity Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy and Lucio Lascaray Research CentreUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos IIIMadridSpain
- BIOARABA Health Research InstituteVitoria‐GasteizSpain
| | - J. Alfredo Martínez
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos IIIMadridSpain
- Precision Nutrition and Cardiometabolic Health, IMDEA‐Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research CouncilMadridSpain
| | - Miguel Arán‐González
- Unidad de Gestión Clínica de Anatomía Patológica de GuipúzcoaHospital Universitario DonostiaSan SebastiánSpain
| | - María P. Portillo
- Nutrition and Obesity Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy and Lucio Lascaray Research CentreUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos IIIMadridSpain
- BIOARABA Health Research InstituteVitoria‐GasteizSpain
| |
Collapse
|
2
|
Salahi A, Abd El-Ghany WA. Beyond probiotics, uses of their next-generation for poultry and humans: A review. J Anim Physiol Anim Nutr (Berl) 2024; 108:1336-1347. [PMID: 38689488 DOI: 10.1111/jpn.13972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 05/02/2024]
Abstract
The production of healthy food is one of the basic requirements and challenges. Research efforts have been introduced in the human's food industry to reduce the microbial resistance and use safe and healthy alternatives with a high durability. However, the conducted work about these issues in the field of livestock animal production have been started since 2015. Inappropriate and extensive use of antibiotics has resulted in the increase of antimicrobial resistance, presence of drug residues in tissues, and destruction of the gut microbiome. Therefore, discovering and developing antibiotic substitutes were urgent demands. Probiotic compounds containing living micro-organisms are important antibiotic alternative that have been beneficially and extensively used in humans, animals, and poultry. However, some probiotics show some obstacles during production and applications. Accordingly, this review article proposes a comprehensive description of the next-generation of probiotics including postbiotics, proteobiotics, psychobiotics, immunobiotics and paraprobiotics and their effects on poultry production and human's therapy. These compounds proved great efficiency in terms of restoring gut health, improving performance and general health conditions, modulating the immune response and reducing the pathogenic micro-organisms. However, more future research work should be carried out regarding this issue.
Collapse
Affiliation(s)
- Ahmad Salahi
- Department of Animal Science, Faculty of Agriculture, Zanjan University, Zanjan, Iran
| | - Wafaa A Abd El-Ghany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Kim YT, Mills DA. Exploring the gut microbiome: probiotics, prebiotics, synbiotics, and postbiotics as key players in human health and disease improvement. Food Sci Biotechnol 2024; 33:2065-2080. [PMID: 39130661 PMCID: PMC11315840 DOI: 10.1007/s10068-024-01620-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 08/13/2024] Open
Abstract
The human gut microbiome accompanies us from birth, and it is developed and matured by diet, lifestyle, and environmental factors. During aging, the bacterial composition evolves in reciprocal communication with the host's physiological properties. Many diseases are closely related to the gut microbiome, which means the modulation of the gut microbiome can promote the disease targeting remote organs. This review explores the intricate interaction between the gut microbiome and other organs, and their improvement from disease by prebiotics, probiotics, synbiotics, and postbiotics. Each section of the review is supported by clinical trials that substantiate the benefits of modulation the gut microbiome through dietary intervention for improving primary health outcomes across various axes with the gut. In conclusion, the review underscores the significant potential of targeting the gut microbiome for therapeutic and preventative interventions in a wide range of diseases, calling for further research to fully unlock the microbiome's capabilities in enhancing human health.
Collapse
Affiliation(s)
- You-Tae Kim
- Department of Food Science and Technology, University of California-Davis, Davis, CA USA
| | - David A. Mills
- Department of Food Science and Technology, University of California-Davis, Davis, CA USA
| |
Collapse
|
4
|
Yun M, Jo HE, Kim N, Park HK, Jang YS, Choi GH, Jo HE, Seo JH, Mok JY, Park SM, Choi HJ. Oral Administration of Alcohol-Tolerant Lactic Acid Bacteria Alleviates Blood Alcohol Concentration and Ethanol-Induced Liver Damage in Rodents. J Microbiol Biotechnol 2024; 34:838-845. [PMID: 38247212 PMCID: PMC11102817 DOI: 10.4014/jmb.2312.12040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Excessive alcohol consumption can have serious negative consequences on health, including addiction, liver damage, and other long-term effects. The causes of hangovers include dehydration, alcohol and alcohol metabolite toxicity, and nutrient deficiency due to absorption disorders. Additionally, alcohol consumption can slow reaction times, making it more difficult to rapidly respond to situations that require quick thinking. Exposure to a large amount of ethanol can also negatively affect a person's righting reflex and balance. In this study, we evaluated the potential of lactic acid bacteria (LAB) to alleviate alcohol-induced effects and behavioral responses. Two LAB strains isolated from kimchi, Levilactobacillus brevis WiKim0168 and Leuconostoc mesenteroides WiKim0172, were selected for their ethanol tolerance and potential to alleviate hangover symptoms. Enzyme activity assays for alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) were then conducted to evaluate the role of these bacteria in alcohol metabolism. Through in vitro and in vivo studies, these strains were assessed for their ability to reduce blood alcohol concentrations and protect against alcohol-induced liver damage. The results indicated that these LAB strains possess significant ethanol tolerance and elevate ADH and ALDH activities. LAB administration remarkably reduced blood alcohol levels in rats after excessive alcohol consumption. Moreover, the LAB strains showed hepatoprotective effects and enhanced behavioral outcomes, highlighting their potential as probiotics for counteracting the adverse effects of alcohol consumption. These findings support the development of functional foods incorporating LAB strains that can mediate behavioral improvements following alcohol intake.
Collapse
Affiliation(s)
- Misun Yun
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Hee Eun Jo
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Namhee Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Hyo Kyeong Park
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Young Seo Jang
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Ga Hee Choi
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
- Division of Animal Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ha Eun Jo
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
- Division of Animal Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | | | - Ji Ye Mok
- Pharmsville Co., Ltd., Seoul 07793, Republic of Korea
| | - Sang Min Park
- Pharmsville Co., Ltd., Seoul 07793, Republic of Korea
| | - Hak-Jong Choi
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| |
Collapse
|
5
|
Georgieva M, Xenodochidis C, Krasteva N. Old age as a risk factor for liver diseases: Modern therapeutic approaches. Exp Gerontol 2023; 184:112334. [PMID: 37977514 DOI: 10.1016/j.exger.2023.112334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Recent scientific interest has been directed towards age-related diseases, driven by the significant increase in global life expectancy and the growing population of individuals aged 65 and above. The ageing process encompasses various biological, physiological, environmental, psychological, behavioural, and social changes, leading to an augmented susceptibility to chronic illnesses. Cardiovascular, neurological, musculoskeletal, liver and oncological diseases are prevalent in the elderly. Moreover, ageing individuals demonstrate reduced regenerative capacity and decreased tolerance towards therapeutic interventions, including organ transplantation. Liver diseases, such as non-alcoholic fatty liver disease, alcoholic liver disease, hepatitis, fibrosis, and cirrhosis, have emerged as significant public health concerns. Paradoxically, these conditions remain underestimated despite their substantial global impact. Age-related factors are closely associated with the severity and unfavorable prognosis of various liver diseases, warranting further investigation to enhance clinical management and develop novel therapeutic strategies. This comprehensive review focuses specifically on age-related liver diseases, their treatment strategies, and contemporary practices. It provides a detailed account of the global burden, types, molecular mechanisms, and epigenetic alterations underlying these liver pathologies.
Collapse
Affiliation(s)
- Milena Georgieva
- Institute of Molecular Biology "Acad. Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | - Charilaos Xenodochidis
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| |
Collapse
|
6
|
Hayashi H, Sawada K, Tanaka H, Muro K, Hasebe T, Nakajima S, Okumura T, Fujiya M. The effect of heat-killed Lactobacillus brevis SBL88 on improving selective hepatic insulin resistance in non-alcoholic fatty liver disease mice without altering the gut microbiota. J Gastroenterol Hepatol 2023; 38:1847-1854. [PMID: 37646384 DOI: 10.1111/jgh.16337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND AND AIM There have been several reports that some probiotics improve non-alcoholic fatty liver disease (NAFLD); however, many studies have involved cocktail therapies. We evaluated whether heat-killed Lactobacillus brevis SBL88 (L. brevis SBL88) monotherapy improves the clinical features of NAFLD. METHODS The NAFLD model was induced in mice fed a high-fat diet (HFD) (HFD mice) or HFD + 1% heat-killed L. brevis SBL88 (SBL mice) for 16 weeks. Histopathological liver findings were analyzed. To evaluate the gut microbiota, a modified terminal restriction fragment length polymorphism analysis of the feces was performed. RNA sequencing in the liver was performed with Ion Proton™. To investigate the direct effects of heat-killed L. brevis SBL88, an in vitro study was performed. RESULTS Histopathological findings revealed that fat droplets in the liver were significantly reduced in SBL mice; however, terminal restriction fragment length polymorphism did not show alterations in the gut microbiota between HFD mice and SBL mice. RNA sequencing and pathway analysis revealed that the regulation of lipid and insulin metabolism was affected. The mRNA expression of insulin receptor substrate 2 (IRS-2) was significantly higher in SBL mice, whereas the expression of IRS-1 was not significantly different. Phospho-IRS-2 expression was also significantly increased in SBL mice. In addition, an in vitro study revealed significant alterations in IRS-2 and forkhead box protein O1 expression levels. CONCLUSION SBL mice exhibited partially improved selective hepatic insulin resistance. Our data suggest that heat-killed L. brevis SBL88 could attenuate the clinical features of NAFLD that are not mediated by alterations in the gut microbiota.
Collapse
Affiliation(s)
- Hidemi Hayashi
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Koji Sawada
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Hiroki Tanaka
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Kazuki Muro
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Takumu Hasebe
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Shunsuke Nakajima
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Toshikatsu Okumura
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Mikihiro Fujiya
- Gastroenterology and Endoscopy, Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
7
|
Golchin A, Ranjbarvan P, Parviz S, Shokati A, Naderi R, Rasmi Y, Kiani S, Moradi F, Heidari F, Saltanatpour Z, Alizadeh A. The role of probiotics in tissue engineering and regenerative medicine. Regen Med 2023; 18:635-657. [PMID: 37492007 DOI: 10.2217/rme-2022-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
Tissue engineering and regenerative medicine (TERM) as an emerging field is a multidisciplinary science and combines basic sciences such as biomaterials science, biology, genetics and medical sciences to achieve functional TERM-based products to regenerate or replace damaged or diseased tissues or organs. Probiotics are useful microorganisms which have multiple effective functions on human health. They have some immunomodulatory and biocompatibility effects and improve wound healing. In this article, we describe the latest findings on probiotics and their pro-healing properties on various body systems that are useable in regenerative medicine. Therefore, this review presents a new perspective on the therapeutic potential of probiotics for TERM.
Collapse
Affiliation(s)
- Ali Golchin
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Parviz Ranjbarvan
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Shima Parviz
- Department of Tissue Engineering & Applied cell sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Amene Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Roya Naderi
- Neurophysiology Research center & Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Yousef Rasmi
- Cellular & Molecular Research Center & Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Samaneh Kiani
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, 48157-33971, Iran
| | - Faezeh Moradi
- Department of Tissue engineering, Medical Sciences Faculty, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - Fahimeh Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Zohreh Saltanatpour
- Pediatric Cell & Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
- Stem Cell & Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center & Department of Tissue Engineering & Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, 35147-99422, Iran
| |
Collapse
|
8
|
Zhang B, Li J, Fu J, Shao L, Yang L, Shi J. Interaction between mucus layer and gut microbiota in non-alcoholic fatty liver disease: Soil and seeds. Chin Med J (Engl) 2023; 136:1390-1400. [PMID: 37200041 PMCID: PMC10278733 DOI: 10.1097/cm9.0000000000002711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Indexed: 05/19/2023] Open
Abstract
ABSTRACT The intestinal mucus layer is a barrier that separates intestinal contents and epithelial cells, as well as acts as the "mucus layer-soil" for intestinal flora adhesion and colonization. Its structural and functional integrity is crucial to human health. Intestinal mucus is regulated by factors such as diet, living habits, hormones, neurotransmitters, cytokines, and intestinal flora. The mucus layer's thickness, viscosity, porosity, growth rate, and glycosylation status affect the structure of the gut flora colonized on it. The interaction between "mucus layer-soil" and "gut bacteria-seed" is an important factor leading to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Probiotics, prebiotics, fecal microbiota transplantation (FMT), and wash microbial transplantation are efficient methods for managing NAFLD, but their long-term efficacy is poor. FMT is focused on achieving the goal of treating diseases by enhancing the "gut bacteria-seed". However, a lack of effective repair and management of the "mucus layer-soil" may be a reason why "seeds" cannot be well colonized and grow in the host gut, as the thinning and destruction of the "mucus layer-soil" is an early symptom of NAFLD. This review summarizes the existing correlation between intestinal mucus and gut microbiota, as well as the pathogenesis of NAFLD, and proposes a new perspective that "mucus layer-soil" restoration combined with "gut bacteria-seed" FMT may be one of the most effective future strategies for enhancing the long-term efficacy of NAFLD treatment.
Collapse
Affiliation(s)
- Binbin Zhang
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
- Department of School of Life Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, China
| | - Jie Li
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Jinlong Fu
- Department of School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Li Shao
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
- Department of School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Luping Yang
- Department of Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Junping Shi
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
- Department of Infectious & Hepatology Diseases, Metabolic Disease Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| |
Collapse
|
9
|
Zhong Y, Wang T, Luo R, Liu J, Jin R, Peng X. Recent advances and potentiality of postbiotics in the food industry: Composition, inactivation methods, current applications in metabolic syndrome, and future trends. Crit Rev Food Sci Nutr 2022; 64:5768-5792. [PMID: 36537328 DOI: 10.1080/10408398.2022.2158174] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Postbiotics are defined as "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Postbiotics have unique advantages over probiotics, such as stability, safety, and wide application. Although postbiotics are research hotspots, the research on them is still very limited. This review provides comprehensive information on the scope of postbiotics, the preparation methods of inanimate microorganisms, and the application and mechanisms of postbiotics in metabolic syndrome (MetS). Furthermore, the application trends of postbiotics in the food industry are reviewed. It was found that postbiotics mainly include inactivated microorganisms, microbial lysates, cell components, and metabolites. Thermal treatments are the main methods to prepare inanimate microorganisms as postbiotics, while non-thermal treatments, such as ionizing radiation, ultraviolet light, ultrasound, and supercritical CO2, show great potential in postbiotic preparation. Postbiotics could ameliorate MetS through multiple pathways including the modulation of gut microbiota, the enhancement of intestinal barrier, the regulation of inflammation and immunity, and the modulation of hormone homeostasis. Additionally, postbiotics have great potential in the food industry as functional food supplements, food quality improvers, and food preservatives. In addition, the SWOT analyses showed that the development of postbiotics in the food industry exists both opportunities and challenges.
Collapse
Affiliation(s)
- Yujie Zhong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Ruilin Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiayu Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruyi Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Werlinger P, Nguyen HT, Gu M, Cho JH, Cheng J, Suh JW. Lactobacillus reuteri MJM60668 Prevent Progression of Non-Alcoholic Fatty Liver Disease through Anti-Adipogenesis and Anti-inflammatory Pathway. Microorganisms 2022; 10:2203. [PMID: 36363795 PMCID: PMC9696116 DOI: 10.3390/microorganisms10112203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/18/2022] [Accepted: 11/04/2022] [Indexed: 08/26/2023] Open
Abstract
Non-alcoholic fatty liver disease (NALFD) is a disease characterized by liver steatosis. The liver is a key organ involved in the metabolism of fat, protein, and carbohydrate, enzyme activation, and storage of glycogen, which is closely related to the intestine by the bidirectional relation of the gut-liver axis. Abnormal intestinal microbiota composition can affect energy metabolism and lipogenesis. In this experiment, we investigated the beneficial effect of Lactobacillus reuteri MJM60668 on lipid metabolism and lipogenesis. C57BL/6 mice were fed a high-fat diet (HFD) and orally administrated with MJM60668. Our results showed that mice treated with MJM60668 significantly decreased liver weight and liver/body weight ratio, without affecting food intake. Serum levels of ALT, AST, TG, TCHO, and IL-1β in mice fed with MJM60668 were decreased compared to the HFD group. Investigation of gene and protein expression on the lipogenesis and lipid metabolism showed that the expression of ACC, FAS, and SREBP was decreased, and PPARα and CPT was increased. Furthermore, an increase of adiponectin in serum was shown in our experiment. Moreover, serum IL-1β level was also significantly decreased in the treated mice. These results suggested that MJM60668 can strongly inhibit lipogenesis, enhance fatty acid oxidation, and suppress inflammation. Additionally, supplementation of MJM60668 increased the proportion of Akkermansiaceae and Lachnospiracea, confirming a potential improvement of gut microbiota, which is related to mucus barrier and decrease of triglycerides levels.
Collapse
Affiliation(s)
- Pia Werlinger
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin 17058, Korea
| | - Huong Thi Nguyen
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin 17058, Korea
| | - Mingkun Gu
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin 17058, Korea
| | - Joo-Hyung Cho
- Myongji Bioefficacy Research Center, Myongji University, Yongin 17058, Korea
| | - Jinhua Cheng
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin 17058, Korea
- Myongji Bioefficacy Research Center, Myongji University, Yongin 17058, Korea
| | - Joo-Won Suh
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin 17058, Korea
- Myongji Bioefficacy Research Center, Myongji University, Yongin 17058, Korea
| |
Collapse
|
11
|
Pasteurized Akkermansia muciniphila Reduces Fat Accumulation via nhr-49-Mediated Nuclear Hormone Signaling Pathway in Caenorhabditis elegans. Molecules 2022; 27:molecules27196159. [PMID: 36234692 PMCID: PMC9572206 DOI: 10.3390/molecules27196159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/03/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Pasteurized Akkermansia muciniphila (p-AKK) is related to lipid metabolism and helps control obesity. The main goal of this study was to investigate the role and mechanism of p-AKK in lipid metabolism using Caenorhabditis elegans. The results showed that p-AKK increased the healthy lifespan of nematodes and helped maintain exercise ability in aging, suggesting a potential increase in energy expenditure. The overall fat deposition and triglyceride level were significantly decreased and the p-AKK anti-oxidative stress helped to regulate fatty acid composition. Additionally, the transcriptome results showed that p-AKK increased the expression of lipo-hydrolase and fatty acid β-oxidation-related genes, including lipl-4, nhr-49, acs-2 and acdh-8, while it decreased the expression of fat synthesis-related genes, including fat-7, elo-2 and men-1. These results partially explain the mechanisms underlying the fact that p-AKK decreases fat accumulation of C. elegans via nhr-49/acs-2-mediated signaling involved in fatty acid β-oxidation and synthesis.
Collapse
|
12
|
Watanabe T, Hayashi K, Takara T, Teratani T, Kitayama J, Kawahara T. Effect of Oral Administration of Lactiplantibacillus plantarum SNK12 on Temporary Stress in Adults: A Randomized, Placebo-Controlled, Double-Blind, Parallel-Group Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19158936. [PMID: 35897310 PMCID: PMC9332698 DOI: 10.3390/ijerph19158936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023]
Abstract
Mouse studies have reported anti-stress effects of Lactiplantibacillus plantarum SNK12 (SNK). Specifically, oral SNK administration increased mRNA levels of hippocampal neurotrophic factor and gamma-aminobutyric acid receptor in mice with sub-chronic mild stress-induced social defeat; moreover, it improved depressive behavior. We aimed to evaluate the efficacy of SNK ingestion against stress in healthy adults. We used the Uchida–Kraepelin test for the stress load, with a low-dose (50 mg/day), high-dose (150 mg/day), and placebo groups (dextrin). The primary outcome was the psychological evaluation as measured by the Profile of Mood States 2nd Edition (POMS2) using total mood disturbance (TMD) scores. The secondary outcomes were the score of each POMS2 item, salivary cortisol as a stress marker, and autonomic balance with the low frequency (LF)/ high frequency (HF) ratio. Compared with the placebo group, the SNK ingestion group showed significantly lower TMD scores. Additionally, compared with the placebo group, the high-dose group showed significantly lower scores for Tension-Anxiety and Confusion-Bewilderment, while the low-dose group showed significantly lower Anger-Hostility scores, salivary cortisol levels, and LF/HF scores. Our findings suggest that SNK ingestion could relieve stress (negative feelings, anxiety, tension, embarrassment, confusion, anger, and hostility) resulting from the temporary load caused by work and study.
Collapse
Affiliation(s)
- Takumi Watanabe
- Division of Translational Research, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Tochigi, Japan; (T.T.); (J.K.)
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto, Kasugai 487-8501, Aichi, Japan; (K.H.); (T.K.)
- Correspondence: ; Tel.: +81-42-978-7208
| | - Kyoko Hayashi
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto, Kasugai 487-8501, Aichi, Japan; (K.H.); (T.K.)
| | - Tsuyoshi Takara
- Medical Corporation Seishinkai, Takara Clinic, 2-3-2-9, Higashigotanda, Shinagawa 141-0022, Tokyo, Japan;
| | - Takumi Teratani
- Division of Translational Research, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Tochigi, Japan; (T.T.); (J.K.)
| | - Joji Kitayama
- Division of Translational Research, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Tochigi, Japan; (T.T.); (J.K.)
| | - Toshio Kawahara
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto, Kasugai 487-8501, Aichi, Japan; (K.H.); (T.K.)
| |
Collapse
|
13
|
Prikhodko VA, Bezborodkina NN, Okovityi SV. Pharmacotherapy for Non-Alcoholic Fatty Liver Disease: Emerging Targets and Drug Candidates. Biomedicines 2022; 10:274. [PMID: 35203484 PMCID: PMC8869100 DOI: 10.3390/biomedicines10020274] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), or metabolic (dysfunction)-associated fatty liver disease (MAFLD), is characterized by high global incidence and prevalence, a tight association with common metabolic comorbidities, and a substantial risk of progression and associated mortality. Despite the increasingly high medical and socioeconomic burden of NAFLD, the lack of approved pharmacotherapy regimens remains an unsolved issue. In this paper, we aimed to provide an update on the rapidly changing therapeutic landscape and highlight the major novel approaches to the treatment of this disease. In addition to describing the biomolecules and pathways identified as upcoming pharmacological targets for NAFLD, we reviewed the current status of drug discovery and development pipeline with a special focus on recent evidence from clinical trials.
Collapse
Affiliation(s)
- Veronika A. Prikhodko
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 14A Prof. Popov Str., 197022 St. Petersburg, Russia;
| | - Natalia N. Bezborodkina
- Zoological Institute, Russian Academy of Sciences, 1 Universitetskaya emb., 199034 St. Petersburg, Russia;
| | - Sergey V. Okovityi
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 14A Prof. Popov Str., 197022 St. Petersburg, Russia;
- Scientific, Clinical and Educational Center of Gastroenterology and Hepatology, Saint Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| |
Collapse
|
14
|
He LH, Yao DH, Wang LY, Zhang L, Bai XL. Gut Microbiome-Mediated Alteration of Immunity, Inflammation, and Metabolism Involved in the Regulation of Non-alcoholic Fatty Liver Disease. Front Microbiol 2021; 12:761836. [PMID: 34795655 PMCID: PMC8593644 DOI: 10.3389/fmicb.2021.761836] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of end-stage liver disease, leading to a rapidly growing global public health burden. The term “gut microbiome (GM)” refers to the approximately 100 trillion microbial cells that inhabit the host’s gastrointestinal tract. There is increasing evidence that GM is involved in the pathogenesis of NAFLD and may be a potential target for intervention. To explore GM-based strategies for precise diagnosis and treatment of NAFLD, great efforts have been made to develop a comprehensive and in-depth understanding of the host–microbe interaction. This review evaluates this interaction critically, mainly considering the intricate regulation of the metabolism, immunity, and inflammatory status during the evolution of the disease pathogenesis, revealing roles for the GM in NAFLD by examining advances in potential mechanisms, diagnostics, and modulation strategies. Synopsis: Considering the intricate metabolic and immune/inflammatory homeostasis regulation, we evaluate the latest understanding of the host–microbe interaction and reveal roles for the gastrointestinal microbiome in NAFLD. Strategies targeting the gastrointestinal microbiome for the diagnosis and treatment of NAFLD are proposed.
Collapse
Affiliation(s)
- Li-Hong He
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,The First Clinical Medical College, Lanzhou University, Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Dun-Han Yao
- The First Clinical Medical College, Lanzhou University, Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ling-Yun Wang
- The First Clinical Medical College, Lanzhou University, Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xue-Li Bai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Fling RR, Zacharewski TR. Aryl Hydrocarbon Receptor (AhR) Activation by 2,3,7,8-Tetrachlorodibenzo- p-Dioxin (TCDD) Dose-Dependently Shifts the Gut Microbiome Consistent with the Progression of Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2021; 22:12431. [PMID: 34830313 PMCID: PMC8625315 DOI: 10.3390/ijms222212431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Gut dysbiosis with disrupted enterohepatic bile acid metabolism is commonly associated with non-alcoholic fatty liver disease (NAFLD) and recapitulated in a NAFLD-phenotype elicited by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice. TCDD induces hepatic fat accumulation and increases levels of secondary bile acids, including taurolithocholic acid and deoxycholic acid (microbial modified bile acids involved in host bile acid regulation signaling pathways). To investigate the effects of TCDD on the gut microbiota, the cecum contents of male C57BL/6 mice orally gavaged with sesame oil vehicle or 0.3, 3, or 30 µg/kg TCDD were examined using shotgun metagenomic sequencing. Taxonomic analysis identified dose-dependent increases in Lactobacillus species (i.e., Lactobacillus reuteri). Increased species were also associated with dose-dependent increases in bile salt hydrolase sequences, responsible for deconjugation reactions in secondary bile acid metabolism. Increased L. reuteri levels were further associated with mevalonate-dependent isopentenyl diphosphate (IPP) biosynthesis and o-succinylbenzoate synthase, a menaquinone biosynthesis associated gene. Analysis of the gut microbiomes from cirrhosis patients identified an increased abundance of genes from the mevalonate-dependent IPP biosynthesis as well as several other menaquinone biosynthesis genes, including o-succinylbenzoate synthase. These results extend the association of lactobacilli with the AhR/intestinal axis in NAFLD progression and highlight the similarities between TCDD-elicited phenotypes in mice to human NAFLD.
Collapse
Affiliation(s)
- Russell R. Fling
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Timothy R. Zacharewski
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
16
|
Lactobacillus reuteri FYNLJ109L1 Attenuating Metabolic Syndrome in Mice via Gut Microbiota Modulation and Alleviating Inflammation. Foods 2021; 10:foods10092081. [PMID: 34574191 PMCID: PMC8469823 DOI: 10.3390/foods10092081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 12/30/2022] Open
Abstract
Metabolic syndrome is caused by an excessive energy intake in a long-term, high-fat and/or high-sugar diet, resulting in obesity and a series of related complications, which has become a global health concern. Probiotics intervention can regulate the gut microbiota and relieve the systemic and chronic low-grade inflammation, which is an alternative to relieving metabolic syndrome. The aim of this work was to explore the alleviation of two different Lactobacillusreuteri strains on metabolic syndrome. Between the two L. reuteri strains, FYNLJ109L1 had a better improvement effect on blood glucose, blood lipid, liver tissue damage and other related indexes than NCIMB 30242. In particular, FYNLJ109L1 reduced weight gain, food intake and fat accumulation. Additionally, it can regulate the gut microbiota, increase IL-10, and reduce IL-6 and tumor necrosis factor-α (TNF-α), as well as liver injury, and further reduce insulin resistance and regulate lipid metabolism disorders. In addition, it could modulate the gut microbiota, particularly a decreased Romboutsia and Clostridium sensu stricto-1, and an increased Acetatifactor. The results indicated that FYNLJ109L1 could improve metabolic syndrome significantly via alleviating inflammation and gut microbiota modulation.
Collapse
|
17
|
Nagashimada M, Honda M. Effect of Microbiome on Non-Alcoholic Fatty Liver Disease and the Role of Probiotics, Prebiotics, and Biogenics. Int J Mol Sci 2021; 22:ijms22158008. [PMID: 34360773 PMCID: PMC8348401 DOI: 10.3390/ijms22158008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a leading cause of liver cirrhosis and hepatocellular carcinoma. NAFLD is associated with metabolic disorders such as obesity, insulin resistance, dyslipidemia, steatohepatitis, and liver fibrosis. Liver-resident (Kupffer cells) and recruited macrophages contribute to low-grade chronic inflammation in various tissues by modulating macrophage polarization, which is implicated in the pathogenesis of metabolic diseases. Abnormalities in the intestinal environment, such as the gut microbiota, metabolites, and immune system, are also involved in the pathogenesis and development of NAFLD. Hepatic macrophage activation is induced by the permeation of antigens, endotoxins, and other proinflammatory substances into the bloodstream as a result of increased intestinal permeability. Therefore, it is important to understand the role of the gut–liver axis in influencing macrophage activity, which is central to the pathogenesis of NAFLD and nonalcoholic steatohepatitis (NASH). Not only probiotics but also biogenics (heat-killed lactic acid bacteria) are effective in ameliorating the progression of NASH. Here we review the effect of hepatic macrophages/Kupffer cells, other immune cells, intestinal permeability, and immunity on NAFLD and NASH and the impact of probiotics, prebiotics, and biogenesis on those diseases.
Collapse
|
18
|
Induction of Immunogenic Response in BALB/c Mice by Live and Killed Form of Recombinant Lactococcus lactis Displaying EG95 of Echinococcus granulosus. IRANIAN BIOMEDICAL JOURNAL 2021; 25:284-96. [PMID: 34217159 PMCID: PMC8334390 DOI: 10.52547/ibj.25.4.284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: CE is a zoonotic parasitic infection caused by Echinococcus granulosus worldwide and is associated with economic losses among livestock animals. EG95 is an immunogenic antigen from the E. granulosus.Lactococcus lactis has been prested as a safe vehicle for antigen delivery. The goal of this study was to design a novel L. lactis strain displaying EG95 as a vaccine delivery system. Methods: The eg95 encoding gene fragment fused to the M6 anchoring protein was cloned into the pNZ7021 vector, and L. lactis NZ9000 displaying recombinant EG95 was constructed. The expression of an approximately 32-kDa EG95 protein was confirmed by Western blotting and immunofluorescence analysis. The immune responses were evaluated in BALB/c mice immunized orally and subcutaneously with the live and killed recombinant L. lactis, respectively. Results: Total IgG level in mice immunized with heat-killed recombinant L. lactis (pNZ7021-eg95) significantly increased compared to the control group. sIgA was significantly higher in mice received live recombinant L. lactis (pNZ7021-eg95) compared to the control mice. Splenic lymphocytes from immunized mice represented the high levels of IFN-γ and the low-levels of IL-4 and IL-10. Conclusion: Our results indicate that immunization with EG95-expressing L. lactis can induce both specific humoral and cellular immune responses in mice.
Collapse
|
19
|
Yang D, Lyu W, Hu Z, Gao J, Zheng Z, Wang W, Firrman J, Ren D. Probiotic Effects of Lactobacillus fermentum ZJUIDS06 and Lactobacillus plantarum ZY08 on Hypercholesteremic Golden Hamsters. Front Nutr 2021; 8:705763. [PMID: 34262929 PMCID: PMC8273167 DOI: 10.3389/fnut.2021.705763] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Hypercholesteremia or high cholesterol is one of the important factors leading to atherosclerosis and other cardiovascular diseases. The application of probiotics with cholesterol-lowering characteristics has become increasingly popular over the past decade due to their contribution to human health. This study aimed to evaluate the probiotic effects of Lactobacillus fermentum ZJUIDS06 and Lactobacillus plantarum ZY08 on hyperlipidemic golden hamsters. A hyperlipidemic model was established through a high cholesterol diet in golden hamsters, after which lyophilized Lactobacillus fermentum ZJUIDS06 and Lactobacillus plantarum ZY08 were orally administered individually for 8 weeks. The physiological characteristics of golden hamsters and short chain fatty acid (SCFA) in the colon were assessed by automatic Biochemical Analyzer and gas choromatograph, respectively. A MiSeq sequencing-based analysis of the bacterial 16S rRNA gene (V3–V4 region) in the cecum content was performed to analyze the cecum microbiota. Correlations between sets of these variables were also investigated using the R package “corrplot.” Results showed that neither Lactobacillus fermentum ZJUIDS06 nor Lactobacillus plantarum ZY08 inhibited body weight increase. However, supplementation with Lactobacillus fermentum ZJUIDS06 for 8 weeks increased colon SCFA levels (P < 0.05), decreased serum low-density lipoprotein, total cholesterol, and triglycerides levels, and also induced changes in the cecum microbiota of hyperlipidemic golden hamsters. Remarkably, oral administration of Lactobacillus fermentum ZJUIDS06 increased the relative abundance of Parabacteroides in the cecum, which served as a biomarker for colon SCFA production and improvement of serum cholesterol levels. In a word, Lactobacillus fermentum ZJUIDS06 improved hyperlipidemia in golden hamsters, which correlated with an increase in SCFA levels and relative abundance of Parabacteroides, indicating its potential importance in functional foods that can help lower cholesterol.
Collapse
Affiliation(s)
- Dongting Yang
- College of Animal Sciences, Institute of Dairy Science, Zhejiang University, Hangzhou, China
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ziyi Hu
- College of Animal Sciences, Institute of Dairy Science, Zhejiang University, Hangzhou, China
| | - Jiting Gao
- College of Animal Sciences, Institute of Dairy Science, Zhejiang University, Hangzhou, China
| | - Zhiyao Zheng
- College of Animal Sciences, Institute of Dairy Science, Zhejiang University, Hangzhou, China
| | - Weijun Wang
- Zhejiang Yiming Food Co. Ltd., Wenzhou, China
| | - Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA, United States
| | - Daxi Ren
- College of Animal Sciences, Institute of Dairy Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Yeh YL, Lu MC, Tsai BCK, Tzang BS, Cheng SM, Zhang X, Yang LY, Mahalakshmi B, Kuo WW, Xiang P, Huang CY. Heat-Killed Lactobacillus reuteri GMNL-263 Inhibits Systemic Lupus Erythematosus-Induced Cardiomyopathy in NZB/W F1 Mice. Probiotics Antimicrob Proteins 2021; 13:51-59. [PMID: 32514746 DOI: 10.1007/s12602-020-09668-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has been increasingly recognized that accelerated atherosclerosis is a major cause of morbidity and mortality in patients with systemic lupus erythematosus, a multisystem autoimmune disease. In this study, we investigated the anti-apoptotic effects of heat-killed Lactobacillus reuteri GMNL-263 on the cardiac tissue of NZB/W F1 mice. The myocardial architecture of the mice heart was observed and evaluated using different staining techniques such as hematoxylin and eosin, TUNEL assay, Masson's trichrome, and fluorescent immunohistochemistry. Additionally, the probiotics-related pathway proteins were analyzed via western blot analysis. Our results showed prevention of enlarged interstitial spaces and abnormal myocardial structures in the hearts of NZB/W F1 mice with L. reuteri GMNL-263 feeding. Significant reduction in TUNEL-positive cells, Fas death receptor-related components, and apoptosis was also detected in the cardiac tissues of the NZB/W F1 mice after L. reuteri GMNL-263 feeding compared with the control group. These findings are the first to reveal the protective effects of L. reuteri GMNL-263 against cardiac abnormalities in NZB/W F1 mice and suggest the potential clinical applications of L. reuteri GMNL-263 in the treatment of SLE-related cardiovascular diseases.
Collapse
Affiliation(s)
- Yu-Lan Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan.,Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Min-Chi Lu
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.,Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Bruce Chi-Kang Tsai
- Graduate Institute of Aging Medicine, China Medical University, Taichung, Taiwan
| | - Bor-Show Tzang
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Shiu-Min Cheng
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Xiaoyong Zhang
- Department of Cardiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Liang-Yo Yang
- Department of Physiology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - B Mahalakshmi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Peng Xiang
- Nephrology Center, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital , Qingyuan, Guangdong, China
| | - Chih-Yang Huang
- Graduate Institute of Aging Medicine, China Medical University, Taichung, Taiwan. .,Department of Biotechnology, Asia University, Taichung, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan. .,Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.
| |
Collapse
|
21
|
Zhao X, Zhong X, Liu X, Wang X, Gao X. Therapeutic and Improving Function of Lactobacilli in the Prevention and Treatment of Cardiovascular-Related Diseases: A Novel Perspective From Gut Microbiota. Front Nutr 2021; 8:693412. [PMID: 34164427 PMCID: PMC8215129 DOI: 10.3389/fnut.2021.693412] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence and development of cardiovascular-related diseases are associated with structural and functional changes in gut microbiota (GM). The accumulation of beneficial gut commensals contributes to the improvement of cardiovascular-related diseases. The cardiovascular-related diseases that can be relieved by Lactobacillus supplementation, including hypercholesterolemia, atherosclerosis, myocardial infarction, heart failure, type 2 diabetes mellitus, and obesity, have expanded. As probiotics, lactobacilli occupy a substantial part of the GM and play important functional roles through various GM-derived metabolites. Lactobacilli ultimately have a beneficial impact on lipid metabolism, inflammatory factors, and oxidative stress to relieve the symptoms of cardiovascular-related diseases. However, the axis and cellular process of gut commensal Lactobacillus in improving cardiovascular-related diseases have not been fully elucidated. Additionally, Lactobacillus strains produce diverse antimicrobial peptides, which help maintain intestinal homeostasis and ameliorate cardiovascular-related diseases. These strains are a field that needs to be further investigated immediately. Thus, this review demonstrated the mechanisms and summarized the evidence of the benefit of Lactobacillus strain supplementation from animal studies and human clinical trials. We also highlighted a broad range of lactobacilli candidates with therapeutic capability by mining their metabolites. Our study provides instruction in the development of lactobacilli as a functional food to improve cardiovascular-related diseases.
Collapse
Affiliation(s)
- Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoying Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
22
|
Zheng F, Wang Z, Stanton C, Ross RP, Zhao J, Zhang H, Yang B, Chen W. Lactobacillus rhamnosus FJSYC4-1 and Lactobacillus reuteri FGSZY33L6 alleviate metabolic syndrome via gut microbiota regulation. Food Funct 2021; 12:3919-3930. [PMID: 33977963 DOI: 10.1039/d0fo02879g] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Metabolic syndrome, which includes a series of metabolic disorders such as hyperglycemia, hyperlipidemia, insulin resistance and obesity, has become a catastrophic disease worldwide. Accordingly, probiotic intervention is a new strategy to alleviate metabolic syndrome, which can adjust the gut microbiota to a certain extent. The aim of the current work was to explore the alleviation of metabolic syndrome by Lactobacillus reuteri and L. rhamnosus. Two L. reuteri and two L. rhamnosus strains were administered to mice with a high-fat diet for 12 weeks. All Lactobacillus strains tested significantly slowed weight gain in the mice. Among four strains, L. reuteri FGSZY33L6 and L. rhamnosus FJSYC4-1 showed the strongest ability to relieve blood glucose disorders, blood lipid disorders, tissue damage, and particularly gut microbiota disorders. Thus, our findings indicate that these strains can regulate the gut microbiota and produce short-chain fatty acids (SCFAs), which can induce satiety hormones, inhibit food intake and increase satiety, and thus improve metabolic syndrome.
Collapse
Affiliation(s)
- Fuli Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China. and School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhi Wang
- Department of Cardiopulmonary Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China.
| | - Catherine Stanton
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, China and APC Microbiome Ireland, University College Cork, Cork, Ireland and Teagasc Food Research Centre, Moorepark, Co. Cork, Ireland
| | - R Paul Ross
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, China and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China. and School of Food Science and Technology, Jiangnan University, Wuxi, China and International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China. and School of Food Science and Technology, Jiangnan University, Wuxi, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China and Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China. and School of Food Science and Technology, Jiangnan University, Wuxi, China and International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China. and School of Food Science and Technology, Jiangnan University, Wuxi, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China and Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
23
|
Kang J, Lee JJ, Cho JH, Choe J, Kyoung H, Kim SH, Kim HB, Song M. Effects of dietary inactivated probiotics on growth performance and immune responses of weaned pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:520-530. [PMID: 34189502 PMCID: PMC8203999 DOI: 10.5187/jast.2021.e44] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022]
Abstract
This experiment was performed to verify whether dietary heat-killed
Lactobacillus rhamnosus (LR) improves growth performance
and modulates immune responses of weaned pigs. Ninety-six weaned pigs ([Landrace
× Yorkshire] × Duroc; 6.95 ± 0.25 kg body weight [BW]; 28 d
old) were randomly allocated to four treatments: 1) a basal diet without
heat-killed LR (CON), 2) T1 (CON with 0.1% heat-killed LR), 3) T2 (CON with 0.2%
heat-killed LR), and 4) T3 (CON with 0.4% heat-killed LR). Each treatment had
six pens with four pigs (6 replicates per treatment) in a randomized completely
block design. The heat-killed LR used in this study contained 1 ×
109 FU/g of LR in a commercial product. Pigs were fed each
treatment for four weeks using a two-phase feeding program to measure growth
performance and frequency of diarrhea. During the last week of this study, all
diets contained 0.2% chromic oxide as an indigestible marker. Fecal sampling was
performed through rectal palpation for the consecutive three days after the four
adaptation days to measure apparent total tract digestibility (ATTD) of dry
matter, crude protein, and gross energy (GE). Blood sampling was also performed
on day 1, 3, 7, and 14 after weaning to measure immune responses such as serum
tumor necrosis factor-α (TNF-α), transforming growth
factor-β1 (TGF-β1), C-reactive protein (CRP), and cortisol. The
heat-killed LR increased (p < 0.05) growth rate, feed
efficiency, and ATTD of GE for overall experimental period compared with CON,
but reduced (p < 0.05) post-weaning diarrhea. In
addition, pigs fed diets contained heat-killed had lower concentrations of serum
TNF-α (d 7; p < 0.05), TGF-β1 (d 7;
p < 0.10), and cortisol (d 3 and 7;
p < 0.05) than pigs fed CON. In conclusion, dietary
heat-killed LR improved growth rate, modified immune responses of weaned pigs,
and alleviated post-weaning diarrhea.
Collapse
Affiliation(s)
- Joowon Kang
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Jeong Jae Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Jin Ho Cho
- Division of Food and Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Jeehwan Choe
- Department of Beef Science, Korea National Collage of Agriculture and Fisheries, Jeonju 54874, Korea
| | - Hyunjin Kyoung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | | | - Hyeun Bum Kim
- Department of Animal Resource, Dankook University, Cheonan 31116, Korea
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
24
|
Gutiérrez-Cuevas J, Sandoval-Rodriguez A, Meza-Rios A, Monroy-Ramírez HC, Galicia-Moreno M, García-Bañuelos J, Santos A, Armendariz-Borunda J. Molecular Mechanisms of Obesity-Linked Cardiac Dysfunction: An Up-Date on Current Knowledge. Cells 2021; 10:cells10030629. [PMID: 33809061 PMCID: PMC8000147 DOI: 10.3390/cells10030629] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is defined as excessive body fat accumulation, and worldwide obesity has nearly tripled since 1975. Excess of free fatty acids (FFAs) and triglycerides in obese individuals promote ectopic lipid accumulation in the liver, skeletal muscle tissue, and heart, among others, inducing insulin resistance, hypertension, metabolic syndrome, type 2 diabetes (T2D), atherosclerosis, and cardiovascular disease (CVD). These diseases are promoted by visceral white adipocyte tissue (WAT) dysfunction through an increase in pro-inflammatory adipokines, oxidative stress, activation of the renin-angiotensin-aldosterone system (RAAS), and adverse changes in the gut microbiome. In the heart, obesity and T2D induce changes in substrate utilization, tissue metabolism, oxidative stress, and inflammation, leading to myocardial fibrosis and ultimately cardiac dysfunction. Peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of carbohydrate and lipid metabolism, also improve insulin sensitivity, triglyceride levels, inflammation, and oxidative stress. The purpose of this review is to provide an update on the molecular mechanisms involved in obesity-linked CVD pathophysiology, considering pro-inflammatory cytokines, adipokines, and hormones, as well as the role of oxidative stress, inflammation, and PPARs. In addition, cell lines and animal models, biomarkers, gut microbiota dysbiosis, epigenetic modifications, and current therapeutic treatments in CVD associated with obesity are outlined in this paper.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Cuevas
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Jalisco 44340, Mexico; (J.G.-C.); (A.S.-R.); (H.C.M.-R.); (M.G.-M.); (J.G.-B.)
| | - Ana Sandoval-Rodriguez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Jalisco 44340, Mexico; (J.G.-C.); (A.S.-R.); (H.C.M.-R.); (M.G.-M.); (J.G.-B.)
| | - Alejandra Meza-Rios
- Tecnologico de Monterrey, Campus Guadalajara, Zapopan, School of Medicine and Health Sciences, Jalisco 45201, Mexico; (A.M.-R.); (A.S.)
| | - Hugo Christian Monroy-Ramírez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Jalisco 44340, Mexico; (J.G.-C.); (A.S.-R.); (H.C.M.-R.); (M.G.-M.); (J.G.-B.)
| | - Marina Galicia-Moreno
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Jalisco 44340, Mexico; (J.G.-C.); (A.S.-R.); (H.C.M.-R.); (M.G.-M.); (J.G.-B.)
| | - Jesús García-Bañuelos
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Jalisco 44340, Mexico; (J.G.-C.); (A.S.-R.); (H.C.M.-R.); (M.G.-M.); (J.G.-B.)
| | - Arturo Santos
- Tecnologico de Monterrey, Campus Guadalajara, Zapopan, School of Medicine and Health Sciences, Jalisco 45201, Mexico; (A.M.-R.); (A.S.)
| | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Jalisco 44340, Mexico; (J.G.-C.); (A.S.-R.); (H.C.M.-R.); (M.G.-M.); (J.G.-B.)
- Tecnologico de Monterrey, Campus Guadalajara, Zapopan, School of Medicine and Health Sciences, Jalisco 45201, Mexico; (A.M.-R.); (A.S.)
- Correspondence: ; Tel.: +52-333-677-8741
| |
Collapse
|
25
|
Ribeiro WR, Queiroz AG, Mendes E, Casaro MB, Nascimento CM, Coelho LSSF, Martins FS, Leite-Silva VR, Ferreira CM. Preventive oral supplementation with Bifidobacterium longum 5 1A alleviates oxazolone-induced allergic contact dermatitis-like skin inflammation in mice. Benef Microbes 2021; 12:199-209. [PMID: 33573507 DOI: 10.3920/bm2020.0134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Allergic contact dermatitis (ACD) is a common allergic skin disease that affects individuals subjected to different antigen exposure conditions and significantly impacts the quality of life of those affected. Numerous studies have demonstrated that probiotics suppress inflammation through immunomodulatory effects. In this study, we aimed to evaluate the effect of the probiotic Bifidobacterium longum 51A as a preventive treatment for ACD using an oxazolone-induced murine model. We demonstrated that B. longum 51A exerted a prophylactic effect on oxazolone-induced ACD-like skin inflammation via reductions in ear and dermal thickness and leucocyte infiltration. The administration of inactivated B. longum 51A did not affect oxazolone-induced ACD-like skin inflammation, suggesting that the bacteria must be alive to be effective. Given that B. longum 51A is an acetate producer, we treated mice with acetate intraperitoneally, which also prevented ear and dermal thickening. Moreover, the tissue levels of the inflammatory cytokines and chemokines interleukin (IL)-10, IL-33, tumour necrosis factor-α, chemokine (C-C motif) ligand 2/monocyte chemoattractant protein-1 and chemokine (C-C motif) ligand 5/RANTES were significantly reduced after probiotic treatment, but only IL-33 and IL-10 were reduced when the mice were treated with acetate. These results show that B. longum 51A exerted a potential prophylactic effect on skin inflammation and that acetate represents one potential mechanism. However, other factors are likely involved since these two treatments do not yield the same results.
Collapse
Affiliation(s)
- W R Ribeiro
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - A G Queiroz
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - E Mendes
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - M B Casaro
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - C M Nascimento
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - L S S F Coelho
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - F S Martins
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos 6627, Campus Pampulha UFMG Belo Horizonte, MG 31970201, Brazil
| | - V R Leite-Silva
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil.,Therapeutics Research Centre, Translational Research Institute, Diamantina Institute, University of Queensland, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - C M Ferreira
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| |
Collapse
|
26
|
Chiang CJ, Tsai BCK, Lu TL, Chao YP, Day CH, Ho TJ, Wang PN, Lin SC, Padma VV, Kuo WW, Huang CY. Diabetes-induced cardiomyopathy is ameliorated by heat-killed Lactobacillus reuteri GMNL-263 in diabetic rats via the repression of the toll-like receptor 4 pathway. Eur J Nutr 2021; 60:3211-3223. [PMID: 33555373 DOI: 10.1007/s00394-020-02474-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Diabetes mellitus (DM) leads to disorders such as cardiac hypertrophy, cardiac myocyte apoptosis, and cardiac fibrosis. Previous studies have shown that Lactobacillus reuteri GMNL-263 decreases cardiomyopathy by reducing inflammation. In this study, we investigated the potential benefit of GMNL-263 supplementation in treating diabetes-induced cardiomyocytes in rats with DM. METHODS Five-week-old male Wistar rats were randomly divided into three groups, control, DM, and rats with DM treated with different dosages of L. reuteri GMNL-263. After undergoing treatment for 4 weeks, all rats were euthanized for further analysis. RESULTS We observed that cardiac function and structure of rats with DM was rescued by GMNL-263. Activation of toll-like receptor 4 (TLR4)-related inflammatory, hypertrophic, and fibrotic signaling pathways in the hearts of rats with DM was reduced by treatment with GMNL-263. CONCLUSION Our findings demonstrate that GMNL-263 inhibited diabetes-induced cardiomyocytes via the repression of the TLR4 pathway. Moreover, these findings suggest that treatment with high-dose GMNL-263 could be a precautionary therapy for reducing the diabetes-induced cardiomyopathy.
Collapse
Affiliation(s)
- Chung-Jen Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tzu-Li Lu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Yun-Peng Chao
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | | | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Pin-Ning Wang
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | - Sheng-Chuan Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Department of Biological Science and Technology, Asia University, Taichung, Taiwan.
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.
| |
Collapse
|
27
|
Koay KP, Tsai BCK, Kuo CH, Kuo WW, Luk HN, Day CH, Chen RJ, Chen MYC, Padma VV, Huang CY. Hyperglycemia-Induced Cardiac Damage Is Alleviated by Heat-Inactivated Lactobacillus reuteri GMNL-263 via Activation of the IGF1R Survival Pathway. Probiotics Antimicrob Proteins 2021; 13:1044-1053. [PMID: 33527184 DOI: 10.1007/s12602-021-09745-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
Abstract
Diabetes-induced cardiomyocyte apoptosis is one of the major causes of mortality in patients with diabetes. Numerous studies have indicated the beneficial effects of Lactobacillus reuteri GMNL-263. However, the protective effect of Lactobacillus reuteri GMNL-263 in cardiac damage associated with diabetes remains poorly understood. In this study, we aimed to investigate the protective effect of Lactobacillus reuteri GMNL-263 on cardiomyocytes in diabetic rats. Five-week-old male Wistar rats were categorized into normal control group, diabetes group (55 mg/kgw STZ-induced diabetes via intraperitoneal injection), and diabetic animals treated with Lactobacillus reuteri GMNL-263 (109 CFU/rat/day, oral administration for 4 weeks). The results were presented that oral administration of a high dose of Lactobacillus reuteri GMNL-263 in diabetic rats activated IGF1R cell survival pathways to decrease the Fas-dependent and mitochondrial-dependent apoptotic pathways induced by hyperglycemia. We found that GMNL-263 significantly attenuated cell apoptosis via the IGF1R survival pathway in diabetic rats. The findings of this study suggest that GMNL-263 treatment maybe an effective therapeutic approach for the prevention of cardiac apoptosis in patients with diabetes.
Collapse
Affiliation(s)
- Ker-Ping Koay
- Department of Anesthesia, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan.,Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Hsiang-Ning Luk
- Department of Anesthesia, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Michael Yu-Chih Chen
- Department of Cardiology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan. .,Department of Biological Science and Technology, Asia University, Taichung, Taiwan. .,Center of General Education, Tzu Chi University of Science and Technology, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
28
|
Kessoku T, Kobayashi T, Imajo K, Tanaka K, Yamamoto A, Takahashi K, Kasai Y, Ozaki A, Iwaki M, Nogami A, Honda Y, Ogawa Y, Kato S, Higurashi T, Hosono K, Yoneda M, Okamoto T, Usuda H, Wada K, Kobayashi N, Saito S, Nakajima A. Endotoxins and Non-Alcoholic Fatty Liver Disease. Front Endocrinol (Lausanne) 2021; 12:770986. [PMID: 34777261 PMCID: PMC8586459 DOI: 10.3389/fendo.2021.770986] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. It occurs with a prevalence of up to 25%, of which 10-20% cases progress to nonalcoholic steatohepatitis (NASH), cirrhosis, and liver cancer. The histopathology of NASH is characterized by neutrophilic infiltration, and endotoxins from gram-negative rods have been postulated as a contributing factor. Elevations in endotoxin levels in the blood can be classified as intestinal and hepatic factors. In recent years, leaky gut syndrome, which is characterized by impaired intestinal barrier function, has become a significant issue. A leaky gut may prompt intestinal bacteria dysbiosis and increase the amount of endotoxin that enters the liver from the portal vein. These contribute to persistent chronic inflammation and progressive liver damage. In addition, hepatic factors suggest that liver damage can be induced by low-dose endotoxins, which does not occur in healthy individuals. In particular, increased expression of CD14, an endotoxin co-receptor in the liver, may result in leptin-induced endotoxin hyper-responsiveness in obese individuals. Thus, elevated blood endotoxin levels contribute to the progression of NASH. The current therapeutic targets for NASH treat steatosis and liver inflammation and fibrosis. While many clinical trials are underway, no studies have been performed on therapeutic agents that target the intestinal barrier. Recently, a randomized placebo-controlled trial examined the role of the intestinal barrier in patients with NAFLD. To our knowledge, this study was the first of its kind and study suggested that the intestinal barrier may be a novel target in the future treatment of NAFLD.
Collapse
Affiliation(s)
- Takaomi Kessoku
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Palliative Medicine, Yokohama City University Hospital, Yokohama, Japan
- *Correspondence: Takaomi Kessoku,
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kosuke Tanaka
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Palliative Medicine, Yokohama City University Hospital, Yokohama, Japan
| | - Atsushi Yamamoto
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kota Takahashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuki Kasai
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Anna Ozaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Palliative Medicine, Yokohama City University Hospital, Yokohama, Japan
| | - Asako Nogami
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuji Ogawa
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shingo Kato
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takuma Higurashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kunihiro Hosono
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takayuki Okamoto
- Department of Pharmacology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Haruki Usuda
- Department of Pharmacology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Koichiro Wada
- Department of Pharmacology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Noritoshi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Oncology, Yokohama City University Hospital, Yokohama, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
29
|
Postbiotics and paraprobiotics: From concepts to applications. Food Res Int 2020; 136:109502. [PMID: 32846581 DOI: 10.1016/j.foodres.2020.109502] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
In recent years, new probiotic-related concepts such as postbiotics and paraprobiotics have been used to describe non-viable microorganisms or bacterial-free extracts that may provide benefits to the host by offering bioactivities additional to probiotics. However, several aspects related to these postbiotics and paraprobiotics bioactivities remain unexplored or are poorly understood. Therefore, the aim of this work is to provide an overview of the general aspects and emerging trends of postbiotics and paraprobiotics, such as conceptualization of terms, production, characterization, bioactivities, health-promoting effects, bioengineering approaches, and applications. In vitro and in vivo studies have demonstrated that some postbiotics and paraprobiotics exhibit bioactivities such as anti-inflammatory, immunomodulatory, anti-proliferative, antioxidant, and antimicrobial. These bioactivities could be involved in health-promoting effects observed in human and clinical trials, but despite the scientific evidence available, the mechanisms of action and the signaling pathways involved have not been fully elucidated. Nevertheless, paraprobiotics and postbiotics possess valuable potential for the development of biotechnological products with functional ingredients for the nutraceutical industry.
Collapse
|
30
|
Heat-killed probiotic regulates the body’s regulatory immunity to attenuate subsequent experimental autoimmune arthritis. Immunol Lett 2019; 216:89-96. [DOI: 10.1016/j.imlet.2019.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/22/2022]
|
31
|
Liu L, Li P, Liu Y, Zhang Y. Efficacy of Probiotics and Synbiotics in Patients with Nonalcoholic Fatty Liver Disease: A Meta-Analysis. Dig Dis Sci 2019; 64:3402-3412. [PMID: 31203554 DOI: 10.1007/s10620-019-05699-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Extensive epidemiological evidence suggests that nonalcoholic fatty liver disease (NAFLD) is the primary chronic liver disease worldwide. However, some studies have showed conflicting results on the effects of probiotics and synbiotics supplementation. Therefore, we conducted a systematic review and meta-analysis to investigate the effectiveness of the supplementation in subjects with NAFLD. METHODS We searched systematically PubMed, Cochrane, and Embase databases up to April 2018 and checked manually the bibliography of the original articles. The quality of the studies was evaluated using the Cochrane Risk of Bias Tool. RESULTS This study analyzed 15 randomized, controlled trials involving 782 patients with NAFLD. Probiotics and synbiotics supplementation could significantly improve liver steatosis, alanine aminotransferase, aspartate aminotransferase, triglyceride, total cholesterol, high-density lipoprotein, low-density lipoprotein, homeostasis model assessment-insulin resistance, liver stiffness and tumor necrosis factor-alpha (all P < 0.05). But the supplementation could not ameliorate body mass index (mean difference [MD] = -0.00; 95% confidence interval [CI]: -0.22 to 0.22, P = 0.99), waist circumference (MD = -0.01; 95% CI -0.03 to 0.02, P = 0.57) and fasting blood sugar (standard mean difference [SMD] = -0.10; 95% CI -0.32 to 0.12, P = 0.39). CONCLUSION We present clear evidence for the benefit of probiotics and synbiotics supplementation for liver steatosis, liver enzymes, lipid profiles and liver stiffness in patients with NAFLD.
Collapse
Affiliation(s)
- Liang Liu
- School of Graduate, Tianjin Medical University, Tianjin, China.,Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China
| | - Ping Li
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China. .,Tianjin Research Institute of Liver Diseases, Tianjin, China.
| | - Yiqi Liu
- School of Graduate, Tianjin Medical University, Tianjin, China
| | - Yilian Zhang
- School of Graduate, Tianjin Medical University, Tianjin, China
| |
Collapse
|
32
|
Meroni M, Longo M, Dongiovanni P. The Role of Probiotics in Nonalcoholic Fatty Liver Disease: A New Insight into Therapeutic Strategies. Nutrients 2019; 11:nu11112642. [PMID: 31689910 PMCID: PMC6893730 DOI: 10.3390/nu11112642] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a broad spectrum of pathological hepatic conditions ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), which may predispose to liver cirrhosis and hepatocellular carcinoma (HCC). Due to the epidemic obesity, NAFLD is representing a global health issue and the leading cause of liver damage worldwide. The pathogenesis of NAFLD is closely related to insulin resistance (IR), adiposity and physical inactivity as well as genetic and epigenetic factors corroborate to the development and progression of hepatic steatosis and liver injury. Emerging evidence has outlined the implication of gut microbiota and gut-derived endotoxins as actively contributors to NAFLD pathophysiology probably due to the tight anatomo-functional crosstalk between the gut and the liver. Obesity, nutrition and environmental factors might alter intestinal permeability producing a favorable micro-environment for bacterial overgrowth, mucosal inflammation and translocation of both invasive pathogens and harmful byproducts, which, in turn, influence hepatic fat composition and exacerbated pro-inflammatory and fibrotic processes. To date, no therapeutic interventions are available for NAFLD prevention and management, except for modifications in lifestyle, diet and physical exercise even though they show discouraging results due to the poor compliance of patients. The premise of this review is to discuss the role of gut–liver axis in NAFLD and emphasize the beneficial effects of probiotics on gut microbiota composition as a novel attractive therapeutic strategy to introduce in clinical practice.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy.
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy.
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy.
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy.
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy.
| |
Collapse
|
33
|
Nishida K, Sawada D, Kuwano Y, Tanaka H, Rokutan K. Health Benefits of Lactobacillus gasseri CP2305 Tablets in Young Adults Exposed to Chronic Stress: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2019; 11:nu11081859. [PMID: 31405122 PMCID: PMC6723420 DOI: 10.3390/nu11081859] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
Short-term administration of Lactobacillus gasseri CP2305 improves stress-associated symptoms and clinical symptoms in healthy young adults and in patients with irritable bowel syndrome, respectively. We evaluated the efficacy and health benefits of the long-term use of a tablet containing heat-inactivated, washed Lactobacillus gasseri CP2305 (CP2305) in healthy young adults. Sixty Japanese medical students (41 men and 19 women) preparing for the national examination for medical practitioners ingested CP2305-containing or placebo tablets once daily for 24 weeks. Intake of the CP2305 tablet significantly reduced anxiety and sleep disturbance relative to placebo, as quantitated by the Spielberger State-Trait Anxiety Inventory and the Pittsburgh Sleep Quality Index. Single-channel sleep electroencephalograms show that CP2305 significantly shortened sleep latency and wake time after sleep onset and increased the delta power ratio in the first sleep cycle. CP2305 also significantly lowered salivary chromogranin A levels compared with placebo. Furthermore, 16S rRNA gene sequencing of participant feces demonstrated that CP2305 administration attenuated the stress-induced decline of Bifidobacterium spp. and the stress-induced elevation of Streptococcus spp. We conclude that the long-term use of CP2305-containing tablets may improve the mental state, sleep quality, and gut microbiota of healthy adults under stressful conditions.
Collapse
Affiliation(s)
- Kensei Nishida
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan.
| | - Daisuke Sawada
- Core Technology Laboratories, Asahi Quality & Innovations, Ltd., 11-10, 5 Chome, Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan
| | - Yuki Kuwano
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Hiroki Tanaka
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Kazuhito Rokutan
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| |
Collapse
|
34
|
Porras D, Nistal E, Martínez-Flórez S, Olcoz JL, Jover R, Jorquera F, González-Gallego J, García-Mediavilla MV, Sánchez-Campos S. Functional Interactions between Gut Microbiota Transplantation, Quercetin, and High-Fat Diet Determine Non-Alcoholic Fatty Liver Disease Development in Germ-Free Mice. Mol Nutr Food Res 2019; 63:e1800930. [PMID: 30680920 DOI: 10.1002/mnfr.201800930] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/21/2018] [Indexed: 12/16/2022]
Abstract
SCOPE Modulation of intestinal microbiota has emerged as a new therapeutic approach for non-alcoholic fatty liver disease (NAFLD). Herein, it is addressed whether gut microbiota modulation by quercetin and intestinal microbiota transplantation can influence NAFLD development. METHODS AND RESULTS Gut microbiota donor mice are selected according to their response to high-fat diet (HFD) and quercetin in terms of obesity and NAFLD-related biomarkers. Germ-free recipients displayed metabolic phenotypic differences derived from interactions between microbiota transplanted, diets, and quercetin. Based on the evaluation of hallmark characteristics of NAFLD, it is found that gut microbiota transplantation from the HFD-non-responder donor and the HFD-fed donor with the highest response to quercetin results in a protective phenotype against HFD-induced NAFLD, in a mechanism that involves gut-liver axis alteration blockage in these receivers. Gut microbiota from the HFD-responder donor predisposed transplanted germ-free mice to NAFLD. Divergent protective and deleterious metabolic phenotypes exhibited are related to definite microbial profiles in recipients, highlighting the predominant role of Akkermansia genus in the protection from obesity-associated NAFLD development. CONCLUSIONS The results provide scientific support for the prebiotic capacity of quercetin and the transfer of established metabolic profiles through gut microbiota transplantation as a protective strategy against the development of obesity-related NAFLD.
Collapse
Affiliation(s)
- David Porras
- Institute of Biomedicine (IBIOMED), University of León, 24071, León, Spain
| | - Esther Nistal
- Institute of Biomedicine (IBIOMED), University of León, 24071, León, Spain.,Department of Gastroenterology. Complejo Asistencial Universitario de León, 24008, León, Spain
| | | | - José Luis Olcoz
- Department of Gastroenterology. Complejo Asistencial Universitario de León, 24008, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Ramiro Jover
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Experimental Hepatology Unit, IIS Hospital La Fe, 46026, Valencia, Spain.,Department of Biochemistry and Molecular Biology, University of Valencia, 46010, Valencia, Spain
| | - Francisco Jorquera
- Department of Gastroenterology. Complejo Asistencial Universitario de León, 24008, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, 24071, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Victoria García-Mediavilla
- Institute of Biomedicine (IBIOMED), University of León, 24071, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Sonia Sánchez-Campos
- Institute of Biomedicine (IBIOMED), University of León, 24071, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain
| |
Collapse
|
35
|
Heat-killed Bifidobacterium animalis subsp. Lactis CECT 8145 increases lean mass and ameliorates metabolic syndrome in cafeteria-fed obese rats. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
36
|
Lactobacillus paracasei GMNL-32 exerts a therapeutic effect on cardiac abnormalities in NZB/W F1 mice. PLoS One 2017; 12:e0185098. [PMID: 28934296 PMCID: PMC5608316 DOI: 10.1371/journal.pone.0185098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/06/2017] [Indexed: 01/01/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a disease that mostly affects women. Accelerated atherosclerosis is a high-risk factor associated with SLE patients. SLE associated with cardiovascular disease is one of the most important causes of death. In this study, we demonstrated that Lactobacillus paracasei GMNL-32 (GMNL-32), a probiotic species, exhibits anti-fibrosis and anti-apoptotic effects on the cardiac tissue of NZB/WF1 mice. Female NZB/W F1 mice, a well-known and commonly used lupus-prone mouse strain, were treated with or without GMNL-32 administration for 12 weeks. Oral administration of GMNL-32 to NZB/WF1 mice significantly increased the ventricular thickness when compared to that of NZB/WF1 mice. Administration of GMNL-32 significantly attenuated the cardiac cell apoptosis that was observed in exacerbate levels in the control NZB/WF1 mice. Further, the cellular morphology that was slightly distorted in the NZB/WF1 was effectively alleviated in the treatment group mice. In addition, GMNL-32 reduced the level of Fas death receptor-related pathway of apoptosis signaling and enhanced anti-apoptotic proteins. These results indicate that GMNL-32 exhibit an effective protective effect on cardiac cells of SLE mice. Thus, GMNL-32 may be a potential therapeutic strategy against SLE associated arthrosclerosis.
Collapse
|
37
|
Effects of oral Lactobacillus administration on antioxidant activities and CD4+CD25+forkhead box P3 (FoxP3)+ T cells in NZB/W F1 mice. Br J Nutr 2017; 118:333-342. [PMID: 28901888 DOI: 10.1017/s0007114517002112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that is characterised by a dysregulation of the immune system, which causes inflammation responses, excessive oxidative stress and a reduction in the number of cluster of differentiation (CD)4+CD25+forkhead box P3 (FoxP3)+ T cells. Supplementation with certain Lactobacillus strains has been suggested to be beneficial in the comprehensive treatment of SLE. However, little is known about the effect and mechanism of certain Lactobacillus strains on SLE. To investigate the effects of Lactobacillus on SLE, NZB/W F1 mice were orally gavaged with Lactobacillus paracasei GMNL-32 (GMNL-32), Lactobacillus reuteri GMNL-89 (GMNL-89) and L. reuteri GMNL-263 (GMNL-263). Supplementation with GMNL-32, GMNL-89 and GMNL-263 significantly increased antioxidant activity, reduced IL-6 and TNF-α levels and significantly decreased the toll-like receptors/myeloid differentiation primary response gene 88 signalling in NZB/W F1 mice. Notably, supplementation with GMNL-263, but not GMNL-32 and GMNL-89, in NZB/W F1 mice significantly increased the differentiation of CD4+CD25+FoxP3+ T cells. These findings reveal beneficial effects of GMNL-32, GMNL-89 and GMNL-263 on NZB/W F1 mice and suggest that these specific Lactobacillus strains can be used as part of a comprehensive treatment of SLE patients.
Collapse
|
38
|
Doulberis M, Kotronis G, Gialamprinou D, Kountouras J, Katsinelos P. Non-alcoholic fatty liver disease: An update with special focus on the role of gut microbiota. Metabolism 2017; 71:182-197. [PMID: 28521872 DOI: 10.1016/j.metabol.2017.03.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/19/2017] [Accepted: 03/27/2017] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a significant global health burden in children, adolescents and adults with substantial rise in prevalence over the last decades. Accumulating data from manifold studies support the idea of NAFLD as a hepatic manifestation of metabolic syndrome, being rather a systemic metabolic disease than a liver confined pathology. Emerging data support that the gut microbiome represents a significant environmental factor contributing to NAFLD development and progression. Apart from other regimens, probiotics may have a positive role in the management of NAFLD through a plethora of possible mechanisms. The current review focuses on the NAFLD multifactorial pathogenesis, including mainly the role of intestinal microbiome and all relevant issues are raised. Furthermore, the clinical manifestations and appropriate diagnostic approach of the disease are discussed, with all possible therapeutic measures that can be taken, also including the potential beneficial effect of probiotics.
Collapse
Affiliation(s)
- Michael Doulberis
- Bürgerspital Hospital, Department of Internal Medicine, Solothurn 4500, Switzerland.
| | - Georgios Kotronis
- Agios Pavlos Hospital, Department of Internal Medicine, Thessaloniki, Macedonia, 55134, Greece
| | - Dimitra Gialamprinou
- Papageorgiou General Hospital, Department of Pediatrics, Aristotle University of Thessaloniki, Macedonia, 56403, Greece
| | - Jannis Kountouras
- Ippokration Hospital, Department of Internal Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, 54642, Greece
| | - Panagiotis Katsinelos
- Ippokration Hospital, Department of Internal Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, 54642, Greece
| |
Collapse
|
39
|
Sugahara H, Yao R, Odamaki T, Xiao J. Differences between live and heat-killed bifidobacteria in the regulation of immune function and the intestinal environment. Benef Microbes 2017; 8:463-472. [DOI: 10.3920/bm2016.0158] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Probiotics are live microorganisms that confer a health benefit on the host, such as improvement of the intestinal environment, modulation of immune function and energy metabolism. Heat-killed probiotic strains have also been known to exhibit some physiological functions; however, the differences between live and heat-killed probiotics have not been well elucidated. In this study, we investigated the differences between live and heat-killed Bifidobacterium breve M-16V, a probiotic strain, in the regulation of immune function, intestinal metabolism and intestinal gene expression of the host using gnotobiotic mouse model and omics approaches. Both live and heat-killed cells of B. breve M-16V showed immune-modulating effects that suppressed pro-inflammatory cytokine production in spleen cells and affected intestinal metabolism; however, live cells exhibited a more remarkable effect in the regulation of intestinal metabolism and intestinal gene expression involved in nutrient metabolism. Our findings are valuable for considering the health benefits of live and heat-killed bacteria and the usefulness of different forms of probiotics.
Collapse
Affiliation(s)
- H. Sugahara
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa, Japan
| | - R. Yao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa, Japan
| | - T. Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa, Japan
| | - J.Z. Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa, Japan
| |
Collapse
|
40
|
Lactobacillus paracasei GMNL-32, Lactobacillus reuteri GMNL-89 and L. reuteri GMNL-263 ameliorate hepatic injuries in lupus-prone mice. Br J Nutr 2017; 117:1066-1074. [PMID: 28502277 DOI: 10.1017/s0007114517001039] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Probiotics are known to regulate host immunity by interacting with systemic and mucosal immune cells as well as intestinal epithelial cells. Supplementation with certain probiotics has been reported to be effective against various disorders, including immune-related diseases. However, little is known about the effectiveness of Lactobacillus paracasei GMNL-32 (GMNL-32), Lactobacillus reuteri GMNL-89 (GMNL-89) and L. reuteri GMNL-263 (GMNL-263) in the management of autoimmune diseases, especially systemic lupus erythematosus (SLE). NZB/W F1 mice, which are a lupus-prone animal model, were orally gavaged with GMNL-32, GMNL-89 or GMNL-263 to investigate the effects of these Lactobacillus strains on liver injuries in NZB/W F1 mice. The results thus obtained reveal that supplementary GMNL-32, GMNL-89 or GMNL-263 in NZB/W F1 mice ameliorates hepatic apoptosis and inflammatory indicators, such as matrix metalloproteinase-9 activity and C-reactive protein and inducible nitric oxide synthase expressions. In addition, supplementation with GMNL-32, GMNL-89 or GMNL-263 in NZB/W F1 mice reduced the expressions of hepatic IL-1β, IL-6 and TNF-α proteins by suppressing the mitogen-activated protein kinase and NF-κB signalling pathways. These findings, presented here for the first time, reveal that GMNL-32, GMNL-89 and GMNL-263 mitigate hepatic inflammation and apoptosis in lupus-prone mice and may support an alternative remedy for liver disorders in cases of SLE.
Collapse
|
41
|
Microbial lysate upregulates host oxytocin. Brain Behav Immun 2017; 61:36-49. [PMID: 27825953 PMCID: PMC5431580 DOI: 10.1016/j.bbi.2016.11.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022] Open
Abstract
Neuropeptide hormone oxytocin has roles in social bonding, energy metabolism, and wound healing contributing to good physical, mental and social health. It was previously shown that feeding of a human commensal microbe Lactobacillus reuteri (L. reuteri) is sufficient to up-regulate endogenous oxytocin levels and improve wound healing capacity in mice. Here we show that oral L. reuteri-induced skin wound repair benefits extend to human subjects. Further, dietary supplementation with a sterile lysate of this microbe alone is sufficient to boost systemic oxytocin levels and improve wound repair capacity. Oxytocin-producing cells were found to be increased in the caudal paraventricular nucleus [PVN] of the hypothalamus after feeding of a sterile lysed preparation of L. reuteri, coincident with lowered blood levels of stress hormone corticosterone and more rapid epidermal closure, in mouse models. We conclude that microbe viability is not essential for regulating host oxytocin levels. The results suggest that a peptide or metabolite produced by bacteria may modulate host oxytocin secretion for potential public or personalized health goals.
Collapse
|
42
|
Lee HS, Lim WC, Lee SJ, Lee SH, Lee JH, Cho HY. Antiobesity Effect of Garlic Extract Fermented by Lactobacillus plantarum BL2 in Diet-Induced Obese Mice. J Med Food 2016; 19:823-9. [DOI: 10.1089/jmf.2016.3674] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Hee-Seop Lee
- Department of Food and Biotechnology, Korea University, Sejong City, Republic of Korea
| | - Won-Chul Lim
- Department of Food and Biotechnology, Korea University, Sejong City, Republic of Korea
| | - Sung-Jin Lee
- R&D Center, Bioland, Gyeonggi, Republic of Korea
| | | | - Jin-Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong City, Republic of Korea
| | - Hong-Yon Cho
- Department of Food and Biotechnology, Korea University, Sejong City, Republic of Korea
| |
Collapse
|
43
|
Hsieh FC, Lan CCE, Huang TY, Chen KW, Chai CY, Chen WT, Fang AH, Chen YH, Wu CS. Heat-killed and live Lactobacillus reuteri GMNL-263 exhibit similar effects on improving metabolic functions in high-fat diet-induced obese rats. Food Funct 2016; 7:2374-88. [PMID: 27163114 DOI: 10.1039/c5fo01396h] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Our objective was to investigate and compare the effects of heat-killed (HK) and live Lactobacillus reuteri GMNL-263 (Lr263) on insulin resistance and its related complications in high-fat diet (HFD)-induced rats. Male Sprague-Dawley rats were fed with a HFD with either HK or live Lr263 for 12 weeks. The increases in the weight gain, serum glucose, insulin, and lipid profiles in the serum and liver observed in the HFD group were significantly reduced after HK or live Lr263 administration. Feeding HK or live Lr263 reversed the decreased number of probiotic bacteria and increased the number of pathogenic bacteria induced by high-fat treatment. The decreased intestinal barrier in the HFD group was markedly reversed by HK or live Lr263 treatments. The elevations of pro-inflammatory associated gene expressions in both adipose and hepatic tissues by high-fat administration were markedly decreased by HK or live Lr263 treatments. The increased macrophage infiltration noticed in adipose tissue after high-fat treatment was effectively suppressed by HK or live Lr263 consumption. The insulin resistance associated gene expressions in both adipose and hepatic tissues, which were downregulated in the HFD group, were markedly enhanced after HK or live Lr263 administration. HK or live Lr263 consumption significantly decreased hepatic lipogenic gene expressions stimulated by high-fat treatment. Administration of HK or live Lr263 significantly reduced hepatic oil red O staining and ameliorated the hepatic steatosis observed in high-fat treated rats. Our data suggested that similar to live Lr263, HK Lr263 exerted significant effects on attenuating obesity-induced metabolic abnormalities by reducing insulin resistance and hepatic steatosis formation.
Collapse
Affiliation(s)
- Feng-Ching Hsieh
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Machado MV, Cortez-Pinto H. Diet, Microbiota, Obesity, and NAFLD: A Dangerous Quartet. Int J Mol Sci 2016; 17:481. [PMID: 27043550 PMCID: PMC4848937 DOI: 10.3390/ijms17040481] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/21/2016] [Accepted: 03/28/2016] [Indexed: 02/07/2023] Open
Abstract
Recently, the importance of the gut-liver-adipose tissue axis has become evident. Nonalcoholic fatty liver disease (NAFLD) is the hepatic disease of a systemic metabolic disorder that radiates from energy-surplus induced adiposopathy. The gut microbiota has tremendous influences in our whole-body metabolism, and is crucial for our well-being and health. Microorganisms precede humans in more than 400 million years and our guest flora evolved with us in order to help us face aggressor microorganisms, to help us maximize the energy that can be extracted from nutrients, and to produce essential nutrients/vitamins that we are not equipped to produce. However, our gut microbiota can be disturbed, dysbiota, and become itself a source of stress and injury. Dysbiota may adversely impact metabolism and immune responses favoring obesity and obesity-related disorders such as insulin resistance/diabetes mellitus and NAFLD. In this review, we will summarize the latest evidence of the role of microbiota/dysbiota in diet-induced obesity and NAFLD, as well as the potential therapeutic role of targeting the microbiota in this set.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- Departamento de Gastrenterologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte (CHLN), 1649-035 Lisbon, Portugal.
- Laboratório de Nutrição, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Alameda da Universidade, 1649-004 Lisboa, Portugal.
| | - Helena Cortez-Pinto
- Departamento de Gastrenterologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte (CHLN), 1649-035 Lisbon, Portugal.
- Laboratório de Nutrição, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Alameda da Universidade, 1649-004 Lisboa, Portugal.
| |
Collapse
|