1
|
Hou M, John Martin JJ, Song Y, Wang Q, Cao H, Li W, Sun C. Dynamics of flavonoid metabolites in coconut water based on metabolomics perspective. FRONTIERS IN PLANT SCIENCE 2024; 15:1468858. [PMID: 39435019 PMCID: PMC11491327 DOI: 10.3389/fpls.2024.1468858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024]
Abstract
Coconut meat and coconut water have garnered significant attention for their richness in healthful flavonoids. However, the dynamics of flavonoid metabolites in coconut water during different developmental stages remain poorly understood. This study employed the metabolomics approach using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to investigate the changes in flavonoid metabolite profiles in coconut water from two varieties, 'Wenye No.5'(W5) and Hainan local coconut (CK), across six developmental stages. The results showed that a total of 123 flavonoid metabolites including chalcones, dihydroflavonoids, dihydroflavonols, flavonoids, flavonols, flavonoid carboglycosides, and flavanols were identified in the coconut water as compared to the control. The total flavonoid content in both types of coconut water exhibited a decreasing trend with developmental progression, but the total flavonoid content in CK was significantly higher than that in W5. The number of flavonoid metabolites that differed significantly between the W5 and CK groups at different developmental stages were 74, 74, 60, 92, 40 and 54, respectively. KEGG pathway analysis revealed 38 differential metabolites involved in key pathways for flavonoid biosynthesis and secondary metabolite biosynthesis. This study provides new insights into the dynamics of flavonoid metabolites in coconut water and highlights the potential for selecting and breeding high-quality coconuts with enhanced flavonoid content. The findings have implications for the development of coconut-based products with improved nutritional and functional properties.
Collapse
Affiliation(s)
- Mingming Hou
- School of Life Sciences, Henan University, Kaifeng, Henan, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Jerome Jeyakumar John Martin
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yuqiao Song
- School of Life Sciences, Henan University, Kaifeng, Henan, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Qi Wang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- College of Wine and Horticulture, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Hongxing Cao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenrao Li
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Chengxu Sun
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| |
Collapse
|
2
|
Şahin S, Aybastıer Ö. Physicochemical properties of oleaster extract and the role of oleaster antioxidants on oxidative induced DNA damage. Food Sci Nutr 2024; 12:8377-8386. [PMID: 39479667 PMCID: PMC11521664 DOI: 10.1002/fsn3.4443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/24/2024] [Accepted: 08/19/2024] [Indexed: 11/02/2024] Open
Abstract
Oleaster (Elaeagnus angustifolia L.) is a plant with high medicinal value and economic and nutritional importance, which has been used in traditional medicine for a long time. Oleaster contains phenolic compounds that have the ability to prevent a wide variety of diseases. In this study antioxidant capacity, total phenolic content, and total carbohydrate content were found as 108.70 ± 0.20 μg GAE/g of oleaster extract, 28.80 ± 0.01 μg TE/g of oleaster extract, and 15.40 ± 0.01 mg D-glucose/g of oleaster extract, respectively. The oleaster extract was analyzed using the HPLC-DAD system. The results showed rutin, caffeic acid, protocatechuic acid, and ferulic acid. The protective abilities of rutin, caffeic acid, protocatechuic acid, ferulic acid, and oleaster extract were tested against the oxidation of DNA. The mix of phenolic compounds (inhibited about 93.29% of the damage) and oleaster extract (inhibited about 94.14% of the damage) showed better protect DNA against oxidation than phenolic compounds. The results obtained from this study are guiding for new applications involving the physicochemical properties of oleaster extract with high antioxidant properties for food applications.
Collapse
Affiliation(s)
- Saliha Şahin
- Chemistry Department, Science and Arts FacultyBursa Uludağ UniversityBursaTürkiye
| | - Önder Aybastıer
- Chemistry Department, Science and Arts FacultyBursa Uludağ UniversityBursaTürkiye
| |
Collapse
|
3
|
Shao Y, Zhou Y, Wan J, Zhu Z, Peng Y, Zhao C, Zhu Y, Tang W. Using terahertz spectroscopy to quantify bioactive flavonoids in Moxa Wool as predictor of rheumatoid arthritis treatment outcomes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155927. [PMID: 39096543 DOI: 10.1016/j.phymed.2024.155927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/12/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND Moxibustion, a traditional Chinese medicine practice, employs Moxa Wool, derived from Artemisia argyi. Flavonoids, the key pharmacological constituents in Moxa Wool, are known for their anti-inflammatory and analgesic properties. The purity of Moxa Wool, particularly its flavonoid content, directly influences the efficacy of moxibustion treatments. However, quantifying these bioactive flavonoids accurately and non-destructively has been a challenge. PURPOSE This study introduces terahertz spectroscopy as a non-destructive optical detection method for qualitative detection and quantitative analysis of flavonoids in Moxa Wool. By establishing a mathematical model between spectral signals and clinical efficacy, a reliable correlation between flavonoid concentration and the therapeutic effect of moxibustion can be established, providing a potential predictive model for the treatment outcomes of rheumatoid arthritis. STUDY DESIGN We adopted terahertz spectroscopy technology and combined it with terahertz metamaterial biosensors to achieve rapid, efficient, and non-destructive testing of the quality of Moxa Wool. This method reduces the detection time from hours to minutes while lowering the sample detection limit, overcoming the limitations of traditional detection methods in pharmacological research. METHODS Through terahertz metamaterial biosensors, rapid detection of the purity of Moxa Wool has been achieved. A combination of molecular simulation and terahertz spectroscopy was used to quantitatively analyze the flavonoid content in different purities of Moxa Wool. To ensure accuracy, the quantitative results of flavonoids obtained by terahertz spectroscopy were validated using high-performance liquid chromatography (HPLC). In addition, moxibustion treatment was performed on rats with rheumatoid arthritis using Moxa Wool, and medical indicator information was recorded. A mathematical analysis model was established to evaluate the correlation between flavonoid content and analgesic and anti-inflammatory effects. RESULTS Terahertz spectroscopy analysis shows that there is a direct correlation between the flavonoid content in moxibustion and the absorption peak intensity. The maximum R2 in the model analysis is 0.98, indicating a high accuracy in predicting the purity of Moxa Wool. These results were also validated by HPLC. In a rat model, the purity of 30:1 Moxa Wool samples showed a 50 % decrease in TNF-α, IL-1β, and IL-6 levels during treatment compared to low-purity samples, significantly reducing inflammation markers and pain symptoms. Meanwhile, The PLS prediction model established a correlation between terahertz-detected flavonoid levels and treatment outcomes (PWL and IL-1β). The maximum R2 in the model is 0.91, indicating a high correlation between flavonoid levels and the anti-inflammatory and analgesic effects of moxibustion treatment. CONCLUSION This study not only demonstrates the effectiveness of terahertz spectroscopy in the pharmacological quantification of bioactive compounds but also establishes a novel predictive model for the efficacy of moxibustion in rheumatoid arthritis treatment. It underscores the potential of integrating traditional medicine insights with advanced technology to enhance therapeutic strategies in pharmacology.
Collapse
Affiliation(s)
- Yongni Shao
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| | - Yuxin Zhou
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiayao Wan
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhi Zhu
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yan Peng
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| | - Chen Zhao
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiming Zhu
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China.
| | - Wenchao Tang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Burlec AF, Hăncianu M, Ivănescu B, Macovei I, Corciovă A. Exploring the Therapeutic Potential of Natural Compounds in Psoriasis and Their Inclusion in Nanotechnological Systems. Antioxidants (Basel) 2024; 13:912. [PMID: 39199158 PMCID: PMC11352172 DOI: 10.3390/antiox13080912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Psoriasis is a chronic inflammatory disease that affects around 2-3% of the world's population. The treatment for this autoimmune disease still remains centered around conventional methods using synthetic substances, even though more recent advancements focus on biological therapies. Given the numerous side effects of such treatments, current research involves plant extracts and constituents that could prove useful in treating psoriasis. The aim of this narrative review is to highlight the most known representatives belonging to classes of natural compounds such as polyphenols (e.g., astilbin, curcumin, hesperidin, luteolin, proanthocyanidins, and resveratrol), alkaloids (e.g., berberine, capsaicin, and colchicine), coumarins (psoralen and 8-methoxypsoralen), and terpenoids (e.g., celastrol, centelloids, and ursolic acid), along with plants used in traditional medicine that could present therapeutic potential in psoriasis. The paper also provides an overview of these compounds' mechanisms of action and current inclusion in clinical studies, as well as an investigation into their potential incorporation in various nanotechnological systems, such as lipid-based nanocarriers or polymeric nanomaterials, that may optimize their efficacy during treatment.
Collapse
Affiliation(s)
- Ana Flavia Burlec
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.F.B.); (A.C.)
| | - Monica Hăncianu
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| | - Bianca Ivănescu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Irina Macovei
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.F.B.); (A.C.)
| | - Andreia Corciovă
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.F.B.); (A.C.)
| |
Collapse
|
5
|
Jamshidi S, Sofiabadi M, Eslami M. Apigenin attenuates serum concentrations of TNF-a, interleukin 1b and interleukin 6 in lipopolysaccharide-stimulated rats. AVICENNA JOURNAL OF PHYTOMEDICINE 2024; 14:415-421. [PMID: 38952770 PMCID: PMC11179184 DOI: 10.22038/ajp.2023.23365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 05/01/2023] [Accepted: 05/01/2023] [Indexed: 07/03/2024]
Abstract
Objective The use of flavonoids is increasing due to their cost-effectiveness and less adverse reaction. Therefore, the effect of apigenin on lipopolysaccharide (LPS)-induced inflammation was investigated by measuring IL-1b, IL-6, and TNF-a, of serum in the male rats. Materials and Methods Ninety male wistar rats were divided in 6 groups included; control, sham, dexamethasone 15 mg/kg, intraperitoneally (i.p.), and apigenin (5, 15, and 30 mg/kg, i.p). Thirty minutes after the administration of solvent or apigenin, LPS (30 μg/kg, i.p) was injected. At time intervals of 4, 12 and 24 hr after injection, blood samples were taken and the concentrations of TNF-a, IL-1b and IL-6 were measured by enzyme-linked immunosorbent assay. Results Compared to the control, apigenin (5 mg/kg) decreased the level of TNF-a, and IL-1b in a period of 24 hr (p<0.05). The concentration of IL-6 decreased significantly by apigenin (15 mg/kg) 24 hr after injection (p<0.05). Apigenin (30 mg/kg) decreased the level of TNF-a, at all three time points (4 hr; p<0.05, 12 hr; p<0.01, and 24 hr; p<0.01), and the level of IL-1b (p<0.01), 24 hr and the level of IL-6 at 4 hr (p<0.05), and 24 hr (p<0.01) after LPS injection. Conclusion Apigenin can suppress serum inflammatory cytokines, similar to dexamethasone.
Collapse
Affiliation(s)
- Sanaz Jamshidi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Sofiabadi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mina Eslami
- Faculty of Hygiene, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
6
|
Kciuk M, Garg A, Rohilla M, Chaudhary R, Dhankhar S, Dhiman S, Bansal S, Saini M, Singh TG, Chauhan S, Mujwar S, Gielecińska A, Kontek R. Therapeutic Potential of Plant-Derived Compounds and Plant Extracts in Rheumatoid Arthritis-Comprehensive Review. Antioxidants (Basel) 2024; 13:775. [PMID: 39061843 PMCID: PMC11274232 DOI: 10.3390/antiox13070775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is a persistent autoimmune disorder that is characterized by joint inflammation, discomfort, and impairment. Despite the existence of several therapeutic approaches, their effectiveness is often restricted and may be linked to unfavorable side effects. Consequently, there has been growing interest in investigating naturally derived compounds as plausible therapeutic agents for RA disease. The objective of this review is to summarize the existing preclinical and clinical evidence regarding the efficacy of naturally extracted compounds and plant extracts in the treatment of RA, focusing on their anti-inflammatory, anti-oxidative, and immunomodulatory properties. Some of the problems with using natural chemicals are the uneven quality of commercially available preparations and the poor bioavailability of these compounds. Future investigations should focus on improving the formulations, conducting thorough clinical trials, and exploring different techniques to fully utilize the intrinsic potential of naturally derived chemicals in treating RA.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha St. 12/16, 90-237 Lodz, Poland
| | - Anjali Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
- Swami Devi Dyal College of Pharmacy, Golpura Barwala, Panchkula 134118, Haryana, India
| | - Manni Rohilla
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
- Swami Vivekanand College of Pharmacy, Ram Nagar, Banur 140601, Punjab, India
| | - Rishabh Chaudhary
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133206, Haryana, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Sachin Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Seema Bansal
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133206, Haryana, India
| | - Monika Saini
- Swami Vivekanand College of Pharmacy, Ram Nagar, Banur 140601, Punjab, India
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133206, Haryana, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha St. 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha St. 12/16, 90-237 Lodz, Poland
| |
Collapse
|
7
|
Hashim NT, Babiker R, Rahman MM, Mohamed R, Priya SP, Chaitanya NCSK, Islam MS, Gobara B. Natural Bioactive Compounds in the Management of Periodontal Diseases: A Comprehensive Review. Molecules 2024; 29:3044. [PMID: 38998994 PMCID: PMC11242977 DOI: 10.3390/molecules29133044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024] Open
Abstract
Periodontal diseases, chronic inflammatory conditions affecting oral health, are primarily driven by microbial plaque biofilm and the body's inflammatory response, leading to tissue damage and potential tooth loss. These diseases have significant physical, psychological, social, and economic impacts, necessitating effective management strategies that include early diagnosis, comprehensive treatment, and innovative therapeutic approaches. Recent advancements in biomanufacturing have facilitated the development of natural bioactive compounds, such as polyphenols, terpenoids, alkaloids, saponins, and peptides, which exhibit antimicrobial, anti-inflammatory, and tissue regenerative properties. This review explores the biomanufacturing processes-microbial fermentation, plant cell cultures, and enzymatic synthesis-and their roles in producing these bioactive compounds for managing periodontal diseases. The integration of these natural compounds into periodontal therapy offers promising alternatives to traditional treatments, potentially overcoming issues like antibiotic resistance and the disruption of the natural microbiota, thereby improving patient outcomes.
Collapse
Affiliation(s)
- Nada Tawfig Hashim
- RAK-College of Dental Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (M.M.R.); (R.M.); (S.P.P.); (N.C.C.); (M.S.I.)
| | - Rasha Babiker
- RAK-College of Medical Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates;
| | - Muhammed Mustahsen Rahman
- RAK-College of Dental Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (M.M.R.); (R.M.); (S.P.P.); (N.C.C.); (M.S.I.)
| | - Riham Mohamed
- RAK-College of Dental Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (M.M.R.); (R.M.); (S.P.P.); (N.C.C.); (M.S.I.)
| | - Sivan Padma Priya
- RAK-College of Dental Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (M.M.R.); (R.M.); (S.P.P.); (N.C.C.); (M.S.I.)
| | - Nallan CSK Chaitanya
- RAK-College of Dental Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (M.M.R.); (R.M.); (S.P.P.); (N.C.C.); (M.S.I.)
| | - Md Sofiqul Islam
- RAK-College of Dental Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (M.M.R.); (R.M.); (S.P.P.); (N.C.C.); (M.S.I.)
| | - Bakri Gobara
- Faculty of Dentistry, University of Khartoum, Khartoum 11115, Sudan;
| |
Collapse
|
8
|
Lin CF, Lin MH, Hung CF, Alshetaili A, Tsai YF, Jhong CL, Fang JY. The anti-inflammatory activity of flavonoids and alkaloids from Sophora flavescens alleviates psoriasiform lesions: Prenylation and methoxylation beneficially enhance bioactivity and skin targeting. Phytother Res 2024; 38:1951-1970. [PMID: 38358770 DOI: 10.1002/ptr.8140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/03/2024] [Accepted: 01/21/2024] [Indexed: 02/16/2024]
Abstract
The herb Sophora flavescens displays anti-inflammatory activity and can provide a source of antipsoriatic medications. We aimed to evaluate whether S. flavescens extracts and compounds can relieve psoriasiform inflammation. The ability of flavonoids (maackiain, sophoraflavanone G, leachianone A) and alkaloids (matrine, oxymatrine) isolated from S. flavescens to inhibit production of cytokine/chemokines was examined in keratinocytes and macrophages. Physicochemical properties and skin absorption were determined by in silico molecular modeling and the in vitro permeation test (IVPT) to establish the structure-permeation relationship (SPR). The ethyl acetate extract exhibited higher inhibition of interleukin (IL)-6, IL-8, and CXCL1 production in tumor necrosis factor-α-stimulated keratinocytes compared to the ethanol and water extracts. The flavonoids demonstrated higher cytokine/chemokine inhibition than alkaloids, with the prenylated flavanones (sophoraflavanone G, leachianone A) led to the highest suppression. Flavonoids exerted anti-inflammatory effects via the extracellular signal-regulated kinase, p38, activator protein-1, and nuclear factor-κB signaling pathways. In the IVPT, prenylation of the flavanone skeleton significantly promoted skin absorption from 0.01 to 0.22 nmol/mg (sophoraflavanone G vs. eriodictyol). Further methoxylation of a prenylated flavanone (leachianone A) elevated skin absorption to 2.65 nmol/mg. Topical leachianone A reduced the epidermal thickness in IMQ-treated mice by 47%, and inhibited cutaneous scaling and cytokine/chemokine overexpression at comparable levels to a commercial betamethasone product. Thus, prenylation and methoxylation of S. flavescens flavanones may enable the design of novel antipsoriatic agents.
Collapse
Affiliation(s)
- Chwan-Fwu Lin
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ming-Hsien Lin
- Department of Dermatology, Chi Mei Medical Center, Tainan, Taiwan
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Yung-Fong Tsai
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cai-Ling Jhong
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Jia-You Fang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
9
|
Sharma D, Sharma S, Mandal V, Dhobi M. Unveiling the anti-inflammatory potential of Acalypha indica L. and analyzing its research trend: digging deep to learn deep. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1935-1956. [PMID: 37796311 DOI: 10.1007/s00210-023-02734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
The plant Acalypha indica L. is a well-known traditional plant belonging to the family Euphorbiaceae. Traditional practices of the plant claim to treat asthma, pneumonia, wound healing, rheumatoid arthritis, bronchitis, and skin disorders. The major phytochemicals reported are cyanogenic glucosides, tannins, coumarins, flavonoid glycosides, fatty acids, and volatile oils. To summarize the anti-inflammatory potential of Acalypha indica extract and its phytochemicals through preclinical studies. The search terms include anti-inflammatory, Acalypha indica, and Acalypha indica extract independently or in combination with pro-inflammatory markers using various databases, including Scopus, Web of Science, PubMed, ProQuest, and Google Scholar. The results of preclinical studies confirm that Acalypha indica exhibits strong anti-inflammatory activity. Most of the experimental studies that have been conducted on plant extract are protein denaturation, human red blood cell membrane stabilization assay, and carrageenan-induced inflammation models. However, the molecular mechanism in these studies is still unclear to demonstrate its anti-inflammatory effects. Acalypha indica possesses anti-inflammatory effects that may be due to the presence of phenolic compounds especially flavonoids present in the Acalypha indica. Thus, further research is needed, to understand mechanistic insights of the plant phytochemicals to represent anti-inflammatory properties.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Supriya Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Vivekananda Mandal
- Division of Pharmacognosy, Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, Chattisgarh, 495009, India
| | - Mahaveer Dhobi
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India.
| |
Collapse
|
10
|
Hamadjida A, Mbomo REA, Minko SE, Ntchapda F, Kilekoung Mingoas JP, Nnanga N. Antioxidant and anti-inflammatory effects of Boswellia dalzielii and Hibiscus sabdariffa extracts in alloxan-induced diabetic rats. Metabol Open 2024; 21:100278. [PMID: 38455229 PMCID: PMC10918424 DOI: 10.1016/j.metop.2024.100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Diabetes mellitus (DM) is one of the leading worldwide public health problems. It is characterized by hyperglycemia which induces oxidative stress and inflammation, both involved in the pathogenesis of diabetes. We previously showed that Boswellia dalzielii (BD) and Hibiscus sabdariffa (HS) extracts reduced hyperglycemia and hyperlipidemia in alloxan-induced diabetic rats. In the present study, we evaluated the antioxidant and anti-inflammatory activities of both plants in alloxan-induced diabetic rats. Two sets of experiments were conducted in male Wistar rats subjected to a single intraperitoneal injection of alloxan monohydrate (150 mg/kg, b. w.). Then, diabetic rats were daily administered with either BD (1st set of experiments) or HS (2nd set of experiments) at 100, 200, and 400 mg/kg orally for 21 consecutive days. Glibenclamide (10 mg/kg) was also administered as a reference drug. At the end of the study, the animals were anesthetized, and blood samples were collected from each animal. Then, oxidative stress and inflammatory biomarkers in the serum were determined. We found that treatment with BD and HS significantly reduced malondialdehyde (MDA) and enhanced the levels of reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT). These extracts also significantly decreased the inflammatory markers tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β). From the results obtained, it can therefore be concluded that BD and HS have the potential to being developed as natural sources of antioxidant and anti-inflammatory agents that can be used for the prevention or treatment of DM.
Collapse
Affiliation(s)
- Adjia Hamadjida
- Department of Life Science, Higher Teacher Training College, University of Bertoua, Bertoua, Cameroon
- Pharmacological Research Laboratory of Medicinal Plants, Higher Teacher Training College, University of Bertoua, Bertoua, Cameroon
| | | | - Stéphane Essono Minko
- Department of Life Science, Higher Teacher Training College, University of Bertoua, Bertoua, Cameroon
- Research Unit of Animal Physiology and Phytopharmacology, Department of Animal Biology, Faculty of Science, University of Dschang, P. O. Box 67, Dschang, Cameroon
| | - Fidèle Ntchapda
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
| | | | - Nga Nnanga
- Department of Galenic Pharmacy and Pharmaceutical Legislation, Faculty of Medicine and Biomedical Science, University of Yaounde I, Yaounde, Cameroon
| |
Collapse
|
11
|
Pisoschi AM, Iordache F, Stanca L, Cimpeanu C, Furnaris F, Geicu OI, Bilteanu L, Serban AI. Comprehensive and critical view on the anti-inflammatory and immunomodulatory role of natural phenolic antioxidants. Eur J Med Chem 2024; 265:116075. [PMID: 38150963 DOI: 10.1016/j.ejmech.2023.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
The immune response encompasses innate and adaptive immunity, each with distinct and specific activities. The innate immune system is constituted by phagocytic cells, macrophages, monocytes and neutrophils, the cascade system, and different classes of receptors such as toll-like receptors that are exploited by the innate immune cells. The adaptive immune system is antigen-specific, encompassing memory lymphocytes and the corresponding specific receptors. Inflammation is understood as an activation of different signaling pathways such as toll-like receptors or nuclear factor kappa-light-chain-enhancer of activated B cells, with an increase in nitric oxide, inflammatory cytokines and chemokines. Increased oxidative stress has been identified as main source of chronic inflammation. Phenolic antioxidants modulate the activities of lymphocytes and macrophages by impacting cytokines and nitric oxide release, exerting anti-inflammatory effect. The nuclear-factor kappa-light-chain-enhancer of activated B cells signaling pathway and the mitogen-activated protein kinase pathway are targeted, alongside an increase in nuclear factor erythroid 2-related factor mediated antioxidant response, triggering the activity of antioxidant enzymes. The inhibitive potential on phospholipase A2, cyclooxygenase and lipoxygenase in the arachidonic acid pathway, and the subsequent reduction in prostaglandin and leukotriene generation, reveals the potential of phenolics as inflammation antagonists. The immunomodulative potential encompasses the capacity to interfere with proinflammatory cytokine synthesis and with the expression of the corresponding genes. A diet rich in antioxidants can result in prevention of inflammation-related pathologies. More investigations are necessary to establish the role of these antioxidants in therapy. The appropriate delivery system and the prooxidant effects exhibited at large doses, or in the presence of heavy metal cations should be regarded.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Carmen Cimpeanu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Land Reclamation and Environmental Engineering, 59 Marasti Blvd, 011464, Bucharest, Romania
| | - Florin Furnaris
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Ovidiu Ionut Geicu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Liviu Bilteanu
- Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
12
|
Athari SZ, Mirzaei Bavil F, Keyhanmanesh R, Lotfi H, Sajed Y, Delkhosh A, Ghiasi F. Voluntary exercise improves pulmonary inflammation through NF-κB and Nrf2 in type 2 diabetic male rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:74-80. [PMID: 38164478 PMCID: PMC10722479 DOI: 10.22038/ijbms.2023.70416.15307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/09/2023] [Indexed: 01/03/2024]
Abstract
Objectives This study aimed to evaluate the effects of voluntary exercise as an anti-inflammatory intervention on the pulmonary levels of inflammatory cytokines in type 2 diabetic male rats. Materials and Methods Twenty-eight male Wistar rats were divided into four groups (n=7), including control (Col), diabetic (Dia), voluntary exercise (Exe), and diabetic with voluntary exercise (Dia+Exe). Diabetes was induced by a high-fat diet (4 weeks) and intraperitoneal injection of streptozotocin (35 mg/kg), and animals did training on the running wheel for 10 weeks as voluntary exercise. Finally, the rats were euthanized and the lung tissues were sampled for the evaluation of the levels of pulmonary interleukin (IL)-10, IL-11, and TNF-α using ELISA, and the protein levels of Nrf-2 and NF-κB using western blotting and tissue histopathological analysis. Results Diabetes reduced the IL-10, IL-11, and Nrf2 levels (P<0.001 to P<0.01) and increased the levels of TNF-α and NF-κB compared to the Col group (P<0.001). Lung tissue levels of IL-10, IL-11, and Nrf2 in the Dia+Exe group enhanced compared to the Dia group (P<0.001 to P<0.05), however; the TNF-α and NF-κB levels decreased (P<0.001). The level of pulmonary Nrf2 in the Dia+Exe group was lower than that of the Exe group while the NF-κB level increased (P<0.001). Moreover, diabetes caused histopathological changes in lung tissue which improved with exercise in the Dia+Exe group. Conclusion These findings showed that voluntary exercise could improve diabetes-induced pulmonary complications by ameliorating inflammatory conditions.
Collapse
Affiliation(s)
- Seyed Zanyar Athari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Mirzaei Bavil
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Yousef Sajed
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aref Delkhosh
- Department of Pathobiology, Faculty of Veterinary Medicine, Division of Pathology, Urmia University, Urmia, Iran
| | - Fariba Ghiasi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Priyandoko D, Widowati W, Lenny L, Novianti S, Revika R, Kusuma HSW, Sholihah IA. Green Tea Extract Reduced Lipopolysaccharide-Induced Inflammation in L2 Cells as Acute Respiratory Distress Syndrome Model Through Genes and Cytokine Pro-Inflammatory. Avicenna J Med Biotechnol 2024; 16:57-65. [PMID: 38605739 PMCID: PMC11005400 DOI: 10.18502/ajmb.v16i1.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/23/2023] [Indexed: 04/13/2024] Open
Abstract
Background Acute Respiratory Distress Syndrome (ARDS) is a severe lung inflammatory condition that has the capacity to impair gas exchange and lead to hypoxemia. This condition is found to have been one of the most prevalent in patients of COVID-19 with a more serious condition. Green tea (Camellia sinensis L.) contains polyphenols that possess many health benefits. The purpose of this study was to assess the anti-inflammatory activities of green tea extract in Lipopolysaccharide (LPS)-induced lung cells as ARDS cells model. Methods In this study, rat lung cells (L2) were induced by LPS to mimic the inflammation observed in ARDS and later treated with green tea extract. Pro-inflammatory cytokines such as Interleukin (IL)-12, C-Reactive Protein (CRP) as well as Tumor Necrosis Factor-α (TNF-α) were investigated using the ELISA method. Gene expression of NOD-Like Receptor Protein 3 (NLRP-3), Receptor for Advanced Glycation End-product (RAGE), Toll-like Receptor-4 (TLR-4), and Nuclear Factor-kappa B (NF-κB) were evaluated by qRTPCR. Apoptotic cells were measured using flow cytometry. Results The results showed that green tea extract treatment can reduce inflammation by suppressing gene expressions of NF-κB, NLRP-3, TLR-4, and RAGE, as well as pro-inflammatory cytokines such as IL-12, TNF-α, and CRP, an acute phase protein. Apoptosis levels of inflamed cells also found to be lowered when green tea extract was administered; thus, also increasing live cells compared to non-treated cells. Conclusion These findings could lead to the future development of supplements from green tea to help alleviate ARDS symptoms, especially during critical moments such as the current pandemic.
Collapse
Affiliation(s)
- Didik Priyandoko
- Biology Study Program, Faculty of Mathematics and Natural Sciences, Indonesia University of Education, Bandung 40154, Indonesia
| | - Wahyu Widowati
- Faculty of Medicine, Maranatha Christian University, Bandung 40164, Indonesia
| | - Lenny Lenny
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia
| | - Sintya Novianti
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia
| | - Revika Revika
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia
| | | | - Ika Adhani Sholihah
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Bandung 40163, Indonesia
- School of Life Sciences and Technology, Bandung Institute of Technology, Bandung 40132, Indonesia
| |
Collapse
|
14
|
Chervet A, Nehme R, Decombat C, Longechamp L, Habanjar O, Rousset A, Fraisse D, Blavignac C, Filaire E, Berthon JY, Delort L, Caldefie-Chezet F. Exploring the Therapeutic Potential of Ampelopsis grossedentata Leaf Extract as an Anti-Inflammatory and Antioxidant Agent in Human Immune Cells. Int J Mol Sci 2023; 25:416. [PMID: 38203587 PMCID: PMC10779184 DOI: 10.3390/ijms25010416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Inflammation is a vital protective response to threats, but it can turn harmful if chronic and uncontrolled. Key elements involve pro-inflammatory cells and signaling pathways, including the secretion of pro-inflammatory cytokines, NF-κB, reactive oxygen species (ROS) production, and the activation of the NLRP3 inflammasome. Ampelopsis grossedentata, or vine tea, contains dihydromyricetin (DHM) and myricetin, which are known for their various health benefits, including anti-inflammatory properties. Therefore, the aim of this study is to assess the impact of an extract of A. grossedentata leaves (50 µg/mL) on inflammation factors such as inflammasome, pro-inflammatory pathways, and macrophage polarization, as well as its antioxidant properties, with a view to combating the development of low-grade inflammation. Ampelopsis grossedentata extract (APG) significantly decreased ROS production and the secretion of pro-inflammatory cytokines (IFNγ, IL-12, IL-2, and IL-17a) in human leukocytes. In addition, APG reduced LPS/IFNγ -induced M1-like macrophage polarization, resulting in a significant decrease in the expression of the pro-inflammatory cytokines TNF-α and IL-6, along with a decrease in the percentage of M1 macrophages and an increase in M0 macrophages. Simultaneously, a significant decrease in NF-κB p65 phosphorylation and in the expression of inflammasome genes (NLRP3, IL-1β and Caspase 1) was observed. The results suggest that Ampelopsis grossedentata could be a promising option for managing inflammation-related chronic diseases. Further research is needed to optimize dosage and administration methods.
Collapse
Affiliation(s)
- Arthur Chervet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (A.C.); (R.N.); (C.D.); (L.L.); (O.H.); (D.F.); (E.F.); (F.C.-C.)
| | - Rawan Nehme
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (A.C.); (R.N.); (C.D.); (L.L.); (O.H.); (D.F.); (E.F.); (F.C.-C.)
| | - Caroline Decombat
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (A.C.); (R.N.); (C.D.); (L.L.); (O.H.); (D.F.); (E.F.); (F.C.-C.)
| | - Lucie Longechamp
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (A.C.); (R.N.); (C.D.); (L.L.); (O.H.); (D.F.); (E.F.); (F.C.-C.)
| | - Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (A.C.); (R.N.); (C.D.); (L.L.); (O.H.); (D.F.); (E.F.); (F.C.-C.)
| | - Amandine Rousset
- Greentech, Biopôle Clermont-Limagne, 63360 Saint-Beauzire, France (J.-Y.B.)
| | - Didier Fraisse
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (A.C.); (R.N.); (C.D.); (L.L.); (O.H.); (D.F.); (E.F.); (F.C.-C.)
| | - Christelle Blavignac
- Centre Imagerie Cellulaire Santé, Université Clermont Auvergne, 63000 Clermont-Ferrand, France;
| | - Edith Filaire
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (A.C.); (R.N.); (C.D.); (L.L.); (O.H.); (D.F.); (E.F.); (F.C.-C.)
| | - Jean-Yves Berthon
- Greentech, Biopôle Clermont-Limagne, 63360 Saint-Beauzire, France (J.-Y.B.)
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (A.C.); (R.N.); (C.D.); (L.L.); (O.H.); (D.F.); (E.F.); (F.C.-C.)
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (A.C.); (R.N.); (C.D.); (L.L.); (O.H.); (D.F.); (E.F.); (F.C.-C.)
| |
Collapse
|
15
|
Naidoo K, Khathi A. The Potential Role of Gossypetin in the Treatment of Diabetes Mellitus and Its Associated Complications: A Review. Int J Mol Sci 2023; 24:17609. [PMID: 38139436 PMCID: PMC10743819 DOI: 10.3390/ijms242417609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder caused by insulin resistance and dysfunctional beta (β)-cells in the pancreas. Hyperglycaemia is a characteristic of uncontrolled diabetes which eventually leads to fatal organ system damage. In T2DM, free radicals are continuously produced, causing extensive tissue damage and subsequent macro-and microvascular complications. The standard approach to managing T2DM is pharmacological treatment with anti-diabetic medications. However, patients' adherence to treatment is frequently decreased by the side effects and expense of medications, which has a detrimental impact on their health outcomes. Quercetin, a flavonoid, is a one of the most potent anti-oxidants which ameliorates T2DM. Thus, there is an increased demand to investigate quercetin and its derivatives, as it is hypothesised that similar structured compounds may exhibit similar biological activity. Gossypetin is a hexahydroxylated flavonoid found in the calyx of Hibiscus sabdariffa. Gossypetin has a similar chemical structure to quercetin with an extra hydroxyl group. Furthermore, previous literature has elucidated that gossypetin exhibits neuroprotective, hepatoprotective, reproprotective and nephroprotective properties. The mechanisms underlying gossypetin's therapeutic potential have been linked to its anti-oxidant, anti-inflammatory and immunomodulatory properties. Hence, this review highlights the potential role of gossypetin in the treatment of diabetes and its associated complications.
Collapse
Affiliation(s)
| | - Andile Khathi
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| |
Collapse
|
16
|
Zheng Q, Du L, Zhao Y, Zhang Z, Piao S, Wang Y, Pan Z. Mechanism of Rhodiola rosea-Euonymus alatus drug pair against rheumatoid arthritis: Network pharmacology and experimental validation. Immun Inflamm Dis 2023; 11:e1127. [PMID: 38156377 PMCID: PMC10750436 DOI: 10.1002/iid3.1127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/30/2023] Open
Abstract
PURPOSE The present study aimed to explore the potential components and mechanisms of Rhodiola rosea-Euonymus alatus drug pair (TY) that ameliorate rheumatoid arthritis (RA). METHODS The main active components, core targets, and important pathways of TY against RA were predicted by network pharmacology analysis. The binding activity between the main active components and the core targets was verified by the molecular docking technique. Collagen-induced arthritis (CIA) rat model and tumor necrosis factor (TNF)-α-induced fibroblast-like synovial cells in human RA (HFLS-RA) model were established, respectively. The core targets were verified by cell counting kit-8 assay, hematoxylin eosin, enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and Western blot analysis, and the therapeutic effect of TY was evaluated. RESULTS A total of 18 possible components and 34 core targets were obtained by network pharmacology, among which inflammatory response, phosphatidylinositide 3-kinases (PI3K)-AKT and MAPK pathways were involved in the therapeutic effect of TY on RA. The results of molecular docking showed that kaempferol and quercetin had high binding affinity to interleukin (IL)-1β, IL-6, matrix metalloproteinase (MMP)9, and TNF-α. In vivo and in vitro experiments showed that TY dose-dependently inhibited the proliferation of HFLS-RA cells induced by TNF-α, and significantly reduced the paw swelling and arthritis scores in CIA rats. At the same time, TY inhibited the production of inflammatory factors in CIA rat serum and TNF-α-induced HFLS-RA cells. It also decreased the expression of PI3K, phospho-protein kinase B, MMP1, MMP3, MMP9, and increased the protein and mRNA levels of tissue inhibitors of MMPs (TIMP)1 in synovial tissue. CONCLUSION TY can inhibit the PI3K/AKT signaling pathway and regulate the balance between MMPs and TIMP, thus playing a therapeutic role in RA.
Collapse
Affiliation(s)
- Qiu‐han Zheng
- Jilin Ginseng AcademyChangchun University of Chinese MedicineChangchunPeople's Republic of China
| | - Lian‐yun Du
- Jilin Ginseng AcademyChangchun University of Chinese MedicineChangchunPeople's Republic of China
| | - Ying Zhao
- Clinical College of Integrated Chinese and Western MedicineChangchun University of Chinese MedicineChangchunPeople's Republic of China
| | - Zhong Zhang
- Jilin Ginseng AcademyChangchun University of Chinese MedicineChangchunPeople's Republic of China
| | - Song‐lan Piao
- Clinical Medical SchoolChangchun University of Chinese MedicineChangchunPeople's Republic of China
| | - Ying‐hang Wang
- The Affiliated Hospital of Changchun University of Chinese MedicineChangchunPeople's Republic of China
| | - Zhi Pan
- Jilin Ginseng AcademyChangchun University of Chinese MedicineChangchunPeople's Republic of China
| |
Collapse
|
17
|
Foutsop AF, Ateufack G, Adassi BM, Yassi FB, Kom TD, Noungoua CM, Petsou A, Ngoupaye GT. The Aqueous Lyophilisate of Alchemilla Kiwuensis Engl. (Rosaceae) Displays Antiepileptogenic and Antiepileptic Effects on PTZ-induced Kindling in rats: Evidence of Modulation of Glutamatergic and GABAergic Pathways Coupled to Antioxidant Properties. Neurochem Res 2023; 48:3228-3248. [PMID: 37436614 DOI: 10.1007/s11064-023-03982-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023]
Abstract
Alchemilla kiwuensis Engl. (Rosaceae) (A. kiwuensis) is an herbaceous plant traditionally used by Cameroonians to treat epilepsy and other central nervous system disorders. The present study evaluated the antiepileptogenic and antiepileptic effects of A. kiwuensis (40 mg/kg, 80 mg/kg) following Pentylenetetrazole (PTZ)-induced kindling as well as its sub-chronic toxicity. Following an initial i.p administration of a challenge dose (70 mg/kg), Wistar rats of both sexes received sub convulsive doses (35 mg/kg) of PTZ every other day, one hour after the oral gavage of animals with treatments, until two consecutive stage 4, in all animals of negative control. Seizure progression, latency, duration, and repetition were noted. Twenty-four hours later, animals were dissected to extract their hippocampi. The resulting homogenates were used to evaluate Malondialdehyde, reduced glutathione, catalase activity, GABA, GABA-Transaminase, glutamate, glutamate transporter 2, IL-1β and TGF-1 β. Sub-chronic toxicity was conducted according to OECD 407 guidelines. The lyophilisate of A. kiwuensis significantly increased the latency of seizure appearance, delayed seizure progression and decreased seizure repetition and duration. Biochemical analysis revealed that the lyophilisate significantly increased the catalase activity, reduced glutathione, GABA, glutamate transporter 2 and TGF-1B levels. The lyophilisate equally caused a significant decreased in the GABA-Transaminase activity, malondialdehyde, and IL-1 β levels. There was no noticeable sign of toxicity. A. kiwuensis possesses antiepileptic and antiepiletogenic effects by enhancing GABAergic neurotransmission and antioxidant properties, coupled to modulation of glutamatergic and neuroinflammatory pathways and is innocuous in a sub-chronic model. These justifies its local use for the treatment of epilepsy.
Collapse
Affiliation(s)
- Aurelien Fossueh Foutsop
- Animal Physiology and Phytopharmacology Research Unit, Department of Animal Biology, Faculty of Sciences, University of Dschang, P.O BOX: 67, Dschang, Cameroon
| | - Gilbert Ateufack
- Animal Physiology and Phytopharmacology Research Unit, Department of Animal Biology, Faculty of Sciences, University of Dschang, P.O BOX: 67, Dschang, Cameroon
| | - Blesdel Maxwell Adassi
- Department of Biological Sciences, Faculty of Sciences, University of Maroua, P.O BOX: 814, Maroua, Cameroon
| | - Francis Bray Yassi
- Department of Biological Sciences, Faculty of Sciences, University of Ngaoundéré, P.O BOX: 454, Ngaoundéré, Cameroon
| | - Tatiana Diebo Kom
- Department of Biological Sciences, Faculty of Sciences, University of Maroua, P.O BOX: 814, Maroua, Cameroon
| | - Chretien Mbeugangkeng Noungoua
- Animal Physiology and Phytopharmacology Research Unit, Department of Animal Biology, Faculty of Sciences, University of Dschang, P.O BOX: 67, Dschang, Cameroon
| | - Adolph Petsou
- Department of Biological Sciences, Faculty of Sciences, University of Maroua, P.O BOX: 814, Maroua, Cameroon
| | - Gwladys Temkou Ngoupaye
- Animal Physiology and Phytopharmacology Research Unit, Department of Animal Biology, Faculty of Sciences, University of Dschang, P.O BOX: 67, Dschang, Cameroon.
| |
Collapse
|
18
|
Paes AS, Koga RDCR, Sales PF, Santos Almeida HK, Teixeira TACC, Carvalho JCT. Phytocompounds from Amazonian Plant Species against Acute Kidney Injury: Potential Nephroprotective Effects. Molecules 2023; 28:6411. [PMID: 37687240 PMCID: PMC10490259 DOI: 10.3390/molecules28176411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
There are several Amazonian plant species with potential pharmacological validation for the treatment of acute kidney injury, a condition in which the kidneys are unable to adequately filter the blood, resulting in the accumulation of toxins and waste in the body. Scientific production on plant compounds capable of preventing or attenuating acute kidney injury-caused by several factors, including ischemia, toxins, and inflammation-has shown promising results in animal models of acute kidney injury and some preliminary studies in humans. Despite the popular use of Amazonian plant species for kidney disorders, further pharmacological studies are needed to identify active compounds and subsequently conduct more complex preclinical trials. This article is a brief review of phytocompounds with potential nephroprotective effects against acute kidney injury (AKI). The classes of Amazonian plant compounds with significant biological activity most evident in the consulted literature were alkaloids, flavonoids, tannins, steroids, and terpenoids. An expressive phytochemical and pharmacological relevance of the studied species was identified, although with insufficiently explored potential, mainly in the face of AKI, a clinical condition with high morbidity and mortality.
Collapse
Affiliation(s)
- Alberto Souza Paes
- Pharmaceutical Innovation Program, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil; (A.S.P.); (R.d.C.R.K.); (P.F.S.); (T.A.C.C.T.)
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil;
| | - Rosemary de Carvalho Rocha Koga
- Pharmaceutical Innovation Program, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil; (A.S.P.); (R.d.C.R.K.); (P.F.S.); (T.A.C.C.T.)
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil;
| | - Priscila Faimann Sales
- Pharmaceutical Innovation Program, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil; (A.S.P.); (R.d.C.R.K.); (P.F.S.); (T.A.C.C.T.)
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil;
| | - Hellen Karine Santos Almeida
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil;
- University Hospital, Federal University of Amapá, Rodovia Josmar Chaves Pinto, km 02, Macapá CEP 68903-419, Amapá, Brazil
| | - Thiago Afonso Carvalho Celestino Teixeira
- Pharmaceutical Innovation Program, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil; (A.S.P.); (R.d.C.R.K.); (P.F.S.); (T.A.C.C.T.)
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil;
- University Hospital, Federal University of Amapá, Rodovia Josmar Chaves Pinto, km 02, Macapá CEP 68903-419, Amapá, Brazil
| | - José Carlos Tavares Carvalho
- Pharmaceutical Innovation Program, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil; (A.S.P.); (R.d.C.R.K.); (P.F.S.); (T.A.C.C.T.)
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil;
- University Hospital, Federal University of Amapá, Rodovia Josmar Chaves Pinto, km 02, Macapá CEP 68903-419, Amapá, Brazil
| |
Collapse
|
19
|
Selenge T, Vieira SF, Gendaram O, Reis RL, Tsolmon S, Tsendeekhuu E, Ferreira H, Neves NM. Antioxidant and Anti-Inflammatory Activities of Stellera chamaejasme L. Roots and Aerial Parts Extracts. Life (Basel) 2023; 13:1654. [PMID: 37629511 PMCID: PMC10456005 DOI: 10.3390/life13081654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Natural products, mainly plants, have a crucial role in folk medicine. Particularly, Stellera chamaejasme L. has been traditionally used in Mongolian medicine to treat various diseases, including chronic tracheitis, tuberculosis, and psoriasis. In this study, ethanol (EtOH) and dichloromethane (DCM) extracts of its roots (R) and aerial parts (AP) were evaluated for their antioxidant and anti-inflammatory activities. Thin-layer chromatography demonstrated the presence of flavonoids, namely kaempferol and quercetin-3-O-glucopyranoside, only in the EtOH-AP. Conversely, it showed that kaempferol, quercetin-3-O-glucopyranoside, coumarin, luteolin, rutin, morin, and riboflavin were not present in the other three extracts. The S. chamaejasme extracts exhibited strong antioxidant activity. In addition, the roots extracts presented the highest antioxidant activity against peroxyl radicals, with the EtOH-R being the most potent (IC50 = 0.90 ± 0.07 µg/mL). S. chamaejasme extracts also efficiently inhibited the production of one of the main pro-inflammatory cytokines, interleukin (IL)-6, in a dose-dependent manner by lipopolysaccharide-stimulated macrophages. Particularly, DCM-R was the strongest extract, reducing ≈ 91.5% of the IL-6 production. Since this extract was the most effective, gas chromatography-mass spectrometry (GC-MS) analyses were performed and demonstrated the presence of two fatty acids (palmitic acid and 9-octadecenoic acid), one fatty alcohol (1-hexadecanol), and one triterpenoid (squalene) that can contribute to the observed bioactivity. Herewith, S. chamaejasme extracts, mainly DCM-R, exhibit antioxidant and anti-inflammatory activities that could be applied as new and innovative natural formulations for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Temuulen Selenge
- Department of Biotechnology and Nutrition, School of Industrial Technology, Mongolian University of Science and Technology, 8th Khoroo, Baga Toiruu 34, Sukhbaatar District, Ulaanbaatar 14191, Mongolia; (T.S.); (E.T.)
- 3B’s Research Group, I3BS—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (S.F.V.); (R.L.R.); (H.F.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara F. Vieira
- 3B’s Research Group, I3BS—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (S.F.V.); (R.L.R.); (H.F.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Odontuya Gendaram
- Department of Pharmaceutical Chemistry and Pharmacognosy, Mongolian University of Pharmaceutical Sciences, Sonsgolon’s Road 4/A Songinokhairkhan District 20th Khoroo, Ulaanbaatar 46520, Mongolia;
| | - Rui L. Reis
- 3B’s Research Group, I3BS—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (S.F.V.); (R.L.R.); (H.F.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Soninkhishig Tsolmon
- Tana Lab, Graduate School of Business, Mongolian University of Science and Technology, Sukhbaatar District, Ulaanbaatar 14191, Mongolia;
| | - Enkhtuul Tsendeekhuu
- Department of Biotechnology and Nutrition, School of Industrial Technology, Mongolian University of Science and Technology, 8th Khoroo, Baga Toiruu 34, Sukhbaatar District, Ulaanbaatar 14191, Mongolia; (T.S.); (E.T.)
| | - Helena Ferreira
- 3B’s Research Group, I3BS—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (S.F.V.); (R.L.R.); (H.F.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s Research Group, I3BS—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (S.F.V.); (R.L.R.); (H.F.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
20
|
Theoharides TC, Kempuraj D. Potential Role of Moesin in Regulating Mast Cell Secretion. Int J Mol Sci 2023; 24:12081. [PMID: 37569454 PMCID: PMC10418457 DOI: 10.3390/ijms241512081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Mast cells have existed for millions of years in species that never suffer from allergic reactions. Hence, in addition to allergies, mast cells can play a critical role in homeostasis and inflammation via secretion of numerous vasoactive, pro-inflammatory and neuro-sensitizing mediators. Secretion may utilize different modes that involve the cytoskeleton, but our understanding of the molecular mechanisms regulating secretion is still not well understood. The Ezrin/Radixin/Moesin (ERM) family of proteins is involved in linking cell surface-initiated signaling to the actin cytoskeleton. However, how ERMs may regulate secretion from mast cells is still poorly understood. ERMs contain two functional domains connected through a long α-helix region, the N-terminal FERM (band 4.1 protein-ERM) domain and the C-terminal ERM association domain (C-ERMAD). The FERM domain and the C-ERMAD can bind to each other in a head-to-tail manner, leading to a closed/inactive conformation. Typically, phosphorylation on the C-terminus Thr has been associated with the activation of ERMs, including secretion from macrophages and platelets. It has previously been shown that the ability of the so-called mast cell "stabilizer" disodium cromoglycate (cromolyn) to inhibit secretion from rat mast cells closely paralleled the phosphorylation of a 78 kDa protein, which was subsequently shown to be moesin, a member of ERMs. Interestingly, the phosphorylation of moesin during the inhibition of mast cell secretion was on the N-terminal Ser56/74 and Thr66 residues. This phosphorylation pattern could lock moesin in its inactive state and render it inaccessible to binding to the Soluble NSF attachment protein receptors (SNAREs) and synaptosomal-associated proteins (SNAPs) critical for exocytosis. Using confocal microscopic imaging, we showed moesin was found to colocalize with actin and cluster around secretory granules during inhibition of secretion. In conclusion, the phosphorylation pattern and localization of moesin may be important in the regulation of mast cell secretion and could be targeted for the development of effective inhibitors of secretion of allergic and inflammatory mediators from mast cells.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| |
Collapse
|
21
|
Peña-Jorquera H, Cid-Jofré V, Landaeta-Díaz L, Petermann-Rocha F, Martorell M, Zbinden-Foncea H, Ferrari G, Jorquera-Aguilera C, Cristi-Montero C. Plant-Based Nutrition: Exploring Health Benefits for Atherosclerosis, Chronic Diseases, and Metabolic Syndrome-A Comprehensive Review. Nutrients 2023; 15:3244. [PMID: 37513660 PMCID: PMC10386413 DOI: 10.3390/nu15143244] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Atherosclerosis, chronic non-communicable diseases, and metabolic syndrome are highly interconnected and collectively contribute to global health concerns that reduce life expectancy and quality of life. These conditions arise from multiple risk factors, including inflammation, insulin resistance, impaired blood lipid profile, endothelial dysfunction, and increased cardiovascular risk. Adopting a plant-based diet has gained popularity as a viable alternative to promote health and mitigate the incidence of, and risk factors associated with, these three health conditions. Understanding the potential benefits of a plant-based diet for human health is crucial, particularly in the face of the rising prevalence of chronic diseases like diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Thus, this review focused on the plausible advantages of consuming a type of food pattern for the prevention and/or treatment of chronic diseases, emphasizing the dietary aspects that contribute to these conditions and the evidence supporting the benefits of a plant-based diet for human health. To facilitate a more in-depth analysis, we present separate evidence for each of these three concepts, acknowledging their intrinsic connection while providing a specific focus on each one. This review underscores the potential of a plant-based diet to target the underlying causes of these chronic diseases and enhance health outcomes for individuals and populations.
Collapse
Affiliation(s)
- Humberto Peña-Jorquera
- IRyS Group, Physical Education School, Pontificia Universidad Católica de Valparaíso, Viña del Mar 2530388, Chile
| | - Valeska Cid-Jofré
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9160019, Chile
| | - Leslie Landaeta-Díaz
- Facultad de Salud y Ciencias Sociales, Universidad de las Américas, Santiago 7500975, Chile
- Núcleo en Ciencias Ambientales y Alimentarias, Universidad de las Américas, Santiago 7500975, Chile
| | - Fanny Petermann-Rocha
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad Diego Portales, Santiago 8370068, Chile
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, Centre for Healthy Living, University of Concepción, Concepción 4070386, Chile
| | - Hermann Zbinden-Foncea
- Laboratorio de Fisiología del Ejercicio y Metabolismo, Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago 7500000, Chile
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Gerson Ferrari
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Providencia 7500912, Chile
- Escuela de Ciencias de la Actividad Física, el Deporte y la Salud, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Carlos Jorquera-Aguilera
- Escuela de Nutrición y Dietética, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
| | - Carlos Cristi-Montero
- IRyS Group, Physical Education School, Pontificia Universidad Católica de Valparaíso, Viña del Mar 2530388, Chile
| |
Collapse
|
22
|
Stevens Barrón JC, Chapa González C, Álvarez Parrilla E, De la Rosa LA. Nanoparticle-Mediated Delivery of Flavonoids: Impact on Proinflammatory Cytokine Production: A Systematic Review. Biomolecules 2023; 13:1158. [PMID: 37509193 PMCID: PMC10377633 DOI: 10.3390/biom13071158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Flavonoids are a diverse group of plant-derived compounds that have been shown to have various health benefits, including anti-inflammatory effects. However, their use in the treatment of inflammatory diseases has been limited due to their low bioavailability. The nanoparticle-mediated delivery of flavonoids has been proposed as a potential solution to this issue, as it allows the sustained release of the flavonoids over time. There are several different nanoparticle systems that have been developed for flavonoid delivery, including polymeric nanoparticles, liposomes, and inorganic nanoparticles. This systematic review aims to evaluate the impact of nanoparticle-mediated delivery of flavonoids on pro-inflammatory cytokine production in various diseases. We analyzed the performance of flavonoid-encapsulated nanoparticles in regulating cytokine production in different in vitro and in vivo studies. To this end, we followed the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) to conduct a comprehensive search of the literature and to assess the quality of the included studies. The results showed that flavonoid-encapsulated nanoparticles significantly downregulated pro-inflammatory cytokines, such as TNF-α, IL-1β, IL-6, and IL-18. In some cases, this effect was significantly greater than that observed with non-encapsulated flavonoids These findings suggest that nanoparticle-mediated delivery of flavonoids may have potential as a therapeutic approach for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
| | - Christian Chapa González
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico
| | - Emilio Álvarez Parrilla
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico
| | | |
Collapse
|
23
|
Ali F, Wang D, Cheng Y, Wu M, Saleem MZ, Wei L, Xie Y, Yan M, Chu J, Yang Y, Shen A, Peng J. Quercetin attenuates angiotensin II-induced proliferation of vascular smooth muscle cells and p53 pathway activation in vitro and in vivo. Biofactors 2023; 49:956-970. [PMID: 37296538 DOI: 10.1002/biof.1959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/23/2023] [Indexed: 06/12/2023]
Abstract
Quercetin is an essential flavonoid mostly found in herbal plants, fruits, and vegetables, which exhibits anti-hypertension properties. However, its pharmacological impact on angiotensin II (Ang II) induced the increase of blood pressure along with in-depth mechanism needs further exploration. The present study pointed out the anti-hypertensive role of quercetin and its comprehensive fundamental mechanisms. Our data showed that quercetin treatment substantially reduced the increase in blood pressure, pulse wave velocity, and aortic thickness of abdominal aorta in Ang II-infused C57BL/6 mice. RNA sequencing revealed that quercetin treatment reversed 464 differentially expressed transcripts in the abdominal aorta of Ang II-infused mice. Moreover, overlapping KEGG-enriched signaling pathways identified multiple common pathways between the comparison of Ang II versus control and Ang II + quercetin versus Ang II. Likewise, these pathways included cell cycle as well as p53 pathways. Transcriptome was further validated by immunohistochemistry, indicating that quercetin treatment significantly decreased the Ang II-induced expression of proliferating cell nuclear antigen (PCNA), cyclin-dependent kinase-4 (CDK4), and cyclin D1, while increased protein expression of p53, and p21 in abdominal aortic tissues of mice. In vitro, quercetin treatment meaningfully decreased the cell viability, arrested cell cycle at G0/G1 phase, and up-regulated the p53 and p21 proteins expression, as well as down-regulated the protein expression of cell cycle-related markers, for example, CDK4, cyclin D1 in Ang II stimulated vascular smooth muscle cells (VSMCs). This study addresses pharmacologic and mechanistic perspectives of quercetin against Ang-II-induced vascular injury and the increase of blood pressure.
Collapse
Affiliation(s)
- Farman Ali
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Di Wang
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Ying Cheng
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Meizhu Wu
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Muhammad Zubair Saleem
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, Fujian, China
| | - Lihui Wei
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
- Center for Innovation and Transformation of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yi Xie
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Mengchao Yan
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Jiangfeng Chu
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Yanyan Yang
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
- Center for Innovation and Transformation of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Aling Shen
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
- Center for Innovation and Transformation of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jun Peng
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| |
Collapse
|
24
|
Gérain J, Uebelhoer M, Costes B, Herman J, Pietri S, Donneau AF, Monseur J, Henrotin Y. NASAFYTOL ® supplementation in adults hospitalized with COVID-19 infection: results from an exploratory open-label randomized controlled trial. Front Nutr 2023; 10:1137407. [PMID: 37426178 PMCID: PMC10324407 DOI: 10.3389/fnut.2023.1137407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Objectives The effect and safety of Nasafytol®, a food supplement combining curcumin, quercetin, and Vitamin D, on hospitalized COVID-19-positive patients as support to standard of care were to be assessed. Methods This exploratory, open-label, randomized, controlled trial was carried out among hospitalized adults with COVID-19 infection. Participants were randomly assigned to receive Nasafytol® or Fultium® control. The improvement of the clinical condition and occurrence of (serious) adverse events were evaluated. The study was registered on clincaltrials.gov with the identifier NCT04844658. Results Twenty-five patients received Nasafytol®, and 24 received Fultium®. Demographic characteristics were well balanced between the groups. On day 14 (or at hospital leave if < 14 days), no difference was observed between groups regarding their clinical condition, fever, or the need of oxygen therapy. At day 7, however, 19 participants had been discharged from the hospital in the Nasafytol® arm compared to 10 participants in the Fultium® arm. No participants were transferred to the ICU or died in the Nasafytol® arm, vs. 4 transfers and 1 death in the Fultium® arm. The clinical condition of participants in the Nasafytol® arm had improved, as evidenced by a decrease in the COVID-19 WHO score. Interestingly, five SAEs occurred with Fultium®, while no SAE was observed with Nasafytol®. Conclusion Supplementation with Nasafytol®, in addition to standard-of-care treatment, led to a faster discharge from the hospital, improved clinical conditions of participants, and a reduced risk of serious outcomes, including transfer to the intensive care unit or death, in patients hospitalized with COVID-19.
Collapse
Affiliation(s)
- Jean Gérain
- Department of Internal Medicine, CHIREC Hospital Group, Brussels, Belgium
| | | | | | - Julie Herman
- Artialis SA, Avenue Hippocrate 5, Liège, Belgium
| | | | - Anne-Françoise Donneau
- Biostatitics Unit, Département des Sciences de la Santé Publique, Université de Liège, Liège, Belgium
| | - Justine Monseur
- Biostatitics Unit, Département des Sciences de la Santé Publique, Université de Liège, Liège, Belgium
| | | |
Collapse
|
25
|
Gravina C, Formato M, Piccolella S, Fiorentino M, Stinca A, Pacifico S, Esposito A. Lavandula austroapennina (Lamiaceae): Getting Insights into Bioactive Polyphenols of a Rare Italian Endemic Vascular Plant. Int J Mol Sci 2023; 24:ijms24098038. [PMID: 37175744 PMCID: PMC10178519 DOI: 10.3390/ijms24098038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Lavandula austroapennina N.G. Passal., Tundis and Upon has recently been described as a new species endemic to the southern Apennines (Italy). Locally, this species has a long ethnobotanical tradition of use for curative and decoration purposes and has been the protagonist of a flourishing essential oil production chain. Currently, while this tradition has long since ended, attention to the species is necessary, with a view to enhancing marginal and rural areas, as a recovery of a precious resource to (i) get insights into its (poly)phenolic fraction and (ii) address new and innovative uses of all its organs in various application fields (e.g., cosmeceutical sector). Therefore, after field sampling and dissection of its organs (i.e., corolla, calyx, leaf, stem and root), the latter, previously deterpenated and defatted, were subjected to accelerated ultrasound extraction and the related alcoholic extracts were obtained. Chemical composition, explored by UHPLC-QqTOF-MS/MS, and the following multivariate data analysis showed that the hydroxycinnamoyl derivatives are abundant in the leaf, stem and root, while flavonoids are more present in corolla and calyx. In particular, coumaroyl flavonoids with glyconic portion containing also hexuronyl moieties differentiated corolla organ, while yunnaneic acid D isomers and esculin distinguished root. When antiradical and reducing properties were evaluated (by means of ABTS, DPPH and PFRAP tests), a similar clustering of organs was achieved and the marked antioxidant efficacy of leaf, stem and root extracts was found. Thus, following cytotoxicity screening by MTT test on HaCaT keratinocytes, the protective effects of the organ extracts were assessed by wound closure observed after the scratch test. In addition, the extracts from corolla, leaf and stem were particularly active at low doses inducing rapid wound closure on HaCaT cells at a concentration of 1 μg/mL. The diversity in (poly)phenols of each organ and the promising bioactivity preliminarily assessed suggest further investigation to be carried out to fully recover and valorize this precious endemic vascular plant.
Collapse
Affiliation(s)
- Claudia Gravina
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Marialuisa Formato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Simona Piccolella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Marika Fiorentino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Adriano Stinca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Assunta Esposito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
26
|
Misra A, Chaudhary MK, Tripathi D, Srivastava PK, Gupta V, Acharya R, Srivastava S. Nutritional potential of an edible terrestrial orchid Eulophia nuda LINDL and validation of its traditional claim in arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116123. [PMID: 36634724 DOI: 10.1016/j.jep.2022.116123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
ETHNO PHARMACOLOGICAL RELEVANCE Eulophia nuda, locally known as "Amarkand" is an edible orchid, traditionally used as food and ethnomedicine in arthritis, as a blood purifier, vermifuge, in bronchitis, scrofulous glands etc. AIM: The present study focuses on the proximate-nutrient analysis, metabolic profiling of bioactive phenolic acids (PA's) and validation of anti-arthritic activity in E. nuda. MATERIALS The proximate, nutrition and element (macro-micro) content were evaluated as per standard protocols. The anti-arthritic activity was evaluated via different Invitro models and bioactive phenolics were quantified through calibrated HPLC-UV (PDA) method, as per ICH guidelines. RESULTS The species contains a considerable amount of proximate i.e. ash, fiber, crude alkaloid, total phenolics, and flavonoid. It is a rich source of macro-micro nutrients, carbohydrates and energy, at par with conventional cereals and super-foods like finger millet, foxtail millet etc. It also contains seven PA's viz. gallic acid, protocatechuic acid, caffeic acid, syringic acid, vanillin acid, ferulic acid and quercetin. The PA's content varies from 4.00 to 83.50 μg/ml. The anti-arthritic potential of the plant extract based on several in-vitro-models showed a promising inhibitory effect on inflammation and uric acid synthesis. CONCLUSION The study scientifically validates the traditional claims of this traditional orchid as food and ethnomedicine. The species can be commercially explored as a supplement to combat nutritional deficiency among rural communities.
Collapse
Affiliation(s)
- Ankita Misra
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, UP, 226001, India
| | - Mridul Kant Chaudhary
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, UP, 226001, India
| | - Deepali Tripathi
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, UP, 226001, India
| | - Pankaj Kumar Srivastava
- Environmental Technologies Division, ENVIS - NBRI, CSIR-National Botanical Research Institute, Lucknow, UP, 226001, India
| | - Vartika Gupta
- Environmental Technologies Division, ENVIS - NBRI, CSIR-National Botanical Research Institute, Lucknow, UP, 226001, India
| | | | - Sharad Srivastava
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, UP, 226001, India.
| |
Collapse
|
27
|
Aguayo-Morales H, Sierra-Rivera CA, Claudio-Rizo JA, Cobos-Puc LE. Horsetail (Equisetum hyemale) Extract Accelerates Wound Healing in Diabetic Rats by Modulating IL-10 and MCP-1 Release and Collagen Synthesis. Pharmaceuticals (Basel) 2023; 16:ph16040514. [PMID: 37111271 PMCID: PMC10141616 DOI: 10.3390/ph16040514] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/12/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Traditionally, Equisetum hyemale has been used for wound healing. However, its mechanism of action remains to be elucidated. For this purpose, a 40% ethanolic extract of E. hyemale was prepared. Phytochemical screening revealed the presence of minerals, sterols, phenolic acids, flavonols, a lignan, and a phenylpropenoid. The extract reduced the viability of RAW 264.7 cells and skin fibroblasts at all times evaluated. On the third day of treatment, this reduction was 30–40% and 15–40%, respectively. In contrast, the extract increased the proliferation of skin fibroblasts only after 48 h. In addition, the extract increased IL-10 release and inhibited MCP-1 release. However, the extract did not affect both TGF-β1 and TNF-α released by RAW 264.7 cells. The higher release of IL-10 could be related to the up-/downregulation of inflammatory pathways mediated by the extract components associated with their bioactivity. The extract inhibited the growth of Staphylococcus aureus and Escherichia coli. Topical application of the extract accelerated wound healing in diabetic rats by increasing fibroblast collagen synthesis. These results suggest that E. hyemale extract has great potential for use in the treatment of wounds thanks to its phytochemical composition that modulates cytokine secretion, collagen synthesis, and bacterial growth.
Collapse
Affiliation(s)
- Hilda Aguayo-Morales
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina con Ing. José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| | - Crystel A. Sierra-Rivera
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina con Ing. José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| | - Jesús A. Claudio-Rizo
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina con Ing. José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| | - Luis E. Cobos-Puc
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina con Ing. José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| |
Collapse
|
28
|
Theoharides TC, Kempuraj D. Role of SARS-CoV-2 Spike-Protein-Induced Activation of Microglia and Mast Cells in the Pathogenesis of Neuro-COVID. Cells 2023; 12:688. [PMID: 36899824 PMCID: PMC10001285 DOI: 10.3390/cells12050688] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). About 45% of COVID-19 patients experience several symptoms a few months after the initial infection and develop post-acute sequelae of SARS-CoV-2 (PASC), referred to as "Long-COVID," characterized by persistent physical and mental fatigue. However, the exact pathogenetic mechanisms affecting the brain are still not well-understood. There is increasing evidence of neurovascular inflammation in the brain. However, the precise role of the neuroinflammatory response that contributes to the disease severity of COVID-19 and long COVID pathogenesis is not clearly understood. Here, we review the reports that the SARS-CoV-2 spike protein can cause blood-brain barrier (BBB) dysfunction and damage neurons either directly, or via activation of brain mast cells and microglia and the release of various neuroinflammatory molecules. Moreover, we provide recent evidence that the novel flavanol eriodictyol is particularly suited for development as an effective treatment alone or together with oleuropein and sulforaphane (ViralProtek®), all of which have potent anti-viral and anti-inflammatory actions.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
29
|
Tabolacci C, De Vita D, Facchiano A, Bozzuto G, Beninati S, Failla CM, Di Martile M, Lintas C, Mischiati C, Stringaro A, Del Bufalo D, Facchiano F. Phytochemicals as Immunomodulatory Agents in Melanoma. Int J Mol Sci 2023; 24:2657. [PMID: 36768978 PMCID: PMC9916941 DOI: 10.3390/ijms24032657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Cutaneous melanoma is an immunogenic highly heterogenic tumor characterized by poor outcomes when it is diagnosed late. Therefore, immunotherapy in combination with other anti-proliferative approaches is among the most effective weapons to control its growth and metastatic dissemination. Recently, a large amount of published reports indicate the interest of researchers and clinicians about plant secondary metabolites as potentially useful therapeutic tools due to their lower presence of side effects coupled with their high potency and efficacy. Published evidence was reported in most cases through in vitro studies but also, with a growing body of evidence, through in vivo investigations. Our aim was, therefore, to review the published studies focused on the most interesting phytochemicals whose immunomodulatory activities and/or mechanisms of actions were demonstrated and applied to melanoma models.
Collapse
Affiliation(s)
- Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Daniela De Vita
- Department of Environmental Biology, University of Rome La Sapienza, 00185 Rome, Italy
| | | | - Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Simone Beninati
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | | | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico, 00128 Rome, Italy
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Carlo Mischiati
- Department of Neuroscience and Rehabilitation, School of Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
30
|
Kiełbowski K, Bakinowska E, Pawlik A. The Potential Role of Connexins in the Pathogenesis of Atherosclerosis. Int J Mol Sci 2023; 24:ijms24032600. [PMID: 36768920 PMCID: PMC9916887 DOI: 10.3390/ijms24032600] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/29/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Connexins (Cx) are members of a protein family which enable extracellular and intercellular communication through hemichannels and gap junctions (GJ), respectively. Cx take part in transporting important cell-cell messengers such as 3',5'-cyclic adenosine monophosphate (cAMP), adenosine triphosphate (ATP), and inositol 1,4,5-trisphosphate (IP3), among others. Therefore, they play a significant role in regulating cell homeostasis, proliferation, and differentiation. Alterations in Cx distribution, degradation, and post-translational modifications have been correlated with cancers, as well as cardiovascular and neurological diseases. Depending on the isoform, Cx have been shown either to promote or suppress the development of atherosclerosis, a progressive inflammatory disease affecting large and medium-sized arteries. Cx might contribute to the progression of the disease by enhancing endothelial dysfunction, monocyte recruitment, vascular smooth muscle cell (VSMC) activation, or by inhibiting VSMC autophagy. Inhibition or modulation of the expression of specific isoforms could suppress atherosclerotic plaque formation and diminish pro-inflammatory conditions. A better understanding of the complexity of atherosclerosis pathophysiology linked with Cx could result in developing novel therapeutic strategies. This review aims to present the role of Cx in the pathogenesis of atherosclerosis and discusses whether they can become novel therapeutic targets.
Collapse
|
31
|
Michalak M, Zagórska-Dziok M, Klimek-Szczykutowicz M, Szopa A. Phenolic Profile and Comparison of the Antioxidant, Anti-Ageing, Anti-Inflammatory, and Protective Activities of Borago officinalis Extracts on Skin Cells. Molecules 2023; 28:868. [PMID: 36677923 PMCID: PMC9865334 DOI: 10.3390/molecules28020868] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
In this study, methanol and water-methanol extracts of borage (Borago officinalis) herb dried using various methods were analysed for their phenolic profile and biological activity. Twelve compounds, including flavonoids (astragalin, kaempferol 4-glucoside, rutoside, and vitexin) and phenolic acids (caffeic, chlorogenic, 3,4-dihydroxyphenylacetic, ferulic, p-hydroxybenzoic, protocatechuic, rosmarinic, and syringic), were determined qualitatively and quantitatively in B. officinalis extracts by the HPLC-DAD method. The highest total flavonoid content was confirmed for the methanol extract from the hot-air-dried herb, while the methanol extract from the air-dried herb was most abundant in phenolic acids. The results of in vitro tests on human keratinocytes (HaCaT) and fibroblasts (BJ) showed that the extracts were able to reduce the intracellular level of reactive oxygen species in skin cells. Tests performed to assess inhibition of protein denaturation, lipoxygenase activity, and proteinase activity demonstrated that borage extracts have anti-inflammatory properties. In addition, the methanol extract of the herb dried in a convection oven showed the strongest inhibition of both collagenase and elastase activity, which is indicative of anti-ageing properties. The results show that the borage extracts are a source of valuable bioactive compounds with beneficial properties in the context of skin cell protection.
Collapse
Affiliation(s)
- Monika Michalak
- Department of Dermatology, Cosmetology and Aesthetic Surgery, Medical College, Jan Kochanowski University, IX Wieków Kielc 19, 35-317 Kielce, Poland
| | - Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Kielnarowa 386a, 36-020 Tyczyn, Poland
| | - Marta Klimek-Szczykutowicz
- Department of Dermatology, Cosmetology and Aesthetic Surgery, Medical College, Jan Kochanowski University, IX Wieków Kielc 19, 35-317 Kielce, Poland
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
32
|
Criollo-Mendoza MS, Contreras-Angulo LA, Leyva-López N, Gutiérrez-Grijalva EP, Jiménez-Ortega LA, Heredia JB. Wound Healing Properties of Natural Products: Mechanisms of Action. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020598. [PMID: 36677659 PMCID: PMC9867334 DOI: 10.3390/molecules28020598] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
A wound is the loss of the normal integrity, structure, and functions of the skin due to a physical, chemical, or mechanical agent. Wound repair consists of an orderly and complex process divided into four phases: coagulation, inflammation, proliferation, and remodeling. The potential of natural products in the treatment of wounds has been reported in numerous studies, emphasizing those with antioxidant, anti-inflammatory, and antimicrobial properties, e.g., alkaloids, saponins, terpenes, essential oils, and polyphenols from different plant sources, since these compounds can interact in the various stages of the wound healing process. This review addresses the most current in vitro and in vivo studies on the wound healing potential of natural products, as well as the main mechanisms involved in this activity. We observed sufficient evidence of the activity of these compounds in the treatment of wounds; however, we also found that there is no consensus on the effective concentrations in which the natural products exert this activity. For this reason, it is important to work on establishing optimal treatment doses, as well as an appropriate route of administration. In addition, more research should be carried out to discover the possible side effects and the behavior of natural products in clinical trials.
Collapse
Affiliation(s)
- Marilyn S. Criollo-Mendoza
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado Km 5.5, Col. Campo el Diez, Culiacán CP 80110, SI, Mexico
| | - Laura A. Contreras-Angulo
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado Km 5.5, Col. Campo el Diez, Culiacán CP 80110, SI, Mexico
| | - Nayely Leyva-López
- Post-Doc. CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km 5.5, Col. Campo El Diez, Culiacán CP 80110, SI, Mexico
| | - Erick P. Gutiérrez-Grijalva
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km 5.5, Col. Campo El Diez, Culiacán CP 80110, SI, Mexico
| | - Luis Alfonso Jiménez-Ortega
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado Km 5.5, Col. Campo el Diez, Culiacán CP 80110, SI, Mexico
| | - J. Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado Km 5.5, Col. Campo el Diez, Culiacán CP 80110, SI, Mexico
- Correspondence:
| |
Collapse
|
33
|
Gutiérrez-Grijalva EP, Leyva-López N, Vazquez-Olivo G, Heredia JB. Oregano as a potential source of antidiabetic agents. J Food Biochem 2022; 46:e14388. [PMID: 36098212 DOI: 10.1111/jfbc.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 01/13/2023]
Abstract
Oregano is the name given to a great variety of herbs belonging mainly to the Lamiaceae and Verbenaceae botanical families. Oregano species are rich sources of phytochemicals such as phenolic compounds like rosmarinic acid, salvianolic acid, and luteolin, among others. A few articles have previously accessed some potential pharmacological bioactivities of oregano plants; however, none has focused on the antidiabetic studies. This review aims to summarize recent studies about the potential effect of phenolic compounds from oregano plant species. The reports were retrieved from electronic databases such as PubMed, Web of Science, National Center for Biotechnology Information (NCBI), and Scopus. In addition, articles related to the mentioned topics and published between 2004-2022 were selected. The results from this study show that the antidiabetic pharmacological reports of oregano phenolic compounds are mainly in vitro reports. Therefore, the diversity of oregano species yields a broad variety of phenolic constituents, where preclinical and clinical studies are strongly recommended.
Collapse
Affiliation(s)
| | - Nayely Leyva-López
- Centro de Investigación en Alimentación y Desarrollo, AC, Culiacán, Sinaloa, Mexico
| | | | - J Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo, AC, Culiacán, Sinaloa, Mexico
| |
Collapse
|
34
|
Guilhon CC, Minho AS, Pouliot M, Boylan F, Fernandes PD. Tibouchina granulosa Leaves Present Anti-Inflammatory Effect. Pharmaceuticals (Basel) 2022; 15:ph15121458. [PMID: 36558909 PMCID: PMC9785533 DOI: 10.3390/ph15121458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
The ethanol extract (EE) prepared from the leaves of Tibouchina granulosa, and its fraction in ethyl acetate (fEA) were evaluated concerning their capacity to reduce inflammation in different experimental models. fEA was also studied concerning its chemical constituents. EE and fEA were assayed for their anti-inflammatory potential, using formalin-induced licking behavior and carrageenan-induced inflammation into the subcutaneous air pouch (SAP) models. Reduction in polymorphonuclear cells (PMN) activation was performed in freshly isolated PMN. Chromatographic analysis of fEA was performed by HPLC-DAD. Hispiduloside was isolated as the main constituent in fEA, and its quantity was estimated to be 39.3% in fEA. EE (30 mg/kg) significantly reduced the second phase of formalin-induced licking. fEA demonstrated a reduction in leukocyte migration into the SAP. EE and fEA drastically reduced cytokines (TNF-α, IL-1β, and IFN-γ), nitric oxide (NO) production, in vitro PMN migration induced by C5a and IL-8, and TNF-α and IL-1β gene expression. Taken together, our data indicate that either ethanol extract or its fEA fraction from leaves of T. granulosa present an anti-inflammatory effect, contributing to the pharmacological and chemical knowledge of this species and confirming the rationale behind its traditional use.
Collapse
Affiliation(s)
- Carolina Carvalho Guilhon
- Laboratório de Farmacologia da Dor e da Inflamação, Programa de Pesquisa em Descoberta de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Alan Silva Minho
- Laboratório de Farmacologia da Dor e da Inflamação, Programa de Pesquisa em Descoberta de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Marc Pouliot
- Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1V 4G2, Canada
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland
| | - Patricia Dias Fernandes
- Laboratório de Farmacologia da Dor e da Inflamação, Programa de Pesquisa em Descoberta de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Correspondence: ; Tel.: +55-21-3938-0388 (ext. 115)
| |
Collapse
|
35
|
Li Q, Liu P, Wu C, Bai L, Zhang Z, Bao Z, Zou M, Ren Z, Yuan L, Liao M, Lan Z, Yin S, Chen L. Integrating network pharmacology and pharmacological validation to explore the effect of Shi Wei Ru Xiang powder on suppressing hyperuricemia. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115679. [PMID: 36058481 DOI: 10.1016/j.jep.2022.115679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shi Wei Ru Xiang powder (SWR) is a traditional Tibetan medicinal formula with the effect of dispelling dampness and dispersing cold. In clinical practice, SWR is generally used for the treatment of hyperuricemia (HUA). However, its exact pharmacological mechanism remains unclear. AIMS OF THE STUDY To preliminarily elucidate the regulatory effects and possible mechanisms of SWR on hyperuricemia using network pharmacology and experimental validation. MATERIALS AND METHODS A mouse model of hyperuricemia was used to evaluate the alleviating effect of SWR on hyperuricemia. The major components of SWR were acquired by UPLC-Q/TOF-MS. The potential molecular targets and associated signaling pathways were predicted through network pharmacology. The mechanism of action of SWR in ameliorating hyperuricemia was further investigated by pharmacological evaluation. RESULTS Mice with hyperuricemia and renal dysfunction were ameliorated by SWR. The 36 components of SWR included phenolic acids, terpenoids, alkaloids and flavonoids were identified. Network pharmacological analysis showed the involvement of the above compounds, and 115 targets were involved to treat hyperuricemia, involving multiple biological processes and different signaling pathways. Pharmacological experiments validated that SWR ameliorated hyperuricemic nephropathy in mice by modulating the mitogen-activated protein kinase (MAPK) signaling pathway, nuclear factor kappaB (NF-κB) signaling pathway and NOD-like receptor signaling pathway. CONCLUSION MAPK signaling pathway, NF-κB signaling pathway and NOD-like receptor signaling pathway play important roles in the therapeutic effects of SWR on hyperuricemia.
Collapse
Affiliation(s)
- Qiang Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Peng Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Chen Wu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Lijie Bai
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhongyun Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zilu Bao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Min Zou
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhaoxiang Ren
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Lin Yuan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Maochuan Liao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhou Lan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Shijin Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| | - Lvyi Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
36
|
Lee H, Krishnan M, Kim M, Yoon YK, Kim Y. Rhamnetin, a Natural Flavonoid, Ameliorates Organ Damage in a Mouse Model of Carbapenem-Resistant Acinetobacter baumannii-Induced Sepsis. Int J Mol Sci 2022; 23:12895. [PMID: 36361685 PMCID: PMC9656386 DOI: 10.3390/ijms232112895] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/16/2022] [Accepted: 10/24/2022] [Indexed: 11/15/2023] Open
Abstract
In sepsis, the persistence of uncontrolled inflammatory response of infected host cells eventually leads to severe lung and organ failure and, ultimately, death. Carbapenem-resistant Acinetobacter baumannii (CRAB), causative bacteria of sepsis and lung failure in acute cases, belongs to a group of critical pathogens that cannot be eradicated using the currently available antibiotics. This underlines the necessity of developing new modes of therapeutics that can control sepsis at the initial stages. In this study, we investigated the anti-inflammatory activities in vitro and in vivo and the antiseptic effects of rhamnetin, a naturally occurring flavonoid. We found that among its isoforms, the potency of rhamnetin was less explored but rhamnetin possessed superior anti-inflammatory activity with least cytotoxicity. Rhamnetin showed significant anti-inflammatory effects in lipopolysaccharide-, CRAB-, and Escherichia coli (E. coli)-stimulated mouse macrophages by inhibiting the release of interleukin-6 and nitric oxide. In a mouse model of sepsis infected with clinically isolated CRAB or E. coli, rhamnetin significantly reduced the bacterial burden in the organs. In addition, normalized pro-inflammatory cytokine levels in lung lysates and histological analysis of lung tissue indicated alleviation of lung damage. This study implies that a potent natural product such as rhamnetin could be a future therapeutic for treating carbapenem-resistant gram-negative sepsis.
Collapse
Affiliation(s)
- Hyeju Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Manigandan Krishnan
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Minju Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Young Kyung Yoon
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, Korea University Anam Hospital, Korea University, Seoul 02841, Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
37
|
Glucogallin Attenuates the LPS-Induced Signaling in Macrophages and Protects Mice against Sepsis. Int J Mol Sci 2022; 23:ijms231911254. [PMID: 36232563 PMCID: PMC9569803 DOI: 10.3390/ijms231911254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
The anti-oxidant and anti-inflammatory effect of beta-glucogallin (BGG), a plant-derived natural product, was evaluated in both in vitro and in vivo studies. For the in vitro study, the ability of BGG pre-treatment to quench LPS-induced effects compared to LPS alone in macrophages was investigated. It was found that BGG pre-treatment showed a significant decrease in ROS, NO, superoxide, and pro-inflammatory cytokines (TNF-alpha, IL-4, IL-17, IL-1β, and IL-6) and increased reduced glutathione coupled with the restoration of mitochondrial membrane potential. Gene profiling and further validation by qPCR showed that BGG pre-treatment downregulated the LPS-induced expression of c-Fos, Fas, MMP-9, iNOS, COX-2, MyD88, TRIF, TRAF6, TRAM, c-JUN, and NF-κB. We observed that BGG pre-treatment reduced nuclear translocation of LPS-activated NF-κB and thus reduced the subsequent expressions of NLRP3 and IL-1β, indicating the ability of BGG to inhibit inflammasome formation. Molecular docking studies showed that BGG could bind at the active site of TLR4. Finally, in the LPS-driven sepsis mouse model, we showed that pre-treatment with BGG sustained toxic shock, as evident from their 100% survival. Our study clearly showed the therapeutic potential of BGG in toxic shock syndrome.
Collapse
|
38
|
Sufianova G, Gareev I, Beylerli O, Wu J, Shumadalova A, Sufianov A, Chen X, Zhao S. Modern aspects of the use of natural polyphenols in tumor prevention and therapy. Front Cell Dev Biol 2022; 10:1011435. [PMID: 36172282 PMCID: PMC9512088 DOI: 10.3389/fcell.2022.1011435] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Polyphenols are secondary plant metabolites or organic compounds synthesized by them. In other words, these are molecules that are found in plants. Due to the wide variety of polyphenols and the plants in which they are found, these compounds are divided according to the source of origin, the function of the polyphenols, and their chemical structure; where the main ones are flavonoids. All the beneficial properties of polyphenols have not yet been studied, since this group of substances is very extensive and diverse. However, most polyphenols are known to be powerful antioxidants and have anti-inflammatory effects. Polyphenols help fight cell damage caused by free radicals and immune system components. In particular, polyphenols are credited with a preventive effect that helps protect the body from certain forms of cancer. The onset and progression of tumors may be related directly to oxidative stress, or inflammation. These processes can increase the amount of DNA damage and lead to loss of control over cell division. A number of studies have shown that oxidative stress uncontrolled by antioxidants or an uncontrolled and prolonged inflammatory process increases the risk of developing sarcoma, melanoma, and breast, lung, liver, and prostate cancer. Therefore, a more in-depth study of the effect of polyphenolic compounds on certain signaling pathways that determine the complex cascade of oncogenesis is a promising direction in the search for new methods for the prevention and treatment of tumors.
Collapse
Affiliation(s)
- Galina Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen, Russia
| | - Ilgiz Gareev
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Ozal Beylerli
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Jianing Wu
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Russia
| | - Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- *Correspondence: Albert Sufianov, ; Xin Chen, ; Shiguang Zhao,
| | - Xin Chen
- Department of Neurosurgical Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Albert Sufianov, ; Xin Chen, ; Shiguang Zhao,
| | - Shiguang Zhao
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
- Department of Neurosurgical Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Albert Sufianov, ; Xin Chen, ; Shiguang Zhao,
| |
Collapse
|
39
|
Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer. Int J Mol Sci 2022; 23:ijms231810479. [PMID: 36142391 PMCID: PMC9499605 DOI: 10.3390/ijms231810479] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, interest in natural products such as alternative sources of pharmaceuticals for numerous chronic diseases, including tumors, has been renewed. Propolis, a natural product collected by honeybees, and polyphenolic/flavonoid propolis-related components modulate all steps of the cancer progression process. Anticancer activity of propolis and its compounds relies on various mechanisms: cell-cycle arrest and attenuation of cancer cells proliferation, reduction in the number of cancer stem cells, induction of apoptosis, modulation of oncogene signaling pathways, inhibition of matrix metalloproteinases, prevention of metastasis, anti-angiogenesis, anti-inflammatory effects accompanied by the modulation of the tumor microenvironment (by modifying macrophage activation and polarization), epigenetic regulation, antiviral and bactericidal activities, modulation of gut microbiota, and attenuation of chemotherapy-induced deleterious side effects. Ingredients from propolis also "sensitize" cancer cells to chemotherapeutic agents, likely by blocking the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In this review, we summarize the current knowledge related to the the effects of flavonoids and other polyphenolic compounds from propolis on tumor growth and metastasizing ability, and discuss possible molecular and cellular mechanisms involved in the modulation of inflammatory pathways and cellular processes that affect survival, proliferation, invasion, angiogenesis, and metastasis of the tumor.
Collapse
|
40
|
Valorization of the Photo-Protective Potential of the Phytochemically Standardized Olive ( Olea europaea L.) Leaf Extract in UVA-Irradiated Human Skin Fibroblasts. Molecules 2022; 27:molecules27165144. [PMID: 36014384 PMCID: PMC9415354 DOI: 10.3390/molecules27165144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Leaves of Olea europaea are a by-product of the olive oil industry and a dietary supplement with acknowledged antioxidant and anti-inflammatory activity but underestimated photoprotective potential. We investigated the protective effects of the LC-PDA-MS/MS standardized ethanol-water extract of olive leaves (OLE), containing 26.2% total phenols and 22.2% oleuropein, with underlying mechanisms against the UVA-induced oxidative damage in human dermal fibroblasts. Hs68 cells were pre-treated (24 h) with OLE (2.5-25 μg/mL) or the reference antioxidants, quercetin and ascorbic acid (25 μg/mL), followed by irradiation (8 J/cm2). OLE significantly reduced the UVA-induced DNA damage and reactive oxygen species (ROS) overproduction and increased the thioredoxin reductase (TrxR) expression and post-radiation viability of fibroblasts by inhibiting their apoptosis. Both intrinsic and extrinsic apoptotic signaling pathways appeared to be inhibited by OLE, but the activity of caspase 9 was the most reduced. We hypothesized that the TrxR up-regulation by OLE could have prevented the UVA-induced apoptosis of Hs68 cells. In addition, a significant decrease in UVA-induced secretion levels of tumor necrosis factor (TNF-α) and interleukin-2 (IL-2) was shown in human lymphocyte culture in response to OLE treatment. In summary, our results support the beneficial effect of OLE in an in vitro model and indicate its great potential for use in the cosmetic and pharmaceutical industry as a topical photoprotective, antioxidant, and anti-inflammatory agent.
Collapse
|
41
|
Valle-Dorado MG, Hernández-León A, Nani-Vázquez A, Ángeles-López GE, González-Trujano ME, Ventura-Martínez R. Antinociceptive effect of Mansoa alliacea polar extracts involves opioid receptors and nitric oxide in experimental nociception in mice. Biomed Pharmacother 2022; 152:113253. [PMID: 35696943 DOI: 10.1016/j.biopha.2022.113253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022] Open
Abstract
To evaluate the antinociceptive effect and the possible mechanism of action of two polar extracts of Mansoa alliacea, a medicinal plant used in Perú, Brazil, and Mexico to treat rheumatic pain, we used the formalin and hot-plate tests in mice. We found that ethanolic (MA-EtOH) and aqueous (MA-AQ) extracts of M. alliacea induced antinociceptive effects in both nociceptive tests. The antinociceptive efficacy of the highest dosage (300 mg/kg) of both extracts were also compared by using intraperitoneal and oral administration in the formalin test. Results showed that intraperitoneal injection of the two extracts produced better antinociceptive effects than that obtained by their oral administration. The mechanism of action involved in their antinociceptive activity was determined in the formalin test. Results showed that the presence of A784168 (TRPV1 antagonist) did not alter the antinociceptive effect induced by any of the M. alliacea extracts, whereas naltrexone (opioid antagonist) partially prevented the antinociceptive effect only of MA-EtOH in both phases of the formalin test. Furthermore, the effects of the extracts were diminished by L-NAME (inhibitor of nitric oxide synthase), but not by ODQ (inhibitor of the soluble guanylyl cyclase) or glibenclamide (blocker of K+ATP channels) in the neurogenic phase. However, the effect of MA-AQ was diminished by all the inhibitors in the inflammatory phase. These results support the use of M. alliacea as a potential natural product with efficacy for pain relief depending on the form of preparation and the route of administration by involving opioid receptors and the production of nitric oxide.
Collapse
Affiliation(s)
- María Guadalupe Valle-Dorado
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Col. Ciudad Universitaria, Alcaldía Coyoacán, 04510 Ciudad de México, Mexico.
| | - Alberto Hernández-León
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Av. México-Xochimilco 101, Col. San Lorenzo Huipulco, 14370 Ciudad de México, Mexico.
| | - Andrés Nani-Vázquez
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Av. México-Xochimilco 101, Col. San Lorenzo Huipulco, 14370 Ciudad de México, Mexico.
| | - Guadalupe Esther Ángeles-López
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Col. Ciudad Universitaria, Alcaldía Coyoacán, 04510 Ciudad de México, Mexico.
| | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Av. México-Xochimilco 101, Col. San Lorenzo Huipulco, 14370 Ciudad de México, Mexico.
| | - Rosa Ventura-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Col. Ciudad Universitaria, Alcaldía Coyoacán, 04510 Ciudad de México, Mexico.
| |
Collapse
|
42
|
Li Y, Chen Y, Sun-Waterhouse D. The potential of dandelion in the fight against gastrointestinal diseases: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115272. [PMID: 35405251 DOI: 10.1016/j.jep.2022.115272] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dandelion (Taraxacum officinale Weber ex F. H. Wigg.), as a garden weed grown globally, has long been consumed as a therapeutic herb. Its folkloric uses include treatments of digestive disorders (dyspepsia, anorexia, stomach disorders, gastritis and enteritis) and associate complex ailments involving uterine, liver and lung disorders. AIM OF THE STUDY The present study aims to critically assess the current state of research and summarize the potential roles of dandelion and its constituents in gastrointestinal (GI) -protective actions. A focus is placed on the reported bioactive components, pharmacological activities and modes of action (including molecular mechanisms and interactions among bioactive substances) of dandelion products/preparations and derived active constituents related to GI protection. MATERIALS AND METHODS The available information published prior to August 2021 was reviewed via SciFinder, Web of Science, Google Scholar, PubMed, Elsevier, Wiley On-line Library, and The Plant List. The search was based on the ethnomedical remedies, pharmacological activities, bioactive compounds of dandelion for GI protection, as well as the interactions of the components in dandelion with the gut microbiota or biological regulators, and with other ingested bioactive compounds. The key search words were "Taraxacum" and "dandelion". RESULTS T. coreanum Nakai, T. mongolicum and T. officinale are the most commonly used species for folkloric uses, with the whole plant, leaves and root of dandelion being used more frequently. GI-protective substances of dandelion include taraxasterol, taraxerol, caffeic acid, chicoric acid, chlorogenic acid, luteolin and its glucosides, polysaccharides, inulin, and β-sitosterol. Dandelion products and derived constituents exhibit pharmacological effects against GI disorders, mainly including dyspepsia, gastroesophageal reflux disease, gastritis, small intestinal ulcer, ulcerative colitis, liver diseases, gallstones, acute pancreatitis, and GI malignancy. The underlying molecular mechanisms may include immuno-inflammatory mechanisms, apoptosis mechanism, autophagy mechanism, and cholinergic mechanism, although interactions of dandelion's constituents with GI health-related biological entities (e.g., GI microbiota and associated biological modulators) or other ingested bioactive compounds shouldn't be ignored. CONCLUSION The review reveals some in vivo and in vitro studies on the potential of dandelion derived products as complementary and alternative medicines/therapeutics against GI disorders. The whole herb may alleviate some symptoms related GI immuno-inflammatory basing on the abundant anti-inflammatory and anti-oxide active substances. Dandelion root could be a nontoxic and effective anticancer alternative, owing to its abundant terpenoids and polysaccharides. However, research related to GI protective dandelion-derived products remains limited. Besides the need of identifying bioactive compounds/complexes in various dandelion species, more clinical studies are also required on the metabolism, bioavailability and safety of these substances to support their applications in food, medicine and pharmaceuticals.
Collapse
Affiliation(s)
- Yanni Li
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong Province, China
| | - Yilun Chen
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong Province, China.
| | - Dongxiao Sun-Waterhouse
- School of Chemical Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand.
| |
Collapse
|
43
|
Elsayed HE, Ebrahim HY, Mady MS, Khattab MA, El-Sayed EK, Moharram FA. Ethnopharmacological impact of Melaleuca rugulosa (Link) Craven leaves extract on liver inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115215. [PMID: 35337921 DOI: 10.1016/j.jep.2022.115215] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/27/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Melaleuca species have been used by many ethnic communities for the management and treatment of several ailments as hemorrhoids, cough, skin infections, rheumatism, sore throat, pain, inflammation, and digestive system malfunctions. However, the detailed mechanistic pharmacological effect of Melaleuca rugulosa (Link) Craven leaves in the management of liver inflammation has not been yet addressed. AIM OF THE STUDY The present study aimed to evaluate the anti-inflammatory, antioxidant, and antiapoptotic capacities of the aqueous methanol extract of M. rugulosa leaves in relevance to their flavonoid content using an appropriate in vivo model. MATERIALS AND METHODS The aqueous methanol extract of M. rugulosa leaves was administered to the rats at three non-toxic doses (250, 500, and 1000 mg/kg) for seven days prior to the initiation of liver-injury induced by paracetamol (3 g/kg). Liver enzymes including alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were evaluated in serum samples. The oxidative stress markers including reduced glutathione (GSH), malondialdehyde (MDA), and nitric oxide (NO) levels as well as the inflammatory markers such as tumour necrosis factor-alpha (TNF-α) and nuclear factor-kappa B (NF-κB), were assessed in liver homogenate. The results were supported by histopathological and immuno-histochemical studies. The phytochemical investigation of the flavonoid-rich fraction of the aqueous methanol extract was accomplished using different chromatographic and spectroscopic techniques. RESULTS The aqueous methanol extract of M. rugulosa leaves showed a powerful hepatoprotective activity evidenced by the significant reduction of MDA and NO levels, as well as increasing GSH and catalase activity. Moreover, the extract exhibited anti-inflammatory and antiapoptotic activities witnessed by decreasing TNF-α, NF-κB, iNOS, p-JNK, caspase-3, BAX, and increasing Bcl-2 levels. Moreover, the pretreatment of rats with all doses of M. rugulosa leaves extract showed a significant decrease in liver weight/body weight (LW/BW) ratio, and total bilirubin induced by paracetamol. On the other hand, the chromatographic separation of the flavonoid-rich fraction afforded twenty known flavonoids namely; iso-orientin (1), orientin (2), isovitexin (3), vitexin (4), quercetin-3-O-β-D-glucuronid methyl ether (5), quercetin-3-O-β-D-mannuronpyranoside (6), isoquercetin (7), quercitrin (8), kaempferol-3-O-β-D-mannuronopyranoside (9), kaempferol-7-O-methyl ether-3-O-β-D-glucopyranoside (10), guaijaverin (11), avicularin (12), kaempferide-3-O-β-D-glucopyranoside (13), astragalin (14), afzelin (15), luteolin (16), apigenin (17), quercetin (18), kaempferol (19), and catechin (20). CONCLUSION The aqueous methanol extract of M. rugulosa leaves showed potential hepatoprotective, antioxidant, and anti-inflammatory activities against paracetamol-induced liver inflammation which is correlated at least in part to its considerable phenolic content.
Collapse
Affiliation(s)
- Heba E Elsayed
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt.
| | - Hassan Y Ebrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| | - Mohamed S Mady
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| | - Mohamed A Khattab
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Elsayed K El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| | - Fatma A Moharram
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| |
Collapse
|
44
|
Therapeutic Effect of Renifolin F on Airway Allergy in an Ovalbumin-Induced Asthma Mouse Model In Vivo. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123789. [PMID: 35744915 PMCID: PMC9227769 DOI: 10.3390/molecules27123789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 11/23/2022]
Abstract
Renifolin F is a prenylated chalcone isolated from Shuteria involucrata, a traditional minority ethnic medicine used to treat the respiratory diseases and asthma. Based on the effects of the original medicine plant, we established an in vivo mouse model of allergic asthma using ovalbumin (OVA) as an inducer to evaluate the therapeutic effects of Renifolin F. In the research, mice were sensitized and challenged with OVA to establish an allergic asthma model to evaluate the effects of Renifolin F on allergic asthma. The airway hyper-reactivity (AHR) to methacholine, cytokine levels, ILC2s quantity and mircoRNA-155 expression were assessed. We discovered that Renifolin F attenuated AHR and airway inflammation in the OVA-induced asthmatic mouse model by inhibiting the regulation of ILC2s in the lung, thereby, reducing the upstream inflammatory cytokines IL-25, IL-33 and TSLP; the downstream inflammatory cytokines IL-4, IL-5, IL-9 and IL-13 of ILC2s; and the co-stimulatory factors IL-2 and IL-7; as well as the expression of microRNA-155 in the lung. The findings suggest a therapeutic potential of Renifolin F on OVA-induced airway inflammation.
Collapse
|
45
|
Khan A, Iqtadar S, Mumtaz SU, Heinrich M, Pascual-Figal DA, Livingstone S, Abaidullah S. Oral Co-Supplementation of Curcumin, Quercetin, and Vitamin D3 as an Adjuvant Therapy for Mild to Moderate Symptoms of COVID-19—Results From a Pilot Open-Label, Randomized Controlled Trial. Front Pharmacol 2022; 13:898062. [PMID: 35747751 PMCID: PMC9211374 DOI: 10.3389/fphar.2022.898062] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Curcumin, quercetin, and vitamin D3 (cholecalciferol) are common natural ingredients of human nutrition and reportedly exhibit promising anti-inflammatory, immunomodulatory, broad-spectrum antiviral, and antioxidant activities. Objective: The present study aimed to investigate the possible therapeutic benefits of a single oral formulation containing supplements curcumin, quercetin, and cholecalciferol (combinedly referred to here as CQC) as an adjuvant therapy for early-stage of symptomatic coronavirus disease 2019 (COVID-19) in a pilot open-label, randomized controlled trial conducted at Mayo Hospital, King Edward Medical University, Lahore, Pakistan. Methods: Reverse transcriptase polymerase chain reaction (RT-PCR) confirmed, mild to moderate symptomatic COVID-19 outpatients were randomized to receive either the standard of care (SOC) (n = 25) (control arm) or a daily oral co-supplementation of 168 mg curcumin, 260 mg quercetin, and 9 µg (360 IU) of cholecalciferol, as two oral soft capsules b.i.d. as an add-on to the SOC (n = 25) (CQC arm) for 14 days. The SOC includes paracetamol with or without antibiotic (azithromycin). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RT-PCR test, acute symptoms, and biochemistry including C-reactive protein (CRP), D-dimer, lactate dehydrogenase, ferritin, and complete blood count were evaluated at baseline and follow-up day seven. Results: Patients who received the CQC adjuvant therapy showed expedited negativization of the SARS-CoV-2 RT-PCR test, i.e., 15 (60.0%) vs. five (20.0%) of the control arm, p = 0.009. COVID-19- associated acute symptoms were rapidly resolved in the CQC arm, i.e., 15 (60.0%) vs. 10 (40.0%) of the control arm, p = 0.154. Patients in the CQC arm experienced a greater fall in serum CRP levels, i.e., from (median (IQR) 34.0 (21.0, 45.0) to 11.0 (5.0, 16.0) mg/dl as compared to the control arm, i.e., from 36.0 (28.0, 47.0) to 22.0 (15.0, 25.0) mg/dl, p = 0.006. The adjuvant therapy of co-supplementation of CQC was safe and well-tolerated by all 25 patients and no treatment-emergent effects, complications, side effects, or serious adverse events were reported. Conclusion: The co-supplementation of CQC may possibly have a therapeutic role in the early stage of COVID-19 infection including speedy negativization of the SARS-CoV-2 RT-PCR test, resolution of acute symptoms, and modulation of the hyperinflammatory response. In combination with routine care, the adjuvant co-supplementation of CQC may possibly help in the speedy recovery from early-stage mild to moderate symptoms of COVID-19. Further research is warranted. Clinical Trial Registration:Clinicaltrials.gov, identifier NCT05130671
Collapse
Affiliation(s)
- Amjad Khan
- INEOS Oxford Institute for AMR Research, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
- *Correspondence: Amjad Khan,
| | - Somia Iqtadar
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Sami Ullah Mumtaz
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Michael Heinrich
- UCL School of Pharmacy, University of London, London, United Kingdom
| | - Domingo A. Pascual-Figal
- Department of Cardiology, University of Murcia Hospital Universitario Virgen de la Arrixaca Murcia, Murcia, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Sajid Abaidullah
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| |
Collapse
|
46
|
Srivastava S, Rasool M. Underpinning IL-6 biology and emphasizing selective JAK blockade as the potential alternate therapeutic intervention for rheumatoid arthritis. Life Sci 2022; 298:120516. [DOI: 10.1016/j.lfs.2022.120516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/08/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023]
|
47
|
Role of Sodium-Glucose Co-Transporter 2 Inhibitors in the Regulation of Inflammatory Processes in Animal Models. Int J Mol Sci 2022; 23:ijms23105634. [PMID: 35628443 PMCID: PMC9144929 DOI: 10.3390/ijms23105634] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Sodium-glucose co-transporter 2 inhibitors, also known as gliflozins, were developed as a novel class of anti-diabetic agents that promote glycosuria through the prevention of glucose reabsorption in the proximal tubule by sodium-glucose co-transporter 2. Beyond the regulation of glucose homeostasis, they resulted as being effective in different clinical trials in patients with heart failure, showing a strong cardio-renal protective effect in diabetic, but also in non-diabetic patients, which highlights the possible existence of other mechanisms through which gliflozins could be exerting their action. So far, different gliflozins have been approved for their therapeutic use in T2DM, heart failure, and diabetic kidney disease in different countries, all of them being diseases that have in common a deregulation of the inflammatory process associated with the pathology, which perpetuates and worsens the disease. This inflammatory deregulation has been observed in many other diseases, which led the scientific community to have a growing interest in the understanding of the biological processes that lead to or control inflammation deregulation in order to be able to identify potential therapeutic targets that could revert this situation and contribute to the amelioration of the disease. In this line, recent studies showed that gliflozins also act as an anti-inflammatory drug, and have been proposed as a useful strategy to treat other diseases linked to inflammation in addition to cardio-renal diseases, such as diabetes, obesity, atherosclerosis, or non-alcoholic fatty liver disease. In this work, we will review recent studies regarding the role of the main sodium-glucose co-transporter 2 inhibitors in the control of inflammation.
Collapse
|
48
|
Dissanayake IH, Zak V, Kaur K, Jaye K, Ayati Z, Chang D, Li CG, Bhuyan DJ. Australian native fruits and vegetables: Chemical composition, nutritional profile, bioactivity and potential valorization by industries. Crit Rev Food Sci Nutr 2022; 63:8511-8544. [PMID: 35491610 DOI: 10.1080/10408398.2022.2057913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Australian native plants have adapted themselves to harsh climatic conditions enabling them to produce unique and high levels of secondary metabolites. Native fruits and vegetables have been an integral part of the Indigenous Australian diet and Bush medicine for centuries. They have recently gained popularity owing to their rich dietary fiber, minerals, polyphenolic and antioxidant contents. This review presents a comprehensive summary and critical assessment of the studies performed in the last few decades to understand the phytochemical and nutritional profiles and therapeutic properties of Australian native fruits and vegetables. Furthermore, the potential of these fruits and vegetables as functional food ingredients and in the prevention and treatment of different diseases is discussed. Research on the nutritional and phytochemical profiles and therapeutic activity of Australian vegetables is limited with most studies focused on native fruits. These fruits have demonstrated promising antioxidant, anticancer, anti-inflammatory and antimicrobial activities mostly in in vitro models. More research to a) identify novel bioactive compounds, b) define optimal post-harvest and extraction methods, and c) understand molecular mechanisms of pharmacological activity through preclinical and clinical studies is prudent for the prospective and wider use of Australian native fruits and vegetables by the food, pharmaceutical, and nutraceutical industries.
Collapse
Affiliation(s)
| | - Valeria Zak
- School of Science, Western Sydney University, Campbelltown, NSW, Australia
| | - Kirandeep Kaur
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Kayla Jaye
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Zahra Ayati
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
49
|
Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules 2022; 27:molecules27092901. [PMID: 35566252 PMCID: PMC9100260 DOI: 10.3390/molecules27092901] [Citation(s) in RCA: 199] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022] Open
Abstract
Hydroxylated polyphenols, also called flavonoids, are richly present in vegetables, fruits, cereals, nuts, herbs, seeds, stems, and flowers of numerous plants. They possess numerous medicinal properties such as antioxidant, anti-cancer, anti-microbial, neuroprotective, and anti-inflammation. Studies show that flavonoids activate antioxidant pathways that render an anti-inflammatory effect. They inhibit the secretions of enzymes such as lysozymes and β-glucuronidase and inhibit the secretion of arachidonic acid, which reduces inflammatory reactions. Flavonoids such as quercetin, genistein, apigenin, kaempferol, and epigallocatechin 3-gallate modulate the expression and activation of a cytokine such as interleukin-1beta (IL-1β), Tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8); regulate the gene expression of many pro-inflammatory molecules such s nuclear factor kappa-light chain enhancer of activated B cells (NF-κB), activator protein-1 (AP-1), intercellular adhesion molecule-1 (ICAM), vascular cell adhesion molecule-1 (VCAM), and E-selectins; and also inhibits inducible nitric oxide (NO) synthase, cyclooxygenase-2, and lipoxygenase, which are pro-inflammatory enzymes. Understanding the anti-inflammatory action of flavonoids provides better treatment options, including coronavirus disease 2019 (COVID-19)-induced inflammation, inflammatory bowel disease, obstructive pulmonary disorder, arthritis, Alzheimer’s disease, cardiovascular disease, atherosclerosis, and cancer. This review highlights the sources, biochemical activities, and role of flavonoids in enhancing human health.
Collapse
|
50
|
Udomwasinakun N, Pirak T, Chanput WP. Identification of polyphenols in white mugwort (Artemisia lactiflora Wall.) ethanolic extracts and their anti-inflammatory and anti-adipogenic activity potential. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|