1
|
Qi C, Li X, Li Q, Shi X, Xia MC, Chen Y, Wang Z, Abliz Z. Mass Spectrometry Imaging for the Characterization of C═C Localization in Unsaturated Lipid Isomers at the Single-Cell Level. Anal Chem 2024. [PMID: 39269953 DOI: 10.1021/acs.analchem.4c03679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Unsaturated lipids with carbon-carbon double bonds (C═C) have been implicated in the pathogenesis of various diseases. While mass spectrometry imaging (MSI) has been employed to map the distribution of lipid isomers in tissue sections, the identification of lipid C═C positional isomers at the single-cell level using MSI poses a significant challenge. In this study, we developed a novel approach utilizing ToF-SIMS in conjunction with the Paternò-Büchi (P-B) photochemical reaction to characterize the C═C localization in unsaturated lipid isomers at the single-cell level. The P-B reaction was employed to produce adduct products, which were subsequently subjected to collision-induced dissociation by the primary ion beam of ToF-SIMS to generate characteristic ion pairs indicative of the presence of C═C bonds. Utilizing this approach, lipid isomers in brain and skeletal tissues from mice, as well as different cell lines, were visualized at single-cell resolution. Furthermore, distinct variations in the composition of FA 18:1 isomers across different microregions and cell types were revealed. Our P-B ToF-SIMS approach enables the accurate identification and characterization of complex lipid structures with remarkable spatial resolution and can be helpful in understanding the physiological role of these C═C positional isomers.
Collapse
Affiliation(s)
- Chengjian Qi
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiaoni Li
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qian Li
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Xiujuan Shi
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Meng-Chan Xia
- National Narcotics Laboratory Beijing Regional Center, Beijing 100164, China
| | - Yanhua Chen
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing 100081, China
| | - Zhaoying Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing 100081, China
| | - Zeper Abliz
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China
| |
Collapse
|
2
|
Yu Z, Yang J, Jiang Y, Wei M, Lyu Y, Yang D, Shen S, Han Y, Li M. Metabolomic and lipidomic profiling of the spinal cord in type 2 diabetes mellitus rats with painful neuropathy. Metab Brain Dis 2024; 39:1117-1130. [PMID: 38980579 PMCID: PMC11349861 DOI: 10.1007/s11011-024-01376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
In this paper we investigated lipid and metabolite changes in diabetic neuropathy, using untargeted lipidomics and metabolomics analyses of the spinal cords from streptozotocin-treated diabetic rats.170 metabolites and 45 lipids were dysregulated in the painful diabetic neuropathy (PDN) phase. Pathway enrichment analysis revealed perturbations in starch and sucrose, tryptophan, pyrimidine, cysteine and methionine, thiamine, tyrosine, and nucleotides. The disturbance of tyrosine, tryptophan, methionine, triacylglycerol, and phosphatidylethanolamine metabolism indicated that pathological mechanisms in the PDN involved energy metabolism, oxidative stress, and neural reparative regeneration. These revelations offered potential biomarkers for PDN and enriched the comprehension of the complex molecular mechanisms characterizing PDN, establishing a solid foundation for subsequent inquiries into neural convalescence and recovery after PDN.
Collapse
Affiliation(s)
- Zhuoying Yu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Jing Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Ye Jiang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Min Wei
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Yanhan Lyu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Dongsheng Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Shixiong Shen
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Yongzheng Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China.
| | - Min Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
3
|
Prete A, Bancos I. Mild autonomous cortisol secretion: pathophysiology, comorbidities and management approaches. Nat Rev Endocrinol 2024; 20:460-473. [PMID: 38649778 DOI: 10.1038/s41574-024-00984-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
The majority of incidentally discovered adrenal tumours are benign adrenocortical adenomas and the prevalence of adrenocortical adenomas is around 1-7% on cross-sectional abdominal imaging. These can be non-functioning adrenal tumours or they can be associated with autonomous cortisol secretion on a spectrum that ranges from rare clinically overt adrenal Cushing syndrome to the much more prevalent mild autonomous cortisol secretion (MACS) without signs of Cushing syndrome. MACS is diagnosed (based on an abnormal overnight dexamethasone suppression test) in 20-50% of patients with adrenal adenomas. MACS is associated with cardiovascular morbidity, frailty, fragility fractures, decreased quality of life and increased mortality. Management of MACS should be individualized based on patient characteristics and includes adrenalectomy or conservative follow-up with treatment of associated comorbidities. Identifying patients with MACS who are most likely to benefit from adrenalectomy is challenging, as adrenalectomy results in improvement of cardiovascular morbidity in some, but not all, patients with MACS. Of note, diagnosis and management of patients with bilateral MACS is especially challenging. Current gaps in MACS clinical practice include a lack of specific biomarkers diagnostic of MACS-related health outcomes and a paucity of clinical trials demonstrating the efficacy of adrenalectomy on comorbidities associated with MACS. In addition, little evidence exists to demonstrate the efficacy and safety of long-term medical therapy in patients with MACS.
Collapse
Affiliation(s)
- Alessandro Prete
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Irina Bancos
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA.
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Yan S, Chen S, Liu Y, Liang H, Zhang X, Zhang Q, Xiu J. Associations of serum carotenoids with visceral adiposity index and lipid accumulation product: a cross-sectional study based on NHANES 2001-2006. Lipids Health Dis 2023; 22:209. [PMID: 38037060 PMCID: PMC10691056 DOI: 10.1186/s12944-023-01945-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/15/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Visceral adiposity index (VAI) and lipid accumulation product (LAP) are comprehensive indicators to evaluate visceral fat and determine the metabolic health of individuals. Carotenoids are a group of naturally occurring antioxidants associated with several diseases. The purpose of this investigation was to explore the association between serum carotenoid concentration and VAI or LAP. METHODS The data were obtained from the National Health and Nutrition Examination Survey between 2001 and 2006. The levels of serum carotenoids were evaluated using high-performance liquid chromatography. Multivariate linear regression models were employed to investigate the relationship between levels of serum carotenoids and VAI or LAP. The potential non-linear relationship was determined using threshold effect analysis and fitted smoothing curves. Stratification analysis was performed to investigate the potential modifying factors. RESULTS In total, 5,084 participants were included in this population-based investigation. In the multivariate linear regressions, compared to the lowest quartiles of serum carotenoids, the highest quartiles were significantly associated with VAI, and the effect size (β) and 95% CI was - 0.98 (- 1.34, - 0.62) for α-carotene, - 1.39 (- 1.77, - 1.00) for β-carotene, - 0.79 (- 1.18, - 0.41) for β-cryptoxanthin, - 0.68 (- 0.96, - 0.39) for lutein/zeaxanthin, and - 0.88 (- 1.50, - 0.27) for trans-lycopene. Using piece-wise linear regression models, non-linear relationships were found between β-carotene and trans-lycopene and VAI with an inflection point of 2.44 (log2-transformed, ug/dL) and 3.80 (log2-transformed, ug/dL), respectively. The results indicated that α-carotene, β-cryptoxanthin, and lutein/zeaxanthin were linearly associated with VAI. An inverse association was also found between serum carotenoids and LAP after complete adjustments. CONCLUSION This study revealed that several serum carotenoids were associated with VAI or LAP among the general American population. Further large prospective investigations are warranted to support this finding.
Collapse
Affiliation(s)
- Shaohua Yan
- Department of Cardiology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, China
| | - Siyu Chen
- Department of Cardiology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, China
| | - Yumiao Liu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, China
| | - Hongbin Liang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, China
| | - Xinlu Zhang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, China
| | - Qiuxia Zhang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, China.
| | - Jiancheng Xiu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Chen ZY, Liu L, Zhuang XX, Zhang YC, Ma YN, Liu Y, Wen DL. Lipid accumulation product is a better predictor of metabolic syndrome in Chinese adolescents: a cross-sectional study. Front Endocrinol (Lausanne) 2023; 14:1179990. [PMID: 37424867 PMCID: PMC10326626 DOI: 10.3389/fendo.2023.1179990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Aim Confirm and compare the degree of associations of non-traditional lipid profiles and metabolic syndrome (MetS) in Chinese adolescents, determine the lipid parameter with better predictive potential, and investigate their discriminatory power on MetS. Methods Medical measurements, including anthropometric measurements and biochemical blood tests, were undergone among a total sample of 1112 adolescents (564 boys and 548 girls) aged from 13 to 18 years. Univariate and multivariate logistic regression analyses were applied for assessing the relationships between the levels of traditional/non-traditional lipid profiles and MetS. We performed Receiver Operating Characteristic (ROC) analyses to mensurate the effectiveness of lipid accumulation product (LAP) on the diagnosis of MetS. Meanwhile, areas under the ROC curve and the cut-off values were calculated for MetS and its components. Results Univariate analysis showed that all our lipid profiles were closely associated with MetS (P< 0.05). LAP index showed the closest association with MetS than the other lipid profiles. Additionally, ROC analyses indicated that the LAP index showed sufficient capabilities to identify adolescents with MetS and its components. Conclusion The LAP index is a simple and efficient tool to identify individuals with MetS in Chinese adolescents.
Collapse
Affiliation(s)
- Zi-yi Chen
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Lei Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Xu-xiu Zhuang
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yi-cong Zhang
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Ya-nan Ma
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yang Liu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - De-liang Wen
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Ağagündüz D, Icer MA, Yesildemir O, Koçak T, Kocyigit E, Capasso R. The roles of dietary lipids and lipidomics in gut-brain axis in type 2 diabetes mellitus. J Transl Med 2023; 21:240. [PMID: 37009872 PMCID: PMC10068184 DOI: 10.1186/s12967-023-04088-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), one of the main types of Noncommunicable diseases (NCDs), is a systemic inflammatory disease characterized by dysfunctional pancreatic β-cells and/or peripheral insulin resistance, resulting in impaired glucose and lipid metabolism. Genetic, metabolic, multiple lifestyle, and sociodemographic factors are known as related to high T2DM risk. Dietary lipids and lipid metabolism are significant metabolic modulators in T2DM and T2DM-related complications. Besides, accumulated evidence suggests that altered gut microbiota which plays an important role in the metabolic health of the host contributes significantly to T2DM involving impaired or improved glucose and lipid metabolism. At this point, dietary lipids may affect host physiology and health via interaction with the gut microbiota. Besides, increasing evidence in the literature suggests that lipidomics as novel parameters detected with holistic analytical techniques have important roles in the pathogenesis and progression of T2DM, through various mechanisms of action including gut-brain axis modulation. A better understanding of the roles of some nutrients and lipidomics in T2DM through gut microbiota interactions will help develop new strategies for the prevention and treatment of T2DM. However, this issue has not yet been entirely discussed in the literature. The present review provides up-to-date knowledge on the roles of dietary lipids and lipidomics in gut-brain axis in T2DM and some nutritional strategies in T2DM considering lipids- lipidomics and gut microbiota interactions are given.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490, Ankara, Turkey.
| | - Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, 05100, Amasya, Turkey
| | - Ozge Yesildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bursa Uludag University, 16059, Bursa, Turkey
| | - Tevfik Koçak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490, Ankara, Turkey
| | - Emine Kocyigit
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ordu University, 52200, Ordu, Turkey
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Naples, Italy.
| |
Collapse
|
7
|
Bailey LS, Prajapati DV, Basso KB. Optimization of the Sulfo-Phospho-Vanillin Assay for Total Lipid Normalization in Untargeted Quantitative Lipidomic LC-MS/MS Applications. Anal Chem 2022; 94:17810-17818. [PMID: 36520113 DOI: 10.1021/acs.analchem.2c03488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Liquid chromatography (LC)-mass spectrometry (MS)/MS lipidomic normalization is generally performed by equalizing pre-extraction sample materials or via DNA or protein pre-quantitation methods, which have known measurement inaccuracies. We propose the use of the sulfo-phospho-vanillin assay (SPVA), a total lipid colorimetric analysis, as a pre-quantitation method to normalize lipids in lipidomic LC-MS/MS applications. The assay has been applied to a 300 μL well volume in a 96-well plate and tested using Avanti total lipid standards of porcine brain and E. coli. Assay parameters for lipid sample volume, sulfuric acid, vanillin/phosphoric acid, post-reaction incubation time, and wavelength are optimized for robust application to biologically sourced lipid samples. Standard test samples were prepared using three concentrations covering approximately 100 μg/mL range. The optimized assay yielded test sample errors less than 10%, indicating a precise and accurate assay performance. The test samples were then analyzed by LC-MS/MS and normalized using SPVA pre-quantitation and pseudo-mass normalization. The detected lipids showed smaller standard deviations and greater relative concentration differences compared to the pseudo-mass normalized lipids, showing promise as a normalization method.
Collapse
Affiliation(s)
- Laura S Bailey
- Mass Spectrometry Research and Education Center, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Dilip V Prajapati
- Mass Spectrometry Research and Education Center, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Kari B Basso
- Mass Spectrometry Research and Education Center, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
8
|
Zhu Y, Wei YL, Karras I, Cai PJ, Xiao YH, Jia CL, Qian XL, Zhu SY, Zheng LJ, Hu X, Sun AD. Modulation of the gut microbiota and lipidomic profiles by black chokeberry ( Aronia melanocarpa L.) polyphenols via the glycerophospholipid metabolism signaling pathway. Front Nutr 2022; 9:913729. [PMID: 35990329 PMCID: PMC9387202 DOI: 10.3389/fnut.2022.913729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Black chokeberry (Aronia melanocarpa L.) is rich in polyphenols with various physiological and pharmacological activities. However, the relationship between the modulation effect of black chokeberry polyphenols on obesity and the alteration of lipid metabolism is not clearly understood. This study aimed to investigate the beneficial effects of the black chokeberry polyphenols (BCPs) treatment on the structure of gut microbiota, lipid metabolism, and associated mechanisms in high-fat diet (HFD)-induced obese rats. Here, we found that a high-fat diet promoted body weight gain and lipid accumulation in rats, while oral BCPs supplementation reduced body weight, liver, and white adipose tissue weight and alleviated dyslipidemia and hepatic steatosis in HFD-induced obese rats. In addition, BCPs supplementation prevented gut microbiota dysbiosis by increasing the relative abundance of Bacteroides, Prevotella, Romboutsia, and Akkermansia and decreasing the relative abundance of Desulfovibrio and Clostridium. Furthermore, 64 lipids were identified as potential lipid biomarkers through lipidomics analysis after BCPs supplementation, especially PE (16:0/22:6), PE (18:0/22:6), PC (20:3/19:0), LysoPE (24:0), LysoPE (24:1), and LysoPC (20:0). Moreover, our studies provided new evidence that composition of gut microbiota was closely related to the alteration of lipid profiles after BCPs supplementation. Additionally, BCPs treatment could ameliorate the disorder of lipid metabolism by regulating the mRNA and protein expression of genes related to the glycerophospholipid metabolism signaling pathway in HFD-induced obese rats. The mRNA and protein expression of PPARα, CPT1α, EPT1, and LCAT were significantly altered after BCPs treatment. In conclusion, the results of this study indicated that BCPs treatment alleviated HFD-induced obesity by modulating the composition and function of gut microbiota and improving the lipid metabolism disorder via the glycerophospholipid metabolism signaling pathway.
Collapse
Affiliation(s)
- Yue Zhu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Yu-Long Wei
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Ioanna Karras
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Peng-Ju Cai
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Yu-Hang Xiao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Cheng-Li Jia
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Xiao-Lin Qian
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Shi-Yu Zhu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Lu-Jie Zheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Xin Hu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Ai-Dong Sun
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| |
Collapse
|
9
|
Peselj C, Ebrahimi M, Broeskamp F, Prokisch S, Habernig L, Alvarez-Guerra I, Kohler V, Vögtle FN, Büttner S. Sterol Metabolism Differentially Contributes to Maintenance and Exit of Quiescence. Front Cell Dev Biol 2022; 10:788472. [PMID: 35237594 PMCID: PMC8882848 DOI: 10.3389/fcell.2022.788472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/20/2022] [Indexed: 01/01/2023] Open
Abstract
Nutrient starvation initiates cell cycle exit and entry into quiescence, a reversible, non-proliferative state characterized by stress tolerance, longevity and large-scale remodeling of subcellular structures. Depending on the nature of the depleted nutrient, yeast cells are assumed to enter heterogeneous quiescent states with unique but mostly unexplored characteristics. Here, we show that storage and consumption of neutral lipids in lipid droplets (LDs) differentially impacts the regulation of quiescence driven by glucose or phosphate starvation. Upon prolonged glucose exhaustion, LDs were degraded in the vacuole via Atg1-dependent lipophagy. In contrast, yeast cells entering quiescence due to phosphate exhaustion massively over-accumulated LDs that clustered at the vacuolar surface but were not engulfed via lipophagy. Excessive LD biogenesis required contact formation between the endoplasmic reticulum and the vacuole at nucleus-vacuole junctions and was accompanied by a shift of the cellular lipid profile from membrane towards storage lipids, driven by a transcriptional upregulation of enzymes generating neutral lipids, in particular sterol esters. Importantly, sterol ester biogenesis was critical for long-term survival of phosphate-exhausted cells and supported rapid quiescence exit upon nutrient replenishment, but was dispensable for survival and regrowth of glucose-exhausted cells. Instead, these cells relied on de novo synthesis of sterols and fatty acids for quiescence exit and regrowth. Phosphate-exhausted cells efficiently mobilized storage lipids to support several rounds of cell division even in presence of inhibitors of fatty acid and sterol biosynthesis. In sum, our results show that neutral lipid biosynthesis and mobilization to support quiescence maintenance and exit is tailored to the respective nutrient scarcity.
Collapse
Affiliation(s)
- Carlotta Peselj
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Mahsa Ebrahimi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Filomena Broeskamp
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Simon Prokisch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lukas Habernig
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Irene Alvarez-Guerra
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - F.-Nora Vögtle
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
- Network Aging Research, Heidelberg University, Heidelberg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
10
|
Sun L, Yang Z, Zhao W, Chen Q, Bai H, Wang S, Yang L, Bi C, Shi Y, Liu Y. Integrated lipidomics, transcriptomics and network pharmacology analysis to reveal the mechanisms of Danggui Buxue Decoction in the treatment of diabetic nephropathy in type 2 diabetes mellitus. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114699. [PMID: 34610419 DOI: 10.1016/j.jep.2021.114699] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danggui Buxue Decoction (DBT) is classical prescriptions, which contains two Traditional Chinese Medicines of Angelicae sinensis radix and Astragali radix. According to the preliminary work of our laboratory and numerous studies, it has been found that DBT has a therapeutic effect on diabetic nephropathy (DN). However, the mechanisms underlying its action remain unclear. AIM OF THE STUDY The aim of this study was to evaluate the impact of DBT on kidney disease in diabetic mice and further explore its protective mechanism. METHODS DN mice model was induced by high-fat fodder and streptozotocin (STZ). Qualitative and quantitative analysis of 6 compounds in DBT was carried out by HPLC, including calycosin-7-glucoside, ferulic acid, ononin, calycosin, formononetin, and levostilide A. Hematoxylin-Eosin (HE) staining was used to determine the degree of kidney pathological damage. The UPLC-Q Exactive MS technique was used to analyze the lipids metabolism profile of kidneys samples and multiple statistical analysis methods were used to screen and identify biomarkers. Transcriptomics analyses were carried out using RNAseq. The possible molecular mechanism was unraveled by network pharmacology. RESULTS Thirty-one significantly altered lipid metabolites were identified in the model group comparing with the control group. DBT improved aberrant expression of several pathways related to lipidomics, including glycerophospholipid metabolism and sphingolipid metabolism. Comprehensive analysis indicated that DBT intervention reduced the content of Cers, phosphatidylethanolamines and phosphatidylcholines in mouse kidneys by downregulating the transcription level of Degs2 and Cers, reducing lipid accumulation and promoting Akt phosphorylation by upregulating the expression of Acers and Pdk1. Network pharmacology analysis showed that components in DBT, such as kaempferol, ferulic acid and astragaloside IV, could be responsible for the pharmacological activity of DN by regulating the AGE-RAGE, PI3K/Akt, MAPK and NF-κB signaling pathways in diabetic complications. CONCLUSIONS These results showed that DBT may improve DN by affecting insulin resistance, chronic inflammation and lipid accumulation.
Collapse
Affiliation(s)
- Lili Sun
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Zhigang Yang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Wei Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Qin Chen
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Haiying Bai
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Shanshan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Li Yang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Chunmei Bi
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yanbin Shi
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yingqian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| |
Collapse
|
11
|
Yang J, Wang M, Yang D, Yan H, Wang Z, Yan D, Guo N. Integrated lipids biomarker of the prediabetes and type 2 diabetes mellitus Chinese patients. Front Endocrinol (Lausanne) 2022; 13:1065665. [PMID: 36743922 PMCID: PMC9897314 DOI: 10.3389/fendo.2022.1065665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/30/2022] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Dyslipidemia is a hallmark of T2DM, and as such, analyses of lipid metabolic profiles in affected patients have the potential to permit the development of an integrated lipid metabolite-based biomarker model that can facilitate early patient diagnosis and treatment. METHODS Untargeted and targeted lipidomics approaches were used to analyze serum samples from newly diagnosed 93 Chinese participants in discovery cohort and 440 in validation cohort via UHPLC-MS and UHPLC-MS/MS first. The acid sphingomyelinase protein expression was analyzed by Western blot. RESULTS AND DISCUSSION Through these analyses, we developed a novel integrated biomarker signature composed of LPC 22:6, PC(16:0/20:4), PE(22:6/16:0), Cer(d18:1/24:0)/SM(d18:1/19:0), Cer(d18:1/24:0)/SM(d18:0/16:0), TG(18:1/18:2/18:2), TG(16:0/16:0/20:3), and TG(18:0/16:0/18:2). The area under the curve (AUC) values for this integrated biomarker signature for prediabetes and T2DM patients were 0.841 (cutoff: 0.565) and 0.894 (cutoff: 0.633), respectively. Furthermore, theresults of western blot analysis of frozen adipose tissue from 3 week (prediabetes) and 12 week (T2DM) Goto-Kakizaki (GK) rats also confirmed that acid sphingomyelinase is responsible for significant disruptions in ceramide and sphingomyelin homeostasis. Network analyses of the biomarkers associated with this biosignature suggested that the most profoundly affected lipid metabolism pathways in the context of diabetes include de novo ceramide synthesis, sphingomyelin metabolism, and additional pathways associated with phosphatidylcholine synthesis. Together, these results offer new biological insights regarding the role of serum lipids in the context of insidious T2DM development, and may offer new avenues for future diagnostic and/or therapeutic research.
Collapse
Affiliation(s)
- Jiaying Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- College of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
| | - Mei Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dawei Yang
- Zhong Yuan Academy of Biological Medicine, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Han Yan
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhigang Wang
- College of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
- *Correspondence: Zhigang Wang, ; Dan Yan, ; Na Guo,
| | - Dan Yan
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Zhigang Wang, ; Dan Yan, ; Na Guo,
| | - Na Guo
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Zhigang Wang, ; Dan Yan, ; Na Guo,
| |
Collapse
|
12
|
Zhang L, Hu Y, An Y, Wang Q, Liu J, Wang G. The Changes of Lipidomic Profiles Reveal Therapeutic Effects of Exenatide in Patients With Type 2 Diabetes. Front Endocrinol (Lausanne) 2022; 13:677202. [PMID: 35432194 PMCID: PMC9009038 DOI: 10.3389/fendo.2022.677202] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Exenatide has been demonstrated beneficial effects on patients with type 2 diabetes mellitus (T2DM) regarding lipid metabolism. However, the potential mechanism remains unclear. We used a lipidomic approach to evaluate lipid changes in response to treatment with exenatide in T2DM patients. METHODS Serum lipidomic profiles of 35 newly diagnosed T2DM patients (before and after exenatide treatment) and 20 age-matched healthy controls were analyzed by ultrahigh-performance liquid chromatography-tandem quadrupole time-of-flight mass spectrometry. RESULTS A total of 45 lipid species including sphingomyelins (SMs), ceramides (CERs), lysophosphatidylcholines (LPCs), phosphatidylethanolamines (PEs), lysophosphatidylethanolamines (LPEs) and phosphatidylcholines (PCs) were identified in all participants. Compared to the healthy controls, 13 lipid species [SM (d18:1/18:0, d18:1/18:1), Cer (d18:1/18:0, d18:1/16:0, d18:1/20:0, d18:1/24:1), LPC (15:0, 16:0, 17:0), PC (19:0/19:0), LPE (18:0) and PE (16:0/22:6, 18:0/22:6)] were markedly increased in the T2DM group, while PE (17:0/17:0) and PC (18:1/18:0) were decreased (P < 0.05). The serum SM (d18:1/18:0, d18:1/18:1), LPC (16:0), and LPE (18:0) were significantly decreased after exenatide treatment, which was accompanied by the amelioration of lipids and glycemic parameters (TC, LDL-C, ApoA-I, FCP and HbA1c) in T2DM patients. The chord diagrams showed distinct correlation patterns between lipid classes and subclasses among healthy controls, T2DM patients before and after exenatide treatment. CONCLUSION Our results revealed that the therapeutic benefits of exenatide on T2DM might be involved in the improved lipid metabolism, especially SM, LPC, and LPE. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, identifier NCT03297879.
Collapse
Affiliation(s)
| | | | | | | | - Jia Liu
- *Correspondence: Jia Liu, ; Guang Wang,
| | | |
Collapse
|
13
|
Lipidomics characterization of the mechanism of Cynomorium songaricum polysaccharide on treating type 2 diabetes. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1176:122737. [PMID: 34052560 DOI: 10.1016/j.jchromb.2021.122737] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/16/2021] [Accepted: 04/25/2021] [Indexed: 01/02/2023]
Abstract
Although Cynomorium songaricum Rupr. polysaccharide (CSP) has been examined for its effects on glucose regulation, its underlying mechanism is still unclear. To address this issue, a MS-based lipidomics strategy was developed to gain a system-level understanding of the mechanism of CSP on improving type 2 diabetes mellitus (T2DM). UPLC-QTOF/MS and multivariate statistical tools were used to identify the alteration of serum metabolites associated with T2DM and responses to CSP treatment. As a result, 35 potential biomarkers were found and identified in serum, amongst which 26 metabolites were regulated to normal like levels after the administration of CSP. By analyzing the metabolic pathways, glycerophospholipid metabolism was suggested to be closely involved. These results indicated that the intake of CSP exhibited promising anti-diabetic activity, largely due to the regulation of phospholipid metabolism, including phosphatidylcholines, lysophosphatydylcholines, phosphtatidylethanolamines and sphingomyelins.
Collapse
|
14
|
Shetty SS, Kumari S. Fatty acids and their role in type-2 diabetes (Review). Exp Ther Med 2021; 22:706. [PMID: 34007315 PMCID: PMC8120551 DOI: 10.3892/etm.2021.10138] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
Age, lifestyle and diet are major risk factors for the onset of type 2 diabetes mellitus (T2DM). Insulin resistance (IR) and β-cell dysfunction underlie the pathophysiology of T2DM. Diabetic populations are also prone to lipid and lipoprotein abnormalities as an indirect effect of IR on key metabolic enzymes. However, recent studies suggested that lipid changes may not only be a consequence of impaired glucose metabolism but also a causative factor. Fatty acids (FAs) influence translocation of glucose transporters and insulin receptor binding and signalling, in addition to cell membrane fluidity and permeability. It is thus suggested that FAs may have an essential role in the development of IR and T2DM. Specific combinations of FAs within phospholipids and triglycerides were indicated to exhibit the strongest associations with the risk of T2DM. The aim of the present review was to investigate the role of FAs in the pathogenesis of T2DM, as it has yet to be fully elucidated.
Collapse
Affiliation(s)
- Shilpa S Shetty
- Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Suchetha Kumari
- Department of Biochemistry, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| |
Collapse
|
15
|
Hannich JT, Loizides‐Mangold U, Sinturel F, Harayama T, Vandereycken B, Saini C, Gosselin P, Brulhart‐Meynet M, Robert M, Chanon S, Durand C, Paz Montoya J, David FPA, Guessous I, Pataky Z, Golay A, Jornayvaz FR, Philippe J, Dermitzakis ET, Brown SA, Lefai E, Riezman H, Dibner C. Ether lipids, sphingolipids and toxic 1-deoxyceramides as hallmarks for lean and obese type 2 diabetic patients. Acta Physiol (Oxf) 2021; 232:e13610. [PMID: 33351229 DOI: 10.1111/apha.13610] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
AIM The worldwide increase in obesity and type 2 diabetes (T2D) represents a major health challenge. Chronically altered lipids induced by obesity further promote the development of T2D, and the accumulation of toxic lipid metabolites in serum and peripheral organs may contribute to the diabetic phenotype. METHODS To better understand the complex metabolic pattern of lean and obese T2D and non-T2D individuals, we analysed the lipid profile of human serum, skeletal muscle and visceral adipose tissue of two cohorts by systematic mass spectrometry-based lipid analysis. RESULTS Lipid homeostasis was strongly altered in a disease- and tissue-specific manner, allowing us to define T2D signatures associated with obesity from those that were obesity independent. Lipid changes encompassed lyso-, diacyl- and ether-phospholipids. Moreover, strong changes in sphingolipids included cytotoxic 1-deoxyceramide accumulation in a disease-specific manner in serum and visceral adipose tissue. The high amounts of non-canonical 1-deoxyceramide present in human adipose tissue most likely come from cell-autonomous synthesis because 1-deoxyceramide production increased upon differentiation to adipocytes in mouse cell culture experiments. CONCLUSION Taken together, the observed lipidome changes in obesity and T2D will facilitate the identification of T2D patient subgroups and represent an important step towards personalized medicine in diabetes.
Collapse
Affiliation(s)
- J. Thomas Hannich
- Department of Biochemistry Faculty of Science NCCR Chemical Biology University of Geneva Geneva Switzerland
| | - Ursula Loizides‐Mangold
- Division of Endocrinology Diabetes, Nutrition and Patient Education Department of Medicine University Hospital of Geneva Geneva Switzerland
- Department of Cell Physiology and Metabolism Faculty of Medicine University of Geneva Geneva Switzerland
- Diabetes Center Faculty of Medicine University of Geneva Geneva Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3) University of Geneva Geneva Switzerland
| | - Flore Sinturel
- Division of Endocrinology Diabetes, Nutrition and Patient Education Department of Medicine University Hospital of Geneva Geneva Switzerland
- Department of Cell Physiology and Metabolism Faculty of Medicine University of Geneva Geneva Switzerland
- Diabetes Center Faculty of Medicine University of Geneva Geneva Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3) University of Geneva Geneva Switzerland
| | - Takeshi Harayama
- Department of Biochemistry Faculty of Science NCCR Chemical Biology University of Geneva Geneva Switzerland
| | | | - Camille Saini
- Department and Division of Primary Care Medicine University Hospital of Geneva Geneva Switzerland
| | - Pauline Gosselin
- Division of Endocrinology Diabetes, Nutrition and Patient Education Department of Medicine University Hospital of Geneva Geneva Switzerland
- Department of Cell Physiology and Metabolism Faculty of Medicine University of Geneva Geneva Switzerland
- Diabetes Center Faculty of Medicine University of Geneva Geneva Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3) University of Geneva Geneva Switzerland
- Department and Division of Primary Care Medicine University Hospital of Geneva Geneva Switzerland
| | - Marie‐Claude Brulhart‐Meynet
- Division of Endocrinology Diabetes, Nutrition and Patient Education Department of Medicine University Hospital of Geneva Geneva Switzerland
| | - Maud Robert
- Department of Digestive and Bariatric Surgery Edouard Herriot University HospitalUniversity Lyon France
| | - Stephanie Chanon
- CarMeN Laboratory INSERM U1060 INRA 1397 University Lyon 1 Oullins France
| | - Christine Durand
- CarMeN Laboratory INSERM U1060 INRA 1397 University Lyon 1 Oullins France
| | - Jonathan Paz Montoya
- Proteomics Core Facility Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Fabrice P. A. David
- Gene Expression Core Facility Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Idris Guessous
- Department and Division of Primary Care Medicine University Hospital of Geneva Geneva Switzerland
| | - Zoltan Pataky
- Division of Endocrinology Diabetes, Nutrition and Patient Education Department of Medicine WHO Collaborating Centre University Hospital of GenevaUniversity of Geneva Geneva Switzerland
| | - Alain Golay
- Division of Endocrinology Diabetes, Nutrition and Patient Education Department of Medicine WHO Collaborating Centre University Hospital of GenevaUniversity of Geneva Geneva Switzerland
| | - François R. Jornayvaz
- Division of Endocrinology Diabetes, Nutrition and Patient Education Department of Medicine University Hospital of Geneva Geneva Switzerland
- Diabetes Center Faculty of Medicine University of Geneva Geneva Switzerland
| | - Jacques Philippe
- Division of Endocrinology Diabetes, Nutrition and Patient Education Department of Medicine University Hospital of Geneva Geneva Switzerland
- Diabetes Center Faculty of Medicine University of Geneva Geneva Switzerland
| | - Emmanouil T. Dermitzakis
- Diabetes Center Faculty of Medicine University of Geneva Geneva Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3) University of Geneva Geneva Switzerland
- Department of Genetic Medicine and Development Faculty of Medicine University of Geneva Geneva Switzerland
| | - Steven A. Brown
- Institute of Pharmacology and Toxicology University of Zurich Zurich Switzerland
| | - Etienne Lefai
- INRA Unité de Nutrition Humaine Université Clermont Auvergne Paris France
| | - Howard Riezman
- Department of Biochemistry Faculty of Science NCCR Chemical Biology University of Geneva Geneva Switzerland
| | - Charna Dibner
- Division of Endocrinology Diabetes, Nutrition and Patient Education Department of Medicine University Hospital of Geneva Geneva Switzerland
- Department of Cell Physiology and Metabolism Faculty of Medicine University of Geneva Geneva Switzerland
- Diabetes Center Faculty of Medicine University of Geneva Geneva Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3) University of Geneva Geneva Switzerland
| |
Collapse
|
16
|
Ouyang Y, Qiu G, zhao X, Su B, Feng D, Lv W, Xuan Q, Wang L, Yu D, Wang Q, Lin X, Wu T, Xu G. Metabolome-Genome-Wide Association Study (mGWAS) Reveals Novel Metabolites Associated with Future Type 2 Diabetes Risk and Susceptibility Loci in a Case-Control Study in a Chinese Prospective Cohort. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000088. [PMID: 33854788 PMCID: PMC8025395 DOI: 10.1002/gch2.202000088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/20/2021] [Indexed: 05/03/2023]
Abstract
In a Chinese prospective cohort, 500 patients with new-onset type 2 diabetes (T2D) within 4.61 years and 500 matched healthy participants are selected as case and control groups, and randomized into discovery and validation sets to discover the metabolite changes before T2D onset and the related diabetogenic loci. A serum metabolomics analysis reveals that 81 metabolites changed significantly before T2D onset. Based on binary logistic regression, eight metabolites are defined as a biomarker panel for T2D prediction. Pipecolinic acid, carnitine C14:0, epinephrine and phosphatidylethanolamine 34:2 are first found associated with future T2D. The addition of the biomarker panel to the clinical markers (BMI, triglycerides, and fasting glucose) significantly improves the predictive ability in the discovery and validation sets, respectively. By associating metabolomics with genomics, a significant correlation (p < 5.0 × 10-8) between eicosatetraenoic acid and the FADS1 (rs174559) gene is observed, and suggestive correlations (p < 5.0 × 10-6) between pipecolinic acid and CHRM3 (rs535514), and leucine/isoleucine and WWOX (rs72487966) are discovered. Elevated leucine/isoleucine levels increased the risk of T2D. In conclusion, multiple metabolic dysregulations are observed to occur before T2D onset, and the new biomarker panel can help to predict T2D risk.
Collapse
Affiliation(s)
- Yang Ouyang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Gaokun Qiu
- MOE Key Lab of Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science & TechnologyWuhanHubei430030China
| | - Xinjie zhao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
| | - Benzhe Su
- School of Computer Science & TechnologyDalian University of TechnologyDalian116024China
| | - Disheng Feng
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wangjie Lv
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qiuhui Xuan
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Lichao Wang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Di Yu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qingqing Wang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xiaohui Lin
- School of Computer Science & TechnologyDalian University of TechnologyDalian116024China
| | - Tangchun Wu
- MOE Key Lab of Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science & TechnologyWuhanHubei430030China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
17
|
Wang L, Zhu C. Evidence from Neonatal Piglets Shows How Infant Formula and Other Mammalian Milk Shape Lipid Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1831-1841. [PMID: 33538162 DOI: 10.1021/acs.jafc.0c06587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We tested the hypothesis that the consumption of different milk lipids is one of the factors affecting metabolic response to lipid in the early life of infants. Neonatal piglets, as animal models, were stratified by the feeding mode (formula-fed, bovine-, caprine-, and human milk-fed). Lipidomic profiles of plasma and liver samples were detected using liquid chromatography-mass spectrometry (LC-MS). The results indicate that 31, 54, and 28 differential lipid species could be used as potential biomarkers for bovine milk, caprine milk, and infant formula-fed samples, respectively, and the main lipid classes screened in plasma were SM, PC, and PE, including PC(14:1/P-20:0) as the isoform of PC(34:1), which regulates the lipid metabolism gene peroxisome proliferator-activated receptor α, PPAR-α. SM(d15:1/22:0) was the common potential biomarker screened from all of the groups. The amounts of biomarkers screened from the caprine milk-fed liver samples were the highest, which had a significant effect on the distribution of SM, PI, and PA. Infant formula, bovine-, and caprine milk-fed samples had an obvious effect on the metabolism of glycerophospholipid and glycerol ester, especially TG (16:0/18:0/18:2).
Collapse
Affiliation(s)
- Lina Wang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
18
|
Bai X, Jia J, Kang Q, Fu Y, Zhou Y, Zhong Y, Zhang C, Li M. Integrated Metabolomics and Lipidomics Analysis Reveal Remodeling of Lipid Metabolism and Amino Acid Metabolism in Glucagon Receptor-Deficient Zebrafish. Front Cell Dev Biol 2021; 8:605979. [PMID: 33520988 PMCID: PMC7841139 DOI: 10.3389/fcell.2020.605979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
The glucagon receptor (GCGR) is activated by glucagon and is essential for glucose, amino acid, and lipid metabolism of animals. GCGR blockade has been demonstrated to induce hypoglycemia, hyperaminoacidemia, hyperglucagonemia, decreased adiposity, hepatosteatosis, and pancreatic α cells hyperplasia in organisms. However, the mechanism of how GCGR regulates these physiological functions is not yet very clear. In our previous study, we revealed that GCGR regulated metabolic network at transcriptional level by RNA-seq using GCGR mutant zebrafish (gcgr -/-). Here, we further performed whole-organism metabolomics and lipidomics profiling on wild-type and gcgr -/- zebrafish to study the changes of metabolites. We found 107 significantly different metabolites from metabolomics analysis and 87 significantly different lipids from lipidomics analysis. Chemical substance classification and pathway analysis integrated with transcriptomics data both revealed that amino acid metabolism and lipid metabolism were remodeled in gcgr-deficient zebrafish. Similar to other studies, our study showed that gcgr -/- zebrafish exhibited decreased ureagenesis and impaired cholesterol metabolism. More interestingly, we found that the glycerophospholipid metabolism was disrupted, the arachidonic acid metabolism was up-regulated, and the tryptophan metabolism pathway was down-regulated in gcgr -/- zebrafish. Based on the omics data, we further validated our findings by revealing that gcgr -/- zebrafish exhibited dampened melatonin diel rhythmicity and increased locomotor activity. These global omics data provide us a better understanding about the role of GCGR in regulating metabolic network and new insight into GCGR physiological functions.
Collapse
Affiliation(s)
- Xuanxuan Bai
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianxin Jia
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Qi Kang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yadong Fu
- Center for Circadian Clocks, Soochow University, Suzhou, China.,School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - You Zhou
- Division of Infection and Immunity, School of Medicine, Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Yingbin Zhong
- Center for Circadian Clocks, Soochow University, Suzhou, China.,School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Mingyu Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
19
|
Wang J, Xu Z, Zhang H, Wang Y, Liu X, Wang Q, Xue J, Zhao Y, Yang S. Meat differentiation between pasture-fed and concentrate-fed sheep/goats by liquid chromatography quadrupole time-of-flight mass spectrometry combined with metabolomic and lipidomic profiling. Meat Sci 2020; 173:108374. [PMID: 33229106 DOI: 10.1016/j.meatsci.2020.108374] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 01/16/2023]
Abstract
Animal feeding method is a crucial factor in influencing meat quality. Consumers would preferentially select meat obtained from pasture-fed animals. In this study, an untargeted metabolomic and lipidomic method based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) combined with chemometric analysis was utilized to investigate the differences between meat from free-range and intensively-fed sheep/goats. Distinct separation between these two kinds of sheep/goats meat obtained were identified by principal component analysis. Analysis of variance, fold change and orthogonal projection to latent structures discriminant analysis were then conducted to determine specific potential markers. A total of 46 potential markers were selected according to online chemical databases. The support vector machine (SVM) method was used to process the responses of the selected potential markers, and the results of metabolomics and lipidomics from an additional 59 samples revealed the discrimination rate of 89.3% and 98.3%. These findings provided a basis for differentiation of meat from sheep/goats fed in the two methods.
Collapse
Affiliation(s)
- Jishi Wang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenzhen Xu
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongbo Zhang
- Inner Mongolia Food Safety and Inspection Testing Center, Hohhot, Inner Mongolia 010090, China
| | - Yanyun Wang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoxia Liu
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qian Wang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiali Xue
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Zhao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shuming Yang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The underlying factors triggering a cascade of autoimmune response that leads to the death of pancreatic beta cells and type 1 diabetes are to large extent unknown. Aberrations in the lipid balance have been suggested, either as factors directly contributing to autoimmunity or as a reflection of external factors, such as the diet or chemical exposure, which may increase the risk or even trigger the autoimmunity cascade. RECENT FINDINGS A small number of recent studies have investigated the blood lipidome before and after the onset of type 1 diabetes with a goal of identifying biomarkers of disease progression. Phosphatidylcholine levels in particular have been suggested to be reduced prior to the onset of type 1 diabetes. In this review, we approach this question through a quantitative analysis of the reported lipids. We quantify the extent of consensus between these heterogeneous studies, describe the overall lipidomic pattern that has been reported, and call for more independent replication of the findings that we highlight in this review.
Collapse
Affiliation(s)
- Tommi Suvitaival
- Steno Diabetes Center Copenhagen, Niels Steensens Vej 2-4, DK-2820, Gentofte, Denmark.
| |
Collapse
|
21
|
Wang Y, Ouyang M, Gao X, Wang S, Fu C, Zeng J, He X. Phocea, Pseudoflavonifractor and Lactobacillus intestinalis: Three Potential Biomarkers of Gut Microbiota That Affect Progression and Complications of Obesity-Induced Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2020; 13:835-850. [PMID: 32256098 PMCID: PMC7090210 DOI: 10.2147/dmso.s240728] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/29/2020] [Indexed: 01/10/2023] Open
Abstract
PURPOSE The purpose of this study was to explore the difference and association between intestinal microbiota and plasma metabolomics between type 2 diabetes mellitus (T2DM) and normal group and to identify potential microbiota biomarkers that contribute the most to the difference in metabolites. METHODS Six male ZDF model (fa/fa) rats were fed by a Purina #5008 Lab Diet (crude protein 23.5%, crude fat 6.5%) for 3 weeks and their age-matched 6 ZDF control (fa/+) rats were fed by normal rodent diet. Their stool and blood samples were collected at 12 weeks. To analyze the microbial populations in these samples, we used a 16S rRNA gene sequencing approach. Liquid chromatography-mass spectrometry (LC-MS) followed by multivariate statistical analysis was applied to the plasma metabolites profiling. Correlation analysis of them was calculated by Pearson statistical method. RESULTS Twelve potential biomarkers of intestinal microbial flora and 357 differential metabolites were found in ZDF fa/fa rats, among which there are three flora that contributed the most to the perturbation of metabolites, including genus Phocea, Pseudoflavonifractor and species Lactobacillus intestinalis. CONCLUSION Our study demonstrates the alterations of the abundance and diversity of the intestinal microbiota and the perturbation of metabolites in ZDF rats (fa/fa). We found three potential biomarkers of intestinal microbiota that may lead to perturbation in plasma metabolites. This may prompt new pathogenesis of obesity-related T2DM, but we also need to study further about the causal relationship between intestinal microbe and T2DM, so as to find the target of T2DM treatment or preventive measures.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Physical and Chemical Inspection, School of Public Health, Shandong University, Jinan, Shandong250012, People’s Republic of China
| | - Meishuo Ouyang
- Department of Public Health, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Xibao Gao
- Department of Physical and Chemical Inspection, School of Public Health, Shandong University, Jinan, Shandong250012, People’s Republic of China
| | - Shuai Wang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong250012, People’s Republic of China
| | - Chunyang Fu
- Department of Physical and Chemical Inspection, School of Public Health, Shandong University, Jinan, Shandong250012, People’s Republic of China
| | - Jiayi Zeng
- Department of Physical and Chemical Inspection, School of Public Health, Shandong University, Jinan, Shandong250012, People’s Republic of China
| | - Xiaodong He
- Department of Physical and Chemical Inspection, School of Public Health, Shandong University, Jinan, Shandong250012, People’s Republic of China
- Shandong Provincial Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Shandong University, Jinan, Shandong250012, People’s Republic of China
| |
Collapse
|
22
|
Li WX, Zhang AH, Zhou XH, Nan Y, Liu Q, Sun H, Fang H, Wang XJ. High-throughput liquid chromatography mass-spectrometry-driven lipidomics discover metabolic biomarkers and pathways as promising targets to reveal the therapeutic effects of the Shenqi pill. RSC Adv 2020; 10:2347-2358. [PMID: 35494613 PMCID: PMC9048437 DOI: 10.1039/c9ra07621b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/30/2019] [Indexed: 11/21/2022] Open
Abstract
Lipidomics, a branch of metabonomics, could provide a powerful technique for discovery of lipid molecules to reveal disease status and drug efficacy. The Shenqi pill (SQP) is a representative prescription for clinical application in the prevention and treatment of kidney-yang deficiency syndrome (KYDS). However, its effect mechanism is still not clear. This article aims to reveal the intervention effect of SQP on KYDS from the perspective of lipid metabolism. In this study, SQP was used to intervene in the rat model of KYDS, on the foundation of successfully replicating the rat model of KYDS induced by corticosterone. The MetaboAnalyst tool was used for analysis of the serum metabolic profile and pattern recognition of KYDS model, based on UPLC-SYNAPT-G2-Si-HDMS. Finally, twenty-two potential lipid biomarkers related to the KYDS model were characterized, and the effects of SQP on regulating potential lipid markers in serum of KYDS model were analyzed. There were 10 biomarkers and seven metabolic pathways closely related to SQP therapy for KYDS were found. The action mechanism and targets of SQP in treating KYDS were explored based on high-throughput lipidomics. This work could provide valuable data and scientific evidence in subsequent studies for the treatment of KYDS.
Collapse
Affiliation(s)
- Wen-Xiu Li
- Engineering Research Center of Efficacy Evaluation and Industrial Development of TCM Classic Formulae of the Ministry of Education, National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-82110818 +86-451-82110818
| | - Ai-Hua Zhang
- Engineering Research Center of Efficacy Evaluation and Industrial Development of TCM Classic Formulae of the Ministry of Education, National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-82110818 +86-451-82110818
| | - Xiao-Hang Zhou
- Engineering Research Center of Efficacy Evaluation and Industrial Development of TCM Classic Formulae of the Ministry of Education, National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-82110818 +86-451-82110818
| | - Yang Nan
- Engineering Research Center of Efficacy Evaluation and Industrial Development of TCM Classic Formulae of the Ministry of Education, National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-82110818 +86-451-82110818
| | - Qi Liu
- Engineering Research Center of Efficacy Evaluation and Industrial Development of TCM Classic Formulae of the Ministry of Education, National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-82110818 +86-451-82110818
| | - Hui Sun
- Engineering Research Center of Efficacy Evaluation and Industrial Development of TCM Classic Formulae of the Ministry of Education, National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-82110818 +86-451-82110818
| | - Heng Fang
- Engineering Research Center of Efficacy Evaluation and Industrial Development of TCM Classic Formulae of the Ministry of Education, National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-82110818 +86-451-82110818
| | - Xi-Jun Wang
- Engineering Research Center of Efficacy Evaluation and Industrial Development of TCM Classic Formulae of the Ministry of Education, National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-82110818 +86-451-82110818
| |
Collapse
|
23
|
Penalized Variable Selection for Lipid-Environment Interactions in a Longitudinal Lipidomics Study. Genes (Basel) 2019; 10:genes10121002. [PMID: 31816972 PMCID: PMC6947406 DOI: 10.3390/genes10121002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
Lipid species are critical components of eukaryotic membranes. They play key roles in many biological processes such as signal transduction, cell homeostasis, and energy storage. Investigations of lipid-environment interactions, in addition to the lipid and environment main effects, have important implications in understanding the lipid metabolism and related changes in phenotype. In this study, we developed a novel penalized variable selection method to identify important lipid-environment interactions in a longitudinal lipidomics study. An efficient Newton-Raphson based algorithm was proposed within the generalized estimating equation (GEE) framework. We conducted extensive simulation studies to demonstrate the superior performance of our method over alternatives, in terms of both identification accuracy and prediction performance. As weight control via dietary calorie restriction and exercise has been demonstrated to prevent cancer in a variety of studies, analysis of the high-dimensional lipid datasets collected using 60 mice from the skin cancer prevention study identified meaningful markers that provide fresh insight into the underlying mechanism of cancer preventive effects.
Collapse
|
24
|
Nie Q, Xing M, Chen H, Hu J, Nie S. Metabolomics and Lipidomics Profiling Reveals Hypocholesterolemic and Hypolipidemic Effects of Arabinoxylan on Type 2 Diabetic Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10614-10623. [PMID: 31483658 DOI: 10.1021/acs.jafc.9b03430] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Type 2 diabetes (T2D) is a pandemic disease chiefly characterized by hyperglycemia. In this study, the combination of serum lipidomic and metabolomic approach was employed to investigate the effect of arabinoxylan on type 2 diabetic rats and identify the critical biomarkers of T2D. Metabolomics analysis revealed that branched-chain amino acids, 12α-hydroxylated bile acids, ketone bodies, and several short- and long-chain acylcarnitines were significantly increased in T2D, whereas lysophosphatidylcholines (LPCs) were significantly decreased. Lipidomics analysis indicated T2D-related dyslipidemia was mainly associated with the increased levels of acetylcarnitine, free fatty acids (FFA), diacylglycerols, triacylglycerols, and cholesteryl esters and the decreased levels of some unsaturated phosphatidylcholines (less than 22 carbons). These variations indicated the disturbed amino acid and lipid metabolism in T2D, and the accumulation of incompletely oxidized lipid species might eventually contribute to impaired insulin action and glucose homeostasis. Arabinoxylan treatment decreased the concentrations of 12α-hydroxylated bile acids, carnitines, and FFAs and increased the levels of LPCs. The improved bile acid and lipid metabolism by arabinoxylan might be involved in the alleviation of hypercholesterolemia and hyperlipidemia in T2D.
Collapse
Affiliation(s)
- Qixing Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , Nanchang 330047 , China
| | - Mengmeng Xing
- Shenzhen Longgang District Maternity & Child Healthcare Hospital , Shenzhen 518100 , China
| | - Haihong Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , Nanchang 330047 , China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , Nanchang 330047 , China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , Nanchang 330047 , China
| |
Collapse
|
25
|
Vonica CL, Ilie IR, Socaciu C, Moraru C, Georgescu B, Farcaş A, Roman G, Mureşan AA, Georgescu CE. Lipidomics biomarkers in women with polycystic ovary syndrome (PCOS) using ultra-high performance liquid chromatography-quadrupole time of flight electrospray in a positive ionization mode mass spectrometry. Scandinavian Journal of Clinical and Laboratory Investigation 2019; 79:437-442. [PMID: 31462125 DOI: 10.1080/00365513.2019.1658215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Polycystic ovary syndrome (PCOS), characterized by oligo-anovulation and androgen excess is considered a high-risk condition for metabolic disorders. Herein, untargeted metabolomics analysis was applied to women with PCOS, aiming to provide deeper insights into lipidomics biomarkers signature of PCOS, for better diagnosis and management. This was a cross-sectional study in which 15 Caucasian women with PCOS and 15 Caucasian healthy, age-matched women were enrolled. Lipidomics analysis was performed using Ultra-High Performance Liquid Chromatography-Quadrupole Time of Flight Electrospray Mass Spectrometry. Partial Least Squares Discriminant Analysis retrieved the most important discriminative metabolites. Significantly increased levels of triacylglycerol (18:2/18:2/0-18:0) in addition to cholestane-3beta, 5alpha, 6beta-triol (18:0/0:0) and cholestane-5alpha (18:1/0:0) appeared as valuable variables to differentiate subjects with PCOS from controls. Acyl-carnitine 2-hydroxylauroylcarnitine was significantly elevated in PCOS in opposition to decreased phosphocholines metabolites (18:1/18:4, 18:3/18:2), to suggest a metabolic pattern linked to lipid peroxidation. A high fat intake or reduced fat energy consumption during nighttime due to diminished ability to switch to lipid oxidation during fasting time possibly contribute to hypertriglyceridemia found in PCOS. Furthermore, inflammatory mediators including metabolites of the prostaglandin (PG) E2 pathway and oxo-leukotrienes (LT) were increased in patients with PCOS. Potential lipidomics biomarkers were identified that could stratify between women with PCOS and healthy controls. The results show particular alterations in acylglycerols, PGs and LTs and phosphocholines and carnitine metabolites. The lipidomics profiles of PCOS indicate a higher risk of developing metabolic diseases.
Collapse
Affiliation(s)
- Camelia Larisa Vonica
- Department of Diabetes, Nutrition and Metabolic Diseases, Iuliu Haţieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania.,Department of Endocrinology, Iuliu Haţieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Ioana Rada Ilie
- Department of Endocrinology, Iuliu Haţieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania.,Endocrinology Clinical Unit, Cluj County Emergency Hospital , Cluj-Napoca , Romania
| | - Carmen Socaciu
- RTD Center of Applied Biotechnology BIODIATECH, SC Proplanta , Cluj-Napoca , Romania
| | - Corina Moraru
- Department of Chemistry, Biochemistry and Molecular Biology, University of Agricultural Sciences and Veterinary Medicine , Cluj-Napoca , Romania
| | - Bogdan Georgescu
- Department of Ecology, Environmental Protection and Zoology, University of Agricultural Sciences and Veterinary Medicine , Cluj-Napoca , Romania
| | - Anca Farcaş
- Department of Internal Medicine I Cardiology and Gastroenterology, Iuliu Haţieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Gabriela Roman
- Department of Diabetes, Nutrition and Metabolic Diseases, Iuliu Haţieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Andrada Alina Mureşan
- Department of Diabetes, Nutrition and Metabolic Diseases, Iuliu Haţieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Carmen Emanuela Georgescu
- Department of Endocrinology, Iuliu Haţieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania.,Endocrinology Clinical Unit, Cluj County Emergency Hospital , Cluj-Napoca , Romania
| |
Collapse
|
26
|
Yu Z, Wang N, Ahn DU, Ma M. Long Term Egg Yolk Consumption Alters Lipid Metabolism and Attenuates Hyperlipidemia in Mice Fed a High‐Fat Diet Based on Lipidomics Analysis. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhihui Yu
- National R&D Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural UniversityWuhan 430070HubeiChina
| | - Ning Wang
- College of Food and Biological Engineering, Henan University of Animal Husbandry and EconomyZhengzhou 450046HenanChina
| | - Dong U. Ahn
- Department of Animal Science, Iowa State UniversityAmesIA50011USA
| | - Meihu Ma
- National R&D Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural UniversityWuhan 430070HubeiChina
| |
Collapse
|
27
|
Gao H, Wen JJ, Hu JL, Nie QX, Chen HH, Xiong T, Nie SP, Xie MY. Fermented Momordica charantia L. juice modulates hyperglycemia, lipid profile, and gut microbiota in type 2 diabetic rats. Food Res Int 2019; 121:367-378. [PMID: 31108759 DOI: 10.1016/j.foodres.2019.03.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 12/28/2022]
Abstract
The effect of Lactobacillus plantarum-fermentation on the anti-diabetic functionality of Momordica charantia was examined using a high-fat-diet and low-dose streptozocin-induced type 2 diabetic rat model. Fermented Momordica charantia juice (FMCJ) administration mitigated the hyperglycemia, hyperinsulinemia, hyperlipidemia, and oxidative stress in diabetic rats more favorably than the non-fermented counterpart. Treatments with FMCJ improved ergosterols and lysomonomethyl-phosphatidylethanolamines metabolisms more effectively. Supplement of FMCJ regulated the composition of the gut microbiota, such as increased the abundance of Bacteroides caecigallinarum, Oscillibacter ruminantium, Bacteroides thetaiotaomicron, Prevotella loescheii, Prevotella oralis, and Prevotella melaninogenica, in diabetic rats compared with untreated diabetic rats. Moreover, FMCJ-treated diabetic rats exhibited higher concentrations of acetic acid, propionic acid, butyric acid, total short-chain fatty acids and lower pH values in colonic contents than that in non-fermented juice-treated rats. These results demonstrated that Lactobacillus plantarum-fermentation enhanced the anti-diabetic property of MC juice by favoring the regulation of gut microbiota and the production of SCFAs.
Collapse
Affiliation(s)
- He Gao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Jia-Jia Wen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Jie-Lun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Qi-Xing Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Hai-Hong Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Tao Xiong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| |
Collapse
|
28
|
Increased adiposity, inflammation, metabolic disruption and dyslipidemia in adult male offspring of DOSS treated C57BL/6 dams. Sci Rep 2019; 9:1530. [PMID: 30728429 PMCID: PMC6365642 DOI: 10.1038/s41598-018-38383-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/16/2018] [Indexed: 12/11/2022] Open
Abstract
Evidence indicates that obesity can be promoted by chemical ‘obesogens’ that drive adiposity, hunger, inflammation and suppress metabolism. Dioctyl sodium sulfosuccinate (DOSS), a lipid emulsifier and candidate obesogen in vitro, is widely used in processed foods, cosmetics and as stool softener medicines commonly used during pregnancy. In vivo testing of DOSS was performed in a developmental origins of adult obesity model. Pregnant mice were orally administered vehicle control or DOSS at times and doses comparable to stool softener use during human pregnancy. All weaned offspring consumed only standard diet. Adult male but not female offspring of DOSS-treated dams showed significantly increased body mass, overall and visceral fat masses, and decreased bone area. They exhibited significant decreases in plasma adiponectin and increases in leptin, glucose intolerance and hyperinsulinemia. Inflammatory IL-6 was elevated, as was adipose Cox2 and Nox4 gene expressions, which may be associated with promoter DNA methylation changes. Multiple significant phospholipid/sterol lipid increases paralleled profiles from long-term high-fat diet induced obesity in males. Collectively, developmental DOSS exposure leads to increased adult adiposity, inflammation, metabolic disorder and dyslipidemia in offspring fed a standard diet, suggesting that pharmaceutical and other sources of DOSS taken during human pregnancy might contribute to long-term obesity-related health concerns in offspring.
Collapse
|
29
|
Pakiet A, Kobiela J, Stepnowski P, Sledzinski T, Mika A. Changes in lipids composition and metabolism in colorectal cancer: a review. Lipids Health Dis 2019; 18:29. [PMID: 30684960 PMCID: PMC6347819 DOI: 10.1186/s12944-019-0977-8] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023] Open
Abstract
Altered metabolism of lipids is currently considered a hallmark characteristic of many malignancies, including colorectal cancer (CRC). Lipids are a large group of metabolites that differ in terms of their fatty acid composition. This review summarizes recent evidence, documenting many alterations in the content and composition of fatty acids, polar lipids, oxylipins and triacylglycerols in CRC patients' sera, tumor tissues and adipose tissue. Some of altered lipid molecules may be potential biomarkers of CRC risk, development and progression. Owing to a significant role of many lipids in cancer cell metabolism, some of lipid metabolism pathways may also constitute specific targets for anti-CRC therapy.
Collapse
Affiliation(s)
- Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland
| | - Jarosław Kobiela
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland.
| | - Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland
| |
Collapse
|
30
|
Lin M, Weng SY, Chai KF, Mao ZJ. Lipidomics as a tool of predicting progression from non-alcoholic fatty pancreas disease to type 2 diabetes mellitus. RSC Adv 2019; 9:41419-41430. [PMID: 35541578 PMCID: PMC9076475 DOI: 10.1039/c9ra07071k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/09/2019] [Indexed: 11/21/2022] Open
Abstract
There are three subclasses of PC (phosphatidylcholine, dPC; pPC; and plasmanylcholine, aPC). Several species of pPC decreased significantly in NDM and DM patients and especially in DM patients, while dPC and aPC showed no significant change.
Collapse
Affiliation(s)
- Min Lin
- College of Basic Medicine
- Zhejiang Chinese Medical University
- Hangzhou 310053
- China
| | - Si-Ying Weng
- Endocrinology Department
- Ningbo Municipal TCM Hospital
- Ningbo 315010
- China
| | - Ke-Fu Chai
- College of Basic Medicine
- Zhejiang Chinese Medical University
- Hangzhou 310053
- China
| | - Zhu-Jun Mao
- College of Pharmaceutical Sciences
- Zhejiang Chinese Medical University
- Hangzhou 310053
- China
| |
Collapse
|
31
|
Gancheva S, Jelenik T, Álvarez-Hernández E, Roden M. Interorgan Metabolic Crosstalk in Human Insulin Resistance. Physiol Rev 2018; 98:1371-1415. [PMID: 29767564 DOI: 10.1152/physrev.00015.2017] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Excessive energy intake and reduced energy expenditure drive the development of insulin resistance and metabolic diseases such as obesity and type 2 diabetes mellitus. Metabolic signals derived from dietary intake or secreted from adipose tissue, gut, and liver contribute to energy homeostasis. Recent metabolomic studies identified novel metabolites and enlarged our knowledge on classic metabolites. This review summarizes the evidence of their roles as mediators of interorgan crosstalk and regulators of insulin sensitivity and energy metabolism. Circulating lipids such as free fatty acids, acetate, and palmitoleate from adipose tissue and short-chain fatty acids from the gut effectively act on liver and skeletal muscle. Intracellular lipids such as diacylglycerols and sphingolipids can serve as lipotoxins by directly inhibiting insulin action in muscle and liver. In contrast, fatty acid esters of hydroxy fatty acids have been recently shown to exert a series of beneficial effects. Also, ketoacids are gaining interest as potent modulators of insulin action and mitochondrial function. Finally, branched-chain amino acids not only predict metabolic diseases, but also inhibit insulin signaling. Here, we focus on the metabolic crosstalk in humans, which regulates insulin sensitivity and energy homeostasis in the main insulin-sensitive tissues, skeletal muscle, liver, and adipose tissue.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Tomas Jelenik
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Elisa Álvarez-Hernández
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| |
Collapse
|
32
|
Takeuchi S, Ueda N, Suzuki K, Shimozawa N, Yasutomi Y, Kimura N. Elevated Membrane Cholesterol Disrupts Lysosomal Degradation to Induce β-Amyloid Accumulation: The Potential Mechanism Underlying Augmentation of β-Amyloid Pathology by Type 2 Diabetes Mellitus. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:391-404. [PMID: 30448407 DOI: 10.1016/j.ajpath.2018.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/14/2018] [Accepted: 10/04/2018] [Indexed: 01/05/2023]
Abstract
The endocytic membrane trafficking system is altered in the brains of early-stage Alzheimer disease (AD) patients, and endocytic disturbance affects the metabolism of β-amyloid (Aβ) protein, a key molecule in AD pathogenesis. It is widely accepted that type 2 diabetes mellitus (T2DM) is one of the strongest risk factors for development of AD. Supporting this link, experimentally induced T2DM enhances AD pathology in various animal models. Spontaneous T2DM also enhances Aβ pathology with severe endocytic pathology, even in nonhuman primate brains. However, it remains unclear how T2DM accelerates Aβ pathology. Herein, we demonstrate that cholesterol metabolism-related protein levels are increased and that membrane cholesterol level is elevated in spontaneous T2DM-affected cynomolgus monkey brains. Moreover, in vitro studies that manipulate cellular cholesterol reveal that elevated membrane cholesterol disrupts lysosomal degradation and enhances chemical-induced endocytic disturbance, resulting in great accumulation of Aβ in Neuro2a cells. These findings suggest that an alteration of cerebral cholesterol metabolism may be responsible for augmentation of Aβ pathology in T2DM-affected brains, which, in turn, may increase the risk for developing AD.
Collapse
Affiliation(s)
- Shingo Takeuchi
- Section of Cell Biology and Pathology, Department of Alzheimer's Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Naoya Ueda
- Section of Cell Biology and Pathology, Department of Alzheimer's Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Keiko Suzuki
- Section of Cell Biology and Pathology, Department of Alzheimer's Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Nobuhiro Shimozawa
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Japan
| | - Yasuhiro Yasutomi
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Japan
| | - Nobuyuki Kimura
- Section of Cell Biology and Pathology, Department of Alzheimer's Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan.
| |
Collapse
|
33
|
Ramos-Molina B, Castellano-Castillo D, Alcaide-Torres J, Pastor Ó, de Luna Díaz R, Salas-Salvadó J, López-Moreno J, Fernández-García JC, Macías-González M, Cardona F, Tinahones FJ. Differential effects of restrictive and malabsorptive bariatric surgery procedures on the serum lipidome in obese subjects. J Clin Lipidol 2018; 12:1502-1512. [PMID: 30143432 DOI: 10.1016/j.jacl.2018.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/17/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022]
|
34
|
Perakakis N, Yazdani A, Karniadakis GE, Mantzoros C. Omics, big data and machine learning as tools to propel understanding of biological mechanisms and to discover novel diagnostics and therapeutics. Metabolism 2018; 87:A1-A9. [PMID: 30098323 PMCID: PMC6325641 DOI: 10.1016/j.metabol.2018.08.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Nikolaos Perakakis
- Department of Endocrinology, VA Boston Healthcare System, Jamaica Plain, Boston, MA 02130, USA; Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Alireza Yazdani
- Division of Applied Mathematics, Brown University, Providence, RI 02906, USA
| | | | - Christos Mantzoros
- Department of Endocrinology, VA Boston Healthcare System, Jamaica Plain, Boston, MA 02130, USA; Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
35
|
Dissociation of Fatty Liver and Insulin Resistance in I148M PNPLA3 Carriers: Differences in Diacylglycerol (DAG) FA18:1 Lipid Species as a Possible Explanation. Nutrients 2018; 10:nu10091314. [PMID: 30227635 PMCID: PMC6164484 DOI: 10.3390/nu10091314] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 02/06/2023] Open
Abstract
Fatty liver is tightly associated with insulin resistance and the development of type 2 diabetes. I148M variant in patatin-like phospholipase domain-containing protein 3 (PNPLA3) gene is associated with high liver fat but normal insulin sensitivity. The underlying mechanism of the disassociation between high liver fat but normal insulin sensitivity remains obscure. We investigated the effect of I148M variant on hepatic lipidome of subjects with or without fatty liver, using the Lipidyzer method. Liver samples of four groups of subjects consisting of normal liver fat with wild-type PNPLA3 allele (group 1); normal liver fat with variant PNPLA3 allele (group 2); high liver fat with wild-type PNPLA3 allele (group 3); high liver fat with variant PNPLA3 allele (group 4); were analyzed. When high liver fat to normal liver fat groups were compared, wild-type carriers (group 3 vs. group 1) showed similar lipid changes compared to I148M PNPLA3 carriers (group 4 vs. group 2). On the other hand, in wild-type carriers, increased liver fat significantly elevated the proportion of specific DAGs (diacylglycerols), mostly DAG (FA18:1) which, however, remained unchanged in I148M PNPLA3 carriers. Since DAG (FA18:1) has been implicated in hepatic insulin resistance, the unaltered proportion of DAG (FA18:1) in I148M PNPLA3 carriers with fatty liver may explain the normal insulin sensitivity in these subjects.
Collapse
|
36
|
Bukowiecka-Matusiak M, Burzynska-Pedziwiatr I, Sansone A, Malachowska B, Zurawska-Klis M, Ferreri C, Chatgilialoglu C, Ochedalski T, Cypryk K, Wozniak LA. Lipid profile changes in erythrocyte membranes of women with diagnosed GDM. PLoS One 2018; 13:e0203799. [PMID: 30216387 PMCID: PMC6138398 DOI: 10.1371/journal.pone.0203799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/09/2018] [Indexed: 12/30/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a glucose intolerance that begins or is first recognized during pregnancy. It is currently a growing health problem worldwide affecting from 1% to 14% of all pregnant women depending on racial and ethnic group as well as the diagnostic and screening criteria. Our preliminary study aimed at investigating the erythrocyte membrane fatty acid profiles of pregnant women, in particular with diagnosed with gestational diabetes mellitus (GDM), and with normal glucose tolerant (NGT) pregnant women as a control group. The study group comprised 43 pregnant women, 32 of whom were diagnosed with GDM according to the WHO criteria, and 11 with normal glucose tolerance. The erythrocyte membrane phospholipids were obtained according to the Folch extraction procedure. Fatty acids (FA) were analyzed by gas chromatography (GC) as the corresponding fatty acid methyl esters (FAME). A cluster of 14 fatty acids identified contained >98% of the recognized peaks in the GC analysis. The analysis of fatty acids from erythrocytes revealed important differences between GDM and NGT women in the third trimester, and the results were correlated with biochemical data. Among the 14 measured FA representing the membrane lipidomic profile, the levels of three saturated FA (myristic, palmitic, stearic acids) tended to decrease in GDM patients, with the percentage content of stearic acid significantly changed. The relative content of monounsaturated fatty acids (MUFA) tended to increase, in particular the oleic acid and vaccenic acid contents were significantly increased in erythrocyte membranes of the GDM group in comparison with the NGT group. The GDM group demonstrated higher sapienic acid levels (+29%) but this change was not statistically significant. This study revealed association between an impaired cis-vaccenic acid concentration in erythrocytes membrane and GDM development. No significant changes of polyunsaturated fatty acids (PUFA) were observed in GDM and NGT erythrocytes. We postulate, basing on the differences between the GDM and NGT lipidomic profiles, that stearic and cis-vaccenic acids can be considered as dual biomarkers of specific SFA-MUFA conversion pathway, involving the coupling of delta-9 desaturase and elongase enzymes. Our results indicate that the SFA-MUFA families may be involved in the pathophysiology of metabolic diseases such as GDM, but the further studies are needed to confirm our hypothesis. In conclusion, the erythrocyte membranes of GDM women undergo remodeling resulting in abnormal fatty acid profiles, which are reflection of the long-term status of organism and can have great impact on both the mother and her offspring.
Collapse
Affiliation(s)
| | | | - Anna Sansone
- Consiglio Nazionale delle Ricerche, Institute for the Organic Synthesis and Photoreactivity, Bologna, Italy
| | - Beata Malachowska
- Medical University of Lodz, Department of Biostatistics and Translational Medicine, Lodz, Poland
| | - Monika Zurawska-Klis
- Medical University of Lodz, Department of Nursing and Obstetrics, Department of Clinic Nursing, Department of Diabetology and Metabolic Diseases Lodz, Poland
| | - Carla Ferreri
- Consiglio Nazionale delle Ricerche, Institute for the Organic Synthesis and Photoreactivity, Bologna, Italy
| | | | - Tomasz Ochedalski
- Medical University of Lodz, Department of Comparative Endocrinology, Lodz, Poland
| | - Katarzyna Cypryk
- Medical University of Lodz, Department of Nursing and Obstetrics, Department of Clinic Nursing, Department of Diabetology and Metabolic Diseases Lodz, Poland
| | | |
Collapse
|
37
|
Cao W, Ma X, Li Z, Zhou X, Ouyang Z. Locating Carbon–Carbon Double Bonds in Unsaturated Phospholipids by Epoxidation Reaction and Tandem Mass Spectrometry. Anal Chem 2018; 90:10286-10292. [PMID: 30095894 DOI: 10.1021/acs.analchem.8b02021] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wenbo Cao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Xiaoxiao Ma
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Zishuai Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Zhou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
- Weldon School of Biomedical Engineering and Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
38
|
Ouahoud S, Fiet MD, Martínez-Montañés F, Ejsing CS, Kuss O, Roden M, Markgraf DF. Lipid droplet consumption is functionally coupled to vacuole homeostasis independent of lipophagy. J Cell Sci 2018; 131:jcs.213876. [PMID: 29678904 DOI: 10.1242/jcs.213876] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/13/2018] [Indexed: 01/19/2023] Open
Abstract
Lipid droplets (LDs) store neutral lipids and are integrated into a cellular metabolic network that relies on functional coupling with various organelles. Factors mediating efficient coupling and mechanisms regulating them remain unknown. Here, we conducted a global screen in S. cerevisiae to identify genes required for the functional coupling of LDs and other organelles during LD consumption. We show that LD utilization during growth resumption is coupled to vacuole homeostasis. ESCRT-, V-ATPase- and vacuole protein sorting-mutants negatively affect LD consumption, independent of lipophagy. Loss of ESCRT function leads to the accumulation of LD-derived diacylglycerol (DAG), preventing its conversion into phosphatidic acid (PA) and membrane lipids. In addition, channeling of DAG from LD-proximal sites to the vacuole is blocked. We demonstrate that utilization of LDs requires intact vacuolar signaling via TORC1 and its downstream effector Sit4p. These data suggest that vacuolar status is coupled to LD catabolism via TORC1-mediated regulation of DAG-PA interconversion and explain how cells coordinate organelle dynamics throughout cell growth.
Collapse
Affiliation(s)
- Sarah Ouahoud
- Institute for Clinical Diabetology, German Diabetes Center, c/o Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany
| | - Mitchell D Fiet
- Institute for Clinical Diabetology, German Diabetes Center, c/o Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany
| | - Fernando Martínez-Montañés
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Oliver Kuss
- German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany.,Institute for Biometrics and Epidemiology, German Diabetes Center, Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, c/o Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | - Daniel F Markgraf
- Institute for Clinical Diabetology, German Diabetes Center, c/o Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany .,German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany
| |
Collapse
|
39
|
Hilvo M, Salonurmi T, Havulinna AS, Kauhanen D, Pedersen ER, Tell GS, Meyer K, Teeriniemi AM, Laatikainen T, Jousilahti P, Savolainen MJ, Nygård O, Salomaa V, Laaksonen R. Ceramide stearic to palmitic acid ratio predicts incident diabetes. Diabetologia 2018; 61:1424-1434. [PMID: 29546476 DOI: 10.1007/s00125-018-4590-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/12/2018] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Ceramide lipids have a role in the development of insulin resistance, diabetes and risk of cardiovascular disease. Here we investigated four ceramides and their ratios to find the best predictors of incident diabetes. METHODS A validated mass-spectrometric method was applied to measure Cer(d18:1/16:0), Cer(d18:1/18:0), Cer(d18:1/24:0) and Cer(d18:1/24:1) from serum or plasma samples. These ceramides were analysed in a population-based risk factor study (FINRISK 2002, n = 8045), in a cohort of participants undergoing elective coronary angiography for suspected stable angina pectoris (Western Norway Coronary Angiography Cohort [WECAC], n = 3344) and in an intervention trial investigating improved methods of lifestyle modification for individuals at high risk of the metabolic syndrome (Prevent Metabolic Syndrome [PrevMetSyn], n = 371). Diabetes risk score models were developed to estimate the 10 year risk of incident diabetes. RESULTS Analysis in FINRISK 2002 showed that the Cer(d18:1/18:0)/Cer(d18:1/16:0) ceramide ratio was predictive of incident diabetes (HR per SD 2.23, 95% CI 2.05, 2.42), and remained significant after adjustment for several risk factors, including BMI, fasting glucose and HbA1c (HR 1.34, 95% CI 1.14, 1.57). The finding was validated in the WECAC study (unadjusted HR 1.81, 95% CI 1.53, 2.14; adjusted HR 1.39, 95% CI 1.16, 1.66). In the intervention trial, the ceramide ratio and diabetes risk scores significantly decreased in individuals who had 5% or more weight loss. CONCLUSIONS/INTERPRETATION The Cer(d18:1/18:0)/Cer(d18:1/16:0) ratio is an independent predictive biomarker for incident diabetes, and may be modulated by lifestyle intervention.
Collapse
Affiliation(s)
- Mika Hilvo
- Zora Biosciences Oy, Biologinkuja 1, 02150, Espoo, Finland
| | - Tuire Salonurmi
- Department of Internal Medicine, Oulu University Hospital, Oulu, Finland
- Research Center for Internal Medicine and Biocenter Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Aki S Havulinna
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | | | | | - Grethe S Tell
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | | | - Anna-Maria Teeriniemi
- Department of Internal Medicine, Oulu University Hospital, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Clinical Nutrition and Obesity Center, Kuopio University Hospital, Kuopio, Finland
| | - Tiina Laatikainen
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Joint Municipal Authority for North Karelia Social and Health services, Joensuu, Finland
| | - Pekka Jousilahti
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Markku J Savolainen
- Department of Internal Medicine, Oulu University Hospital, Oulu, Finland
- Research Center for Internal Medicine and Biocenter Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Ottar Nygård
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Veikko Salomaa
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Reijo Laaksonen
- Zora Biosciences Oy, Biologinkuja 1, 02150, Espoo, Finland.
- Finnish Cardiovascular Research Center, University of Tampere, Tampere, Finland.
- Finnish Clinical Biobank Tampere, Tampere University Hospital, Tampere, Finland.
| |
Collapse
|
40
|
Rodrigo N, Glastras SJ. The Emerging Role of Biomarkers in the Diagnosis of Gestational Diabetes Mellitus. J Clin Med 2018; 7:E120. [PMID: 29882903 PMCID: PMC6024961 DOI: 10.3390/jcm7060120] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a common complication of pregnancy; its rising incidence is a result of increased maternal obesity and older maternal age together with altered diagnostic criteria identifying a greater proportion of pregnant women with GDM. Its consequences are far-reaching, associated with poorer maternal and neonatal outcomes compared to non-GDM pregnancies, and GDM has implications for metabolic health in both mother and offspring. Objective markers to identify women at high risk for the development of GDM are useful to target therapy and potentially prevent its development. Established clinical risk factors for GDM include overweight/obesity, age, ethnicity, and family history of diabetes, though they lack specificity for its development. The addition of biomarkers to predictive models of GDM may improve the ability to identify women at risk of GDM prior to its development. These biomarkers reflect the pathophysiologic mechanisms of GDM involving insulin resistance, chronic inflammation, and altered placental function. In addition, the role of epigenetic changes in GDM pathogenesis highlights the complex interplay between genetic and environmental factors, potentially offering further refinement of the prediction of GDM risk. In this review, we will discuss the clinical challenges associated with the diagnosis of GDM and its current pathophysiologic basis, giving rise to potential biomarkers that may aid in its identification. While not yet validated for clinical use, we explore the possible clinical role of biomarkers in the future. We also explore novel diagnostic tools, including high throughput methodologies, that may have potential future application in the identification of women with GDM.
Collapse
Affiliation(s)
- Natassia Rodrigo
- Department of Diabetes, Endocrinology & Metabolism, Royal North Shore Hospital, St Leonards, Sydney 2065, Australia.
- The Kolling Institute of Medical Research, St Leonards, Sydney 2065, Australia.
- Faculty of Medicine, The University of Sydney, Sydney 2006, Australia.
| | - Sarah J Glastras
- Department of Diabetes, Endocrinology & Metabolism, Royal North Shore Hospital, St Leonards, Sydney 2065, Australia.
- The Kolling Institute of Medical Research, St Leonards, Sydney 2065, Australia.
- Faculty of Medicine, The University of Sydney, Sydney 2006, Australia.
| |
Collapse
|
41
|
Shi L, Brunius C, Lehtonen M, Auriola S, Bergdahl IA, Rolandsson O, Hanhineva K, Landberg R. Plasma metabolites associated with type 2 diabetes in a Swedish population: a case-control study nested in a prospective cohort. Diabetologia 2018; 61:849-861. [PMID: 29349498 PMCID: PMC6448991 DOI: 10.1007/s00125-017-4521-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/13/2017] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS The aims of the present work were to identify plasma metabolites that predict future type 2 diabetes, to investigate the changes in identified metabolites among individuals who later did or did not develop type 2 diabetes over time, and to assess the extent to which inclusion of predictive metabolites could improve risk prediction. METHODS We established a nested case-control study within the Swedish prospective population-based Västerbotten Intervention Programme cohort. Using untargeted liquid chromatography-MS metabolomics, we analysed plasma samples from 503 case-control pairs at baseline (a median time of 7 years prior to diagnosis) and samples from a subset of 187 case-control pairs at 10 years of follow-up. Discriminative metabolites between cases and controls at baseline were optimally selected using a multivariate data analysis pipeline adapted for large-scale metabolomics. Conditional logistic regression was used to assess associations between discriminative metabolites and future type 2 diabetes, adjusting for several known risk factors. Reproducibility of identified metabolites was estimated by intra-class correlation over the 10 year period among the subset of healthy participants; their systematic changes over time in relation to diagnosis among those who developed type 2 diabetes were investigated using mixed models. Risk prediction performance of models made from different predictors was evaluated using area under the receiver operating characteristic curve, discrimination improvement index and net reclassification index. RESULTS We identified 46 predictive plasma metabolites of type 2 diabetes. Among novel findings, phosphatidylcholines (PCs) containing odd-chain fatty acids (C19:1 and C17:0) and 2-hydroxyethanesulfonate were associated with the likelihood of developing type 2 diabetes; we also confirmed previously identified predictive biomarkers. Identified metabolites strongly correlated with insulin resistance and/or beta cell dysfunction. Of 46 identified metabolites, 26 showed intermediate to high reproducibility among healthy individuals. Moreover, PCs with odd-chain fatty acids, branched-chain amino acids, 3-methyl-2-oxovaleric acid and glutamate changed over time along with disease progression among diabetes cases. Importantly, we found that a combination of five of the most robustly predictive metabolites significantly improved risk prediction if added to models with an a priori defined set of traditional risk factors, but only a marginal improvement was achieved when using models based on optimally selected traditional risk factors. CONCLUSIONS/INTERPRETATION Predictive metabolites may improve understanding of the pathophysiology of type 2 diabetes and reflect disease progression, but they provide limited incremental value in risk prediction beyond optimal use of traditional risk factors.
Collapse
Affiliation(s)
- Lin Shi
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
- Department of Biology and Biological Engeneering, Food and Nutrition Science, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| | - Carl Brunius
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- LC-MS Metabolomics Center, Biocenter Kuopio, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- LC-MS Metabolomics Center, Biocenter Kuopio, Kuopio, Finland
| | | | - Olov Rolandsson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Kati Hanhineva
- LC-MS Metabolomics Center, Biocenter Kuopio, Kuopio, Finland
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Rikard Landberg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Unit of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
42
|
Hu T, Zhang JL. Mass-spectrometry-based lipidomics. J Sep Sci 2017; 41:351-372. [PMID: 28859259 DOI: 10.1002/jssc.201700709] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 01/09/2023]
Abstract
Lipids, which have a core function in energy storage, signalling and biofilm structures, play important roles in a variety of cellular processes because of the great diversity of their structural and physiochemical properties. Lipidomics is the large-scale profiling and quantification of biogenic lipid molecules, the comprehensive study of their pathways and the interpretation of their physiological significance based on analytical chemistry and statistical analysis. Lipidomics will not only provide insight into the physiological functions of lipid molecules but will also provide an approach to discovering important biomarkers for diagnosis or treatment of human diseases. Mass-spectrometry-based analytical techniques are currently the most widely used and most effective tools for lipid profiling and quantification. In this review, the field of mass-spectrometry-based lipidomics was discussed. Recent progress in all essential steps in lipidomics was carefully discussed in this review, including lipid extraction strategies, separation techniques and mass-spectrometry-based analytical and quantitative methods in lipidomics. We also focused on novel resolution strategies for difficult problems in determining C=C bond positions in lipidomics. Finally, new technologies that were developed in recent years including single-cell lipidomics, flux-based lipidomics and multiomics technologies were also reviewed.
Collapse
Affiliation(s)
- Ting Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, PR China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, PR China
| |
Collapse
|