1
|
Islam RA, Han X, Shaligram S, Esfandiarei M, Stallone JN, Rahimian R. Sexual Dimorphism in Impairment of Acetylcholine-Mediated Vasorelaxation in Zucker Diabetic Fatty (ZDF) Rat Aorta: A Monogenic Model of Obesity-Induced Type 2 Diabetes. Int J Mol Sci 2024; 25:11328. [PMID: 39457110 PMCID: PMC11508232 DOI: 10.3390/ijms252011328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Several reports, including our previous studies, indicate that hyperglycemia and diabetes mellitus exert differential effects on vascular function in males and females. This study examines sex differences in the vascular effects of type 2 diabetes (T2D) in an established monogenic model of obesity-induced T2D, Zucker Diabetic Fatty (ZDF) rats. Acetylcholine (ACh) responses were assessed in phenylephrine pre-contracted rings before and after apocynin, a NADPH oxidase (NOX) inhibitor. The mRNA expressions of aortic endothelial NOS (eNOS), and key NOX isoforms were also measured. We demonstrated the following: (1) diabetes had contrasting effects on aortic vasorelaxation in ZDF rats, impairing relaxation to ACh in females while enhancing it in male ZDF rats; (2) inhibition of NOX, a major source of superoxide in vasculature, restored aortic vasorelaxation in female ZDF rats; and (3) eNOS and NOX4 mRNA expressions were elevated in female (but not male) ZDF rat aortas compared to their respective leans. This study highlights sexual dimorphism in ACh-mediated vasorelaxation in the aorta of ZDF rats, suggesting that superoxide may play a role in the impaired vasorelaxation observed in female ZDF rats.
Collapse
Affiliation(s)
- Rifat Ara Islam
- Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA; (R.A.I.); (S.S.)
| | - Xiaoyuan Han
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, Stockton, CA 94115, USA;
| | - Sonali Shaligram
- Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA; (R.A.I.); (S.S.)
| | - Mitra Esfandiarei
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA;
| | - John N. Stallone
- Department of Veterinary Physiology and Pharmacology and Michael E. DeBakey Institute for Comparative Cardiovascular Sciences, School of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4466, USA;
| | - Roshanak Rahimian
- Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA; (R.A.I.); (S.S.)
| |
Collapse
|
2
|
Fakfum P, Chuljerm H, Parklak W, Roytrakul S, Phaonakrop N, Lerttrakarnnon P, Kulprachakarn K. Plasma Proteomics of Type 2 Diabetes, Hypertension, and Co-Existing Diabetes/Hypertension in Thai Adults. Life (Basel) 2024; 14:1269. [PMID: 39459569 PMCID: PMC11509282 DOI: 10.3390/life14101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/31/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
The study explored proteomics to better understand the relationship between type 2 diabetes (T2DM) and hypertension (HT) in Thai adults, using shotgun proteomics and bioinformatics analysis. Plasma samples were taken from 61 subjects: 14 healthy subjects (mean age = 40.85 ± 7.12), 13 with T2DM (mean age = 57.38 ± 6.03), 16 with HT (mean age = 66.87 ± 10.09), and 18 with coexisting T2DM/HT (mean age = 58.22 ± 10.65). Proteins were identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Protein-protein interactions were analyzed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) version 11.5. We identified six unique proteins in T2DM patients, including translationally controlled 1 (TPT1) and nibrin (NBN), which are associated with the DNA damage response. In HT patients, seven unique proteins were identified, among them long-chain fatty acid-CoA ligase (ASCL), which functions in the stimulation of triacylglycerol and cholesterol synthesis, and NADPH oxidase activator 1 (NOXA1), which is involved in high blood pressure via angiotensin II-induced reactive oxygen species (ROS)-generating systems. In coexisting T2DM/HT patients, six unique proteins were identified, of which two-microtubule-associated protein 1A (MAP1A)-might be involved in dementia via RhoB-p53 and diacylglycerol kinase beta (DGKB), associated with lipid metabolism. This study identified new candidate proteins that are possibly involved in the pathology of these diseases.
Collapse
Affiliation(s)
- Puriwat Fakfum
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (P.F.); (H.C.); (W.P.)
| | - Hataichanok Chuljerm
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (P.F.); (H.C.); (W.P.)
| | - Wason Parklak
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (P.F.); (H.C.); (W.P.)
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.R.); (N.P.)
| | - Narumon Phaonakrop
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.R.); (N.P.)
| | - Peerasak Lerttrakarnnon
- Aging and Aging Palliative Care Research Cluster, Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanokwan Kulprachakarn
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (P.F.); (H.C.); (W.P.)
| |
Collapse
|
3
|
Marqués J, Ainzúa E, Orbe J, Martínez-Azcona M, Martínez-González J, Zalba G. NADPH Oxidase 5 (NOX5) Upregulates MMP-10 Production and Cell Migration in Human Endothelial Cells. Antioxidants (Basel) 2024; 13:1199. [PMID: 39456453 PMCID: PMC11504164 DOI: 10.3390/antiox13101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
NADPH oxidases (NOXs) have been described as critical players in vascular remodeling, a mechanism modulated by matrix metalloproteinases. In this study, we describe for the first time the upregulation of MMP-10 through the activation of NOX5 in endothelial cells. In a chronic NOX5 overexpression model in human endothelial cells, MMP-10 production was measured at different levels: extracellular secretion, gene expression (mRNA and protein levels), and promoter activity. Effects on cell migration were quantified using wound healing assays. NOX5 overexpression increased MMP-10 production, favoring cell migration. In fact, NOX5 and MMP-10 silencing prevented this promigratory effect. We showed that NOX5-mediated MMP-10 upregulation involves the redox-sensitive JNK/AP-1 signaling pathway. All these NOX5-dependent effects were enhanced by angiotensin II (Ang II). Interestingly, MMP-10 protein levels were found to be increased in the hearts of NOX5-expressing mice. In conclusion, we described that NOX5-generated ROS may modulate the MMP-10 expression in endothelial cells, which leads to endothelial cell migration and may play a key role in vascular remodeling.
Collapse
Affiliation(s)
- Javier Marqués
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.M.); (E.A.); (J.O.); (M.M.-A.)
- Department of Biochemistry and Genetics, University of Navarra, 31009 Pamplona, Spain
| | - Elena Ainzúa
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.M.); (E.A.); (J.O.); (M.M.-A.)
- Department of Biochemistry and Genetics, University of Navarra, 31009 Pamplona, Spain
| | - Josune Orbe
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.M.); (E.A.); (J.O.); (M.M.-A.)
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, CIMA (University of Navarra), 31008 Pamplona, Spain
- RICORS-Ictus, Carlos III Health Institute, 28029 Madrid, Spain
| | - María Martínez-Azcona
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.M.); (E.A.); (J.O.); (M.M.-A.)
- Department of Biochemistry and Genetics, University of Navarra, 31009 Pamplona, Spain
| | - José Martínez-González
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain;
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
| | - Guillermo Zalba
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.M.); (E.A.); (J.O.); (M.M.-A.)
- Department of Biochemistry and Genetics, University of Navarra, 31009 Pamplona, Spain
| |
Collapse
|
4
|
Yu H, Xie Y, Lan L, Ma S, Mok SWF, Wong IN, Wang Y, Zhong G, Yuan L, Zhao H, Hu X, Macrae VE, He S, Chen G, Zhu D. Sirt7 protects against vascular calcification via modulation of reactive oxygen species and senescence of vascular smooth muscle cells. Free Radic Biol Med 2024; 223:30-41. [PMID: 39053861 DOI: 10.1016/j.freeradbiomed.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/28/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Vascular calcification is frequently seen in patients with chronic kidney disease (CKD), and significantly increases cardiovascular mortality and morbidity. Sirt7, a NAD+-dependent histone deacetylases, plays a crucial role in cardiovascular disease. However, the role of Sirt7 in vascular calcification remains largely unknown. Using in vitro and in vivo models of vascular calcification, this study showed that Sirt7 expression was significantly reduced in calcified arteries from mice administered with high dose of vitamin D3 (vD3). We found that knockdown or inhibition of Sirt7 promoted vascular smooth muscle cell (VSMC), aortic ring and vascular calcification in mice, whereas overexpression of Sirt7 had opposite effects. Intriguingly, this protective effect of Sirt7 on vascular calcification is dependent on its deacetylase activity. Unexpectedly, Sirt7 did not alter the osteogenic transition of VSMCs. However, our RNA-seq and subsequent studies demonstrated that knockdown of Sirt7 in VSMCs resulted in increased intracellular reactive oxygen species (ROS) accumulation, and induced an Nrf-2 mediated oxidative stress response. Treatment with the ROS inhibitor N-acetylcysteine (NAC) significantly attenuated the inhibitory effect of Sirt7 on VSMC calcification. Furthermore, we found that knockdown of Sirt7 delayed cell cycle progression and accelerated cellular senescence of VSMCs. Taken together, our results indicate that Sirt7 regulates vascular calcification at least in part through modulation of ROS and cellular senescence of VSMCs. Sirt7 may be a potential therapeutic target for vascular calcification.
Collapse
MESH Headings
- Animals
- Vascular Calcification/pathology
- Vascular Calcification/metabolism
- Vascular Calcification/genetics
- Reactive Oxygen Species/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mice
- Cellular Senescence
- Sirtuins/metabolism
- Sirtuins/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Oxidative Stress
- Humans
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/genetics
- Male
- Cholecalciferol/pharmacology
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/genetics
- Mice, Inbred C57BL
- Cells, Cultured
Collapse
Affiliation(s)
- Hongjiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China; GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, China
| | - Yuchen Xie
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Lan Lan
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Siyu Ma
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, China
| | - Simon Wing Fai Mok
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Yueheng Wang
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Guoli Zhong
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Liang Yuan
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Huan Zhao
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Xiao Hu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Vicky E Macrae
- Functional Genetics and Development, The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Shengping He
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong, 510515, China.
| | - Guojun Chen
- Department of Cardiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Dongxing Zhu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
| |
Collapse
|
5
|
Baroi S, Czernik PJ, Khan MP, Letson J, Crowe E, Chougule A, Griffin PR, Rosen CJ, Lecka-Czernik B. PPARG in osteocytes controls cell bioenergetics and systemic energy metabolism independently of sclerostin levels in circulation. Mol Metab 2024; 88:102000. [PMID: 39074536 PMCID: PMC11367276 DOI: 10.1016/j.molmet.2024.102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024] Open
Abstract
OBJECTIVE The skeleton is one of the largest organs in the body, wherein metabolism is integrated with systemic energy metabolism. However, the bioenergetic programming of osteocytes, the most abundant bone cells coordinating bone metabolism, is not well defined. Here, using a mouse model with partial penetration of an osteocyte-specific PPARG deletion, we demonstrate that PPARG controls osteocyte bioenergetics and their contribution to systemic energy metabolism independently of circulating sclerostin levels, which were previously correlated with metabolic status of extramedullary fat depots. METHODS In vivo and in vitro models of osteocyte-specific PPARG deletion, i.e. Dmp1CrePparγflfl male and female mice (γOTKO) and MLO-Y4 osteocyte-like cells with either siRNA-silenced or CRISPR/Cas9-edited Pparγ. As applicable, the models were analyzed for levels of energy metabolism, glucose metabolism, and metabolic profile of extramedullary adipose tissue, as well as the osteocyte transcriptome, mitochondrial function, bioenergetics, insulin signaling, and oxidative stress. RESULTS Circulating sclerostin levels of γOTKO male and female mice were not different from control mice. Male γOTKO mice exhibited a high energy phenotype characterized by increased respiration, heat production, locomotion and food intake. This high energy phenotype in males did not correlate with "beiging" of peripheral adipose depots. However, both sexes showed a trend for reduced fat mass and apparent insulin resistance without changes in glucose tolerance, which correlated with decreased osteocytic responsiveness to insulin measured by AKT activation. The transcriptome of osteocytes isolated from γOTKO males suggested profound changes in cellular metabolism, fuel transport, mitochondria dysfunction, insulin signaling and increased oxidative stress. In MLO-Y4 osteocytes, PPARG deficiency correlated with highly active mitochondria, increased ATP production, and accumulation of reactive oxygen species (ROS). CONCLUSIONS PPARG in male osteocytes acts as a molecular break on mitochondrial function, and protection against oxidative stress and ROS accumulation. It also regulates osteocyte insulin signaling and fuel usage to produce energy. These data provide insight into the connection between osteocyte bioenergetics and their sex-specific contribution to the balance of systemic energy metabolism. These findings support the concept that the skeleton controls systemic energy expenditure via osteocyte metabolism.
Collapse
Affiliation(s)
- Sudipta Baroi
- Department of Orthopaedic Surgery, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; Center for Diabetes and Endocrine Research, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| | - Piotr J Czernik
- Department of Orthopaedic Surgery, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; Center for Diabetes and Endocrine Research, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| | - Mohd Parvez Khan
- Department of Orthopaedic Surgery, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; Center for Diabetes and Endocrine Research, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| | - Joshua Letson
- Department of Orthopaedic Surgery, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; Center for Diabetes and Endocrine Research, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| | - Emily Crowe
- Department of Orthopaedic Surgery, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; Center for Diabetes and Endocrine Research, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| | - Amit Chougule
- Department of Orthopaedic Surgery, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; Center for Diabetes and Endocrine Research, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| | - Patrick R Griffin
- The Wertheim UF Scripps Institute, University of Florida, Jupiter, FL 33458, USA.
| | | | - Beata Lecka-Czernik
- Department of Orthopaedic Surgery, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; Center for Diabetes and Endocrine Research, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| |
Collapse
|
6
|
Elwakiel A, Gupta D, Rana R, Manoharan J, Al-Dabet MM, Ambreen S, Fatima S, Zimmermann S, Mathew A, Li Z, Singh K, Gupta A, Pal S, Sulaj A, Kopf S, Schwab C, Baber R, Geffers R, Götze T, Alo B, Lamers C, Kluge P, Kuenze G, Kohli S, Renné T, Shahzad K, Isermann B. Factor XII signaling via uPAR-integrin β1 axis promotes tubular senescence in diabetic kidney disease. Nat Commun 2024; 15:7963. [PMID: 39261453 PMCID: PMC11390906 DOI: 10.1038/s41467-024-52214-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
Coagulation factor XII (FXII) conveys various functions as an active protease that promotes thrombosis and inflammation, and as a zymogen via surface receptors like urokinase-type plasminogen activator receptor (uPAR). While plasma levels of FXII are increased in diabetes mellitus and diabetic kidney disease (DKD), a pathogenic role of FXII in DKD remains unknown. Here we show that FXII is locally expressed in kidney tubular cells and that urinary FXII correlates with kidney dysfunction in DKD patients. F12-deficient mice (F12-/-) are protected from hyperglycemia-induced kidney injury. Mechanistically, FXII interacts with uPAR on tubular cells promoting integrin β1-dependent signaling. This signaling axis induces oxidative stress, persistent DNA damage and senescence. Blocking uPAR or integrin β1 ameliorates FXII-induced tubular cell injury. Our findings demonstrate that FXII-uPAR-integrin β1 signaling on tubular cells drives senescence. These findings imply previously undescribed diagnostic and therapeutic approaches to detect or treat DKD and possibly other senescence-associated diseases.
Collapse
Affiliation(s)
- Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany.
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Jayakumar Manoharan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Moh'd Mohanad Al-Dabet
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
- Department of Medical Laboratory Sciences, School of Science, University of Jordan, Amman, Jordan
| | - Saira Ambreen
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Akash Mathew
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Zhiyang Li
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Kunal Singh
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Anubhuti Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Surinder Pal
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Alba Sulaj
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - Stefan Kopf
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - Constantin Schwab
- Institute of pathology, University of Heidelberg, Heidelberg, Germany
| | - Ronny Baber
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
- Leipzig Medical Biobank, Leipzig University, Leipzig, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tom Götze
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Bekas Alo
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Christina Lamers
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Paul Kluge
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Georg Kuenze
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, Leipzig, Germany
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
7
|
Zhang W, Wang L, Wang Y, Fang Y, Cao R, Fang Z, Han D, Huang X, Gu Z, Zhang Y, Zhu Y, Ma Y, Cao F. Inhibition of the RXRA-PPARα-FABP4 signaling pathway alleviates vascular cellular aging by an SGLT2 inhibitor in an atherosclerotic mice model. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2602-7. [PMID: 39225895 DOI: 10.1007/s11427-024-2602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/19/2024] [Indexed: 09/04/2024]
Abstract
Atherosclerosis is the pathological cause of atherosclerotic cardiovascular disease (ASCVD), which rapidly progresses during the cellular senescence. Sodium-glucose cotransporter 2 inhibitors (SGLT2is) reduce major cardiovascular events in patients with ASCVD and have potential antisenescence effects. Here, we investigate the effects of the SGLT2 inhibitor dapagliflozin on cellular senescence in atherosclerotic mice. Compared with ApoE-/- control mice treated with normal saline, those in the ApoE-/- dapagliflozin group, receiving intragastric dapagliflozin (0.1 mg kg-1 d-1) for 14 weeks, exhibited the reduction in the total aortic plaque area (48.8%±6.6% vs. 74.6%±8.0%, P<0.05), the decrease in the lipid core area ((0.019±0.0037) mm2vs. (0.032±0.0062) mm2, P<0.05) and in the percentage of senescent cells within the plaques (16.4%±3.7% vs. 30.7%±2.0%, P<0.01), while the increase in the thickness of the fibrous cap ((21.6±2.1) µm vs. (14.6±1.5) µm, P<0.01). Transcriptome sequencing of the aortic arch in the mice revealed the involvement of the PPARα and the fatty acid metabolic signaling pathways in dapagliflozin's mechanism of ameliorating cellular aging and plaque progression. In vitro, dapagliflozin inhibited the expression of PPARα and its downstream signal FABP4, by which the accumulation of senescent cells in human aortic smooth muscle cells (HASMCs) was reduced under high-fat conditions. This effect was accompanied by a reduction in the intracellular lipid content and alleviation of oxidative stress. However, these beneficial effects of dapagliflozin could be reversed by the PPARα overexpression. Bioinformatics analysis and molecular docking simulations revealed that dapagliflozin might exert its effects by directly interacting with the RXRA protein, thereby influencing the expression of the PPARα signaling pathway. In conclusion, the cellular senescence of aortic smooth muscle cells is potentially altered by dapagliflozin through the suppression of the RXRA-PPARα-FABP4 signaling pathway, resulting in a deceleration of atherosclerotic progression.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Linghuan Wang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yujia Wang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Yan Fang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Ruihua Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Zhiyi Fang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Dong Han
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Xu Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhenghui Gu
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Yingjie Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Yan Zhu
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yan Ma
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| |
Collapse
|
8
|
Liu L, Zhao B, Yu Y, Gao W, Liu W, Chen L, Xia Z, Cao Q. Vascular Aging in Ischemic Stroke. J Am Heart Assoc 2024; 13:e033341. [PMID: 39023057 DOI: 10.1161/jaha.123.033341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cellular senescence, a permanent halt in cell division due to stress, spurs functional and structural changes, contributing to vascular aging characterized by endothelial dysfunction and vascular remodeling. This process raises the risk of ischemic stroke (IS) in older individuals, with its mechanisms still not completely understood despite ongoing research efforts. In this review, we have analyzed the impact of vascular aging on increasing susceptibility and exacerbating the pathology of IS. We have emphasized the detrimental effects of endothelial dysfunction and vascular remodeling influenced by oxidative stress and inflammatory response on vascular aging and IS. Our goal is to aid the understanding of vascular aging and IS pathogenesis, particularly benefiting older adults with high risk of IS.
Collapse
Affiliation(s)
- Lian Liu
- Department of Anesthesiology Renmin Hospital of Wuhan University Wuhan China
| | - Bo Zhao
- Department of Anesthesiology Renmin Hospital of Wuhan University Wuhan China
| | - Yueyang Yu
- Taikang Medical School, School of Basic Medical Sciences Wuhan University Wuhan China
| | - Wenwei Gao
- Department of Critical Care Medicine Renmin Hospital of Wuhan University Wuhan China
| | - Weitu Liu
- Department of Pathology Hubei Provincial Hospital of Traditional Chinese Medicine Wuhan China
| | - Lili Chen
- Department of Anesthesiology Renmin Hospital of Wuhan University Wuhan China
| | - Zhongyuan Xia
- Department of Anesthesiology Renmin Hospital of Wuhan University Wuhan China
| | - Quan Cao
- Department of Nephrology Zhongnan Hospital of Wuhan University Wuhan China
| |
Collapse
|
9
|
Lei S, Liu C, Zheng TX, Fu W, Huang MZ. The relationship of redox signaling with the risk for atherosclerosis. Front Pharmacol 2024; 15:1430293. [PMID: 39148537 PMCID: PMC11324460 DOI: 10.3389/fphar.2024.1430293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
Oxidative balance plays a pivotal role in physiological homeostasis, and many diseases, particularly age-related conditions, are closely associated with oxidative imbalance. While the strategic role of oxidative regulation in various diseases is well-established, the specific involvement of oxidative stress in atherosclerosis remains elusive. Atherosclerosis is a chronic inflammatory disorder characterized by plaque formation within the arteries. Alterations in the oxidative status of vascular tissues are linked to the onset, progression, and outcome of atherosclerosis. This review examines the role of redox signaling in atherosclerosis, including its impact on risk factors such as dyslipidemia, hyperglycemia, inflammation, and unhealthy lifestyle, along with dysregulation, vascular homeostasis, immune system interaction, and therapeutic considerations. Understanding redox signal transduction and the regulation of redox signaling will offer valuable insights into the pathogenesis of atherosclerosis and guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sujuan Lei
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Chen Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Tian-Xiang Zheng
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Mei-Zhou Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| |
Collapse
|
10
|
Liang Y, Kaushal D, Wilson RB. Cellular Senescence and Extracellular Vesicles in the Pathogenesis and Treatment of Obesity-A Narrative Review. Int J Mol Sci 2024; 25:7943. [PMID: 39063184 PMCID: PMC11276987 DOI: 10.3390/ijms25147943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
This narrative review explores the pathophysiology of obesity, cellular senescence, and exosome release. When exposed to excessive nutrients, adipocytes develop mitochondrial dysfunction and generate reactive oxygen species with DNA damage. This triggers adipocyte hypertrophy and hypoxia, inhibition of adiponectin secretion and adipogenesis, increased endoplasmic reticulum stress and maladaptive unfolded protein response, metaflammation, and polarization of macrophages. Such feed-forward cycles are not resolved by antioxidant systems, heat shock response pathways, or DNA repair mechanisms, resulting in transmissible cellular senescence via autocrine, paracrine, and endocrine signaling. Senescence can thus affect preadipocytes, mature adipocytes, tissue macrophages and lymphocytes, hepatocytes, vascular endothelium, pancreatic β cells, myocytes, hypothalamic nuclei, and renal podocytes. The senescence-associated secretory phenotype is closely related to visceral adipose tissue expansion and metaflammation; inhibition of SIRT-1, adiponectin, and autophagy; and increased release of exosomes, exosomal micro-RNAs, pro-inflammatory adipokines, and saturated free fatty acids. The resulting hypernefemia, insulin resistance, and diminished fatty acid β-oxidation lead to lipotoxicity and progressive obesity, metabolic syndrome, and physical and cognitive functional decline. Weight cycling is related to continuing immunosenescence and exposure to palmitate. Cellular senescence, exosome release, and the transmissible senescence-associated secretory phenotype contribute to obesity and metabolic syndrome. Targeted therapies have interrelated and synergistic effects on cellular senescence, obesity, and premature aging.
Collapse
Affiliation(s)
- Yicong Liang
- Bankstown Hospital, University of New South Wales, Sydney, NSW 2560, Australia;
| | - Devesh Kaushal
- Campbelltown Hospital, Western Sydney University, Sydney, NSW 2560, Australia;
| | - Robert Beaumont Wilson
- School of Clinical Medicine, University of New South Wales, High St., Kensington, Sydney, NSW 2052, Australia
| |
Collapse
|
11
|
Ortega MA, Garcia-Puente LM, Fraile-Martinez O, Pekarek T, García-Montero C, Bujan J, Pekarek L, Barrena-Blázquez S, Gragera R, Rodríguez-Rojo IC, Rodríguez-Benitez P, López-González L, Díaz-Pedrero R, Álvarez-Mon M, García-Honduvilla N, De León-Luis JA, Bravo C, Saez MA. Oxidative Stress, Lipid Peroxidation and Ferroptosis Are Major Pathophysiological Signatures in the Placental Tissue of Women with Late-Onset Preeclampsia. Antioxidants (Basel) 2024; 13:591. [PMID: 38790696 PMCID: PMC11117992 DOI: 10.3390/antiox13050591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Preeclampsia, a serious and potentially life-threatening medical complication occurring during pregnancy, is characterized by hypertension and often accompanied by proteinuria and multiorgan dysfunction. It is classified into two subtypes based on the timing of diagnosis: early-onset (EO-PE) and late-onset preeclampsia (LO-PE). Despite being less severe and exhibiting distinct pathophysiological characteristics, LO-PE is more prevalent than EO-PE, although both conditions have a significant impact on placental health. Previous research indicates that different pathophysiological events within the placenta may contribute to the development of preeclampsia across multiple pathways. In our experimental study, we investigated markers of oxidative stress, ferroptosis, and lipid peroxidation pathways in placental tissue samples obtained from women with LO-PE (n = 68) compared to healthy control pregnant women (HC, n = 43). Through a comprehensive analysis, we observed an upregulation of specific molecules associated with these pathways, including NADPH oxidase 1 (NOX-1), NADPH oxidase 2 (NOX-2), transferrin receptor protein 1 (TFRC), arachidonate 5-lipoxygenase (ALOX-5), acyl-CoA synthetase long-chain family member 4 (ACSL-4), glutathione peroxidase 4 (GPX4) and malondialdehyde (MDA) in women with LO-PE. Furthermore, increased ferric tissue deposition (Fe3+) was observed in placenta samples stained with Perls' Prussian blue. The assessment involved gene and protein expression analyses conducted through RT-qPCR experiments and immunohistochemistry assays. Our findings underscore the heightened activation of inflammatory pathways in LO-PE compared to HC, highlighting the pathological mechanisms underlying this pregnancy disorder.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.M.G.-P.); (O.F.-M.); (T.P.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Luis M. Garcia-Puente
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.M.G.-P.); (O.F.-M.); (T.P.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.M.G.-P.); (O.F.-M.); (T.P.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Tatiana Pekarek
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.M.G.-P.); (O.F.-M.); (T.P.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.M.G.-P.); (O.F.-M.); (T.P.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Julia Bujan
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.M.G.-P.); (O.F.-M.); (T.P.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.M.G.-P.); (O.F.-M.); (T.P.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28801 Alcala de Henares, Spain
| | - Raquel Gragera
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.M.G.-P.); (O.F.-M.); (T.P.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
| | - Inmaculada C. Rodríguez-Rojo
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28801 Alcala de Henares, Spain
| | - Patrocinio Rodríguez-Benitez
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (P.R.-B.); (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
- Department of Nephrology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
| | - Laura López-González
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Raul Díaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.M.G.-P.); (O.F.-M.); (T.P.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Prince of Asturias, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28806 Alcala de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.M.G.-P.); (O.F.-M.); (T.P.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Juan A. De León-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (P.R.-B.); (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (P.R.-B.); (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.M.G.-P.); (O.F.-M.); (T.P.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
- Pathological Anatomy Service, University Hospital Gómez-Ulla, 28806 Alcala de Henares, Spain
| |
Collapse
|
12
|
Ding H, Tong J, Lin H, Ping F, Yao T, Ye Z, Chu J, Yuan D, Wang K, Liu X, Chen F. KLF4 inhibited the senescence-associated secretory phenotype in ox-LDL-treated endothelial cells via PDGFRA/NAMPT/mitochondrial ROS. Aging (Albany NY) 2024; 16:8070-8085. [PMID: 38728249 PMCID: PMC11132013 DOI: 10.18632/aging.205805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Inflammation is one of the significant consequences of ox-LDL-induced endothelial cell (EC) dysfunction. The senescence-associated secretory phenotype (SASP) is a critical source of inflammation factors. However, the molecular mechanism by which the SASP is regulated in ECs under ox-LDL conditions remains unknown. RESULTS The level of SASP was increased in ox-LDL-treated ECs, which could be augmented by KLF4 knockdown whereas restored by KLF4 knock-in. Furthermore, we found that KLF4 directly promoted PDGFRA transcription and confirmed the central role of the NAPMT/mitochondrial ROS pathway in KLF4/PDGFRA-mediated inhibition of SASP. Animal experiments showed a higher SASP HFD-fed mice, compared with normal feed (ND)-fed mice, and the endothelium of EC-specific KLF4-/- mice exhibited a higher proportion of SA-β-gal-positive cells and lower PDGFRA/NAMPT expression. CONCLUSIONS Our results revealed that KLF4 inhibits the SASP of endothelial cells under ox-LDL conditions through the PDGFRA/NAMPT/mitochondrial ROS. METHODS Ox-LDL-treated ECs and HFD-fed mice were used as endothelial senescence models in vitro and in vivo. SA-β-gal stain, detection of SAHF and the expression of inflammatory factors determined SASP and senescence of ECs. The direct interaction of KLF4 and PDGFRA promotor was analyzed by EMSA and fluorescent dual luciferase reporting analysis.
Collapse
Affiliation(s)
- Haoran Ding
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Tong
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hao Lin
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Fan Ping
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Tongqing Yao
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Zi Ye
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jiapeng Chu
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Deqiang Yuan
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kangwei Wang
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xuebo Liu
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Fei Chen
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
13
|
Alsereidi FR, Khashim Z, Marzook H, Gupta A, Al-Rawi AM, Ramadan MM, Saleh MA. Targeting inflammatory signaling pathways with SGLT2 inhibitors: Insights into cardiovascular health and cardiac cell improvement. Curr Probl Cardiol 2024; 49:102524. [PMID: 38492622 DOI: 10.1016/j.cpcardiol.2024.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have attracted significant attention for their broader therapeutic impact beyond simply controlling blood sugar levels, particularly in their ability to influence inflammatory pathways. This review delves into the anti-inflammatory properties of SGLT2 inhibitors, with a specific focus on canagliflozin, empagliflozin, and dapagliflozin. One of the key mechanisms through which SGLT2 inhibitors exert their anti-inflammatory effects is by activating AMP-activated protein kinase (AMPK), a crucial regulator of both cellular energy balance and inflammation. Activation of AMPK by these inhibitors leads to the suppression of pro-inflammatory pathways and a decrease in inflammatory mediators. Notably, SGLT2 inhibitors have demonstrated the ability to inhibit the release of cytokines in an AMPK-dependent manner, underscoring their direct influence on inflammatory signaling. Beyond AMPK activation, SGLT2 inhibitors also modulate several other inflammatory pathways, including the NLRP3 inflammasome, expression of Toll-like receptor 4 (TLR-4), and activation of NF-κB (Nuclear factor kappa B). This multifaceted approach contributes to their efficacy in reducing inflammation and managing associated complications in conditions such as diabetes and cardiovascular disorders. Several human and animal studies provide support for the anti-inflammatory effects of SGLT2 inhibitors, demonstrating protective effects on various cardiac cells. Additionally, these inhibitors exhibit direct anti-inflammatory effects by modulating immune cells. Overall, SGLT2 inhibitors emerge as promising therapeutic agents for targeting inflammation in a range of pathological conditions. Further research, particularly focusing on the molecular-level pathways of inflammation, is necessary to fully understand their mechanisms of action and optimize their therapeutic potential in inflammatory diseases.
Collapse
Affiliation(s)
- Fatmah R Alsereidi
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Zenith Khashim
- Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, Rochester, MN, United States
| | - Hezlin Marzook
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Anamika Gupta
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmed M Al-Rawi
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mahmoud M Ramadan
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Cardiology, Faculty of Medicine, Mansoura University, 35516 Egypt
| | - Mohamed A Saleh
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt.
| |
Collapse
|
14
|
Ren H, Hu W, Jiang T, Yao Q, Qi Y, Huang K. Mechanical stress induced mitochondrial dysfunction in cardiovascular diseases: Novel mechanisms and therapeutic targets. Biomed Pharmacother 2024; 174:116545. [PMID: 38603884 DOI: 10.1016/j.biopha.2024.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. Others and our studies have shown that mechanical stresses (forces) including shear stress and cyclic stretch, occur in various pathological conditions, play significant roles in the development and progression of CVDs. Mitochondria regulate the physiological processes of cardiac and vascular cells mainly through adenosine triphosphate (ATP) production, calcium flux and redox control while promote cell death through electron transport complex (ETC) related cellular stress response. Mounting evidence reveal that mechanical stress-induced mitochondrial dysfunction plays a vital role in the pathogenesis of many CVDs including heart failure and atherosclerosis. This review summarized mitochondrial functions in cardiovascular system under physiological mechanical stress and mitochondrial dysfunction under pathological mechanical stress in CVDs (graphical abstract). The study of mitochondrial dysfunction under mechanical stress can further our understanding of the underlying mechanisms, identify potential therapeutic targets, and aid the development of novel treatments of CVDs.
Collapse
Affiliation(s)
- He Ren
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Weiyi Hu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Tao Jiang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Qingping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Yingxin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Kai Huang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China.
| |
Collapse
|
15
|
Dong Y, Zhang Y, Li F, Tang B, Lv D, Wang H, Luo S. GKT137831 in combination with adipose-derived stem cells alleviates high glucose-induced inflammaging and improves diabetic wound healing. J Leukoc Biol 2024; 115:882-892. [PMID: 37774495 DOI: 10.1093/jleuko/qiad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) have been proven to promote healing in diabetic wounds, which are one of the most serious chronic refractory wounds. However, reactive oxygen species (ROS) induced by high glucose (HG) lead to oxidative stress and aging in ADSCs, which limits the therapeutic effect of ADSCs. In this study, we investigated the role of GKT137831, a NOX1/4 inhibitor that can reduce ROS production, in protecting ADSCs from hyperglycemia and in diabetic wound healing. In vitro, ROS levels and NOX4 expression were increased after HG treatment of ADSCs, while the oxidative stress marker malondialdehyde was increased; mitochondrial membrane potential was decreased; inflammatory aging-related indicators such as p16, p21, matrix metalloproteinase-1 (MMP1), MMP3, interleukin-6, and β-galactosidase were increased; and migration was weakened. In vivo, we constructed a diabetic mouse wound model and found that the combination of ADSCs and GKT137831 synergistically promoted the 21-day wound healing rate, increased the expression of collagen and hydroxyproline, increased the number of blood vessels and the expression of CD31, and reduced the expression of interleukin-6, MMP1, MMP3, and p21. These results suggest that GKT137831 could protect ADSCs from oxidative stress and aging induced by HG and enhance the therapeutic effect of ADSCs on diabetic wounds.
Collapse
Affiliation(s)
- Yunxian Dong
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, No. 466 Middle Xingang Road, Guangzhou, Guangdong Province 510317, China
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Youliang Zhang
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, No. 466 Middle Xingang Road, Guangzhou, Guangdong Province 510317, China
| | - Fangwei Li
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, No. 466 Middle Xingang Road, Guangzhou, Guangdong Province 510317, China
| | - Bing Tang
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, Guangdong Province 510080, China
| | - Dongming Lv
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, Guangdong Province 510080, China
| | - Haibin Wang
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, No. 466 Middle Xingang Road, Guangzhou, Guangdong Province 510317, China
| | - Shengkang Luo
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, No. 466 Middle Xingang Road, Guangzhou, Guangdong Province 510317, China
| |
Collapse
|
16
|
Peng Y, Guo M, Luo M, Lv D, Liao K, Luo S, Zhang B. Dapagliflozin ameliorates myocardial infarction injury through AMPKα-dependent regulation of oxidative stress and apoptosis. Heliyon 2024; 10:e29160. [PMID: 38617915 PMCID: PMC11015423 DOI: 10.1016/j.heliyon.2024.e29160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024] Open
Abstract
Dapagliflozin (DAPA) has been demonstrated to reduce cardiovascular mortality and heart failure hospitalization rates in diabetic patients. However, the mechanism underlying its cardio-protective effect in non-diabetic patients remains unclear. Our study aimed to explore the cardio-protective impact of DAPA on myocardial infarction in non-diabetic mice. We induced myocardial infarction in C57BL/6 mice by ligating the descending branch of the left coronary artery. After surgery, the animals were randomly treated with either saline or DAPA. We employed echocardiography, Western blot analysis, and tissue staining to assess post-infarction myocardial injury. Additionally, we investigated the mechanism of action through cell experiments. Compared to the myocardial infarction group, DAPA treatment significantly attenuated ventricular remodeling and improved cardiac function. By mitigating myocardial oxidative stress and apoptosis, DAPA may activate the AMPKα signaling pathway, thereby exerting a protective effect. These findings suggest that DAPA could serve as a novel therapeutic approach for patients with cardiac infarction.
Collapse
Affiliation(s)
- Yuce Peng
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Cardiovascular Disease Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Mingyu Guo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Cardiovascular Disease Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Minghao Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Cardiovascular Disease Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Dingyi Lv
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Cardiovascular Disease Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Ke Liao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Cardiovascular Disease Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Cardiovascular Disease Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Bingyu Zhang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Cardiology, Wuhu Hospital of East China Normal University, Wuhu, China
| |
Collapse
|
17
|
Baroi S, Czernik PJ, Khan MP, Letson J, Crowe E, Chougule A, Griffin PR, Rosen CJ, Lecka-Czernik B. PPARG in osteocytes controls cell bioenergetics and systemic energy metabolism independently of sclerostin levels in circulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588029. [PMID: 38645043 PMCID: PMC11030235 DOI: 10.1101/2024.04.04.588029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Objective The skeleton is one of the largest organs in the body, wherein metabolism is integrated with systemic energy metabolism. However, the bioenergetic programming of osteocytes, the most abundant bone cells coordinating bone metabolism, is not well defined. Here, using a mouse model with partial penetration of an osteocyte-specific PPARG deletion, we demonstrate that PPARG controls osteocyte bioenergetics and their contribution to systemic energy metabolism independently of circulating sclerostin levels. Methods In vivo and in vitro models of osteocyte-specific PPARG deletion, i.e. Dmp 1 Cre Pparγ flfl male and female mice (γOT KO ) and MLO-Y4 osteocyte-like cells with either siRNA-silenced or CRISPR/Cas9-edited Pparγ . As applicable, the models were analyzed for levels of energy metabolism, glucose metabolism, and metabolic profile of extramedullary adipose tissue, as well as the osteocyte transcriptome, mitochondrial function, bioenergetics, insulin signaling, and oxidative stress. Results Circulating sclerostin levels of γOT KO male and female mice were not different from control mice. Male γOT KO mice exhibited a high energy phenotype characterized by increased respiration, heat production, locomotion and food intake. This high energy phenotype in males did not correlate with "beiging" of peripheral adipose depots. However, both sexes showed a trend for reduced fat mass and apparent insulin resistance without changes in glucose tolerance, which correlated with decreased osteocytic responsiveness to insulin measured by AKT activation. The transcriptome of osteocytes isolated from γOT KO males suggested profound changes in cellular metabolism, fuel transport and usage, mitochondria dysfunction, insulin signaling and increased oxidative stress. In MLO-Y4 osteocytes, PPARG deficiency correlated with highly active mitochondria, increased ATP production, shifts in fuel utilization, and accumulation of reactive oxygen species (ROS). Conclusions PPARG in male osteocytes acts as a molecular break on mitochondrial function, and protection against oxidative stress and ROS accumulation. It also regulates osteocyte insulin signaling and fuel usage to produce energy. These data provide insight into the connection between osteocyte bioenergetics and their sex-specific contribution to the balance of systemic energy metabolism. These findings support the concept that the skeleton controls systemic energy expenditure via osteocyte metabolism. Highlights Osteocytes function as a body energostat via their bioenergeticsPPARG protein acts as a "molecular break" of osteocyte mitochondrial activityPPARG deficiency activates TCA cycle, oxidative stress and ROS accumulationPPARG controls osteocyte insulin signaling and fuel utilization.
Collapse
|
18
|
Li S, Cao C, Huang Z, Tang D, Chen J, Wang A, He Q. SOD2 confers anlotinib resistance via regulation of mitochondrial damage in OSCC. Oral Dis 2024; 30:281-291. [PMID: 36229195 DOI: 10.1111/odi.14404] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/22/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Previous studies had revealed that anlotinib had outstanding anti-tumor efficacy on oral squamous cell carcinoma. However, the underlying mechanism is still unclear. MATERIALS AND METHODS Anlotinib resistant OSCC cells were established and analyzed by RNA-sequencing. The correlations between SOD2 expression and anlotinib resistance were investigated in OSCC cells and PDX models. Functional assays were performed to verify the SOD2 expression and anlotinib resistance in OSCC cells. RESULTS Anlotinib resistant genes were enriched in the biological processes of mitochondrion organization and the gene pathway of reactive oxygen species. SOD2 expression level was positively correlated with the resistance of anlotinib in OSCC cells and PDX models. Higher SOD2 expression of OSCC cells was more resistant to anlotinib. Anlotinib induced ROS generation, apoptosis and mitochondrial damage in OSCC cells, which can be enhanced by SOD2 knockdown and decreased by SOD2 overexpression. Mitochondrial damage was identified as swelling and cristae disappearance morphology under TEM, decreased mitochondrial membrane potential and lower MFN2 expression. CONCLUSIONS SOD2 may be capable of protecting mitochondria by downregulating ROS generation, which contributes to the resistance of anlotinib in OSCC cells. SOD2 can be utilized as a potential therapeutic target to improve the anti-cancer efficacy of anlotinib in OSCC.
Collapse
Affiliation(s)
- Shuai Li
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning, China
| | - Congyuan Cao
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhexun Huang
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Dongxiao Tang
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Stomatology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jie Chen
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Anxun Wang
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qianting He
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
19
|
Chao CT, Kuo FC, Lin SH. Epigenetically regulated inflammation in vascular senescence and renal progression of chronic kidney disease. Semin Cell Dev Biol 2024; 154:305-315. [PMID: 36241561 DOI: 10.1016/j.semcdb.2022.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Chronic kidney disease (CKD) and its complications, including vascular senescence and progressive renal fibrosis, are associated with inflammation. Vascular senescence, in particular, has emerged as an instrumental mediator of vascular inflammation that potentially worsens renal function. Epigenetically regulated inflammation involving histone modification, DNA methylation, actions of microRNAs and other non-coding RNAs, and their reciprocal reactions during vascular senescence and inflammaging are underappreciated. Their synergistic effects can contribute to CKD progression. Vascular senotherapeutics or pharmacological anti-senescent therapies based on epigenetic machineries can therefore be plausible options for ameliorating vascular aging and even halting the worsening of renal fibrosis. These include histone deacetylase modulators, histone methyltransferase modulators, other histone modification effectors, DNA methyltransferase inhibitors, telomerase reverse transcriptase enhancers, microRNA mimic delivery, and small molecules with microRNA-regulating potentials. Some of these molecules have already been tested and have shown anecdotal evidence for treating uremic vasculopathy and renal fibrosis, supporting the feasibility of this approach.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Nephrology division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Nephrology division, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Feng-Chih Kuo
- Division of Endocrinology, Department of Internal Medicine, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hua Lin
- Nephrology division, Department of Internal Medicine, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
20
|
Mogck BA, Jezak ST, Wiley CD. Mitochondria-Targeted Catalase Does Not Suppress Development of Cellular Senescence during Aging. Biomedicines 2024; 12:414. [PMID: 38398016 PMCID: PMC10886841 DOI: 10.3390/biomedicines12020414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Cellular senescence is a complex stress response marked by stable proliferative arrest and the secretion of biologically active molecules collectively known as the senescence-associated secretory phenotype (SASP). Mitochondria-derived reactive oxygen species (ROS) have been implicated in aging and age-related processes, including senescence. Stressors that increase ROS levels promote both senescence and the SASP, while reducing mitochondrial ROS or mitochondria themselves can prevent senescence or the SASP. Mitochondrially targeted catalase (mCAT), a transgene that reduces mitochondrial levels of ROS, has been shown to extend the lifespan of murine models and protect against the age-related loss of mitochondrial function. However, it remains unclear whether mCAT can prevent senescence or the SASP. In this study, we investigated the impact of mCAT on senescence in cultured cells and aged mice in order to discover if the lifespan-extending activity of mCAT might be due to the reduction in senescent cells or the SASP. Contrary to expectations, we observed that mCAT does not reduce markers of senescence or the SASP in cultured cells. Moreover, mCAT does not prevent the accumulation of senescent cells or the development of the SASP in adipose tissue from aged mice. These results suggest that mitochondrial ROS may not always play a causal role in the development of senescence during natural aging and underscore the need for a nuanced understanding of the intricate relationship between mitochondrial ROS and cellular senescence.
Collapse
Affiliation(s)
- Bronwyn A. Mogck
- Jean Mayer USDA Human Nutrition Research on Aging, Tufts University, Boston, MA 02111, USA
- SENS Research Foundation, Mountain View, CA 94041, USA
| | - Samantha T. Jezak
- Jean Mayer USDA Human Nutrition Research on Aging, Tufts University, Boston, MA 02111, USA
- Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA 02111, USA
| | - Christopher D. Wiley
- Jean Mayer USDA Human Nutrition Research on Aging, Tufts University, Boston, MA 02111, USA
- Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA 02111, USA
- Department of Medicine, School of Medicine, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
21
|
Bu LL, Yuan HH, Xie LL, Guo MH, Liao DF, Zheng XL. New Dawn for Atherosclerosis: Vascular Endothelial Cell Senescence and Death. Int J Mol Sci 2023; 24:15160. [PMID: 37894840 PMCID: PMC10606899 DOI: 10.3390/ijms242015160] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Endothelial cells (ECs) form the inner linings of blood vessels, and are directly exposed to endogenous hazard signals and metabolites in the circulatory system. The senescence and death of ECs are not only adverse outcomes, but also causal contributors to endothelial dysfunction, an early risk marker of atherosclerosis. The pathophysiological process of EC senescence involves both structural and functional changes and has been linked to various factors, including oxidative stress, dysregulated cell cycle, hyperuricemia, vascular inflammation, and aberrant metabolite sensing and signaling. Multiple forms of EC death have been documented in atherosclerosis, including autophagic cell death, apoptosis, pyroptosis, NETosis, necroptosis, and ferroptosis. Despite this, the molecular mechanisms underlying EC senescence or death in atherogenesis are not fully understood. To provide a comprehensive update on the subject, this review examines the historic and latest findings on the molecular mechanisms and functional alterations associated with EC senescence and death in different stages of atherosclerosis.
Collapse
Affiliation(s)
- Lan-Lan Bu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Huan-Huan Yuan
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Ling-Li Xie
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Min-Hua Guo
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Duan-Fang Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
22
|
Demirdağ F, Yavuzer S, Cengiz M, Yavuzer H, Kara Z, Ayvacı A, Avcı S, Yürüyen M, Uzun H, Altıparmak MR, Döventaş A, Erdinçler DS. The Role of NF-κB, PPAR-α, and PPAR-γ in Older Adults with Metabolic Syndrome. Horm Metab Res 2023; 55:733-740. [PMID: 37308136 DOI: 10.1055/a-2109-1958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The etiopathogenesis of metabolic syndrome (MetS) has not been fully understood yet, and chronic low-grade inflammation is thought to be associated with the development of complications related to MetS. We aimed to investigate the role of Nuclear factor Kappa B ( NF-κB ), Peroxisome Proliferator-Activated Receptor- α and γ (PPAR-α, and PPAR-γ) which are the main markers of inflammation in older adults with MetS. A total of 269 patients aged≥18, 188 patients with MetS who met the diagnostic criteria of the International Diabetes Federation, and 81 controls who applied to geriatrics and general internal medicine outpatient clinics for various reasons were included in the study. Patients were separated into four groups: young with MetS (< 60, n=76), elderly with MetS (≥60, n=96), young control (< 60, n=31), elderly controls (≥60, n=38). Carotid intima-media thickness (CIMT) and NF-κB , PPAR-α, and PPAR-γ plasma levels were measured in all of the participants. Age and sex distribution were similar between MetS and control groups. C-reactive protein (CRP), NF-κB levels (p=0.001) and CIMT (p<0,001) of MetS group were significantly higher than in the control groups. On the other hand, the PPAR-γ (p=0.008) and PPAR-α (p=0.003) levels were significantly lower in MetS. ROC analysis revealed that the NF-κB, PPAR-α, and PPAR-γ could be used to indicate MetS in younger adults (AUC: 0.735, p<0.000; AUC: 0.653, p=0.003), whereas it could not be an indicator in older adults (AUC: 0.617, p=0.079; AUC:0.530, p=0.613). It seems that these markers have important roles in MetS-related inflammation. In our results, suggest that the indicator feature of NF-κB , PPAR-α and PPAR-γ in recognizing MetS in young individuals is lost in older adults with Mets.
Collapse
Affiliation(s)
- Filiz Demirdağ
- Division of Geriatrics, Department of Internal Medicine, Istanbul University-Cerrahpasa, School of Medicine, Istanbul, Turkey
- Division of Geriatrics, Department of Internal Medicine, Istanbul Medeniyet University, School of Medicine Istanbul, Turkey
| | - Serap Yavuzer
- Department of Internal Medicine, Istanbul University-Cerrahpasa, School of Medicine, Istanbul, Turkey
| | - Mahir Cengiz
- Department of Internal Medicine, Istanbul University-Cerrahpasa, School of Medicine, Istanbul, Turkey
| | - Hakan Yavuzer
- Division of Geriatrics, Department of Internal Medicine, Istanbul University-Cerrahpasa, School of Medicine, Istanbul, Turkey
| | - Zehra Kara
- Division of Endocrinology, Department of Internal Medicine, Istanbul University-Cerrahpasa, School of Medicine, Istanbul, Turkey
| | - Adnan Ayvacı
- Department of Radiology, Istanbul University-Cerrahpasa, School of Medicine, Istanbul, Turkey
| | - Suna Avcı
- Division of Geriatrics, Department of Internal Medicine, Istanbul University-Cerrahpasa, School of Medicine, Istanbul, Turkey
| | - Mehmet Yürüyen
- Division of Geriatrics, Department of Internal Medicine, Istanbul University-Cerrahpasa, School of Medicine, Istanbul, Turkey
| | - Hafize Uzun
- Department of Biochemistry, Istanbul Atlas University, School of Medicine, Istanbul, Turkey
| | - Mehmet Rıza Altıparmak
- Division of Nephrology, Department of Internal Medicine, Istanbul University-Cerrahpasa, School of Medicine, Istanbul, Turkey
| | - Alper Döventaş
- Division of Geriatrics, Department of Internal Medicine, Istanbul University-Cerrahpasa, School of Medicine, Istanbul, Turkey
| | - Deniz Suna Erdinçler
- Division of Geriatrics, Department of Internal Medicine, Istanbul University-Cerrahpasa, School of Medicine, Istanbul, Turkey
| |
Collapse
|
23
|
Zang Z, Wu X, Ma D, Xia X, He X, Chen X, Li Z. The Association between Serum Chemerin and Peritoneal Membrane Transport Function in Patients Undergoing Incident Peritoneal Dialysis: A Prospective Cohort Study. Blood Purif 2023; 52:676-685. [PMID: 37321196 DOI: 10.1159/000530773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/17/2023] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Some biomarkers in drained dialyzate or peritoneal membrane have been found related to the dialyzate/plasma ratio of creatinine at 4 h (D/P Cr) in patients undergoing peritoneal dialysis (PD). But so far, there is no report on serum markers. Some biomarkers are associated with cardiovascular diseases (CVDs). Chemerin is a multifunctional chemoattractant adipokine which plays important roles in inflammation, adipogenesis, and metabolism. We intended to investigate the role of chemerin in the peritoneal membrane transport function and CVDs in incident PD patients. METHODS This prospective cohort study was conducted in our PD center. The patients underwent initial standardized peritoneal equilibration test after PD for 4-6 weeks. Level of serum chemerin was determined via enzyme-linked immunosorbent assay. The patients' CVDs were recorded during the follow-up period. RESULTS 151 eligible patients with a mean age of 46.59 ± 13.52 years were enrolled, and the median duration of PD was 25.0 months. The median concentration of serum chemerin was 29.09 ng/mL. Baseline D/P Cr was positively correlated with serum chemerin (r = 0.244, p = 0.003). The multivariate analyses revealed that serum chemerin (p = 0.002), age (p = 0.041), albumin (p = 0.000), and high-density lipoprotein (p = 0.022) were independent factors of D/P Cr. The serum chemerin level was significantly higher in diabetes mellitus (DM) patients than that of patients without DM (36.45 ng/mL vs. 27.37 ng/mL, p = 0.000), and there was a significant statistical difference in CVDs between the high chemerin group (≥29.09 ng/mL) and low chemerin group (<29.09 ng/mL) (42 vs. 21%, p = 0.009). CONCLUSIONS Serum chemerin has a positive correlation with baseline D/P Cr in incident PD patients. It may be a biomarker that can predict the baseline transport function of the peritoneal membrane, and serum chemerin may be a risk factor of CVDs for incident PD patients. Multicenter studies with a larger sample size are warranted in the future.
Collapse
Affiliation(s)
- Zhiyun Zang
- Department of Nephrology, Institute of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - XiaoFang Wu
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dengyan Ma
- Department of Nephrology, Institute of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoxiao Xia
- Department of Nephrology, Institute of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Xueqin He
- Department of Nephrology, Institute of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaolei Chen
- Department of Nephrology, Institute of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Zi Li
- Department of Nephrology, Institute of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Xie Y, Deng Q, Guo M, Li X, Xian D, Zhong J. Proanthocyanidins: A novel approach to Henoch‑Schonlein purpura through balancing immunity and arresting oxidative stress via TLR4/MyD88/NF‑κB signaling pathway (Review). Exp Ther Med 2023; 25:300. [PMID: 37229322 PMCID: PMC10203752 DOI: 10.3892/etm.2023.11999] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 04/04/2023] [Indexed: 05/27/2023] Open
Abstract
Henoch-Schonlein purpura (HSP), a recurrent and immunoglobulin (Ig)A-mediated vasculitis, presents not only as skin lesions but also as systemic involvement that can be life-threatening. Although the etiology of HSP remains unknown, immune imbalance and oxidative stress (OS) are primary contributors to its pathogenesis, alongside the abnormal activation of Toll-like receptor (TLR)/myeloid differentiation primary response gene 88 (MyD88)/nuclear factor-κB (NF-κB) pathway. TLRs, especially TLR4, stimulate downstream signaling molecules such as NF-κB and proinflammatory cytokines, which are released when TLRs combine with the key adapter molecule MyD88. This leads to the activation of T helper (Th) cell 2/Th17 and overproduction of reactive oxygen species (ROS). The function of regulatory T (Treg) cells is suppressed in the process. Th17/Treg imbalance then produces various inflammatory cytokines to promote proliferation and differentiation of B cells and the secretion of antibodies. IgA is secreted, and it binds to vascular endothelial surface receptors where the complex induces injury of the vascular endothelial cells. Additionally, excessive ROS creates OS that leads to an inflammatory response and vascular cell apoptosis or necrosis, thereby contributing to vascular endothelial damage and HSP occurrence. Proanthocyanidins are active compounds naturally enriched in fruits, vegetables and plants. Proanthocyanidins have diverse properties, including anti-inflammatory, antioxidant, antibacterial, immunoregulatory, anticarcinogenic and vascular protective effects. Proanthocyanidins are used in the management of various diseases. Proanthocyanidins regulate T cells, equilibrate immunity and arrest OS by inhibiting the TLR4/MyD88/NF-κB signaling pathway. Considering the pathogenesis of HSP and the properties of proanthocyanidins, the present study hypothesized that these compounds may potentially lead to HSP recovery through modulating the immune equilibrium and preventing OS by inhibiting the TLR4/MyD88/NF-κB pathway. To the best of our knowledge, however, little is known about the positive effects of proanthocyanidins against HSP. The present review summarizes the potential of proanthocyanidins to treat HSP.
Collapse
Affiliation(s)
- Yuxin Xie
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qiyan Deng
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Menglu Guo
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaolong Li
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Deihai Xian
- Department of Neurobiology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jianqiao Zhong
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
25
|
Teng S, Zhu Z, Wu C, He Y, Zhou S. Inflachromene inhibits intimal hyperplasia through the HMGB1/2- regulated TLR4-NF-κB pathway. Int Immunopharmacol 2023; 119:110198. [PMID: 37087872 DOI: 10.1016/j.intimp.2023.110198] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
The contractile-syntheticphenotypicconversion of vascular smooth muscle cells (VSMCs) plays a key role in atherosclerosis, vascular restenosis, and hypertension. Our previous study explored the correlation between high mobility group box protein (HMGB) 1 and HMGB2 and neointimal hyperplasia after vascular injury. In the present study, we explore whether inflachromene (ICM), a novel inhibitor of the expression of both HMGB1 and HMGB2, modulates phenotypic changes in VSMCs and the mechanisms involved. Mice treated with ICM after carotid artery wire injury showed a decrease in excessive neointimal hyperplasia compared with that in the vehicle groups. In cultured VSMCs, pretreatment with ICM suppressed the angiotensin II (Ang II)-induced phenotypic conversion, proliferation, and migration. We discovered that ICM reduced the Ang II-induced upregulation of the expression of HMGB1 and HMGB2 and inhibited their shuttling between the nucleus and the cytosol. Mechanistically, Ang II-treated VSMCs exhibited higher levels of Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) phosphorylation, which were attenuated by ICM. In addition, the NF-κB inhibitor Bay-117082 abolished the recombinant HMGB1-mediated VSMC phenotypic conversion, proliferation, and migration. Furthermore, ICM ameliorated the Ang II-induced increases in NAD[P]H oxidase expression, thereby attenuating the Ang II-induced proliferation and migration. These results reveal that ICM pretreatment attenuates Ang II-induced VSMC dedifferentiation, proliferation, and migration may by regulating the TLR4-NF-kB pathway. Thus, ICM is a potential therapy and preventive treatment for vascular proliferative diseases.
Collapse
Affiliation(s)
- Shuai Teng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaowei Zhu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chenkai Wu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuhu He
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
26
|
Dhakal B, Shiwakoti S, Park EY, Kang KW, Schini-Kerth VB, Park SH, Ji HY, Park JS, Ko JY, Oak MH. SGLT2 inhibition ameliorates nano plastics-induced premature endothelial senescence and dysfunction. Sci Rep 2023; 13:6256. [PMID: 37069192 PMCID: PMC10110533 DOI: 10.1038/s41598-023-33086-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023] Open
Abstract
Nano plastics (NPs) have been a significant threat to human health and are known to cause premature endothelial senescence. Endothelial senescence is considered one of the primary risk factors contributing to numerous cardiovascular disorders. Recent studies have suggested that inhibition of sodium glucose co-transporter (SGLT2) ameliorates endothelial senescence and dysfunction. Therefore, our study intends to explore the role of SGLT2 in NPs-induced endothelial senescence and dysfunction. Porcine coronary artery and its endothelial cells were treated with NPs in the presence or absence of Enavogliflozin (ENA), a SGLT2 inhibitor and then SGLTs expression, senescence markers and vascular function were evaluated. NPs significantly up-regulated SGLT2 and ENA significantly decreased NPs-induced senescence-associated-β-gal activity, cell-cycle arrest, and senescence markers p53 and p21 suggesting that inhibition of SGLT2 prevents NPs-induced endothelial senescence. In addition, ENA decreased the formation of reactive oxygen species with the downregulation of Nox2, and p22phox. Furthermore, SGLT2 inhibition also up regulated the endothelial nitric oxide synthase expression along with improving vascular function. In conclusion, premature endothelial senescence by NPs is, at least in part, associated with SGLT2 and it could be a potential therapeutic target for preventing and/or treating environmental pollutants-induced cardiovascular disorders mediated by endothelial senescence and dysfunction.
Collapse
Affiliation(s)
- Bikalpa Dhakal
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-Myeonn, Muan-Gun, Jeonnam, 58554, Republic of Korea
| | - Saugat Shiwakoti
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-Myeonn, Muan-Gun, Jeonnam, 58554, Republic of Korea
| | - Eun-Young Park
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-Myeonn, Muan-Gun, Jeonnam, 58554, Republic of Korea
| | - Ki-Woon Kang
- Division of Cardiology, College of Medicine, Heart Reasearch Institute and Biomedical Research Institute, Chung-Ang University Hospital, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Valérie B Schini-Kerth
- Regenerative Nanomedicine, Faculty of Pharmacy, UMR 1260 INSERM (French National Institute of Health and Medical Research), University of Strasbourg, 67000, Strasbourg, France
| | - Sun-Hwa Park
- Life Science Institute, Daewoong Pharmaceutical, Yongin, Gyeonggido, 17028, Republic of Korea
| | - Hye-Young Ji
- Life Science Institute, Daewoong Pharmaceutical, Yongin, Gyeonggido, 17028, Republic of Korea
| | - Joon Seok Park
- Life Science Institute, Daewoong Pharmaceutical, Yongin, Gyeonggido, 17028, Republic of Korea
| | - Ju-Young Ko
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-Myeonn, Muan-Gun, Jeonnam, 58554, Republic of Korea.
| | - Min-Ho Oak
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-Myeonn, Muan-Gun, Jeonnam, 58554, Republic of Korea.
| |
Collapse
|
27
|
Yang M, Zhang M, Li Z, Liu J, Li Y, Yang Z, Wang X, Huang X, Yu B, Hou J, Liu Q. A landscape of Long non-coding RNAs reveals the leading transcriptome alterations in murine aorta during aging. Genomics 2023; 115:110573. [PMID: 36746218 DOI: 10.1016/j.ygeno.2023.110573] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/23/2022] [Accepted: 02/02/2023] [Indexed: 02/06/2023]
Abstract
Considerable studies have given convincing evidence of a forefront position for vascular aging in preventing cardiovascular disease. Various functions of Long non-coding RNAs (lncRNAs) are becoming increasingly distinct in aging-related diseases. This study aims at a better insight into the expression profile and mechanisms of lncRNAs in vascular senescence. High-throughput sequencing was used to detect the differential expression (DE) of lncRNAs and mRNAs in the aorta of 96 W and 8 W-old mice, while 1423 lncRNAs and 80 mRNAs were differentially expressed. By performing GO and KEGG enrichment analysis, we found that DE lncRNAs were mainly involved in purine metabolism and cGMP-PKG signaling pathways. In addition, a co-expression functional network of DE lncRNAs and DE mRNAs was constructed, and ENSMUST00000218874 could interact with 41 DE mRNAs, suggesting that it may play an essential role in vascular senescence. This study reveals DE lncRNAs in naturally aging vascular, which may provide new ideas and targets for aging-related cardiovascular diseases.
Collapse
Affiliation(s)
- Mengyue Yang
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, Heilongjiang 150086, China; Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Meng Zhang
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, Heilongjiang 150086, China; Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Zhaoying Li
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, Heilongjiang 150086, China; Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jingbao Liu
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, Heilongjiang 150086, China; Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Yanchao Li
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, Heilongjiang 150086, China; Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Ziyu Yang
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, Heilongjiang 150086, China; Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xuedong Wang
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, Heilongjiang 150086, China; Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xingtao Huang
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, Heilongjiang 150086, China; Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Bo Yu
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, Heilongjiang 150086, China; Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jingbo Hou
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, Heilongjiang 150086, China; Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China.
| | - Qi Liu
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, Heilongjiang 150086, China; Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
28
|
Wang Y, Mao X, Shi S, Xu X, Lv J, Zhang B, Wu H, Song Q. SGLT2 inhibitors in the treatment of type 2 cardiorenal syndrome: Focus on renal tubules. FRONTIERS IN NEPHROLOGY 2023; 2:1109321. [PMID: 37674989 PMCID: PMC10479647 DOI: 10.3389/fneph.2022.1109321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/22/2022] [Indexed: 09/08/2023]
Abstract
The pathogenesis of type 2 cardiorenal syndrome (CRS) is mostly associated with reduced cardiac output, increased central venous pressure (CVP), activation of the renin-angiotensin-aldosterone system (RAAS), inflammation, and oxidative stress. As a drug to treat diabetes, sodium-glucose transporter 2 inhibitor (SGLT2i) has been gradually found to have a protective effect on the heart and kidney and has a certain therapeutic effect on CRS. In the process of chronic heart failure (CHF) leading to chronic renal insufficiency, the renal tubular system, as the main functional part of the kidney, is the first to be damaged, but this damage can be reversed. In this review, we focus on the protective mechanisms of SGLT2i targeting renal tubular in the treatment of CRS, including natriuresis and diuresis to relieve renal congestion, attenuate renal tubular fibrosis, improve energy metabolism of renal tubular, and slow tubular inflammation and oxidative stress. This may have beneficial effects on the treatment of CRS and is a direction for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingqiao Song
- Guang ‘anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
29
|
Yi W, Chen F, Zhang H, Tang P, Yuan M, Wen J, Wang S, Cai Z. Role of angiotensin II in aging. Front Aging Neurosci 2022; 14:1002138. [PMID: 36533172 PMCID: PMC9755866 DOI: 10.3389/fnagi.2022.1002138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/08/2022] [Indexed: 10/29/2023] Open
Abstract
Aging is an inevitable progressive decline in physiological organ function that increases the chance of disease and death. The renin-angiotensin system (RAS) is involved in the regulation of vasoconstriction, fluid homeostasis, cell growth, fibrosis, inflammation, and oxidative stress. In recent years, unprecedented advancement has been made in the RAS study, particularly with the observation that angiotensin II (Ang II), the central product of the RAS, plays a significant role in aging and chronic disease burden with aging. Binding to its receptors (Ang II type 1 receptor - AT1R in particular), Ang II acts as a mediator in the aging process by increasing free radical production and, consequently, mitochondrial dysfunction and telomere attrition. In this review, we examine the physiological function of the RAS and reactive oxygen species (ROS) sources in detail, highlighting how Ang II amplifies or drives mitochondrial dysfunction and telomere attrition underlying each hallmark of aging and contributes to the development of aging and age-linked diseases. Accordingly, the Ang II/AT1R pathway opens a new preventive and therapeutic direction for delaying aging and reducing the incidence of age-related diseases in the future.
Collapse
Affiliation(s)
- Wenmin Yi
- Department of Neurology, Chongqing Medical University, Chongqing, China
- Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- Department of Neurology, Chongqing General Hospital, Chongqing, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Fei Chen
- Department of Neurology, Chongqing Medical University, Chongqing, China
- Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- Department of Neurology, Chongqing General Hospital, Chongqing, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Huiji Zhang
- Department of Neurology, Chongqing Medical University, Chongqing, China
- Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- Department of Neurology, Chongqing General Hospital, Chongqing, China
| | - Peng Tang
- Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
| | - Minghao Yuan
- Department of Neurology, Chongqing Medical University, Chongqing, China
- Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- Department of Neurology, Chongqing General Hospital, Chongqing, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Jie Wen
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
- Department and Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Shengyuan Wang
- Department of Neurology, Chongqing Medical University, Chongqing, China
- Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- Department of Neurology, Chongqing General Hospital, Chongqing, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Zhiyou Cai
- Department of Neurology, Chongqing Medical University, Chongqing, China
- Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- Department of Neurology, Chongqing General Hospital, Chongqing, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| |
Collapse
|
30
|
Li YJ, Jin X, Li D, Lu J, Zhang XN, Yang SJ, Zhao YX, Wu M. New insights into vascular aging: Emerging role of mitochondria function. Biomed Pharmacother 2022; 156:113954. [DOI: 10.1016/j.biopha.2022.113954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
|
31
|
Maudsley S, Walter D, Schrauwen C, Van Loon N, Harputluoğlu İ, Lenaerts J, McDonald P. Intersection of the Orphan G Protein-Coupled Receptor, GPR19, with the Aging Process. Int J Mol Sci 2022; 23:ijms232113598. [PMID: 36362387 PMCID: PMC9653598 DOI: 10.3390/ijms232113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent one of the most functionally diverse classes of transmembrane proteins. GPCRs and their associated signaling systems have been linked to nearly every physiological process. They also constitute nearly 40% of the current pharmacopeia as direct targets of remedial therapies. Hence, their place as a functional nexus in the interface between physiological and pathophysiological processes suggests that GPCRs may play a central role in the generation of nearly all types of human disease. Perhaps one mechanism through which GPCRs can mediate this pivotal function is through the control of the molecular aging process. It is now appreciated that, indeed, many human disorders/diseases are induced by GPCR signaling processes linked to pathological aging. Here we discuss one such novel member of the GPCR family, GPR19, that may represent an important new target for novel remedial strategies for the aging process. The molecular signaling pathways (metabolic control, circadian rhythm regulation and stress responsiveness) associated with this recently characterized receptor suggest an important role in aging-related disease etiology.
Collapse
Affiliation(s)
- Stuart Maudsley
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
- Correspondence:
| | - Deborah Walter
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Claudia Schrauwen
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Nore Van Loon
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - İrem Harputluoğlu
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Julia Lenaerts
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | | |
Collapse
|
32
|
Oltipraz, the activator of nuclear factor erythroid 2-related factor 2 (Nrf2), protects against the formation of BAPN-induced aneurysms and dissection of the thoracic aorta in mice by inhibiting activation of the ROS-mediated NLRP3 inflammasome. Eur J Pharmacol 2022; 936:175361. [DOI: 10.1016/j.ejphar.2022.175361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/16/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
33
|
Li M, Ren C. Exploring the protective mechanism of baicalin in treatment of atherosclerosis using endothelial cells deregulation model and network pharmacology. BMC Complement Med Ther 2022; 22:257. [PMID: 36192741 PMCID: PMC9527735 DOI: 10.1186/s12906-022-03738-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
Background Baicalin is a generally available flavonoid with potent biological activity. The present study aimed to assess the underlying mechanism of baicalin in treatment of atherosclerosis (AS) with the help of network pharmacology, molecular docking and experimental validation. Methods The target genes of baicalin and AS were identified from public databases, and the overlapping results were considered to be baicalin-AS targets. Core target genes of baicalin were obtained through the PPI network and validated by a clinical microarray dataset (GSE132651). Human aortic endothelial cells (HAECs) were treated with Lipopolysaccharide (LPS) to construct an endothelial injury model. The expression of NOX4 was examined by real-time qPCR and western blot. Flow cytometry was used to detect intracellular levels of reactive oxygen species (ROS). Furthermore, HAECs were transfected with NOX4-specific siRNA and then co-stimulated with baicalin and LPS to investigate whether NOX4 was involved in the anti-oxidative stress effects of baicalin. Results In this study, baicalin had 45 biological targets against AS. Functional enrichment analysis demonstrated that most targets were involved in oxidative stress. Using the CytoHubba plug-in, we obtained the top 10 genes in the PPI network ranked by the EPC algorithm. Molecular docking and microarray dataset validation indicated that NOX4 may be an essential target of baicalin, and its expression was significantly suppressed in AS samples compared to controls. In endothelial injury model, intervention of HAECs with baicalin increased the expression levels of NOX4 and NOS3 (eNOS), and decreased LPS-induced ROS generation. After inhibition of NOX4, the anti-ROS-generating effect of baicalin was abolished. Conclusion Collectively, we combined network pharmacology and endothelial injury models to investigate the anti-AS mechanism of baicalin. The results demonstrate that baicalin may exert anti-oxidative stress effects by targeting NOX4, providing new mechanisms and insights to baicalin for the treatment of AS. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03738-3.
Collapse
Affiliation(s)
- Mingshuang Li
- grid.452858.6Taizhou Hospital, Shanghai University of Traditional Chinese Medicine, Taizhou, Zhejiang China ,grid.452858.6Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang China
| | - Conglin Ren
- grid.452858.6Taizhou Hospital, Shanghai University of Traditional Chinese Medicine, Taizhou, Zhejiang China ,grid.452858.6Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang China
| |
Collapse
|
34
|
Liu L, Yang X, Liao Y, Wang C, Wang Y. Resveratrol alleviates Ang II-induced vascular smooth muscle cell senescence by upregulating E2F1/SOD2 axis. Toxicol Res (Camb) 2022; 11:831-840. [PMID: 36337239 PMCID: PMC9618109 DOI: 10.1093/toxres/tfac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/06/2022] [Accepted: 07/15/2022] [Indexed: 09/05/2023] Open
Abstract
Background Vascular smooth muscle cells (VSMCs) senescence is a crucial factor relevant to accelerate cardiovascular diseases. Resveratrol (RES) has been reported that could obstruct vascular senescence. However, the detailed molecular mechanisms of RES in VSMCs senescence are still indistinct and deserve further investigations. Methods and Results In this study, VSMCs were treated with 100 nM angiotensin II (Ang II) for 3 days and then followed with a range of different concentrations of RES (0.5, 5, 15, 25, 35, 50 μM), and 25 μM of RES was chose for following experiments. We found that the E2F1 and SOD2 expressions were reduced in Ang II-induced VSMCs. RES treatment impeded Ang II-induced oxidative stress and mitochondrial dysfunction through elevating E2F1 and SOD2 expression, thereby alleviating VSMCs senescence. Additionally, E2F1 knockdown reversed the protective effects of RES on VSMCs senescence caused by Ang II administration. Ch-IP assay and dual luciferase reporter gene assay validated that E2F1 could bind to the promoter region of SOD2. Furthermore, E2F1 or SOD2 overexpression blocked Ang II-induced on VSMCs senescence. Conclusion In conclusion, RES mitigated Ang II-induced VSMCs senescence by suppressing oxidative stress and mitochondrial dysfunction through activating E2F1/SOD2 axis. Our study disclosed that RES might be a potential drug and the axis of its regulatory mechanism might be therapeutic targets for postponing vascular senescence.
Collapse
Affiliation(s)
- Lei Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410125, China
- Hunan Economic & Trade Senior Technical School, Xiangtan, Hunan 410004, China
| | - Xiuhua Yang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410125, China
- Hunan Economic & Trade Senior Technical School, Xiangtan, Hunan 410004, China
| | - Yiyang Liao
- Hunan Economic & Trade Senior Technical School, Xiangtan, Hunan 410004, China
| | - Chuanhua Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410125, China
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410125, China
| |
Collapse
|
35
|
Higashi Y. Roles of Oxidative Stress and Inflammation in Vascular Endothelial Dysfunction-Related Disease. Antioxidants (Basel) 2022; 11:antiox11101958. [PMID: 36290681 PMCID: PMC9598825 DOI: 10.3390/antiox11101958] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Oxidative stress and chronic inflammation play an important role in the pathogenesis of atherosclerosis. Atherosclerosis develops as the first step of vascular endothelial dysfunction induced by complex molecular mechanisms. Vascular endothelial dysfunction leads to oxidative stress and inflammation of vessel walls, which in turn enhances vascular endothelial dysfunction. Vascular endothelial dysfunction and vascular wall oxidative stress and chronic inflammation make a vicious cycle that leads to the development of atherosclerosis. Simultaneously capturing and accurately evaluating the association of vascular endothelial function with oxidative stress and inflammation would be useful for elucidating the pathophysiology of atherosclerosis, determining treatment efficacy, and predicting future cardiovascular complications. Intervention in both areas is expected to inhibit the progression of atherosclerosis and prevent cardiovascular complications.
Collapse
Affiliation(s)
- Yukihito Higashi
- Department of Regenerative Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 743-8551, Japan; ; Tel.: +81-82-257-5831
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima 734-8553, Japan
| |
Collapse
|
36
|
Al-Dabet MM, Shahzad K, Elwakiel A, Sulaj A, Kopf S, Bock F, Gadi I, Zimmermann S, Rana R, Krishnan S, Gupta D, Manoharan J, Fatima S, Nazir S, Schwab C, Baber R, Scholz M, Geffers R, Mertens PR, Nawroth PP, Griffin JH, Keller M, Dockendorff C, Kohli S, Isermann B. Reversal of the renal hyperglycemic memory in diabetic kidney disease by targeting sustained tubular p21 expression. Nat Commun 2022; 13:5062. [PMID: 36030260 PMCID: PMC9420151 DOI: 10.1038/s41467-022-32477-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 07/29/2022] [Indexed: 02/07/2023] Open
Abstract
A major obstacle in diabetes is the metabolic or hyperglycemic memory, which lacks specific therapies. Here we show that glucose-mediated changes in gene expression largely persist in diabetic kidney disease (DKD) despite reversing hyperglycemia. The senescence-associated cyclin-dependent kinase inhibitor p21 (Cdkn1a) was the top hit among genes persistently induced by hyperglycemia and was associated with induction of the p53-p21 pathway. Persistent p21 induction was confirmed in various animal models, human samples and in vitro models. Tubular and urinary p21-levels were associated with DKD severity and remained elevated despite improved blood glucose levels in humans. Mechanistically, sustained tubular p21 expression in DKD is linked to demethylation of its promoter and reduced DNMT1 expression. Two disease resolving agents, protease activated protein C (3K3A-aPC) and parmodulin-2, reversed sustained tubular p21 expression, tubular senescence, and DKD. Thus, p21-dependent tubular senescence is a pathway contributing to the hyperglycemic memory, which can be therapeutically targeted. Persistent diabetic complications despite controlled blood glucose levels, known as hyperglycemic memory, remain a poorly understood phenomenon in diabetic kidney disease. Here the authors identify senescence-associated gene p21 as a regulator of hyperglycemic memory, the suppression of which improves hyperglycemic memory and renal function.
Collapse
Affiliation(s)
- Moh'd Mohanad Al-Dabet
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany.,Department of Medical Laboratories, Faculty of Health Sciences, American University of Madaba (AUM), Amman, Jordan
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany.,Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Alba Sulaj
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - Stefan Kopf
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - Fabian Bock
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ihsan Gadi
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Shruthi Krishnan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Jayakumar Manoharan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Sumra Nazir
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Constantin Schwab
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Ronny Baber
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany.,Leipzig Medical Biobank, Leipzig University, Leipzig, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, Leipzig, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peter Rene Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter P Nawroth
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Maria Keller
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.,Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | | | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany.
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany.
| |
Collapse
|
37
|
The Combination of Niacinamide, Vitamin C, and PDRN Mitigates Melanogenesis by Modulating Nicotinamide Nucleotide Transhydrogenase. Molecules 2022; 27:molecules27154923. [PMID: 35956878 PMCID: PMC9370691 DOI: 10.3390/molecules27154923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022] Open
Abstract
Nicotinamide nucleotide transhydrogenase (NNT) is involved in decreasing melanogenesis through tyrosinase degradation induced by cellular redox changes. Nicotinamide is a component of coenzymes, such as NAD+, NADH, NADP+, and NADPH, and its levels are modulated by NNT. Vitamin C and polydeoxyribonucleotide (PDRN) are also known to decrease skin pigmentation. We evaluated whether a mixture of nicotinamide, vitamin C, and PDRN (NVP-mix) decreased melanogenesis by modulating mitochondrial oxidative stress and NNT expression in UV-B-irradiated animals and in an in vitro model of melanocytes treated with conditioned media (CM) from UV-B-irradiated keratinocytes. The expression of NNT, GSH/GSSG, and NADPH/NADP+ in UV-B-irradiated animal skin was significantly decreased by UV-B radiation but increased by NVP-mix treatment. The expression of NNT, GSH/GSSG, and NADPH/NADP+ ratios decreased in melanocytes after CM treatment, although they increased after NVP-mix administration. In NNT-silenced melanocytes, the GSH/GSSG and NADPH/NADP+ ratios were further decreased by CM compared with normal melanocytes. NVP-mix decreased melanogenesis signals, such as MC1R, MITF, TYRP1, and TYRP2, and decreased melanosome transfer-related signals, such as RAB32 and RAB27A, in UV-B-irradiated animal skin. NVP-mix also decreased MC1R, MITF, TYRP1, TYRP2, RAB32, and RAB27A in melanocytes treated with CM from UV-irradiated keratinocytes. The expression of MC1R and MITF in melanocytes after CM treatment was unchanged by NNT silencing. However, the expression of TYRP1, TYRP2, RAB32, and RAB27A increased in NNT-silenced melanocytes after CM treatment. NVP-mix also decreased tyrosinase activity and melanin content in UV-B-irradiated animal skin and CM-treated melanocytes. In conclusion, NVP-mix decreased mitochondrial oxidative stress by increasing NNT expression and decreased melanogenesis by decreasing MC1R/MITF, tyrosinase, TYRP1, and TYRP2.
Collapse
|
38
|
Recurrent Hypoglycemia Impaired Vascular Function in Advanced T2DM Rats by Inducing Pyroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7812407. [PMID: 35915611 PMCID: PMC9338872 DOI: 10.1155/2022/7812407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022]
Abstract
Background Hypoglycemia is a dangerous side effect of intensive glucose control in diabetes. Even though it leads to adverse cardiovascular events, the effects of hypoglycemia on vascular biology in diabetes have not been adequately studied. Methods Aged Sprague-Dawley rats were fed a high-fat diet and given streptozotocin to induce type 2 diabetes mellitus (T2DM). Acute and recurrent hypoglycemia were then induced by glucose via insulin administration. Vascular function, oxidative stress, and pyroptosis levels in aortic tissue were assessed by physiological and biochemical methods. Results Hypoglycemia was associated with a marked decrease in vascular function, elevated oxidative stress, and elevated pyroptosis levels in the thoracic aorta. The changes in oxidative stress and pyroptosis were greater in rats with recurrent hypoglycemia than in those with acute hypoglycemia. Conclusions Hypoglycemia impaired vascular function in aged rats with T2DM by inducing pyroptosis. The extent of injury increased with the duration of blood glucose fluctuation.
Collapse
|
39
|
Sung JY, Kim SG, Kang YJ, Choi HC. Metformin mitigates stress-induced premature senescence by upregulating AMPKα at Ser485 phosphorylation induced SIRT3 expression and inactivating mitochondrial oxidants. Mech Ageing Dev 2022; 206:111708. [PMID: 35863470 DOI: 10.1016/j.mad.2022.111708] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 01/10/2023]
Abstract
The senescence of vascular smooth muscle cells (VSMCs) is an important cause of cardiovascular disease such as atherosclerosis and hypertension. These senescence may be triggered by many factors, such as oxidative stress, inflammation, DNA damage, and senescence-associated secretory phenotypes (SASPs). Mitochondrial oxidative stress induces cellular senescence, but the mechanisms by which mitochondrial reactive oxygen species (mtROS) regulates cellular senescence are still largely unknown. Here, we investigated the mechanism responsible for the anti-aging effect of metformin by examining links between VSMC senescence and mtROS in in vitro and in vivo. Metformin was found to increase p-AMPK (Ser485), but to decrease senescence-associated phenotypes and protein levels of senescence markers during ADR-induced VSMC senescence. Importantly, metformin decreased mtROS by inducing the deacetylation of superoxide dismutase 2 (SOD2) by increasing SIRT3 expression. Moreover, AMPK depletion reduced the expression of SIRT3 and increased the expression of acetylated SOD2 despite metformin treatment, suggesting AMPK activation by metformin is required to protect against mitochondrial oxidative stress by SIRT3. This study provides mechanistic evidence that metformin acts as an anti-aging agent and alleviates VSMC senescence by upregulating mitochondrial antioxidant induced p-AMPK (Ser485)-dependent SIRT3 expression, which suggests metformin has therapeutic potential for the treatment of age-associated vascular disease.
Collapse
Affiliation(s)
- Jin Young Sung
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Seul Gi Kim
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Young Jin Kang
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Hyoung Chul Choi
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea.
| |
Collapse
|
40
|
Xu T, Zhang H, Wang S, Xiang Z, Kong H, Xue Q, He M, Yu X, Li Y, Sun D, Gao P, Cong Z. A review on the advances in the extraction methods and structure elucidation of Poria cocos polysaccharide and its pharmacological activities and drug carrier applications. Int J Biol Macromol 2022; 217:536-551. [PMID: 35843404 DOI: 10.1016/j.ijbiomac.2022.07.070] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 11/05/2022]
Abstract
Poria cocos polysaccharide (PCP) is one of the main active components of Poria cocos that is extensively used in the world. PCP can be divided into intro-polysaccharides and exopolysaccharides. PCP is mainly composed of glucose, galactose and mannose. There are many methods to exact PCP, and methods can affect its yield. PCP and its derivatives exhibit diverse biological functions such as antitumour, antioxidant, anti-inflammatory, immune-regulatory, hepatoprotective, etc. There is the potential application of PCP as drug carriers. The review provides a comprehensive summary of the latest extraction and purification methods of PCP, its chemistry, synthesis of PCP derivates, their pharmacological activities and their applications as drug carriers. This review provides comprehensive information on PCP, which can be used as the basis for further research on PCP and its derivates.
Collapse
Affiliation(s)
- Tianren Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hongmeng Zhang
- Laboratory management office, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shengguang Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zedong Xiang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hongwei Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qing Xue
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Mengyuan He
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaojun Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yanan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Dongjie Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Peng Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhufeng Cong
- Shandong First Medical University Affiliated Shandong Tumor Hospital and Institute: Shandong Cancer Hospital and Institute, Jinan 250117, China.
| |
Collapse
|
41
|
Suki B, Bates JH, Bartolák-Suki E. Remodeling of the Aged and Emphysematous Lungs: Roles of Microenvironmental Cues. Compr Physiol 2022; 12:3559-3574. [PMID: 35766835 PMCID: PMC11470990 DOI: 10.1002/cphy.c210033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aging is a slow process that affects all organs, and the lung is no exception. At the alveolar level, aging increases the airspace size with thicker and stiffer septal walls and straighter and thickened collagen and elastic fibers. This creates a microenvironment that interferes with the ability of cells in the parenchyma to maintain normal homeostasis and respond to injury. These changes also make the lung more susceptible to disease such as emphysema. Emphysema is characterized by slow but progressive remodeling of the deep alveolar regions that leads to airspace enlargement and increased but disorganized elastin and collagen deposition. This remodeling has been attributed to ongoing inflammation that involves inflammatory cells and the cytokines they produce. Cellular senescence, another consequence of aging, weakens the ability of cells to properly respond to injury, something that also occurs in emphysema. These factors conspire to make alveolar walls more prone to mechanical failure, which can set emphysema in motion by driving inflammation through immune stimulation by protein fragments. Both aging and emphysema are influenced by microenvironmental conditions such as local inflammation, chemical makeup, tissue stiffness, and mechanical stresses. Although aging and emphysema are not equivalent, they have the potential to influence each other in synergistic ways; aging sets up the conditions for emphysema to develop, while emphysema may accelerate cellular senescence and thus aging itself. This article focuses on the similarities and differences between the remodeled microenvironment of the aging and emphysematous lung, with special emphasis on the alveolar septal wall. © 2022 American Physiological Society. Compr Physiol 12:3559-3574, 2022.
Collapse
Affiliation(s)
- Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Jason H.T. Bates
- Depatment of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont
| | | |
Collapse
|
42
|
Varesi A, Chirumbolo S, Campagnoli LIM, Pierella E, Piccini GB, Carrara A, Ricevuti G, Scassellati C, Bonvicini C, Pascale A. The Role of Antioxidants in the Interplay between Oxidative Stress and Senescence. Antioxidants (Basel) 2022; 11:1224. [PMID: 35883714 PMCID: PMC9311946 DOI: 10.3390/antiox11071224] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular senescence is an irreversible state of cell cycle arrest occurring in response to stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic proteins. Although beneficial and protective in several physiological processes, an excessive senescent cell burden has been involved in various pathological conditions including aging, tissue dysfunction and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of major interest. However, despite the considerable number of studies, a comprehensive overview of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking. Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative lifespan-extending approaches.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | | | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
43
|
Sun Y, Wang X, Liu T, Zhu X, Pan X. The multifaceted role of the SASP in atherosclerosis: from mechanisms to therapeutic opportunities. Cell Biosci 2022; 12:74. [PMID: 35642067 PMCID: PMC9153125 DOI: 10.1186/s13578-022-00815-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/15/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The global population of older individuals is growing, and ageing is a key risk factor for atherosclerotic cardiovascular diseases. Abnormal accumulation of senescent cells can cause potentially deleterious effects on the organism with age. As a vital marker of cellular senescence, the senescence-associated secretory phenotype (SASP) is a novel mechanism to link cellular senescence with atherosclerosis. MAIN BODY In this review, we concretely describe the characteristics of the SASP and its regulation mechanisms. Importantly, we provide novel perspectives on how the SASP can promote atherosclerosis. The SASP from different types of senescent cells have vital roles in atherosclerosis progression. As a significant mediator of the harmful effects of senescent cells, it can play a pro-atherogenic role by producing inflammation and immune dysfunction. Furthermore, the SASP can deliver senescence signals to the surrounding vascular cells, gradually contributing to the development of atherosclerosis. Finally, we focus on a variety of novel therapeutic strategies aimed to reduce the burden of atherosclerosis in elderly individuals by targeting senescent cells and inhibiting the regulatory mechanisms of the SASP. CONCLUSION This review systematically summarizes the multiple roles of the SASP in atherosclerosis and can contribute to the exploration of new therapeutic opportunities.
Collapse
Affiliation(s)
- Yu Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xia Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tianwei Liu
- Institute of Cerebrovascular Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
44
|
Deficiency of NARFL increases transcription of NADPH oxidases and ROS production impairing the function of endothelial cells. Life Sci 2022; 301:120567. [DOI: 10.1016/j.lfs.2022.120567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/27/2022] [Accepted: 04/18/2022] [Indexed: 11/20/2022]
|
45
|
Liang S, Yegambaram M, Wang T, Wang J, Black SM, Tang H. Mitochondrial Metabolism, Redox, and Calcium Homeostasis in Pulmonary Arterial Hypertension. Biomedicines 2022; 10:biomedicines10020341. [PMID: 35203550 PMCID: PMC8961787 DOI: 10.3390/biomedicines10020341] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by elevated pulmonary arterial pressure due to increased pulmonary vascular resistance, secondary to sustained pulmonary vasoconstriction and excessive obliterative pulmonary vascular remodeling. Work over the last decade has led to the identification of a critical role for metabolic reprogramming in the PAH pathogenesis. It is becoming clear that in addition to its role in ATP generation, the mitochondrion is an important organelle that regulates complex and integrative metabolic- and signal transduction pathways. This review focuses on mitochondrial metabolism alterations that occur in deranged pulmonary vessels and the right ventricle, including abnormalities in glycolysis and glucose oxidation, fatty acid oxidation, glutaminolysis, redox homeostasis, as well as iron and calcium metabolism. Further understanding of these mitochondrial metabolic mechanisms could provide viable therapeutic approaches for PAH patients.
Collapse
Affiliation(s)
- Shuxin Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (S.L.); (J.W.)
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Manivannan Yegambaram
- Center for Translational Science, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA; (M.Y.); (T.W.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Port St. Lucie, FL 34987, USA
| | - Ting Wang
- Center for Translational Science, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA; (M.Y.); (T.W.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Port St. Lucie, FL 34987, USA
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (S.L.); (J.W.)
| | - Stephen M. Black
- Center for Translational Science, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA; (M.Y.); (T.W.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Port St. Lucie, FL 34987, USA
- Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Port St. Lucie, FL 34987, USA
- Correspondence: (S.M.B.); (H.T.)
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (S.L.); (J.W.)
- Correspondence: (S.M.B.); (H.T.)
| |
Collapse
|
46
|
Pan G, Yang S, Han X, Wang X, Kou L, Xie J, Li C. Parkinson's disease protein 7 protected against oxidative stress of myocardial infarction direct through p47phox and nicotinamide adenine dinucleotide phosphate oxidase 4. Hum Exp Toxicol 2022; 41:9603271221124099. [PMID: 36042578 DOI: 10.1177/09603271221124099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, we aimed to investigate the role and mechanism of Parkinson's disease protein 7 (Park7) in myocardial infarction (MI). The Park7 expression in the serum and tissues was down-regulated in mice with MI. Recombinant Park7 protein protected against MI-induced injury and reduced oxidative stress in mice model. Conversely, knockout Park7 increased injury of MI and promoted oxidative stress in MI mice model. In embryonic rat cardiac myoblasts H9c2 cells, over-expression of Park7 reduced reactive oxygen species (ROS)-induced oxidative stress, while down-regulation of Park7 increased ROS-induced oxidative stress. Park7 combined nicotinamide adenine dinucleotide phosphate (NADPH) oxidase cytoplasmic subunit p47phox protein had direct effect on inducing NADPH activator. The inhibition of p47phox reduced the effects of Park7 in ROS production of H2O2-treated H9c2 cells. The regulation of NADPH participated in the effects of Park7 on ROS production of in both MI mice model and H2O2-treated H9c2 cells. Our data demonstrated that Park7 protects against oxidative stress in MI model direct through p47phox and NADPH oxidase 4.
Collapse
Affiliation(s)
- Guozhong Pan
- Department of Cardiology, Dongzhimen Hospital, 248912Beijing University of Chinese Medicine, Beijing, China
| | - Shiwei Yang
- Department of Cardiology, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaowan Han
- Department of Cardiology, Dongzhimen Hospital, 248912Beijing University of Chinese Medicine, Beijing, China
| | - Xian Wang
- Department of Cardiology, Dongzhimen Hospital, 248912Beijing University of Chinese Medicine, Beijing, China
| | - Lanjun Kou
- Department of Cardiology, Dongzhimen Hospital, 248912Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xie
- Department of Cardiology, Dongzhimen Hospital, 248912Beijing University of Chinese Medicine, Beijing, China
| | - Chunyan Li
- Department of Cardiology, Dongzhimen Hospital, 248912Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
47
|
Lin Y, Wang Y, Li PF. PPARα: An emerging target of metabolic syndrome, neurodegenerative and cardiovascular diseases. Front Endocrinol (Lausanne) 2022; 13:1074911. [PMID: 36589809 PMCID: PMC9800994 DOI: 10.3389/fendo.2022.1074911] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor that is involved in lipid metabolism of various tissues. Different metabolites of fatty acids and agonists like fibrates activate PPARα for its transactivative or repressive function. PPARα is known to affect diverse human diseases, and we focus on advanced studies of its transcriptional regulation in these diseases. In MAFLD, PPARα shows a protective function with its upregulation of lipid oxidation and mitochondrial biogenesis and transcriptional repression of inflammatory genes, which is similar in Alzheimer's disease and cardiovascular disease. Activation of PPARα also prevents the progress of diabetes complications; however, its role in diabetes and cancers remains uncertain. Some PPARα-specific agonists, such as Wy14643 and fenofibrate, have been applied in metabolic syndrome treatment, which might own potential in wider application. Future studies may further explore the functions and interventions of PPARα in cancer, diabetes, immunological diseases, and neurodegenerative disease.
Collapse
Affiliation(s)
- Yijun Lin
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen, China
- *Correspondence: Yijun Lin, ; Yan Wang, ; Pei-feng Li,
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen, China
- *Correspondence: Yijun Lin, ; Yan Wang, ; Pei-feng Li,
| | - Pei-feng Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen, China
- *Correspondence: Yijun Lin, ; Yan Wang, ; Pei-feng Li,
| |
Collapse
|
48
|
Abstract
Vascular senescence plays a vital role in cardiovascular diseases and it is closely related to cellular senescence. At the molecular level, aging begins with a single cell, and it is characterized by telomere shortening, mitochondrial dysfunction, stem cell exhaustion, epigenetic changes, and so on. Epigenetics is an independent discipline that modifies DNA activity without altering the DNA sequence. The application of epigenetics helps to alleviate the occurrence of human diseases, inhibit senescence, and even inhibit tumor occurrence. Epigenetics mainly includes the modification of DNA, histone, and noncoding RNA. Herein, the application of epigenetics in vascular senescence and aging has been reviewed to provide the prospects and innovative inspirations for future research.
Collapse
|
49
|
Roger I, Milara J, Belhadj N, Cortijo J. Senescence Alterations in Pulmonary Hypertension. Cells 2021; 10:3456. [PMID: 34943963 PMCID: PMC8700581 DOI: 10.3390/cells10123456] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is the arrest of normal cell division and is commonly associated with aging. The interest in the role of cellular senescence in lung diseases derives from the observation of markers of senescence in chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (IPF), and pulmonary hypertension (PH). Accumulation of senescent cells and the senescence-associated secretory phenotype in the lung of aged patients may lead to mild persistent inflammation, which results in tissue damage. Oxidative stress due to environmental exposures such as cigarette smoke also promotes cellular senescence, together with additional forms of cellular stress such as mitochondrial dysfunction and endoplasmic reticulum stress. Growing recent evidence indicate that senescent cell phenotypes are observed in pulmonary artery smooth muscle cells and endothelial cells of patients with PH, contributing to pulmonary artery remodeling and PH development. In this review, we analyze the role of different senescence cell phenotypes contributing to the pulmonary artery remodeling process in different PH clinical entities. Different molecular pathway activation and cellular functions derived from senescence activation will be analyzed and discussed as promising targets to develop future senotherapies as promising treatments to attenuate pulmonary artery remodeling in PH.
Collapse
Affiliation(s)
- Inés Roger
- Centro de Investigación en Red Enfermedades Respiratorias CIBERES, Health Institute Carlos III, 28029 Valencia, Spain;
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Javier Milara
- Centro de Investigación en Red Enfermedades Respiratorias CIBERES, Health Institute Carlos III, 28029 Valencia, Spain;
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
- Pharmacy Unit, University General Hospital Consortium of Valencia, 46014 Valencia, Spain
| | - Nada Belhadj
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Julio Cortijo
- Centro de Investigación en Red Enfermedades Respiratorias CIBERES, Health Institute Carlos III, 28029 Valencia, Spain;
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
- Research and Teaching Unit, University General Hospital Consortium, 46014 Valencia, Spain
| |
Collapse
|
50
|
Sundquist K, Sundquist J, Palmer K, Memon AA. Role of mitochondrial DNA copy number in incident cardiovascular diseases and the association between cardiovascular disease and type 2 diabetes: A follow-up study on middle-aged women. Atherosclerosis 2021; 341:58-62. [PMID: 34876297 DOI: 10.1016/j.atherosclerosis.2021.11.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND AIMS Mitochondrial DNA copy number (mtDNA-CN) is a surrogate biomarker of mitochondrial dysfunction and is associated with type 2 diabetes (T2D) and cardiovascular disease (CVD). However, despite being associated with both CVD and T2D, it is not known what role mtDNA-CN has in the association between T2D and CVD. Our aims were to investigate whether, (1) baseline mtDNA-CN is associated with CVD incidence and (2) mtDNA-CN has a role as a mediator between T2D and CVD. METHOD We quantified absolute mtDNA-CN by droplet digital PCR method in a population-based follow-up study of middle aged (52-65 years) women (n = 3062). The median follow-up period was 17 years. RESULTS Our results show that low baseline levels of mtDNA-CN (<111 copies/μL) were associated with an increased risk of CVD (HR = 1.32, 95% CI = 1.08; 1.63) as well as with specific CVDs: coronary heart disease (HR = 1.28, 95% CI = 0.99; 1.66), stroke (HR = 1.26, 95% CI = 0.87; 1.84) and abdominal aortic aneurysm (HR = 2.61, 95% CI = 1.03; 6.62). The associations decreased but persisted even after adjustment for potential confounders. Furthermore, our results show that the total effect of T2D on future risk of CVD was reduced after controlling for mtDNA-CN and the proportion mediated by mtDNA-CN was estimated to be 4.9%. CONCLUSIONS Lower baseline mtDNA-CN is associated with incident CVD and may have a mediating effect on the association between T2D and CVD; however, this novel observation needs to be confirmed in future studies.
Collapse
Affiliation(s)
- Kristina Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, 20502, Sweden
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, 20502, Sweden
| | - Karolina Palmer
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, 20502, Sweden
| | - Ashfaque A Memon
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, 20502, Sweden.
| |
Collapse
|