1
|
Xiang KF, Wan JJ, Wang PY, Liu X. Role of glycogen in cardiac metabolic stress. Metabolism 2025; 162:156059. [PMID: 39500406 DOI: 10.1016/j.metabol.2024.156059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/11/2024]
Abstract
Metabolic stress in the myocardium arises from a diverse array of acute and chronic pathophysiological contexts. Glycogen mishandling is a key feature of metabolic stress, while maladaptation in energy-stress situations confers functional deficits. Cardiac glycogen serves as a pivotal reserve for myocardial energy, which is classically described as an energy source and contributes to glucose homeostasis during hypoxia or ischemia. Despite extensive research activity, how glycogen metabolism affects cardiovascular disease remains unclear. In this review, we focus on its regulation across myocardial energy metabolism in response to stress, and its role in metabolism, immunity, and autophagy. We further summarize the cardiovascular-related drugs regulating glycogen metabolism. In this way, we provide current knowledge for the understanding of glycogen metabolism in the myocardium.
Collapse
Affiliation(s)
- Ke-Fa Xiang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China; Department of Cardiology, The 72nd Group Army Hospital, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Jing-Jing Wan
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Peng-Yuan Wang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China.
| |
Collapse
|
2
|
Huang CC, Hsu RF, Chen WM, Shia BC, Wu SY, Huang CC. Metformin lowers risk of hearing loss and mortality in type 2 diabetes. Diabetes Obes Metab 2024. [PMID: 39690329 DOI: 10.1111/dom.16128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024]
Abstract
AIMS To assess the association between metformin use and the risk of sudden sensorineural hearing loss (SSNHL) in patients with Type 2 diabetes (T2D), a population at elevated risk for SSNHL. MATERIALS AND METHODS This cohort study utilized data from Taiwan's National Health Insurance Research Database, following T2D patients from 2008 to 202 database's baseline. Metformin use was defined as achieving ≥80% of the medication possession ratio (MPR) and ≥28 cumulative defined daily doses (cDDD) within three months. The control group included patients with ≥80% MPR from other antidiabetic agents, ensuring active treatment comparability. Propensity score matching was applied to balance covariates, while competing risk models accounted for mortality. Hazard ratios (HRs), incidence rates (IRs), and incidence rate ratios (IRRs) were calculated. RESULTS Metformin users demonstrated a lower SSNHL incidence (IR: 11.48 per 10,000 person-years) compared to non-users (IR: 15.66 per 10,000 person-years), with an IRR of 0.73 (95% CI: 0.66-0.82; p < 0.0001). Adjusted HRs indicated a 27% reduction in SSNHL risk (HR: 0.73; 95% CI: 0.66-0.82). Higher cumulative doses (Q4: HR 0.36; 95% CI: 0.29-0.46) and daily doses ≥1 DDD (HR: 0.78; 95% CI: 0.69-0.87) were linked to further risk reductions. Metformin use was also associated with lower overall mortality. CONCLUSIONS Metformin use is associated with a dose-dependent reduction in SSNHL risk and lower mortality in T2D patients. The rigorous definitions of metformin exposure and an actively treated comparator group emphasize these findings, suggesting metformin's potential role in SSNHL prevention and improved survival.
Collapse
Affiliation(s)
- Chun-Chih Huang
- Department of Otorhinolaryngology, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Rui-Fong Hsu
- Department of Emergency Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Wan-Ming Chen
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan
- Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan
| | - Ben-Chang Shia
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan
- Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan
| | - Szu-Yuan Wu
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Division of Radiation Oncology, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
- Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Cancer Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
- Centers for Regional Anesthesia and Pain Medicine, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chi Huang
- Department of Otorhinolaryngology, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
| |
Collapse
|
3
|
Sharrack N, Knott KD, Gulsin GS, Kotecha T, Brown LAE, Yeo JL, Porcari A, Adam RD, Thirunavukarasu S, Chowdhary A, Levelt E, Moon JC, McCann GP, Fontana M, Kellman P, Munyombwe T, Gale CP, Buckley DL, Greenwood JP, Swoboda PP, Plein S. Metformin associates with higher myocardial perfusion reserve and survival in type 2 diabetes mellitus patients. Sci Rep 2024; 14:27280. [PMID: 39516499 PMCID: PMC11549305 DOI: 10.1038/s41598-024-77280-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Metformin is an antihyperglycemic used to treat type 2 diabetes mellitus (T2DM). Patients with T2DM are at increased risk of cardiovascular disease. We explored the association between metformin use and cardiovascular magnetic resonance (CMR) derived stress myocardial blood flow (MBF), myocardial perfusion reserve (MPR) and major adverse cardiovascular events (MACE; all cause death, MI, stroke, heart failure hospitalisation and coronary revascularisation) in patients with T2DM. Multi-centre study of patients with T2DM, and healthy controls, underwent quantitative myocardial perfusion CMR using an artificial intelligence supported process. Multivariable regression analysis, and cox proportional hazard models of propensity score weighted patients quantified associations between metformin use, MBF, MPR, all cause death and MACE. Analysis included 572 patients with T2DM (68% prescribed metformin) with median follow-up 851 days (IQR 935 - 765). Metformin use was associated with an increase of MPR of 0.12 [0.08-0.40], p = 0.004. There were 82 MACE events (14.3%) including 25 (4.4%) deaths of which 16 were in those not prescribed metformin (8.7%), compared to 9 in patients prescribed metformin (2.3%): adjusted hazard ratio 0.24 (95% CI 0.08-0.70, p = 0.009). MACE events were similar between groups. This multicentre, inverse probability weighting propensity score analysis study showed that in patients with T2DM, metformin use is associated with higher MPR and improved all cause survival.
Collapse
Affiliation(s)
- Noor Sharrack
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK.
| | - Kristopher D Knott
- Barts Heart Centre, St Bartholomew's Hospital, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Gaurav S Gulsin
- Department of Cardiovascular Sciences, Cardiovascular Biomedical Research Centre, University of Leicester and the NIHR Leicester, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - Tushar Kotecha
- Institute of Cardiovascular Science, University College London, London, UK
- Division of Medicine, National Amyloidosis Centre, University College London, Royal Free Campus, London, UK
| | - Louise A E Brown
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Jian L Yeo
- Department of Cardiovascular Sciences, Cardiovascular Biomedical Research Centre, University of Leicester and the NIHR Leicester, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - Aldostefano Porcari
- Division of Medicine, National Amyloidosis Centre, University College London, Royal Free Campus, London, UK
- Centre for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Robert D Adam
- Barts Heart Centre, St Bartholomew's Hospital, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Sharmaine Thirunavukarasu
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Amrit Chowdhary
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Eylem Levelt
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - James C Moon
- Barts Heart Centre, St Bartholomew's Hospital, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Gerry P McCann
- Department of Cardiovascular Sciences, Cardiovascular Biomedical Research Centre, University of Leicester and the NIHR Leicester, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - Marianna Fontana
- Institute of Cardiovascular Science, University College London, London, UK
- Division of Medicine, National Amyloidosis Centre, University College London, Royal Free Campus, London, UK
| | - Peter Kellman
- Department of Health and Human Services, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Theresa Munyombwe
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - Chris P Gale
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
- Department of Cardiology, Leeds Teaching Hosptislas NHS Trust, Leeds, UK
| | - David L Buckley
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - John P Greenwood
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter P Swoboda
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Sven Plein
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
4
|
Yang G, Liu Z, Dong S, Zhao X, Ge Z, Cheng Z, Zhang X, Wang K. Duodenal-jejunal bypass surgery activates eNOS and enhances antioxidant system by activating AMPK pathway to improve heart oxidative stress in diabetic cardiomyopathy rats. J Diabetes 2024; 16:e13516. [PMID: 38087869 PMCID: PMC11212293 DOI: 10.1111/1753-0407.13516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/19/2023] [Accepted: 11/18/2023] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy is a serious complication of obesity with type 2 diabetes and is a major cause of mortality. Metabolic surgery, such as duodenal-jejunal bypass (DJB), can effectively improve diabetic cardiomyopathy; however, the underlying mechanisms remain elusive. Oxidative stress is one of the pivotal mechanisms of diabetic cardiomyopathy. Our objective was to investigate the effect and potential mechanisms of DJB on oxidative stress in the heart of diabetic cardiomyopathy rats. METHODS High-fat diet combined with intraperitoneal injection of streptozotocin was used to establish diabetic cardiomyopathy rats. DJB was performed on diabetic cardiomyopathy rats, and high glucose and palmitate were used to simulate diabetic cardiomyopathy in H9C2 cells in vitro. Sera from different groups of rats were used for experiments in vivo and in vitro. RESULTS DJB effectively improved oxidative stress and activated the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway to increase endothelial nitric oxide synthase (eNOS) phosphorylation level and the expression of antioxidative system-related proteins and genes in the heart of diabetic cardiomyopathy rats. AMPK agonists and serum from DJB rats activated the AMPK pathway to increase eNOS phosphorylation level and the expression of antioxidative system-related proteins and genes and decreased the content of reactive oxygen species in H9C2 cells, but this improvement was almost eliminated by the addition of AMPK inhibitors. CONCLUSIONS DJB activates eNOS and enhances the antioxidant system by activating the AMPK pathway-and not solely by improving blood glucose-to improve oxidative stress in the heart of diabetic cardiomyopathy rats.
Collapse
Affiliation(s)
- Guangwei Yang
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Zitian Liu
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Shuohui Dong
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Xiang Zhao
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Zheng Ge
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Zhiqiang Cheng
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Xiang Zhang
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Kexin Wang
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| |
Collapse
|
5
|
Bahardoust M, Mousavi S, Yariali M, Haghmoradi M, Hadaegh F, Khalili D, Delpisheh A. Effect of metformin (vs. placebo or sulfonylurea) on all-cause and cardiovascular mortality and incident cardiovascular events in patients with diabetes: an umbrella review of systematic reviews with meta-analysis. J Diabetes Metab Disord 2024; 23:27-38. [PMID: 38932855 PMCID: PMC11196519 DOI: 10.1007/s40200-023-01309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/09/2023] [Indexed: 06/28/2024]
Abstract
Purpose The current umbrella review aimed to evaluate the effect of metformin on all-cause mortality (ACM), cardiovascular mortality, and cardiovascular disease (CVD) incidence in DM patients. Methods PubMed, Scopus, Cochrane, Google Scholar, and Web of Science databases were searched with special keywords. Related studies were included after screening by two independent investigators based on title and full texts. The AMSTAR2 checklist was used to assess the quality of studies, and Cochran tests were used to assess the heterogeneity between studies. Overall, seventeen systematic reviews and meta-analysis studies were included. The results revealed that the risk of ACM in patients who received metformin was lower than in patients who did not receive metformin. (OR: 0.80, 95% CI:0.744,0.855); also, the risk of CVD mortality in metformin patients was lower than in the other two groups (placebo and other anti-diabetic drugs) (OR: 0.771, 95% CI:0.688,0.853, P:0.001). The risk of CVD in metformin users was also lower than in the other two groups (OR: 0.828, 95% CI:0.781,0.785). Summary This comprehensive review showed that the risk of ACM, death due to CVD, and incidents of CVD in DM who use metformin was lower than the patients who received a placebo only or other diabetic drugs, which can guide clinicians in medical decision-making. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01309-y.
Collapse
Affiliation(s)
- Mansour Bahardoust
- Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Mousavi
- Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Yariali
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Meisam Haghmoradi
- Department of Orthopedic Surgery, Urmia University of Medical Sciences, Urmia, Iran
| | - Farzad Hadaegh
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Khalili
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Delpisheh
- Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Safety Promotion and Injury Prevention Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Shahid Beheshti University of Medical Sciences, Tehran Province, Velenjak7 ،th Floor, Bldg No.2 SBUMS, Arabi Ave, Tehran, Tehran, Iran
| |
Collapse
|
6
|
Chaudhary S, Kulkarni A. Metformin: Past, Present, and Future. Curr Diab Rep 2024; 24:119-130. [PMID: 38568468 DOI: 10.1007/s11892-024-01539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 05/12/2024]
Abstract
PURPOSE OF REVIEW This review provides the most recent update of metformin, a biguanide oral antihyperglycemic drug used as a first-line treatment in type 2 diabetes mellitus. RECENT FINDINGS Metformin continues to dominate in the world of antidiabetics, and its use will continue to rise because of its high efficiency and easy availability. Apart from type 2 diabetes, research is exploring its potential in other conditions such as cancer, memory loss, bone disorders, immunological diseases, and aging. Metformin is the most prescribed oral antidiabetic worldwide. It has been in practical use for the last six decades and continues to be the preferred drug for newly diagnosed type 2 diabetes mellitus. It reduces glucose levels by decreasing hepatic glucose production, reducing intestinal glucose absorption, and increasing insulin sensitivity. It can be used as monotherapy or combined with other antidiabetics like sulfonylureas, DPP-4 inhibitors, SGLT-2 inhibitors, or insulin, improving its efficacy. Metformin can be used once or twice daily, depending on requirements. Prolonged usage of metformin may lead to abdominal discomfort, deficiency of Vitamin B12, or lactic acidosis. It should be used carefully in patients with renal impairment. Recent studies have explored additional benefits of metformin in polycystic ovarian disease, gestational diabetes mellitus, cognitive disorders, and immunological diseases. However, more extensive studies are needed to confirm these additional benefits.
Collapse
|
7
|
Pulipaka S, Chempon H, Singuru G, Sahoo S, Shaikh A, Kumari S, Thennati R, Kotamraju S. Mitochondria-targeted esculetin and metformin delay endothelial senescence by promoting fatty acid β-oxidation: Relevance in age-associated atherosclerosis. Mech Ageing Dev 2024; 219:111931. [PMID: 38554949 DOI: 10.1016/j.mad.2024.111931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Impaired mitochondrial fatty acid β-oxidation (FAO) plays a role in the onset of several age-associated diseases, including atherosclerosis. In the current work, we investigated the efficacies of mitochondria-targeted esculetin (Mito-Esc) and metformin in enhancing FAO in human aortic endothelial cells (HAECs), and its relevance in the delay of cellular senescence and age-associated atherosclerotic plaque formation in Apoe-/- mice. Chronic culturing of HAECs with either Mito-Esc or metformin increased oxygen consumption rates (OCR), and caused delay in senescence features. Conversely, etomoxir (CPT1 inhibitor) reversed Mito-Esc- and metformin-induced OCR, and caused premature endothelial senescence. Interestingly, Mito-Esc, unlike metformin, in the presence of etomoxir failed to preserve OCR. Thereby, underscoring Mito-Esc's exclusive reliance on FAO as an energy source. Mechanistically, chronic culturing of HAECs with either Mito-Esc or metformin led to AMPK activation, increased CPT1 activity, and acetyl-CoA levels along with a concomitant reduction in malonyl-CoA levels, and lipid accumulation. Similar results were observed in Apoe-/- mice aorta and liver tissue with a parallel reduction in age-associated atherosclerotic plaque formation and degeneration of liver with either Mito-Esc or metformin administration. Together, Mito-Esc and metformin by potentiating FAO, may have a role in the delay of cellular senescence by modulating mitochondrial function.
Collapse
Affiliation(s)
- Sriravali Pulipaka
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Hridya Chempon
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Gajalakshmi Singuru
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Shashikanta Sahoo
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Altab Shaikh
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India; Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Sunita Kumari
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Rajamannar Thennati
- High Impact Innovations-Sustainable Health Solutions (HISHS), Sun Pharmaceutical Industries Ltd, Vadodara 390012, India
| | - Srigiridhar Kotamraju
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India.
| |
Collapse
|
8
|
Syed SU, Cortez JI, Wilson SJ. Depression, Inflammation, and the Moderating Role of Metformin: Results From the Midlife in the United States Study and Sacramento Area Latino Study on Aging. Psychosom Med 2024; 86:473-483. [PMID: 37910133 PMCID: PMC11039570 DOI: 10.1097/psy.0000000000001257] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
OBJECTIVE Depression can promote inflammation and accelerate aging. Metformin, a widely prescribed antidiabetic, has shown promising preclinical evidence of aging-related health benefits, including decreased inflammation. The current study examined whether metformin usage buffers the association between depressive symptoms and inflammatory markers in two large samples of middle-aged and older, primarily White adults, and older Latino adults. METHODS Data from the Midlife in the United States Study ( N = 1255) and the Sacramento Area Latino Study on Aging ( N = 1786) included information on medication use, depressive symptoms, and inflammatory markers, namely, interleukin 6 (IL-6), tumor necrosis factor α, and C-reactive protein (CRP). These data were merged into a harmonized sample, and the sample group variable was included in a three-way interaction for analysis. RESULTS Specifically, in the Midlife in the United States Study sample, metformin buffered the association between depressive symptoms and CRP ( b = -0.029, standard error [SE] = 0.013, p = .007) and IL-6 ( b = 0.21, SE = 0.010, p = .046), whereas no significant association was found with tumor necrosis factor α. Metformin nonusers displayed higher depressive symptoms associated with elevated CRP ( b = 0.01, SE = 0.003, p < .001) and IL-6 ( b = 0.011, SE = 0.003, p < .001), whereas this association was not present among metformin users ( p values > .068). Conversely, in the Sacramento Area Latino Study on Aging sample, metformin use did not show a significant protective link. CONCLUSIONS Results from mostly White, highly educated adults supported a mitigating role of metformin in ties between depression, a well-known behavioral risk factor, and inflammation, a key source of biological aging. However, the benefits did not extend to a large sample of older Mexican Americans. The findings reveal a hidden potential benefit of this therapeutic agent and raise important questions around its health equity. TRIAL REGISTRATION The study was preregistered on OSF ( https://osf.io/c92vw/ ).
Collapse
Affiliation(s)
- Sumaiyah U. Syed
- Department of Psychology, Southern Methodist University, Dallas, TX, USA
| | - Jared I. Cortez
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | | |
Collapse
|
9
|
Kamenshchyk A, Belenichev I, Oksenych V, Kamyshnyi O. Combined Pharmacological Modulation of Translational and Transcriptional Activity Signaling Pathways as a Promising Therapeutic Approach in Children with Myocardial Changes. Biomolecules 2024; 14:477. [PMID: 38672493 PMCID: PMC11047929 DOI: 10.3390/biom14040477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Myocardial hypertrophy is the most common condition that accompanies heart development in children. Transcriptional gene expression regulating pathways play a critical role both in cardiac embryogenesis and in the pathogenesis of congenital hypertrophic cardiomyopathy, neonatal posthypoxic myocardial hypertrophy, and congenital heart diseases. This paper describes the state of cardiac gene expression and potential pharmacological modulators at different transcriptional levels. An experimental model of perinatal cardiac hypoxia showed the downregulated expression of genes responsible for cardiac muscle integrity and overexpressed genes associated with energy metabolism and apoptosis, which may provide a basis for a therapeutic approach. Current evidence suggests that RNA drugs, theaflavin, neuraminidase, proton pumps, and histone deacetylase inhibitors are promising pharmacological agents in progressive cardiac hypertrophy. The different points of application of the above drugs make combined use possible, potentiating the effects of inhibition in specific signaling pathways. The special role of N-acetyl cysteine in both the inhibition of several signaling pathways and the reduction of oxidative stress was emphasized.
Collapse
Affiliation(s)
- Andrii Kamenshchyk
- Department of Hospital Pediatrics, Zaporizhzhya State Medical and Pharmaceutical University, 69035 Zaporizhzhya, Ukraine
| | - Igor Belenichev
- Department of Pharmacology, Zaporizhzhya State Medical and Pharmaceutical University, 69035 Zaporizhzhya, Ukraine;
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
10
|
Sabbar R, Kadhim SAA, Fawzi HA, Flayih A, Mohammad B, Swadi A. The impact of empagliflozin and metformin on cardiac parameters in patients with mid-range ejection fraction heart failure without diabetes. J Med Life 2024; 17:57-62. [PMID: 38737651 PMCID: PMC11080507 DOI: 10.25122/jml-2023-0340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/17/2023] [Indexed: 05/14/2024] Open
Abstract
Heart failure (HF) remains a significant problem for healthcare systems, requiring the use of intervention and multimodal management strategies. We aimed to assess the short-term effect of empagliflozin (EMPA) and metformin on cardiac function parameters, including ventricular dimension-hypertrophy, septal thickness, ejection fraction (EF), and N-terminal pro-brain natriuretic peptide (NT-proBNP) levels in patients with HF and mildly reduced EF. A case-control study included 60 newly diagnosed patients with HF. Patients were divided into two groups: Group E received standard HF treatment (carvedilol, bumetanide, sacubitril-valsartan, spironolactone) plus EMPA 10 mg daily, and Group M received standard HF treatment plus metformin 500 mg daily. After three months of treatment, Group E had a significantly higher EF than Group M compared to initial measurements (a change of 9.2% versus 6.1%, respectively). We found similar results in the left ventricular end-systolic dimension (LVESD), with mean reductions of 0.72 mm for Group E and 0.23 mm for Group M. Regarding cardiac indicators, the level of NT-proBNP was considerably decreased in both groups. However, the reduction was significantly greater in group E than in group M compared to the initial level (mean reduction: 719.9 vs. 973.6, respectively). When combined with quadruple anti-heart failure therapy, metformin enhanced several echocardiographic parameters, showing effects similar to those of EMPA when used in the same treatment regimen. However, the benefits of EMPA were more pronounced, particularly regarding improvements in EF and LVESD.
Collapse
Affiliation(s)
- Reeman Sabbar
- Department of Pharmacology, College of Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| | - Sinaa Abdul Amir Kadhim
- Department of Pharmacology, College of Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| | | | - Ali Flayih
- Department of Pharmacology, College of Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| | - Bassim Mohammad
- Department of Pharmacology, College of Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| | - Asma Swadi
- Department of Pharmacology, College of Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| |
Collapse
|
11
|
Agress S, Sheikh JS, Perez Ramos AA, Kashyap D, Razmjouei S, Kumar J, Singh M, Lak MA, Osman A, Haq MZU. The Interplay of Comorbidities in Chronic Heart Failure: Challenges and Solutions. Curr Cardiol Rev 2024; 20:13-29. [PMID: 38347774 PMCID: PMC11284697 DOI: 10.2174/011573403x289572240206112303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Chronic heart failure (HF) is frequently associated with various comorbidities. These comorbid conditions, such as anemia, diabetes mellitus, renal insufficiency, and sleep apnea, can significantly impact the prognosis of patients with HF. OBJECTIVE This review aims to synthesize current evidence on the prevalence, impact, and management of comorbidities in patients with chronic HF. METHODS A comprehensive review was conducted, with a rigorous selection process. Out of an initial pool of 59,030 articles identified across various research modalities, 134 articles were chosen for inclusion. The selection spanned various research methods, from randomized controlled trials to observational studies. RESULTS Comorbidities are highly prevalent in patients with HF and contribute to increased hospitalization rates and mortality. Despite advances in therapies for HF with reduced ejection fraction, options for treating HF with preserved ejection fraction remain sparse. Existing treatment protocols often lack standardization, reflecting a limited understanding of the intricate relationships between HF and associated comorbidities. CONCLUSION There is a pressing need for a multidisciplinary, tailored approach to manage HF and its intricate comorbidities. This review underscores the importance of ongoing research efforts to devise targeted treatment strategies for HF patients with various comorbid conditions.
Collapse
Affiliation(s)
| | - Jannat S. Sheikh
- CMH Lahore Medical College & Institute of Dentistry, Lahore, Pakistan
| | | | - Durlav Kashyap
- West China Medical School, Sichuan University, Chengdu, China
| | - Soha Razmjouei
- Case Western Reserve University, Cleveland, OH, United States of America
| | - Joy Kumar
- Kasturba Medical College, Manipal, India
| | | | - Muhammad Ali Lak
- Department of Internal Medicine, CMH Lahore Medical College & Institute of Dentistry, Lahore, Pakistan
| | - Ali Osman
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Muhammad Zia ul Haq
- Department of Epidemiology and Public Health, Emory University Rollins School of Public Health, Atlanta, USA
- Department of Noncommunicable Diseases and Mental Health, World Health Organization, Cairo, Egypt
| |
Collapse
|
12
|
Mkrtumyan AM, Markova TN, Ovchinnikova MA, Ivanova IA, Kuzmenko KV. Metformin as an activator of AMP-activated protein kinase. Known and new mechanisms of action. DIABETES MELLITUS 2023; 26:585-595. [DOI: 10.14341/dm13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Metformin, known in the medical community as the drug of first choice for type 2 diabetes mellitus, belongs to the group of biguanides and has proven to be an effective treatment in clinical practice. Our knowledge of the pharmacodynamic properties of metformin has long been limited to the following well-known mechanisms: a decrease in hyperglycemia due to an increase in peripheral insulin sensitivity, glucose utilization by cells, inhibition of hepatic gluconeogenesis, an increase in the capacity of all types of membrane glucose transporters, activation of fibrinolysis, and a decrease in the levels of atherogenic lipoproteins. Recent studies show that the range of positive pleiotropic effects of metformin is not limited to the above, and that the molecular mechanisms of its action are more complex than previously thought. This article presents a less known, but equally important action of metformin, in particular, its anti-oncogenic, antiviral, and anti-aging effects. In our study, we highlight that the activation of 5’-adenosine monophosphate-activated protein kinase (AMPK) should be considered as the primary mechanism of action through which almost all beneficial effects are achieved. In the light of recent scientific advances in metformin pharmacology, together with the pathogenetic uncertainty of the term «biguanide», it seems fair and reasonable to apply a more relevant definition to the drugn, namely «AMPK activator».
Collapse
Affiliation(s)
- A. M. Mkrtumyan
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | - T. N. Markova
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry;
Moscow City Clinical Hospital № 52
| | | | - I. A. Ivanova
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | - K. V. Kuzmenko
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| |
Collapse
|
13
|
Sabbar R, Kadhim SAA, Fawzi HA, Flayih A, Mohammad B, Swadi A. Metformin effects on cardiac parameters in non-diabetic Iraqi patients with heart failure and mid-range ejection fraction - a comparative two-arm parallel clinical study. J Med Life 2023; 16:1400-1406. [PMID: 38107711 PMCID: PMC10719796 DOI: 10.25122/jml-2023-0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/20/2023] [Indexed: 12/19/2023] Open
Abstract
Heart failure (HF) remains a difficult challenge to the healthcare system, necessitating promoting interventions and multidrug management. Metformin, typically used to manage diabetes, has emerged as a promising intervention in the treatment of HF. This study aimed to assess the effect of adding metformin to the standard treatment of HF on cardiac parameters. This clinical study comprised 60 newly diagnosed HF patients randomly assigned to two groups: Group C received standard HF treatment, while Group M received standard HF treatment in addition to daily metformin (500 mg). After 3 months of treatment, group M showed a significantly higher ejection fraction (EF) compared to Group C (6.1% and 3.2%, respectively; p-value=0.023) and a reduction in the left ventricular end-diastolic pressure (LVEDD) (0.28, and 0.21 mm respectively; p-value=0.029). No significant differences were observed in the interventricular septal thickness (IVST) or left ventricular end-systolic pressure (LVESD). For cardiac markers, N-Terminal pro-BNP (NT-proBNP) showed the highest reduction in Group M compared to Group C (719.9 pg/ml and 271.9 pg/ml respectively; p-value=0.009). No significant changes were reported for soluble ST2. Metformin demonstrated cardiac protective effects by increasing EF and reducing NT-proBNP. Given its affordability and accessibility, metformin offers a valuable addition to the current HF treatment options. This positive effect may be attributed to mechanisms that enhance the impact of conventional HF treatments or vice versa.
Collapse
Affiliation(s)
- Reeman Sabbar
- Department of Pharmacology, College of Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| | - Sinaa Abdul Amir Kadhim
- Department of Pharmacology, College of Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| | | | - Ali Flayih
- Department of Pharmacology, College of Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| | - Bassim Mohammad
- Department of Pharmacology, College of Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| | - Asma Swadi
- Department of Pharmacology, College of Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| |
Collapse
|
14
|
Dutta S, Shah RB, Singhal S, Dutta SB, Bansal S, Sinha S, Haque M. Metformin: A Review of Potential Mechanism and Therapeutic Utility Beyond Diabetes. Drug Des Devel Ther 2023; 17:1907-1932. [PMID: 37397787 PMCID: PMC10312383 DOI: 10.2147/dddt.s409373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023] Open
Abstract
Metformin has been designated as one of the most crucial first-line therapeutic agents in the management of type 2 diabetes mellitus. Primarily being an antihyperglycemic agent, metformin also has a plethora of pleiotropic effects on various systems and processes. It acts majorly by activating AMPK (Adenosine Monophosphate-Activated Protein Kinase) in the cells and reducing glucose output from the liver. It also decreases advanced glycation end products and reactive oxygen species production in the endothelium apart from regulating the glucose and lipid metabolism in the cardiomyocytes, hence minimizing the cardiovascular risks. Its anticancer, antiproliferative and apoptosis-inducing effects on malignant cells might prove instrumental in the malignancy of organs like the breast, kidney, brain, ovary, lung, and endometrium. Preclinical studies have also shown some evidence of metformin's neuroprotective role in Parkinson's disease, Alzheimer's disease, multiple sclerosis and Huntington's disease. Metformin exerts its pleiotropic effects through varied pathways of intracellular signalling and exact mechanism in the majority of them remains yet to be clearly defined. This article has extensively reviewed the therapeutic benefits of metformin and the details of its mechanism for a molecule of boon in various conditions like diabetes, prediabetes, obesity, polycystic ovarian disease, metabolic derangement in HIV, various cancers and aging.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Rima B Shah
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Shubha Singhal
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Sudeshna Banerjee Dutta
- Department of Medical Surgical Nursing, Shri Anand Institute of Nursing, Rajkot, Gujarat, 360005, India
| | - Sumit Bansal
- Department of Anaesthesiology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Susmita Sinha
- Department of Physiology, Khulna City Medical College and Hospital, Khulna, Bangladesh
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, 57000, Malaysia
| |
Collapse
|
15
|
Aydın PK, Turkyılmaz IB, Gul IB, Bulan OK, Yanardag R. Drug repurposing: Metformin's effect against liver tissue damage in diabetes and prostate cancer model. J Diabetes Metab Disord 2023; 22:225-236. [PMID: 37255805 PMCID: PMC10225428 DOI: 10.1007/s40200-022-01109-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/08/2022] [Indexed: 06/01/2023]
Abstract
Background There are evidences linking diabetes to the pathogenesis and progression of various cancers. Metformin is a well-known antidiabetic drug that reduces the levels of circulating glucose and insulin in patients with both insulin resistance and hyperinsulinemia. Aim of the present study was to evaluate the effect of metformin on the liver of rats bearing prostate cancer, diabetes and prostate cancer + diabetes via histopathological and biochemical methods. Methods Male Copenhagen rats were divided into six groups. Control group, diabetic group, cancer group, diabetic + cancer group, diabetic + cancer + metformin group, cancer + metformin group. Diabetes was induced by injecting single dose of streptozotocin (65 mg/kg) to Copenhagen rats, cancer induced 2 × 104 Mat-LyLu cells. Metformin treatment was administered daily by gavage following inocculation of the Mat- Lylu cells to fifth and sixth group. The experiment was terminated on the 14th day following Mat-LyLu cell injection. At the end of the experimental period, the rats were sacrificed, and liver tissue was taken. Liver damage was scored. Biochemically, serum prostate-specific antigen level was determined by employing Enzyme Linked Immuno Sorbent Assay method. In addition, the activities of different enzyme and biochemical parameters were determined spectrophotometrically inform the hepatic tissue specimens. Results The findings of this study reveal that histopathological and biochemical damage in cancer and diabetic + cancer groups decreased significantly in the metformin treated groups. Conclusion These highlights that the antidiabetic drug metformin can be repositioned for attenuating liver tissue damage associated with prostate cancer and diabetes.
Collapse
Affiliation(s)
- Pınar Koroglu Aydın
- Faculty of Medicine, Department of Histology and Embryology, Halic University, Istanbul, Turkey
| | - Ismet Burcu Turkyılmaz
- Faculty of Engineering, Department of Chemistry, Istanbul University- Cerrahpasa, Istanbul, Turkey
| | - Ilknur Bugan Gul
- Faculty of Science, Department of Biology, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Omur Karabulut Bulan
- Faculty of Science, Department of Biology, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Refiye Yanardag
- Faculty of Engineering, Department of Chemistry, Istanbul University- Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
16
|
Shati AA, Maarouf A, Dawood AF, Bayoumy NM, Alqahtani YA, A. Eid R, Alqahtani SM, Abd Ellatif M, Al-Ani B, Albawardi A. Lower Extremity Arterial Disease in Type 2 Diabetes Mellitus: Metformin Inhibits Femoral Artery Ultrastructural Alterations as well as Vascular Tissue Levels of AGEs/ET-1 Axis-Mediated Inflammation and Modulation of Vascular iNOS and eNOS Expression. Biomedicines 2023; 11:biomedicines11020361. [PMID: 36830898 PMCID: PMC9953164 DOI: 10.3390/biomedicines11020361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
Lower extremity arterial disease (LEAD) is a major risk factor for amputation in diabetic patients. The advanced glycation end products (AGEs)/endothelin-1 (ET-1)/nitric oxide synthase (NOS) axis-mediated femoral artery injury with and without metformin has not been previously investigated. Type 2 diabetes mellitus (T2DM) was established in rats, with another group of rats treated for two weeks with 200 mg/kg metformin, before being induced with T2DM. The latter cohort were continued on metformin until they were sacrificed at week 12. Femoral artery injury was established in the diabetic group as demonstrated by substantial alterations to the femoral artery ultrastructure, which importantly were ameliorated by metformin. In addition, diabetes caused a significant (p < 0.0001) upregulation of vascular tissue levels of AGEs, ET-1, and iNOS, as well as high blood levels of glycated haemoglobin, TNF-α, and dyslipidemia. All of these parameters were also significantly inhibited by metformin. Moreover, metformin treatment augmented arterial eNOS expression which had been inhibited by diabetes progression. Furthermore, a significant correlation was observed between femoral artery endothelial tissue damage and glycemia, AGEs, ET-1, TNF-α, and dyslipidemia. Thus, in a rat model of T2DM-induced LEAD, an association between femoral artery tissue damage and the AGEs/ET-1/inflammation/NOS/dyslipidemia axis was demonstrated, with metformin treatment demonstrating beneficial vascular protective effects.
Collapse
Affiliation(s)
- Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Amro Maarouf
- Department of Clinical Biochemistry, Birmingham Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B9 5SS, UK
| | - Amal F. Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nervana M. Bayoumy
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Youssef A. Alqahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Refaat A. Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Saeed M. Alqahtani
- Department of Surgery, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohamed Abd Ellatif
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
- Department of Medical Biochemistry, College of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Bahjat Al-Ani
- Department of Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Alia Albawardi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
17
|
DeMarsilis A, Reddy N, Boutari C, Filippaios A, Sternthal E, Katsiki N, Mantzoros C. Pharmacotherapy of type 2 diabetes: An update and future directions. Metabolism 2022; 137:155332. [PMID: 36240884 DOI: 10.1016/j.metabol.2022.155332] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Type 2 diabetes (T2D) is a widely prevalent disease with substantial economic and social impact for which multiple conventional and novel pharmacotherapies are currently available; however, the landscape of T2D treatment is constantly changing as new therapies emerge and the understanding of currently available agents deepens. This review aims to provide an updated summary of the pharmacotherapeutic approach to T2D. Each class of agents is presented by mechanism of action, details of administration, side effect profile, cost, and use in certain populations including heart failure, non-alcoholic fatty liver disease, obesity, chronic kidney disease, and older individuals. We also review targets of novel therapeutic T2D agent development. Finally, we outline an up-to-date treatment approach that starts with identification of an individualized goal for glycemic control then selection, initiation, and further intensification of a personalized therapeutic plan for T2D.
Collapse
Affiliation(s)
- Antea DeMarsilis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Niyoti Reddy
- Department of Medicine, School of Medicine, Boston University, Boston, USA
| | - Chrysoula Boutari
- Second Propedeutic Department of Internal Medicine, Hippocration Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Filippaios
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Elliot Sternthal
- Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02115, USA
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus.
| | - Christos Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA; Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Miwa T, Kita T, Yamaguchi T, Sakamoto T. Metformin Reduces the Incidence of Sensorineural Hearing Loss in Patients With Type 2 Diabetes Mellitus: A Retrospective Chart Review. Cureus 2022; 14:e30406. [PMCID: PMC9669516 DOI: 10.7759/cureus.30406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction and objectives Acquired sensorineural hearing loss (SNHL) has become a critical societal issue in recent years. SNHL is considered a risk factor for type 2 diabetes mellitus (T2DM). Metformin is commonly used to treat T2DM. However, its effects on SNHL have not been reported yet. Hence, this study aimed to evaluate the association between the use of metformin and SNHL incidence. Patients and methods In this retrospective matched-cohort study, the medical records of 1219 patients with T2DM aged >18 years from our hospital’s inpatient database from January 1, 2012, to December 31, 2019, were examined, and matched cohorts were generated (76 patients receiving metformin and 76 not receiving metformin). A multivariable logistic regression analysis was performed to investigate the factors influencing the incidence of SNHL. Results After adjustment by propensity matching, multivariable logistic regression analysis revealed that the non-use of metformin increased the risk of developing SNHL (odds ratio, 0.26; 95% confidence interval, 0.07-0.93; p = 0.03). Conclusions This study demonstrated an association between the use of metformin and a reduced incidence of SNHL among patients with T2DM.
Collapse
|
19
|
Kamel AM, Sabry N, Farid S. Effect of metformin on left ventricular mass and functional parameters in non-diabetic patients: a meta-analysis of randomized clinical trials. BMC Cardiovasc Disord 2022; 22:405. [PMID: 36088302 PMCID: PMC9464374 DOI: 10.1186/s12872-022-02845-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Left ventricular hypertrophy is a common finding in patients with ischemic heart disease and is associated with mortality in patients with cardiovascular disease (CVD). Metformin, an antidiabetic drug, has been shown to reduce oxidative stress and left ventricular mass index (LVMI) in animal hypertrophy models. We summarized evidence regarding the effect of metformin on LVMI and LVEF. METHODS Electronic databases were searched for randomized clinical trials (RCTs) that used metformin in non-diabetic patients with or without pre-existing CVD. The standardized mean change using change score standardization (SMCC) was calculated for each study. The random-effects model was used to pool the SMCC across studies. Meta-regression analysis was used to assess the association of heart failure (HF), metformin dose, and duration with the SMCC. RESULTS Data synthesis from nine RCTs (754 patients) showed that metformin use resulted in higher reduction in LVMI after 12 months (SMCC = -0.63, 95% CI - 1.23; - 0.04, p = 0.04) and an overall higher reduction in LVMI (SMCC = -0.5, 95% CI - 0.84; - 0.16, p < 0.01). These values equate to absolute values of 11.3 (95% CI 22.1-0.72) and 8.97 (95% CI 15.06-2.87) g/m2, respectively. The overall improvement in LVEF was also higher in metformin users after excluding one outlier (SMCC = 0.26, 95% CI 0.03-0.49, P = 0.03) which translates to a higher absolute improvement of 2.99% (95% CI 0.34; 5.63). Subgroup analysis revealed a favorable effect for metformin on LVEF in patients who received > 1000 mg/day (SMCC = 0.28, 95% CI 0.04; 0.52, P = 0.04), and patients with HF (SMCC = 0.23; 95% CI 0.1; 0.36; P = 0.004). These values translate to a higher increase of 2.64% and 3.21%, respectively. CONCLUSION Results suggest a favorable effect for metformin on LVMI and LVEF in patients with or without pre-existing CVD. Additional trials are needed to address the long-term effect of metformin. Registration The study was registered on the PROSPERO database with the registration number CRD42021239368 ( https://www.crd.york.ac.uk/prospero ).
Collapse
Affiliation(s)
- Ahmed M Kamel
- Clinical Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Nirmeen Sabry
- Clinical Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Samar Farid
- Clinical Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
20
|
Wang X, Liu Y, Han D, Zhong J, Yang C, Chen X. Dose-dependent immunomodulatory effects of metformin on human neonatal monocyte-derived macrophages. Cell Immunol 2022; 377:104557. [PMID: 35679651 DOI: 10.1016/j.cellimm.2022.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022]
Abstract
While the association of inflammation with bronchopulmonary dysplasia (BPD) has long been appreciated, M1 proinflammatory macrophage population is emerging as the key element in driving the BPD inflammatory environment. Previous study suggests that low-dose metformin elicits an anti-inflammatory response, possibly through modulating macrophages, to improve disease outcome in a rat BPD model. To investigate this concept further, we examined the dose-dependent immunomodulatory function of metformin directly on human macrophages derived from cord blood (CB) monocytes. We demonstrate that low-dose metformin promotes expansion of M2 anti-inflammatory macrophages, contrasted with high-dose treatment, which exacerbates inflammation by favoring M1 polarization and restricting M2 phenotype. These findings highlight that metformin hold immunomodulatory ability by regulating macrophage polarization in a dose-dependent manner, and only when applied at low dose, exhibiting potential for beneficial anti-inflammatory adjuvant in BPD setting.
Collapse
Affiliation(s)
- Xuan Wang
- Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Yijun Liu
- Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Dongshan Han
- Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Junyan Zhong
- Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Chuanzhong Yang
- Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xueyu Chen
- Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
21
|
Schernthaner G, Brand K, Bailey CJ. Metformin and the heart: Update on mechanisms of cardiovascular protection with special reference to comorbid type 2 diabetes and heart failure. Metabolism 2022; 130:155160. [PMID: 35143848 DOI: 10.1016/j.metabol.2022.155160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/05/2022] [Accepted: 02/03/2022] [Indexed: 12/15/2022]
Abstract
Metformin has been in clinical use for the management of type 2 diabetes for more than 60 years and is supported by a vast database of clinical experience: this includes evidence for cardioprotection from randomised trials and real-world studies. Recently, the position of metformin as first choice glucose-lowering agent has been supplanted to some extent by the emergence of newer classes of antidiabetic therapy, namely the sodium-glucose co-transporter-2 (SGLT2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists. These agents have benefitted through support from large cardiovascular outcomes trials with more modern trial designs than earlier studies conducted to assess metformin. Nevertheless, clinical research on metformin continues to further assess its many potentially advantageous effects. Here, we review the evidence for improved cardiovascular outcomes with metformin in the context of the current era of diabetes outcomes trials. Focus is directed towards the potentially cardioprotective actions of metformin in patients with type 2 diabetes and heart failure (HF), now recognised as the most common complication of diabetes.
Collapse
|
22
|
Phang RJ, Ritchie RH, Hausenloy DJ, Lees JG, Lim SY. Cellular interplay between cardiomyocytes and non-myocytes in diabetic cardiomyopathy. Cardiovasc Res 2022; 119:668-690. [PMID: 35388880 PMCID: PMC10153440 DOI: 10.1093/cvr/cvac049] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/16/2022] [Accepted: 03/05/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with Type 2 diabetes mellitus (T2DM) frequently exhibit a distinctive cardiac phenotype known as diabetic cardiomyopathy. Cardiac complications associated with T2DM include cardiac inflammation, hypertrophy, fibrosis and diastolic dysfunction in the early stages of the disease, which can progress to systolic dysfunction and heart failure. Effective therapeutic options for diabetic cardiomyopathy are limited and often have conflicting results. The lack of effective treatments for diabetic cardiomyopathy is due in part, to our poor understanding of the disease development and progression, as well as a lack of robust and valid preclinical human models that can accurately recapitulate the pathophysiology of the human heart. In addition to cardiomyocytes, the heart contains a heterogeneous population of non-myocytes including fibroblasts, vascular cells, autonomic neurons and immune cells. These cardiac non-myocytes play important roles in cardiac homeostasis and disease, yet the effect of hyperglycaemia and hyperlipidaemia on these cell types are often overlooked in preclinical models of diabetic cardiomyopathy. The advent of human induced pluripotent stem cells provides a new paradigm in which to model diabetic cardiomyopathy as they can be differentiated into all cell types in the human heart. This review will discuss the roles of cardiac non-myocytes and their dynamic intercellular interactions in the pathogenesis of diabetic cardiomyopathy. We will also discuss the use of sodium-glucose cotransporter 2 inhibitors as a therapy for diabetic cardiomyopathy and their known impacts on non-myocytes. These developments will no doubt facilitate the discovery of novel treatment targets for preventing the onset and progression of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Ren Jie Phang
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rebecca H Ritchie
- School of Biosciences, Parkville, Victoria 3010, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia.,Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,The Hatter Cardiovascular Institute, University College London, London, UK.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan
| | - Jarmon G Lees
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| |
Collapse
|
23
|
Dia M, Leon C, Chanon S, Bendridi N, Gomez L, Rieusset J, Thibault H, Paillard M. Effect of Metformin on T2D-Induced MAM Ca 2+ Uncoupling and Contractile Dysfunction in an Early Mouse Model of Diabetic HFpEF. Int J Mol Sci 2022; 23:ijms23073569. [PMID: 35408928 PMCID: PMC8998623 DOI: 10.3390/ijms23073569] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a leading complication in type 2 diabetes patients. Recently, we have shown that the reticulum-mitochondria Ca2+ uncoupling is an early and reversible trigger of the cardiac dysfunction in a diet-induced mouse model of DCM. Metformin is a first-line antidiabetic drug with recognized cardioprotective effect in myocardial infarction. Whether metformin could prevent the progression of DCM remains not well understood. We therefore investigated the effect of a chronic 6-week metformin treatment on the reticulum-mitochondria Ca2+ coupling and the cardiac function in our high-fat high-sucrose diet (HFHSD) mouse model of DCM. Although metformin rescued the glycemic regulation in the HFHSD mice, it did not preserve the reticulum-mitochondria Ca2+ coupling either structurally or functionally. Metformin also did not prevent the progression towards cardiac dysfunction, i.e., cardiac hypertrophy and strain dysfunction. In summary, despite its cardioprotective role, metformin is not sufficient to delay the progression to early DCM.
Collapse
Affiliation(s)
- Maya Dia
- Laboratoire CarMeN—IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, Univ-Lyon, 69500 Bron, France; (M.D.); (C.L.); (L.G.); (H.T.)
| | - Christelle Leon
- Laboratoire CarMeN—IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, Univ-Lyon, 69500 Bron, France; (M.D.); (C.L.); (L.G.); (H.T.)
| | - Stephanie Chanon
- Laboratoire CarMeN—MERISM Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, Univ-Lyon, 69921 Oullins, France; (S.C.); (N.B.); (J.R.)
| | - Nadia Bendridi
- Laboratoire CarMeN—MERISM Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, Univ-Lyon, 69921 Oullins, France; (S.C.); (N.B.); (J.R.)
| | - Ludovic Gomez
- Laboratoire CarMeN—IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, Univ-Lyon, 69500 Bron, France; (M.D.); (C.L.); (L.G.); (H.T.)
| | - Jennifer Rieusset
- Laboratoire CarMeN—MERISM Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, Univ-Lyon, 69921 Oullins, France; (S.C.); (N.B.); (J.R.)
| | - Helene Thibault
- Laboratoire CarMeN—IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, Univ-Lyon, 69500 Bron, France; (M.D.); (C.L.); (L.G.); (H.T.)
- Hospices Civils de Lyon, 69500 Bron, France
| | - Melanie Paillard
- Laboratoire CarMeN—IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, Univ-Lyon, 69500 Bron, France; (M.D.); (C.L.); (L.G.); (H.T.)
- Correspondence: ; Tel.: +33-(0)4-78-78-56-10
| |
Collapse
|
24
|
Buczyńska A, Sidorkiewicz I, Krętowski AJ, Zbucka-Krętowska M, Adamska A. Metformin Intervention—A Panacea for Cancer Treatment? Cancers (Basel) 2022; 14:cancers14051336. [PMID: 35267644 PMCID: PMC8909770 DOI: 10.3390/cancers14051336] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
The molecular mechanism of action and the individual influence of various metabolic pathways related to metformin intervention are under current investigation. The available data suggest that metformin provides many advantages, exhibiting anti-inflammatory, anti-cancer, hepatoprotective, cardioprotective, otoprotective, radioprotective, and radio-sensitizing properties depending on cellular context. This literature review was undertaken to provide novel evidence concerning metformin intervention, with a particular emphasis on cancer treatment and prevention. Undoubtedly, the pleiotropic actions associated with metformin include inhibiting inflammatory processes, increasing antioxidant capacity, and improving glycemic and lipid metabolism. Consequently, these characteristics make metformin an attractive medicament to translate to human trials, the promising results of which were also summarized in this review.
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.J.K.)
- Correspondence: (A.B.); (A.A.); Tel.: +48-85-746-8513 (A.B.); +48-85-746-8660 (A.A.)
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.J.K.)
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.J.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Agnieszka Adamska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
- Correspondence: (A.B.); (A.A.); Tel.: +48-85-746-8513 (A.B.); +48-85-746-8660 (A.A.)
| |
Collapse
|
25
|
Small molecule QF84139 ameliorates cardiac hypertrophy via activating the AMPK signaling pathway. Acta Pharmacol Sin 2022; 43:588-601. [PMID: 33967278 PMCID: PMC8888632 DOI: 10.1038/s41401-021-00678-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac hypertrophy is a common adaptive response to a variety of stimuli, but prolonged hypertrophy leads to heart failure. Hence, discovery of agents treating cardiac hypertrophy is urgently needed. In the present study, we investigated the effects of QF84139, a newly synthesized pyrazine derivative, on cardiac hypertrophy and the underlying mechanisms. In neonatal rat cardiomyocytes (NRCMs), pretreatment with QF84139 (1-10 μM) concentration-dependently inhibited phenylephrine-induced hypertrophic responses characterized by fetal genes reactivation, increased ANP protein level and enlarged cardiomyocytes. In adult male mice, administration of QF84139 (5-90 mg·kg-1·d-1, i.p., for 2 weeks) dose-dependently reversed transverse aortic constriction (TAC)-induced cardiac hypertrophy displayed by cardiomyocyte size, left ventricular mass, heart weights, and reactivation of fetal genes. We further revealed that QF84139 selectively activated the AMPK signaling pathway without affecting the phosphorylation of CaMKIIδ, ERK1/2, AKT, PKCε, and P38 kinases in phenylephrine-treated NRCMs and in the hearts of TAC-treated mice. In NRCMs, QF84139 did not show additive effects with metformin on the AMPK activation, whereas the anti-hypertrophic effect of QF84139 was abolished by an AMPK inhibitor Compound C or knockdown of AMPKα2. In AMPKα2-deficient mice, the anti-hypertrophic effect of QF84139 was also vanished. These results demonstrate that QF84139 attenuates the PE- and TAC-induced cardiac hypertrophy via activating the AMPK signaling. This structurally novel compound would be a promising lead compound for developing effective agents for the treatment of cardiac hypertrophy.
Collapse
|
26
|
Zhang F, Liu L, Xie Y, Wang J, Chen X, Zheng S, Li Y, Dang Y. Cardiac contractility modulation ameliorates myocardial metabolic remodeling in a rabbit model of chronic heart failure through activation of AMPK and PPAR-α pathway. Open Med (Wars) 2022; 17:365-374. [PMID: 35799598 PMCID: PMC8864057 DOI: 10.1515/med-2022-0415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Accepted: 11/20/2021] [Indexed: 11/15/2022] Open
Abstract
Abstract
Metabolic remodeling contributes to the pathological process of heart failure (HF). We explored the effects of cardiac contractility modulation (CCM) on myocardial metabolic remodeling in the rabbit model with HF. The HF in rabbit model was established by pressure uploading and then CCM was applied. We evaluated the cardiac structure and function by echocardiography, serum BNP level, and hematoxylin and eosin and Masson’s trichrome staining. We detected the accumulation of glycogen and lipid droplets in myocardial tissues by periodic acid-Schiff and Oil Red O staining. Then, we measured the contents of glucose, free fatty acid (FFA), lactic acid, pyruvate, and adenosine triphosphate (ATP) levels in myocardial tissues by corresponding kits and the expression levels of key factors related to myocardial substrate uptake and utilization by western blotting were analyzed. CCM significantly restored the cardiac structure and function in the rabbit model with HF. CCM therapy further decreased the accumulation of glycogen and lipid droplets. Furthermore, CCM reduced the contents of FFA, glucose, and lactic acid, and increased pyruvate and ATP levels in HF tissues. The protein expression levels related to myocardial substrate uptake and utilization were markedly improved with CCM treatment by further activating adenosine monophosphate-activated protein kinase and peroxisome proliferator-activated receptor-α signaling pathways.
Collapse
Affiliation(s)
- Feifei Zhang
- Department of Cardiology Center, Hebei General Hospital, Xipingxilu 348, Xinhua, Shijiazhuang, 050051, Hebei Province, China
| | - Litian Liu
- Department of Cardiology Center, Hebei General Hospital, Xipingxilu 348, Xinhua, Shijiazhuang, 050051, Hebei Province, China
| | - Yuetao Xie
- Department of Cardiology Center, Hebei General Hospital, Xipingxilu 348, Xinhua, Shijiazhuang, 050051, Hebei Province, China
| | - Jiaqi Wang
- Department of Cardiology Center, Hebei General Hospital, Xipingxilu 348, Xinhua, Shijiazhuang, 050051, Hebei Province, China
| | - Xuefeng Chen
- Department of Cardiology Center, Hebei General Hospital, Xipingxilu 348, Xinhua, Shijiazhuang, 050051, Hebei Province, China
| | - Shihang Zheng
- Department of Cardiology Center, Hebei General Hospital, Xipingxilu 348, Xinhua, Shijiazhuang, 050051, Hebei Province, China
| | - Yingxiao Li
- Department of Cardiology Center, Hebei General Hospital, Xipingxilu 348, Xinhua, Shijiazhuang, 050051, Hebei Province, China
| | - Yi Dang
- Department of Cardiology Center, Hebei General Hospital, Xipingxilu 348, Xinhua, Shijiazhuang, 050051, Hebei Province, China
| |
Collapse
|
27
|
Metformin: Expanding the Scope of Application-Starting Earlier than Yesterday, Canceling Later. Int J Mol Sci 2022; 23:ijms23042363. [PMID: 35216477 PMCID: PMC8875586 DOI: 10.3390/ijms23042363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Today the area of application of metformin is expanding, and a wealth of data point to its benefits in people without carbohydrate metabolism disorders. Already in the population of people leading an unhealthy lifestyle, before the formation of obesity and prediabetes metformin smooths out the adverse effects of a high-fat diet. Being prescribed at this stage, metformin will probably be able to, if not prevent, then significantly reduce the progression of all subsequent metabolic changes. To a large extent, this review will discuss the proofs of the evidence for this. Another recent important change is a removal of a number of restrictions on its use in patients with heart failure, acute coronary syndrome and chronic kidney disease. We will discuss the reasons for these changes and present a new perspective on the role of increasing lactate in metformin therapy.
Collapse
|
28
|
The effects of metformin and alendronate in attenuating bone loss and improving glucose metabolism in diabetes mellitus mice. Aging (Albany NY) 2022; 14:272-285. [PMID: 35027504 PMCID: PMC8791222 DOI: 10.18632/aging.203729] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022]
Abstract
Background: To explore the anti-osteoporosis and anti-diabetes effects and potential underlying mechanisms of treatment with metformin and alendronate in diabetes mellitus mice. Methods: Eight-week-old C57 BL/KS db/db and db/+ female mice were evaluated according to the following treatment group for 12 weeks: control group, diabetes mellitus group, diabetes mellitus with metformin group, diabetes mellitus with Alendronate group, diabetes mellitus with metformin plus alendronate group. Glucose level, glucose tolerance test, bone mineral density, bone microarchitecture, bone histomorphometry, serum biomarkers, and qPCR analysis. Results: Combined metformin and alendronate can improve progression in glucose metabolism and bone metabolism, including blood glucose levels, blood glucose levels after 4 and 16 hours fasting, glucose tolerance test results, insulin sensitivity and reduces bone loss than the diabetes group. The use of alendronate alone can increase significantly serum glucagon-like peptide-1 levels than the diabetes group. The use of metformin alone can improve bone microstructure such as Tb.Sp and Tb.N of spine in diabetic mice. Conclusion: The combined use of alendronate and metformin has an anti-diabetes and anti-osteoporotic effect compared with diabetic mice, but they appear to act no obvious synergistically between alendronate and metformin.
Collapse
|
29
|
Kinetic control of Phytic acid/Lixisenatide/Fe (III) ternary nanoparticles assembly process for sustained peptide release. Int J Pharm 2022; 611:121317. [PMID: 34838624 DOI: 10.1016/j.ijpharm.2021.121317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022]
Abstract
The preferable choice of sustained peptide delivery systems is generally polymer-based microspheres in which their large particle size, wide size distribution, low drug encapsulation efficacy, poor colloidal stability, and undesirable burst release eventually hinder their clinical translation. In this study, a nanoscale ternary Lixisenatide (Lix) sustained delivery system based on strong multivalent interactions (electrostatic and coordination complexation) among small molecular phytic acid (PA), Lix and Fe3+ was developed. Flash nanocomplexation (FNC) was utilized to facilitate the rapid and efficient mixing of the three components and kinetically control the assembly process that enabled dynamic balance of two competitive chemical reactions with different kinetic rates (slow chemical reaction of PA/Lix and fast chemical reaction of PA/Fe3+) to generate structural uniform ternary nanoparticles and avoid heterogeneous complexes. By tuning the mixing conditions (i.e., flow rate, mass ratio, concentration, pH value, etc.), the ternary PA/Lix/Fe3+ nanoparticles were assembled with reproducible production in a manner of high uniformity and scalability, achieving small size (∼50 nm), uniform composition (PDI: ∼0.12), favourable colloidal stability, high encapsulation efficiency (∼100%), and tunable drug release kinetics. The optimized formulation exhibited a minor Lix release (<20%) in the first day and extended peptide release period over 8 days. Unexpectedly, upon a single injection administration, the as-prepared formulation (600 μg/kg) rapidly brought the high BGL (∼30 mmol/L) back to normal range (<10 mmol/L) within the initial 6 h and achieved a 180 h glycemic control in T2D mouse model. Moreover, this sustained peptide delivery system demonstrated a repeatable hypoglycemic effects and significantly suppressed the pathological damage of major organs following multiple injection. This sustained peptide delivery system with aqueous, facile and reproducible preparation process possesses good biocompatibility, tunable release kinetics, and prolonged hypoglycemic effects, portending its great translational potential in the chronic disease treatment.
Collapse
|
30
|
Effects of Metformin in Heart Failure: From Pathophysiological Rationale to Clinical Evidence. Biomolecules 2021; 11:biom11121834. [PMID: 34944478 PMCID: PMC8698925 DOI: 10.3390/biom11121834] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a worldwide major health burden and heart failure (HF) is the most common cardiovascular (CV) complication in affected patients. Therefore, identifying the best pharmacological approach for glycemic control, which is also useful to prevent and ameliorate the prognosis of HF, represents a crucial issue. Currently, the choice is between the new drugs sodium/glucose co-transporter 2 inhibitors that have consistently shown in large CV outcome trials (CVOTs) to reduce the risk of HF-related outcomes in T2DM, and metformin, an old medicament that might end up relegated to the background while exerting interesting protective effects on multiple organs among which include heart failure. When compared with other antihyperglycemic medications, metformin has been demonstrated to be safe and to lower morbidity and mortality for HF, even if these results are difficult to interpret as they emerged mainly from observational studies. Meta-analyses of randomized controlled clinical trials have not produced positive results on the risk or clinical course of HF and sadly, large CV outcome trials are lacking. The point of force of metformin with respect to new diabetic drugs is the amount of data from experimental investigations that, for more than twenty years, still continues to provide mechanistic explanations of the several favorable actions in heart failure such as, the improvement of the myocardial energy metabolic status by modulation of glucose and lipid metabolism, the attenuation of oxidative stress and inflammation, and the inhibition of myocardial cell apoptosis, leading to reduced cardiac remodeling and preserved left ventricular function. In the hope that specific large-scale trials will be carried out to definitively establish the metformin benefit in terms of HF failure outcomes, we reviewed the literature in this field, summarizing the available evidence from experimental and clinical studies reporting on effects in heart metabolism, function, and structure, and the prominent pathophysiological mechanisms involved.
Collapse
|
31
|
Jankauskas SS, Kansakar U, Varzideh F, Wilson S, Mone P, Lombardi A, Gambardella J, Santulli G. Heart failure in diabetes. Metabolism 2021; 125:154910. [PMID: 34627874 PMCID: PMC8941799 DOI: 10.1016/j.metabol.2021.154910] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Heart failure and cardiovascular disorders represent the leading cause of death in diabetic patients. Here we present a systematic review of the main mechanisms underlying the development of diabetic cardiomyopathy. We also provide an excursus on the relative contribution of cardiomyocytes, fibroblasts, endothelial and smooth muscle cells to the pathophysiology of heart failure in diabetes. After having described the preclinical tools currently available to dissect the mechanisms of this complex disease, we conclude with a section on the most recent updates of the literature on clinical management.
Collapse
Affiliation(s)
- Stanislovas S Jankauskas
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Fahimeh Varzideh
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Scott Wilson
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Pasquale Mone
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Angela Lombardi
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; International Translational Research and Medical Education (ITME), Department of Advanced Biomedical Science, "Federico II" University, 80131 Naples, Italy
| | - Gaetano Santulli
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; International Translational Research and Medical Education (ITME), Department of Advanced Biomedical Science, "Federico II" University, 80131 Naples, Italy.
| |
Collapse
|
32
|
Ceriello A, Catrinoiu D, Chandramouli C, Cosentino F, Dombrowsky AC, Itzhak B, Lalic NM, Prattichizzo F, Schnell O, Seferović PM, Valensi P, Standl E. Heart failure in type 2 diabetes: current perspectives on screening, diagnosis and management. Cardiovasc Diabetol 2021; 20:218. [PMID: 34740359 PMCID: PMC8571004 DOI: 10.1186/s12933-021-01408-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes is one of the most relevant risk factors for heart failure, the prevalence of which is increasing worldwide. The aim of the review is to highlight the current perspectives of the pathophysiology of heart failure as it pertains to type 2 diabetes. This review summarizes the proposed mechanistic bases, explaining the myocardial damage induced by diabetes-related stressors and other risk factors, i.e., cardiomyopathy in type 2 diabetes. We highlight the complex pathology of individuals with type 2 diabetes, including the relationship with chronic kidney disease, metabolic alterations, and heart failure. We also discuss the current criteria used for heart failure diagnosis and the gold standard screening tools for individuals with type 2 diabetes. Currently approved pharmacological therapies with primary use in type 2 diabetes and heart failure, and the treatment-guiding role of NT-proBNP are also presented. Finally, the influence of the presence of type 2 diabetes as well as heart failure on COVID-19 severity is briefly discussed.
Collapse
Affiliation(s)
- Antonio Ceriello
- IRCCS MultiMedica, Via Gaudenzio Fantoli, 16/15, 20138 Milan, Italy
| | - Doina Catrinoiu
- Faculty of Medicine, Clinical Center of Diabetes, Nutrition and Metabolic Diseases, Ovidius University of Constanta, Constanta, Romania
| | - Chanchal Chandramouli
- Duke-NUS Medical School, Singapore, Singapore
- National Heart Research Institute, National Heart Centre, Singapore, Singapore
| | - Francesco Cosentino
- Unit of Cardiology, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | | | - Baruch Itzhak
- Clalit Health Services and Technion Faculty of Medicine, Haifa, Israel
| | - Nebojsa Malić Lalic
- School of Medicine, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University of Belgrade, Belgrade, Serbia
| | | | - Oliver Schnell
- Forschergruppe Diabetes e. V. at Helmholtz Centre Munich GmbH, Munich, Germany
| | - Petar M. Seferović
- School of Medicine, University of Belgrade, Belgrade University Medical Center, Belgrade, Serbia
| | - Paul Valensi
- Unit of Endocrinology, Diabetology, Nutrition, Jean Verdier Hospital, AP-HP, CRNH-IdF, CINFO, Paris 13 University, Bondy, France
| | - Eberhard Standl
- Forschergruppe Diabetes e. V. at Helmholtz Centre Munich GmbH, Munich, Germany
| | - the D&CVD EASD Study Group
- IRCCS MultiMedica, Via Gaudenzio Fantoli, 16/15, 20138 Milan, Italy
- Faculty of Medicine, Clinical Center of Diabetes, Nutrition and Metabolic Diseases, Ovidius University of Constanta, Constanta, Romania
- Duke-NUS Medical School, Singapore, Singapore
- National Heart Research Institute, National Heart Centre, Singapore, Singapore
- Unit of Cardiology, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
- Sciarc GmbH, Baierbrunn, Germany
- Clalit Health Services and Technion Faculty of Medicine, Haifa, Israel
- School of Medicine, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University of Belgrade, Belgrade, Serbia
- Forschergruppe Diabetes e. V. at Helmholtz Centre Munich GmbH, Munich, Germany
- School of Medicine, University of Belgrade, Belgrade University Medical Center, Belgrade, Serbia
- Unit of Endocrinology, Diabetology, Nutrition, Jean Verdier Hospital, AP-HP, CRNH-IdF, CINFO, Paris 13 University, Bondy, France
| |
Collapse
|
33
|
Sunagawa Y, Shimizu K, Katayama A, Funamoto M, Shimizu K, Nurmila S, Shimizu S, Miyazaki Y, Katanasaka Y, Hasegawa K, Morimoto T. Metformin suppresses phenylephrine-induced hypertrophic responses by inhibiting p300-HAT activity in cardiomyocytes. J Pharmacol Sci 2021; 147:169-175. [PMID: 34384564 DOI: 10.1016/j.jphs.2021.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/08/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Heart failure is the final pathway for a wide spectrum of myocardial stress, including hypertension and myocardial infarction. However, the potential effects of metformin on cardiac hypertrophy are still unclear. PURPOSE The purpose of this study was to investigate whether metformin leads to suppression of hypertrophic responses in cardiomyocytes. METHODS AND RESULTS To investigate whether metformin inhibited p300-histone acetyltransferase (HAT), we performed an in vitro HAT assay. Metformin directly inhibited p300-mediated acetylation of histone-H3K9. To examine the effects of metformin on hypertrophic responses, cardiomyocytes prepared from neonatal rats were treated with metformin and stimulated with saline or phenylephrine (PE), a α1-adrenergic agonist for 48 h. PE stimulus showed an increase in cell size, myofibrillar organization, expression of the endogenous atrial natriuretic factor and brain natriuretic peptide genes, and acetylation of histone-H3K9 compared with saline-treated cells. These PE-induced changes were inhibited by metformin. Next, to examine the effect of metformin on p300-mediated hypertrophy, cardiomyocytes were transfected with expression vector of p300. Metformin significantly suppressed p300-induced hypertrophic responses and acetylation of histone-H3K9. CONCLUSIONS The study demonstrates that metformin can suppress PE-induced and p300-mediated hypertrophic responses. Metformin may be useful for the treatment of patients with diabetes and heart failure.
Collapse
Affiliation(s)
- Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto, 612-8555, Japan; Shizuoka General Hospital, Shizuoka, 420-8527, Japan
| | - Kiyotaka Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Ayumi Katayama
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto, 612-8555, Japan
| | - Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto, 612-8555, Japan
| | - Sari Nurmila
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Satoshi Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yusuke Miyazaki
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto, 612-8555, Japan; Shizuoka General Hospital, Shizuoka, 420-8527, Japan
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto, 612-8555, Japan; Shizuoka General Hospital, Shizuoka, 420-8527, Japan
| | - Koji Hasegawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto, 612-8555, Japan
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto, 612-8555, Japan; Shizuoka General Hospital, Shizuoka, 420-8527, Japan.
| |
Collapse
|
34
|
Alhajri N, Khursheed R, Ali MT, Abu Izneid T, Al-Kabbani O, Al-Haidar MB, Al-Hemeiri F, Alhashmi M, Pottoo FH. Cardiovascular Health and The Intestinal Microbial Ecosystem: The Impact of Cardiovascular Therapies on The Gut Microbiota. Microorganisms 2021; 9:2013. [PMID: 34683334 PMCID: PMC8541580 DOI: 10.3390/microorganisms9102013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023] Open
Abstract
It has become evident over the past several years that the intestinal microbial ecosystem plays a critical role in the development and prevention of cardiovascular diseases (CVDs) and other metabolic disorders, such as hypertension, obesity, diabetes mellitus, and metabolic syndrome. The intestinal microbiota ecosystem functions as a major virtual endocrine organ that interacts and responds to molecules' signals within the host. Several meta-organismal pathways are involved in the gut-host interaction, including trimethylamine-N-oxide (TMAO) and short-chain fatty acids (SCFA). Host phenotype and cardiovascular diseases (CVDs) varying from hypertension, insulin resistance, and obesity to more specific inflammatory processes, such as atherosclerosis and hypercoagulability, have shown to be affected by the gut-host interaction. Additionally, several studies that involved animals and humans demonstrated a striking connection between the development of new CVDs and an imbalance in the gut microbiota composition along with the presence of their derived metabolites. Through this review article, we aim to evaluate the role of the normal gut microbiota ecosystem, its association with CVDs, effects of the therapies used to control and manage CVDs in the gut microbiota environment and explore potential therapeutic interventions to amplify disease outcomes in patients with CVDs.
Collapse
Affiliation(s)
- Noora Alhajri
- Department of Epidemiology and Population Health, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (O.A.-K.); (M.B.A.-H.); (F.A.-H.); (M.A.)
- Department of Medicine, Sheikh Shakhbout Medical City (SSMC), Abu Dhabi P.O. Box 11001, United Arab Emirates
| | - Rubiya Khursheed
- Department of Pharmaceutical Sciences, Lovely Professional University, Punjab 144403, India;
| | - Mohammad Taher Ali
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia; (M.T.A.); (F.H.P.)
| | - Tareq Abu Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi P.O. Box 112612, United Arab Emirates;
| | - Oumaima Al-Kabbani
- Department of Epidemiology and Population Health, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (O.A.-K.); (M.B.A.-H.); (F.A.-H.); (M.A.)
| | - Mahdia B. Al-Haidar
- Department of Epidemiology and Population Health, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (O.A.-K.); (M.B.A.-H.); (F.A.-H.); (M.A.)
| | - Fatima Al-Hemeiri
- Department of Epidemiology and Population Health, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (O.A.-K.); (M.B.A.-H.); (F.A.-H.); (M.A.)
| | - Mohamed Alhashmi
- Department of Epidemiology and Population Health, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (O.A.-K.); (M.B.A.-H.); (F.A.-H.); (M.A.)
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia; (M.T.A.); (F.H.P.)
| |
Collapse
|
35
|
Chomanicova N, Gazova A, Adamickova A, Valaskova S, Kyselovic J. The role of AMPK/mTOR signaling pathway in anticancer activity of metformin. Physiol Res 2021; 70:501-508. [PMID: 34062070 DOI: 10.33549/physiolres.934618] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Metformin (MTF) is a widely used drug for the treatment of diabetes mellitus type 2 (DM2) and frequently used as an adjuvant therapy for polycystic ovarian syndrome, metabolic syndrome, and in some cases also tuberculosis. Its protective effect on the cardiovascular system has also been described. Recently, MTF was subjected to various analyzes and studies that showed its beneficial effects in cancer treatment such as reducing cancer cell proliferation, reducing tumor growth, inducing apoptosis, reducing cancer risk in diabetic patients, or reducing likelihood of relapse. One of the MTF's mechanisms of action is the activation of adenosine-monophosphate-activated protein kinase (AMPK). Several studies have shown that AMPK/mammalian target of rapamycin (mTOR) pathway has anticancer effect in vivo and in vitro. The aim of this review is to present the anticancer activity of MTF highlighting the importance of the AMPK/mTOR pathway in the cancer process.
Collapse
Affiliation(s)
- N Chomanicova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
36
|
Ionică LN, Gaiță L, Bînă AM, Soșdean R, Lighezan R, Sima A, Malița D, Crețu OM, Burlacu O, Muntean DM, Sturza A. Metformin alleviates monoamine oxidase-related vascular oxidative stress and endothelial dysfunction in rats with diet-induced obesity. Mol Cell Biochem 2021; 476:4019-4029. [PMID: 34216348 DOI: 10.1007/s11010-021-04194-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/26/2021] [Indexed: 12/31/2022]
Abstract
In the past decade, monoamine oxidase (MAO) with 2 isoforms, MAO-A and B, has emerged as an important source of mitochondrial reactive oxygen species (ROS) in cardio-metabolic pathologies. We have previously reported that MAO-related oxidative stress mediates endothelial dysfunction in rodent models of diabetes and diabetic patients; however, the role of MAO in the vascular impairment associated to obesity has not been investigated so far. Metformin (METF), the first-line drug in the therapy of type 2 diabetes mellitus, has been reported to elicit vasculoprotective effects via partially elucidated mechanisms. The present study was purported to assess the effects of METF on MAO expression, ROS production and vasomotor function of aortas isolated from rats with diet-induced obesity. After 24 weeks of high calorie junk food (HCJF) diet, isolated aortic rings were prepared and treated with METF (10 μM, 12 h incubation). Measurements of MAO expression (quantitative PCR and immune histochemistry), ROS production (spectrometry and immune-fluorescence) and vascular reactivity (myograph studies) were performed in rat aortic rings. MAO expression was upregulated in aortic rings isolated from obese rats together with an increase in ROS production and an impairment of vascular reactivity. METF decreased MAO expression and ROS generation, reduced vascular contractility and improved the endothelium-dependent relaxation in the diseased vascular preparations. In conclusion, METF elicited vascular protective effects via the mitigation of MAO-related oxidative stress in the rat model of diet-induced obesity.
Collapse
Affiliation(s)
- Loredana N Ionică
- Department of Functional Sciences III, Discipline of Pathophysiology, Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy Timişoara, Romania, Eftimie Murgu Sq., no. 2, 300041, Timișoara, Romania
| | - Laura Gaiță
- Department of Internal Medicine VII, Discipline of Diabetes, Nutrition and Metabolic Diseases, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq., no. 2, 300041, Timișoara, Romania
| | - Anca M Bînă
- Department of Functional Sciences III, Discipline of Pathophysiology, Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy Timişoara, Romania, Eftimie Murgu Sq., no. 2, 300041, Timișoara, Romania.,Department of Internal Medicine VII, Discipline of Diabetes, Nutrition and Metabolic Diseases, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq., no. 2, 300041, Timișoara, Romania
| | - Raluca Soșdean
- Department of Cardiology VI, 2nd Discipline of Cardiology, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq., no. 2, 300041, Timișoara, Romania
| | - Rodica Lighezan
- Department of Infectious Diseases XIII, Discipline of Parasitology, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq., no. 2, 300041, Timișoara, Romania
| | - Alexandra Sima
- Department of Internal Medicine VII, Discipline of Diabetes, Nutrition and Metabolic Diseases, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq., no. 2, 300041, Timișoara, Romania
| | - Daniel Malița
- Department XV, Discipline of Radiology and Medical Imagistics, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq., no. 2, 300041, Timișoara, Romania
| | - Octavian M Crețu
- Department of Surgery IX, Discipline of Surgical Semiotics 1, Center for Hepato-Biliary and Pancreatic Surgery, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania
| | - Ovidiu Burlacu
- Department of Surgery IX, Discipline of Surgical Semiotics 1, Center for Hepato-Biliary and Pancreatic Surgery, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041, Timișoara, Romania.
| | - Danina M Muntean
- Department of Functional Sciences III, Discipline of Pathophysiology, Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy Timişoara, Romania, Eftimie Murgu Sq., no. 2, 300041, Timișoara, Romania.
| | - Adrian Sturza
- Department of Functional Sciences III, Discipline of Pathophysiology, Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy Timişoara, Romania, Eftimie Murgu Sq., no. 2, 300041, Timișoara, Romania
| |
Collapse
|
37
|
Clawson R, Weidman-Evans E, Fort A. Which drug is best for a patient with type 2 diabetes and heart failure? JAAPA 2021; 34:49-52. [PMID: 34162808 DOI: 10.1097/01.jaa.0000743004.83284.cc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Heart failure is twice as common in men with type 2 diabetes than those without it and is almost five times greater in women with diabetes. Ideally, effective treatment for one condition also will help with the other; certainly, clinicians should not prescribe a medication that will potentially worsen one of the conditions, if avoiding it is at all possible. This article reviews the effects of diabetes medications on heart failure outcomes.
Collapse
Affiliation(s)
- Rebecca Clawson
- At the PA program at LSUHSC School of Allied Health in Shreveport, La., Rebecca Clawson is an assistant professor, Emily Weidman-Evans is a professor, and Ashley Fort is an assistant professor. The authors have disclosed no potential conflicts of interest, financial or otherwise
| | | | | |
Collapse
|
38
|
Halabi A, Nolan M, Potter E, Wright L, Asham A, Marwick TH. Role of microvascular dysfunction in left ventricular dysfunction in type 2 diabetes mellitus. J Diabetes Complications 2021; 35:107907. [PMID: 33752963 DOI: 10.1016/j.jdiacomp.2021.107907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/21/2021] [Accepted: 03/09/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Although microvascular disease (mVD) has been linked to poor cardiovascular outcomes in diabetes mellitus, the contribution of mVD to diabetic cardiomyopathy (DC) is unexplored. We investigated whether LV systolic and diastolic dysfunction is associated with mVD in T2DM. METHODS We recruited 32 asymptomatic patients with T2DM (age 71 ± 4 years, 31% females) from a community-based population. All underwent a comprehensive echocardiogram at baseline including assessment of global longitudinal strain (GLS) and diastolic function. Adenosine stress perfusion on cardiac magnetic resonance imaging (CMR) was performed in all patients. Coronary sinus flow (CSF) was measured offline at rest and peak stress with coronary flow reserve (CFR) calculated as the ratio of global stress and rest CSF. RESULTS Resting CSF was reduced in 15 (47%) compared to 4 (13%) with adenosine-stress (p = 0.023). Overall, CFR was observed to be reduced in the cohort (2.38 [IQR 2.20]). Abnormal CFR was not associated with diabetes duration of ≥10 years or poor glycaemic control. CFR was not associated with abnormal GLS (OR 1.04 [95% CI 0.49, 2.20], p = 0.93). However, a modest negative correlation was observed with e' and CFR (r = -0.49, p = 0.004). CONCLUSION This pilot study did not show correlation between subclinical systolic dysfunction and a novel MRI biomarker of microvascular disease. However, there was a weak correlation with myocardial relaxation. Confirmation of these findings in larger studies is indicated.
Collapse
Affiliation(s)
- Amera Halabi
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Mark Nolan
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Menzies Institute for Medical Research, Imaging Research, Hobart, Tasmania, Australia
| | - Elizabeth Potter
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Leah Wright
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Atef Asham
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Thomas H Marwick
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; Menzies Institute for Medical Research, Imaging Research, Hobart, Tasmania, Australia.
| |
Collapse
|
39
|
Ammar HI, Shamseldeen AM, Shoukry HS, Ashour H, Kamar SS, Rashed LA, Fadel M, Srivastava A, Dhingra S. Metformin impairs homing ability and efficacy of mesenchymal stem cells for cardiac repair in streptozotocin-induced diabetic cardiomyopathy in rats. Am J Physiol Heart Circ Physiol 2021; 320:H1290-H1302. [PMID: 33513084 DOI: 10.1152/ajpheart.00317.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) have demonstrated potential in treating diabetic cardiomyopathy. However, patients with diabetes are on multiple drugs and there is a lack of understanding of how transplanted stem cells would respond in presence of such drugs. Metformin is an AMP kinase (AMPK) activator, the widest used antidiabetic drug. In this study, we investigated the effect of metformin on the efficacy of stem cell therapy in a diabetic cardiomyopathy animal model using streptozotocin (STZ) in male Wistar rats. To comprehend the effect of metformin on the efficacy of BM-MSCs, we transplanted BM-MSCs (1 million cells/rat) with or without metformin. Our data demonstrate that transplantation of BM-MSCs prevented cardiac fibrosis and promoted angiogenesis in diabetic hearts. However, metformin supplementation downregulated BM-MSC-mediated cardioprotection. Interestingly, both BM-MSCs and metformin treatment individually improved cardiac function with no synergistic effect of metformin supplementation along with BM-MSCs. Investigating the mechanisms of loss of efficacy of BM-MSCs in the presence of metformin, we found that metformin treatment impairs homing of implanted BM-MSCs in the heart and leads to poor survival of transplanted cells. Furthermore, our data demonstrate that metformin-mediated activation of AMPK is responsible for poor homing and survival of BM-MSCs in the diabetic heart. Hence, the current study confirms that a conflict arises between metformin and BM-MSCs for treating diabetic cardiomyopathy. Approximately 10% of the world population is diabetic to which metformin is prescribed very commonly. Hence, future cell replacement therapies in combination with AMPK inhibitors may be more effective for patients with diabetes.NEW & NOTEWORTHY Metformin treatment reduces the efficacy of mesenchymal stem cell therapy for cardiac repair during diabetic cardiomyopathy. Stem cell therapy in diabetics may be more effective in combination with AMPK inhibitors.
Collapse
Affiliation(s)
- Hania Ibrahim Ammar
- Department of Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
| | | | - Heba Samy Shoukry
- Department of Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Hend Ashour
- Department of Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
- Department of Physiology, Faculty of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Samaa Samir Kamar
- Department of Medical Histology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Laila Ahmed Rashed
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mostafa Fadel
- Diagnostic Imaging and Endoscopy Unit, Animal Reproduction Research Institute, Cairo, Egypt
| | - Abhay Srivastava
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, St. Boniface Hospital, Albrechtsen Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sanjiv Dhingra
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, St. Boniface Hospital, Albrechtsen Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
40
|
Karwi QG, Ho KL, Pherwani S, Ketema EB, Sun QY, Lopaschuk GD. Concurrent diabetes and heart failure: interplay and novel therapeutic approaches. Cardiovasc Res 2021; 118:686-715. [PMID: 33783483 DOI: 10.1093/cvr/cvab120] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus increases the risk of developing heart failure, and the co-existence of both diseases worsens cardiovascular outcomes, hospitalization and the progression of heart failure. Despite current advancements on therapeutic strategies to manage hyperglycemia, the likelihood of developing diabetes-induced heart failure is still significant, especially with the accelerating global prevalence of diabetes and an ageing population. This raises the likelihood of other contributing mechanisms beyond hyperglycemia in predisposing diabetic patients to cardiovascular disease risk. There has been considerable interest in understanding the alterations in cardiac structure and function in the diabetic patients, collectively termed as "diabetic cardiomyopathy". However, the factors that contribute to the development of diabetic cardiomyopathies is not fully understood. This review summarizes the main characteristics of diabetic cardiomyopathies, and the basic mechanisms that contribute to its occurrence. This includes perturbations in insulin resistance, fuel preference, reactive oxygen species generation, inflammation, cell death pathways, neurohormonal mechanisms, advanced glycated end-products accumulation, lipotoxicity, glucotoxicity, and posttranslational modifications in the heart of the diabetic. This review also discusses the impact of antihyperglycemic therapies on the development of heart failure, as well as how current heart failure therapies influence glycemic control in diabetic patients. We also highlight the current knowledge gaps in understanding how diabetes induces heart failure.
Collapse
Affiliation(s)
- Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Kim L Ho
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Simran Pherwani
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ezra B Ketema
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Qiu Yu Sun
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
41
|
Is Metformin a Possible Beneficial Treatment for Psoriasis? A Scoping Review. J Pers Med 2021; 11:jpm11040251. [PMID: 33808460 PMCID: PMC8065978 DOI: 10.3390/jpm11040251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Psoriasis is a chronic inflammatory condition with genetic, immunological, and metabolic etiology. The link between psoriasis and diabetes mellitus has been shown in genetic predisposition, environmental influences, inflammatory pathways, and insulin resistance, resulting in end-organ damage in both conditions. Because comorbidities often accompany psoriasis, the therapeutic management of the disease must also take into consideration the comorbidities. Given that metformin’s therapeutic role in psoriasis is not yet fully elucidated, we raised the question of whether metformin is a viable alternative for the treatment of psoriasis. We conducted this scoping review by searching for evidence in PubMed, Cochrane, and Scopus databases, and we used an extension for scoping reviews (PRISMA-ScR). Current evidence suggests that metformin is safe to use in psoriasis. Studies have shown an excellent therapeutic response to metformin in patients with psoriasis and comorbidities such as diabetes, metabolic syndrome, and obesity. There is no clear evidence supporting metformin monotherapy in patients with psoriasis without comorbidities. There is a need to further evaluate metformin in larger clinical trials, as a therapy in psoriasis.
Collapse
|
42
|
Wang J, Lu Y, Min X, Yuan T, Wei J, Cai Z. The Association Between Metformin Treatment and Outcomes in Type 2 Diabetes Mellitus Patients With Heart Failure With Preserved Ejection Fraction: A Retrospective Study. Front Cardiovasc Med 2021; 8:648212. [PMID: 33778026 PMCID: PMC7994337 DOI: 10.3389/fcvm.2021.648212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/22/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Metformin is the first-line antidiabetic medication for type 2 diabetes mellitus (T2DM). However, the association between metformin and outcomes in T2DM patients with heart failure with preserved ejection fraction (HFpEF) is still unknown. We aimed to explore the association between metformin and adverse outcome in T2DM patients with HFpEF. Methods: A total of 372 T2DM patients with HFpEF hospitalized from January 1, 2013, to December 31, 2017, were included in this retrospective cohort study. There were 113 and 259 subjects in metformin and non-metformin group, respectively. Subjects were followed up for all-cause mortality, cardiovascular death, all-cause hospitalization, and heart failure hospitalization. Results: The median follow-up period was 47 months. Eleven patients (2.49% per patient-year) in the metformin group and 56 patients (5.52% per patient-year) in the non-metformin group deceased during follow-up (P = 0.031). However, a multivariable Cox regression failed to show that metformin was an independent factor of all-cause mortality [HR (95% CI) = 0.682 (0.346–1.345); P = 0.269]. A subgroup analysis revealed a significant association between metformin and all-cause mortality in patients with a higher hemoglobin A1c (HbA1c) level (HbA1c ≥7%) [HR (95% CI) = 0.339 (0.117–0.997); P = 0.045]. The 4-year estimated number needed to treat (NNT) with metformin compared with non-metformin for all-cause mortality was 12 in all populations and 8 in the HbA1c ≥7% subgroup. Conclusions: Metformin was not independently associated with clinical outcomes in patients with T2DM and HFpEF, but was associated with lower all-cause mortality in the subgroup of patients with poor glycemic control. Prospective, randomized controlled trials are needed to further verify these findings.
Collapse
Affiliation(s)
- Jianfang Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Yi Lu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinjia Min
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tan Yuan
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Wei
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhejun Cai
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Jiaxing Key Laboratory of Cardiac Rehabilitation, Jiaxing, China
| |
Collapse
|
43
|
Drzewoski J, Hanefeld M. The Current and Potential Therapeutic Use of Metformin-The Good Old Drug. Pharmaceuticals (Basel) 2021; 14:122. [PMID: 33562458 PMCID: PMC7915435 DOI: 10.3390/ph14020122] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Metformin, one of the oldest oral antidiabetic agents and still recommended by almost all current guidelines as the first-line treatment for type 2 diabetes mellitus (T2DM), has become the medication with steadily increasing potential therapeutic indications. A broad spectrum of experimental and clinical studies showed that metformin has a pleiotropic activity and favorable effect in different pathological conditions, including prediabetes, type 1 diabetes mellitus (T1DM) and gestational diabetes mellitus (GDM). Moreover, there are numerous studies, meta-analyses and population studies indicating that metformin is safe and well tolerated and may be associated with cardioprotective and nephroprotective effect. Recently, it has also been reported in some studies, but not all, that metformin, besides improvement of glucose homeostasis, may possibly reduce the risk of cancer development, inhibit the incidence of neurodegenerative disease and prolong the lifespan. This paper presents some arguments supporting the initiation of metformin in patients with newly diagnosed T2DM, especially those without cardiovascular risk factors or without established cardiovascular disease or advanced kidney insufficiency at the time of new guidelines favoring new drugs with pleotropic effects complimentary to glucose control. Moreover, it focuses on the potential beneficial effects of metformin in patients with T2DM and coexisting chronic diseases.
Collapse
Affiliation(s)
- Józef Drzewoski
- Central Teaching Hospital of Medical University of Lodz, 92-213 Lodz, Poland
| | - Markolf Hanefeld
- Medical Clinic III, Department of Medicine Technical University Dresden, 01307 Dresden, Germany;
| |
Collapse
|
44
|
Bai B, Chen H. Metformin: A Novel Weapon Against Inflammation. Front Pharmacol 2021; 12:622262. [PMID: 33584319 PMCID: PMC7880161 DOI: 10.3389/fphar.2021.622262] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
It has become widely accepted that inflammation is a driving force behind a variety of chronic diseases, such as cardiovascular disease, diabetes, kidney disease, cancer, neurodegenerative disorders, etc. However, the existing nonsteroidal anti-inflammatory drugs show a limited utility in clinical patients. Therefore, the novel agents with different inflammation-inhibitory mechanisms are worth pursuing. Metformin, a synthetic derivative of guanidine, has a history of more than 50 years of clinical experience in treating patients with type 2 diabetes. Intense research efforts have been dedicated to proving metformin’s inflammation-inhibitory effects in cells, animal models, patient records, and randomized clinical trials. The emerging evidence also indicates its therapeutic potential in clinical domains other than type 2 diabetes. Herein, this article appraises current pre-clinical and clinical findings, emphasizing metformin’s anti-inflammatory properties under individual pathophysiological scenarios. In summary, the anti-inflammatory effects of metformin are evident in pre-clinical models. By comparison, there are still clinical perplexities to be addressed in repurposing metformin to inflammation-driven chronic diseases. Future randomized controlled trials, incorporating better stratification/targeting, would establish metformin’s utility in this clinical setting.
Collapse
Affiliation(s)
- Bo Bai
- Department of Cardiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Haibo Chen
- Department of Cardiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
45
|
Shpakov AO. Improvement Effect of Metformin on Female and Male Reproduction in Endocrine Pathologies and Its Mechanisms. Pharmaceuticals (Basel) 2021; 14:ph14010042. [PMID: 33429918 PMCID: PMC7826885 DOI: 10.3390/ph14010042] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Metformin (MF), a first-line drug to treat type 2 diabetes mellitus (T2DM), alone and in combination with other drugs, restores the ovarian function in women with polycystic ovary syndrome (PCOS) and improves fetal development, pregnancy outcomes and offspring health in gestational diabetes mellitus (GDM) and T2DM. MF treatment is demonstrated to improve the efficiency of in vitro fertilization and is considered a supplementary drug in assisted reproductive technologies. MF administration shows positive effect on steroidogenesis and spermatogenesis in men with metabolic disorders, thus MF treatment indicates prospective use for improvement of male reproductive functions and fertility. MF lacks teratogenic effects and has positive health effect in newborns. The review is focused on use of MF therapy for restoration of female and male reproductive functions and improvement of pregnancy outcomes in metabolic and endocrine disorders. The mechanisms of MF action are discussed, including normalization of metabolic and hormonal status in PCOS, GDM, T2DM and metabolic syndrome and restoration of functional activity and hormonal regulation of the gonadal axis.
Collapse
Affiliation(s)
- Alexander O Shpakov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| |
Collapse
|
46
|
Sun Z, Zhang L, Li L, Shao C, Liu J, Zhou M, Wang Z. Galectin-3 mediates cardiac remodeling caused by impaired glucose and lipid metabolism through inhibiting two pathways of activating Akt. Am J Physiol Heart Circ Physiol 2021; 320:H364-H380. [PMID: 33275526 DOI: 10.1152/ajpheart.00523.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
Pathological cardiac remodeling is a leading cause of mortality in patients with diabetes. Given the glucose and lipid metabolism disorders (GLDs) in patients with diabetes, it is urgent to conduct a comprehensive study of the myocardial damage under GLDs and find key mechanisms. Apolipoprotein E knockout (ApoE-/-) mice, low-density lipoprotein receptor heterozygote (Ldlr+/-) Syrian golden hamsters, or H9C2 cells were used to construct GLDs models. GLDs significantly promoted cardiomyocyte fibrosis, apoptosis, and hypertrophy in vivo and in vitro, but inhibition of galectin-3 (Gal-3) could significantly reverse this process. Then, the signal transmission pathways were determined. It was found that GLDs considerably inhibited the phosphorylation of Akt at Thr308/Ser473, whereas the silencing of Gal-3 could reverse the inhibition of Akt activity through phosphoinositide 3-kinase-AktThr308 (PI3K-AktThr308) and AMP-activated protein kinase-mammalian target of rapamycin complex 2-AktSer473 (AMPK-mTOR2-AktSer473) pathways. Finally, the PI3K, mTOR, AMPK inhibitor, and Akt activator were used to investigate the role of pathways in regulating cardiac remodeling. Phospho-AktThr308 could mediate myocardial fibrosis, whereas myocardial apoptosis and hypertrophy were regulated by both phospho-AktThr308 and phospho-AktSer473. In conclusion, Gal-3 was an important regulatory factor in GLDs-induced cardiac remodeling, and Gal-3 could suppress the phosphorylation of Akt at different sites in mediating cardiomyocyte fibrosis, apoptosis, and hypertrophy.NEW & NOTEWORTHY Studies on the pathogenesis of diabetic cardiac remodeling are highly desired. Glucose and lipid metabolism are both disordered in diabetes. Glucose and lipid metabolism disturbances promote myocardial fibrosis, apoptosis, and hypertrophy through galectin-3. Galectin-3 promotes cardiac remodeling by inhibiting phosphorylation of AktThr308 or AktSer473. The present study finds that glucose and lipid metabolism disorders are important causes for myocardial damage and provides novel ideas for the prevention and treatment of diabetic cardiac remodeling.
Collapse
Affiliation(s)
- Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jia Liu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Mengxue Zhou
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
47
|
Haye A, Ansari MA, Rahman SO, Shamsi Y, Ahmed D, Sharma M. Role of AMP-activated protein kinase on cardio-metabolic abnormalities in the development of diabetic cardiomyopathy: A molecular landscape. Eur J Pharmacol 2020; 888:173376. [PMID: 32810493 DOI: 10.1016/j.ejphar.2020.173376] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular complications associated with diabetes mellitus remains a leading cause of morbidity and mortality across the world. Diabetic cardiomyopathy is a descriptive pathology that in absence of co-morbidities such as hypertension, dyslipidemia initially characterized by cardiac stiffness, myocardial fibrosis, ventricular hypertrophy, and remodeling. These abnormalities further contribute to diastolic dysfunctions followed by systolic dysfunctions and eventually results in clinical heart failure (HF). The clinical outcomes associated with HF are considerably worse in patients with diabetes. The complexity of the pathogenesis and clinical features of diabetic cardiomyopathy raises serious questions in developing a therapeutic strategy to manage cardio-metabolic abnormalities. Despite extensive research in the past decade the compelling approaches to manage and treat diabetic cardiomyopathy are limited. AMP-Activated Protein Kinase (AMPK), a serine-threonine kinase, often referred to as cellular "metabolic master switch". During the development and progression of diabetic cardiomyopathy, a plethora of evidence demonstrate the beneficial role of AMPK on cardio-metabolic abnormalities including altered substrate utilization, impaired cardiac insulin metabolic signaling, mitochondrial dysfunction and oxidative stress, myocardial inflammation, increased accumulation of advanced glycation end-products, impaired cardiac calcium handling, maladaptive activation of the renin-angiotensin-aldosterone system, endoplasmic reticulum stress, myocardial fibrosis, ventricular hypertrophy, cardiac apoptosis, and impaired autophagy. Therefore, in this review, we have summarized the findings from pre-clinical and clinical studies and provided a collective overview of the pathophysiological mechanism and the regulatory role of AMPK on cardio-metabolic abnormalities during the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Abdul Haye
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Asif Ansari
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yasmeen Shamsi
- Department of Moalejat, School of Unani Medical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Danish Ahmed
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture Technology and Sciences, Allahabad, Uttar Pradesh, India
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
48
|
Halabi A, Yang H, Wright L, Potter E, Huynh Q, Negishi K, Marwick TH. Evolution of Myocardial Dysfunction in Asymptomatic Patients at Risk of Heart Failure. JACC Cardiovasc Imaging 2020; 14:350-361. [PMID: 33221236 DOI: 10.1016/j.jcmg.2020.09.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVES The determinants of changes in systolic and diastolic parameters in patients age >65 years, at risk of heart failure (HF), and with and without asymptomatic type 2 diabetes mellitus (T2DM) was assessed by echocardiography. The association between metformin and myocardial function was also assessed. BACKGROUND The increasing prevalence of T2DM will likely further fuel the epidemic of HF. Understanding the development or progression of left ventricular (LV) dysfunction may inform effective measures for HF prevention. METHODS A total of 982 patients with at least one HF risk factor (hypertension, obesity, or T2DM) were recruited from 2 community-based populations and divided into 2 groups: T2DM (n = 431, age 71 ± 4 years) and non-T2DM (n = 551, age 71 ± 5 years). Associations of metformin therapy were evaluated in the T2DM group. All underwent a comprehensive echocardiogram, including global longitudinal strain (GLS) and diastolic function (transmitral flow [E], annular velocity [e']) at baseline and follow-up (median 19 months [interquartile range: 17 to 26 months]). Comparisons were facilitated by propensity matching. RESULTS A reduction in GLS was observed in the T2DM group (baseline -17.8 ± 2.6% vs. follow-up -17.4 ± 2.8%; p = 0.003), but not in the non-T2DM group (-18.7 ± 2.7% vs. -18.6 ± 3.0%; p = 0.41). Estimated LV filling pressures increased in both the T2DM group (p = 0.001) and the non-T2DM group (p = 0.04). Metformin-treated patients with T2DM did not increase estimated LV filling pressure (E/e' baseline 8.9 ± 2.7 vs. follow-up 9.1 ± 2.7; p = 0.485) or change e' (7.6 ± 1.5 cm/s vs. 7.6 ± 1.8 cm/s; p = 0.88). After propensity matching, metformin was associated with a smaller change in e' (β = 0.58 [95% CI: 0.13 to 1.03]; p = 0.013) and E/e' (β = -0.96 [95% CI: -1.66 to -0.26]; p = 0.007) but was not associated with a change in GLS (p = 0.46). CONCLUSIONS Over 2 years, there is a worsening of GLS and LV filling pressures in asymptomatic diabetic patients with HF risk factors. Metformin use is associated with less deterioration of LV filling pressures and myocardial relaxation but had no association with systolic function.
Collapse
Affiliation(s)
- Amera Halabi
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Hilda Yang
- Menzies Institute for Medical Research, Imaging Research, Hobart, Tasmania, Australia
| | - Leah Wright
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Menzies Institute for Medical Research, Imaging Research, Hobart, Tasmania, Australia
| | - Elizabeth Potter
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Quan Huynh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Kazuaki Negishi
- Menzies Institute for Medical Research, Imaging Research, Hobart, Tasmania, Australia; Sydney Medical School Nepean, Charles Perkins Centre Nepean, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Thomas H Marwick
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; Menzies Institute for Medical Research, Imaging Research, Hobart, Tasmania, Australia.
| |
Collapse
|
49
|
Djordjevic DB, Koracevic G, Djordjevic AD, Lovic DB. Diabetic Cardiomyopathy: Clinical and Metabolic Approach. Curr Vasc Pharmacol 2020; 19:487-498. [PMID: 33143612 DOI: 10.2174/1570161119999201102213214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Having in mind that diabetes mellitus (DM) and obesity are some of the greatest health challenges of the modern era, diabetic cardiomyopathy (DCM) is becoming more and more recognized in clinical practice. Main Text: Initially, DM is asymptomatic, but it may progress to diastolic and then systolic left ventricular dysfunction, which results in congestive heart failure. A basic feature of this DM complication is the absence of hemodynamically significant stenosis of the coronary blood vessels. Clinical manifestations are the result of several metabolic disorders that are present during DM progression. The complexity of metabolic processes, along with numerous regulatory mechanisms, has been the subject of research that aims at discovering new diagnostic (e.g. myocardial strain with echocardiography and cardiac magnetic resonance) and treatment options. Adequate glycaemic control is not sufficient to prevent or reduce the progression of DCM. Contemporary hypoglycemic medications, such as sodium-glucose transport protein 2 inhibitors, significantly reduce the frequency of cardiovascular complications in patients with DM. Several studies have shown that, unlike the above-stated medications, thiazolidinediones and dipeptidyl peptidase-4 inhibitors are associated with deterioration of heart failure. CONCLUSION Imaging procedures, especially myocardial strain with echocardiography and cardiac magnetic resonance, are useful to identify the early signs of DCM. Research and studies regarding new treatment options are still "in progress".
Collapse
Affiliation(s)
- Dragan B Djordjevic
- Medical Faculty, University of Nis, Bulevar Dr. Zoran Djindjic 8, 18000 Nis, Serbia
| | - Goran Koracevic
- Clinical Center Nis, Bulevar Dr. Zoran Djindjic 48, 18000 Nis, Serbia
| | | | - Dragan B Lovic
- Clinic for Internal Diseases Intermedica, Singidunum University Nis, Jovana Ristica 20/III-2, 1800 Nis, United States
| |
Collapse
|
50
|
Mohan M, Al-Talabany S, McKinnie A, Mordi IR, Singh JSS, Gandy SJ, Baig F, Hussain MS, Bhalraam U, Khan F, Choy AM, Matthew S, Houston JG, Struthers AD, George J, Lang CC. A randomized controlled trial of metformin on left ventricular hypertrophy in patients with coronary artery disease without diabetes: the MET-REMODEL trial. Eur Heart J 2020; 40:3409-3417. [PMID: 30993313 PMCID: PMC6823615 DOI: 10.1093/eurheartj/ehz203] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/01/2019] [Accepted: 04/02/2019] [Indexed: 12/25/2022] Open
Abstract
Aim We tested the hypothesis that metformin may regress left ventricular hypertrophy (LVH) in patients who have coronary artery disease (CAD), with insulin resistance (IR) and/or pre-diabetes. Methods and results We randomly assigned 68 patients (mean age 65 ± 8 years) without diabetes who have CAD with IR and/or pre-diabetes to receive either metformin XL (2000 mg daily dose) or placebo for 12 months. Primary endpoint was change in left ventricular mass indexed to height1.7 (LVMI), assessed by magnetic resonance imaging. In the modified intention-to-treat analysis (n = 63), metformin treatment significantly reduced LVMI compared with placebo group (absolute mean difference −1.37 (95% confidence interval: −2.63 to −0.12, P = 0.033). Metformin also significantly reduced other secondary study endpoints such as: LVM (P = 0.032), body weight (P = 0.001), subcutaneous adipose tissue (P = 0.024), office systolic blood pressure (BP, P = 0.022) and concentration of thiobarbituric acid reactive substances, a biomarker for oxidative stress (P = 0.04). The glycated haemoglobin A1C concentration and fasting IR index did not differ between study groups at the end of the study. Conclusion Metformin treatment significantly reduced LVMI, LVM, office systolic BP, body weight, and oxidative stress. Although LVH is a good surrogate marker of cardiovascular (CV) outcome, conclusive evidence for the cardio-protective role of metformin is required from large CV outcomes trials. ![]()
Collapse
Affiliation(s)
- Mohapradeep Mohan
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Shaween Al-Talabany
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Angela McKinnie
- NHS Tayside Clinical Radiology, Ninewells Hospital & Medical School, Dundee, DD1 9SY, UK
| | - Ify R Mordi
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Jagdeep S S Singh
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Stephen J Gandy
- Department of Medical Physics, NHS Tayside, Ninewells Hospital & Medical School, Dundee, DD1 9SY, UK
| | - Fatima Baig
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Muhammad S Hussain
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - U Bhalraam
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Faisel Khan
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Anna-Maria Choy
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Shona Matthew
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - John Graeme Houston
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Allan D Struthers
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Jacob George
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Chim C Lang
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|