1
|
López-Martín E, Sueiro-Benavides R, Leiro-Vidal JM, Rodríguez-González JA, Ares-Pena FJ. Redox cell signalling triggered by black carbon and/or radiofrequency electromagnetic fields: Influence on cell death. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176023. [PMID: 39244061 DOI: 10.1016/j.scitotenv.2024.176023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The capacity of environmental pollutants to generate oxidative stress is known to affect the development and progression of chronic diseases. This scientific review identifies previously published experimental studies using preclinical models of exposure to environmental stress agents, such as black carbon and/or RF-EMF, which produce cellular oxidative damage and can lead to different types of cell death. We summarize in vivo and in vitro studies, which are grouped according to the mechanisms and pathways of redox activation triggered by exposure to BC and/or EMF and leading to apoptosis, necrosis, necroptosis, pyroptosis, autophagy, ferroptosis and cuproptosis. The possible mechanisms are considered in relation to the organ, cell type and cellular-subcellular interaction with the oxidative toxicity caused by BC and/or EMF at the molecular level. The actions of these environmental pollutants, which affect everyday life, are considered separately and together in experimental preclinical models. However, for overall interpretation of the data, toxicological studies must first be conducted in humans, to enable possible risks to human health to be established in relation to the progression of chronic diseases. Further actions should take pollution levels into account, focusing on the most vulnerable populations and future generations.
Collapse
Affiliation(s)
- Elena López-Martín
- Department of Morphological Sciences, Santiago de Compostela, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Rosana Sueiro-Benavides
- Institute of Research in Biological and Chemical Analysis, IAQBUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José M Leiro-Vidal
- Institute of Research in Biological and Chemical Analysis, IAQBUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan A Rodríguez-González
- Department of Applied Physics, Santiago de Compostela School of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco J Ares-Pena
- Department of Applied Physics, Santiago de Compostela School of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
2
|
Dab H, Ben Hamed S, Jery A, Chehidi A, Zourgui L. Effect of Salvia officinalis aqueous infusion on copper sulfate-induced inflammatory response and oxidative stress imbalance in mice liver and kidney. Drug Chem Toxicol 2024; 47:587-596. [PMID: 37357715 DOI: 10.1080/01480545.2023.2228516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/06/2023] [Accepted: 06/11/2023] [Indexed: 06/27/2023]
Abstract
Extracts of Salvia officinalis (S. officinalis) have been described to have many therapeutic properties. However, the effect of S. officinalis on copper sulfate toxicity has not been previously reported. The aim of this study was to investigate the toxicity of copper sulfate and the potential beneficial effects of S. officinalis aqueous infusion on proinflammatory response and antioxidant status. 56 male mice were used and equally divided into 6 groups: control group, copper sulfate treated group (40 mg/kg), S. officinalis aqueous infusion treated groups (200 mg/kg and 400 mg/kg) separately or in combination with copper. IL-6 (interleukine-6) and TNF-α (Tumor necrosis factor alpha) were assessed by Elisa. Catalase (CAT), superoxide dismutase (SOD) and acetylcholinesterase (AChE) activities, malondialdehyde (MDA) and oxygen peroxide levels were determined. Serum biochemical parameters were analyzed. Copper enhanced aspartate aminotransferase (AST), alanine aminotransferase (ALT) and Lactate dehydrogenase (LDH) (p < 0.05). Copper enhances significantly IL-6, TNF-α and MDA levels in liver and kidney and reduced CAT, SOD and AChE activities (p < 0.05). Aqueous infusion of S. officinalis at 400 mg/kg abolished copper-induced changes in AST and ALT activity. S. officinalis aqueous infusion at 200 mg/kg reversed copper-induced IL-6 in kidney and TNF-α in liver at both doses. S. officinalis aqueous infusion at 400 mg/kg restored SOD in kidney and CAT and AChE activities in both liver and kidney. S. officinalis aqueous infusion may be useful in partially ameliorating tissue disorders induced by copper exposure such as inflammatory response, oxidative stress imbalance and organ dysfunction through its phenolic compounds and higher antioxidant capacity.
Collapse
Affiliation(s)
- Houcine Dab
- Laboratory of Biodiversity, Molecules, Applications, (LR22ES02) Higher Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| | - Said Ben Hamed
- Laboratory of Epidemiology and Veterinary Microbiology (LEMV), Institut Pasteur de Tunis, Tunisia
| | - Amel Jery
- Laboratory of Biodiversity, Molecules, Applications, (LR22ES02) Higher Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| | - Amel Chehidi
- Laboratory of Biodiversity, Molecules, Applications, (LR22ES02) Higher Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| | - Lazhar Zourgui
- Laboratory of Biodiversity, Molecules, Applications, (LR22ES02) Higher Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| |
Collapse
|
3
|
Summer M, Ashraf R, Ali S, Bach H, Noor S, Noor Q, Riaz S, Khan RRM. Inflammatory response of nanoparticles: Mechanisms, consequences, and strategies for mitigation. CHEMOSPHERE 2024; 363:142826. [PMID: 39002651 DOI: 10.1016/j.chemosphere.2024.142826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Numerous nano-dimensioned materials have been generated as a result of several advancements in nanoscale science such as metallic nanoparticles (mNPs) which have aided in the advancement of related research. As a result, several significant nanoscale materials are being produced commercially. It is expected that in the future, products that are nanoscale, like mNPs, will be useful in daily life. Despite certain benefits, widespread use of metallic nanoparticles and nanotechnology has negative effects and puts human health at risk because of their continual accumulation in closed biological systems, along with their complex and diverse migratory and transformation pathways. Once within the human body, nanoparticles (NPs) disrupt the body's natural biological processes and trigger inflammatory responses. These NPs can also affect the immune system by activating separate pathways that either function independently or interact with one another. Cytotoxic effects, inflammatory response, genetic material damage, and mitochondrial dysfunction are among the consequences of mNPs. Oxidative stress and reactive oxygen species (ROS) generation caused by mNPs depend upon a multitude of factors that allow NPs to get inside cells and interact with biological macromolecules and cell organelles. This review focuses on how mNPs cause inflammation and oxidative stress, as well as disrupt cellular signaling pathways that support these effects. In addition, possibilities and problems to be reduced are addressed to improve future research on the creation of safer and more environmentally friendly metal-based nanoparticles for commercial acceptance and sustainable use in medicine and drug delivery.
Collapse
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Rimsha Ashraf
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Horacio Bach
- Department of Medicine, Division of Infectious Diseases, 2660 Oak Street, Vancouver, BC, V6H3Z6, Canada
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Qudsia Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Saima Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Rana Rashad Mahmood Khan
- Department of Chemistry, Government College University Lahore, Faculty of Chemistry and Life Sciences, Pakistan
| |
Collapse
|
4
|
Li Q, Guo P, Wang S, Su L, Yu W, Guo J, Hu L, Zhang H, Pan J, Tang Z, Liao J. Drp1 Aggravates Copper Nanoparticle-Induced ER-Phagy by Disturbing Mitochondria-Associated Membranes in Chicken Hepatocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16506-16518. [PMID: 38986054 DOI: 10.1021/acs.jafc.4c03978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
As an efficient alternative copper (Cu) source, copper nanoparticles (nano-Cu) have been widely supplemented into animal-producing food. Therefore, it is necessary to assess the effect of nano-Cu exposure on the biological health risk. Recently, the toxic effects of nano-Cu have been confirmed but the underlying mechanism remains unclear. This study reveals the impact of nano-Cu on endoplasmic reticulum autophagy (ER-phagy) in chicken hepatocytes and further identifies Drp1 and its downstream gene FAM134B as crucial regulators of nano-Cu-induced hepatotoxicity. Nano-Cu exposure can induce Cu ion overaccumulation and pathological injury in the liver, trigger excessive mitochondrial fission and mitochondria-associated membrane (MAM) integrity damage, and activate ER-phagy in vivo and in vitro. Interestingly, the knockdown of Drp1 markedly decreases the expression of FAM134B induced by nano-Cu. Furthermore, the expression levels of ATL3, CCPG1, SEC62, TEX264, and LC3II/LC3I induced by nano-Cu exposure are decreased by inhibiting the expression of Drp1. Simultaneously, the inhibition of FAM134B effectively alleviates nano-Cu-induced ER-phagy by downregulating the expression of ATL3, CCPG1, SEC62, TEX264, and LC3II/LC3I. Overall, these results suggest that Drp1-mediated impairment of MAM integrity leads to ER-phagy as a novel molecular mechanism involved in the regulation of nano-Cu-induced hepatotoxicity. These findings provide new ideas for future research on the mechanism of nano-Cu-induced hepatotoxicity.
Collapse
Affiliation(s)
- Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Pan Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Shaofeng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Luna Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Liammei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| |
Collapse
|
5
|
Baudo G, Flinn H, Holcomb M, Tiwari A, Soriano S, Taraballi F, Godin B, Zinger A, Villapol S. Sex-dependent improvement in traumatic brain injury outcomes after liposomal delivery of dexamethasone in mice. Bioeng Transl Med 2024; 9:e10647. [PMID: 39036088 PMCID: PMC11256133 DOI: 10.1002/btm2.10647] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/02/2023] [Accepted: 01/11/2024] [Indexed: 07/23/2024] Open
Abstract
Traumatic brain injury (TBI) can have long-lasting physical, emotional, and cognitive consequences due to the neurodegeneration caused by its robust inflammatory response. Despite advances in rehabilitation care, effective neuroprotective treatments for TBI patients are lacking. Furthermore, current drug delivery methods for TBI treatment are inefficient in targeting inflamed brain areas. To address this issue, we have developed a liposomal nanocarrier (Lipo) encapsulating dexamethasone (Dex), an agonist for the glucocorticoid receptor utilized to alleviate inflammation and swelling in various conditions. In vitro studies show that Lipo-Dex were well tolerated in human and murine neural cells. Lipo-Dex showed significant suppression of inflammatory cytokines, IL-6 and TNF-α, release after induction of neural inflammation with lipopolysaccharide. Further, the Lipo-Dex were administered to young adult male and female C57BL/6 mice immediately after controlled cortical impact injury (a TBI model). Our findings demonstrate that Lipo-Dex can selectively target the injured brain, thereby reducing lesion volume, cell death, astrogliosis, the release of pro-inflammatory cytokines, and microglial activation compared to Lipo-treated mice in a sex-dependent manner, showing a major impact only in male mice. This highlights the importance of considering sex as a crucial variable in developing and evaluating new nano-therapies for brain injury. These results suggest that Lipo-Dex administration may effectively treat acute TBI.
Collapse
Affiliation(s)
- Gherardo Baudo
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
| | - Hannah Flinn
- Department of Neurosurgery and Center for NeuroregenerationHouston Methodist Research InstituteHoustonTexasUSA
| | - Morgan Holcomb
- Department of Neurosurgery and Center for NeuroregenerationHouston Methodist Research InstituteHoustonTexasUSA
| | - Anjana Tiwari
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
| | - Sirena Soriano
- Department of Neurosurgery and Center for NeuroregenerationHouston Methodist Research InstituteHoustonTexasUSA
| | - Francesca Taraballi
- Department of Orthopedics and Sports Medicine and Center for Musculoskeletal RegenerationHouston Methodist HospitalHoustonTexasUSA
| | - Biana Godin
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- Department of Obstetrics and GynecologyHouston Methodist Research InstituteHoustonTexasUSA
- Department of Obstetrics and GynecologyWeill Cornell Medicine College (WCMC)New YorkNew YorkUSA
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTexasUSA
| | - Assaf Zinger
- Department of Cardiovascular SciencesHouston Methodist Research InstituteHoustonTexasUSA
- Department of Chemical EngineeringTechnion−Israel Institute of TechnologyHaifaIsrael
| | - Sonia Villapol
- Department of Neurosurgery and Center for NeuroregenerationHouston Methodist Research InstituteHoustonTexasUSA
- Department of Neuroscience in Neurological SurgeryWeill Cornell Medicine College (WCMC)New YorkNew YorkUSA
| |
Collapse
|
6
|
Wang F, Xiang L, Sze-Yin Leung K, Elsner M, Zhang Y, Guo Y, Pan B, Sun H, An T, Ying G, Brooks BW, Hou D, Helbling DE, Sun J, Qiu H, Vogel TM, Zhang W, Gao Y, Simpson MJ, Luo Y, Chang SX, Su G, Wong BM, Fu TM, Zhu D, Jobst KJ, Ge C, Coulon F, Harindintwali JD, Zeng X, Wang H, Fu Y, Wei Z, Lohmann R, Chen C, Song Y, Sanchez-Cid C, Wang Y, El-Naggar A, Yao Y, Huang Y, Cheuk-Fung Law J, Gu C, Shen H, Gao Y, Qin C, Li H, Zhang T, Corcoll N, Liu M, Alessi DS, Li H, Brandt KK, Pico Y, Gu C, Guo J, Su J, Corvini P, Ye M, Rocha-Santos T, He H, Yang Y, Tong M, Zhang W, Suanon F, Brahushi F, Wang Z, Hashsham SA, Virta M, Yuan Q, Jiang G, Tremblay LA, Bu Q, Wu J, Peijnenburg W, Topp E, Cao X, Jiang X, Zheng M, Zhang T, Luo Y, Zhu L, Li X, Barceló D, Chen J, Xing B, Amelung W, Cai Z, Naidu R, Shen Q, Pawliszyn J, Zhu YG, Schaeffer A, Rillig MC, Wu F, Yu G, Tiedje JM. Emerging contaminants: A One Health perspective. Innovation (N Y) 2024; 5:100612. [PMID: 38756954 PMCID: PMC11096751 DOI: 10.1016/j.xinn.2024.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 05/18/2024] Open
Abstract
Environmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health. Despite global efforts to mitigate legacy pollutants, the continuous introduction of new substances remains a major threat to both people and the planet. In response, global initiatives are focusing on risk assessment and regulation of emerging contaminants, as demonstrated by the ongoing efforts to establish the UN's Intergovernmental Science-Policy Panel on Chemicals, Waste, and Pollution Prevention. This review identifies the sources and impacts of emerging contaminants on planetary health, emphasizing the importance of adopting a One Health approach. Strategies for monitoring and addressing these pollutants are discussed, underscoring the need for robust and socially equitable environmental policies at both regional and international levels. Urgent actions are needed to transition toward sustainable pollution management practices to safeguard our planet for future generations.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China
| | - Martin Elsner
- Technical University of Munich, TUM School of Natural Sciences, Institute of Hydrochemistry, 85748 Garching, Germany
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guangguo Ying
- Ministry of Education Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Bryan W. Brooks
- Department of Environmental Science, Baylor University, Waco, TX, USA
- Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, TX, USA
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Damian E. Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Timothy M. Vogel
- Laboratoire d’Ecologie Microbienne, Universite Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Myrna J. Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Scott X. Chang
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bryan M. Wong
- Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, CA, USA
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Karl J. Jobst
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John’s, NL A1C 5S7, Canada
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Jean Damascene Harindintwali
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiankui Zeng
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Haijun Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Changer Chen
- Ministry of Education Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Yang Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Concepcion Sanchez-Cid
- Environmental Microbial Genomics, UMR 5005 Laboratoire Ampère, CNRS, École Centrale de Lyon, Université de Lyon, Écully, France
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ali El-Naggar
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yanran Huang
- Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | | | - Chenggang Gu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanpeng Gao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Hao Li
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Natàlia Corcoll
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Daniel S. Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Kristian K. Brandt
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Sino-Danish Center (SDC), Beijing, China
| | - Yolanda Pico
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre - CIDE (CSIC-UV-GV), Road CV-315 km 10.7, 46113 Moncada, Valencia, Spain
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jianqiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Philippe Corvini
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Mao Ye
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Huan He
- Jiangsu Engineering Laboratory of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Meiping Tong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weina Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Fidèle Suanon
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Laboratory of Physical Chemistry, Materials and Molecular Modeling (LCP3M), University of Abomey-Calavi, Republic of Benin, Cotonou 01 BP 526, Benin
| | - Ferdi Brahushi
- Department of Environment and Natural Resources, Agricultural University of Tirana, 1029 Tirana, Albania
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Syed A. Hashsham
- Center for Microbial Ecology, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Marko Virta
- Department of Microbiology, University of Helsinki, 00010 Helsinki, Finland
| | - Qingbin Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Gaofei Jiang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Louis A. Tremblay
- School of Biological Sciences, University of Auckland, Auckland, Aotearoa 1142, New Zealand
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology - Beijing, Beijing 100083, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Willie Peijnenburg
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, 3720 BA Bilthoven, The Netherlands
- Leiden University, Center for Environmental Studies, Leiden, the Netherlands
| | - Edward Topp
- Agroecology Mixed Research Unit, INRAE, 17 rue Sully, 21065 Dijon Cedex, France
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Taolin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Damià Barceló
- Chemistry and Physics Department, University of Almeria, 04120 Almeria, Spain
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Wulf Amelung
- Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, University of Bonn, 53115 Bonn, Germany
- Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UON), Newcastle, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle (UON), Newcastle, NSW 2308, Australia
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yong-guan Zhu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Andreas Schaeffer
- Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias C. Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Gang Yu
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, China
| | - James M. Tiedje
- Center for Microbial Ecology, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Hashim AR, Bashir DW, Rashad E, Galal MK, Rashad MM, Khalil HMA, Deraz NM, S M EG. Neuroprotective Assessment of Betaine against Copper Oxide Nanoparticle-Induced Neurotoxicity in the Brains of Albino Rats: A Histopathological, Neurochemical, and Molecular Investigation. ACS Chem Neurosci 2024; 15:1684-1701. [PMID: 38564598 DOI: 10.1021/acschemneuro.3c00810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Copper oxide nanoparticles (CuO-NPs) are commonly used metal oxides. Betaine possesses antioxidant and neuroprotective activities. The current study aimed to investigate the neurotoxic effect of CuO-NPs on rats and the capability of betaine to mitigate neurotoxicity. Forty rats; 4 groups: group I a control, group II intraperitoneally CuO-NPs (0.5 mg/kg/day), group III orally betaine (250 mg/kg/day) and CuO-NPs, group IV orally betaine for 28 days. Rats were subjected to neurobehavioral assessments. Brain samples were processed for biochemical, molecular, histopathological, and immunohistochemical analyses. Behavioral performance of betaine demonstrated increasing locomotion and cognitive abilities. Group II exhibited significantly elevated malondialdehyde (MDA), overexpression of interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α). Significant decrease in glutathione (GSH), and downregulation of acetylcholine esterase (AChE), nuclear factor erythroid 2-like protein 2 (Nrf-2), and superoxide dismutase (SOD). Histopathological alterations; neuronal degeneration, pericellular spaces, and neuropillar vacuolation. Immunohistochemically, an intense immunoreactivity is observed against IL-1β and glial fibrillary acidic protein (GFAP). Betaine partially neuroprotected against CuO-NPs associated alterations. A significant decrease at MDA, downregulation of IL-1β, and TNF-α, a significant increase at GSH, and upregulation of AChE, Nrf-2, and SOD. Histopathological alterations partially ameliorated. Immunohistochemical intensity of IL-1β and GFAP reduced. It is concluded that betaine neuroprotected against most of CuO-NP neurotoxic effects through antioxidant and cell redox system stimulating efficacy.
Collapse
Affiliation(s)
- Asmaa R Hashim
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Dina W Bashir
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mona K Galal
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Maha M Rashad
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Heba M A Khalil
- Veterinary Hygiene and Management Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Nasrallah M Deraz
- Physical Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - El-Gharbawy S M
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
8
|
Huang Q, Liu J, Peng C, Han X, Tan Z. Hesperidin ameliorates H 2O 2-induced bovine mammary epithelial cell oxidative stress via the Nrf2 signaling pathway. J Anim Sci Biotechnol 2024; 15:57. [PMID: 38589950 PMCID: PMC11003082 DOI: 10.1186/s40104-024-01012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/07/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Hesperidin is a citrus flavonoid with anti-inflammatory and antioxidant potential. However, its protective effects on bovine mammary epithelial cells (bMECs) exposed to oxidative stress have not been elucidated. RESULTS In this study, we investigated the effects of hesperidin on H2O2-induced oxidative stress in bMECs and the underlying molecular mechanism. We found that hesperidin attenuated H2O2-induced cell damage by reducing reactive oxygen species (ROS) and malondialdehyde (MDA) levels, increasing catalase (CAT) activity, and improving cell proliferation and mitochondrial membrane potential. Moreover, hesperidin activated the Keap1/Nrf2/ARE signaling pathway by inducing the nuclear translocation of Nrf2 and the expression of its downstream genes NQO1 and HO-1, which are antioxidant enzymes involved in ROS scavenging and cellular redox balance. The protective effects of hesperidin were blocked by the Nrf2 inhibitor ML385, indicating that they were Nrf2 dependent. CONCLUSIONS Our results suggest that hesperidin could protect bMECs from oxidative stress injury by activating the Nrf2 signaling pathway, suggesting that hesperidin as a natural antioxidant has positive potential as a feed additive or plant drug to promote the health benefits of bovine mammary.
Collapse
Affiliation(s)
- Qi Huang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiashuo Liu
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Can Peng
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Xuefeng Han
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| |
Collapse
|
9
|
Pardhiya S, Gaharwar US, Parambil AM, Nirala JP, Rajamani P. Biocompatibility assessment of bovine serum albumin conjugated manganese dioxide nanoparticle and their therapeutic role against microwave radiation induced haematological toxicity in male Wistar rats. Free Radic Res 2024; 58:194-216. [PMID: 38563404 DOI: 10.1080/10715762.2024.2333880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/24/2024] [Indexed: 04/04/2024]
Abstract
Microwave (MW) radiations are widely used in communications, radar and medical treatment and thus human exposure to MW radiations have increased tremendously, raising health concerns as MW has been implicated in induction of oxidative stress condition in our body. Few metallic nanoparticles (NPs) have been shown to mimic the activity of antioxidant enzymes and hence can be applied for the modulation of adverse effects caused by MW. Present study aimed to assess the biocompatibility of Bovine serum albumin (BSA) conjugated manganese dioxide nanoparticles (MNP*) and to counteract the impact of MW on the haematological system of male Wistar rats. Experiments were conducted in two sets. Set I involved biodistribution and antioxidant activity evaluation of MNP* at different doses. Results showed a dose-dependent increase in antioxidant potential and significant biodistribution in the liver, spleen, kidney, and testis, with no organ damage, indicating its biocompatibility. Experiment set II constituted the study of separate and combined effects of MW and MNP* on haematological parameters, oxidative status, and genotoxic study in the blood of rats. MW exposure significantly altered red blood cell count, hemoglobin, packed cell volume percentage, monocyte percentage, aspartate aminotransferase, Alanine aminotransferase and uric acid. MW also induced significant DNA damage in the blood. A significant increase in lipid peroxidation and a decrease in antioxidant enzyme superoxide dismutase was also observed in MW exposed group. However, these alterations were reduced significantly when MNP* was administered. Thus, MNP* showed biocompatibility and modulatory effects against MW-induced alterations in the haematological system of rats.
Collapse
Affiliation(s)
- Sonali Pardhiya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Usha Singh Gaharwar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Jay Prakash Nirala
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
10
|
Yu W, Zhang F, Meng D, Zhang X, Feng Y, Yin G, Liang P, Chen S, Liu H. Mechanism of Action and Related Natural Regulators of Nrf2 in Nonalcoholic Fatty Liver Disease. Curr Drug Deliv 2024; 21:1300-1319. [PMID: 39034715 DOI: 10.2174/0115672018260113231023064614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 07/23/2024]
Abstract
With the acceleration of people's pace of life, non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in the world, which greatly threatens people's health and safety. Therefore, there is still an urgent need for higher-quality research and treatment in this area. Nuclear factor Red-2-related factor 2 (Nrf2), as a key transcription factor in the regulation of oxidative stress, plays an important role in inducing the body's antioxidant response. Although there are no approved drugs targeting Nrf2 to treat NAFLD so far, it is still of great significance to target Nrf2 to alleviate NAFLD. In recent years, studies have reported that many natural products treat NAFLD by acting on Nrf2 or Nrf2 pathways. This article reviews the role of Nrf2 in the pathogenesis of NAFLD and summarizes the currently reported natural products targeting Nrf2 or Nrf2 pathway for the treatment of NAFLD, which provides new ideas for the development of new NAFLD-related drugs.
Collapse
Affiliation(s)
- Wenfei Yu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People's Republic of China
| | - Decheng Meng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Xin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Yanan Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Guoliang Yin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Pengpeng Liang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Suwen Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Hongshuai Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| |
Collapse
|
11
|
Dananjaya SHS, Madushani KGP, Dilrukshi J, De Silva ND, Sandamalika WMG, Kim D, Choi D, De Zoysa M, Attanayake AP. Development and characterization of polydeoxyribonucleotide (PDRN) loaded chitosan polyplex: In vitro and in vivo evaluation of wound healing activity. Int J Biol Macromol 2023; 253:126729. [PMID: 37689303 DOI: 10.1016/j.ijbiomac.2023.126729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/26/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Polydeoxyribonucleotide (PDRN) is an accelerated diabetic wound healing therapy with promising abilities to promote cell growth, angiogenesis, collagen synthesis, and reduce inflammation where its sustainable delivery and release behavior is critical to ensure effective wound healing properties. Therefore, a nanopolyplex was developed here, by encapsulating PDRN with chitosan to affirm its delivery systematically. The physicochemical characterization revealed its successful encapsulation which facilitates the gradual release of PDRN. In vitro studies of the polyplex demonstrated no cytotoxicity and enhanced cell proliferation and migration properties with high antimicrobial activities. In vivo, wound healing studies in Wistar rats dorsal skin defect model induced with diabetes mellitus affirm the highest wound healing activity and wound closure rate by chitosan/PDRN polyplex treatment. Considerably high histopathological changes such as epithelialization, collagen deposition, blood vessels, and hair follicle formation were observed under the polyplex treatment. The immunohistochemical analysis for platelet endothelial cell adhesion molecule (CD31) and cluster of differentiation (CD68) revealed the ability of polyplex to increase CD31 expression and decrease CD68 expression thereby promoting the wound healing process. Collectively, these results suggest that significantly accelerated, high-quality wound healing effects could be obtained by the developed chitosan/PDRN polyplex and thus it could be introduced as a potential therapeutic product for diabetic wound healing.
Collapse
Affiliation(s)
- S H S Dananjaya
- Zerone Cellvane Inc, 3(rd) Floor, Sanhak Building, Dankook University, Dandae-ro 119, Dongnam-gu, Cheonan Si, Chungcheongnam-do 31116, Republic of Korea
| | - K G P Madushani
- Department of Botany, Faculty of Natural Sciences, The Open University of Sri Lanka, Sri Lanka
| | - Jeewani Dilrukshi
- Sri Lanka Accreditation Board for Conformity Assessment Colombo, Sri Lanka
| | - Nayomi D De Silva
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | - W M Gayashani Sandamalika
- Department of Aquaculture and Fisheries, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka, Sri Lanka
| | - Dukgyu Kim
- Zerone Cellvane Inc, 3(rd) Floor, Sanhak Building, Dankook University, Dandae-ro 119, Dongnam-gu, Cheonan Si, Chungcheongnam-do 31116, Republic of Korea
| | - Dongrack Choi
- Zerone Cellvane Inc, 3(rd) Floor, Sanhak Building, Dankook University, Dandae-ro 119, Dongnam-gu, Cheonan Si, Chungcheongnam-do 31116, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Anoja P Attanayake
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka.
| |
Collapse
|
12
|
Jaber FA. Quercetin Mitigates Oxidative Stress, Inflammation, Apoptosis, and Histopathological Alterations Induced by Chronic Titanium Dioxide Nanoparticle Exposure in the Rat Spleen. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1718-1729. [PMID: 37584520 DOI: 10.1093/micmic/ozad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/30/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023]
Abstract
Titanium dioxide nanoparticles (nano-TiO2) have become widespread but are accompanied by various health concerns. Quercetin (QT), a naturally occurring flavonoid in fruits and vegetables, exhibits potent antioxidant properties. This research examined the toxic impacts of nano-TiO2 on the structure and function of the spleen in adult male rats and assessed the possible protective effects of QT. A set of randomly grouped rats was established, consisting of a control group, a QT group (50 mg/kg/day), a nano-TiO2 group (300 mg/kg/day), and a QT-nano-TiO2 group. These substances were orally administered to the respective groups for 90 days. Nano-TiO2 significantly induced oxidative stress in the spleen, leading to reduced levels of serum immunoglobulins. Additionally, there was a notable increase in the expression of apoptotic markers and proinflammatory cytokines. These biochemical disturbances were accompanied by morphological changes in the spleens of rats exposed to nano-TiO2. However, coadministration of QT and nano-TiO2 effectively mitigated most nano-TiO2-induced alterations in the spleen, including apoptotic and proinflammatory responses, antioxidant imbalance, serum immunoglobulin levels, and histopathological changes. It can be concluded that QT has the potential to function as a protective agent against the detrimental impacts of nano-TiO2 on the spleen by improving the antioxidant defense mechanism and modulating the apoptotic and inflammatory responses.
Collapse
Affiliation(s)
- Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| |
Collapse
|
13
|
Ambwani S, Dolma R, Sharma R, Kaur A, Singh H, Ruj A, Ambwani TK. Modulation of inflammatory and oxidative stress biomarkers due to dexamethasone exposure in chicken splenocytes. Vet Immunol Immunopathol 2023; 262:110632. [PMID: 37517103 DOI: 10.1016/j.vetimm.2023.110632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Dexamethasone (DEXA) is a potent corticosteroid, commonly used for treating inflammatory, hypersensitive and allergic conditions. It is administered to birds with tumours. Many studies were conducted on its immunosuppressive effects; however none of the similar study is available employing chicken splenocytes culture system. The present study was conducted to assess DEXA induced alterations in inflammatory and oxidative stress biomarkers in chicken splenocytes due to its in vitro exposure. The maximum non-cytotoxic dose (MNCD) was evaluated and was further used for conducting lymphocytes proliferation assay (LPA), antioxidant assays (lipid peroxidation, GSH, superoxide dismutase and nitric oxide assays) and assessment of mRNA levels of various genes (IL-1β, IL-6, IL-10, LITAF, iNOS, NF-κB1, Nrf-2, Caspase-3 and -9) through qPCR. The MNCD was determined to be 30 ng/ml in chicken splenocytes culture system. DEXA caused reduction in B and T lymphocytes proliferation indicating its immunosuppressive effects, however improved the antioxidant status of the exposed splenocytes. The expression levels of IL-1β, IL-6, iNOS, LITAF and NF-κB1 were significantly reduced while IL-10 was enhanced, which signify potent anti-inflammatory potential of DEXA. NF-κB is a major transcription factor that regulates genes responsible for both, innate and adaptive immune responses and elicits inflammation. The nuclear factor erythroid 2-related factor 2 (Nrf-2) level was found to be up-regulated. Nrf-2 plays important role in combating the oxidant stress and its increased expression could be the reason of improved antioxidant status of DEXA exposed cells. Present findings indicated that DEXA exhibited modulation in anti-inflammatory, immunomodulatory and antioxidant mediators in chicken splenocytes.
Collapse
Affiliation(s)
- Sonu Ambwani
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India.
| | - Rigzin Dolma
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Raunak Sharma
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Amandip Kaur
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Himani Singh
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Anamitra Ruj
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Tanuj Kumar Ambwani
- Department of Veterinary Physiology and Biochemistry, C.V.A.S., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| |
Collapse
|
14
|
Anima B, Mondal P, Gurusubramanian G, Roy VK. Mechanistic study of copper nanoparticle (CuNP) toxicity on the mouse uterus via apelin signaling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88824-88841. [PMID: 37442930 DOI: 10.1007/s11356-023-28746-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Copper nanoparticles (CuNPs) have been widely utilized in various applications. Due to its wider application, humans are at risk of its exposure. It has been reported that the exposure of CuNPs can lead to organ accumulation and affect organ toxicity. Recent study suggested that CuNPs can translocate into the uterus and affect uterine injury in rat, whereas uterine toxicity still remains unclear. The uterus is an important female organ which is required to sustain pregnancy. Thus, uterine structure and physiology are important. Therefore, this study hypothesized that CuNPs might have a toxic effect on the uterine features of mice. In this study, we have investigated the potential effects of CuNPs on the uterus of mice both in vivo and in vitro. In in vivo study, two groups of female mice were exposed to 5 and 50 mg/kg/day via oral exposure. In vivo results showed that CuNP treatment decreases the body weight and uterus weight and changes in antioxidant status with low estrogen and progesterone levels. Furthermore, CuNPs up-regulated the expression of caspase3 and down-regulated the expression of apelin receptor (APJ). Immunolocalization of apelin showed low abundance in the CuNP-treated uterus. These results suggest a poor apelin signaling in the uterus after CuNP treatment. The in vivo findings were further supported by the in vitro studies. Firstly, the uterus was cultured with 5 and 40 μg of CuNPs, and in the second in vitro experiment, the uterus was divided into 4 groups: control, 40 μg of CuNPs, 40 μg of CuNPs with apelin, and 40 μg of CuNPs with apelin receptor antagonist (ML221). In vitro study showed that CuNPs could directly induce the oxidative stress and apoptosis as well as changing antioxidant status in the uterus. The in vitro apelin 13 (APLN 13) treatments alleviated the expression of BCL2 and improved the antioxidant markers in CuNP-treated uterus. These results also provided an evidence of apelin-mediated signaling in the CuNP-treated uterus. In summary, our results present evidence that CuNPs can stimulate apoptotic pathways which may lead to uterine impairment due to weak apelin signaling.
Collapse
Affiliation(s)
- Borgohain Anima
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796 004, India
| | - Pradip Mondal
- Department of Zoology, Netaji Mahavidyalaya, Hooghly, West Bengal, 712616, India
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796 004, India.
| |
Collapse
|
15
|
Sajjad H, Sajjad A, Haya RT, Khan MM, Zia M. Copper oxide nanoparticles: In vitro and in vivo toxicity, mechanisms of action and factors influencing their toxicology. Comp Biochem Physiol C Toxicol Pharmacol 2023; 271:109682. [PMID: 37328134 DOI: 10.1016/j.cbpc.2023.109682] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/21/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) have received increasing interest due to their distinctive properties, including small particle size, high surface area, and reactivity. Due to these properties, their applications have been expanded rapidly in various areas such as biomedical properties, industrial catalysts, gas sensors, electronic materials, and environmental remediation. However, because of these widespread uses, there is now an increased risk of human exposure, which could lead to short- and long-term toxicity. This review addresses the underlying toxicity mechanisms of CuO NPs in cells which include reactive oxygen species generation, leaching of Cu ion, coordination effects, non-homeostasis effect, autophagy, and inflammation. In addition, different key factors responsible for toxicity, characterization, surface modification, dissolution, NPs dose, exposure pathways and environment are discussed to understand the toxicological impact of CuO NPs. In vitro and in vivo studies have shown that CuO NPs cause oxidative stress, cytotoxicity, genotoxicity, immunotoxicity, neurotoxicity, and inflammation in bacterial, algal, fish, rodents, and human cell lines. Therefore, to make CuO NPs a more suitable candidate for various applications, it is essential to address their potential toxic effects, and hence, more studies should be done on the long-term and chronic impacts of CuO NPs at different concentrations to assure the safe usage of CuO NPs.
Collapse
Affiliation(s)
- Humna Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Anila Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Rida Tul Haya
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
16
|
Bi J, Mo C, Li S, Huang M, Lin Y, Yuan P, Liu Z, Jia B, Xu S. Immunotoxicity of metal and metal oxide nanoparticles: from toxic mechanisms to metabolism and outcomes. Biomater Sci 2023. [PMID: 37161951 DOI: 10.1039/d3bm00271c] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The influence of metal and metal oxide nanomaterials on various fields since their discovery has been remarkable. They have unique properties, and therefore, have been employed in specific applications, including biomedicine. However, their potential health risks cannot be ignored. Several studies have shown that exposure to metal and metal oxide nanoparticles can lead to immunotoxicity. Different types of metals and metal oxide nanoparticles may have a negative impact on the immune system through various mechanisms, such as inflammation, oxidative stress, autophagy, and apoptosis. As an essential factor in determining the function and fate of immune cells, immunometabolism may also be an essential target for these nanoparticles to exert immunotoxic effects in vivo. In addition, the biodegradation and metabolic outcomes of metal and metal oxide nanoparticles are also important considerations in assessing their immunotoxic effects. Herein, we focus on the cellular mechanism of the immunotoxic effects and toxic effects of different types of metal and metal oxide nanoparticles, as well as the metabolism and outcomes of these nanoparticles in vivo. Also, we discuss the relationship between the possible regulatory effect of nanoparticles on immunometabolism and their immunotoxic effects. Finally, we present perspectives on the future research and development direction of metal and metal oxide nanomaterials to promote scientific research on the health risks of nanomaterials and reduce their adverse effects on human health.
Collapse
Affiliation(s)
- Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Siwei Li
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Mingshu Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yunhe Lin
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Mohammed RS, Aadim KA, Ahmed KA. Histological, haematological, and thyroid hormones toxicity of female rats orally exposed to CuO/ZnO core/shell nanoparticles synthesized by Ar plasma jets. Arch Toxicol 2023; 97:1017-1031. [PMID: 36847821 PMCID: PMC9969385 DOI: 10.1007/s00204-023-03462-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Advancements in nanomedicine helped scientists design a new class of nanoparticles known as hybrid nanoparticles (core/shell) for diagnostic and therapeutic purposes. An essential requirement for the successful use of nanoparticles in biomedical applications is their low toxicity. Therefore, toxicological profiling is necessary to understand the mechanism of nanoparticles. The current study aimed to assess the toxicological potential of CuO/ZnO core/shell nanoparticles with a size of 32 nm in Albino female rats. In vivo toxicity was evaluated by oral administration of 0, 5, 10, 20, and 40 (mg/L) of CuO/ZnO core/shell nanoparticles to a female rate for 30 consecutive days. During the time of treatment, no deaths were observed. The toxicological evaluation revealed significant (p < 0.01) alteration in white blood cells (WBC) at a 5 (mg/L) dose. Also, increase in red blood cells (RBC) at 5, 10 (mg/L) doses, while hemoglobin (Hb) levels and hematocrit (HCT) increased at all doses. This maybe indicates that the CuO/ZnO core/shell nanoparticles stimulated the rate of blood corpuscle generation. The anaemia diagnostic indices (mean corpuscular volume MCV and mean corpuscular haemoglobin MCH) remained unchanged throughout the experiment for all the doses tested 5, 10, 20, and 40 (mg/L). According to the results of this study, exposure to CuO/ZnO core/shell NPs deteriorates the Triiodothyronine hormone (T3) and a Thyroxine hormone (T4) activated by Thyroid-Stimulating Hormone (TSH), which is generated and secreted from the pituitary gland. There is possibly related to an increase in free radicals and a decrease in antioxidant activity. Significant (p < 0.01) growth retardation in all groups treated due to rats' infection by Hyperthyroidism induced by thyroxine (T4) level increase. Hyperthyroidism is a catabolic state related to increased energy consumption, protein turnover, and lipolysis. Usually, these metabolic effects result in weight reduction and a decrease in fat storage and lean body mass. The histological examination indicates that the low concentrations of CuO/ZnO core/shell nanoparticles are safe for desired biomedical applications.
Collapse
Affiliation(s)
- Raghad S Mohammed
- Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq.
| | - Kadhim A Aadim
- Department of Physics, College of Science, University of Baghdad, Baghdad, Iraq
| | - Khalid A Ahmed
- Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
18
|
Tain YL, Yang HW, Hou CY, Chang-Chien GP, Lin S, Hsu CN. Anti-Hypertensive Property of an NO Nanoparticle in an Adenine-Induced Chronic Kidney Disease Young Rat Model. Antioxidants (Basel) 2023; 12:513. [PMID: 36830071 PMCID: PMC9951902 DOI: 10.3390/antiox12020513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Hypertension is the most common complication of chronic kidney disease (CKD) in children but is still poorly controlled. Nitric oxide (NO) deficiency plays a pivotal role in CKD and hypertension. NO is known to have health benefits, while NO typically has a short half-life and is not specifically targeted. In this study, we used a pediatric CKD model, which was induced in young rats by feeding them 0.25% adenine. We investigated two different NO donors, namely S-nitrosoglutathione (GSNO) and diethylenetriamine/NO adduct (DETA NONOate) via intraperitoneal injection at 10 mg/kg/day daily for 3 weeks. GSNO was delivered by Cu2+-doped zeolitic imidazolate framework (Cu/ZIF-8) nanoparticles to generate NO. As a result, we observed Cu/ZIF-8 nanoparticles were successfully loaded with GSNO and were able to release NO. Young rats fed with adenine displayed kidney dysfunction and hypertension at 9 weeks of age, which were prevented by GSNO-loaded nanoparticle or DETA NONOate treatment. GSNO-loaded nanoparticles reduced CKD-induced hypertension, which was related to an enhanced endogenous NO-generating system, reduced renal oxidative stress, and downregulated several components belonging to the classic renin-angiotensin (RAS) system. Our results cast new light on targeting NO delivery through the use of nanoparticles aiming to improve child-focused outcomes related to CKD worthy of clinical translation.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Hung-Wei Yang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City 701, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan City 701, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Guo-Ping Chang-Chien
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Sufan Lin
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
19
|
Deng H, Zhu S, Yang H, Cui H, Guo H, Deng J, Ren Z, Geng Y, Ouyang P, Xu Z, Deng Y, Zhu Y. The Dysregulation of Inflammatory Pathways Triggered by Copper Exposure. Biol Trace Elem Res 2023; 201:539-548. [PMID: 35312958 DOI: 10.1007/s12011-022-03171-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/18/2022] [Indexed: 01/21/2023]
Abstract
Copper (Cu) is an essential micronutrient for both human and animals. However, excessive intake of copper will cause damage to organs and cells. Inflammation is a biological response that can be induced by various factors such as pathogens, damaged cells, and toxic compounds. Dysregulation of inflammatory responses are closely related to many chronic diseases. Recently, Cu toxicological and inflammatory effects have been investigated in various animal models and cells. In this review, we summarized the known effect of Cu on inflammatory responses and sum up the molecular mechanism of Cu-regulated inflammation. Excessive Cu exposure can modulate a huge number of cytokines in both directions, increase and/or decrease through a variety of molecular and cellular signaling pathways including nuclear factor kappa-B (NF-κB) pathway, mitogen-activated protein kinase (MAPKs) pathway, JAK-STAT (Janus Kinase- signal transducer and activator of transcription) pathway, and NOD-like receptor protein 3 (NLRP3) inflammasome. Underlying the molecular mechanism of Cu-regulated inflammation could help further understanding copper toxicology and copper-associated diseases.
Collapse
Affiliation(s)
- Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Song Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Huiru Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Agricultural Information Engineering of Sichuan Province, Sichuan Agriculture University, Yaan, 625014, Sichuan, China.
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Youtian Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| |
Collapse
|
20
|
Dai C, Li M, Liu Y, Tran DH, Jiang H, Tang S, Shen J. Involvement of the inhibition of mitochondrial apoptotic, p53, NF-κB pathways and the activation of Nrf2/HO-1 pathway in the protective effects of curcumin against copper sulfate-induced nephrotoxicity in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114480. [PMID: 38321692 DOI: 10.1016/j.ecoenv.2022.114480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/29/2022] [Accepted: 12/23/2022] [Indexed: 02/08/2024]
Abstract
Chronic copper exposure could cause potential nephrotoxicity and effective therapy strategies are limited. This study investigated the protective effects of curcumin on copper sulfate (CuSO4)-induced renal damage in a mouse model and the underlying molecular mechanisms. Mice were administrated orally with CuSO4 (100 mg/kg per day) in combination with or without curcumin (50, 100 or 200 mg/kg per day, orally) for 28 days. Results showed that curcumin supplementation significantly reduce the Cu accumulation in the kidney tissues of mice and improved CuSO4-induced renal dysfunction. Furthermore, curcumin supplantation also significantly ameliorated Cu exposure-induced oxidative stress and tubular necrosis in the kidneys of mice. Moreover, compared to the CuSO4 alone group, curcumin supplementation at 200 mg/kg per day significantly decreased CuSO4-induced the expression of p53, Bax, IL-1β, IL-6, and TNF-α proteins, levels of NF-κB mRNA, levels of caspases-9 and - 3 activities, and cell apoptosis, and significantly increased the levels of Nrf2 and HO-1 mRNAs in the kidney tissues. In conclusion, for the first time, our results reveal that curcumin could trigger the inhibition of oxidative stress, mitochondrial apoptotic, p53, and NF-κB pathways and the activation of Nrf2/HO-1 pathway to ameliorate Cu overload-induced nephrotoxicity in a mouse model. Our study highlights that curcumin supplementation may be a promising treatment strategy for treating copper overload-caused nephrotoxicity.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing 100193, PR China.
| | - Meng Li
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China
| | - Yue Liu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China
| | - Diem Hong Tran
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Haiyang Jiang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing 100193, PR China
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing 100193, PR China
| |
Collapse
|
21
|
Wang YX, Liu MJ, Geng XH, Zhang Y, Jia RQ, Zhang YN, Wang XX, Jiang Y. The combined effects of microplastics and the heavy metal cadmium on the marine periphytic ciliate Euplotes vannus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119663. [PMID: 35738516 DOI: 10.1016/j.envpol.2022.119663] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/25/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Microplastics could be grazed by marine organisms and possibly transferred to higher trophic levels along the microbial loop. Due to their size and capacity to concentrate heavy metals that trigger joint toxic effects, microplastics (MPs) have already become a severe threat to marine organisms. The detrimental effects of MPs on large marine organisms have been studied, but the combined toxicity of MPs and cadmium (Cd) on protozoan ciliates remains unclear. In the present study, we selected different diameters and concentrations of polystyrene microspheres (PS-MPs) and Cd2+ as model MPs and heavy metals to evaluate their single and combined effects on the periphytic marine ciliate Euplotes vannus in relation to carbon biomass and oxidative stress. The MPs were indeed ingested by Euplotes vannus and significantly reduced the abundance and carbon biomass of ciliate populations. Combined exposure to MPs and Cd2+ not only increased the bioaccumulation of Cd2+ in ciliates but also exacerbated the decrease in ciliate biomass by increasing oxidative stress and membrane damage. In comparison, the effects of nano-sized plastics (0.22 μm) were more harmful than those of micro-sized plastics (1.07 μm, 2.14 μm and 5.00 μm). A smaller size represents a higher potential for penetrating biological members and a stronger adsorption capacity for cadmium. These results provide new insight into the combined toxicity of microplastics and heavy metals on ciliated protozoa and lay a foundation for higher trophic levels and ecosystems.
Collapse
Affiliation(s)
- Ya-Xin Wang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Ming-Jian Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xian-Hui Geng
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Yan Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Rui-Qi Jia
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Yi-Ning Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Xiao-Xiao Wang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Yong Jiang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
22
|
Banerjee O, Singh S, Prasad SK, Ray D, Banerjee M, Pal S, Kundu S, Maji BK, Mukherjee S. Dichlorophene activates aryl hydrocarbon receptor (AhR) and indoleamine 2, 3-dioxygenase 1 (IDO1) to mediate splenotoxicity in rat. Drug Chem Toxicol 2022; 45:2311-2318. [PMID: 34107835 DOI: 10.1080/01480545.2021.1935435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Dichlorophene (DCP) is a halogenated phenolic compound, widely used as fungicide, bactericide and antiprotozoan and also exhibit therapeutic application in several pathological conditions. Taking account of broad use of DCP, its possible effect on spleen (an important immune organ) was investigated in this study. Male albino rats were treated with graded doses of DCP (10%, 20% and 30% of LD50) and spleen and blood were obtained at 24, 48 and 72 hours post treatment. Oxidative stress parameters, proinflammatory cytokines and protein expression of aryl hydrocarbon receptor (AhR), indoleamine-2, 3-Dioxygenase 1 (IDO1) and nuclear factor erythroid 2-related factor 2 (Nrf2) were measured along with histopathological evaluation of spleen. In the present study, DCP perturbs redox status of splenocytes of rats as evidenced by excess ROS generation, lipid peroxidation and nitric oxide production simultaneously with reduction of antioxidant level [glutathione (GSH)] and inhibition of antioxidative enzymes [superoxide dismutase (SOD) and catalase (CAT)]. Two important proinflammatory cytokines, IL-6 and TNF-α were found to be elevated upon DCP treatment. Moreover, DCP also caused activation of AhR and IDO1 with simultaneous down regulation of Nrf2. All these effects of DCP were found to be dose and duration dependent. DCP also affects the spleen micro-architecture in the present study and these alterations were more prominent in high dose group at 72 hours post treatment. Taken together, all these results suggested that DCP induces oxidative stress and also increases proinflammatory cytokine levels to mount its toxic effect on spleen.
Collapse
Affiliation(s)
- Oly Banerjee
- Department of Physiology, Serampore College, Hooghly, India
| | | | | | - Dibyendu Ray
- Department of Physiology, Serampore College, Hooghly, India
| | | | - Swagata Pal
- Department of Physiology, Raja Peary Mohan College, Hooghly, India
| | - Sudipta Kundu
- Department of Physiology, Kalka Dental College, Meerut, India
| | | | | |
Collapse
|
23
|
Xiao X, He E, Jiang X, Li X, Yang W, Ruan J, Zhao C, Qiu R, Tang Y. Visualizing and assessing the size-dependent oral uptake, tissue distribution, and detrimental effect of polystyrene microplastics in Eisenia fetida. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119436. [PMID: 35537557 DOI: 10.1016/j.envpol.2022.119436] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Microplastics are widely distributed in the environment, their potential ecological risks on soil organism have attracted extensive attention, while the investigation of the size effect on its accumulation and toxicity in soil invertebrates are still lacking. In this study, we set out to explore the size-dependent effects of microplastics on soil invertebrates with different doses. Specifically, we investigated the effect of polystyrene (PS) microplastics on earthworm Eisenia fetida with three different sizes (70 nm, 1 μm and 10 μm) and exposure doses (0.5%, 5% and 10% w/w in food). Results showed that PS microplastics had no effects on the mortality of E. fetida, while an obvious growth inhibition with rising exposure concentrations was observed, especially under exposure of 70 nm plastic particles. Additionally, 70 nm PS microplastics induced more serious oxidative stress, energy depletion and histopathological damage on earthworms compared with larger sizes. The accumulation and distribution pattern of microplastics was size-dependent in earthworms after 3- and 7-day exposure as revealed by laser confocal microscopy. Notably, earthworms accumulated more micro-sized particles (MPs, 10 μm and 1 μm) but with less toxic responses, suggesting its weaker toxicity. The distribution pattern of MPs may explain the weak relation between accumulation and toxicity as they mainly distributed in epidermis of mid- and tail-section and the intestine of earthworm. In contrast, nano-sized particles (NPs, 70 nm) were more distributed in the head-section and subcutaneous tissue of the skin, which was in accordance with the obvious toxic responses found in earthworms exposing to NPs. Our study highlighted the importance of size in determining the accumulation, distribution and toxic effects of plastic particles towards soil invertebrates and advocates the necessity of ecological risk assessments of NPs.
Collapse
Affiliation(s)
- Xue Xiao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Xiaofeng Jiang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xing Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenjun Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jujun Ruan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chunmei Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
24
|
Xiong P, Huang X, Ye N, Lu Q, Zhang G, Peng S, Wang H, Liu Y. Cytotoxicity of Metal-Based Nanoparticles: From Mechanisms and Methods of Evaluation to Pathological Manifestations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106049. [PMID: 35343105 PMCID: PMC9165481 DOI: 10.1002/advs.202106049] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/09/2022] [Indexed: 05/05/2023]
Abstract
Metal-based nanoparticles (NPs) are particularly important tools in tissue engineering-, drug carrier-, interventional therapy-, and biobased technologies. However, their complex and varied migration and transformation pathways, as well as their continuous accumulation in closed biological systems, cause various unpredictable toxic effects that threaten human and ecosystem health. Considerable experimental and theoretical efforts have been made toward understanding these cytotoxic effects, though more research on metal-based NPs integrated with clinical medicine is required. This review summarizes the mechanisms and evaluation methods of cytotoxicity and provides an in-depth analysis of the typical effects generated in the nervous, immune, reproductive, and genetic systems. In addition, the challenges and opportunities are discussed to enhance future investigations on safer metal-based NPs for practical commercial adoption.
Collapse
Affiliation(s)
- Peizheng Xiong
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Xiangming Huang
- The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Province, 530023, P. R. China
| | - Naijing Ye
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Qunwen Lu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Gang Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Shunlin Peng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Hongbo Wang
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, 611700, P. R. China
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yiyao Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| |
Collapse
|
25
|
Tulinska J, Mikusova ML, Liskova A, Busova M, Masanova V, Uhnakova I, Rollerova E, Alacova R, Krivosikova Z, Wsolova L, Dusinska M, Horvathova M, Szabova M, Lukan N, Stuchlikova M, Kuba D, Vecera Z, Coufalik P, Krumal K, Alexa L, Vrlikova L, Buchtova M, Dumkova J, Piler P, Thon V, Mikuska P. Copper Oxide Nanoparticles Stimulate the Immune Response and Decrease Antioxidant Defense in Mice After Six-Week Inhalation. Front Immunol 2022; 13:874253. [PMID: 35547729 PMCID: PMC9082266 DOI: 10.3389/fimmu.2022.874253] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Copper oxide nanoparticles (CuO NPs) are increasingly used in various industry sectors. Moreover, medical application of CuO NPs as antimicrobials also contributes to human exposure. Their toxicity, including toxicity to the immune system and blood, raises concerns, while information on their immunotoxicity is still very limited. The aim of our work was to evaluate the effects of CuO NPs (number concentration 1.40×106 particles/cm3, geometric mean diameter 20.4 nm) on immune/inflammatory response and antioxidant defense in mice exposed to 32.5 µg CuO/m3 continuously for 6 weeks. After six weeks of CuO NP inhalation, the content of copper in lungs and liver was significantly increased, while in kidneys, spleen, brain, and blood it was similar in exposed and control mice. Inhalation of CuO NPs caused a significant increase in proliferative response of T-lymphocytes after mitogenic stimulation and basal proliferative activity of splenocytes. CuO NPs significantly induced the production of IL-12p70, Th1-cytokine IFN-γ and Th2-cytokines IL-4, IL-5. Levels of TNF-α and IL-6 remained unchanged. Immune assays showed significantly suppressed phagocytic activity of granulocytes and slightly decreased respiratory burst. No significant differences in phagocytosis of monocytes were recorded. The percentage of CD3+, CD3+CD4+, CD3+CD8+, and CD3-CD19+ cell subsets in spleen, thymus, and lymph nodes did not differ between exposed and control animals. No changes in hematological parameters were found between the CuO NP exposed and control groups. The overall antioxidant protection status of the organism was expressed by evaluation of GSH and GSSG concentrations in blood samples. The experimental group exposed to CuO NPs showed a significant decrease in GSH concentration in comparison to the control group. In summary, our results indicate that sub-chronic inhalation of CuO NPs can cause undesired modulation of the immune response. Stimulation of adaptive immunity was indicated by activation of proliferation and secretion functions of lymphocytes. CuO NPs elicited pro-activation state of Th1 and Th2 lymphocytes in exposed mice. Innate immunity was affected by impaired phagocytic activity of granulocytes. Reduced glutathione was significantly decreased in mice exposed to CuO NPs.
Collapse
Affiliation(s)
- Jana Tulinska
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | | | - Aurelia Liskova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Milena Busova
- Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Vlasta Masanova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Iveta Uhnakova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Eva Rollerova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Radka Alacova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Zora Krivosikova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Ladislava Wsolova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Maria Dusinska
- Health Effects Laboratory, Norwegian Institute for Air Research, Kjeller, Norway
| | - Mira Horvathova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Michaela Szabova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Norbert Lukan
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | | | - Daniel Kuba
- National Transplant Organization, Bratislava, Slovakia
| | - Zbynek Vecera
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Pavel Coufalik
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Kamil Krumal
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Lukas Alexa
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Lucie Vrlikova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Marcela Buchtova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Jana Dumkova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Vojtech Thon
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Pavel Mikuska
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
26
|
Wang A, Wang L, Fu Q, Shi Z, Chen X, Zhang X, Xu W, Wang T, Yu X, Zhang S, Gao Y, Li W, Hu S. Yiqi Jiedu herbal decoction attenuates the 2 Gy 60Co γ ray induced spleen injury by inhibiting apoptosis and modulating the immune balance. JOURNAL OF ETHNOPHARMACOLOGY 2022; 286:114925. [PMID: 34933086 DOI: 10.1016/j.jep.2021.114925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Irradiation-induced immunosuppression often occurs during radiotherapy in patients, which would increase the risk of opportunistic infections. Many Chinese herbal prescriptions or natural extracts have recently attracted increased radiation protection and therapy attention due to their low toxicity. AIM OF THE STUDY The present study aimed to investigate the protective effects of Yiqi Jiedu (YQJD) decoction on spleen injury induced by 2 Gy 60Co γ ray in mice. MATERIALS AND METHODS A total of 180 Balb/c mice were randomly divided into five groups: blank control (Ctrl), model (IR), positive drug (IRA), low-dose YQJD decoction (IRL), and high-dose YQJD decoction (IRH). After a ten-day intervention, mice were exposed to a single dose of total body irradiation (2 Gy) and sacrificed on the 1st, 3rd, and 7th day after irradiation. The indicators include general observations and body weight, changes in peripheral hemogram, index and histopathology examination of the spleen, distribution of lymphocyte subsets, cytokine levels, and apoptosis in the spleen. RESULTS In comparison to the Ctrl group, the body weight, spleen index, peripheral blood cell, and splenocyte quantities decreased significantly after exposure, accompanied by a notable increase of apoptosis in spleen cells. Moreover, ionizing radiation also broke the balance of CD4+/CD8+, Th1/Th2, and Th17/Treg, triggering immune imbalance and immunosuppression. The above injuries occurred on the 1st day after exposure, worsened on the 3rd, and were relieved on the 7th day. However, the pretreatment of YQJD decoction increased the spleen index, improved the spleen structure, and inhibited radiation-induced apoptosis after exposure. Additionally, YQJD decoction has shown its ability to promote immunological balance recovery following exposure by regulating CD4+/CD8+, Th1/Th2, and Th17/Treg ratios, which may minimize the risk of infection. In addition, the high-dose of YQJD decoction showed a better protective effect than the low-dose group. CONCLUSION The protective effects of YQJD decoction on 2 Gy 60Coγray induced spleen injury were confirmed in this study. This mechanism may be related to inhibiting apoptosis and modulating immune balance. This exploration might provide new insights into the use of Chinese herbs on radioprotection of the immune system.
Collapse
Affiliation(s)
- An Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Qian Fu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zhongyu Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xiaoying Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xiaomeng Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Wenhui Xu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shujing Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yushan Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Wei Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Sumin Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
27
|
Guo H, Wang Y, Cui H, Ouyang Y, Yang T, Liu C, Liu X, Zhu Y, Deng H. Copper Induces Spleen Damage Through Modulation of Oxidative Stress, Apoptosis, DNA Damage, and Inflammation. Biol Trace Elem Res 2022; 200:669-677. [PMID: 33740180 DOI: 10.1007/s12011-021-02672-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 01/26/2023]
Abstract
Copper (Cu) is an essential micronutrient for both humans and animals; however, excessive intake of Cu can be immunotoxic. There are limited studies on spleen toxicity induced by Cu. This study was conducted to investigate the effects of Cu on spleen oxidative stress, apoptosis, and inflammatory responses in mice orally administered with 0 mg/kg, 10 mg/kg, 20 mg/kg, and 40 mg/kg of CuSO4 for 42 days. As discovered in this work, copper sulfate (CuSO4) reduced the activities of antioxidant enzymes (SOD, CAT, and GSH-Px), decreased GSH contents, and increased MDA contents. Meanwhile, CuSO4 induced apoptosis by increasing TUNEL-positive cells in the spleen. Also, CuSO4 increased the expression of γ-H2AX, which is the marker of DNA damage. Concurrently, CuSO4 caused inflammation by increasing the mRNA levels of interleukin-1β (IL-1β), IL-2, IL-4, IL-6, IL-12, tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ). In conclusion, the abovementioned findings demonstrate that over 10 mg/kg CuSO4 can cause oxidative stress, apoptosis, DNA damage, and inflammatory responses, which contribute to spleen dysfunction in mice.
Collapse
Affiliation(s)
- Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Yuqin Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Agricultural information engineering of Sichuan Province, Sichuan Agriculture University, Yaan, 625014, Sichuan, China.
| | - Yujuan Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Tingyou Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Caiyun Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xiaoyu Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
28
|
Exploring the Immune-Boosting Functions of Vitamins and Minerals as Nutritional Food Bioactive Compounds: A Comprehensive Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020555. [PMID: 35056870 PMCID: PMC8779769 DOI: 10.3390/molecules27020555] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Abstract
Food components have long been recognized to play a fundamental role in the growth and development of the human body, conferring protective functionalities against foreign matter that can be severe public health problems. Micronutrients such as vitamins and minerals are essential to the human body, and individuals must meet their daily requirements through dietary sources. Micronutrients act as immunomodulators and protect the host immune response, thus preventing immune evasion by pathogenic organisms. Several experimental investigations have been undertaken to appraise the immunomodulatory functions of vitamins and minerals. Based on these experimental findings, this review describes the immune-boosting functionalities of micronutrients and the mechanisms of action through which these functions are mediated. Deficiencies of vitamins and minerals in plasma concentrations can lead to a reduction in the performance of the immune system functioning, representing a key contributor to unfavorable immunological states. This review provides a descriptive overview of the characteristics of the immune system and the utilization of micronutrients (vitamins and minerals) in preventative strategies designed to reduce morbidity and mortality among patients suffering from immune invasions or autoimmune disorders.
Collapse
|
29
|
Tanumihardja M, Windha A, Musfirah N, Punggawa G, Fatima A, Nur Fadhila A, Esfandiary, Natsir N, Cangara H, Muslimin L. Acute toxicity potential and impact on periodontal and periapical tissue of Pulp Out: A paste contained jatropha, sidaguri, and melittin. Toxicol Rep 2022; 9:1788-1795. [DOI: 10.1016/j.toxrep.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/28/2022] Open
|
30
|
Chen H, Wang Y, Luo J, Kang M, Hou J, Tang R, Zhao L, Shi F, Ye G, He X, Cui H, Guo H, Li Y, Tang H. Autophagy and apoptosis mediated nano-copper-induced testicular damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113039. [PMID: 34922170 DOI: 10.1016/j.ecoenv.2021.113039] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Nano-copper has been increasingly employed in various products. In previous studies, we showed that nano-copper caused damage in the rat testis, but it remains unclear whether the toxic reaction can affect the reproductive function. In this study, following 28 d of exposure to nano-copper at a dose of 44, 88, and 175 mg/kg/day, there was a decrease in sperm quality, fructose content, and the secretion of sex hormones. Nano-copper also increased the level of oxidative stress, sperm malformation rate, and induced abnormal structural changes in testicular tissue. Moreover, Nano-copper upregulated the expression of apoptosis-related protein Bax and autophagy-related protein Beclin, and downregulated the expression of Bcl2 and p62. Furthermore, nano-copper (175 mg/kg) downregulated the protein expression of AMPK, p-AKT, mTOR, p-mTOR, p-4E-BP1, p70S6K, and p-p70S6K, and upregulated the protein expression of p-AMPK. Therefore, nano-copper induced damage in testicular tissues and spermatogenesis is highly related to cell apoptosis and autophagy by regulating the Akt/mTOR signaling pathway. In summary, excess exposure to nano-copper may induce testicular apoptosis and autophagy through AKT/mTOR signaling pathways, and damage the reproductive system in adult males, which is associated with oxidative stress in the testes.
Collapse
Affiliation(s)
- Helin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Yanyan Wang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Jie Luo
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China; National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, Guizhou, China
| | - Min Kang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Jin Hou
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Ruoping Tang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Fei Shi
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Xiaoli He
- College of Science, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China.
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China.
| |
Collapse
|
31
|
Xu P, Cao M, Dong X, Yu Z, Liu J, Tan J, Wang Y, Li T, Zhao S. Nanosized copper particles induced mesangial cell toxicity via the autophagy pathway. Braz J Med Biol Res 2022; 55:e12252. [DOI: 10.1590/1414-431x2022e12252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pengjuan Xu
- Tianjin University of Traditional Chinese Medicine, China
| | - Min Cao
- Tianjin University of Traditional Chinese Medicine, China
| | - Xueqian Dong
- Tianjin University of Traditional Chinese Medicine, China
| | - Zhichao Yu
- Tianjin Sino-German University of Applied Sciences, China
| | - Jianwei Liu
- Tianjin University of Traditional Chinese Medicine, China
| | - Junzhen Tan
- Tianjin University of Traditional Chinese Medicine, China
| | | | - Tao Li
- Tianjin University of Traditional Chinese Medicine, China
| | - Shuwu Zhao
- Tianjin University of Traditional Chinese Medicine, China
| |
Collapse
|
32
|
Tulinska J, Mikusova ML, Liskova A, Busova M, Masanova V, Uhnakova I, Rollerova E, Alacova R, Krivosikova Z, Wsolova L, Dusinska M, Horvathova M, Szabova M, Lukan N, Stuchlikova M, Kuba D, Vecera Z, Coufalik P, Krumal K, Alexa L, Vrlikova L, Buchtova M, Dumkova J, Piler P, Thon V, Mikuska P. Copper Oxide Nanoparticles Stimulate the Immune Response and Decrease Antioxidant Defense in Mice After Six-Week Inhalation. Front Immunol 2022. [PMID: 35547729 DOI: 10.3389/2022.874253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
Copper oxide nanoparticles (CuO NPs) are increasingly used in various industry sectors. Moreover, medical application of CuO NPs as antimicrobials also contributes to human exposure. Their toxicity, including toxicity to the immune system and blood, raises concerns, while information on their immunotoxicity is still very limited. The aim of our work was to evaluate the effects of CuO NPs (number concentration 1.40×106 particles/cm3, geometric mean diameter 20.4 nm) on immune/inflammatory response and antioxidant defense in mice exposed to 32.5 µg CuO/m3 continuously for 6 weeks. After six weeks of CuO NP inhalation, the content of copper in lungs and liver was significantly increased, while in kidneys, spleen, brain, and blood it was similar in exposed and control mice. Inhalation of CuO NPs caused a significant increase in proliferative response of T-lymphocytes after mitogenic stimulation and basal proliferative activity of splenocytes. CuO NPs significantly induced the production of IL-12p70, Th1-cytokine IFN-γ and Th2-cytokines IL-4, IL-5. Levels of TNF-α and IL-6 remained unchanged. Immune assays showed significantly suppressed phagocytic activity of granulocytes and slightly decreased respiratory burst. No significant differences in phagocytosis of monocytes were recorded. The percentage of CD3+, CD3+CD4+, CD3+CD8+, and CD3-CD19+ cell subsets in spleen, thymus, and lymph nodes did not differ between exposed and control animals. No changes in hematological parameters were found between the CuO NP exposed and control groups. The overall antioxidant protection status of the organism was expressed by evaluation of GSH and GSSG concentrations in blood samples. The experimental group exposed to CuO NPs showed a significant decrease in GSH concentration in comparison to the control group. In summary, our results indicate that sub-chronic inhalation of CuO NPs can cause undesired modulation of the immune response. Stimulation of adaptive immunity was indicated by activation of proliferation and secretion functions of lymphocytes. CuO NPs elicited pro-activation state of Th1 and Th2 lymphocytes in exposed mice. Innate immunity was affected by impaired phagocytic activity of granulocytes. Reduced glutathione was significantly decreased in mice exposed to CuO NPs.
Collapse
Affiliation(s)
- Jana Tulinska
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | | | - Aurelia Liskova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Milena Busova
- Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Vlasta Masanova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Iveta Uhnakova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Eva Rollerova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Radka Alacova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Zora Krivosikova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Ladislava Wsolova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Maria Dusinska
- Health Effects Laboratory, Norwegian Institute for Air Research, Kjeller, Norway
| | - Mira Horvathova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Michaela Szabova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Norbert Lukan
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | | | - Daniel Kuba
- National Transplant Organization, Bratislava, Slovakia
| | - Zbynek Vecera
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Pavel Coufalik
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Kamil Krumal
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Lukas Alexa
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Lucie Vrlikova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Marcela Buchtova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Jana Dumkova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Vojtech Thon
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Pavel Mikuska
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
33
|
Qin L, Duan Z, Cheng H, Wang Y, Zhang H, Zhu Z, Wang L. Size-dependent impact of polystyrene microplastics on the toxicity of cadmium through altering neutrophil expression and metabolic regulation in zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118169. [PMID: 34536643 DOI: 10.1016/j.envpol.2021.118169] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Insufficient evidence exists regarding the visible physiological toxic endpoints of MPs exposures on zebrafish larvae due to their small sizes. Herein, the impacts of micro-polystyrene particles (μ-PS) and 100 nm polystyrene particles (n-PS) on the toxicity of cadmium (Cd) through altering neutrophil expressions were identified and quantified in the transgenic zebrafish (Danio rerio) larvae Tg(lyz:DsRed2), and the effects were size-dependent. When exposed together with μ-PS, the amount of neutrophils in Cd treated zebrafish larvae decreased by 25.56% through reducing Cd content in the larvae. By contrast, although n-PS exposure caused lower Cd content in the larvae, the expression of neutrophils under their combined exposure remained high. The mechanism of immune toxicity was analyzed based on the results of metabonomics. n-PS induced high oxidative stress in the larvae, which promoted taurine metabolism and unsaturated fatty biosynthesis in n-PS + Cd treatment. This observation was accordance with the significant inhibition of the activities of superoxide dismutase and catalase enzymes detected in their combined treatment. Moreover, n-PS promoted the metabolic pathways of catabolic processes, amino acid metabolism, purine metabolism, and steroid hormone biosynthesis in Cd treated zebrafish larvae. Nanoplasctis widely coexist with other pollutants in the environment at relatively low concentrations. We conclude that more bio-markers of immune impact should be explored to identify their toxicological mechanisms and mitigate the effects on the environment.
Collapse
Affiliation(s)
- Li Qin
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Zhenghua Duan
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin University of Technology, Tianjin, 300384, China.
| | - Haodong Cheng
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin University of Technology, Tianjin, 300384, China
| | - Yudi Wang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin University of Technology, Tianjin, 300384, China
| | - Haihong Zhang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhe Zhu
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin University of Technology, Tianjin, 300384, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300071, China
| |
Collapse
|
34
|
Nicolas-Boluda A, Laurent G, Bazzi R, Roux S, Donnadieu E, Gazeau F. Two step promotion of a hot tumor immune environment by gold decorated iron oxide nanoflowers and light-triggered mild hyperthermia. NANOSCALE 2021; 13:18483-18497. [PMID: 34752596 DOI: 10.1039/d1nr03201a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoparticle-mediated photothermal therapy (PTT) is an emerging modality to treat tumors with both spatial and temporal control provided by light activation. Gold decorated iron oxide nanoflowers (GIONF) are good candidates for PTT due to their biocompatibility, biodegradability and light-to-heat conversion. Profound changes in the tumor immune environment might be early induced by the gold and iron oxide metallic agents in addition to the photothermal effects. This study aims to elucidate the outcome of GIONF on their own, and of GIONF-induced mild hyperthermia in the tumor immune infiltrate in a murine model of triple negative breast cancer. First we explored the effects of 24 h GIONF exposure on bone-marrow derived macrophages (BMDM), revealing significant effects on the BMDM phenotype and secretion, 6 days post-incubation, with important downregulation of several cytokines and MHCII expression, predominantly towards a pro-inflammatory response. Intratumoral administration of GIONF promoted an increase in monocyte recruitment at day 1 post-administration, shifting towards a pro-inflammatory anti-tumor microenvironment with lower Treg population and a 4 fold lower CD4/CD8 ratio compared to the control at day 12. On top of the GIONF effects, mild hyperthermia (43 °C for 15 min), although it does not induce significant changes in tumor growth, resulted in an additional increase of CD8+ T lymphocytes and pro-inflammatory cytokines. The combination of a timely controlled immune response to GIONF and to mild hyperthermia could be used as a remotely triggered adjuvant treatment to immunotherapy approaches at the best favorable time-window.
Collapse
Affiliation(s)
- Alba Nicolas-Boluda
- Université de Paris, MSC, CNRS-UMR 7057, Paris, France.
- Université de Paris, Institut Cochin, INSERM U1016/CNRS UMR 8104, Paris, France
| | - Gautier Laurent
- Institut UTINAM, CNRS UMR 6213, Université Bourgogne Franche-Comté, Besançon, France
| | - Rana Bazzi
- Institut UTINAM, CNRS UMR 6213, Université Bourgogne Franche-Comté, Besançon, France
| | - Stéphane Roux
- Institut UTINAM, CNRS UMR 6213, Université Bourgogne Franche-Comté, Besançon, France
| | - Emmanuel Donnadieu
- Université de Paris, Institut Cochin, INSERM U1016/CNRS UMR 8104, Paris, France
| | | |
Collapse
|
35
|
Thai SF, Jones CP, Robinette BL, Ren H, Vallant B, Fisher A, Kitchin KT. Effects of Copper Nanoparticles on mRNA and Small RNA Expression in Human Hepatocellular Carcinoma (HepG2) Cells. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5083-5098. [PMID: 33875094 PMCID: PMC10803003 DOI: 10.1166/jnn.2021.19328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the advancement of nanotechnology, nanoparticles are widely used in many different industrial processes and consumer products. Copper nanoparticles (Cu NPs) are among the most toxic nanomaterials. We investigated Cu NPs toxicity in Human Hepatocellular carcinoma (HepG2) cells by examining signaling pathways, and microRNA/mRNA interactions. We compared the effects of exposures to Cu NPs at various concentrations and CuCl₂ was used as a control. The number of differentially expressed mRNA did not follow a linear dose-response relationship for either Cu NPs or CuCl₂ treatments. The most significantly altered genes and pathways by Cu NPs exposure were NRF2 (nuclear factor erythroid 2 related factor 2)-mediated oxidative stress response, protein ubiquitination, Tumor protein p53 (p53), phase I and II metabolizing enzymes, antioxidant proteins and phase III detoxifying gene pathways.Messenger RNA-microRNA interaction from MicroRNA Target Filter Analyses revealed more signaling pathways altered in Cu NPs treated samples than transcriptomics alone, including cell proliferation, DNA methylation, endoplasmic reticulum (ER) stress, apoptosis, autophagy, reactive oxygen species, inflammation, tumorigenesis, extracellular matrix/angiogenesis and protein synthesis. In contrast, in the control (CuCl₂) treated samples showed mostly changes in inflammation mainly through regulation of the Nuclear Factor Kappa-light-chain-enhancer of Activated B-cells (NFκB). Further, some RNA based parameters that showed promise as biomarkers of Cu NPs exposure including both well and lesser known genes: heme oxygenase 1 (HMOX1), heat shock protein, c-Fos proto-oncogene, DNA methyltransferases, and glutamate-cysteine ligase modifier subunit (GCLM, part of the glutathione synthesis pathway). The differences in signaling pathways altered by the Cu NPs and CuCl₂ treatments suggest that the effects of the Cu NPs were not the results of nanomaterial dissolution to soluble copper ions.
Collapse
Affiliation(s)
- Sheau-Fung Thai
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Carlton P Jones
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Brian L Robinette
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Hongzu Ren
- Center for Public Health and Environmental Assessment, US Environmental Production Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Beena Vallant
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Anna Fisher
- Center for Public Health and Environmental Assessment, US Environmental Production Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | | |
Collapse
|
36
|
Kang M, Luo J, Zhao L, Shi F, Ye G, He X, Hao S, Yang D, Chen H, Guo H, Li Y, Tang H. Autophagy was activated against the damages of placentas caused by nano-copper oral exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112364. [PMID: 34051663 DOI: 10.1016/j.ecoenv.2021.112364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Nano-copper (nano-Cu) is widely used in the pharmaceutical field as well as a feed additive for animals owing to its unique physicochemical characteristics and bioactivities. In our previous study, nano-Cu was found to hamper fetal development; however, the toxicity of nano-Cu and its effects in placental function have not been elucidated. Therefore, we investigated the toxic effects of nano-Cu using rat placenta. Pregnant Sprague-Dawley rats were orally exposed to different copper sources from the third day of gestation (GD 3) to GD 18. We found that nano-Cu (180 mg/kg) and CuCl2.2 H2O increased the accumulation of copper. Besides, nano-Cu and CuCl2.2 H2O disrupted the placental morphology and induced oxidative stress. Micro-copper (micro-Cu) caused similar toxicity in the placenta, but its effects were weaker than that of nano-Cu and CuCl2.2 H2O. In addition, exposure to nano-Cu (180 mg/kg) and CuCl2.2 H2O induced inflammation in the rat placenta. Furthermore, nano-Cu, micro-Cu, and CuCl2.2 H2O upregulated the expression of the autophagy-related proteins, Beclin-1 and LC3 II/ LC3 I, and downregulated that of p62. Moreover, nano-Cu, micro-Cu, and CuCl2.2 H2O downregulated the protein expression of PI3K, p-AKT/AKT, and p-mTOR/mTOR in rat placentas, whereas the protein expression of p-AMPK/AMPK was upregulated. Taken together, our data indicated that prenatal exposure to nano-Cu induced autophagy via the PI3K/AKT/mTOR and AMPK/mTOR pathways, which associated with oxidative stress and inflammation in rat placenta.
Collapse
Affiliation(s)
- Min Kang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Jie Luo
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China; Author affiliations: National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, Guizhou, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Fei Shi
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Xiaoli He
- College of Science, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Suqi Hao
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Dan Yang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Helin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China.
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China.
| |
Collapse
|
37
|
Flieger J, Flieger W, Baj J, Maciejewski R. Antioxidants: Classification, Natural Sources, Activity/Capacity Measurements, and Usefulness for the Synthesis of Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4135. [PMID: 34361329 PMCID: PMC8347950 DOI: 10.3390/ma14154135] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
Natural extracts are the source of many antioxidant substances. They have proven useful not only as supplements preventing diseases caused by oxidative stress and food additives preventing oxidation but also as system components for the production of metallic nanoparticles by the so-called green synthesis. This is important given the drastically increased demand for nanomaterials in biomedical fields. The source of ecological technology for producing nanoparticles can be plants or microorganisms (yeast, algae, cyanobacteria, fungi, and bacteria). This review presents recently published research on the green synthesis of nanoparticles. The conditions of biosynthesis and possible mechanisms of nanoparticle formation with the participation of bacteria are presented. The potential of natural extracts for biogenic synthesis depends on the content of reducing substances. The assessment of the antioxidant activity of extracts as multicomponent mixtures is still a challenge for analytical chemistry. There is still no universal test for measuring total antioxidant capacity (TAC). There are many in vitro chemical tests that quantify the antioxidant scavenging activity of free radicals and their ability to chelate metals and that reduce free radical damage. This paper presents the classification of antioxidants and non-enzymatic methods of testing antioxidant capacity in vitro, with particular emphasis on methods based on nanoparticles. Examples of recent studies on the antioxidant activity of natural extracts obtained from different species such as plants, fungi, bacteria, algae, lichens, actinomycetes were collected, giving evaluation methods, reference antioxidants, and details on the preparation of extracts.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (W.F.); (J.B.); (R.M.)
| | - Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (W.F.); (J.B.); (R.M.)
| | - Ryszard Maciejewski
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (W.F.); (J.B.); (R.M.)
| |
Collapse
|
38
|
Wang F, Liu J, Hu X, Zhong Y, Wen F, Tang X, Yang S, Zhong S, Zhou Z, Yuan X, Li Y. The influence on oxidative stress markers, inflammatory factors and intestinal injury-related molecules in Wahui pigeon induced by lipopolysaccharide. PLoS One 2021; 16:e0251462. [PMID: 33979394 PMCID: PMC8115843 DOI: 10.1371/journal.pone.0251462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/27/2021] [Indexed: 11/30/2022] Open
Abstract
Introduction The intestinal structure is the foundation for various activities and functions in poultry. An important question concerns the changes in the intestinal status under endotoxin stimulation. This study aimed to investigate the mechanism of intestinal injury induced by lipopolysaccharide (LPS) in Wahui pigeons. Methods Thirty-six 28-day-old healthy Wahui pigeons were randomly divided into two groups. The experimental group was injected with LPS (100 μg/kg) once per day for five days, and the control group was treated with the same amount of sterile saline. Blood and the ileum were collected from pigeons on the first, third, and fifth days of the experiment and used for oxidative stress assessment, inflammatory factor detection, histopathological examination, and positive cell localization. In addition, intestinal injury indices and mRNA expression levels (tight junction proteins, inflammatory cytokines, and factors related to autophagy and apoptosis) were evaluated. Results Villi in the ileum were shorter in the LPS group than in the control group, and D-lactic acid levels in the serum were significantly increased. Glutathione and catalase levels significantly decreased, but the malondialdehyde content in the serum increased. TNF-α and IL-10 were detected at higher levels in the serum, with stronger positive signals and higher mRNA expression levels, in the LPS group than in the control group. In addition, the levels of TLR4, MyD88, NF-κB, and HMGB1 in the inflammatory signaling pathway were also upregulated. Finally, the mRNA expression of Claudin3, Occludin, and ZO-1 was significantly decreased; however, that of Beclin1 and Atg5 was increased in the LPS group. Conclusion Ileal pathological changes and oxidative stress were caused by LPS challenge; it is proposed that this triggering regulates the inflammatory response, causing excessive autophagy and apoptosis, promoting intestinal permeability, and leading to intestinal injury in Wahui pigeons.
Collapse
Affiliation(s)
- Fei Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Jin Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Xiaofen Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Youbao Zhong
- Technology Center of Experimental Animals, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Xiaoen Tang
- Fuzhou Husbandry Breeding Farm, Linchuan, 344000, Jiangxi, China
| | - Shanshan Yang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Shengwei Zhong
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Zuohong Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Xu Yuan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Yong Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
- * E-mail:
| |
Collapse
|
39
|
Zou L, Cheng G, Xu C, Liu H, Wang Y, Li N, Fan X, Zhu C, Xia W. Copper Nanoparticles Induce Oxidative Stress via the Heme Oxygenase 1 Signaling Pathway in vitro Studies. Int J Nanomedicine 2021; 16:1565-1573. [PMID: 33664571 PMCID: PMC7924257 DOI: 10.2147/ijn.s292319] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/12/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose The toxicity of copper nanoparticle (CuNP) exposure in the ovaries has attracted attention recently, but the precise molecular mechanism involved requires further investigation. We investigated the cytotoxicity of CuNPs in ovarian granulosa cells and the protective effect of heme oxygenase 1 (HO-1) against CuNP-induced damage. Methods Human ovarian granulosa cells (COV434) were treated with CuNPs, and cytotoxicity was evaluated using Cell Counting Kit-8 and flow cytometry assays. Oxidative stress was identified using biochemical markers of oxidation and anti-oxidation. The protein levels of mitogen-activated protein kinase 14 (MAPK14), phospho-MAPK14, nuclear factor erythroid 2-related factor 2 (Nrf2), and HO-1 were measured by immunoblotting. Subsequently, for oxidative stress parameter detection, the cells were pre-treated with hemin to induce HO-1 expression prior to CuNP treatment. Results Exposure to CuNPs decreased cell viability and the mitochondrial membrane potential, increased the apoptosis rate, and induced oxidative stress. Furthermore, hemin pretreatment induced HO-1 expression in cells, which partially reduced the accumulation of reactive oxygen species induced by CuNPs and increased the levels of antioxidant enzymes. Conclusion CuNPs exert cytotoxic effects on human ovarian granulosa cells by inducing oxidative stress, and may induce HO-1 expression via the MAPK14-Nrf2 signaling pathway. Moreover, HO-1 protects against oxidative stress induced by CuNPs.
Collapse
Affiliation(s)
- Liping Zou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Guiping Cheng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chengcheng Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Heyu Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yingying Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Nianyu Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaorong Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Changhong Zhu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wei Xia
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
40
|
The biodistribution of melanomacrophages and reactivity of PEG or amine-functionalized iron oxide nanoclusters in the liver and spleen of Egyptian toad after intraperitoneal or oral injections: Histochemical study. Acta Histochem 2020; 122:151629. [PMID: 33066829 DOI: 10.1016/j.acthis.2020.151629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/01/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
Recently, toad flesh is the main source of protein for many peoples. Of note, disease treatment of amphibian animals is a big challenge facing toad farms development. Iron oxide nanoclusters (IONCs) are approved by the Food and Drug Administration (FDA) as new materials for drug delivery systems development. The biodistribution and fate of IONCs in the lower vertebrate tissues such as toads is novel and should be studied in details. In this study, the biodistribution and toxicities of polyethylene glycol-functionalized IONCs (PEG-IONCs) and amine-functionalized IONCs (NH2-IONCs) in the liver and spleen of Egyptian toad were studied after intraperitoneal or oral injections. The localization and levels of IONCs in liver and spleen depends on the root of injection and the surface functionalization. The presence of IONCs in the liver and spleen produced sever to mild histological and histochemical abnormalities, but in a different ratio. The change of melanomacrophages (MMs) numbers depends on the root of injection or the function group on the surface of IONCs and this explains the abnormalities of MMs produced by IONCs treatment. Further, the function group on the surface may control the biodistribution of MMs and abnormalities produced by IONCs in the liver and spleen. Understanding the biodistribution and histological abnormalities of IONCs in the lower vertebrate tissues (amphibians in this study) might introduce important information to develop new drugs which can be used for amphibian diseases treatment or diagnosis. Further, the histopathological and MMs abnormalities produced by IONCs may consider as biomarkers for amphibians diseases diagnosis.
Collapse
|
41
|
Yang F, Liao J, Yu W, Pei R, Qiao N, Han Q, Hu L, Li Y, Guo J, Pan J, Tang Z. Copper induces oxidative stress with triggered NF-κB pathway leading to inflammatory responses in immune organs of chicken. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110715. [PMID: 32450432 DOI: 10.1016/j.ecoenv.2020.110715] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 05/21/2023]
Abstract
Copper (Cu) is a necessary trace mineral due to its biological activity. Excessive Cu can induce inflammatory response in humans and animals, but the underlying mechanism is still unknown. Here, 240 broilers were used to study the effects of excessive Cu on oxidative stress and NF-κB-mediated inflammatory responses in immune organs. Chickens were fed with diet containing different concentrations of Cu (11, 110, 220, and 330 mg of Cu/kg dry matter). The experiment lasted for 49 days. Spleen, thymus, and bursa of Fabricius (BF) on day 49 were collected for histopathological observation and assessment of oxidative stress status. Additionally, the mRNA and protein levels of NF-κB and inflammatory cytokines were also analyzed. The results indicated that excess Cu could increase the number and area of splenic corpuscle as well as the ratio of cortex and medulla in thymus and BF. Furthermore, excessive Cu intake could decrease activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px); but increase contents of malondialdehyde (MDA), TNF-α, IL-1, IL-1β; up-regulate mRNA levels of TNF-α, IFN-γ, IL-1, IL-1β, IL-2, iNOS, COX-2, NF-κB and protein levels of TNF-α, IFN-γ, NF-κB, p-NF-κB in immune organs. In conclusion, excessive Cu could cause pathologic changes and induce oxidative stress with triggered NF-κB pathway, and might further regulate the inflammatory response in immune organs of chicken.
Collapse
Affiliation(s)
- Fan Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, PR China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Ruonan Pei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Na Qiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| |
Collapse
|
42
|
Attarilar S, Yang J, Ebrahimi M, Wang Q, Liu J, Tang Y, Yang J. The Toxicity Phenomenon and the Related Occurrence in Metal and Metal Oxide Nanoparticles: A Brief Review From the Biomedical Perspective. Front Bioeng Biotechnol 2020; 8:822. [PMID: 32766232 PMCID: PMC7380248 DOI: 10.3389/fbioe.2020.00822] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
Thousands of different nanoparticles (NPs) involve in our daily life with various origins from food, cosmetics, drugs, etc. It is believed that decreasing the size of materials up to nanometer levels can facilitate their unfavorable absorption since they can pass the natural barriers of live tissues and organs even, they can go across the relatively impermeable membranes. The interaction of these NPs with the biological environment disturbs the natural functions of cells and its components and cause health issues. In the lack of the detailed and comprehensive standard protocols about the toxicity of NPs materials, their control, and effects, this review study focuses on the current research literature about the related factors in toxicity of NPs such as size, concentration, etc. with an emphasis on metal and metal oxide nanoparticles. The goal of the study is to highlight their potential hazard and the advancement of green non-cytotoxic nanomaterials with safe threshold dose levels to resolve the toxicity issues. This study supports the NPs design along with minimizing the adverse effects of nanoparticles especially those used in biological treatments.
Collapse
Affiliation(s)
- Shokouh Attarilar
- Department of Pediatric Orthopaedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinfan Yang
- Department of Spine Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mahmoud Ebrahimi
- National Engineering Research Center of Light Alloy Net Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qingge Wang
- School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an, China
| | - Jia Liu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yujin Tang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Junlin Yang
- Department of Pediatric Orthopaedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Lu Y, Zhou L, He S, Ren HL, Zhou N, Hu ZM. Lycopene alleviates disc degeneration under oxidative stress through the Nrf2 signaling pathway. Mol Cell Probes 2020; 51:101559. [PMID: 32151764 DOI: 10.1016/j.mcp.2020.101559] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022]
Abstract
Intervertebral disc degeneration (IDD) is a main cause of diseases such as discogenic low back pain, cervical and lumbar disc herniation, degenerative spinal stenosis, and lumbar spondylolisthesis. Nuclear factor erythroid 2-related factor 2 (Nrf2), an important transcription factor, regulates antioxidant genes and induces cellular defense mechanisms against oxidative stress. In this study, the protective effect of plant antioxidant lycopene on nucleus pulposus cells (NPCs) under oxidative stress was investigated. The results indicated that Nrf2 expression decreased in degenerated NPCs. We further found that lycopene was protective in NP tissue under oxidative stress and alleviated oxidative stress-induced apoptosis of degenerative human NPCs via Nrf2. The results also showed that lycopene reduced H2O2-induced decomposition of cartilage extracellular matrix in NPCs. In conclusion, our findings suggested that lycopene may alleviate disc degeneration under oxidative stress through the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yang Lu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Li Zhou
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Shan He
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Hong-Lei Ren
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Nian Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, China.
| | - Zhen-Ming Hu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, China.
| |
Collapse
|
44
|
Li X, Gao J, Yu Z, Jiang W, Sun W, Yu C, Sun J, Wang C, Chen J, Jing S, Li H. Regulatory Effect of Anwulignan on the Immune Function Through Its Antioxidation and Anti-Apoptosis in D-Galactose-Induced Aging Mice. Clin Interv Aging 2020; 15:97-110. [PMID: 32099340 PMCID: PMC6996228 DOI: 10.2147/cia.s237601] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/01/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Aging is a spontaneous and inevitable phenomenon of biology, which can lead to the gradual deterioration of tissues and organs. One of the age-related deterioration processes is immunosenescence, which leads to changes in the function of immune systems, including immune cells and associated cytokines. A proper modulation of immune responses can improve the age-related immunosenescence process and then reach healthy aging. Schisandra sphenanthera, a traditional Chinese medicine, has been used as both a medicine and a nutritional supplement for thousands of years. Anwulignan, a monomer compound of Schisandra sphenanthera lignans, has been reported to possess an immunomodulatory effect. Therefore, this study was designed to further explore whether Anwulignan could also modulate the immune functions in aging model mice and the underlying mechanism. METHODS D-galactose (D-gal) is often used as an inducer of immunosenescence in animals. In this study, a mice model was created by subcutaneous D-gal (220 mg kg-1) for successive 42 days. Then, the blood and spleen tissue samples were taken for the analysis and observation of cytokine levels, immunoglobulin levels, leukocyte numbers, and the phagocytic activity of macrophages, as well as the histological changes, the proliferation ability of lymphocytes, and the biochemical parameters in the spleen tissue. RESULTS Anwulignan significantly increased the serum levels of IL-2, IL-4, IFN-γ, lgG, lgM, and lgA, decreased the content of TNF-α and IL-6 in the aging mice, and increased the blood leukocyte number, the phagocytic activity, the lymphocyte proliferation, and the spleen index in vitro. Anwulignan also significantly increased the activities of SOD and GSH-Px, decreased the contents of MDA and 8-OHdG in the spleen tissue, up-regulated the expressions of Nrf2, HO-1, and Bcl2, down-regulated the expressions of Keap1, Caspase-3, and Bax in the spleen cells, and reduced the apoptosis of spleen lymphocytes. CONCLUSION Anwulignan can restore the immune function that is declined in D-gal-induced aging mice partly related to its antioxidant capacity by activating the Nrf2/ARE pathway and downstream enzymes, as well as its anti-apoptotic effect by regulating Caspase-3 and the ratio of Bcl2 to Bax in the spleen.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin132013, People’s Republic of China
| | - Jiaqi Gao
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin132013, People’s Republic of China
| | - Zepeng Yu
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin132013, People’s Republic of China
| | - Weihai Jiang
- Affiliated Hospital of Beihua University, Jilin, Jilin132011, People’s Republic of China
| | - Wei Sun
- Affiliated Hospital of Beihua University, Jilin, Jilin132011, People’s Republic of China
| | - Chunyan Yu
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin132013, People’s Republic of China
| | - Jinghui Sun
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin132013, People’s Republic of China
| | - Chunmei Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin132013, People’s Republic of China
| | - Jianguang Chen
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin132013, People’s Republic of China
| | - Shu Jing
- Affiliated Hospital of Beihua University, Jilin, Jilin132011, People’s Republic of China
| | - He Li
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin132013, People’s Republic of China
| |
Collapse
|
45
|
Wekwejt M, Michno A, Truchan K, Pałubicka A, Świeczko-Żurek B, Osyczka AM, Zieliński A. Antibacterial Activity and Cytocompatibility of Bone Cement Enriched with Antibiotic, Nanosilver, and Nanocopper for Bone Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1114. [PMID: 31382557 PMCID: PMC6722923 DOI: 10.3390/nano9081114] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022]
Abstract
Bacterial infections due to bone replacement surgeries require modifications of bone cement with antibacterial components. This study aimed to investigate whether the incorporation of gentamicin or nanometals into bone cement may reduce and to what extent bacterial growth without the loss of overall cytocompatibility and adverse effects in vitro. The bone cement Cemex was used as the base material, modified either with gentamicin sulfate or nanometals: Silver or copper. The inhibition of bacterial adhesion and growth was examined against five different bacterial strains along with integrity of erythrocytes, viability of blood platelets, and dental pulp stem cells. Bone cement modified with nanoAg or nanoCu revealed greater bactericidal effects and prevented the biofilm formation better compared to antibiotic-loaded bone cement. The cement containing nanoAg displayed good cytocompatibility without noticeable hemolysis of erythrocytes or blood platelet disfunction and good viability of dental pulp stem cells (DPSC). On the contrary, the nanoCu cement enhanced hemolysis of erythrocytes, reduced the platelets aggregation, and decreased DPSC viability. Based on these studies, we suggest the modification of bone cement with nanoAg may be a good strategy to provide improved implant fixative for bone regeneration purposes.
Collapse
Affiliation(s)
- Marcin Wekwejt
- Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| | - Anna Michno
- Chair of Clinical Biochemistry, Department of Laboratory Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Karolina Truchan
- Department of Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Anna Pałubicka
- Department of Laboratory Diagnostics and Microbiology with Blood Bank, Specialist Hospital in Kościerzyna, 83-400 Kościerzyna, Poland
- Department of Surgical Oncologic, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Beata Świeczko-Żurek
- Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Anna Maria Osyczka
- Department of Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Andrzej Zieliński
- Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| |
Collapse
|