1
|
Demir M, Elbe H, Cetinavci D, Saruhan E. Effects of Troxerutin on Oxidative Stress, Inflammation and Galectin- 3 Expression in Intracerebroventricular Kainic Acid-Induced Neurotoxicity. Inflammation 2025:10.1007/s10753-025-02301-9. [PMID: 40237932 DOI: 10.1007/s10753-025-02301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
Excitotoxicity caused by excessive concentration of the excitatory neurotransmitter glutamate causes neuronal cell death and promotes neurodegenerative disorders. The neuroexcitant neurotoxin kainic acid (KA) induces excitotoxicity, leading to neuronal death via oxidative stress and inflammation, and its experimental use is widespread. This study was designed to determine the protective effect of Troxerutin (TXR) and its relationship with Galectin-3 (Gal-3) in experimental excitotoxicity with neuroinflammation and oxidative stress. Fifty male Wistar rats were divided into five groups (n = 10): Control group rats received intraperitoneal (ip) normal saline for 6 days. Sham group rats received a single dose of intracerebroventricular (icv) normal saline on the first day. KA group rats were treated with a single dose of KA; icv-0.5 μg/μl). TXR group rats treated with TXR for 6 days: ip-100 mg/kg) and KA + TXR group rats treated with KA (single dose) and TXR (6 days). It was observed that malondialdehyde (MDA) and interleukin-1β (IL-1β) levels increased and reduced glutathione (GSH) levels decreased in the cerebral cortex of rats with KA neurotoxicity. TXR treatment caused a significant improvement in MDA and GSH levels and a significant decrease in IL-1β levels in rats with the excitotoxicity model. Gal-3 expressions in the hippocampus and cerebellum increased in KA-treated rats, whereas TXR treatment decreased Gal-3 expressions. In addition, histopathological changes caused by KA administration showed improvement in TXR-treated groups. In conclusion, the findings showed that TXR treatment attenuated KA-induced neurotoxicity by reducing oxidative tissue damage, inflammatory response and Gal-3 expression.
Collapse
Affiliation(s)
- Mehmet Demir
- Department of Physiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| | - Hulya Elbe
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Dilan Cetinavci
- Department of Histology and Embryology, Mugla Training and Research Hospital, Mugla, Turkey
| | - Ercan Saruhan
- Department of Medical Biochemistry, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| |
Collapse
|
2
|
Rossiaud L, Miagoux Q, Benabides M, Reiss O, Jauze L, Jarrige M, Polvèche H, Malfatti E, Laforêt P, Ronzitti G, Nissan X, Hoch L. Galectin-3: a novel biomarker of glycogen storage disease type III. Cell Death Discov 2025; 11:173. [PMID: 40229243 PMCID: PMC11997124 DOI: 10.1038/s41420-025-02452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/06/2025] [Accepted: 03/27/2025] [Indexed: 04/16/2025] Open
Abstract
Glycogen storage disease type III (GSDIII) is a rare genetic disorder leading to abnormal glycogen storage in the liver and skeletal muscle. In this study, we conducted a comparative gene expression analysis of several in vitro and in vivo models and identified galectin-3 as a potential biomarker of the disease. Interestingly, we also observed a significant decrease in galectin-3 expression in mice treated with an AAV gene therapy. Finally, galectin-3 expression was studied in muscle biopsies of GSDIII patients, confirming its increase in patient tissue. Beyond the identification of this novel biomarker, our study offers a new perspective for future therapeutic developments.
Collapse
Affiliation(s)
- Lucille Rossiaud
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research Unit UMR_S951, Evry, France
| | - Quentin Miagoux
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
| | - Manon Benabides
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
| | - Océane Reiss
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
| | - Louisa Jauze
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research Unit UMR_S951, Evry, France
| | - Margot Jarrige
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
| | - Hélène Polvèche
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
| | - Edoardo Malfatti
- Reference Center for Neuromuscular Disorders, APHP Henri Mondor University Hospital, Créteil, France
- Université Paris Est Créteil, Inserm, U955, IMRB, Créteil, France
| | - Pascal Laforêt
- Neurology Department, Nord/Est/Île-de-France Neuromuscular Reference Center, FHU PHENIX, AP-HP, Raymond-Poincaré Hospital, Garches, France
| | - Giuseppe Ronzitti
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research Unit UMR_S951, Evry, France
| | - Xavier Nissan
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
| | - Lucile Hoch
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France.
- IStem, CECS, Corbeil-Essonnes, France.
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France.
| |
Collapse
|
3
|
Martuszewski A, Paluszkiewicz P, Połtyn-Zaradna K, Kusnerż A, Poręba R, Szuba A, Gać P, Zatońska K. Assessment of Cardiovascular Risk in the PURE Poland Cohort Study Using the Systematic Coronary Risk Evaluation (SCORE) Scale and Galectin-3 Concentrations: A Cross-Sectional Study. Int J Mol Sci 2025; 26:3064. [PMID: 40243730 DOI: 10.3390/ijms26073064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
The SCORE (Systematic Coronary Risk Evaluation) scale is useful for cardiovascular disease (CVD) risk stratification. However, there is a new biomarker, namely, galectin-3 (gal-3), that offers additional predictive value. This cross-sectional study assessed the relationship between serum gal-3 concentrations and CVD risk based on the SCORE scale in a Polish cohort from the PURE study. A total of 259 participants with complete cholesterol, blood pressure (BP), and smoking data were included. Individuals with myocardial infarction, stroke, diabetes, or renal failure were excluded. Gal-3 concentrations were measured using ELISA, and statistical analyses examined associations with SCORE categories. The median gal-3 concentration was 221.32(161.64-360.00) ng/mL. Higher gal-3 concentrations were found in older individuals, smokers, and those with elevated BP(p < 0.05). Positive correlations were observed with SCORE values (r = 0.39) and systolic BP (r = 0.64). Participants with SCORE ≥5% had significantly higher gal-3 concentrations. ROC analysis showed moderate diagnostic value for SCORE ≥ 10% (sensitivity 0.618 and specificity 0.810). Higher SCORE and diastolic BP are independent risk factors for increased galectin-3 concentrations, explaining 79.5% of the variance in the studied group. Serum gal-3 is significantly associated with CVD risk estimated by SCORE, supporting its potential role in risk stratification.
Collapse
Affiliation(s)
- Adrian Martuszewski
- Department of Environmental Health, Occupational Medicine and Epidemiology, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-345 Wrocław, Poland
- Department of Neurology, Specialist Hospital in Walbrzych, Sokołowskiego 4, 58-309 Wałbrzych, Poland
| | - Patrycja Paluszkiewicz
- Department of Neurology, Specialist Hospital in Walbrzych, Sokołowskiego 4, 58-309 Wałbrzych, Poland
- Department of Emergency Medical Service, Wroclaw Medical University, Bartla 5, 50-367 Wrocław, Poland
| | - Katarzyna Połtyn-Zaradna
- Department of Population Research and Prevention of Civilization Diseases, Wroclaw Medical University, Bujwida 44, 50-372 Wrocław, Poland
| | - Agnieszka Kusnerż
- Department of Environmental Health, Occupational Medicine and Epidemiology, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-345 Wrocław, Poland
| | - Rafał Poręba
- Department of Biological Principles of Physical Activity, Wroclaw University of Health and Sport Sciences, 51-612 Wrocław, Poland
| | - Andrzej Szuba
- Department of Angiology and Internal Diseases, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland
| | - Paweł Gać
- Department of Environmental Health, Occupational Medicine and Epidemiology, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-345 Wrocław, Poland
- Centre of Diagnostic Imaging, 4th Military Hospital, Weigla 5, 50-981 Wrocław, Poland
| | - Katarzyna Zatońska
- Department of Population Research and Prevention of Civilization Diseases, Wroclaw Medical University, Bujwida 44, 50-372 Wrocław, Poland
| |
Collapse
|
4
|
Hamadi N, Beegam S, Zaaba NE, Elzaki O, Alderei A, Alfalahi M, Alhefeiti S, Alnaqbi D, Alshamsi S, Nemmar A. Protective Effects of Nerolidol on Thrombotic Events, Systemic Inflammation, Oxidative Stress, and DNA Damage Following Pulmonary Exposure to Diesel Exhaust Particles. Biomedicines 2025; 13:729. [PMID: 40149705 PMCID: PMC11940484 DOI: 10.3390/biomedicines13030729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Inhalation of environmental particulate air pollution has been reported to cause pulmonary and systemic events including coagulation disturbances, systemic inflammation, and oxidative stress. Nerolidol, a naturally occurring sesquiterpene alcohol, has effective antioxidant and anti-inflammatory effects. Hence, the aim in the present investigation was to evaluate the potential ameliorative effects of nerolidol on the coagulation and systemic actions induced by pulmonary exposure to diesel exhaust particles (DEPs). Methods: Nerolidol (100 mg/kg) was given to mice by oral gavage one hour before the intratracheal instillation of DEPs (0.5 mg/kg), and 24 h later various markers of coagulation and systemic toxicity were evaluated. Results: Nerolidol treatment significantly abrogated DEP-induced platelet aggregation in vivo and in vitro. Nerolidol has also prevented the shortening of the prothrombin time and activated plasma thromboplastin time triggered by DEP exposure. Likewise, while the concentrations of fibrinogen and plasminogen activator inhibitor-1 were increased by DEP administration, that of tissue plasminogen activator was significantly decreased. These effects were abolished in the group of mice concomitantly treated with nerolidol and DEP. Moreover, plasma markers of inflammation, oxidative stress, and endothelial dysfunction which were significantly increased in the DEP-treated group, returned to control levels in the nerolidol + DEP group. Nerolidol treatment significantly ameliorated the increase in the concentrations of hypoxia-inducible factor 1α, galectin-3, and neutrophil gelatinase-associated lipocalin induced by pulmonary exposure to DEP. The co-administration of nerolidol + DEPs significantly mitigated the increase in markers of oxidative DNA damage, 8-hydroxy-2-deoxyguanosine, and apoptosis, cleaved-caspase-3, induced by DEP. Conclusions: Collectively, our data demonstrate that nerolidol exert significant ameliorative actions against DEP-induced thrombotic events, endothelial dysfunction, systemic inflammation, oxidative stress, DNA damage, and apoptosis. Pending further pharmacological and toxicological studies, nerolidol could be a promising agent to alleviate the toxicity of inhaled DEPs and other pollutant particles.
Collapse
Affiliation(s)
- Naserddine Hamadi
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates;
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Alreem Alderei
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Maha Alfalahi
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Shamma Alhefeiti
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Dana Alnaqbi
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Salama Alshamsi
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Abderrahim Nemmar
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
5
|
Zhang X, Li M, Xu Y, Wu J, Yuan R, Sun Y, Chen X, Lv M, Jin B, Chen X, Liang W. Gal-3 activates Tyro3 to ameliorate ferroptosis of hippocampal neurons after traumatic brain injury. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102433. [PMID: 39902149 PMCID: PMC11788728 DOI: 10.1016/j.omtn.2024.102433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/18/2024] [Indexed: 02/05/2025]
Abstract
Traumatic brain injury (TBI) leads to significant hippocampal neuronal loss, contributing to cognitive dysfunction. Our bioinformatics analysis of single-cell RNA sequencing data from hippocampal tissue following TBI revealed persistent neuronal loss and activation of ferroptosis-related pathways. Notably, Tyro3 expression was significantly upregulated, suggesting its potential role in neuronal ferroptosis. This finding was further validated in both in vivo and in vitro studies using a controlled cortical impact (CCI) model. We observed that Tyro3 knockdown exacerbated ferroptosis, while Tyro3 overexpression mitigated it. Moreover, treatment with the Tyro3 agonist Gal-3 conferred protective effects, improving both motor and cognitive functions through Tyro3 activation. These results highlight Tyro3 as a promising therapeutic target for TBI.
Collapse
Affiliation(s)
- Xiao Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, China
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Manrui Li
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Yang Xu
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Jingting Wu
- Department of Forensic Pathology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Ruixuan Yuan
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Yihan Sun
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Xiaogang Chen
- Department of Forensic Pathology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Meili Lv
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Bo Jin
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Xiameng Chen
- Department of Forensic Pathology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| |
Collapse
|
6
|
Xia Q, Liu X, Zhong L, Qu J, Dong L. SMURF1 mediates damaged lysosomal homeostasis by ubiquitinating PPP3CB to promote the activation of TFEB. Autophagy 2025; 21:530-547. [PMID: 39324484 PMCID: PMC11849922 DOI: 10.1080/15548627.2024.2407709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024] Open
Abstract
The calcium-activated phosphatase PPP3/calcineurin dephosphorylates TFEB (transcription factor EB) to trigger its nuclear translocation and the activation of macroautophagic/autophagic targets. However, the detailed molecular mechanism regulating TFEB activation remains poorly understood. Here, we highlighted the importance of SMURF1 (SMAD specific E3 ubiquitin protein ligase 1) in the activation of TFEB for lysosomal homeostasis. SMURF1 deficiency prevents the calcium-triggered ubiquitination of the catalytic subunit of PPP3/calcineurin in a manner consistent with defective autophagic degradation of damaged lysosomes. Mechanically, PPP3CB/CNA2 plays a bridging role in the recruitment of SMURF1 by LGALS3 (galectin 3) upon lysosome damage. Importantly, PPP3CB increases the dissociation of the N-terminal tail (NT) and C-terminal carbohydrate-recognition domain (CRD) of LGALS3, which may promote the formation of open conformers in a PPP3CB dephosphorylation activity-dependent manner. In addition, PPP3CB is ubiquitinated at lysine 146 by the recruited SMURF1 in response to intracellular calcium stimulation. The K63-linked ubiquitination of PPP3CB enhances the recruitment of TFEB. Moreover, TFEB directly interacts with both PPP3CB and the regulatory subunit PPP3R1 which facilitate the conformational correction of TFEB for its activation for the transcription of TFEB-targeted genes. Altogether, our results highlighted a critical mechanism for the regulation of PPP3/calcineurin activity via its ubiquitin ligase SMURF1 in response to lysosomal membrane damage, which may account for a potential target for the treatment of stress-related diseases.Abbreviation AID: autoinhibitory domain; ATG: autophagy related; CD: catalytic domain; CRD: carbohydrate-recognition domain; CsA: cyclosporin A; DMSO: dimethyl sulfoxide; ESCRT: endosomal sorting complexes required for transport; GSK3B: glycogen synthase kinase 3 beta; LAMP1: lysosomal associated membrane protein 1; LGALS3: galectin 3; LLOMe: L-leucyl-L-leucine methyl ester; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; ML-SA1: mucolipin synthetic agonist 1; MTORC1: mechanistic target of rapamycin kinase complex 1; NT: N-terminal tail; PPP3CB: protein phosphatase 3 catalytic subunit beta; PPP3R1: protein phosphatase 3 regulatory subunit B, alpha; SMURF1: SMAD specific E3 ubiquitin protein ligase 1; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; VCP/p97: valosin containing protein; YWHA/14-3-3: tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein.
Collapse
Affiliation(s)
- Qin Xia
- Department of General Surgery, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
- State Key Laboratory of Hearing and Balance Science and Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xuan Liu
- State Key Laboratory of Hearing and Balance Science and Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Lu Zhong
- State Key Laboratory of Hearing and Balance Science and Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jun Qu
- Department of General Surgery, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Lei Dong
- Department of General Surgery, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
- State Key Laboratory of Hearing and Balance Science and Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
7
|
Persiani E, Cecchettini A, Amato S, Ceccherini E, Gisone I, Sgalippa A, Ippolito C, Castelvetro V, Lomonaco T, Vozzi F. Virgin and photo-degraded microplastics induce the activation of human vascular smooth muscle cells. Sci Rep 2025; 15:4263. [PMID: 39905115 PMCID: PMC11794685 DOI: 10.1038/s41598-025-89006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/03/2025] [Indexed: 02/06/2025] Open
Abstract
Microplastics (MPs) are an emerging environmental issue due to their accumulation in ecosystems and living organisms. Increasing evidence shows that MPs impact vascular function, with recent studies finding MPs in atheromas linked to cardiovascular events. Since vascular smooth muscle cells (VSMCs) are crucial to maintaining vascular function, this study examined how MPs activate VSMCs, leading to cardiovascular diseases like atherosclerosis and vascular calcification. The study used polyethylene (PE) and polystyrene (PS), common in food packaging, as "virgin" or photo-degraded to simulate environmental conditions. VSMC viability, apoptosis, cytotoxicity, inflammation, and activation markers were evaluated. PE and PS affected VSMC viability, induced apoptosis, and triggered pathological changes such as altered migration and proliferation. Key markers like RUNX-2 and galectin-3, which regulate cardiovascular pathology, were activated, alongside the inflammasome complex. In conclusion, MPs can induce harmful activation of VSMCs, posing potential health risks through inflammation, cell damage, and phenotypic changes. Understanding these toxic mechanisms may reveal critical pathways for intervention and prevention.
Collapse
Affiliation(s)
| | - Antonella Cecchettini
- CNR Institute of Clinical Physiology, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sofia Amato
- CNR Institute of Clinical Physiology, Pisa, Italy
| | | | | | | | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Valter Castelvetro
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | | |
Collapse
|
8
|
Gullo CE, Dos Santos DD, Corrêa MP, Gil CD, Bestetti RB. Expression patterns of Galectin-3 and NLRP3 in Chagas reactivation and graft damage in heart transplants. Transpl Immunol 2025; 88:102159. [PMID: 39645001 DOI: 10.1016/j.trim.2024.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE This study aimed to assess the expression patterns of galectin-3 (Gal-3) and NLRP3 in heart transplant recipients according to the presence of reactivated Trypanosoma cruzi infection or allograft rejection in Chagas and non-Chagas heart transplant recipients. METHODS Gal-3 and NLRP3 expression levels were analyzed in endomyocardial biopsies from 31 heart transplant recipients, including 16 patients with chronic Chagas disease (ChD) and 15 without ChD. Samples were evaluated during periods of graft rejection or ChD reactivation, characterized by intense myocardial cellular infiltrate, and after remission of the infiltrate, classified by histopathological severity. The transcriptional levels of genes encoding Gal-3, NLRP3, Asc, caspase-1, and IL-1β were identified using the GEO2T tool across different experimental conditions. RESULTS Gal-3 expression was lower in the myocardial infiltrate of ChD patients compared to non-ChD patients (p < 0.0001), whereas NLRP3 positivity was higher in ChD patients (p < 0.05). In a murine model of T. cruzi infection, elevated Gal-3 mRNA and NLRP3 inflammasome levels were observed in myocardial interstitial cells (p < 0.05). Peripheral blood mononuclear cells and cells from rodent cardiac allografts showed increased Gal-3 mRNA and NLRP3 levels compared to non-transplanted and rodent cardiac isografts (p < 0.001). CONCLUSIONS Our findings suggest that Gal-3 and NLRP3 may be important biomarkers for differentiating heart transplant recipients with and without ChD regarding the myocardial immunological processes.
Collapse
Affiliation(s)
- Caio E Gullo
- Graduate Program in Health Sciences, Faculdade de Medicina de São José de Rio Preto (FAMERP), São José do Rio Preto, SP 15090-000, Brazil
| | - Diego D Dos Santos
- Departamento de Morfologia e Genética, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04023-900, Brazil
| | - Mab P Corrêa
- Departamento de Morfologia e Genética, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04023-900, Brazil
| | - Cristiane D Gil
- Departamento de Morfologia e Genética, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04023-900, Brazil.
| | - Reinaldo B Bestetti
- Graduate Program in Health Sciences, Faculdade de Medicina de São José de Rio Preto (FAMERP), São José do Rio Preto, SP 15090-000, Brazil; Universidade de Ribeirão Preto (UNAERP), Ribeirão Preto, SP 14096-900, Brazil
| |
Collapse
|
9
|
Wang Y, Luan Q, Dong Y, Zhu X. The Predictive Value of Circulating Gal-3 for New Stroke Events in Paroxysmal Atrial Fibrillation Patients Despite Oral Anticoagulation Medications. Clin Cardiol 2025; 48:e70084. [PMID: 39905777 DOI: 10.1002/clc.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/17/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND CHA2DS2-VASc is used to assess the risk of stroke in patients with atrial fibrillation (AF) and guide anticoagulant treatment decisions, but it has limitations in accurately predicting stroke risk in individual patients. The objective of this study is to conduct a cohort study by assessing preoperative levels of Gal-3 in paroxysmal AF patients, aiming to observe its correlation with the subsequent incidence of stroke events. METHOD This study enrolled 197 patients with nonvalvular paroxysmal AF. Blood samples were taken to test Gal-3 levels. All patients were followed up for 4 years after admission. RESULTS Compared to the nonstroke cases, serum levels of Gal-3 were markedly elevated in stroke cases (7.08 [IQR, 4.60-10.96] vs. 17.34 [IQR, 8.28-20.31], p < 0.001). Gal-3 yields a superior AUC (0.748, with a 95%CI of 0.681-0.807) compared to other classical stroke indices, such as BNP, CHA2DS2-Vas score, and TNI. Remarkably, the Gal-3 index exhibited a superior predictive capacity, yielding a significant incremental predictive value that surpassed the conventional risk factors (CHA2DS2-VASc score) for stroke events, as evidenced by an IDI of 16.4% (p < 0.001) and an NRI of 34.7% (p = 0.002). CONCLUSION The presence of Gal-3 is an independent risk factor for stroke in patients with AF. Elevated levels of Gal-3 have the potential to serve as a valuable biomarker for identifying incident strokes in AF patients. Furthermore, incorporating the assessment of Gal-3 levels into the conventional CHA2DS2-VASc score could significantly enhance its predictive accuracy for stroke in AF patients.
Collapse
Affiliation(s)
- Yihan Wang
- School of the Third Clinical Medical College, Capital Medical University, Beijing, People's Republic of China
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Qianran Luan
- School of the Third Clinical Medical College, Capital Medical University, Beijing, People's Republic of China
- Department of Gerontology, The Third People Hospital of Chengdu, Sichuan, People's Republic of China
| | - Ying Dong
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiaoming Zhu
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
10
|
Klisic A, Gluscevic S, Karakasis P, Kotur-Stevuljevic J, Ninic A. Serum galectin-3 and fibroblast growth factor-23 levels in relation with type 2 diabetes and cardiovascular risk. J Med Biochem 2025; 44:85-92. [PMID: 39991168 PMCID: PMC11846640 DOI: 10.5937/jomb0-50471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/19/2024] [Indexed: 02/25/2025] Open
Abstract
Background The clinical utility of galectin-3 and fibroblast growth factor 23 (FGF-23) needs to be further explored since previous studies show divergent results in relation to type 2 diabetes (T2D) and cardiovascular risk. Hence, the aim of this research was to explore galectin-3 and FGF-23 in relation to T2D, as well as to examine the potential association of these biomarkers with atherosclerotic cardiovascular disease (ASCVD) risk score in Montenegrin adults. Methods A total of 35 T2D patients and 36 controls were consecutively enrolled. Serum galectin-3 and FGF-23 were determined by ELISA. The ASCVD risk score was calculated. Results Higher serum galectin-3 levels were shown in T2D patients (p=0.016) in comparison with the control group. The increase in galectin-3 levels for 1 ng/mL showed an 8.5% higher probability of T2D occurrence (OR=1.085, p=0.015). FGF-23 levels did not differ between the control and the T2D group. Serum galectin-3 correlated with FGF23 (r=0.390, p=0.001). Both galectin-3 (r=0.306, p=0.010) and FGF-23 (r=0.332, p=0.005) correlated with ASCVD risk score in bivariate Spearman's correlation analysis, but these correlations were not retained in binary logistic regression analysis. Conclusions Serum galectin-3 levels but not FGF-23 are higher in T2D patients. Serum galectin-3 correlated with FGF-23. Although both biomarkers were correlated with the ASCVD risk score, further statistical analysis did not confirm their independent associations with cardiovascular risk. Studies with a large sample size are needed to further explore this issue.
Collapse
Affiliation(s)
| | - Sanja Gluscevic
- Clinical Center of Montenegro, Department of Neurology, Podgorica, Montenegro
| | - Paschalis Karakasis
- Aristotle University of Thessaloniki, General Hospital "Hippokration", Second Department of Cardiology, Thessaloniki, Greece
| | | | - Ana Ninic
- University of Belgrade, Faculty of Pharmacy, Department for Medical Biochemistry, Belgrade
| |
Collapse
|
11
|
Wang HS, Hsu BG, Wang JH, Yang CF. Increased serum galectin-3 level is associated with endothelial dysfunction and cardiovascular events in patients with hypertension. Heliyon 2025; 11:e41111. [PMID: 39758383 PMCID: PMC11699377 DOI: 10.1016/j.heliyon.2024.e41111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/15/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Background Endothelial dysfunction can lead to various harmful cardiovascular complications. The importance of galectin-3 (Gal-3) has been proposed in some cardiac diseases related to chronic inflammation. However, its role in hypertension-induced endothelial dysfunction remains unclear. Methods We enrolled 120 patients with hypertension, assessed their baseline characteristics, and monitored their 7-year cardiovascular outcomes. We performed an enzyme-linked immunosorbent assay to measure serum Gal-3 levels. The vascular reactivity index (VRI) was examined by digital thermal monitoring. Patients with VRI <1.0, 1.0 to <2.0, and ≥2.0 were defined as having poor, intermediate, and good vascular reactivity, respectively. Results Among the recruited patients, 12 had poor vascular reactivity, 57 had intermediate vascular reactivity, and 51 had good vascular reactivity. Older age, higher total cholesterol levels, higher low-density lipoprotein cholesterol levels, lower estimated glomerular filtration rate, and higher Gal-3 levels were associated with poor endothelial dysfunction. Multivariate linear regression analysis showed that age and Gal-3 levels were correlated with VRI. During the 7-year follow-up period, patients with higher Gal-3 levels had more cardiovascular events. Conclusions Higher Gal-3 levels are associated with endothelial dysfunction and unfavorable cardiovascular outcomes in patients with hypertension, suggesting its potential role in the hypertension-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Hui-Sheng Wang
- Division of Cardiology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Bang-Gee Hsu
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ji-Hung Wang
- Division of Cardiology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Cardiovascular Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chiu-Fen Yang
- Division of Cardiology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Cardiovascular Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
12
|
Wang C, Yu B, Zhou H, Li H, Li S, Li X, Wang W, Feng Y, Yu T. tRF-AspGTC Promotes Intracranial Aneurysm Formation by Controlling TRIM29-Mediated Galectin-3 Ubiquitination. RESEARCH (WASHINGTON, D.C.) 2025; 8:0574. [PMID: 39776588 PMCID: PMC11704088 DOI: 10.34133/research.0574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Transfer RNA-derived small RNAs, a recently identified class of small noncoding RNAs, play a crucial role in regulating gene expression and are implicated in cerebrovascular diseases. However, the specific biological roles and mechanisms of transfer RNA-derived small RNAs in intracranial aneurysms (IAs) remain unclear. In this study, we identified that the transfer RNA-Asp-GTC derived fragment (tRF-AspGTC) is highly expressed in the IA tissues of both humans and mice. tRF-AspGTC promotes IA formation by facilitating the phenotypic switching of vascular smooth muscle cells, increasing of matrix metalloproteinase 9 expression, and inducing of oxidative stress and inflammatory responses. Mechanistically, tRF-AspGTC binds to galectin-3, inhibiting tripartite motif 29-mediated ubiquitination and stabilizing galectin-3. This stabilization activates the toll-like receptor 4/MyD88/nuclear factor kappa B pathway, further driving phenotypic switching and inflammation. Clinically, circulating exosomal tRF-AspGTC demonstrates strong diagnostic efficacy for IAs and is identified as an independent risk factor for IA occurrence. These findings highlight the potential of tRF-AspGTC as a promising diagnostic biomarker and therapeutic target for IAs.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurosurgery and Institute for Translational Medicine,
The Affiliated Hospital of Qingdao University, Qingdao 266000, People’s Republic of China
| | | | - Han Zhou
- Department of Ophthalmology,
The Affiliated Hospital of Qingdao University, Qingdao 266000, People’s Republic of China
| | - Huanting Li
- Department of Neurosurgery and Institute for Translational Medicine,
The Affiliated Hospital of Qingdao University, Qingdao 266000, People’s Republic of China
| | - Shifang Li
- Department of Neurosurgery and Institute for Translational Medicine,
The Affiliated Hospital of Qingdao University, Qingdao 266000, People’s Republic of China
| | - Xiaolu Li
- Department of Critical Care Medicine,
Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, People’s Republic of China. Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, People’s Republic of China
| | - Wentao Wang
- Department of Neurosurgery and Institute for Translational Medicine,
The Affiliated Hospital of Qingdao University, Qingdao 266000, People’s Republic of China
| | - Yugong Feng
- Department of Neurosurgery and Institute for Translational Medicine,
The Affiliated Hospital of Qingdao University, Qingdao 266000, People’s Republic of China
| | - Tao Yu
- Department of Neurosurgery and Institute for Translational Medicine,
The Affiliated Hospital of Qingdao University, Qingdao 266000, People’s Republic of China
- Department of Critical Care Medicine,
Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, People’s Republic of China. Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, People’s Republic of China
| |
Collapse
|
13
|
Lunde IG, Rypdal KB, Van Linthout S, Diez J, González A. Myocardial fibrosis from the perspective of the extracellular matrix: Mechanisms to clinical impact. Matrix Biol 2024; 134:1-22. [PMID: 39214156 DOI: 10.1016/j.matbio.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) and constitutes a central pathophysiological process that underlies tissue dysfunction, across organs, in multiple chronic diseases and during aging. Myocardial fibrosis is a key contributor to dysfunction and failure in numerous diseases of the heart and is a strong predictor of poor clinical outcome and mortality. The excess structural and matricellular ECM proteins deposited by cardiac fibroblasts, is found between cardiomyocytes (interstitial fibrosis), in focal areas where cardiomyocytes have died (replacement fibrosis), and around vessels (perivascular fibrosis). Although myocardial fibrosis has important clinical prognostic value, access to cardiac tissue biopsies for histological evaluation is limited. Despite challenges with sensitivity and specificity, cardiac magnetic resonance imaging (CMR) is the most applicable diagnostic tool in the clinic, and the scientific community is currently actively searching for blood biomarkers reflecting myocardial fibrosis, to complement the imaging techniques. The lack of mechanistic insights into specific pro- and anti-fibrotic molecular pathways has hampered the development of effective treatments to prevent or reverse myocardial fibrosis. Development and implementation of anti-fibrotic therapies is expected to improve patient outcomes and is an urgent medical need. Here, we discuss the importance of the ECM in the heart, the central role of fibrosis in heart disease, and mechanistic pathways likely to impact clinical practice with regards to diagnostics of myocardial fibrosis, risk stratification of patients, and anti-fibrotic therapy.
Collapse
Affiliation(s)
- Ida G Lunde
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway; KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway.
| | - Karoline B Rypdal
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway; KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway
| | - Sophie Van Linthout
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Javier Diez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Department of Cardiology, Clínica Universidad de Navarra and IdiSNA Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Department of Cardiology, Clínica Universidad de Navarra and IdiSNA Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
14
|
Abubakar M, Irfan U, Abdelkhalek A, Javed I, Khokhar MI, Shakil F, Raza S, Salim SS, Altaf MM, Habib R, Ahmed S, Ahmed F. Comprehensive Quality Analysis of Conventional and Novel Biomarkers in Diagnosing and Predicting Prognosis of Coronary Artery Disease, Acute Coronary Syndrome, and Heart Failure, a Comprehensive Literature Review. J Cardiovasc Transl Res 2024; 17:1258-1285. [PMID: 38995611 DOI: 10.1007/s12265-024-10540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Coronary artery disease (CAD), acute coronary syndrome (ACS), and heart failure (HF) are major global health issues with high morbidity and mortality rates. Biomarkers like cardiac troponins (cTn) and natriuretic peptides (NPs) are crucial tools in cardiology, but numerous new biomarkers have emerged, proving increasingly valuable in CAD/ACS. These biomarkers are classified based on their mechanisms, such as fibrosis, metabolism, inflammation, and congestion. The integration of established and emerging biomarkers into clinical practice is an ongoing process, and recognizing their strengths and limitations is crucial for their accurate interpretation, incorporation into clinical settings, and improved management of CVD patients. We explored established biomarkers like cTn, NPs, and CRP, alongside newer biomarkers such as Apo-A1, IL-17E, IgA, Gal-3, sST2, GDF-15, MPO, H-FABP, Lp-PLA2, and ncRNAs; provided evidence of their utility in CAD/ACS diagnosis and prognosis; and empowered clinicians to confidently integrate these biomarkers into clinical practice based on solid evidence.
Collapse
Affiliation(s)
- Muhammad Abubakar
- Department of Internal Medicine, Ameer-Ud-Din Medical College, 6 Birdwood Road, Jinnah Town, Lahore, 54000, Punjab, Pakistan.
| | - Umema Irfan
- Department of Internal Medicine, Deccan College of Medical Sciences, Hyderabad, India
| | - Ahmad Abdelkhalek
- Department of Internal Medicine, Zhejiang University, Zhejiang, China
| | - Izzah Javed
- Department of Internal Medicine, Ameer-Ud-Din Medical College, 6 Birdwood Road, Jinnah Town, Lahore, 54000, Punjab, Pakistan
| | | | - Fraz Shakil
- Department of Emergency Medicine, Mayo Hospital, Lahore, Pakistan
| | - Saud Raza
- Department of Anesthesia, Social Security Teaching Hospital, Lahore, Punjab, Pakistan
| | - Siffat Saima Salim
- Department of Surgery, Holy Family Red Crescent Medical College Hospital, Dhaka, Bangladesh
| | - Muhammad Mahran Altaf
- Department of Internal Medicine, Ameer-Ud-Din Medical College, 6 Birdwood Road, Jinnah Town, Lahore, 54000, Punjab, Pakistan
| | - Rizwan Habib
- Department of Internal Medicine and Emergency, Indus Hospital, Lahore, Pakistan
| | - Simra Ahmed
- Department of Internal Medicine, Ziauddin Medical College, Karachi, Pakistan
| | - Farea Ahmed
- Department of Internal Medicine, Ziauddin Medical College, Karachi, Pakistan
| |
Collapse
|
15
|
Cheng D, Lian W, Jia X, Wang T, Sun W, Liu Y, Ni C. LGALS3 regulates endothelial-to-mesenchymal transition via PI3K/AKT signaling pathway in silica-induced pulmonary fibrosis. Toxicology 2024; 509:153962. [PMID: 39353502 DOI: 10.1016/j.tox.2024.153962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Silicosis is a progressive and chronic occupational lung disease characterized by lung inflammation, silicotic nodule formation, and diffuse pulmonary fibrosis. Emerging evidence indicates that endothelial-mesenchymal transition (EndoMT) plays a crucial role in the development of silicosis. Herein, we conducted a SiO2-induced EndoMT model and established a mouse model with pulmonary fibrosis by silica. We identified that SiO2 effectively increased the expression of mesenchymal markers while decreasing the levels of endothelial markers in endothelial cells. It's further demonstrated that SiO2 induced the PI3K/Akt signaling pathway activation via LGALS3 synthesis. Next, interfering LGALS3 blocked the process of EndoMT by inhibiting the activity of PI3K/AKT signaling. In vivo, the administration of a specific PI3K inhibitor LY294002 significantly alleviated silica-induced pulmonary fibrosis. Collectively, these results identified that the LGALS3/PI3K/AKT pathway provided a rationale target for the clinical treatment and intervention of silicosis.
Collapse
Affiliation(s)
- Demin Cheng
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenxiu Lian
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinying Jia
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ting Wang
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Wenqing Sun
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yi Liu
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Chunhui Ni
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang 320700, China.
| |
Collapse
|
16
|
Chung Ming CL, Pienaar D, Ghorbanpour S, Chen H, Roberts LM, Cole L, McGrath KC, Padula MP, Henry A, Gentile C, McClements L. 3D in vitro modelling of post-partum cardiovascular health reveals unique characteristics and signatures following hypertensive disorders in pregnancy. Biol Sex Differ 2024; 15:94. [PMID: 39587642 PMCID: PMC11587612 DOI: 10.1186/s13293-024-00672-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Hypertensive disorders of pregnancy (HDP) affect 2-8% of pregnancies and are associated postpartum with increased cardiovascular disease (CVD) risk, although mechanisms are poorly understood. METHODS Human induced pluripotent stem cells (iPSC)-derived cardiomyocytes, cardiac fibroblasts and coronary artery endothelial cells were cocultured to form cardiac spheroids (CSs) in collagen type-1 hydrogels containing 10% patient plasma collected five years postpartum [n = 5 per group: normotensive control, gestational hypertension (GH) and preeclampsia (PE)]. Plasma-treated CSs were assessed for cell viability and contractile function and subjected to immunofluorescence staining and imaging. A quantitative proteomic analysis of plasma samples was conducted (controls n = 21; GH n = 5; PE n = 12). RESULTS Contraction frequency (CF) was increased in PE-treated CSs (CF: 45.5 ± 3.4 contractions/minute, p < 0.001) and GH-treated CSs (CF: 45.7 ± 4.0 contractions/minute, p < 0.001), compared to controls (CF = 21.8 ± 2.6 contractions/min). Only PE-treated CSs presented significantly increased fractional shortening (FS) % (9.95 ± 1.8%, p < 0.05) compared to controls (3.7 ± 1.1%). GH-treated CSs showed a reduction in cell viability (p < 0.05) and an increase in α-SMA expression (p < 0.05). Proteomics analyses identified twenty differentially abundant proteins, with hemoglobin A2 being the only protein perturbed in both GH and PE versus control plasma (p < 0.05). CONCLUSIONS The innovative patient-relevant CS platforms led to the discovery of biomarkers/targets linked to cell death signaling and cardiac remodeling in GH-induced CVD and vascular/endothelial cell dysfunction in PE-induced CVD.
Collapse
Affiliation(s)
- Clara Liu Chung Ming
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
- Heart Research Institute, Sydney, Australia
| | - Dillan Pienaar
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Sahar Ghorbanpour
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Hao Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Lynne Margaret Roberts
- Department of Women's and Children's Health, St. George Hospital, Sydney, NSW, Australia
- St George and Sutherland Clinical Campus, School of Clinical Medicine, University of New South Wales Medicine and Health, Sydney, NSW, Australia
| | - Louise Cole
- Australian Institute of Microbiology and Infection, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Kristine C McGrath
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Matthew P Padula
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Amanda Henry
- Department of Women's and Children's Health, St. George Hospital, Sydney, NSW, Australia
- St George and Sutherland Clinical Campus, School of Clinical Medicine, University of New South Wales Medicine and Health, Sydney, NSW, Australia
- Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Medicine and Health, Sydney, NSW, Australia
| | - Carmine Gentile
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia.
- Heart Research Institute, Sydney, Australia.
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
17
|
Wu D, Liu Y, Luo X, Chen Z, Fu Q, Yao K. Involvement of Lgals3/Galectin-3 in Choroidal Neovascularization and Subretinal Fibrosis Formation. Biomedicines 2024; 12:2649. [PMID: 39595213 PMCID: PMC11592115 DOI: 10.3390/biomedicines12112649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Background:Lgals3/galectin-3 plays a pivotal role in many vascular diseases. However, the involvement of Lgals3/galectin-3 in eyes with neovascular age-related macular degeneration (nAMD) remains unknown. Methods: In the laser-induced CNV model, a whole mount retina stained with Isolectin B4 and collagen type I revealed the vascular bed and CNV-associated subretinal fibrosis on day 7 after laser treatment. Results: We show that the expression levels of Lgals3/galectin-3 were significantly increased in the RPE/choroidal complex of CNV mice. An intravitreal injection of Lgals3-siRNA significantly suppressed the area of CNV and subretinal fibrosis, together with Mcp-1 decline. The mixture of Lgals3-siRNA and Ranibizumab showed more efficiency than each drug used separately. Hypoxia induced Lgals3/galectin-3 production in ARPE-19 cells, which was reduced by the silencing hypoxia-inducible factor -1α (Hif-1a). Conclusions: Our data indicated that Lgals3/galectin-3 is involved in the pathogenesis of CNV and subretinal fibrosis, and Lgals3/galectin-3 could be a potential therapeutic target for nAMD.
Collapse
Affiliation(s)
| | | | | | | | | | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310051, China; (D.W.); (Y.L.); (X.L.); (Z.C.); (Q.F.)
| |
Collapse
|
18
|
Prajapati AK, Shah G. Exploring in vivo and in vitro models for heart failure with biomarker insights: a review. Egypt Heart J 2024; 76:141. [PMID: 39432214 PMCID: PMC11493927 DOI: 10.1186/s43044-024-00568-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Heart failure (HF) is a condition characterized by the heart's inability to meet the body's demands, resulting in various complications. Two primary types of HF exist, namely HF with preserved left ventricular ejection fraction (LVEF) and HF reduced with LVEF. The progression of HF involves compensatory mechanisms such as cardiac hypertrophy, fibrosis, and alterations in gene expression. Pressure overload and volume overload are common etiologies of HF, with pressure overload often stemming from conditions like hypertension, leading to left ventricular hypertrophy and fibrosis. In contrast, volume overload can arise from chronic valvular regurgitant disease, also inducing left ventricular hypertrophy. MAIN BODY In vitro cell culture techniques serve as vital tools in studying HF pathophysiology, allowing researchers to investigate cellular responses and potential therapeutic targets. Additionally, biomarkers, measurable biological characteristics, play a crucial role in diagnosing and predicting HF. Some notable biomarkers include adrenomedullin, B-type natriuretic peptide, copeptin, galectin-3, interleukin-6, matrix metalloproteinases (MMPs), midregional pro-atrial natriuretic peptide, myostatin, procollagen type I C-terminal propeptide, procollagen type III N-terminal propeptide and tissue inhibitors of metalloproteinases (TIMPs). These biomarkers aid in HF diagnosis, assessing its severity, and monitoring treatment response, contributing to a deeper understanding of the disease and potentially leading to improved management strategies and outcomes. CONCLUSIONS This review provides comprehensive insights into various in vivo models of HF, commonly utilized cell lines in HF research, and pivotal biomarkers with diagnostic relevance for HF. By synthesizing this information, researchers gain valuable resources to further explore HF pathogenesis, identify novel therapeutic targets, and enhance diagnostic and prognostic approaches.
Collapse
Affiliation(s)
- Anil Kumar Prajapati
- Pharmacology Department, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
- Research Scholar, Gujarat Technological University, Ahmedabad, Gujarat, 382424, India
| | - Gaurang Shah
- Pharmacology Department, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
19
|
Luo Z, Tang YY, Zhou L. Melatonin as an adjunctive therapy in cardiovascular disease management. Sci Prog 2024; 107:368504241299993. [PMID: 39574322 PMCID: PMC11585022 DOI: 10.1177/00368504241299993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Melatonin, N-acetyl-5-methoxytryptamine, is a neuroendocrine hormone secreted by the pineal gland. This pleiotropic indoleamine possesses amphiphilic properties, allowing it to penetrate most biological barriers and exert its effects at the subcellular level. Importantly, melatonin also plays a crucial role in regulating the body's response to circadian rhythms, adapting to internal and external environmental cues. Melatonin functions as a powerful antioxidant and free radical scavenger, protecting cells from oxidative damage. Its diverse physiological roles include maintaining the functional integrity of endothelial cells, thereby preventing atherosclerosis, a major contributor to cardiovascular disease. Additionally, melatonin exhibits antioxidant and free radical scavenging properties, potentially improving metabolic disorders. These combined effects suggest a unique adjunctive therapeutic potential for melatonin in treating cardiovascular diseases. This review aims to explore the mechanisms by which melatonin interacts with the cardiovascular system and investigates its potential use as an adjunctive therapeutic agent in managing cardiovascular disease.
Collapse
Affiliation(s)
- Zan Luo
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuan Yuan Tang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liang Zhou
- Department of Cardiovascular Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Clinical Medicine, Hangzhou, China
| |
Collapse
|
20
|
Arcuri G, Valente C, Romito G, Bonsembiante F, Mazzoldi C, Contiero B, Poser H, Guglielmini C. Evaluation of Galectin-3 in Dogs with Atrial Fibrillation. Animals (Basel) 2024; 14:2547. [PMID: 39272333 PMCID: PMC11394297 DOI: 10.3390/ani14172547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Galectin-3 (Gal-3) is a lectin associated with fibrosis and inflammation, and increased circulating concentrations are considered a risk factor for atrial fibrillation (AF) in humans. This retrospective study aimed to evaluate the serum concentration of Gal-3 in dogs with cardiac disease, both with and without AF. Dogs with AF associated with acquired heart diseases were selected, while cardiac healthy dogs and dogs with heart diseases but without AF served as controls. We statistically compared the serum concentration of Gal-3, which was assessed using a commercial canine-specific ELISA kit, among healthy dogs and dogs with heart disease with and without AF. Additionally, associations between Gal-3 and clinical and echocardiographic variables were evaluated. A total of 73 dogs were included, of which 17/73 (23.3%) were cardiac healthy and 56/73 (76.7%) had heart disease, with 26/56 (46.4%) having AF. No significant difference in Gal-3 concentration was found between cardiac healthy dogs (3.90 ± 1.65 ng/mL) and dogs with heart disease, either with or without AF (3.37 ± 1.04 ng/mL, p = 0.436 and 4.68 ± 1.80 ng/mL, p = 0.332, respectively). Gal-3 showed a significant positive correlation with age (r = 0.47, p < 0.001) and a negative correlation with body weight (r = -0.45, p < 0.001). The results of this study suggest that Gal-3 does not have an important role in the development of AF in dogs, but it is associated with advanced age.
Collapse
Affiliation(s)
- Giulia Arcuri
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Padua, Italy
| | - Carlotta Valente
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Padua, Italy
| | - Giovanni Romito
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy
| | - Federico Bonsembiante
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Padua, Italy
| | - Chiara Mazzoldi
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy
| | - Barbara Contiero
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Padua, Italy
| | - Helen Poser
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Padua, Italy
| | - Carlo Guglielmini
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Padua, Italy
| |
Collapse
|
21
|
Yang X, Yang J, Zeng Y, Peng L, Liu X, Mo J, Wang T, Yao Y, Zheng Y, Song G. Circulating galectin-3 level association with cardiovascular risk factors during peritoneal dialysis. Clin Exp Nephrol 2024; 28:925-931. [PMID: 38643287 PMCID: PMC11341765 DOI: 10.1007/s10157-024-02498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
OBJECTIVE Cardiovascular disease (CVD) represents the primary cause of mortality in patients afflicted with end-stage renal disease and undergoing peritoneal dialysis (PD) treatment. Galectin-3 (Gal-3), a molecule known to exhibit a correlation with CVD mortality garners considerable interest. The objective of this study was to explore the potential association between serum Gal-3 levels and other CVD risk factors among PD patients. METHODS In this cross-sectional study, a total of 114 PD patients with a minimum of 3 months of PD treatment were enrolled. Serum Gal-3 levels were quantified using an enzyme-linked immunosorbent assay. The data of patients with Gal-3 levels higher and lower than 26.744 pg/ml were compared using Mann-Whitney U tests or t tests. Pearson's correlation or Spearman's correlation analysis and multivariate regression were used to assess the associations between the known risk factors for CVD and Gal-3. RESULTS In comparison to the inter-group baseline data, the low Gal-3 group exhibited a higher glomerular filtration rate (GFR). Gal-3 levels correlate positively with PD duration, B-type natriuretic peptide (BNP), growth differentiation factor 15 (GDF-15), interventricular septal thickness in diastolic (IVST), and left ventricular mass index (LVMI). Conversely, Gal-3 exhibited a negative correlation with albumin levels. Multivariate linear regression analysis demonstrated a positive correlation between Gal-3 levels and BNP, GDF-15, PD duration, IVST and LVMI. Gal-3 levels were negatively correlated with albumin levels. CONCLUSIONS Gal-3 was strongly associated with BNP, GDF-15, IVST and LVMI in patients undergoing PD treatment. Prospective studies should be carried out to determine whether Gal-3 can be a promising biomarker in predicting increased risk of adverse cardiovascular events in PD patients.
Collapse
Affiliation(s)
- Xuerui Yang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China
| | - Jun Yang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China
| | - Youjia Zeng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China
| | - Ling Peng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China
| | - Xingzheng Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China
| | - Jinying Mo
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China
| | - Taifen Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China
| | - Yutong Yao
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China
| | - Yihou Zheng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China
| | - Gaofeng Song
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China.
| |
Collapse
|
22
|
Băghină RM, Crișan S, Luca S, Pătru O, Lazăr MA, Văcărescu C, Negru AG, Luca CT, Gaiță D. Association between Inflammation and New-Onset Atrial Fibrillation in Acute Coronary Syndromes. J Clin Med 2024; 13:5088. [PMID: 39274304 PMCID: PMC11396258 DOI: 10.3390/jcm13175088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Acute coronary syndrome (ACS) is a complex clinical syndrome that encompasses acute myocardial infarction (AMI) and unstable angina (UA). Its underlying mechanism refers to coronary plaque disruption, with consequent platelet aggregation and thrombosis. Inflammation plays an important role in the progression of atherosclerosis by mediating the removal of necrotic tissue following myocardial infarction and shaping the repair processes that are essential for the recovery process after ACS. As a chronic inflammatory disorder, atherosclerosis is characterized by dysfunctional immune inflammation involving interactions between immune (macrophages, T lymphocytes, and monocytes) and vascular cells (endothelial cells and smooth muscle cells). New-onset atrial fibrillation (NOAF) is one of the most common arrhythmic complications in the setting of acute coronary syndromes, especially in the early stages, when the myocardial inflammatory reaction is at its maximum. The main changes in the atrial substrate are due to atrial ischemia and acute infarcts that can be attributed to neurohormonal factors. The high incidence of atrial fibrillation (AF) post-myocardial infarction may be secondary to inflammation. Inflammatory response and immune system cells have been involved in the initiation and development of atrial fibrillation. Several inflammatory indexes, such as C-reactive protein and interleukins, have been demonstrated to be predictive of prognosis in patients with ACS. The cell signaling activation patterns associated with fibrosis, apoptosis, and hypertrophy are forms of cardiac remodeling that occur at the atrial level, predisposing to AF. According to a recent study, the presence of fibrosis and lymphomononuclear infiltration in the atrial tissue was associated with a prior history of AF. However, inflammation may contribute to both the occurrence/maintenance of AF and its thromboembolic complications.
Collapse
Affiliation(s)
- Ruxandra-Maria Băghină
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Simina Crișan
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Silvia Luca
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Oana Pătru
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Mihai-Andrei Lazăr
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Cristina Văcărescu
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Alina Gabriela Negru
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Constantin-Tudor Luca
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Dan Gaiță
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| |
Collapse
|
23
|
Deng Y, Pang X, Chen L, Peng W, Huang X, Huang P, Zhao S, Li Z, Cai X, Huang Q, Zeng J, Feng Y, Chen B. IFI-16 inhibition attenuates myocardial remodeling following myocardial infarction. iScience 2024; 27:110568. [PMID: 39188985 PMCID: PMC11345598 DOI: 10.1016/j.isci.2024.110568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/16/2024] [Accepted: 07/19/2024] [Indexed: 08/28/2024] Open
Abstract
Myocardial remodeling (MR) following myocardial infarction (MI) contributes to heart failure. Inflammation is a key determinant in cardiac remodeling, with potential prognostic improvements by inhibiting inflammatory factors. Pattern recognition receptors, including interferon gamma-inducible protein-16 (IFI-16), play significant roles in this process, yet its specific involvement remains underexplored. This study investigates IFI-16's role in initiating inflammation via the inflammasome and its direct interaction with galectin-3 protein post-MI. Elevated IFI-16 levels were observed in human and rat myocytes and a mouse MI model under hypoxic, nutrient-deprived conditions, correlating with increased inflammation-associated proteins. Suppression of IFI-16/IFI-204 using short hairpin RNA (shRNA) lentivirus or adeno-associated virus decreased inflammatory factor activation, thereby mitigating remodeling and enhancing cardiac function post-MI. Co-immunoprecipitation (coIP) and double-fluorescence staining confirmed IFI-16's ability to interact directly with galectin-3. These findings underscore IFI-16's critical role as a pro-inflammatory factor in post-MI MR, suggesting its inhibition as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Yi Deng
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- The Postdoctoral Research Station, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
| | - Xiuqing Pang
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Li Chen
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
| | - Weihang Peng
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
| | - Xiaoyan Huang
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
| | - Peiying Huang
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
| | - Shuai Zhao
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
| | - Zhishang Li
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
| | - Xingui Cai
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
| | - Qiuping Huang
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
| | - Jing Zeng
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
| | - Yuchao Feng
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
| | - Bojun Chen
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
| |
Collapse
|
24
|
Mouskeftara T, Deda O, Liapikos T, Panteris E, Karagiannidis E, Papazoglou AS, Gika H. Lipidomic-Based Algorithms Can Enhance Prediction of Obstructive Coronary Artery Disease. J Proteome Res 2024; 23:3598-3611. [PMID: 39008891 DOI: 10.1021/acs.jproteome.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Lipidomics emerges as a promising research field with the potential to help in personalized risk stratification and improve our understanding on the functional role of individual lipid species in the metabolic perturbations occurring in coronary artery disease (CAD). This study aimed to utilize a machine learning approach to provide a lipid panel able to identify patients with obstructive CAD. In this posthoc analysis of the prospective CorLipid trial, we investigated the lipid profiles of 146 patients with suspected CAD, divided into two categories based on the existence of obstructive CAD. In total, 517 lipid species were identified, from which 288 lipid species were finally quantified, including glycerophospholipids, glycerolipids, and sphingolipids. Univariate and multivariate statistical analyses have shown significant discrimination between the serum lipidomes of patients with obstructive CAD. Finally, the XGBoost algorithm identified a panel of 17 serum biomarkers (5 sphingolipids, 7 glycerophospholipids, a triacylglycerol, galectin-3, glucose, LDL, and LDH) as totally sensitive (100% sensitivity, 62.1% specificity, 100% negative predictive value) for the prediction of obstructive CAD. Our findings shed light on dysregulated lipid metabolism's role in CAD, validating existing evidence and suggesting promise for novel therapies and improved risk stratification.
Collapse
Affiliation(s)
- Thomai Mouskeftara
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Biomic_AUTh, CIRI-AUTH Center for Interdisciplinary Research and Innovation Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Olga Deda
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Biomic_AUTh, CIRI-AUTH Center for Interdisciplinary Research and Innovation Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Theodoros Liapikos
- Biomic_AUTh, CIRI-AUTH Center for Interdisciplinary Research and Innovation Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Eleftherios Panteris
- Biomic_AUTh, CIRI-AUTH Center for Interdisciplinary Research and Innovation Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Efstratios Karagiannidis
- Second Department of Cardiology, General Hospital "Hippokration", Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54642 Thessaloniki, Greece
| | | | - Helen Gika
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Biomic_AUTh, CIRI-AUTH Center for Interdisciplinary Research and Innovation Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| |
Collapse
|
25
|
Fateixa S, Martins ALF, Colaço B, António M, Daniel-da-Silva AL. Integrated magneto-plasmonic nanostructures-based immunoassay for galectin-3 detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5212-5222. [PMID: 39007190 DOI: 10.1039/d4ay00972j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Cardiovascular diseases remain a leading cause of global mortality, highlighting the need for accurate diagnostic tools and the detection of specific cardiac biomarkers. Surface-enhanced Raman scattering (SERS) spectroscopy has proved to be a promising alternative diagnostic tool to detect relevant biomarkers compared to traditional methods. To our knowledge, SERS methodology has never been used to detect galectin-3 (Gal-3), a crucial biomarker for cardiovascular conditions. Our study aimed to develop plasmonic and magneto-plasmonic nanoplatforms for the sensitive immunodetection of Gal-3 using SERS. Spherical gold nanoparticles (AuNPs) were synthesized and functionalized with 11-mercaptoundecanoic acid (MUDA) to enable antibody binding and 4-mercaptobenzoic acid (4MBA) that served as a Raman reporter due to its intense Raman signal. Following bioconjugation with Gal-3 antibody, the AuNPs were employed in the immunodetection of Gal-3 in phosphate-buffer saline (PBS) solution, offering a limit of detection (LOD) of 12.2 ng mL-1 and a working range up to 120 ng mL-1. Furthermore, our SERS-based immunosystem demonstrated selectivity for Gal-3 (40 ng mL-1) in the presence of other biomolecules such as α-amylase, bovine serum albumin and human C-reactive protein. As a proof of concept, we developed magneto-plasmonic nanoparticles composed of silica-coated magnetite decorated with the bioconjugated AuNPs aimed at enhancing the uptake and detection of Gal-3 via SERS coupled with Raman imaging. Our findings underscore the potential of SERS-based techniques for the sensitive and specific detection of biomarkers, holding significant implications for improved diagnosis and surveillance of cardiovascular diseases. Future research will focus on further optimizing these nanoplatforms and their translation into clinical settings.
Collapse
Affiliation(s)
- Sara Fateixa
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana L F Martins
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Beatriz Colaço
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Maria António
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana L Daniel-da-Silva
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
26
|
Pruc M, Gaca Z, Swieczkowski D, Kubica J, Galwankar S, Salak A, Szarpak L. A Systematic Review and Meta-Analysis of the Diagnostic Value of Galectin-3 in Acute Coronary Syndrome. J Clin Med 2024; 13:4504. [PMID: 39124770 PMCID: PMC11313188 DOI: 10.3390/jcm13154504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Background/Objectives: We investigated the potential diagnostic role of galectin-3 (Gal-3) in patients presenting with suspected acute coronary syndromes (ACS). Methods: We searched PubMed Central, Scopus, EMBASE, and the Cochrane Library from inception until 20 June 2024. We measured effect sizes using odds ratios (OR) with 95% CIs for dichotomous data and mean differences (MD) with CIs for continuous data. Random synthesis analysis was performed if I2 was less than 50% or Q test p values were less than 0.05. Otherwise, a fixed pooled meta-analysis was performed. Results: The meta-analysis includes 15 eligible studies. Gal-3 levels were substantially higher in the ACS group (12.84 ± 8.48 ng/mL) compared to the control group (7.23 ± 6.05 ng/mL; MD = 3.89; 95% CI: 2.83 to 4.95; p < 0.001). Gal-3 levels in acute myocardial infarction (AMI) and control groups differed (10.09 ± 8.16 vs. 4.64 ± 3.07 ng/mL, MD = 4.30; 95% CI: 0.41 to 8.18; p < 0.001). Statistical analysis revealed significant differences in Gal-3 levels between ST-elevated myocardial infarction (STEMI) and control groups (10.62 ± 7.34 vs. 5.54 ± 2.96 ng/mL; MD = 5.54; 95% CI: 3.12 to 7.97; p < 0.001). No significant differences were found between the non-ST-elevated myocardial infarction (NSTEMI) vs. control groups or patients with STEMI vs. patients with NSTEMI. Conclusions: Gal-3 may be beneficial for detecting acute coronary syndromes but not NSTEMI or differentiating between ACS types. This meta-analysis is promising, but further research is needed to prove Gal-3's potential diagnostic value, exact cut-offs, and advantages over cardiospecific troponins. Gal-3 may be a useful diagnostic biomarker; however, more clinical trials are needed to prove its utility.
Collapse
Affiliation(s)
- Michal Pruc
- Department of Clinical Research and Development, LUX MED Group, 02-678 Warsaw, Poland; (M.P.); (Z.G.)
- Department of Public Health, International European University, 03187 Kyiv, Ukraine
| | - Zuzanna Gaca
- Department of Clinical Research and Development, LUX MED Group, 02-678 Warsaw, Poland; (M.P.); (Z.G.)
| | - Damian Swieczkowski
- Department of Clinical Research and Development, LUX MED Group, 02-678 Warsaw, Poland; (M.P.); (Z.G.)
- Department of Toxicology, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Jacek Kubica
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland;
| | - Sagar Galwankar
- Department of Emergency, Florida State University College of Medicine, Emergency Medicine Residency Program, Sarasota Memorial Hospital, Sarasota, FL 32306, USA;
| | - Anna Salak
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, 00-136 Warsaw, Poland
| | - Lukasz Szarpak
- Department of Clinical Research and Development, LUX MED Group, 02-678 Warsaw, Poland; (M.P.); (Z.G.)
- Henry JN Taub Department of Emergency Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
27
|
Hao WR, Cheng CH, Liu JC, Chen HY, Chen JJ, Cheng TH. Understanding Galectin-3's Role in Diastolic Dysfunction: A Contemporary Perspective. Life (Basel) 2024; 14:906. [PMID: 39063659 PMCID: PMC11277993 DOI: 10.3390/life14070906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Diastolic dysfunction, a prevalent condition characterized by impaired relaxation and filling of the left ventricle, significantly contributes to heart failure with preserved ejection fraction (HFpEF). Galectin-3, a β-galactoside-binding lectin, has garnered attention as a potential biomarker and mediator of fibrosis and inflammation in cardiovascular diseases. This comprehensive review investigates the impact of galectin-3 on diastolic dysfunction. We explore its molecular mechanisms, including its involvement in cellular signaling pathways and interaction with components of the extracellular matrix. Evidence from both animal models and clinical studies elucidates galectin-3's role in cardiac remodeling, inflammation, and fibrosis, shedding light on the underlying pathophysiology of diastolic dysfunction. Additionally, we examine the diagnostic and therapeutic implications of galectin-3 in diastolic dysfunction, emphasizing its potential as both a biomarker and a therapeutic target. This review underscores the significance of comprehending galectin-3's role in diastolic dysfunction and its promise in enhancing diagnosis and treatment approaches for HFpEF patients.
Collapse
Affiliation(s)
- Wen-Rui Hao
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei City 23561, Taiwan; (W.-R.H.); (J.-C.L.)
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11002, Taiwan
| | - Chun-Han Cheng
- Department of Medical Education, Linkou Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan;
| | - Ju-Chi Liu
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei City 23561, Taiwan; (W.-R.H.); (J.-C.L.)
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11002, Taiwan
| | - Huan-Yuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (H.-Y.C.); (J.-J.C.)
| | - Jin-Jer Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (H.-Y.C.); (J.-J.C.)
- Division of Cardiology, Department of Internal Medicine and Graduate Institute of Clinical Medical Science, China Medical University, Taichung City 404333, Taiwan
| | - Tzu-Hurng Cheng
- Department of Biochemistry, School of Medicine, College of Medicine, China Medical University, Taichung City 404333, Taiwan
| |
Collapse
|
28
|
Mahmoud HM, Abdel-Razik ARH, Elrehany MA, Othman EM, Bekhit AA. Modified Citrus Pectin (MCP) Confers a Renoprotective Effect on Early-Stage Nephropathy in Type-2 Diabetic Mice. Chem Biodivers 2024; 21:e202400104. [PMID: 38588017 DOI: 10.1002/cbdv.202400104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Diabetic nephropathy (DN) is a significant global health concern with a high morbidity rate. Accumulating evidence reveals that Galectin-3 (Gal-3), a β-galactoside-binding lectin, is a biomarker in kidney diseases. Our study aimed to assess the advantageous impacts of modified citrus pectin (MCP) as an alternative therapeutic strategy for the initial and ongoing progression of DN in mice with type 2 diabetes mellitus (T2DM). The animal model has been split into four groups: control group, T2DM group (mice received intraperitoneal injections of nicotinamide (NA) and streptozotocin (STZ), T2DM+MCP group (mice received 100 mg/kg/day MCP following T2DM induction), and MCP group (mice received 100 mg/kg/day). After 4 weeks, kidney weight, blood glucose level, serum kidney function tests, histopathological structure alterations, oxidative stress, inflammation, apoptosis, and fibrosis parameters were determined in renal tissues. Our findings demonstrated that MCP treatment reduced blood glucose levels, renal histological damage, and restored kidney weight and kidney function tests. Additionally, MCP reduced malondialdehyde level and restored glutathione level, and catalase activity. MCP demonstrated a notable reduction in inflammatory and apoptosis mediators TNF-α, iNOS, TGF-βRII and caspase-3. Overall, MCP could alleviate renal injury in an experimental model of DN by suppressing renal oxidative stress, inflammation, fibrosis, and apoptosis mediators.
Collapse
Affiliation(s)
| | | | - Mahmoud A Elrehany
- Biochemistry Department, Faculty of Pharmacy, Deraya University, New Mina, Egypt
| | - Eman M Othman
- Biochemistry Department, Faculty of Pharmacy, Minia University, 65111, Minia, Egypt E-mail: amany
- Cancer Therapy Research Center, Biochemistry Department -I, Biocenter, University of Wuerzburg, Am Hubland, 97074, Würzburg, Germany
- Bioinformatics Department, Biocenter, University of Wuerzburg, Am Hubland, 97074, Würzburg, Germany
| | - Amany A Bekhit
- Biochemistry Department, Faculty of Pharmacy, Minia University, 65111, Minia, Egypt E-mail: amany
| |
Collapse
|
29
|
Nevarez-Mejia J, Pickering H, Sosa RA, Valenzuela NM, Fishbein GA, Baldwin WM, Fairchild RL, Reed EF. Spatial multiomics of arterial regions from cardiac allograft vasculopathy rejected grafts reveal novel insights into the pathogenesis of chronic antibody-mediated rejection. Am J Transplant 2024; 24:1146-1160. [PMID: 38219867 PMCID: PMC11239797 DOI: 10.1016/j.ajt.2024.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Cardiac allograft vasculopathy (CAV) causes late graft failure and mortality after heart transplantation. Donor-specific antibodies (DSAs) lead to chronic endothelial cell injury, inflammation, and arterial intimal thickening. In this study, GeoMx digital spatial profiling was used to analyze arterial areas of interest (AOIs) from CAV+DSA+ rejected cardiac allografts (N = 3; 22 AOIs total). AOIs were categorized based on CAV neointimal thickening and underwent whole transcriptome and protein profiling. By comparing our transcriptomic data with that of healthy control vessels of rapid autopsy myocardial tissue, we pinpointed specific pathways and transcripts indicative of heightened inflammatory profiles in CAV lesions. Moreover, we identified protein and transcriptomic signatures distinguishing CAV lesions exhibiting low and high neointimal lesions. AOIs with low neointima showed increased markers for activated inflammatory infiltrates, endothelial cell activation transcripts, and gene modules involved in metalloproteinase activation and TP53 regulation of caspases. Inflammatory and apoptotic proteins correlated with inflammatory modules in low neointima AOIs. High neointima AOIs exhibited elevated TGFβ-regulated transcripts and modules enriched for platelet activation/aggregation. Proteins associated with growth factors/survival correlated with modules enriched for proliferation/repair in high neointima AOIs. Our findings reveal novel insight into immunological mechanisms mediating CAV pathogenesis.
Collapse
Affiliation(s)
- Jessica Nevarez-Mejia
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Rebecca A Sosa
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Gregory A Fishbein
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - William M Baldwin
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert L Fairchild
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA.
| |
Collapse
|
30
|
Liu L, Zhen J, Liu S, Ren L, Zhao G, Liang J, Xu A, Li C, Wu J, Cheung BMY. Association between sleep patterns and galectin-3 in a Chinese community population. BMC Public Health 2024; 24:1323. [PMID: 38755574 PMCID: PMC11097462 DOI: 10.1186/s12889-024-18811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Irregular sleep patterns have been associated with inflammation. Galectin-3, a novel biomarker, plays an important role in inflammation. We investigated the relationship between sleep patterns and galectin-3 in a Chinese population. METHODS A total of 1,058 participants from the Shenzhen-Hong Kong United Network on Cardiovascular Disease study were included in the analysis. Age and sex-adjusted linear regression models were employed to investigate the relationship between galectin-3 level and traditional metabolic biomarkers. Logistic regression models were used to estimate the association among sleep disturbance, nighttime sleep duration, and daytime napping duration and elevated galectin-3, with elevated galectin-3 defined as galectin-3 level > 65.1 ng/ml. RESULTS Of study participants, the mean age was 45.3 years and 54.3% were women. Waist circumference, natural logarithm (ln)-transformed triglyceride, and ln-transformed high sensitivity C-reactive protein were positively associated with galectin-3 level (age and sex-adjusted standardized β [95% confidence interval (CI)], 0.12 [0.04, 0.21], 0.11 [0.05, 0.17], and 0.08 [0.02, 0.14], respectively). Sleep disturbance was associated with elevated galectin-3 (odds ratio [95% CI], 1.68 [1.05, 2.68], compared to those without sleep disturbance) after adjusting for traditional metabolic biomarkers. No interaction was observed between galectin-3 and age, sex, obesity, hypertension, and diabetes on sleep disturbance. No association was found between nighttime sleep duration or daytime napping duration and elevated galectin-3. CONCLUSIONS Our study provides evidence of a significant association between sleep disturbance and elevated galectin-3 level, independent of traditional metabolic biomarkers. Screening and interventions on galectin-3 could assist in preventing sleep disturbance-induced inflammatory disease.
Collapse
Affiliation(s)
- Lin Liu
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Juanying Zhen
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shuyun Liu
- Department of Neurology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Lijie Ren
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Guoru Zhao
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Research Center for Neural Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianguo Liang
- Precision Health Research Center Company Limited, Hong Kong SAR, China
| | - Aimin Xu
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chao Li
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jun Wu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Bernard Man Yung Cheung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Institute of Cardiovascular Science and Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
31
|
Wróbel-Nowicka K, Wojciechowska C, Jacheć W, Zalewska M, Romuk E. The Role of Oxidative Stress and Inflammatory Parameters in Heart Failure. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:760. [PMID: 38792942 PMCID: PMC11123446 DOI: 10.3390/medicina60050760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024]
Abstract
Heart failure (HF) remains a major medical and social problem. The NT-pro-brain natriuretic peptide (NT-proBNP) and its active form, brain-type natriuretic peptide (BNP), in a simple blood test are the gold-standard biomarkers for HF diagnosis. However, even good biomarkers such as natriuretic peptides fail to predict all the risks associated with HF due to the diversity of the mechanisms involved. The pathophysiology of HF is determined by numerous factors, including oxidative stress, inflammation, neuroendocrine activation, pathological angiogenesis, changes in apoptotic pathways, fibrosis and vascular remodeling. High readmission and mortality rates prompt a search for new markers for the diagnosis, prognosis and treatment of HF. Oxidative-stress-mediated inflammation plays a crucial role in the development of subsequent changes in the failing heart and provides a new insight into this complex mechanism. Oxidative stress and inflammatory biomarkers appear to be a promising diagnostic and prognostic tool in patients with HF. This systematic review provides an overview of the current knowledge about oxidative stress and inflammation parameters as markers of HF.
Collapse
Affiliation(s)
- Karolina Wróbel-Nowicka
- Medical Laboratory of Teresa Fryda, Katowice, Laboratory Branch in Specialist Hospital in Zabrze, 10, M.C-Skłodowska St., 41-800 Zabrze, Poland;
| | - Celina Wojciechowska
- 2nd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 10, M.C-Skłodowska St., 41-800 Zabrze, Poland; (C.W.); (W.J.)
| | - Wojciech Jacheć
- 2nd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 10, M.C-Skłodowska St., 41-800 Zabrze, Poland; (C.W.); (W.J.)
| | - Marzena Zalewska
- Department of Basic Medical Sciences, Faculty of Public Health in Bytom, Medical University of Silesia, Piekarska St., 41-902 Bytom, Poland;
| | - Ewa Romuk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19, Jordan St., 41-808 Zabrze, Poland
| |
Collapse
|
32
|
Jiang Q, Zhao Q, Chen Y, Ma C, Peng X, Wu X, Liu X, Wang R, Hou S, Kong L, Wan Y, Wang S, Meng ZX, Cui B, Chen L, Li P. Galectin-3 impairs calcium transients and β-cell function. Nat Commun 2024; 15:3682. [PMID: 38693121 PMCID: PMC11063191 DOI: 10.1038/s41467-024-47959-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
In diabetes, macrophages and inflammation are increased in the islets, along with β-cell dysfunction. Here, we demonstrate that galectin-3 (Gal3), mainly produced and secreted by macrophages, is elevated in islets from both high-fat diet (HFD)-fed and diabetic db/db mice. Gal3 acutely reduces glucose-stimulated insulin secretion (GSIS) in β-cell lines and primary islets in mice and humans. Importantly, Gal3 binds to calcium voltage-gated channel auxiliary subunit gamma 1 (CACNG1) and inhibits calcium influx via the cytomembrane and subsequent GSIS. β-Cell CACNG1 deficiency phenocopies Gal3 treatment. Inhibition of Gal3 through either genetic or pharmacologic loss of function improves GSIS and glucose homeostasis in both HFD-fed and db/db mice. All animal findings are applicable to male mice. Here we show a role of Gal3 in pancreatic β-cell dysfunction, and Gal3 could be a therapeutic target for the treatment of type 2 diabetes.
Collapse
Grants
- the National Natural Science Foundation China (82104263 to Q.J., 81622010 to P.L., 82104259 to Q.Z., and 82304591 to Y.W.), the National Key R&D Program of China (2017YFA0205400 to P.L.), the Chinese Academy of Medical Sciences (CAMS) Central Public-Interest Scientific Institution Basal Research Fund (2017RC31009 and 2018PT35004), the CAMS Innovation Fund for Medical Sciences (2021-I2M-1-026 to Q.J. and 2021-I2M-1-016), the Beijing Outstanding Young Scientist Program (BJJWZYJH01201910023028 to P.L.), and the Special Research Fund for Central Universities, Peking Union Medical College (3332021041 to Q.Z., 3332022047 Y.W.)
Collapse
Affiliation(s)
- Qian Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Qijin Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Yibing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Chunxiao Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Xiaohong Peng
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Xi Wu
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xingfeng Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Ruoran Wang
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shaocong Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Lijuan Kong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Yanjun Wan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, China
| | - Zhuo-Xian Meng
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bing Cui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Liangyi Chen
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Pingping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China.
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China.
| |
Collapse
|
33
|
Kuang Z, Kong M, Yan N, Ma X, Wu M, Li J. Precision Cardio-oncology: Update on Omics-Based Diagnostic Methods. Curr Treat Options Oncol 2024; 25:679-701. [PMID: 38676836 PMCID: PMC11082000 DOI: 10.1007/s11864-024-01203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2024] [Indexed: 04/29/2024]
Abstract
OPINION STATEMENT Cardio-oncology is an emerging interdisciplinary field dedicated to the early detection and treatment of adverse cardiovascular events associated with anticancer treatment, and current clinical management of anticancer-treatment-related cardiovascular toxicity (CTR-CVT) remains limited by a lack of detailed phenotypic data. However, the promise of diagnosing CTR-CVT using deep phenotyping has emerged with the development of precision medicine, particularly the use of omics-based methodologies to discover sensitive biomarkers of the disease. In the future, combining information produced by a variety of omics methodologies could expand the clinical practice of cardio-oncology. In this review, we demonstrate how omics approaches can improve our comprehension of CTR-CVT deep phenotyping, discuss the positive and negative aspects of available omics approaches for CTR-CVT diagnosis, and outline how to integrate multiple sets of omics data into individualized monitoring and treatment. This will offer a reliable technical route for lowering cardiovascular morbidity and mortality in cancer patients and survivors.
Collapse
Affiliation(s)
- Ziyu Kuang
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Miao Kong
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ningzhe Yan
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Ma
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Jie Li
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
34
|
Yao J, Chen Y, Huang Y, Sun X, Shi X. The role of cardiac microenvironment in cardiovascular diseases: implications for therapy. Hum Cell 2024; 37:607-624. [PMID: 38498133 DOI: 10.1007/s13577-024-01052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/25/2024] [Indexed: 03/20/2024]
Abstract
Due to aging populations and changes in lifestyle, cardiovascular diseases including cardiomyopathy, hypertension, and atherosclerosis, are the leading causes of death worldwide. The heart is a complicated organ composed of multicellular types, including cardiomyocytes, fibroblasts, endothelial cells, vascular smooth muscle cells, and immune cells. Cellular specialization and complex interplay between different cell types are crucial for the cardiac tissue homeostasis and coordinated function of the heart. Mounting studies have demonstrated that dysfunctional cells and disordered cardiac microenvironment are closely associated with the pathogenesis of various cardiovascular diseases. In this paper, we discuss the composition and the homeostasis of cardiac tissues, and focus on the role of cardiac environment and underlying molecular mechanisms in various cardiovascular diseases. Besides, we elucidate the novel treatment for cardiovascular diseases, including stem cell therapy and targeted therapy. Clarification of these issues may provide novel insights into the prevention and potential targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Jiayu Yao
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yuejun Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yuqing Huang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Xingjuan Shi
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
| |
Collapse
|
35
|
Koletsos N, Lazaridis A, Triantafyllou A, Anyfanti P, Lamprou S, Stoimeni A, Papadopoulos NG, Koravou EE, Gkaliagkousi E. Accumulation of Microvascular Target Organ Damage in Systemic Lupus Erythematosus Patients Is Associated with Increased Cardiovascular Risk. J Clin Med 2024; 13:2140. [PMID: 38610905 PMCID: PMC11012611 DOI: 10.3390/jcm13072140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Background: Systemic lupus erythematosus (SLE) is a prototype autoimmune disease associated with increased cardiovascular (CV) burden. Besides increased arterial stiffness and subclinical atherosclerosis, microvascular dysfunction is considered an important component in the pathophysiology of CV disease. However, there is a lack of data regarding the effect of multiple target organ damage (TOD) on CV health. Objectives: This study aimed to evaluate (i) the presence of microvascular changes in SLE in various vascular beds, (ii) the possible associations between the accumulation of microvascular TOD and CV risk and (iii) whether Galectin-3 represents a predictor of combined microvascular TOD. Methods: Participants underwent (i) evaluation of skin microvascular perfusion (laser speckle contrast analysis), (ii) fundoscopy (non-mydriatic fundus camera), (iii) indirect assessment of myocardial perfusion (subendocardial viability ratio) and (iv) determination of urine albumin-to-creatinine ratio (UACR). CV risk was calculated using the QResearch Risk Estimator version 3 (QRISK3). Serum Galectin-3 levels were determined. Results: Forty-seven SLE patients and fifty controls were studied. SLE patients demonstrated impaired skin microvascular reactivity (160.2 ± 41.0 vs. 203.6 ± 40.1%), retinal arteriolar narrowing (88.1 ± 11.1 vs. 94.6 ± 13.5 μm) and higher UACR levels compared to controls. Furthermore, SLE individuals had significantly higher Galectin-3 levels [21.5(6.1) vs. 6.6(6.6) ng/dL], QRISK3 scores [7.0(8.6) vs. 1.3(3.6)%] and a greater chance for microvascular dysfunction. In the SLE group, patients with multiple TOD exhibited higher QRISK3. In the multivariate analysis, the accumulation of TOD correlated with disease activity and Galectin-3 (p < 0.05). Conclusions: Our study showed for the first time that SLE patients exhibit a greater number of cases of TOD. The accumulation of TOD was associated with increased CV risk. Clinicians dealing with SLE should be aware and seek microvascular alterations.
Collapse
Affiliation(s)
- Nikolaos Koletsos
- 3rd Department of Internal Medicine, Papageorgiou General Hospital, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece; (A.L.); (A.T.); (S.L.); (A.S.); (E.G.)
| | - Antonios Lazaridis
- 3rd Department of Internal Medicine, Papageorgiou General Hospital, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece; (A.L.); (A.T.); (S.L.); (A.S.); (E.G.)
| | - Areti Triantafyllou
- 3rd Department of Internal Medicine, Papageorgiou General Hospital, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece; (A.L.); (A.T.); (S.L.); (A.S.); (E.G.)
| | - Panagiota Anyfanti
- Second Medical Department, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Stamatina Lamprou
- 3rd Department of Internal Medicine, Papageorgiou General Hospital, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece; (A.L.); (A.T.); (S.L.); (A.S.); (E.G.)
| | - Anastasia Stoimeni
- 3rd Department of Internal Medicine, Papageorgiou General Hospital, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece; (A.L.); (A.T.); (S.L.); (A.S.); (E.G.)
| | | | | | - Eugenia Gkaliagkousi
- 3rd Department of Internal Medicine, Papageorgiou General Hospital, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece; (A.L.); (A.T.); (S.L.); (A.S.); (E.G.)
| |
Collapse
|
36
|
Chen YJ, Chou CY, Er TK. Correlations of sST2 and Gal-3 with Cardiothoracic Ratio in Patients with Chronic Kidney Disease. Biomedicines 2024; 12:791. [PMID: 38672149 PMCID: PMC11048335 DOI: 10.3390/biomedicines12040791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic kidney disease (CKD) frequently correlates with cardiovascular complications. Soluble suppression of tumorigenicity 2 (sST2) and Galectin-3 (Gal-3) are emerging as cardiac markers with potential relevance in cardiovascular risk prediction. The cardiothoracic ratio (CTR), a metric easily obtainable from chest radiographs, has traditionally been used to assess cardiac size and the potential for cardiomegaly. Understanding the correlation between these cardiac markers and the cardiothoracic ratio (CTR) could provide valuable insights into the cardiovascular prognosis of CKD patients. This study aimed to explore the relationship between sST2, Gal-3, and the CTR in individuals with CKD. Plasma concentrations of sST2 and Gal-3 were assessed in a cohort of 123 CKD patients by enzyme-linked immunosorbent assay (ELISA). On a posterior-to-anterior chest X-ray view, the CTR was determined by comparing the widths of the heart to that of the thorax. The mean concentration of sST2 in the study participants ranged from 775.4 to 4475.6 pg/mL, and the mean concentration of Gal-3 ranged from 4.7 to 9796.0 ng/mL. Significant positive correlations were observed between sST2 and the CTR (r = 0.291, p < 0.001) and between Gal-3 and the CTR (r = 0.230, p < 0.01). Our findings indicate that elevated levels of sST2 and Gal-3 are associated with an increased CTR in CKD patients. This relationship may enable better cardiovascular risk evaluation for CKD patients. Further studies are warranted to explore the clinical implications of these associations.
Collapse
Affiliation(s)
- Ying-Ju Chen
- Division of Laboratory Medicine, Asia University Hospital, Asia University, Taichung 41354, Taiwan
| | - Che-Yi Chou
- Division of Nephrology, Asia University, Taichung 41354, Taiwan
| | - Tze-Kiong Er
- Division of Laboratory Medicine, Asia University Hospital, Asia University, Taichung 41354, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan
- Department of Nursing, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
37
|
Chatterjee N, Komaravolu RK, Durant CP, Wu R, McSkimming C, Drago F, Kumar S, Valentin-Guillama G, Miller YI, McNamara CA, Ley K, Taylor A, Alimadadi A, Hedrick CC. Single Cell High Dimensional Analysis of Human Peripheral Blood Mononuclear Cells Reveals Unique Intermediate Monocyte Subsets Associated with Sex Differences in Coronary Artery Disease. Int J Mol Sci 2024; 25:2894. [PMID: 38474140 PMCID: PMC10932111 DOI: 10.3390/ijms25052894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Monocytes are associated with human cardiovascular disease progression. Monocytes are segregated into three major subsets: classical (cMo), intermediate (iMo), and nonclassical (nMo). Recent studies have identified heterogeneity within each of these main monocyte classes, yet the extent to which these subsets contribute to heart disease progression is not known. Peripheral blood mononuclear cells (PBMC) were obtained from 61 human subjects within the Coronary Assessment of Virginia (CAVA) Cohort. Coronary atherosclerosis severity was quantified using the Gensini Score (GS). We employed high-dimensional single-cell transcriptome and protein methods to define how human monocytes differ in subjects with low to severe coronary artery disease. We analyzed 487 immune-related genes and 49 surface proteins at the single-cell level using Antibody-Seq (Ab-Seq). We identified six subsets of myeloid cells (cMo, iMo, nMo, plasmacytoid DC, classical DC, and DC3) at the single-cell level based on surface proteins, and we associated these subsets with coronary artery disease (CAD) incidence based on Gensini score (GS) in each subject. Only frequencies of iMo were associated with high CAD (GS > 32), adj.p = 0.024. Spearman correlation analysis with GS from each subject revealed a positive correlation with iMo frequencies (r = 0.314, p = 0.014) and further showed a robust sex-dependent positive correlation in female subjects (r = 0.663, p = 0.004). cMo frequencies did not correlate with CAD severity. Key gene pathways differed in iMo among low and high CAD subjects and between males and females. Further single-cell analysis of iMo revealed three iMo subsets in human PBMC, distinguished by the expression of HLA-DR, CXCR3, and CD206. We found that the frequency of immunoregulatory iMo_HLA-DR+CXCR3+CD206+ was associated with CAD severity (adj.p = 0.006). The immunoregulatory iMo subset positively correlated with GS in both females (r = 0.660, p = 0.004) and males (r = 0.315, p = 0.037). Cell interaction analyses identified strong interactions of iMo with CD4+ effector/memory T cells and Tregs from the same subjects. This study shows the importance of iMo in CAD progression and suggests that iMo may have important functional roles in modulating CAD risk, particularly among females.
Collapse
Affiliation(s)
- Nandini Chatterjee
- La Jolla Institute of Immunology, La Jolla, CA 92037, USA; (N.C.); (K.L.)
| | - Ravi K. Komaravolu
- Department of Medicine, Immunology Center of Georgia, Augusta University, Augusta, GA 30912, USA; (R.K.K.)
| | | | - Runpei Wu
- La Jolla Institute of Immunology, La Jolla, CA 92037, USA; (N.C.); (K.L.)
| | - Chantel McSkimming
- Beirne Carter Immunology Center, University of Virginia, Charlottesville, VA 22904, USA (A.T.)
| | - Fabrizio Drago
- Beirne Carter Immunology Center, University of Virginia, Charlottesville, VA 22904, USA (A.T.)
| | - Sunil Kumar
- Department of Medicine, Immunology Center of Georgia, Augusta University, Augusta, GA 30912, USA; (R.K.K.)
| | - Gabriel Valentin-Guillama
- Department of Medicine, Immunology Center of Georgia, Augusta University, Augusta, GA 30912, USA; (R.K.K.)
| | - Yury I. Miller
- Division of Endocrinology, University of California San Diego, La Jolla, CA 92093, USA
| | - Coleen A. McNamara
- Beirne Carter Immunology Center, University of Virginia, Charlottesville, VA 22904, USA (A.T.)
| | - Klaus Ley
- La Jolla Institute of Immunology, La Jolla, CA 92037, USA; (N.C.); (K.L.)
- Department of Medicine, Immunology Center of Georgia, Augusta University, Augusta, GA 30912, USA; (R.K.K.)
| | - Angela Taylor
- Beirne Carter Immunology Center, University of Virginia, Charlottesville, VA 22904, USA (A.T.)
| | - Ahmad Alimadadi
- La Jolla Institute of Immunology, La Jolla, CA 92037, USA; (N.C.); (K.L.)
- Department of Medicine, Immunology Center of Georgia, Augusta University, Augusta, GA 30912, USA; (R.K.K.)
| | - Catherine C. Hedrick
- La Jolla Institute of Immunology, La Jolla, CA 92037, USA; (N.C.); (K.L.)
- Department of Medicine, Immunology Center of Georgia, Augusta University, Augusta, GA 30912, USA; (R.K.K.)
| |
Collapse
|
38
|
Chen L, Cai X, Shao L, Wang Y, Hong L, Zhan Y. Sirtuin 2 Exerts Regulatory Functions on Radiation-Induced Myocardial Fibrosis in Mice by Mediating H3K27 Acetylation of Galectin-3 Promoter. ACTA CARDIOLOGICA SINICA 2024; 40:214-224. [PMID: 38532816 PMCID: PMC10961639 DOI: 10.6515/acs.202403_40(2).20231026b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/26/2023] [Indexed: 03/28/2024]
Abstract
Background Sirtuin 2 (SIRT2) and galectin-3 have been shown to protect the heart against fibrosis. However, their impacts on radiation-induced myocardial fibrosis (RIMF) remain to be elucidated. To deepen this understanding, the current study sought to explore the effects of SIRT2 and galectin-3 on RIMF and the underlying mechanisms. Methods Galectin-3 knockout mice were obtained, and a radiation-induced heart damage (RIHD) mouse model was induced by local radiation exposure to the heart. Lentivirus transfection was then performed, and heart function, fibrosis of heart tissues, and levels of SIRT2, galectin-3, and fibrosis-related markers collagen type-I/-III and matrix metalloproteinase (MMP)2/MMP9 were respectively assessed by echocardiography, hematoxylin-eosin and Masson staining, reverse transcription-quantitative polymerase chain reaction, Western blot, and immunofluorescence staining. Additionally, Western blot and chromatin immunoprecipitation were used to test H3K27 acetylation levels and the binding of H3K27ac to galectin-3, respectively. Results After radiation exposure, heart tissues from the galectin-3 knockout mice had a smaller fibrotic area compared to normal mice, with reduced expression levels of collagen type-I/-III and MMP2/MMP9. SIRT2 was down-regulated and galectin-3 was up-regulated after RIHD treatment. The histone deacetylase inhibitor sirtinol promoted galectin-3 expression and H3K27 acetylation in a time-dependent manner, and increased H3K27ac enrichment in the galectin-3 promoter. Overexpression of SIRT2 down-regulated H3K27ac, collagen type-I/-III, and MMP2/MMP9 expression levels, and reduced the fibrotic area in mouse heart tissues. However, these effects were reversed by the additional overexpression of galectin-3. Conclusions SIRT2 facilitates deacetylation of H3K27 to inhibit galectin-3 transcription, thus ameliorating RIMF in mice.
Collapse
Affiliation(s)
- Liyan Chen
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Xinyong Cai
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Liang Shao
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Yunxia Wang
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Lang Hong
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Yuliang Zhan
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
39
|
Elliott W, Tsung AJ, Guda MR, Velpula KK. Galectin inhibitors and nanoparticles as a novel therapeutic strategy for glioblastoma multiforme. Am J Cancer Res 2024; 14:774-795. [PMID: 38455415 PMCID: PMC10915327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/11/2024] [Indexed: 03/09/2024] Open
Abstract
Over the past two decades, the gold standard of glioblastoma multiforme (GBM) treatment is unchanged and adjunctive therapy has offered little to prolong both quality and quantity of life. To improve pharmacotherapy for GBM, galectins are being studied provided their positive correlation with the malignancy and disease severity. Despite the use of galectin inhibitors and literature displaying the ability of the lectin proteins to decrease tumor burden and decrease mortality within various malignancies, galectin inhibitors have not been studied for GBM therapy. Interestingly, anti-galectin siRNA delivered in nanoparticle capsules, assisting in blood brain barrier penetrance, is well studied for GBM, and has demonstrated a remarkable ability to attenuate both galectin and tumor count. Provided that the two therapies have an analogous anti-galectin effect, it is hypothesized that galectin inhibitors encapsuled within nanoparticles will likely have a similar anti-galectin effect in GBM cells and further correlate to a repressed tumor burden.
Collapse
Affiliation(s)
- Willie Elliott
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL, USA
| | - Andrew J Tsung
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL, USA
- Department of Neurosurgery, University of Illinois College of MedicinePeoria, IL, USA
- Illinois Neurological InstitutePeoria, IL, USA
| | - Maheedhara R Guda
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL, USA
| | - Kiran K Velpula
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL, USA
- Department of Neurosurgery, University of Illinois College of MedicinePeoria, IL, USA
- Department of Pediatrics, University of Illinois College of MedicinePeoria, IL, USA
| |
Collapse
|
40
|
Yang G, Deng Y, Cao G, Liu C. Galectin-3 promotes fibrosis in ovarian endometriosis. PeerJ 2024; 12:e16922. [PMID: 38371379 PMCID: PMC10874174 DOI: 10.7717/peerj.16922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/19/2024] [Indexed: 02/20/2024] Open
Abstract
Objective This study aimed to investigate the potential role of galectin-3 (Gal-3) in the pathogenesis of fibrotic alterations in ovarian endometriosis (OVE). Methods In this study, we collected the ectopic endometrial tissues and eutopic endometrial tissues from 31 OVE patients treated by laparoscopy, and the eutopic endometrial tissues from 23 non-OVE patients with leiomyoma or other benign diseases were used as control. Hematoxylin and eosin (H&E) and Masson's trichrome staining were utilized for histopathological assessment. The primary normal endometrial stromal cells (NESC), ectopic endometrial stromal cells (ECSC), and eutopic endometrial stromal cells (EUSC) were isolated. Gal-3 overexpression plasmids (Gal-OE) and short hairpin RNA targeting Gal-3 (Gal-3-shRNA) were transfected into the immortalized human endometriotic cell line 12Z, respectively. RT-qPCR, Western blot analysis, and immunohistochemistry were used to detect the mRNA and protein expression levels of Gal-3, type I collagen (COL-1), connective tissue growth factor (CTGF) and α-smooth muscle actin (α-SMA), respectively. Results H&E and Masson staining showed that ovarian ectopic endometrium exhibited glandular hyperplasia, high columnar glandular epithelium, apical plasma secretion, more subnuclear vacuoles, and obvious fibrosis, compared with normal endometrium. The mRNA and protein levels of Gal-3 , CTGF, α-SMA, and COL-1 were all upregulated in the ectopic endometrial tissues of OVE patients compared to the eutopic endometrial tissues from OVE patients and non-OVE patients. Moreover, ECSC expressed higher levels of Gal-3, CTGF, α-SMA, and COL-1 than EUSC and NESC. Follow-up investigations demonstrated that the Gal-3 overexpression substantially increased fibrosis-related markers including CTGF, α-SMA, and COL-1 within the 12Z cell line. Conversely, Gal-3 knockdown showed the opposite effects. Conclusion Gal-3 promotes fibrosis in OVE, positioning it as a prospective therapeutic target for mitigating fibrosis in endometriosis.
Collapse
Affiliation(s)
- Guimin Yang
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Yupeng Deng
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Guangming Cao
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Chongdong Liu
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
41
|
Matthews ER, Johnson OD, Horn KJ, Gutiérrez JA, Powell SR, Ward MC. Anthracyclines induce cardiotoxicity through a shared gene expression response signature. PLoS Genet 2024; 20:e1011164. [PMID: 38416769 PMCID: PMC10927150 DOI: 10.1371/journal.pgen.1011164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/11/2024] [Accepted: 01/31/2024] [Indexed: 03/01/2024] Open
Abstract
TOP2 inhibitors (TOP2i) are effective drugs for breast cancer treatment. However, they can cause cardiotoxicity in some women. The most widely used TOP2i include anthracyclines (AC) Doxorubicin (DOX), Daunorubicin (DNR), Epirubicin (EPI), and the anthraquinone Mitoxantrone (MTX). It is unclear whether women would experience the same adverse effects from all drugs in this class, or if specific drugs would be preferable for certain individuals based on their cardiotoxicity risk profile. To investigate this, we studied the effects of treatment of DOX, DNR, EPI, MTX, and an unrelated monoclonal antibody Trastuzumab (TRZ) on iPSC-derived cardiomyocytes (iPSC-CMs) from six healthy females. All TOP2i induce cell death at concentrations observed in cancer patient serum, while TRZ does not. A sub-lethal dose of all TOP2i induces limited cellular stress but affects calcium handling, a function critical for cardiomyocyte contraction. TOP2i induce thousands of gene expression changes over time, giving rise to four distinct gene expression response signatures, denoted as TOP2i early-acute, early-sustained, and late response genes, and non-response genes. There is no drug- or AC-specific signature. TOP2i early response genes are enriched in chromatin regulators, which mediate AC sensitivity across breast cancer patients. However, there is increased transcriptional variability between individuals following AC treatments. To investigate potential genetic effects on response variability, we first identified a reported set of expression quantitative trait loci (eQTLs) uncovered following DOX treatment in iPSC-CMs. Indeed, DOX response eQTLs are enriched in genes that respond to all TOP2i. Next, we identified 38 genes in loci associated with AC toxicity by GWAS or TWAS. Two thirds of the genes that respond to at least one TOP2i, respond to all ACs with the same direction of effect. Our data demonstrate that TOP2i induce thousands of shared gene expression changes in cardiomyocytes, including genes near SNPs associated with inter-individual variation in response to DOX treatment and AC-induced cardiotoxicity.
Collapse
Affiliation(s)
- E. Renee Matthews
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Omar D. Johnson
- Biochemistry, Cellular and Molecular Biology Graduate Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kandace J. Horn
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - José A. Gutiérrez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Simon R. Powell
- Neuroscience Graduate Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Michelle C. Ward
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
42
|
Hőgye F, Farkas LB, Balogh ÁK, Szilágyi L, Alnukari S, Bajza I, Borbás A, Fehér K, Illyés TZ, Timári I. Saturation Transfer Difference NMR and Molecular Docking Interaction Study of Aralkyl-Thiodigalactosides as Potential Inhibitors of the Human-Galectin-3 Protein. Int J Mol Sci 2024; 25:1742. [PMID: 38339036 PMCID: PMC10855533 DOI: 10.3390/ijms25031742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Human Galectin-3 (hGal-3) is a protein that selectively binds to β-galactosides and holds diverse roles in both normal and pathological circumstances. Therefore, targeting hGal-3 has become a vibrant area of research in the pharmaceutical chemistry. As a step towards the development of novel hGal-3 inhibitors, we synthesized and investigated derivatives of thiodigalactoside (TDG) modified with different aromatic substituents. Specifically, we describe a high-yielding synthetic route of thiodigalactoside (TDG); an optimized procedure for the synthesis of the novel 3,3'-di-O-(quinoline-2-yl)methyl)-TDG and three other known, symmetric 3,3'-di-O-TDG derivatives ((naphthalene-2yl)methyl, benzyl, (7-methoxy-2H-1-benzopyran-2-on-4-yl)methyl). In the present study, using competition Saturation Transfer Difference (STD) NMR spectroscopy, we determined the dissociation constant (Kd) of the former three TDG derivatives produced to characterize the strength of the interaction with the target protein (hGal-3). Based on the Kd values determined, the (naphthalen-2-yl)methyl, the (quinolin-2-yl)methyl and the benzyl derivatives bind to hGal-3 94, 30 and 24 times more strongly than TDG. Then, we studied the binding modes of the derivatives in silico by molecular docking calculations. Docking poses similar to the canonical binding modes of well-known hGal-3 inhibitors have been found. However, additional binding forces, cation-π interactions between the arginine residues in the binding pocket of the protein and the aromatic groups of the ligands, have been established as significant features. Our results offer a molecular-level understanding of the varying affinities observed among the synthesized thiodigalactoside derivatives, which can be a key aspect in the future development of more effective ligands of hGal-3.
Collapse
Affiliation(s)
- Fanni Hőgye
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (F.H.); (L.B.F.); (L.S.)
| | - László Bence Farkas
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (F.H.); (L.B.F.); (L.S.)
- HUN-REN-UD Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Á.K.B.); (S.A.); (A.B.); (K.F.)
| | - Álex Kálmán Balogh
- HUN-REN-UD Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Á.K.B.); (S.A.); (A.B.); (K.F.)
| | - László Szilágyi
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (F.H.); (L.B.F.); (L.S.)
| | - Samar Alnukari
- HUN-REN-UD Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Á.K.B.); (S.A.); (A.B.); (K.F.)
| | - István Bajza
- GlycOptim Kft., Egyetem tér 1, H-4032 Debrecen, Hungary;
| | - Anikó Borbás
- HUN-REN-UD Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Á.K.B.); (S.A.); (A.B.); (K.F.)
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Krisztina Fehér
- HUN-REN-UD Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Á.K.B.); (S.A.); (A.B.); (K.F.)
| | - Tünde Zita Illyés
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (F.H.); (L.B.F.); (L.S.)
| | - István Timári
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (F.H.); (L.B.F.); (L.S.)
- HUN-REN-UD Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Á.K.B.); (S.A.); (A.B.); (K.F.)
| |
Collapse
|
43
|
Ahmad S, Kumar R. An update of new/potential cardiovascular markers: a narrative review. Mol Biol Rep 2024; 51:179. [PMID: 38252393 DOI: 10.1007/s11033-023-08978-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/07/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Cardiovascular and their associated disease (CVD) is a leading cause of death worldwide, in developed and developing countries, and its prevalence has increased over the past few decades, due to changes in the lifestyle of people. Biomarkers are important tools for diagnosing, analyzing, and providing evidence of pathological conditions of CVD and their associated diseases. METHODS This study reviews historical cardiovascular biomarkers used to diagnose various diseases, their uses, and limitations, as well as the importance of new and emerging biomarkers. CONCLUSION sST2, GDF-15, CD-40, IL-6, and Micro-RNA. Initial studies of the future of cardiac biomarkers are promising, but more research is needed to demonstrate that they are more effective biomarkers of risk factors for CVD development. They also lack the analytical foundation needed for adoption in the medical industry. It is also necessary to determine whether these biomarkers can be used for diagnosis.
Collapse
Affiliation(s)
- Sharique Ahmad
- Department of Pathology, Era's Lucknow Medical College & Hospital, Era University, Lucknow, India
| | - Raushan Kumar
- Department of Pathology, Era's Lucknow Medical College & Hospital, Era University, Lucknow, India.
| |
Collapse
|
44
|
Sotoudeheian M. Galectin-3 and Severity of Liver Fibrosis in Metabolic Dysfunction-Associated Fatty Liver Disease. Protein Pept Lett 2024; 31:290-304. [PMID: 38715329 DOI: 10.2174/0109298665301698240404061300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/02/2024] [Accepted: 03/21/2024] [Indexed: 08/13/2024]
Abstract
Metabolic dysfunction-associated Fatty Liver Disease (MAFLD) is a chronic liver disease characterized by the accumulation of fat in the liver and hepatic steatosis, which can progress to critical conditions, including Metabolic dysfunction-associated Steatohepatitis (MASH), liver fibrosis, hepatic cirrhosis, and hepatocellular carcinoma. Galectin-3, a member of the galectin family of proteins, has been involved in cascades that are responsible for the pathogenesis and progression of liver fibrosis in MAFLD. This review summarizes the present understanding of the role of galectin-3 in the severity of MAFLD and its associated liver fibrosis. The article assesses the underlying role of galectin-3-mediated fibrogenesis, including the triggering of hepatic stellate cells, the regulation of extracellular degradation, and the modulation of immune reactions and responses. It also highlights the assessments of the potential diagnostic and therapeutic implications of galectin-3 in liver fibrosis during MAFLD. Overall, this review provides insights into the multifaceted interaction between galectin-3 and liver fibrosis in MAFLD, which could lead to the development of novel strategies for diagnosis and treatment of this prevalent liver disease.
Collapse
|
45
|
Wang Y. Immune-related biomarkers in myocardial infarction; diagnostic/prognostic value and therapeutic potential. J Biochem Mol Toxicol 2023; 37:e23489. [PMID: 37574886 DOI: 10.1002/jbt.23489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/24/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
The incidence of myocardial infarction (MI) is increasing worldwide on an annual basis. The incorporation of circulating biomarkers, along with electrocardiography, echocardiography, coronary angiograms, and other diagnostic techniques, is essential in the evaluation, prediction, and therapeutic efficacy assessment of patients afflicted with MI. Biomarker evaluation has been employed in the diagnosis of MI for over five decades. Further biomarker research can be carried out as newer biomarkers have been discovered in pathways such as inflammatory response, neurohormonal stimulation, or myocardial stress that initiate significantly earlier than myocyte necrosis and the diagnostic establishment of cardiac troponins. The assessment of biomarkers for MI is on the brink of a significant transformation due to advancements in comprehending the intricate pathophysiology of the condition. This has led to a pursuit of innovative biomarkers that could potentially overcome the limitations of current biomarkers. For individuals with a high-risk profile, this may facilitate tailoring of appropriate treatment. This review places emphasis on a diverse array of biomarkers that have the potential to offer diagnostic and prognostic information, as well as the latest clinical and preclinical evidence that is driving theoretical advancements in cardiovascular immunotherapy.
Collapse
Affiliation(s)
- Yanhai Wang
- Clinical Laboratory Department, Hohhot First Hospital, Hohhot, China
| |
Collapse
|
46
|
Procyk G, Czapla A, Jałocha K, Tymińska A, Grabowski M, Gąsecka A. The role of galectin-3 in atrial fibrillation. J Mol Med (Berl) 2023; 101:1481-1492. [PMID: 37773454 PMCID: PMC10698102 DOI: 10.1007/s00109-023-02378-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023]
Abstract
Numerous risk factors for atrial fibrillation (AF) progression have been identified. However, the biomarkers mentioned in the guidelines do not have any clinically relevant predictive value. Some research groups investigated the potential utility of galectin-3 (gal-3) as a diagnostic, prognostic, and predictive biomarker in AF. In this review, we have thoroughly summarized the current data on the role of gal-3 in AF based on the original research in this field. Patients suffering from AF present with increased levels of gal-3. The concentration of gal-3 differs between patients with AF depending on the type of AF - it is higher in patients with persistent AF than in patients with paroxysmal AF. Multiple studies investigating the reappearance of AF in patients who underwent ablation have shown that gal-3 is a promising biomarker to predict the outcome of this therapy. Patients with increased levels of gal-3 are at higher risk of AF recurrence. Although the research considered in this work addressed many aspects of the role of gal-3 in AF, most of it has been conducted on a small group of patients. Therefore, further research and extensive clinical trials confirming described findings are highly warranted.
Collapse
Affiliation(s)
- Grzegorz Procyk
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097, Warsaw, Poland.
| | - Aleksandra Czapla
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097, Warsaw, Poland
| | - Kamila Jałocha
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097, Warsaw, Poland
| | - Agata Tymińska
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097, Warsaw, Poland
| | - Marcin Grabowski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097, Warsaw, Poland
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097, Warsaw, Poland
| |
Collapse
|
47
|
Meira C, Silva J, Quadros H, Silva L, Barreto B, Rocha V, Bomfim L, Santos E, Soares M. Galectins in Protozoan Parasitic Diseases: Potential Applications in Diagnostics and Therapeutics. Cells 2023; 12:2671. [PMID: 38067100 PMCID: PMC10705098 DOI: 10.3390/cells12232671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Neglected tropical diseases (NTDs) constitute a group of diseases that generally develop in tropical or subtropical climatic conditions and are related to poverty. Within the spectrum of NTDs, diseases caused by protozoa such as malaria, Chagas disease, and leishmaniasis exhibit elevated mortality rates, thereby constituting a substantial public health concern. Beyond their protozoan etiology, these NTDs share other similarities, such as the challenge of control and the lack of affordable, safe, and effective drugs. In view of the above, the need to explore novel diagnostic predictors and therapeutic targets for the treatment of these parasitic diseases is evident. In this context, galectins are attractive because they are a set of lectins bound to β-galactosides that play key roles in a variety of cellular processes, including host-parasite interaction such as adhesion and entry of parasites into the host cells, and participate in antiparasitic immunity in either a stimulatory or inhibitory manner, especially the galectins-1, -2, -3, and -9. These functions bestow upon galectins significant therapeutic prospects in the context of managing and diagnosing NTDs. Thus, the present review aims to elucidate the potential role of galectins in the diagnosis and treatment of malaria, leishmaniasis, and Chagas disease.
Collapse
Affiliation(s)
- Cássio Meira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 21040-900, Bahia, Brazil; (J.S.); (H.Q.); (L.S.); (B.B.); (V.R.); (L.B.)
- SENAI Institute of Innovation in Health Advanced Systems (ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Bahia, Brazil;
| | - Jaqueline Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 21040-900, Bahia, Brazil; (J.S.); (H.Q.); (L.S.); (B.B.); (V.R.); (L.B.)
| | - Helenita Quadros
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 21040-900, Bahia, Brazil; (J.S.); (H.Q.); (L.S.); (B.B.); (V.R.); (L.B.)
| | - Laís Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 21040-900, Bahia, Brazil; (J.S.); (H.Q.); (L.S.); (B.B.); (V.R.); (L.B.)
| | - Breno Barreto
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 21040-900, Bahia, Brazil; (J.S.); (H.Q.); (L.S.); (B.B.); (V.R.); (L.B.)
- SENAI Institute of Innovation in Health Advanced Systems (ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Bahia, Brazil;
- Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador 40170-110, Bahia, Brazil
| | - Vinícius Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 21040-900, Bahia, Brazil; (J.S.); (H.Q.); (L.S.); (B.B.); (V.R.); (L.B.)
- SENAI Institute of Innovation in Health Advanced Systems (ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Bahia, Brazil;
| | - Larissa Bomfim
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 21040-900, Bahia, Brazil; (J.S.); (H.Q.); (L.S.); (B.B.); (V.R.); (L.B.)
| | - Emanuelle Santos
- SENAI Institute of Innovation in Health Advanced Systems (ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Bahia, Brazil;
| | - Milena Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 21040-900, Bahia, Brazil; (J.S.); (H.Q.); (L.S.); (B.B.); (V.R.); (L.B.)
- SENAI Institute of Innovation in Health Advanced Systems (ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Bahia, Brazil;
| |
Collapse
|
48
|
Hu Z, Ding L, Yao Y. Atrial fibrillation: mechanism and clinical management. Chin Med J (Engl) 2023; 136:2668-2676. [PMID: 37914663 PMCID: PMC10684204 DOI: 10.1097/cm9.0000000000002906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Indexed: 11/03/2023] Open
Abstract
ABSTRACT Atrial fibrillation (AF), the most common sustained arrhythmia, is associated with a range of symptoms, including palpitations, cognitive impairment, systemic embolism, and increased mortality. It places a significant burden on healthcare systems worldwide. Despite decades of research, the precise mechanisms underlying AF remain elusive. Current understanding suggests that factors like stretch-induced fibrosis, epicardial adipose tissue (EAT), chronic inflammation, autonomic nervous system (ANS) imbalances, and genetic mutations all play significant roles in its development. In recent years, the advent of wearable devices has revolutionized AF diagnosis, enabling timely detection and monitoring. However, balancing early diagnosis with efficient resource utilization presents new challenges for healthcare providers. AF management primarily focuses on stroke prevention and symptom alleviation. Patients at high risk of thromboembolism require anticoagulation therapy, and emerging pipeline drugs, particularly factor XI inhibitors, hold promise for achieving effective anticoagulation with reduced bleeding risks. The scope of indications for catheter ablation in AF has expanded significantly. Pulsed field ablation, as a novel energy source, shows potential for improving success rates while ensuring safety. This review integrates existing knowledge and ongoing research on AF pathophysiology and clinical management, with emphasis on diagnostic devices, next-generation anticoagulants, drugs targeting underlying mechanisms, and interventional therapies. It offers a comprehensive mosaic of AF, providing insights into its complexities.
Collapse
Affiliation(s)
| | | | - Yan Yao
- Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
49
|
Gierten J, Welz B, Fitzgerald T, Thumberger T, Hummel O, Leger A, Weber P, Hassel D, Hübner N, Birney E, Wittbrodt J. Natural genetic variation quantitatively regulates heart rate and dimension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555906. [PMID: 37693611 PMCID: PMC10491305 DOI: 10.1101/2023.09.01.555906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The polygenic contribution to heart development and function along the health-disease continuum remains unresolved. To gain insight into the genetic basis of quantitative cardiac phenotypes, we utilize highly inbred Japanese rice fish models, Oryzias latipes, and Oryzias sakaizumii. Employing automated quantification of embryonic heart rates as core metric, we profiled phenotype variability across five inbred strains. We observed maximal phenotypic contrast between individuals of the HO5 and the HdrR strain. HO5 showed elevated heart rates associated with embryonic ventricular hypoplasia and impaired adult cardiac function. This contrast served as the basis for genome-wide mapping. In a segregation population of 1192 HO5 x HdrR F2 embryos, we mapped 59 loci (173 genes) associated with heart rate. Experimental validation of the top 12 candidate genes in loss-of-function models revealed their causal and distinct impact on heart rate, development, ventricle size, and arrhythmia. Our study uncovers new diagnostic and therapeutic targets for developmental and electrophysiological cardiac diseases and provides a novel scalable approach to investigate the intricate genetic architecture of the vertebrate heart.
Collapse
Affiliation(s)
- Jakob Gierten
- Centre for Organismal Studies (COS), Heidelberg University; Heidelberg, 69120, Germany
- Department of Pediatric Cardiology, Heidelberg University Hospital; Heidelberg, 69120, Germany
- German Centre for Cardiovascular Research (DZHK); Partner Site Heidelberg/Mannheim, Germany
| | - Bettina Welz
- Centre for Organismal Studies (COS), Heidelberg University; Heidelberg, 69120, Germany
- German Centre for Cardiovascular Research (DZHK); Partner Site Heidelberg/Mannheim, Germany
- Heidelberg Biosciences International Graduate School (HBIGS), Heidelberg University; Heidelberg, 69120, Germany
| | - Tomas Fitzgerald
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI); Cambridge, CB10 1SD, UK
| | - Thomas Thumberger
- Centre for Organismal Studies (COS), Heidelberg University; Heidelberg, 69120, Germany
| | - Oliver Hummel
- Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC); Berlin, 13125, Germany
| | - Adrien Leger
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI); Cambridge, CB10 1SD, UK
| | - Philipp Weber
- Department of Cardiology, Heidelberg University Hospital; Heidelberg, 69120, Germany
| | - David Hassel
- German Centre for Cardiovascular Research (DZHK); Partner Site Heidelberg/Mannheim, Germany
- Department of Cardiology, Heidelberg University Hospital; Heidelberg, 69120, Germany
| | - Norbert Hübner
- Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC); Berlin, 13125, Germany
- Charité-Universitätsmedizin Berlin; Berlin, 10117, Germany
- German Centre for Cardiovascular Research (DZHK); Partner Site Berlin, Germany
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI); Cambridge, CB10 1SD, UK
| | - Joachim Wittbrodt
- Centre for Organismal Studies (COS), Heidelberg University; Heidelberg, 69120, Germany
- German Centre for Cardiovascular Research (DZHK); Partner Site Heidelberg/Mannheim, Germany
| |
Collapse
|
50
|
Junho CVC, Frisch J, Soppert J, Wollenhaupt J, Noels H. Cardiomyopathy in chronic kidney disease: clinical features, biomarkers and the contribution of murine models in understanding pathophysiology. Clin Kidney J 2023; 16:1786-1803. [PMID: 37915935 PMCID: PMC10616472 DOI: 10.1093/ckj/sfad085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 11/03/2023] Open
Abstract
The cardiorenal syndrome (CRS) is described as a multi-organ disease encompassing bidirectionally heart and kidney. In CRS type 4, chronic kidney disease (CKD) leads to cardiac injury. Different pathological mechanisms have been identified to contribute to the establishment of CKD-induced cardiomyopathy, including a neurohormonal dysregulation, disturbances in the mineral metabolism and an accumulation of uremic toxins, playing an important role in the development of inflammation and oxidative stress. Combined, this leads to cardiac dysfunction and cardiac pathophysiological and morphological changes, like left ventricular hypertrophy, myocardial fibrosis and cardiac electrical changes. Given that around 80% of dialysis patients suffer from uremic cardiomyopathy, the study of cardiac outcomes in CKD is clinically highly relevant. The present review summarizes clinical features and biomarkers of CKD-induced cardiomyopathy and discusses underlying pathophysiological mechanisms recently uncovered in the literature. It discloses how animal models have contributed to the understanding of pathological kidney-heart crosstalk, but also provides insights into the variability in observed effects of CKD on the heart in different CKD mouse models, covering both "single hit" as well as "multifactorial hit" models. Overall, this review aims to support research progress in the field of CKD-induced cardiomyopathy.
Collapse
Affiliation(s)
| | - Janina Frisch
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, Center for Human and Molecular Biology, Homburg/Saar, Germany
| | - Josefin Soppert
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
- Department of Anesthesiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Julia Wollenhaupt
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|