1
|
Dev W, Sultana F, Li H, Hu D, Peng Z, He S, Zhang H, Waqas M, Geng X, Du X. Molecular Mechanisms of Cold Stress Response in Cotton: Transcriptional Reprogramming and Genetic Strategies for Tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025:112390. [PMID: 39827949 DOI: 10.1016/j.plantsci.2025.112390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Cold stress has a huge impact on the growth and development of cotton, presenting a significant challenge to its productivity. Comprehending the complex molecular mechanisms that control the reaction to CS is necessary for developing tactics to improve cold tolerance in cotton. This review paper explores how cotton responds to cold stress by regulating gene expression, focusing on both activating and repressing specific genes. We investigate the essential roles that transcription factors and regulatory elements have in responding to cold stress and controlling gene expression to counteract the negative impacts of low temperatures. Through a comprehensive examination of new publications, we clarify the intricacies of transcriptional reprogramming induced by cold stress, emphasizing the connections between different regulatory elements and signaling pathways. Additionally, we investigate the consecutive effects of cold stress on cotton yield, highlighting the physiological and developmental disturbances resulting from extended periods of low temperatures. The knowledge obtained from this assessment allows for a more profound comprehension of the molecular mechanisms that regulate cold stress responses, suggesting potential paths for future research to enhance cold tolerance in cotton by utilizing targeted genetic modifications and biotechnological interventions.
Collapse
Affiliation(s)
- Washu Dev
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fahmida Sultana
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hongge Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 57202, China
| | - Daowu Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 57202, China
| | - Zhen Peng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shoupu He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Haobo Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Muhammad Waqas
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaoli Geng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiongming Du
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 57202, China.
| |
Collapse
|
2
|
Bulgakov VP. Chromatin modifications and memory in regulation of stress-related polyphenols: finding new ways to control flavonoid biosynthesis. Crit Rev Biotechnol 2024; 44:1478-1494. [PMID: 38697923 DOI: 10.1080/07388551.2024.2336529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/10/2024] [Accepted: 03/18/2024] [Indexed: 05/05/2024]
Abstract
The influence of epigenetic factors on plant defense responses and the balance between growth and defense is becoming a central area in plant biology. It is believed that the biosynthesis of secondary metabolites can be regulated by epigenetic factors, but this is not associated with the formation of a "memory" to the previous biosynthetic status. This review shows that some epigenetic effects can result in epigenetic memory, which opens up new areas of research in secondary metabolites, in particular flavonoids. Plant-controlled chromatin modifications can lead to the generation of stress memory, a phenomenon through which information regarding past stress cues is retained, resulting in a modified response to recurring stress. How deeply are the mechanisms of chromatin modification and memory generation involved in the control of flavonoid biosynthesis? This article collects available information from the literature and interactome databases to address this issue. Visualization of the interaction of chromatin-modifying proteins with the flavonoid biosynthetic machinery is presented. Chromatin modifiers and "bookmarks" that may be involved in the regulation of flavonoid biosynthesis through memory have been identified. Through different mechanisms of chromatin modification, plants can harmonize flavonoid metabolism with: stress responses, developmental programs, light-dependent processes, flowering, and longevity programs. The available information points to the possibility of developing chromatin-modifying technologies to control flavonoid biosynthesis.
Collapse
Affiliation(s)
- Victor P Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
3
|
Bulgakov VP, Fialko AV, Yugay YA. Involvement of epigenetic factors in flavonoid accumulation during plant cold adaptation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109096. [PMID: 39250844 DOI: 10.1016/j.plaphy.2024.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Plant responses to cold stress include either induction of flavonoid biosynthesis as part of defense responses or initially elevated levels of these substances to mitigate sudden temperature fluctuations. The role of chromatin modifying factors and, in general, epigenetic variability in these processes is not entirely clear. In this work, we review the literature to establish the relationship between flavonoids, cold and chromatin modifications. We demonstrate the relationship between cold acclimation and flavonoid accumulation, and then describe the cold adaptation signaling pathways and their relationship with chromatin modifying factors. Particular attention was paid to the cold signaling module OST1-HOS1-ICE1 and the novel function of the E3 ubiquitin protein ligase HOS1 (a protein involved in chromatin modification during cold stress) in flavonoid regulation.
Collapse
Affiliation(s)
- Victor P Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok, 690022, Russia; Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, 5 Radio Str., Vladivostok, 690041, Russia.
| | - Alexandra V Fialko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok, 690022, Russia; Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, 5 Radio Str., Vladivostok, 690041, Russia
| | - Yulia A Yugay
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok, 690022, Russia
| |
Collapse
|
4
|
Raymond BB, Guenzi-Tiberi P, Maréchal E, Quarmby LM. Snow alga Sanguina aurantia as revealed through de novo genome assembly and annotation. G3 (BETHESDA, MD.) 2024; 14:jkae181. [PMID: 39093299 PMCID: PMC11457085 DOI: 10.1093/g3journal/jkae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 03/18/2024] [Accepted: 07/06/2024] [Indexed: 08/04/2024]
Abstract
To thrive on melting alpine and polar snow, some Chlorophytes produce an abundance of astaxanthin, causing red blooms, often dominated by genus Sanguina. The red cells have not been cultured, but we recently grew a green biciliate conspecific with Sanguina aurantia from a sample of watermelon snow. This culture provided source material for Oxford Nanopore Technology and Illumina sequencing. Our assembly pipeline exemplifies the value of a hybrid long- and short-read approach for the complexities of working with a culture grown from a field sample. Using bioinformatic tools, we separated assembled contigs into 2 genomic pools based on a difference in GC content (57.5 and 55.1%). We present the data as 2 assemblies of S. aurantia variants but explore other possibilities. High-throughput chromatin conformation capture analysis (Hi-C sequencing) was used to scaffold the assemblies into a 96-Mb genome designated as "A" and a 102-Mb genome designated as "B." Both assemblies are highly contiguous: genome A consists of 38 scaffolds with an N50 of 5.4 Mb, while genome B has 50 scaffolds with an N50 of 6.4 Mb. RNA sequencing was used to improve gene annotation.
Collapse
Affiliation(s)
- Breanna B Raymond
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BCBC V5A 1S6, Canada
| | - Pierre Guenzi-Tiberi
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Université Grenoble Alpes, IRIG, CEA Grenoble, 17 Avenue des Martyrs, 38000 Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Université Grenoble Alpes, IRIG, CEA Grenoble, 17 Avenue des Martyrs, 38000 Grenoble, France
| | - Lynne M Quarmby
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BCBC V5A 1S6, Canada
| |
Collapse
|
5
|
Boycheva I, Bonchev G, Manova V, Stoilov L, Vassileva V. How Histone Acetyltransferases Shape Plant Photomorphogenesis and UV Response. Int J Mol Sci 2024; 25:7851. [PMID: 39063093 PMCID: PMC11276938 DOI: 10.3390/ijms25147851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Higher plants have developed complex mechanisms to adapt to fluctuating environmental conditions with light playing a vital role in photosynthesis and influencing various developmental processes, including photomorphogenesis. Exposure to ultraviolet (UV) radiation can cause cellular damage, necessitating effective DNA repair mechanisms. Histone acetyltransferases (HATs) play a crucial role in regulating chromatin structure and gene expression, thereby contributing to the repair mechanisms. HATs facilitate chromatin relaxation, enabling transcriptional activation necessary for plant development and stress responses. The intricate relationship between HATs, light signaling pathways and chromatin dynamics has been increasingly understood, providing valuable insights into plant adaptability. This review explores the role of HATs in plant photomorphogenesis, chromatin remodeling and gene regulation, highlighting the importance of chromatin modifications in plant responses to light and various stressors. It emphasizes the need for further research on individual HAT family members and their interactions with other epigenetic factors. Advanced genomic approaches and genome-editing technologies offer promising avenues for enhancing crop resilience and productivity through targeted manipulation of HAT activities. Understanding these mechanisms is essential for developing strategies to improve plant growth and stress tolerance, contributing to sustainable agriculture in the face of a changing climate.
Collapse
Affiliation(s)
| | | | | | | | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.B.); (G.B.); (V.M.); (L.S.)
| |
Collapse
|
6
|
Jyoti TP, Chandel S, Singh R. Unveiling the epigenetic landscape of plants using flow cytometry approach. Cytometry A 2024; 105:231-241. [PMID: 38437027 DOI: 10.1002/cyto.a.24834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/12/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024]
Abstract
Plants are sessile creatures that have to adapt constantly changing environmental circumstances. Plants are subjected to a range of abiotic stressors as a result of unpredictable climate change. Understanding how stress-responsive genes are regulated can help us better understand how plants can adapt to changing environmental conditions. Epigenetic markers that dynamically change in response to stimuli, such as DNA methylation and histone modifications are known to regulate gene expression. Individual cells or particles' physical and/or chemical properties can be measured using the method known as flow cytometry. It may therefore be used to evaluate changes in DNA methylation, histone modifications, and other epigenetic markers, making it a potent tool for researching epigenetics in plants. We explore the use of flow cytometry as a technique for examining epigenetic traits in this thorough discussion. The separation of cell nuclei and their subsequent labeling with fluorescent antibodies, offering information on the epigenetic mechanisms in plants when utilizing flow cytometry. We also go through the use of high-throughput data analysis methods to unravel the complex epigenetic processes occurring inside plant systems.
Collapse
Affiliation(s)
- Thakur Prava Jyoti
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Shivani Chandel
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
7
|
Song Y, He J, Guo J, Xie Y, Ma Z, Liu Z, Niu C, Li X, Chu B, Tahir MM, Xu J, Ma F, Guan Q. The chromatin remodeller MdRAD5B enhances drought tolerance by coupling MdLHP1-mediated H3K27me3 in apple. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:617-634. [PMID: 37874929 PMCID: PMC10893944 DOI: 10.1111/pbi.14210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
RAD5B belongs to the Rad5/16-like group of the SNF2 family, which often functions in chromatin remodelling. However, whether RAD5B is involved in chromatin remodelling, histone modification, and drought stress tolerance is largely unclear. We identified a drought-inducible chromatin remodeler, MdRAD5B, which positively regulates apple drought tolerance. Transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) analysis showed that MdRAD5B affects the expression of 466 drought-responsive genes through its chromatin remodelling function in response to drought stress. In addition, MdRAD5B interacts with and degrades MdLHP1, a crucial regulator of histone H3 trimethylation at K27 (H3K27me3), through the ubiquitin-independent 20S proteasome. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis revealed that MdRAD5B modulates the H3K27me3 deposition of 615 genes in response to drought stress. Genetic interaction analysis showed that MdRAD5B mediates the H3K27me3 deposition of drought-responsive genes through MdLHP1, which causes their expression changes under drought stress. Our results unravelled a dual function of MdRAD5B in gene expression modulation in apple in response to drought, that is, via the regulation of chromatin remodelling and H3K27me3.
Collapse
Affiliation(s)
- Yi Song
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Junxing Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Yinpeng Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Ziqing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Zeyuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Baohua Chu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Muhammad Mobeen Tahir
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Jidi Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
- Shenzhen Research InstituteNorthwest A&F UniversityShenzhenChina
| |
Collapse
|
8
|
Abdulraheem MI, Xiong Y, Moshood AY, Cadenas-Pliego G, Zhang H, Hu J. Mechanisms of Plant Epigenetic Regulation in Response to Plant Stress: Recent Discoveries and Implications. PLANTS (BASEL, SWITZERLAND) 2024; 13:163. [PMID: 38256717 PMCID: PMC10820249 DOI: 10.3390/plants13020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Plant stress is a significant challenge that affects the development, growth, and productivity of plants and causes an adverse environmental condition that disrupts normal physiological processes and hampers plant survival. Epigenetic regulation is a crucial mechanism for plants to respond and adapt to stress. Several studies have investigated the role of DNA methylation (DM), non-coding RNAs, and histone modifications in plant stress responses. However, there are various limitations or challenges in translating the research findings into practical applications. Hence, this review delves into the recent recovery, implications, and applications of epigenetic regulation in response to plant stress. To better understand plant epigenetic regulation under stress, we reviewed recent studies published in the last 5-10 years that made significant contributions, and we analyzed the novel techniques and technologies that have advanced the field, such as next-generation sequencing and genome-wide profiling of epigenetic modifications. We emphasized the breakthrough findings that have uncovered specific genes or pathways and the potential implications of understanding plant epigenetic regulation in response to stress for agriculture, crop improvement, and environmental sustainability. Finally, we concluded that plant epigenetic regulation in response to stress holds immense significance in agriculture, and understanding its mechanisms in stress tolerance can revolutionize crop breeding and genetic engineering strategies, leading to the evolution of stress-tolerant crops and ensuring sustainable food production in the face of climate change and other environmental challenges. Future research in this field will continue to unveil the intricacies of epigenetic regulation and its potential applications in crop improvement.
Collapse
Affiliation(s)
- Mukhtar Iderawumi Abdulraheem
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China or (M.I.A.); (Y.X.); (A.Y.M.); (H.Z.)
- Henan International Joint Laboratory of Laser Technology in Agriculture Science, Zhengzhou 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Yani Xiong
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China or (M.I.A.); (Y.X.); (A.Y.M.); (H.Z.)
- Henan International Joint Laboratory of Laser Technology in Agriculture Science, Zhengzhou 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Abiodun Yusuff Moshood
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China or (M.I.A.); (Y.X.); (A.Y.M.); (H.Z.)
- Henan International Joint Laboratory of Laser Technology in Agriculture Science, Zhengzhou 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Gregorio Cadenas-Pliego
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo 25294, Mexico;
| | - Hao Zhang
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China or (M.I.A.); (Y.X.); (A.Y.M.); (H.Z.)
| | - Jiandong Hu
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China or (M.I.A.); (Y.X.); (A.Y.M.); (H.Z.)
- Henan International Joint Laboratory of Laser Technology in Agriculture Science, Zhengzhou 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| |
Collapse
|
9
|
He Z, Li M, Pan X, Peng Y, Shi Y, Han Q, Shi M, She L, Borovskii G, Chen X, Gu X, Cheng X, Zhang W. R-loops act as regulatory switches modulating transcription of COLD-responsive genes in rice. THE NEW PHYTOLOGIST 2024; 241:267-282. [PMID: 37849024 DOI: 10.1111/nph.19315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
COLD is a major naturally occurring stress that usually causes complex symptoms and severe yield loss in crops. R-loops function in various cellular processes, including development and stress responses, in plants. However, how R-loops function in COLD responses is largely unknown in COLD susceptible crops like rice (Oryza sativa L.). We conducted DRIP-Seq along with other omics data (RNA-Seq, DNase-Seq and ChIP-Seq) in rice with or without COLD treatment. COLD treatment caused R-loop reprogramming across the genome. COLD-biased R-loops had higher GC content and novel motifs for the binding of distinct transcription factors (TFs). Moreover, R-loops can directly/indirectly modulate the transcription of a subset of COLD-responsive genes, which can be mediated by R-loop overlapping TF-centered or cis-regulatory element-related regulatory networks and lncRNAs, accounting for c. 60% of COLD-induced expression of differential genes in rice, which is different from the findings in Arabidopsis. We validated two R-loop loci with contrasting (negative/positive) roles in the regulation of two individual COLD-responsive gene expression, as potential targets for enhanced COLD resistance. Our study provides detailed evidence showing functions of R-loop reprogramming during COLD responses and provides some potential R-loop loci for genetic and epigenetic manipulation toward breeding of rice varieties with enhanced COLD tolerance.
Collapse
Affiliation(s)
- Zexue He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Mengqi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Xiucai Pan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
- Xiangyang Academy of Agricultural Sciences, Xiangyang, Hubei Province, 441057, China
| | - Yulian Peng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Yining Shi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Qi Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Manli Shi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Linwei She
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Gennadii Borovskii
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences (SB RAS) Irkutsk, Lermontova, 664033, Russia
| | - Xiaojun Chen
- Key Lab of Agricultural Biotechnology of Ningxia, Ningxia Academy of Agriculture and Forestry Sciences, YinChuan, 750002, China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuejiao Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
10
|
Luo B, Zhang Z, Li B, Zhang H, Ma J, Li J, Han Z, Zhang C, Zhang S, Yu T, Zhang G, Ma P, Lan Y, Zhang X, Liu D, Wu L, Gao D, Gao S, Su S, Zhang X, Gao S. Chromatin remodeling analysis reveals the RdDM pathway responds to low-phosphorus stress in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:33-52. [PMID: 37731059 DOI: 10.1111/tpj.16468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
Chromatin in eukaryotes folds into a complex three-dimensional (3D) structure that is essential for controlling gene expression and cellular function and is dynamically regulated in biological processes. Studies on plant phosphorus signaling have concentrated on single genes and gene interactions. It is critical to expand the existing signaling pathway in terms of its 3D structure. In this study, low-Pi treatment led to greater chromatin volume. Furthermore, low-Pi stress increased the insulation score and the number of TAD-like domains, but the effects on the A/B compartment were not obvious. The methylation levels of target sites (hereafter as RdDM levels) peaked at specific TAD-like boundaries, whereas RdDM peak levels at conserved TAD-like boundaries shifted and decreased sharply. The distribution pattern of RdDM sites originating from the Helitron transposons matched that of genome-wide RdDM sites near TAD-like boundaries. RdDM pathway genes were upregulated in the middle or early stages and downregulated in the later stages under low-Pi conditions. The RdDM pathway mutant ddm1a showed increased tolerance to low-Pi stress, with shortened and thickened roots contributing to higher Pi uptake from the shallow soil layer. ChIP-seq results revealed that ZmDDM1A could bind to Pi- and root development-related genes. Strong associations were found between interacting genes in significantly different chromatin-interaction regions and root traits. These findings not only expand the mechanisms by which plants respond to low-Pi stress through the RdDM pathway but also offer a crucial framework for the analysis of biological issues using 3D genomics.
Collapse
Affiliation(s)
- Bowen Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Ziqi Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Binyang Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Haiying Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Junchi Ma
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Jing Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Zheng Han
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Chong Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shuhao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Ting Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Guidi Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Peng Ma
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
- Mianyang Academy of Agricultural Sciences, Mianyang, 621023, Sichuan, China
- Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang, China
| | - Yuzhou Lan
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, SE-23422, Lomma, Sweden
| | - Xiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Dan Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Ling Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Duojiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shiqiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shunzong Su
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center, Texcoco, Mexico
| | - Shibin Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| |
Collapse
|
11
|
Li B, Hua W, Zhang S, Xu L, Yang C, Zhu Z, Guo Y, Zhou M, Jiao C, Xu Y. Physiological, Epigenetic, and Transcriptome Analyses Provide Insights into the Responses of Wheat Seedling Leaves to Different Water Depths under Flooding Conditions. Int J Mol Sci 2023; 24:16785. [PMID: 38069108 PMCID: PMC10706670 DOI: 10.3390/ijms242316785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Flooding stress, including waterlogging and submergence, is one of the major abiotic stresses that seriously affects the growth and development of plants. In the present study, physiological, epigenetic, and transcriptomic analyses were performed in wheat seedling leaves under waterlogging (WL), half submergence (HS), and full submergence (FS) treatments. The results demonstrate that FS increased the leaves' hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents and reduced their chlorophyll contents (SPAD), photosynthetic efficiency (Fv/Fm), and shoot dry weight more than HS and WL. In addition, FS increased catalase (CAT) and peroxidase (POD) activities more than HS and WL. However, there were no significant differences in the contents of H2O2, MDA, SPAD, and Fv/Fm, and the activities of superoxide dismutase (SOD) and POD between the HS and WL treatments. The changes in DNA methylation were related to stress types, increasing under the WL and HS treatments and decreasing under the FS treatment. Additionally, a total of 9996, 10,619, and 24,949 genes were differentially expressed under the WL, HS, and FS treatments, respectively, among which the 'photosynthesis', 'phenylpropanoid biosynthesis', and 'plant hormone signal transduction' pathways were extensively enriched under the three flooding treatments. The genes involved in these pathways showed flooding-type-specific expression. Moreover, flooding-type-specific responses were observed in the three conditions, including the enrichment of specific TFs and response pathways. These results will contribute to a better understanding of the molecular mechanisms underlying the responses of wheat seedling leaves to flooding stress and provide valuable genetic and epigenetic information for breeding flood-tolerant varieties of wheat.
Collapse
Affiliation(s)
- Bo Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement and Key Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (B.L.)
| | - Wei Hua
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Shuo Zhang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement and Key Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (B.L.)
| | - Le Xu
- Hubei Collaborative Innovation Centre for the Industrialization of Major Grain Crops, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Caixian Yang
- Hubei Collaborative Innovation Centre for the Industrialization of Major Grain Crops, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Zhanwang Zhu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement and Key Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (B.L.)
| | - Ying Guo
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement and Key Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (B.L.)
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Newnham Drive, Launceston, TAS 7250, Australia
| | - Chunhai Jiao
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement and Key Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (B.L.)
| | - Yanhao Xu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement and Key Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (B.L.)
| |
Collapse
|
12
|
Sharma M, Sidhu AK, Samota MK, Gupta M, Koli P, Choudhary M. Post-Translational Modifications in Histones and Their Role in Abiotic Stress Tolerance in Plants. Proteomes 2023; 11:38. [PMID: 38133152 PMCID: PMC10747722 DOI: 10.3390/proteomes11040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Abiotic stresses profoundly alter plant growth and development, resulting in yield losses. Plants have evolved adaptive mechanisms to combat these challenges, triggering intricate molecular responses to maintain tissue hydration and temperature stability during stress. A pivotal player in this defense is histone modification, governing gene expression in response to diverse environmental cues. Post-translational modifications (PTMs) of histone tails, including acetylation, phosphorylation, methylation, ubiquitination, and sumoylation, regulate transcription, DNA processes, and stress-related traits. This review comprehensively explores the world of PTMs of histones in plants and their vital role in imparting various abiotic stress tolerance in plants. Techniques, like chromatin immune precipitation (ChIP), ChIP-qPCR, mass spectrometry, and Cleavage Under Targets and Tag mentation, have unveiled the dynamic histone modification landscape within plant cells. The significance of PTMs in enhancing the plants' ability to cope with abiotic stresses has also been discussed. Recent advances in PTM research shed light on the molecular basis of stress tolerance in plants. Understanding the intricate proteome complexity due to various proteoforms/protein variants is a challenging task, but emerging single-cell resolution techniques may help to address such challenges. The review provides the future prospects aimed at harnessing the full potential of PTMs for improved plant responses under changing climate change.
Collapse
Affiliation(s)
- Madhvi Sharma
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar 143009, India; (M.S.); (A.K.S.)
| | - Amanpreet K. Sidhu
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar 143009, India; (M.S.); (A.K.S.)
| | - Mahesh Kumar Samota
- ICAR-Central Institute of Post-Harvest Engineering and Technology, Regional Station, Abohar 152116, India
| | - Mamta Gupta
- ICAR-Indian Institute of Maize Research, Ludhiana 141001, India;
| | - Pushpendra Koli
- Plant Animal Relationship Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi 284003, India;
- Post-Harvest Biosecurity, Murdoch University, Perth, WA 6150, Australia
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, Ludhiana 141001, India;
- School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
13
|
Wu X, Zhang X, Huang B, Han J, Fang H. Advances in biological functions and mechanisms of histone variants in plants. Front Genet 2023; 14:1229782. [PMID: 37588047 PMCID: PMC10426802 DOI: 10.3389/fgene.2023.1229782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Nucleosome is the basic subunit of chromatin, consisting of approximately 147bp DNA wrapped around a histone octamer, containing two copies of H2A, H2B, H3 and H4. A linker histone H1 can bind nucleosomes through its conserved GH1 domain, which may promote chromatin folding into higher-order structures. Therefore, the complexity of histones act importantly for specifying chromatin and gene activities. Histone variants, encoded by separate genes and characterized by only a few amino acids differences, can affect nucleosome packaging and stability, and then modify the chromatin properties. Serving as carriers of pivotal genetic and epigenetic information, histone variants have profound significance in regulating plant growth and development, response to both biotic and abiotic stresses. At present, the biological functions of histone variants in plant have become a research hotspot. Here, we summarize recent researches on the biological functions, molecular chaperons and regulatory mechanisms of histone variants in plant, and propose some novel research directions for further study of plant histone variants research field. Our study will provide some enlightens for studying and understanding the epigenetic regulation and chromatin specialization mediated by histone variant in plant.
Collapse
Affiliation(s)
- Xi Wu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Xu Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Borong Huang
- Developmental Biology, Laboratory of Plant Molecular and Zhejiang A & F University, Hangzhou, China
| | - Junyou Han
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Huihui Fang
- Developmental Biology, Laboratory of Plant Molecular and Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
14
|
Ost C, Cao HX, Nguyen TL, Himmelbach A, Mascher M, Stein N, Humbeck K. Drought-Stress-Related Reprogramming of Gene Expression in Barley Involves Differential Histone Modifications at ABA-Related Genes. Int J Mol Sci 2023; 24:12065. [PMID: 37569441 PMCID: PMC10418636 DOI: 10.3390/ijms241512065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Plants respond to drought by the major reprogramming of gene expression, enabling the plant to survive this threatening environmental condition. The phytohormone abscisic acid (ABA) serves as a crucial upstream signal, inducing this multifaceted process. This report investigated the drought response in barley plants (Hordeum vulgare, cv. Morex) at both the epigenome and transcriptome levels. After a ten-day drought period, during which the soil water content was reduced by about 35%, the relative chlorophyll content, as well as the photosystem II efficiency of the barley leaves, decreased by about 10%. Furthermore, drought-related genes such as HvS40 and HvA1 were already induced compared to the well-watered controls. Global ChIP-Seq analysis was performed to identify genes in which histones H3 were modified with euchromatic K4 trimethylation or K9 acetylation during drought. By applying stringent exclusion criteria, 129 genes loaded with H3K4me3 and 2008 genes loaded with H3K9ac in response to drought were identified, indicating that H3K9 acetylation reacts to drought more sensitively than H3K4 trimethylation. A comparison with differentially expressed genes enabled the identification of specific genes loaded with the euchromatic marks and induced in response to drought treatment. The results revealed that a major proportion of these genes are involved in ABA signaling and related pathways. Intriguingly, two members of the protein phosphatase 2C family (PP2Cs), which play a crucial role in the central regulatory machinery of ABA signaling, were also identified through this approach.
Collapse
Affiliation(s)
- Charlotte Ost
- Institute of Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Germany
| | - Hieu Xuan Cao
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077 Göttingen, Germany
| | - Thuy Linh Nguyen
- Institute of Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, 06466 Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, 06466 Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, 06466 Seeland, Germany
- Center of Integrated Breeding Research (CiBreed), Georg-August University of Göttingen, 37073 Göttingen, Germany
| | - Klaus Humbeck
- Institute of Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Germany
| |
Collapse
|
15
|
Kupriyanova E, Manakhov A, Ezhova T. PARG1 and EXA1 genes as possible components of the facultative epigenetic control of plant development. PHYSIOLOGIA PLANTARUM 2023; 175:e13959. [PMID: 37350155 DOI: 10.1111/ppl.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Plants are able to adjust their developmental program in response to incremental environmental changes by reprogramming the epigenomes of the cells. This process, known as facultative epigenetic developmental control, underlies plant developmental plasticity and the amazing diversity of morphotypes, which arises from the changes in cell fates. How plants determine when epigenome reprogramming should occur is largely unclear. Here, we show that the Arabidopsis PARG1 and EXA1 genes, encoding poly(ADP-ribose) glycohydrolase and GYF domain protein involved in nonsense-mediated mRNA decay, respectively, act synergistically in maintaining leaf cell identity. Loss of their function in Arabidopsis tae mutant triggers autoimmunity and wounding response, alters transcription of a number of epigenetic regulators, initiates the acquisition of pluripotency by cells of the developed leaf and ectopic outgrowths and buds formation. The dependence of the cell fate on the activity level of PARG1 and EXA1 genes indicates that these interacting genes may function as an important regulator of facultative epigenetic control of plant development.
Collapse
Affiliation(s)
- Evgenia Kupriyanova
- Faculty of Biology, Department of Genetics, Lomonosov Moscow State University, Moscow, Russia
| | - Andrey Manakhov
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Centre for Genetics and Genetic Technologies, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Ezhova
- Faculty of Biology, Department of Genetics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
16
|
Adel S, Carels N. Plant Tolerance to Drought Stress with Emphasis on Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112170. [PMID: 37299149 DOI: 10.3390/plants12112170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 06/12/2023]
Abstract
Environmental stresses, such as drought, have negative effects on crop yield. Drought is a stress whose impact tends to increase in some critical regions. However, the worldwide population is continuously increasing and climate change may affect its food supply in the upcoming years. Therefore, there is an ongoing effort to understand the molecular processes that may contribute to improving drought tolerance of strategic crops. These investigations should contribute to delivering drought-tolerant cultivars by selective breeding. For this reason, it is worthwhile to review regularly the literature concerning the molecular mechanisms and technologies that could facilitate gene pyramiding for drought tolerance. This review summarizes achievements obtained using QTL mapping, genomics, synteny, epigenetics, and transgenics for the selective breeding of drought-tolerant wheat cultivars. Synthetic apomixis combined with the msh1 mutation opens the way to induce and stabilize epigenomes in crops, which offers the potential of accelerating selective breeding for drought tolerance in arid and semi-arid regions.
Collapse
Affiliation(s)
- Sarah Adel
- Genetic Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Nicolas Carels
- Laboratory of Biological System Modeling, Center of Technological Development for Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-361, Brazil
| |
Collapse
|
17
|
Jeong BR, Jang J, Jin E. Genome engineering via gene editing technologies in microalgae. BIORESOURCE TECHNOLOGY 2023; 373:128701. [PMID: 36746216 DOI: 10.1016/j.biortech.2023.128701] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
CRISPR-Cas has revolutionized genetic modification with its comparative simplicity and accuracy, and it can be used even at the genomic level. Microalgae are excellent feedstocks for biofuels and nutraceuticals because they contain high levels of fatty acids, carotenoids, and other metabolites; however, genome engineering for microalgae is not yet as developed as for other model organisms. Microalgal engineering at the genetic and metabolic levels is relatively well established, and a few genomic resources are available. Their genomic information was used for a "safe harbor" site for stable transgene expression in microalgae. This review proposes further genome engineering schemes including the construction of sgRNA libraries, pan-genomic and epigenomic resources, and mini-genomes, which can together be developed into synthetic biology for carbon-based engineering in microalgae. Acetyl-CoA is at the center of carbon metabolic pathways and is further reviewed for the production of molecules including terpenoids in microalgae.
Collapse
Affiliation(s)
- Byeong-Ryool Jeong
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Junhwan Jang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|
18
|
Kim JH, Dubey SK, Hwangbo K, Chung BY, Lee SS, Lee S. Application of ionizing radiation as an elicitor to enhance the growth and metabolic activities in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2023; 14:1087070. [PMID: 36890890 PMCID: PMC9986495 DOI: 10.3389/fpls.2023.1087070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Chlamydomonas reinhardtii is a eukaryotic, unicellular photosynthetic organism and a potential algal platform for producing biomass and recombinant proteins for industrial use. Ionizing radiation is a potent genotoxic and mutagenic agent used for algal mutation breeding that induces various DNA damage and repair responses. In this study, however, we explored the counterintuitive bioeffects of ionizing radiation, such as X- and γ-rays, and its potential as an elicitor to facilitate batch or fed-batch cultivation of Chlamydomonas cells. A certain dose range of X- and γ-rays was shown to stimulate the growth and metabolite production of Chlamydomonas cells. X- or γ-irradiation with relatively low doses below 10 Gy substantially increased chlorophyll, protein, starch, and lipid content as well as growth and photosynthetic activity in Chlamydomonas cells without inducing apoptotic cell death. Transcriptome analysis demonstrated the radiation-induced changes in DNA damage response (DDR) and various metabolic pathways with the dose-dependent expression of some DDR genes, such as CrRPA30, CrFEN1, CrKU, CrRAD51, CrOASTL2, CrGST2, and CrRPA70A. However, the overall transcriptomic changes were not causally associated with growth stimulation and/or enhanced metabolic activities. Nevertheless, the radiation-induced growth stimulation was strongly enhanced by repetitive X-irradiation and/or subsequent cultivation with an inorganic carbon source, i.e., NaHCO3, but was significantly inhibited by treatment of ascorbic acid, a scavenger of reactive oxygen species (ROS). The optimal dose range of X-irradiation for growth stimulation differed by genotype and radiation sensitivity. Here, we suggest that ionizing radiation within a certain dose range determined by genotype-dependent radiation sensitivity could induce growth stimulation and enhance metabolic activities, including photosynthesis, chlorophyll, protein, starch, and lipid synthesis in Chlamydomonas cells via ROS signaling. The counterintuitive benefits of a genotoxic and abiotic stress factor, i.e., ionizing radiation, in a unicellular algal organism, i.e., Chlamydomonas, may be explained by epigenetic stress memory or priming effects associated with ROS-mediated metabolic remodeling.
Collapse
Affiliation(s)
- Jin-Hong Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Republic of Korea
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon, Republic of Korea
| | - Shubham Kumar Dubey
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Republic of Korea
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon, Republic of Korea
| | - Kwon Hwangbo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Republic of Korea
| | - Byung Yeoup Chung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Republic of Korea
| | - Seung Sik Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Republic of Korea
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon, Republic of Korea
| | - Sungbeom Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Republic of Korea
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
19
|
Characteristics of Root Cells during In Vitro Rhizogenesis under Action of NaCl in Two Tomato Genotypes Differing in Salt Tolerance. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2023. [DOI: 10.3390/ijpb14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Understanding the mechanisms of plant salt tolerance as a complex trait is an integral part of many studies, the results of which have been used in the breeding process. The aim of this study was to compare the root response of two tomato (Solanum lycopersicum L.) genotypes (breeding line YaLF and cultivar Recordsmen) differing in salt tolerance. Rhizogenesis was induced in tomato shoots in vitro with different concentrations of NaCl in the culture medium. A number of morphobiological and cytological parameters were evaluated at the organ, tissue, and cellular levels for possible use in a comprehensive assessment of genotypes for salt tolerance. The influence of NaCl caused disruption of the cell cycle and redistribution of cells in the phases of the cell cycle. An increase in the degree of vacuolization was shown in cv Recordsmen at 75 and 150 mM NaCl and in the YaLF line at 150 mM NaCl. Under salt action, an increase/decrease in the length of cells such as columella cells (both genotypes) and epidermal cells (in cv Recordsmen at 75 and 150 mM NaCl) was shown. Differences between genotypes were demonstrated by changes in the area of the central cylinder and primary root cortex cells, as well as by changes of the Snucleolus/Snucleus ratio in these cells. Transmission electron microscopy (TEM) showed the modification of the chromatin structure in the root cells of these genotypes. Various cytoskeletal disorders were revealed in interphase cells of the tomato root of cv Recordsmen and the YaLF line by immunofluorescent staining under saline conditions. These morphometric and cytological parameters can be used for a comparative evaluation of genotypes differing in salt tolerance in a comprehensive assessment of varieties.
Collapse
|
20
|
The NF-Y Transcription Factor Family in Watermelon: Re-Characterization, Assembly of ClNF-Y Complexes, Hormone- and Pathogen-Inducible Expression and Putative Functions in Disease Resistance. Int J Mol Sci 2022; 23:ijms232415778. [PMID: 36555422 PMCID: PMC9778975 DOI: 10.3390/ijms232415778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor that binds to the CCAAT cis-element in the promoters of target genes and plays critical roles in plant growth, development, and stress responses. In the present study, we aimed to re-characterize the ClNF-Y family in watermelon, examine the assembly of ClNF-Y complexes, and explore their possible involvement in disease resistance. A total of 25 ClNF-Y genes (7 ClNF-YAs, 10 ClNF-YBs, and 8 ClNF-YCs) were identified in the watermelon genome. The ClNF-Y family was comprehensively characterized in terms of gene and protein structures, phylogenetic relationships, and evolution events. Different types of cis-elements responsible for plant growth and development, phytohormones, and/or stress responses were identified in the promoters of the ClNF-Y genes. ClNF-YAs and ClNF-YCs were mainly localized in the nucleus, while most of the ClNF-YBs were localized in the cytoplasm of cells. ClNF-YB5, -YB6, -YB7, -YB8, -YB9, and -YB10 interacted with ClNF-YC2, -YC3, -YC4, -YC5, -YC6, -YC7, and -YC8, while ClNF-YB1 and -YB3 interacted with ClNF-YC1. A total of 37 putative ClNF-Y complexes were identified, e.g., ClNF-YA1, -YA2, -YA3, and -YA7 assembled into 13, 8, 8, and 8 ClNF-Y complexes with different ClNF-YB/-YC heterodimers. Most of the ClNF-Y genes responded with distinct expression patterns to defense hormones such as salicylic acid, methyl jasmonate, abscisic acid, and ethylene precursor 1-aminocyclopropane-1-carboxylate, and to infection by the vascular infecting fungus Fusarium oxysporum f. sp. niveum. Overexpression of ClNF-YB1, -YB8, -YB9, ClNF-YC2, and -YC7 in transgenic Arabidopsis resulted in an earlier flowering phenotype. Overexpression of ClNF-YB8 in Arabidopsis led to enhanced resistance while overexpression of ClNF-YA2 and -YC2 resulted in decreased resistance against Botrytis cinerea. Similarly, overexpression of ClNF-YA3, -YB1, and -YC4 strengthened resistance while overexpression of ClNF-YA2 and -YB8 attenuated resistance against Pseudomonas syringae pv. tomato DC3000. The re-characterization of the ClNF-Y family provides a basis from which to investigate the biological functions of ClNF-Y genes in respect of growth, development, and stress response in watermelon, and the identification of the functions of some ClNF-Y genes in disease resistance enables further exploration of the molecular mechanism of ClNF-Ys in the regulation of watermelon immunity against diverse pathogens.
Collapse
|
21
|
Nicolas P, Shinozaki Y, Powell A, Philippe G, Snyder SI, Bao K, Zheng Y, Xu Y, Courtney L, Vrebalov J, Casteel CL, Mueller LA, Fei Z, Giovannoni JJ, Rose JKC, Catalá C. Spatiotemporal dynamics of the tomato fruit transcriptome under prolonged water stress. PLANT PHYSIOLOGY 2022; 190:2557-2578. [PMID: 36135793 PMCID: PMC9706477 DOI: 10.1093/plphys/kiac445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/07/2022] [Indexed: 05/04/2023]
Abstract
Water availability influences all aspects of plant growth and development; however, most studies of plant responses to drought have focused on vegetative organs, notably roots and leaves. Far less is known about the molecular bases of drought acclimation responses in fruits, which are complex organs with distinct tissue types. To obtain a more comprehensive picture of the molecular mechanisms governing fruit development under drought, we profiled the transcriptomes of a spectrum of fruit tissues from tomato (Solanum lycopersicum), spanning early growth through ripening and collected from plants grown under varying intensities of water stress. In addition, we compared transcriptional changes in fruit with those in leaves to highlight different and conserved transcriptome signatures in vegetative and reproductive organs. We observed extensive and diverse genetic reprogramming in different fruit tissues and leaves, each associated with a unique response to drought acclimation. These included major transcriptional shifts in the placenta of growing fruit and in the seeds of ripe fruit related to cell growth and epigenetic regulation, respectively. Changes in metabolic and hormonal pathways, such as those related to starch, carotenoids, jasmonic acid, and ethylene metabolism, were associated with distinct fruit tissues and developmental stages. Gene coexpression network analysis provided further insights into the tissue-specific regulation of distinct responses to water stress. Our data highlight the spatiotemporal specificity of drought responses in tomato fruit and indicate known and unrevealed molecular regulatory mechanisms involved in drought acclimation, during both vegetative and reproductive stages of development.
Collapse
Affiliation(s)
| | - Yoshihito Shinozaki
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Adrian Powell
- Boyce Thompson Institute, Ithaca, New York 14853, USA
| | - Glenn Philippe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Stephen I Snyder
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Kan Bao
- Boyce Thompson Institute, Ithaca, New York 14853, USA
| | - Yi Zheng
- Boyce Thompson Institute, Ithaca, New York 14853, USA
| | - Yimin Xu
- Boyce Thompson Institute, Ithaca, New York 14853, USA
| | | | | | - Clare L Casteel
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | | | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, New York 14853, USA
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | - James J Giovannoni
- Boyce Thompson Institute, Ithaca, New York 14853, USA
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Carmen Catalá
- Boyce Thompson Institute, Ithaca, New York 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
22
|
Nguyen NH, Vu NT, Cheong JJ. Transcriptional Stress Memory and Transgenerational Inheritance of Drought Tolerance in Plants. Int J Mol Sci 2022; 23:12918. [PMID: 36361708 PMCID: PMC9654142 DOI: 10.3390/ijms232112918] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2023] Open
Abstract
Plants respond to drought stress by producing abscisic acid, a chemical messenger that regulates gene expression and thereby expedites various physiological and cellular processes including the stomatal operation to mitigate stress and promote tolerance. To trigger or suppress gene transcription under drought stress conditions, the surrounding chromatin architecture must be converted between a repressive and active state by epigenetic remodeling, which is achieved by the dynamic interplay among DNA methylation, histone modifications, loop formation, and non-coding RNA generation. Plants can memorize chromatin status under drought conditions to enable them to deal with recurrent stress. Furthermore, drought tolerance acquired during plant growth can be transmitted to the next generation. The epigenetically modified chromatin architectures of memory genes under stressful conditions can be transmitted to newly developed cells by mitotic cell division, and to germline cells of offspring by overcoming the restraints on meiosis. In mammalian cells, the acquired memory state is completely erased and reset during meiosis. The mechanism by which plant cells overcome this resetting during meiosis to transmit memory is unclear. In this article, we review recent findings on the mechanism underlying transcriptional stress memory and the transgenerational inheritance of drought tolerance in plants.
Collapse
Affiliation(s)
- Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City 700000, Vietnam
| | - Nam Tuan Vu
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
23
|
Obermeyer S, Stöckl R, Schnekenburger T, Moehle C, Schwartz U, Grasser KD. Distinct role of subunits of the Arabidopsis RNA polymerase II elongation factor PAF1C in transcriptional reprogramming. FRONTIERS IN PLANT SCIENCE 2022; 13:974625. [PMID: 36247629 PMCID: PMC9558118 DOI: 10.3389/fpls.2022.974625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Transcript elongation by RNA polymerase II (RNAPII) is dynamic and highly regulated, thereby contributing to the implementation of gene expression programs during plant development or in response to environmental cues. The heterohexameric polymerase-associated factor 1 complex (PAF1C) stabilizes the RNAPII elongation complex promoting efficient transcript synthesis. In addition, PAF1C links transcriptional elongation with various post-translational histone modifications at transcribed loci. We have exposed Arabidopsis mutants deficient in the PAF1C subunits ELF7 or CDC73 to elevated NaCl concentrations to provoke a transcriptional response. The growth of elf7 plants was reduced relative to that of wildtype under these challenging conditions, whereas cdc73 plants exhibited rather enhanced tolerance. Profiling of the transcriptional changes upon NaCl exposure revealed that cdc73 responded similar to wildtype. Relative to wildtype and cdc73, the transcriptional response of elf7 plants was severely reduced in accord with their greater susceptibility to NaCl. The data also imply that CDC73 is more relevant for the transcription of longer genes. Despite the fact that both ELF7 and CDC73 are part of PAF1C the strikingly different transcriptional response of the mutants upon NaCl exposure suggests that the subunits have (partially) specific functions.
Collapse
Affiliation(s)
- Simon Obermeyer
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Regensburg, Germany
| | - Richard Stöckl
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Regensburg, Germany
| | - Tobias Schnekenburger
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Regensburg, Germany
| | - Christoph Moehle
- Center of Excellence for Fluorescent Bioanalytics (KFB), University of Regensburg, Regensburg, Germany
| | - Uwe Schwartz
- NGS Analysis Centre, Biology and Pre-Clinical Medicine, University of Regensburg, Regensburg, Germany
| | - Klaus D. Grasser
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Regensburg, Germany
| |
Collapse
|
24
|
Azevedo V, Daddiego L, Cardone MF, Perrella G, Sousa L, Santos RB, Malhó R, Bergamini C, Marsico AD, Figueiredo A, Alagna F. Transcriptomic and methylation analysis of susceptible and tolerant grapevine genotypes following Plasmopara viticola infection. PHYSIOLOGIA PLANTARUM 2022; 174:e13771. [PMID: 36053855 PMCID: PMC9826190 DOI: 10.1111/ppl.13771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/05/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Downy mildew, caused by the biotrophic oomycete Plasmopara viticola, is one of the most economically significant grapevine diseases worldwide. Current strategies to cope with this threat rely on the massive use of chemical compounds during each cultivation season. The economic costs and negative environmental impact associated with these applications increased the urge to search for sustainable strategies of disease control. Improved knowledge of plant mechanisms to counteract pathogen infection may allow the development of alternative strategies for plant protection. Epigenetic regulation, in particular DNA methylation, is emerging as a key factor in the context of plant-pathogen interactions associated with the expression modulation of defence genes. To improve our understanding of the genetic and epigenetic mechanisms underpinning grapevine response to P. viticola, we studied the modulation of both 5-mC methylation and gene expression at 6 and 24 h post-infection (hpi). Leaves of two table grape genotypes (Vitis vinifera), selected by breeding activities for their contrasting level of susceptibility to the pathogen, were analysed. Following pathogen infection, we found variations in the 5-mC methylation level and the gene expression profile. The results indicate a genotype-specific response to pathogen infection. The tolerant genotype (N23/018) at 6 hpi exhibits a lower methylation level compared to the susceptible one (N20/020), and it shows an early modulation (at 6 hpi) of defence and epigenetic-related genes during P. viticola infection. These data suggest that the timing of response is an important mechanism to efficiently counteract the pathogen attack.
Collapse
Affiliation(s)
- Vanessa Azevedo
- Faculdade de Ciências, Plant Biology Department, Biosystems & Integrative Sciences Institute (BioISI)Universidade de LisboaLisbonPortugal
| | - Loretta Daddiego
- Energy Technologies and Renewable Sources DepartmentNational Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Trisaia Research CentreRotondellaMateraItaly
| | - Maria Francesca Cardone
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA)TuriBariItaly
| | | | - Lisete Sousa
- Department of Statistics and Operations Research, Faculdade de Ciências; Centre of Statistics and its Applications (CEAUL)Universidade de LisboaLisbonPortugal
| | - Rita B. Santos
- Faculdade de Ciências, Plant Biology Department, Biosystems & Integrative Sciences Institute (BioISI)Universidade de LisboaLisbonPortugal
| | - Rui Malhó
- Faculdade de Ciências, Plant Biology Department, Biosystems & Integrative Sciences Institute (BioISI)Universidade de LisboaLisbonPortugal
| | - Carlo Bergamini
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA)TuriBariItaly
| | - Antonio Domenico Marsico
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA)TuriBariItaly
| | - Andreia Figueiredo
- Faculdade de Ciências, Plant Biology Department, Biosystems & Integrative Sciences Institute (BioISI)Universidade de LisboaLisbonPortugal
| | - Fiammetta Alagna
- Energy Technologies and Renewable Sources DepartmentNational Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Trisaia Research CentreRotondellaMateraItaly
| |
Collapse
|
25
|
Abstract
Transposons were once thought to be junk repetitive DNA in the genome. However, their importance gradually became apparent as it became clear that they regulate gene expression, which is essential for organisms to survive, and that they are important factors in the driving force of evolution. Since there are multiple transposons in the genomes of all organisms, transposons have likely been activated and increased in copy number throughout their long history. This review focuses on environmental stress as a factor in transposon activation, paying particular attention to transposons in plants that are activated by environmental stresses. It is now known that plants respond to environmental stress in various ways, and correspondingly, many transposons respond to stress. The relationship between environmental stress and transposons is reviewed, including the mechanisms of their activation and the effects of transposon activation on host plants.
Collapse
|
26
|
Kufel J, Diachenko N, Golisz A. Alternative splicing as a key player in the fine-tuning of the immunity response in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2022; 23:1226-1238. [PMID: 35567423 PMCID: PMC9276941 DOI: 10.1111/mpp.13228] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 06/01/2023]
Abstract
Plants, like animals, are constantly exposed to abiotic and biotic stresses, which often inhibit plant growth and development, and cause tissue damage, disease, and even plant death. Efficient and timely response to stress requires appropriate co- and posttranscriptional reprogramming of gene expression. Alternative pre-mRNA splicing provides an important layer of this regulation by controlling the level of factors involved in stress response and generating additional protein isoforms with specific features. Recent high-throughput studies have revealed that several defence genes undergo alternative splicing that is often affected by pathogen infection. Despite extensive work, the exact mechanisms underlying these relationships are still unclear, but the contribution of alternative protein isoforms to the defence response and the role of regulatory factors, including components of the splicing machinery, have been established. Modulation of gene expression in response to stress includes alternative splicing, chromatin remodelling, histone modifications, and nucleosome occupancy. How these processes affect plant immunity is mostly unknown, but these facets open new regulatory possibilities. Here we provide an overview of the current state of knowledge and recent findings regarding the growing importance of alternative splicing in plant response to biotic stress.
Collapse
Affiliation(s)
- Joanna Kufel
- Institute of Genetics and BiotechnologyFaculty of BiologyUniversity of WarsawWarsawPoland
| | - Nataliia Diachenko
- Institute of Genetics and BiotechnologyFaculty of BiologyUniversity of WarsawWarsawPoland
| | - Anna Golisz
- Institute of Genetics and BiotechnologyFaculty of BiologyUniversity of WarsawWarsawPoland
| |
Collapse
|
27
|
Yaschenko AE, Fenech M, Mazzoni-Putman S, Alonso JM, Stepanova AN. Deciphering the molecular basis of tissue-specific gene expression in plants: Can synthetic biology help? CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102241. [PMID: 35700675 PMCID: PMC10605770 DOI: 10.1016/j.pbi.2022.102241] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Gene expression differences between distinct cell types are orchestrated by specific sets of transcription factors and epigenetic regulators acting upon the genome. In plants, the mechanisms underlying tissue-specific gene activity remain largely unexplored. Although transcriptional and epigenetic profiling of individual organs, tissues, and more recently, of single cells can easily detect the molecular signatures of different biological samples, how these unique cell identities are established at the mechanistic level is only beginning to be decoded. Computational methods, including machine learning, used in combination with experimental approaches, enable the identification and validation of candidate cis-regulatory elements driving cell-specific expression. Synthetic biology shows great promise not only as a means of testing candidate DNA motifs but also for establishing the general rules of nature driving promoter architecture and for the rational design of genetic circuits in research and agriculture to confer tissue-specific expression to genes or molecular pathways of interest.
Collapse
Affiliation(s)
- Anna E Yaschenko
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | - Mario Fenech
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | - Serina Mazzoni-Putman
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
28
|
A review on CRISPR/Cas-based epigenetic regulation in plants. Int J Biol Macromol 2022; 219:1261-1271. [DOI: 10.1016/j.ijbiomac.2022.08.182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/13/2022] [Accepted: 08/29/2022] [Indexed: 01/09/2023]
|
29
|
Nanni AV, Morse AM, Newman JRB, Choquette NE, Wedow JM, Liu Z, Leakey ADB, Conesa A, Ainsworth EA, McIntyre LM. Variation in leaf transcriptome responses to elevated ozone corresponds with physiological sensitivity to ozone across maize inbred lines. Genetics 2022; 221:iyac080. [PMID: 35579358 PMCID: PMC9339315 DOI: 10.1093/genetics/iyac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
We examine the impact of sustained elevated ozone concentration on the leaf transcriptome of 5 diverse maize inbred genotypes, which vary in physiological sensitivity to ozone (B73, Mo17, Hp301, C123, and NC338), using long reads to assemble transcripts and short reads to quantify expression of these transcripts. More than 99% of the long reads, 99% of the assembled transcripts, and 97% of the short reads map to both B73 and Mo17 reference genomes. Approximately 95% of the genes with assembled transcripts belong to known B73-Mo17 syntenic loci and 94% of genes with assembled transcripts are present in all temperate lines in the nested association mapping pan-genome. While there is limited evidence for alternative splicing in response to ozone stress, there is a difference in the magnitude of differential expression among the 5 genotypes. The transcriptional response to sustained ozone stress in the ozone resistant B73 genotype (151 genes) was modest, while more than 3,300 genes were significantly differentially expressed in the more sensitive NC338 genotype. There is the potential for tandem duplication in 30% of genes with assembled transcripts, but there is no obvious association between potential tandem duplication and differential expression. Genes with a common response across the 5 genotypes (83 genes) were associated with photosynthesis, in particular photosystem I. The functional annotation of genes not differentially expressed in B73 but responsive in the other 4 genotypes (789) identifies reactive oxygen species. This suggests that B73 has a different response to long-term ozone exposure than the other 4 genotypes. The relative magnitude of the genotypic response to ozone, and the enrichment analyses are consistent regardless of whether aligning short reads to: long read assembled transcripts; the B73 reference; the Mo17 reference. We find that prolonged ozone exposure directly impacts the photosynthetic machinery of the leaf.
Collapse
Affiliation(s)
- Adalena V Nanni
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Alison M Morse
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Jeremy R B Newman
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- Department of Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Nicole E Choquette
- Department of Plant Biology, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Crop Sciences, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jessica M Wedow
- Department of Plant Biology, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Crop Sciences, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zihao Liu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Andrew D B Leakey
- Department of Plant Biology, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Crop Sciences, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ana Conesa
- Department of Cell and Microbial Sciences, University of Florida, Gainesville, FL 32611, USA
- Institute for Integrative Systems Biology, Spanish National Research Council, 46980 Paterna, Spain
| | - Elizabeth A Ainsworth
- Department of Plant Biology, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Crop Sciences, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL 61801, USA
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
30
|
Vyse K, Schaarschmidt S, Erban A, Kopka J, Zuther E. Specific CBF transcription factors and cold-responsive genes fine-tune the early triggering response after acquisition of cold priming and memory. PHYSIOLOGIA PLANTARUM 2022; 174:e13740. [PMID: 35776365 DOI: 10.1111/ppl.13740] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Plants need to adapt to fluctuating temperatures throughout their lifetime. Previous research showed that Arabidopsis memorizes a first cold stress (priming) and improves its primed freezing tolerance further when subjected to a second similar stress after a lag phase. This study investigates primary metabolomic and transcriptomic changes during early cold priming or triggering after 3 days at 4°C interrupted by a memory phase. DREB1 family transcription factors DREB1C/CBF2, DREB1D/CBF4, DREB1E/DDF2, and DREB1F/DDF1 were strongly significantly induced throughout the entire triggering. During triggering, genes encoding Late Embryogenesis Abundant (LEA), antifreeze proteins or detoxifiers of reactive oxygen species (ROS) were higher expressed compared with priming. Examples of early triggering responders were xyloglucan endotransglucosylase/hydrolase genes encoding proteins involved in cell wall remodeling, while late responders were identified to act in fine-tuning the stress response and developmental regulation. Induction of non-typical members of the DREB subfamily of ERF/AP2 transcription factors, the relatively small number of induced CBF regulon genes and a slower accumulation of selected cold stress associated metabolites indicate that a cold triggering stimulus might be sensed as milder stress in plants compared with priming. Further, strong induction of CBF4 throughout triggering suggests a unique function of this gene for the response to alternating temperatures.
Collapse
Affiliation(s)
- Kora Vyse
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Ellen Zuther
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
31
|
Hummel G, Liu C. Organization and epigenomic control of RNA polymerase III-transcribed genes in plants. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102199. [PMID: 35364484 DOI: 10.1016/j.pbi.2022.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The genetic information linearly scripted in chromosomes is wrapped in a ribonucleoprotein complex called chromatin. The adaptation of its compaction level and spatiotemporal organization refines gene expression in response to developmental and environmental cues. RNA polymerase III (RNAPIII) is responsible for the biogenesis of elementary non-coding RNAs. Their genes are subjected to high duplication and mutational rates, and invade nuclear genomes. Their insertion into different epigenomic environments raises the question of how chromatin packing affects their individual transcription. In this review, we provide a unique perspective to this issue in plants. In addition, we discuss how the genomic organization of RNAPIII-transcribed loci, combined with epigenetic differences, might participate to plant trait variations.
Collapse
Affiliation(s)
- Guillaume Hummel
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| | - Chang Liu
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| |
Collapse
|
32
|
Halder K, Chaudhuri A, Abdin MZ, Majee M, Datta A. Chromatin-Based Transcriptional Reprogramming in Plants under Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:1449. [PMID: 35684223 PMCID: PMC9182740 DOI: 10.3390/plants11111449] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Plants' stress response machinery is characterized by an intricate network of signaling cascades that receive and transmit environmental cues and ultimately trigger transcriptional reprogramming. The family of epigenetic regulators that are the key players in the stress-induced signaling cascade comprise of chromatin remodelers, histone modifiers, DNA modifiers and regulatory non-coding RNAs. Changes in the histone modification and DNA methylation lead to major alterations in the expression level and pattern of stress-responsive genes to adjust with abiotic stress conditions namely heat, cold, drought and salinity. The spotlight of this review falls primarily on the chromatin restructuring under severe abiotic stresses, crosstalk between epigenetic regulators along with a brief discussion on stress priming in plants.
Collapse
Affiliation(s)
- Koushik Halder
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (K.H.); (A.C.); (M.M.)
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India;
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (K.H.); (A.C.); (M.M.)
| | - Malik Z. Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India;
| | - Manoj Majee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (K.H.); (A.C.); (M.M.)
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (K.H.); (A.C.); (M.M.)
| |
Collapse
|
33
|
Nam JW, Lee HG, Do H, Kim HU, Seo PJ. Transcriptional regulation of triacylglycerol accumulation in plants under environmental stress conditions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2905-2917. [PMID: 35560201 DOI: 10.1093/jxb/erab554] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/15/2021] [Indexed: 06/15/2023]
Abstract
Triacylglycerol (TAG), a major energy reserve in lipid form, accumulates mainly in seeds. Although TAG concentrations are usually low in vegetative tissues because of the repression of seed maturation programs, these programs are derepressed upon the exposure of vegetative tissues to environmental stresses. Metabolic reprogramming of TAG accumulation is driven primarily by transcriptional regulation. A substantial proportion of transcription factors regulating seed TAG biosynthesis also participates in stress-induced TAG accumulation in vegetative tissues. TAG accumulation leads to the formation of lipid droplets and plastoglobules, which play important roles in plant tolerance to environmental stresses. Toxic lipid intermediates generated from environmental-stress-induced lipid membrane degradation are captured by TAG-containing lipid droplets and plastoglobules. This review summarizes recent advances in the transcriptional control of metabolic reprogramming underlying stress-induced TAG accumulation, and provides biological insight into the plant adaptive strategy, linking TAG biosynthesis with plant survival.
Collapse
Affiliation(s)
- Jeong-Won Nam
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Hong Gil Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Hyungju Do
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
34
|
Drozda A, Kurpisz B, Arasimowicz-Jelonek M, Kuźnicki D, Jagodzik P, Guan Y, Floryszak-Wieczorek J. Nitric Oxide Implication in Potato Immunity to Phytophthora infestans via Modifications of Histone H3/H4 Methylation Patterns on Defense Genes. Int J Mol Sci 2022; 23:ijms23074051. [PMID: 35409411 PMCID: PMC8999698 DOI: 10.3390/ijms23074051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/18/2022] Open
Abstract
Nitric oxide (NO) is an essential redox-signaling molecule operating in many physiological and pathophysiological processes. However, evidence on putative NO engagement in plant immunity by affecting defense gene expressions, including histone modifications, is poorly recognized. Exploring the effect of biphasic NO generation regulated by S-nitrosoglutathione reductase (GNSOR) activity after avr Phytophthora infestans inoculation, we showed that the phase of NO decline at 6 h post-inoculation (hpi) was correlated with the rise of defense gene expressions enriched in the TrxG-mediated H3K4me3 active mark in their promoter regions. Here, we report that arginine methyltransferase PRMT5 catalyzing histone H4R3 symmetric dimethylation (H4R3sme2) is necessary to ensure potato resistance to avr P. infestans. Both the pathogen and S-nitrosoglutathione (GSNO) altered the methylation status of H4R3sme2 by transient reduction in the repressive mark in the promoter of defense genes, R3a and HSR203J (a resistance marker), thereby elevating their transcription. In turn, the PRMT5-selective inhibitor repressed R3a expression and attenuated the hypersensitive response to the pathogen. In conclusion, we postulate that lowering the NO level (at 6 hpi) might be decisive for facilitating the pathogen-induced upregulation of stress genes via histone lysine methylation and PRMT5 controlling potato immunity to late blight.
Collapse
Affiliation(s)
- Andżelika Drozda
- Department of Plant Physiology, Faculty of Agronomy, Horticulture and Bioengineering, Poznan University of Life Sciences, 60-637 Poznan, Poland; (A.D.); (B.K.); (D.K.); (Y.G.)
| | - Barbara Kurpisz
- Department of Plant Physiology, Faculty of Agronomy, Horticulture and Bioengineering, Poznan University of Life Sciences, 60-637 Poznan, Poland; (A.D.); (B.K.); (D.K.); (Y.G.)
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland; (M.A.-J.); (P.J.)
| | - Daniel Kuźnicki
- Department of Plant Physiology, Faculty of Agronomy, Horticulture and Bioengineering, Poznan University of Life Sciences, 60-637 Poznan, Poland; (A.D.); (B.K.); (D.K.); (Y.G.)
| | - Przemysław Jagodzik
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland; (M.A.-J.); (P.J.)
| | - Yufeng Guan
- Department of Plant Physiology, Faculty of Agronomy, Horticulture and Bioengineering, Poznan University of Life Sciences, 60-637 Poznan, Poland; (A.D.); (B.K.); (D.K.); (Y.G.)
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland; (M.A.-J.); (P.J.)
| | - Jolanta Floryszak-Wieczorek
- Department of Plant Physiology, Faculty of Agronomy, Horticulture and Bioengineering, Poznan University of Life Sciences, 60-637 Poznan, Poland; (A.D.); (B.K.); (D.K.); (Y.G.)
- Correspondence: ; Tel.: +48-61-848-71-81
| |
Collapse
|
35
|
Bi H, Miao J, He J, Chen Q, Qian J, Li H, Xu Y, Ma D, Zhao Y, Tian X, Liu W. Characterization of the Wheat Heat Shock Factor TaHsfA2e-5D Conferring Heat and Drought Tolerance in Arabidopsis. Int J Mol Sci 2022; 23:ijms23052784. [PMID: 35269925 PMCID: PMC8911409 DOI: 10.3390/ijms23052784] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 01/26/2023] Open
Abstract
Environmental stresses, especially heat and drought, severely limit plant growth and negatively affect wheat yield and quality worldwide. Heat shock factors (Hsfs) play a central role in regulating plant responses to various stresses. In this study, the wheat heat shock factor gene TaHsfA2e-5D on chromosome 5D was isolated and functionally characterized, with the goal of investigating its role in responses to heat and drought stresses. Gene expression profiling showed that TaHsfA2e-5D was expressed constitutively in various wheat tissues, most highly in roots at the reproductive stage. The expression of TaHsfA2e-5D was highly up-regulated in wheat seedlings by heat, cold, drought, high salinity, and multiple phytohormones. The TaHsfA2e-5D protein was localized in the nucleus and showed a transcriptional activation activity. Ectopic expression of the TaHsfA2e-5D in yeast exhibited improved thermotolerance. Overexpression of the TaHsfA2e-5D in Arabidopsis results in enhanced tolerance to heat and drought stresses. Furthermore, RT-qPCR analyses revealed that TaHsfA2e-5D functions through increasing the expression of Hsp genes and other stress-related genes, including APX2 and GolS1. Collectively, these results suggest that TaHsfA2e-5D functions as a positive regulator of plants’ responses to heat and drought stresses, which may be of great significance for understanding and improving environmental stress tolerance in crops.
Collapse
Affiliation(s)
- Huihui Bi
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China; (H.B.); (J.M.); (J.H.); (Q.C.); (J.Q.); (H.L.); (W.L.)
| | - Jingnan Miao
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China; (H.B.); (J.M.); (J.H.); (Q.C.); (J.Q.); (H.L.); (W.L.)
| | - Jinqiu He
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China; (H.B.); (J.M.); (J.H.); (Q.C.); (J.Q.); (H.L.); (W.L.)
| | - Qifan Chen
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China; (H.B.); (J.M.); (J.H.); (Q.C.); (J.Q.); (H.L.); (W.L.)
| | - Jiajun Qian
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China; (H.B.); (J.M.); (J.H.); (Q.C.); (J.Q.); (H.L.); (W.L.)
| | - Huanhuan Li
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China; (H.B.); (J.M.); (J.H.); (Q.C.); (J.Q.); (H.L.); (W.L.)
| | - Yan Xu
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China; (Y.X.); (D.M.)
| | - Dan Ma
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China; (Y.X.); (D.M.)
| | - Yue Zhao
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China; (H.B.); (J.M.); (J.H.); (Q.C.); (J.Q.); (H.L.); (W.L.)
- Correspondence: (Y.Z.); (X.T.)
| | - Xuejun Tian
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China; (Y.X.); (D.M.)
- Correspondence: (Y.Z.); (X.T.)
| | - Wenxuan Liu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China; (H.B.); (J.M.); (J.H.); (Q.C.); (J.Q.); (H.L.); (W.L.)
| |
Collapse
|
36
|
Qureshi MK, Gawroński P, Munir S, Jindal S, Kerchev P. Hydrogen peroxide-induced stress acclimation in plants. Cell Mol Life Sci 2022; 79:129. [PMID: 35141765 PMCID: PMC11073338 DOI: 10.1007/s00018-022-04156-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Among all reactive oxygen species (ROS), hydrogen peroxide (H2O2) takes a central role in regulating plant development and responses to the environment. The diverse role of H2O2 is achieved through its compartmentalized synthesis, temporal control exerted by the antioxidant machinery, and ability to oxidize specific residues of target proteins. Here, we examine the role of H2O2 in stress acclimation beyond the well-studied transcriptional reprogramming, modulation of plant hormonal networks and long-distance signalling waves by highlighting its global impact on the transcriptional regulation and translational machinery.
Collapse
Affiliation(s)
- Muhammad Kamran Qureshi
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Bosan road, Multan, 60800, Pakistan
| | - Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw, University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Sana Munir
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Bosan road, Multan, 60800, Pakistan
| | - Sunita Jindal
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
| | - Pavel Kerchev
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic.
| |
Collapse
|
37
|
ERF Transcription Factor OsBIERF3 Positively Contributes to Immunity against Fungal and Bacterial Diseases but Negatively Regulates Cold Tolerance in Rice. Int J Mol Sci 2022; 23:ijms23020606. [PMID: 35054806 PMCID: PMC8775505 DOI: 10.3390/ijms23020606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
We previously showed that overexpression of the rice ERF transcription factor gene OsBIERF3 in tobacco increased resistance against different pathogens. Here, we report the function of OsBIERF3 in rice immunity and abiotic stress tolerance. Expression of OsBIERF3 was induced by Xanthomonas oryzae pv. oryzae, hormones (e.g., salicylic acid, methyl jasmonate, 1-aminocyclopropane-1-carboxylic acid, and abscisic acid), and abiotic stress (e.g., drought, salt and cold stress). OsBIERF3 has transcriptional activation activity that depends on its C-terminal region. The OsBIERF3-overexpressing (OsBIERF3-OE) plants exhibited increased resistance while OsBIERF3-suppressed (OsBIERF3-Ri) plants displayed decreased resistance to Magnaporthe oryzae and X. oryzae pv. oryzae. A set of genes including those for PRs and MAPK kinases were up-regulated in OsBIERF3-OE plants. Cell wall biosynthetic enzyme genes were up-regulated in OsBIERF3-OE plants but down-regulated in OsBIERF3-Ri plants; accordingly, cell walls became thicker in OsBIERF3-OE plants but thinner in OsBIERF3-Ri plants than WT plants. The OsBIERF3-OE plants attenuated while OsBIERF3-Ri plants enhanced cold tolerance, accompanied by altered expression of cold-responsive genes and proline accumulation. Exogenous abscisic acid and 1-aminocyclopropane-1-carboxylic acid, a precursor of ethylene biosynthesis, restored the attenuated cold tolerance in OsBIERF3-OE plants while exogenous AgNO3, an inhibitor of ethylene action, significantly suppressed the enhanced cold tolerance in OsBIERF3-Ri plants. These data demonstrate that OsBIERF3 positively contributes to immunity against M. oryzae and X. oryzae pv. oryzae but negatively regulates cold stress tolerance in rice.
Collapse
|
38
|
Abdullah SNA, Azzeme AM, Yousefi K. Fine-Tuning Cold Stress Response Through Regulated Cellular Abundance and Mechanistic Actions of Transcription Factors. FRONTIERS IN PLANT SCIENCE 2022; 13:850216. [PMID: 35422820 PMCID: PMC9002269 DOI: 10.3389/fpls.2022.850216] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/04/2022] [Indexed: 05/11/2023]
Abstract
Inflictions caused by cold stress can result in disastrous effects on the productivity and survival of plants. Cold stress response in plants requires crosstalk between multiple signaling pathways including cold, heat, and reactive oxygen species (ROS) signaling networks. CBF, MYB, bHLH, and WRKY families are among the TFs that function as key players in the regulation of cold stress response at the molecular level. This review discusses some of the latest understanding on the regulation of expression and the mechanistic actions of plant TFs to address cold stress response. It was shown that the plant response consists of early and late responses as well as memory reprogramming for long-term protection against cold stress. The regulatory network can be differentiated into CBF-dependent and independent pathways involving different sets of TFs. Post-transcriptional regulation by miRNAs, control during ribosomal translation process, and post-translational regulation involving 26S proteosomic degradation are processes that affect the cellular abundance of key regulatory TFs, which is an important aspect of the regulation for cold acclimation. Therefore, fine-tuning of the regulation by TFs for adjusting to the cold stress condition involving the dynamic action of protein kinases, membrane ion channels, adapters, and modifiers is emphasized in this review.
Collapse
Affiliation(s)
- Siti Nor Akmar Abdullah
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
- Laboratory of Agronomy and Sustainable Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang, Malaysia
- *Correspondence: Siti Nor Akmar Abdullah,
| | - Azzreena Mohamad Azzeme
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kobra Yousefi
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
39
|
Bhar A, Chakraborty A, Roy A. Plant Responses to Biotic Stress: Old Memories Matter. PLANTS (BASEL, SWITZERLAND) 2021; 11:84. [PMID: 35009087 PMCID: PMC8747260 DOI: 10.3390/plants11010084] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 05/20/2023]
Abstract
Plants are fascinating organisms present in most ecosystems and a model system for studying different facets of ecological interactions on Earth. In the environment, plants constantly encounter a multitude of abiotic and biotic stresses. The zero-avoidance phenomena make them more resilient to such environmental odds. Plants combat biotic stress or pathogenic ingression through a complex orchestration of intracellular signalling cascades. The plant-microbe interaction primarily relies on acquired immune response due to the absence of any specialised immunogenic cells for adaptive immune response. The generation of immune memory is mainly carried out by T cells as part of the humoral immune response in animals. Recently, prodigious advancements in our understanding of epigenetic regulations in plants invoke the "plant memory" theory afresh. Current innovations in cutting-edge genomic tools have revealed stress-associated genomic alterations and strengthened the idea of transgenerational memory in plants. In plants, stress signalling events are transferred as genomic imprints in successive generations, even without any stress. Such immunogenic priming of plants against biotic stresses is crucial for their eco-evolutionary success. However, there is limited literature capturing the current knowledge of the transgenerational memory of plants boosting biotic stress responses. In this context, the present review focuses on the general concept of memory in plants, recent advancements in this field and comprehensive implications in biotic stress tolerance with future perspectives.
Collapse
Affiliation(s)
- Anirban Bhar
- Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, West Bengal, India
| | - Amrita Chakraborty
- EVA4.0-Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16500 Prague, Czech Republic
| | - Amit Roy
- EVA4.0-Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16500 Prague, Czech Republic
| |
Collapse
|
40
|
Transcriptional Association between mRNAs and Their Paired Natural Antisense Transcripts Following Fusarium oxysporum Inoculation in Brassica rapa L. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae8010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Long noncoding RNAs (lncRNAs) play important roles in abiotic and biotic stress responses; however, studies on the mechanism of regulation of lncRNA expression are limited in plants. The present study examined the relationship between lncRNA expression level and two active histone modifications (H3K4me3 and H3K36me3) in Brassica rapa. Both histone marks were enriched in the chromatin regions encoding lncRNAs, especially around the transcription start site. The transcription level of long intergenic noncoding RNAs was positively associated with the level of H3K4me3 and H3K36me3, while this association was not observed in natural antisense RNAs (NATs) and intronic noncoding RNAs. As coordinate expression of mRNAs and paired NATs under biotic stress treatment has been identified, the transcriptional relationship between mRNAs and their paired NATs following Fusarium oxysporum f. sp. conglutinans (Foc) inoculation was examined. A positive association of expression levels between mRNAs and their paired NATs following Foc inoculation was observed. This association held for several defense-response-related genes and their NAT pairs. These results suggest that coordinate expression of mRNAs and paired NATs plays a role in the defense response against Foc.
Collapse
|
41
|
Liu J, Chang C. Concerto on Chromatin: Interplays of Different Epigenetic Mechanisms in Plant Development and Environmental Adaptation. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122766. [PMID: 34961235 PMCID: PMC8705648 DOI: 10.3390/plants10122766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 05/26/2023]
Abstract
Epigenetic mechanisms such as DNA methylation, histone post-translational modifications, chromatin remodeling, and noncoding RNAs, play important roles in regulating plant gene expression, which is involved in various biological processes including plant development and stress responses. Increasing evidence reveals that these different epigenetic mechanisms are highly interconnected, thereby contributing to the complexity of transcriptional reprogramming in plant development processes and responses to environmental stresses. Here, we provide an overview of recent advances in understanding the epigenetic regulation of plant gene expression and highlight the crosstalk among different epigenetic mechanisms in making plant developmental and stress-responsive decisions. Structural, physical, transcriptional and metabolic bases for these epigenetic interplays are discussed.
Collapse
|
42
|
Chiusano ML, Incerti G, Colantuono C, Termolino P, Palomba E, Monticolo F, Benvenuto G, Foscari A, Esposito A, Marti L, de Lorenzo G, Vega-Muñoz I, Heil M, Carteni F, Bonanomi G, Mazzoleni S. Arabidopsis thaliana Response to Extracellular DNA: Self Versus Nonself Exposure. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081744. [PMID: 34451789 PMCID: PMC8400022 DOI: 10.3390/plants10081744] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/14/2023]
Abstract
The inhibitory effect of extracellular DNA (exDNA) on the growth of conspecific individuals was demonstrated in different kingdoms. In plants, the inhibition has been observed on root growth and seed germination, demonstrating its role in plant-soil negative feedback. Several hypotheses have been proposed to explain the early response to exDNA and the inhibitory effect of conspecific exDNA. We here contribute with a whole-plant transcriptome profiling in the model species Arabidopsis thaliana exposed to extracellular self- (conspecific) and nonself- (heterologous) DNA. The results highlight that cells distinguish self- from nonself-DNA. Moreover, confocal microscopy analyses reveal that nonself-DNA enters root tissues and cells, while self-DNA remains outside. Specifically, exposure to self-DNA limits cell permeability, affecting chloroplast functioning and reactive oxygen species (ROS) production, eventually causing cell cycle arrest, consistently with macroscopic observations of root apex necrosis, increased root hair density and leaf chlorosis. In contrast, nonself-DNA enters the cells triggering the activation of a hypersensitive response and evolving into systemic acquired resistance. Complex and different cascades of events emerge from exposure to extracellular self- or nonself-DNA and are discussed in the context of Damage- and Pathogen-Associated Molecular Patterns (DAMP and PAMP, respectively) responses.
Collapse
Affiliation(s)
- Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), Stazione Zoologica “Anton Dohrn”, 80121 Napoli, Italy;
- Correspondence: (M.L.C.); (S.M.)
| | - Guido Incerti
- Department of Agri-Food, Animal and Environmental Sciences, University of Udine, 33100 Udine, Italy;
| | - Chiara Colantuono
- Telethon Institute of Genetics and Medicine, via campi Flegrei, 34 Pozzuoli, 80078 Napoli, Italy;
| | - Pasquale Termolino
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), 80055 Portici, Italy;
| | - Emanuela Palomba
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), Stazione Zoologica “Anton Dohrn”, 80121 Napoli, Italy;
| | - Francesco Monticolo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
| | - Giovanna Benvenuto
- Biology and Evolution of Marine Organisms Department (BEOM), Stazione Zoologica “Anton Dohrn”, 80121 Napoli, Italy;
| | - Alessandro Foscari
- Dipartimento di Scienze della Vita, University of Trieste, 34127 Trieste, Italy;
| | - Alfonso Esposito
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy;
| | - Lucia Marti
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.d.L.)
| | - Giulia de Lorenzo
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.d.L.)
| | - Isaac Vega-Muñoz
- Departemento de Ingeniería Genética, CINVESTAV-Irapuato, Guanajuato 36821, Mexico; (I.V.-M.); (M.H.)
| | - Martin Heil
- Departemento de Ingeniería Genética, CINVESTAV-Irapuato, Guanajuato 36821, Mexico; (I.V.-M.); (M.H.)
| | - Fabrizio Carteni
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
| | - Giuliano Bonanomi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
- Correspondence: (M.L.C.); (S.M.)
| |
Collapse
|