1
|
Szkudelski T, Szkudelska K. The relevance of the heme oxygenase system in alleviating diabetes-related hormonal and metabolic disorders. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167552. [PMID: 39490940 DOI: 10.1016/j.bbadis.2024.167552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Heme oxygenase (HO) is an enzyme that catalyzes heme degradation. HO dysfunction is linked to various pathological conditions, including diabetes. Results of animal studies indicate that HO expression and activity are downregulated in experimentally induced diabetes. This is associated with severe hormonal and metabolic disturbances. However, these pathological changes have been shown to be reversed by therapy with HO activators. In animals with experimentally induced diabetes, HO was upregulated by genetic manipulation or by pharmacological activators such as hemin and cobalt protoporphyrin. Induction of HO alleviated elevated blood glucose levels and improved insulin action, among other effects. This effect resulted from beneficial changes in the main insulin-sensitive tissues, i.e., the skeletal muscle, the liver, and the adipose tissue. The action of HO activators was due to positive alterations in pivotal signaling molecules and regulatory enzymes. Furthermore, diabetes-related oxidative and inflammatory stress was reduced due to HO induction. HO upregulation was effective in various animal models of type 1 and type 2 diabetes. These data suggest the possibility of testing HO activators as a potential tool for alleviating hormonal and metabolic disorders in people with diabetes.
Collapse
Affiliation(s)
- Tomasz Szkudelski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland.
| | - Katarzyna Szkudelska
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland.
| |
Collapse
|
2
|
Yaribeygi H, Kashian K, Moghaddam KI, Karim SR, Bagheri N, Karav S, Jamialahmadi T, Rizzo M, Sahebkar A. Hepatic effects of GLP-1 mimetics in diabetic milieu: A mechanistic review of involved pathways. J Diabetes Complications 2025; 39:108928. [PMID: 39644538 DOI: 10.1016/j.jdiacomp.2024.108928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Patients with diabetic are at a higher risk of developing hepatic disorders compared to non-diabetic individuals. This increased risk can be attributed to the diabetic environment, which triggers and exacerbates harmful pathways involved in both diabetic complications and hepatic disorders. Therefore, it is important to consider the use of antidiabetic agents that offer benefits beyond glycemic control and have positive effects on liver tissues. Glucagon-like peptide-1 (GLP-1) mimetics are a novel class of antidiabetic medications known for their potent blood sugar-lowering effects. Emerging evidence suggests that these drugs also have favorable effects on the liver. However, the precise effects and underlying mechanisms are not yet fully understood. In this review, we aim to provide a mechanistic perspective on the liver benefits of GLP-1 mimetics and outline the mediating mechanisms involved.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Kiana Kashian
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | | | | | - Narges Bagheri
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Manfredi Rizzo
- School of Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Italy; Department of Biochemistry, Mohamed Bin Rashid University, Dubai, United Arab Emirates
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Zeng W, Wang L, Wang C, Xiong X, Huang Q, Chen S, Liu C, Liu W, Wang Y, Huang Q. SENP1 prevents high fat diet-induced non-alcoholic fatty liver diseases by regulating mitochondrial dynamics. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167527. [PMID: 39332783 DOI: 10.1016/j.bbadis.2024.167527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/12/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
Mitochondrial dynamics plays a crucial role in the occurrence and development of non-alcoholic fatty liver diseases (NAFLD). SENP1, a SUMO-specific protease, catalyzes protein de-SUMOylation and involves in various physiological and pathological processes. However, the exact role of SENP1 in NAFLD remains unclear. Therefore, we investigated the regulatory role of SENP1 in mitochondrial dynamics during the progression of NAFLD. In the study, the NAFLD in vivo model induced by high fat diet (HFD) and in vitro model induced by free fatty acids (FFA) were established to investigate the role and underlying mechanism of SENP1 through detecting mitochondrial morphology and dynamics. Our results showed that the down-regulation of SENP1 expression and the mitochondrial dynamics dysregulation occurred in the NAFLD, evidenced as mitochondrial fragmentation, up-regulation of p-Drp1 ser616 and down-regulation of MFN2, OPA1. However, over-expression of SENP1 significantly alleviated the NAFLD, rectified the mitochondrial dynamics disorder, reduced Cyt-c release and ROS levels induced by FFA or HFD; moreover, the over-expression of SENP1 also reduced the SUMOylation levels of Drp1 and prevented the Drp1 translocation to mitochondria. Our findings suggest that the possible mechanisms of SENP1 were through rectifying the mitochondrial dynamics disorder, reducing Cyt-c release and ROS-mediated oxidative stress. The findings would provide a novel target for the prevention and treatment of NALFD.
Collapse
Affiliation(s)
- Wenjing Zeng
- Department of Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Li Wang
- Department of Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Chaowen Wang
- Department of Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xiaowei Xiong
- Department of Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Qianqian Huang
- Department of Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Sheng Chen
- Department of Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Chen Liu
- Department of Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Wentao Liu
- Department of Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Yuan Wang
- Department of Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Qiren Huang
- Department of Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
4
|
Longo L, Guerreiro GTS, Behrens L, Pereira MHM, Pinzon CE, Cerski CTS, Uribe-Cruz C, Álvares-da-Silva MR. Rifaximin prophylaxis in MASLD‑hepatocellular carcinoma: Lessons from a negative animal model. Biomed Rep 2025; 22:4. [PMID: 39529613 PMCID: PMC11552077 DOI: 10.3892/br.2024.1882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/13/2024] [Indexed: 11/16/2024] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) has been rising, particularly among individuals diagnosed with metabolic dysfunction-associated steatotic liver disease. In the present study, the prophylactic effects of rifaximin (RIF) on HCC, inflammatory markers and cardiovascular risk (CVR) were investigated in an animal model. Adult Sprague-Dawley rats were randomly allocated into three groups (n=10, each): Control [standard diet/water plus gavage with vehicle (Veh)], HCC [high-fat choline deficient diet (HFCD)/diethylnitrosamine (DEN) in drinking water/Veh gavage] and RIF [HFCD/DEN/RIF (50 mg/kg/day) gavage] groups. After euthanasia at week 16, biochemical/inflammatory markers and the liver histology were assessed. The results demonstrated that the HCC and RIF animals had a significant increase in fresh liver weight, liver weight/body weight ratio, serum total cholesterol (TC), high-density lipoprotein-cholesterol, triglycerides, hepatic lipid accumulation and hepatic concentration of triglycerides and TC, relative to the controls (P<0.001, for all). Additionally, the HCC and RIF animals had higher plasminogen activator inhibitor, intercellular adhesion molecule-1, E-selectin and CVR scores than the controls (P<0.001, for all). The HCC animals had higher interleukin (IL)-1β (P=0.011), IL-10 (P<0.001), toll-like receptor-2 (P=0.012), lipopolysaccharide-binding protein (P=0.018) and metalloproteinase-2 (P=0.003) levels than the RIF animals. Furthermore, liver steatosis, inflammation and fibrosis, along with increased collagen fiber deposition occurred in the HCC and RIF groups. However, HCC occurred only in 2 RIF rats. In conclusion, although most animals did not develop HCC in the present study, RIF positively affected liver inflammation markers involved in steatohepatitis pathogenesis.
Collapse
Affiliation(s)
- Larisse Longo
- Graduate Program in Gastroenterology and Hepatology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil
| | - Gabriel Tayguara Silveira Guerreiro
- Graduate Program in Gastroenterology and Hepatology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil
| | - Luiza Behrens
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil
| | - Matheus Henrique Mariano Pereira
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil
| | - Carlos Eduardo Pinzon
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil
| | - Carlos Thadeu Schmidt Cerski
- Graduate Program in Gastroenterology and Hepatology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
- Unit of Surgical Pathology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil
| | - Carolina Uribe-Cruz
- Graduate Program in Gastroenterology and Hepatology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil
- Faculty of Health Sciences, Catholic University of The Missions, Posadas, Misiones 3300, Argentina
| | - Mário Reis Álvares-da-Silva
- Graduate Program in Gastroenterology and Hepatology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil
- Division of Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil
- National Council for Scientific and Technological Development Researcher, Brasília 71.605-001, Brazil
| |
Collapse
|
5
|
Lee Y, Tassey J, Sarkar A, Levi JN, Lee S, Liu NQ, Drake AC, Nguyen F, Magallanes J, Stevic U, Lu J, Ge D, Tang H, Mkaratigwa T, Yang J, Bian F, Shkhyan R, Bonaguidi MA, Evseenko D. Pharmacological inactivation of a non-canonical gp130 signaling arm attenuates chronic systemic inflammation and multimorbidity induced by a high-fat diet. Sci Rep 2024; 14:31151. [PMID: 39732741 DOI: 10.1038/s41598-024-82414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Interleukin-6 (IL-6) is a major pro-inflammatory cytokine that demonstrates a robust correlation with age and body mass index (BMI) as part of the senescence-associated secretory phenotype. IL-6 cytokines also play a crucial role in metabolic homeostasis and regenerative processes primarily via the canonical STAT3 pathway. Thus, selective modulation of IL-6 signaling may offer a unique opportunity for therapeutic interventions. Our recent studies identified a novel non-canonical signaling pathway that involves prolonged activation of SRC family of kinases (SFKs) by IL-6/gp130, where genetic or pharmacological inhibition of this pathway was protective in several acute injury models. This study was designed to assess the effect of a small molecule (R159) that inhibits the non-canonical signaling in a mouse model of multimorbidity induced by chronic inflammation. Aged mice were fed a high-fat diet (HFD) to exacerbate chronic inflammation and inflammaging-related conditions, and R159 significantly decreased systemic inflammatory responses in adipose tissue and liver. R159 was protective against trabecular bone and articular cartilage loss and markedly prevented neurogenesis decline. Moreover, R159 reduced weight gain induced by HFD and increased physical activity levels. These findings suggest that selective pharmacological inhibition of SFK signaling downstream of IL6/gp130 offers a promising strategy to alleviate systemic chronic inflammation and relevant multimorbidity.
Collapse
Affiliation(s)
- Youngjoo Lee
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - Jade Tassey
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arijita Sarkar
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jonathan N Levi
- Department of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Siyoung Lee
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nancy Q Liu
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrew C Drake
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Falisha Nguyen
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - Jenny Magallanes
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - Una Stevic
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - Jinxiu Lu
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dawei Ge
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Orthopedics Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hanhan Tang
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tadiwanashe Mkaratigwa
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jichen Yang
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fangzhou Bian
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ruzanna Shkhyan
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael A Bonaguidi
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA
- Department of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Basile L, Cannarella R, Magni P, Condorelli RA, Calogero AE, La Vignera S. Role of gliflozins on hepatocellular carcinoma progression: a systematic synthesis of preclinical and clinical evidence. Expert Opin Drug Saf 2024:1-14. [PMID: 39714931 DOI: 10.1080/14740338.2024.2447057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/02/2024] [Accepted: 12/22/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION The risk of HCC is twice as high in diabetic patients compared to non-diabetic ones, suggesting that diabetes advances carcinogenesis in the liver through a variety of mechanisms. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have been shown to improve liver outcomes, emerging as promising agents to treat hepatocellular carcinoma (HCC) in patients with type 2 diabetes mellitus (T2DM). METHODS We searched PubMed and Scopus databases for articles presenting an association between SGLT2is and HCC to explore the putative mechanisms of action underlying the anti-proliferative activity of SGLT2is. RESULTS A total of 24 articles were selected for inclusion, of which 14 were preclinical and 10 were clinical. Preclinical studies were mainly focused on canagliflozin, used alone or in combination with other drugs. CONCLUSIONS Overall, canagliflozin had a negative effect on HCC cell proliferation by interfering with glucose-dependent and independent metabolic pathways, negatively impacting angiogenesis, and inducing apoptosis in in-vitro cell models. In-vivo, a protective effect on hepatic steatosis and fibrosis and HCC development has been reported. Human studies showed a lower risk of developing HCC in patients on SGLT2is. However, this is supported by retrospective cohort studies. Clinical trials are needed to confirm the causal relationship between SGLT2i administration and HCC development.
Collapse
Affiliation(s)
- Livia Basile
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
- IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
7
|
Du H, Chen HB, Zhao Y. Exploring a new chapter in traditional Chinese medicine: The potential of Calculus bovis in liver cancer treatment. World J Clin Oncol 2024; 15:1520-1527. [PMID: 39720650 PMCID: PMC11514369 DOI: 10.5306/wjco.v15.i12.1520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024] Open
Abstract
In the ongoing quest for new treatments in medicine, traditional Chinese medicine offers unique insights and potential. Recently, studies on the ability of Calculus bovis to inhibit M2-type tumour-associated macrophage polarisation by modulating the Wnt/β-catenin signalling pathway to suppress liver cancer have undoubtedly revealed new benefits and hope for this field of research. The purpose of this article is to comment on this study and explore its strengths and weaknesses, thereby providing ideas for the future treatment of liver cancer.
Collapse
Affiliation(s)
- Huang Du
- Department of Gastroenterology, Minqing County General Hospital, Fuzhou 350800, Fujian Province, China
| | - Hong-Bin Chen
- Department of Gastroenterology I, Sanming First Hospital, Fujian Medical University, Sanming 365000, Fujian Province, China
| | - Yu Zhao
- Department of Gastroenterology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Lower Saxony, Germany
| |
Collapse
|
8
|
Li N, Hao L, Li S, Deng J, Yu F, Zhang J, Nie A, Hu X. The NRF-2/HO-1 Signaling Pathway: A Promising Therapeutic Target for Metabolic Dysfunction-Associated Steatotic Liver Disease. J Inflamm Res 2024; 17:8061-8083. [PMID: 39512865 PMCID: PMC11542495 DOI: 10.2147/jir.s490418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive liver disorder with a rising prevalence. It begins with lipid accumulation in hepatocytes and gradually progresses to Metabolic-associated steatohepatitis (MASH), fibrosis, cirrhosis, and potentially hepatocellular carcinoma (HCC). The pathophysiology of MASLD is complex and involves multiple factors, with oxidative stress playing a crucial role. Oxidative stress drives the progression of MASLD by causing cellular damage, inflammatory responses, and fibrosis, making it a key pathogenic mechanism. The Nuclear Factor Erythroid 2-Related Factor 2 / Heme Oxygenase-1 (Nrf2/HO-1) signaling axis provides robust multi-organ protection against a spectrum of endogenous and exogenous insults, particularly oxidative stress. It plays a pivotal role in mediating antioxidant, anti-inflammatory, and anti-apoptotic responses. Many studies indicate that activating the Nrf2/HO-1 signaling pathway can significantly mitigate the progression of MASLD. This article examines the role of the Nrf2/HO-1 signaling pathway in MASLD and highlights natural compounds that protect against MASLD by targeting Nrf2/HO-1 activation. The findings indicate that the Nrf2/HO-1 signaling pathway holds great promise as a therapeutic target for MASLD.
Collapse
Affiliation(s)
- Na Li
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Liyuan Hao
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Shenghao Li
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jiali Deng
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Fei Yu
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Junli Zhang
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Aiyu Nie
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
9
|
Hermanson JB, Tolba SA, Chrisler EA, Leone VA. Gut microbes, diet, and genetics as drivers of metabolic liver disease: a narrative review outlining implications for precision medicine. J Nutr Biochem 2024; 133:109704. [PMID: 39029595 PMCID: PMC11480923 DOI: 10.1016/j.jnutbio.2024.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly increasing in prevalence, impacting over a third of the global population. The advanced form of MASLD, Metabolic dysfunction-associated steatohepatitis (MASH), is on track to become the number one indication for liver transplant. FDA-approved pharmacological agents are limited for MASH, despite over 400 ongoing clinical trials, with only a single drug (resmetirom) currently on the market. This is likely due to the heterogeneous nature of disease pathophysiology, which involves interactions between highly individualized genetic and environmental factors. To apply precision medicine approaches that overcome interpersonal variability, in-depth insights into interactions between genetics, nutrition, and the gut microbiome are needed, given that each have emerged as dynamic contributors to MASLD and MASH pathogenesis. Here, we discuss the associations and molecular underpinnings of several of these factors individually and outline their interactions in the context of both patient-based studies and preclinical animal model systems. Finally, we highlight gaps in knowledge that will require further investigation to aid in successfully implementing precision medicine to prevent and alleviate MASLD and MASH.
Collapse
Affiliation(s)
- Jake B Hermanson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Samar A Tolba
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Evan A Chrisler
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Vanessa A Leone
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
10
|
Homan EA, Gilani A, Rubio-Navarro A, Johnson MA, Schaepkens OM, Cortada E, de Lima RP, Stoll L, Lo JC. Complement 3a Receptor 1 on Macrophages and Kupffer cells is not required for the Pathogenesis of Metabolic Dysfunction-Associated Steatotic Liver Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.26.24309550. [PMID: 38978661 PMCID: PMC11230319 DOI: 10.1101/2024.06.26.24309550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Together with obesity and type 2 diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global epidemic. Activation of the complement system and infiltration of macrophages has been linked to progression of metabolic liver disease. The role of complement receptors in macrophage activation and recruitment in MASLD remains poorly understood. In human and mouse, C3AR1 in the liver is expressed primarily in Kupffer cells, but is downregulated in humans with MASLD compared to obese controls. To test the role of complement 3a receptor (C3aR1) on macrophages and liver resident macrophages in MASLD, we generated mice deficient in C3aR1 on all macrophages (C3aR1-MφKO) or specifically in liver Kupffer cells (C3aR1-KpKO) and subjected them to a model of metabolic steatotic liver disease. We show that macrophages account for the vast majority of C3ar1 expression in the liver. Overall, C3aR1-MφKO and C3aR1-KpKO mice have similar body weight gain without significant alterations in glucose homeostasis, hepatic steatosis and fibrosis, compared to controls on a MASLD-inducing diet. This study demonstrates that C3aR1 deletion in macrophages or Kupffer cells, the predominant liver cell type expressing C3aR1, has no significant effect on liver steatosis, inflammation or fibrosis in a dietary MASLD model.
Collapse
Affiliation(s)
- Edwin A. Homan
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, 10021
| | - Ankit Gilani
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, 10021
| | - Alfonso Rubio-Navarro
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, 10021
| | - Maya A. Johnson
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, 10021
| | - Odin M. Schaepkens
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, 10021
| | - Eric Cortada
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, 10021
| | - Renan Pereira de Lima
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, 10021
| | - Lisa Stoll
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, 10021
| | - James C. Lo
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, 10021
| |
Collapse
|
11
|
Huang M, Chen H, Wang H, Wang X, Wang D, Li Y, Zhou Q, Zhang D, Li M, Ma L. Worldwide burden of liver cancer due to metabolic dysfunction-associated steatohepatitis from 1990 to 2019: insights from the Global Burden of Disease study. Front Oncol 2024; 14:1424155. [PMID: 39267839 PMCID: PMC11390418 DOI: 10.3389/fonc.2024.1424155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Metabolic dysfunction-associated steatohepatitis (MASH) is increasingly becoming a prevalent cause of hepatocellular carcinoma (HCC). Our study examines the burden of MASH-related HCC globally, regionally, and nationally, along with associated risk factors from 1990 to 2019, considering variables such as age, sex, and socioeconomic status. Objective We aimed to report the global, regional, and national burden of liver cancer due to MASH and its attributable risk factors between 1990 and 2019, by age, sex, and sociodemographic index (SDI). Methods Utilizing the Global Burden of Disease 2019 project, we analyzed data on prevalence, mortality, and disability-adjusted life years (DALYs) for liver cancer attributable to MASH across 204 countries. We provided counts and rates per 100,000 population, including 95% uncertainty intervals. Results In 2019, there were 46.8 thousand cases of MASH-related HCC, leading to 34.7 thousand deaths, and 795.8 thousand DALYs globally. While the prevalence increased by 19.8% since 1990, the death and DALY rates decreased by 5.3% and 15.1%, respectively. The highest prevalence was in High-income Asia Pacific, with the greatest increases observed in Australasia, Central Asia, and High-income North America. Southern Sub-Saharan Africa reported the highest death rate, while the lowest rates were in parts of Latin America, Central Sub-Saharan Africa, and Eastern Europe. DALY rates were the highest in Southern Sub-Saharan Africa and the lowest in Tropical Latin America. Discussion The burden of MASH-related HCC is expected to rise slightly over the next decade. This disease, which is not associated with the SDI, remains a major public health problem. In addition, the escalating rates of obesity, demographic shifts, and an aging population could position MASH as a leading factor in liver cancer cases, surpassing viral hepatitis. It is imperative, therefore, that the forthcoming years see the implementation of strategic interventions aimed at the early detection and prevention of liver cancer associated with MASH.
Collapse
Affiliation(s)
- Minshan Huang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Hang Chen
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Hui Wang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Xianmei Wang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Da Wang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Yu Li
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Qingqing Zhou
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Dan Zhang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Mengwei Li
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Lanqing Ma
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| |
Collapse
|
12
|
Zhou C, Basnet R, Zhen C, Ma S, Guo X, Wang Z, Yuan Y. Trimethylamine N-oxide promotes the proliferation and migration of hepatocellular carcinoma cell through the MAPK pathway. Discov Oncol 2024; 15:346. [PMID: 39133354 PMCID: PMC11319703 DOI: 10.1007/s12672-024-01178-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024] Open
Abstract
Trimethylamine-n-oxide (TMAO) is a metabolite of intestinal flora following the consumption of phosphatidylcholine-rich foods. Clinical cohort studies have shown that plasma TMAO may be a risk factor for cancer development, including hepatocellular carcinoma (HCC), but fundamental research data supporting this hypothesis are lacking. In this study, HCC cells were treated with TMAO in vivo and in vitro to evaluate the effect on some indicators related to the malignancy degree of HCC, and the relevant molecular mechanisms were explored. In vitro, TMAO promoted the proliferation and migration of HCC cells and significantly upregulated the expression of proteins related to epithelial-mesenchymal transformation (EMT). In vivo, after HCC cells were inoculated subcutaneously in nude mice given water containing TMAO, the tumors grew faster and larger than those in the mice given ordinary water. The immunohistochemistry analysis showed that proliferation, migration and EMT-related proteins in the tumor tissues were significantly upregulated by TMAO. Furthermore, TMAO obviously enhanced the phosphorylation of MAPK signaling molecules in vivo and in vitro. In conclusion, TMAO promotes the proliferation, migration and EMT of HCC cells by activating the MAPK pathway.
Collapse
Affiliation(s)
- Chunfang Zhou
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Renmin Road 32, Shiyan, Hubei, 442000, People's Republic of China
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Chaoyang Road 39, Shiyan, Hubei, 442000, People's Republic of China
| | - Rina Basnet
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Renmin Road 32, Shiyan, Hubei, 442000, People's Republic of China
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Chaoyang Road 39, Shiyan, Hubei, 442000, People's Republic of China
| | - Chenxiang Zhen
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Renmin Road 32, Shiyan, Hubei, 442000, People's Republic of China
| | - Shinan Ma
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Renmin Road 32, Shiyan, Hubei, 442000, People's Republic of China
| | - Xingrong Guo
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Renmin Road 32, Shiyan, Hubei, 442000, People's Republic of China
| | - Zhongxia Wang
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Chaoyang Road 39, Shiyan, Hubei, 442000, People's Republic of China.
| | - Yahong Yuan
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Renmin Road 32, Shiyan, Hubei, 442000, People's Republic of China.
- Hubei Provincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Renmin Road 32, Shiyan, Hubei, 442000, People's Republic of China.
| |
Collapse
|
13
|
Yen I, Li H. The role of vascular adhesion protein-1 in diabetes and diabetic complications. J Diabetes Investig 2024; 15:982-989. [PMID: 38581224 PMCID: PMC11292389 DOI: 10.1111/jdi.14209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024] Open
Abstract
Vascular adhesion protein-1 (VAP-1) plays a dual role with its adhesive and enzymatic properties, facilitating leukocyte migration to sites of inflammation and catalyzing the breakdown of primary amines into harmful by-products, which are linked to diabetic complications. Present in various tissues, VAP-1 also circulates in a soluble form in the bloodstream. Diabetes is associated with several complications such as cardiovascular disease, retinopathy, nephropathy, and neuropathy, significantly contributing to disability and mortality. These complications arise from hyperglycemia-induced oxidative stress, inflammation, and the formation of advanced glycation end-products (AGEs). Earlier research, including our own from the 1990s and early 2000s, has underscored the critical role of VAP-1 in these pathological processes, prompting extensive investigation into its contribution to diabetic complications. In this review, we examine the involvement of VAP-1 in diabetes and its complications, alongside its link to other conditions related to diabetes, such as cancer and metabolic dysfunction-associated fatty liver disease. We also explore the utility of soluble VAP-1 as a biomarker for diabetes, its complications, and other related conditions. Since the inhibition of VAP-1 to treat diabetic complications is a novel and promising treatment option, further studies are needed to translate the beneficial effect of VAP-1 inhibitors observed in animal studies to clinical trials recruiting human subjects. Besides, future studies should focus on using serum sVAP-1 levels for risk assessment in diabetic patients, identifying those who need intensive glycemic control, and determining the patient population that would benefit most from VAP-1 inhibitor therapies.
Collapse
Affiliation(s)
- I‐Weng Yen
- Division of Endocrinology and Metabolism, Department of Internal MedicineNational Taiwan University Hospital Hsin‐Chu BranchHsinchuTaiwan
| | - Hung‐Yuan Li
- Division of Endocrinology and Metabolism, Department of Internal MedicineNational Taiwan University HospitalTaipeiTaiwan
| |
Collapse
|
14
|
Hosseini SA, Shayesteh AA, Hashemi SJ, Rahimi Z, Saki N, Bavi Behbahani H, Cheraghian B, Alipour M. The association between healthy eating index-2015 with anthropometric, cardiometabolic and hepatic indices among patients with non-alcoholic fatty liver disease. BMC Gastroenterol 2024; 24:159. [PMID: 38724894 PMCID: PMC11084087 DOI: 10.1186/s12876-024-03222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Obesity, cardiovascular diseases, and metabolic disorders are common problems among participants with non-alcoholic fatty liver disease (NAFLD). However, the association between these problems and the healthy eating index-2015 (HEI-2015) remains unknown. Although the HEI-2015 originated from American dietary guidelines, its comprehensive evaluation of diet quality provides valuable insights for various populations, including Iranians. Therefore, the objective of this study was to investigate the association between anthropometric, hepatic, and cardio-metabolic indices with HEI-2015 scores in participants with NAFLD. METHODS We conducted a cross-sectional analysis of data from the Hoveyzeh Cohort Study, which included adults aged 35 to 70 years between 2016 and 2018. A total of 664 participant with NAFLD (452 females and 212 males) were included in the analysis. The HEI-2015 was assessed using the Food Frequency Questionnaire (FFQ). Various indices, including the body shape index (ABSI), atherogenic index of plasma (AIP), visceral adiposity index (VAI), lipid accumulation product (LAP), cardiometabolic index (CMI), lipoprotein combine index (LCI), AST/ALT ratio, ALD/NAFLD index, and hepatic steatosis index (HSI), were calculated. RESULTS No significant differences were observed in anthropometric, cardio-metabolic, and hepatic indices across the quartiles of HEI-2015. However, among participants with NAFLD, men had significantly higher AIP and LCI levels, while women had significantly higher BMI, ABSI, VAI, LAP, and CMI levels. Additionally, women with NAFLD exhibited higher AST/ALT and HSI levels but lower ALD/NAFLD levels compared to men with NAFLD. Linear regression analysis among men with NAFLD revealed a significant negative correlation between HEI-2015 score and HSI in both the unadjusted model (β=-0.131, SE = 0.058, p = 0.024) and the adjusted model for energy intake (β=-0.129, SE = 0.058, p = 0.028). CONCLUSION The present study demonstrated a correlation between lower HEI-2015 scores and an increased risk of steatosis in men with NAFLD. Moreover, our findings highlighted gender-related differences in NAFLD and cardio-metabolic disorders.
Collapse
Affiliation(s)
- Seyed Ahmad Hosseini
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Akbar Shayesteh
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Jalal Hashemi
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Rahimi
- Hearing Research Center, Clinical Sciences Research Institute, Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Saki
- Hearing Research Center, Clinical Sciences Research Institute, Department of Otolaryngology, Head and Neck Surgery, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Bavi Behbahani
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Bahman Cheraghian
- Hearing Research Center, Clinical Sciences Research Institute, Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Meysam Alipour
- Department of Nutrition, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran.
| |
Collapse
|
15
|
Greco S, Campigotto M, D’Amuri A, Fabbri N, Passaro A. Dyslipidemia, Cholangitis and Fatty Liver Disease: The Close Underexplored Relationship: A Narrative Review. J Clin Med 2024; 13:2714. [PMID: 38731243 PMCID: PMC11084647 DOI: 10.3390/jcm13092714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
In assessing individual cardiovascular risk, dyslipidemia is known for emerging as a pivotal factor significantly contributing to major cardiovascular events. However, dyslipidemic patients frequently present with concurrent medical conditions, each with varying frequencies of occurrence; cholangitis, whether acute or chronic, and hepatic steatosis, along with associated conditions, are strongly associated with specific forms of dyslipidemia, and these associations are reasonably well elucidated. Conversely, evidence linking biliary disease to hepatic steatosis is comparatively scant. This narrative review aims to bridge this gap in knowledge concerning the interplay between dyslipidemia, cholangitis, and hepatic steatosis. By addressing this gap, clinicians can better identify patients at heightened risk of future major cardiovascular events, facilitating more targeted interventions and management strategies. The review delves into the intricate relationships between dyslipidemia and these hepatic and biliary clinical conditions, shedding light on potential mechanisms underlying their associations. Understanding these complex interactions is crucial for optimizing cardiovascular risk assessment as well and devising tailored treatment approaches for patients with dyslipidemia and associated hepatic disorders. Moreover, elucidating these connections empowers clinicians with the knowledge needed to navigate the multifaceted landscape of cardiovascular risk assessment and management effectively. By exploring the intricate relationships between dyslipidemia, cholangitis, and hepatic steatosis (without forgetting the possible clinical consequences of hepatic steatosis itself), this review not only contributes to the existing body of knowledge but also offers insights into potential avenues for further research and clinical practice. Thus, it serves as a valuable resource for healthcare professionals striving to enhance patient care and outcomes in the context of cardiovascular disease and associated hepatic conditions.
Collapse
Affiliation(s)
- Salvatore Greco
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, FE, Italy;
- Department of Internal Medicine, Ospedale del Delta, Via Valle Oppio 2, 44023 Lagosanto, FE, Italy
| | - Michele Campigotto
- Gastroenterology and Digestive Endoscopy Unit, ASUGI, Cattinara University Hospital, Strada di Fiume 447, 34149 Trieste, TS, Italy;
| | - Andrea D’Amuri
- General Medicine Unit, Medical Department, ASST Mantova, Ospedale Carlo Poma, Strada Lago Paiolo 10, 46100 Mantova, MN, Italy;
| | - Nicolò Fabbri
- Department of General Surgery, Ospedale del Delta, Via Valle Oppio 2, 44023 Lagosanto, FE, Italy;
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, FE, Italy;
| |
Collapse
|
16
|
Chang YC, Yu MH, Huang HP, Chen DH, Yang MY, Wang CJ. Mulberry leaf extract inhibits obesity and protects against diethylnitrosamine-induced hepatocellular carcinoma in rats. J Tradit Complement Med 2024; 14:266-275. [PMID: 38707917 PMCID: PMC11068992 DOI: 10.1016/j.jtcme.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 05/07/2024] Open
Abstract
Mulberry leaf has been recognized as a traditional Chinese medicinal plant, which was distributed throughout the Asia. The aqueous extract of mulberry leaf extract (MLE) has various biologically active components such as polyphenols and flavonoids. However, the inhibitory effect of MLE in hepatocarcinogenesis is poorly understood. In this study, we determined the role of MLE supplementation in preventing hepatocarcinogenesis in a carcinogen-initiated high-fat diet (HFD)-promoted Sprague-Dawley (SD) rat model. The rats were fed an HFD to induce obesity and spontaneous hepatomas by administering 0.01% diethylnitrosamine (DEN) in their drinking water for 12 weeks (HD group), and also to fed MLE through oral ingestion at daily doses of 0.5%, 1%, or 2%. At the end of the 12-week experimental period, the liver tumors were analyzed to identify markers of oxidative stress and antioxidant enzyme activities, and their serum was analyzed to determine their nutritional status and liver function. Histopathological analysis revealed that MLE supplementation significantly suppressed the severity and incidence of hepatic tumors. Furthermore, compared with the HFD + DEN groups, the expression of protein kinase C (PKC)-α and Rac family small GTPase 1 (Rac1) was lower in the MLE groups. These findings suggest that MLE prevents obesity-enhanced, carcinogen-induced hepatocellular carcinoma development, potentially through the protein kinase C (PKC)α/Rac1 signaling pathway. MLE might be an effective chemoprevention modality for nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH)-related hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yun-Ching Chang
- Department of Health Diet and Industry Management, Chung Shan Medical University, Taichung, 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Meng-Hsun Yu
- Department of Nutrition, Chung Shan Medical University, Taichung, 402, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Hui-Pei Huang
- Department of Biochemistry, School of Medicine, Medical College, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Dong-Hui Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Mon-Yuan Yang
- Department of Health Diet and Industry Management, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Chau-Jong Wang
- Department of Health Diet and Industry Management, Chung Shan Medical University, Taichung, 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
| |
Collapse
|
17
|
Yasin A, Nguyen M, Sidhu A, Majety P, Spitz J, Asgharpour A, Siddiqui MS, Sperling LS, Quyyumi AA, Mehta A. Liver and cardiovascular disease outcomes in metabolic syndrome and diabetic populations: Bi-directional opportunities to multiply preventive strategies. Diabetes Res Clin Pract 2024; 211:111650. [PMID: 38604447 DOI: 10.1016/j.diabres.2024.111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
The incidence and prevalence of metabolic syndrome (MetS) and type 2 diabetes mellitus (T2DM) are rising globally. MetS and T2DM are associated with significant morbidity and mortality, which is partly related to liver and cardiovascular disease. Insulin resistance is central to MetS and T2DM pathophysiology, and drives ectopic fat deposition in the liver, also known as metabolic dysfunction-associated steatotic liver disease (MASLD). MetS and T2DM are not only risk factors for developing MASLD but are also independently associated with disease progression to steatohepatitis, cirrhosis, and hepatocellular carcinoma. In addition to the risk of liver disease, MetS and T2DM are independent risk factors for cardiovascular disease (CVD), including coronary artery disease (CAD) and heart failure (HF). Importantly, there is a bidirectional relationship between liver and CVD due to shared disease pathophysiology in patients with MetS and T2DM. In this review, we have described studies exploring the relationship of MetS and T2DM with MASLD and CVD, independently. Following this we discuss studies evaluating the interplay between liver and cardiovascular risk as well as pragmatic risk mitigation strategies in this patient population.
Collapse
Affiliation(s)
| | | | - Angad Sidhu
- Virginia Commonwealth University, Richmond, VA, US
| | | | - Jared Spitz
- Inova Heart and Vascular Institute, Fairfax, VA, US
| | | | | | | | - Arshed A Quyyumi
- Emory Clinical Cardiovascular Research Institute, Atlanta, Georgia
| | - Anurag Mehta
- Virginia Commonwealth University, Richmond, VA, US.
| |
Collapse
|
18
|
Lee Y, Sarkar A, Tassey J, Levi JN, Lee S, Liu NQ, Drake AC, Magallanes J, Stevic U, Lu J, Ge D, Tang H, Mkaratigwa T, Bian F, Shkhyan R, Bonaguidi M, Evseenko D. Inactivation of a non-canonical gp130 signaling arm attenuates chronic systemic inflammation and multimorbidity induced by a high-fat diet. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588362. [PMID: 38645030 PMCID: PMC11030339 DOI: 10.1101/2024.04.08.588362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Interleukin-6 (IL-6) is a major pro-inflammatory cytokine for which the levels in plasma demonstrate a robust correlation with age and body mass index (BMI) as part of the senescence-associated secretory phenotype. IL-6 cytokines also play a crucial role in metabolic homeostasis and regenerative processes, primarily via the canonical STAT3 pathway. Thus, selective modulation of IL-6 signaling may offer a unique opportunity for therapeutic interventions. Recently, we discovered that a non-canonical signaling pathway downstream of tyrosine (Y) 814 within the intracellular domain of gp130, the IL-6 co-receptor, is responsible for the recruitment and activation of SRC family of kinases (SFK). Mice with constitutive genetic inactivation of gp130 Y814 (F814 mice) show accelerated resolution of inflammatory response and superior regenerative outcomes in skin wound healing and posttraumatic models of osteoarthritis. The current study was designed to explore if selective genetic or pharmacological inhibition of the non-canonical gp130-Y814/SFK signaling reduces systemic chronic inflammation and multimorbidity in a high-fat diet (HFD)-induced model of accelerated aging. F814 mice showed significantly reduced inflammatory response to HFD in adipose and liver tissue, with significantly reduced levels of systemic inflammation compared to wild type mice. F814 mice were also protected from HFD-induced bone loss and cartilage degeneration. Pharmacological inhibition of gp130-Y814/SFK in mice on HFD mirrored the effects observed in F814 mice on HFD; furthermore, this pharmacological treatment also demonstrated a marked increase in physical activity levels and protective effects against inflammation-associated suppression of neurogenesis in the brain tissue compared to the control group. These findings suggest that selective inhibition of SFK signaling downstream of gp130 receptor represents a promising strategy to alleviate systemic chronic inflammation. Increased degenerative changes and tissue senescence are inevitable in obese and aged organisms, but we demonstrated that the systemic response and inflammation-associated multi-morbidity can be therapeutically mitigated.
Collapse
|
19
|
Fajkić A, Jahić R, Hadžović-Džuvo A, Lepara O. Adipocytokines as Predictors of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) Development in Type 2 Diabetes Mellitus Patients. Cureus 2024; 16:e55673. [PMID: 38455340 PMCID: PMC10917643 DOI: 10.7759/cureus.55673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common chronic liver condition. Due to pathophysiological processes, MASLD's relation to type 2 diabetes mellitus (T2DM) is still unclear, especially when the role of adipocytokines is taken into consideration. OBJECTIVE This study aims to examine the potential predictive value of adiponectin and resistin for MASLD in T2DM. PATIENTS AND METHODS In a two-year study, 71 T2DM patients were categorized into MASLD-T2DM and non-MASLD-T2DM groups according to MASLD development. Serum samples were tested for resistin, adiponectin, high-density lipoprotein cholesterol, fasting glucose, and triglycerides. An appropriate equation is used to calculate the adiponectin/resistin (A/R) index. The optimal cut-off values for differentiating MASLD patients from non-MASLD patients were determined using receiver operating characteristic (ROC) curves and the corresponding areas under the curve (AUC). To predict the onset of MASLD in patients with T2DM, a logistic regression analysis was performed. RESULTS There were significant differences in adiponectin (p<0.001), resistin (p<0.001), and A/R index (p<0.001) between T2DM individuals with and without MASLD. The ROC curve for resistin produced an AUC of 0.997 (p<0.001) with a sensitivity of 96.1% and a specificity of 100% for the cut-off point of 253.15. Adiponectin (OR, 0.054; 95% CI, 0.011-0.268; p<0.001) and resistin (OR, 1.745; 95% CI, 1.195-2,548; p=0.004) were found to be independent predictors for MASLD by logistic regression analysis. CONCLUSION This study confirms the potential of adiponectin and resistin as predictors of MASLD development in T2DM.
Collapse
Affiliation(s)
- Almir Fajkić
- Department of Pathophysiology, University of Sarajevo Faculty of Medicine, Sarajevo, BIH
| | - Rijad Jahić
- Department of Internal Medicine, General Hospital "Prim. Dr. Abdulah Nakas", Sarajevo, BIH
| | - Almira Hadžović-Džuvo
- Department of Human Physiology, University of Sarajevo Faculty of Medicine, Sarajevo, BIH
| | - Orhan Lepara
- Department of Human Physiology, University of Sarajevo Faculty of Medicine, Sarajevo, BIH
| |
Collapse
|
20
|
Liu Y, Yu X, Wang Y, Wu J, Feng B, Li M. The role of differentially expressed genes and immune cell infiltration in the progression of nonalcoholic steatohepatitis (NASH) to hepatocellular carcinoma (HCC): a new exploration based on bioinformatics analysis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:1415-1430. [PMID: 38319987 DOI: 10.1080/15257770.2024.2310044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 02/08/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a spectrum of chronic liver disease characterized. The condition ranges from isolated excessive hepatocyte triglyceride accumulation and steatosis (nonalcoholic fatty liver (NAFL), to hepatic triglyceride accumulation plus inflammation and hepatocyte injury (nonalcoholic steatohepatitis (NASH)) and finally to hepatic fibrosis and cirrhosis and/or hepatocellular carcinoma (HCC). However, the mechanism driving this process is not yet clear. Obtain sample microarray from the GEO database. Extract 6 healthy liver samples, 74 nonalcoholic hepatitis samples, 8 liver cirrhosis samples, and 53 liver cancer samples from the GSE164760 dataset. We used the GEO2R tool for differentially expressed genes (DEGs) analysis of disease progression (nonalcoholic hepatitis healthy group, cirrhosis nonalcoholic hepatitis group, and liver cancer cirrhosis group) and necroptosis gene set. Gene set variation analysis (GSVA) is used to evaluate the association between biological pathways and gene features. The STRING database and Cytoscape software were used to establish and visualize protein-protein interaction (PPI) networks and identify the key functional modules of DEGs, drawn factor-target genes regulatory network. Gene Ontology (GO) and KEGG pathway enrichment analyses of DEGs were also performed. Additionally, immune infiltration patterns were analyzed using the cibersort, and the correlation between immune cell-type abundance and DEGs expression was investigated. We further screened and obtained a total of 152 intersecting DEGs from three groups. 23 key genes were obtained through the MCODE plugin. Transcription factors regulating common differentially expressed genes were obtained in the hTFtarget database, and a TF target network diagram was drawn. There are 118 nodes, 251 edges, and 4 clusters in the PPI network. The key genes of the four modules include METAP2, RPL14, SERBP1, EEF2; HR4A1; CANX; ARID1A, UBE2K. METAP2, RPL14, SERBP1 and EEF2 was identified as the key hub genes. CREB1 was identified as the hub TF interacting with those gens by taking the intersection of potential TFs. The types of key gene changes were genetic mutations. It can be seen that the incidence of key gene mutations is 1.7% in EEF2, 0.8% in METAP2, and 0.3% in RPL14, respectively. Finally, We found that the most significant expression differences of the immune infiltrating cells among the three groups, were Tregs and M2, M0 type macrophages. We identified four hub genes METAP2, RPL14, SERBP1 and EEF2 being the most closely with the process from NASH to cirrhosis to HCC. It is beneficial to examine and understand the interaction between hub DEGs and potential regulatory molecules in the process. This knowledge may provide a novel theoretical foundation for the development of diagnostic biomarkers and gene-related therapy targets in the process.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pathology, Dandong Central Hospital, Dandong, Liaoning, China
| | - Xiaohan Yu
- Department of General Surgery, Dandong Central Hospital, Dandong, Liaoning, China
| | - Yuegu Wang
- Department of General Surgery, Dandong Central Hospital, Dandong, Liaoning, China
| | - Jinge Wu
- Department of General Surgery, Dandong Central Hospital, Dandong, Liaoning, China
| | - Bo Feng
- Department of General Surgery, Dandong Central Hospital, Dandong, Liaoning, China
| | - Meng Li
- Department of General Surgery, Dandong Central Hospital, Dandong, Liaoning, China
| |
Collapse
|
21
|
Sun C, Lan F, Zhou Q, Guo X, Jin J, Wen C, Guo Y, Hou Z, Zheng J, Wu G, Li G, Yan Y, Li J, Ma Q, Yang N. Mechanisms of hepatic steatosis in chickens: integrated analysis of the host genome, molecular phenomics and gut microbiome. Gigascience 2024; 13:giae023. [PMID: 38837944 PMCID: PMC11152177 DOI: 10.1093/gigascience/giae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 01/14/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
Hepatic steatosis is the initial manifestation of abnormal liver functions and often leads to liver diseases such as nonalcoholic fatty liver disease in humans and fatty liver syndrome in animals. In this study, we conducted a comprehensive analysis of a large chicken population consisting of 705 adult hens by combining host genome resequencing; liver transcriptome, proteome, and metabolome analysis; and microbial 16S ribosomal RNA gene sequencing of each gut segment. The results showed the heritability (h2 = 0.25) and duodenal microbiability (m2 = 0.26) of hepatic steatosis were relatively high, indicating a large effect of host genetics and duodenal microbiota on chicken hepatic steatosis. Individuals with hepatic steatosis had low microbiota diversity and a decreased genetic potential to process triglyceride output from hepatocytes, fatty acid β-oxidation activity, and resistance to fatty acid peroxidation. Furthermore, we revealed a molecular network linking host genomic variants (GGA6: 5.59-5.69 Mb), hepatic gene/protein expression (PEMT, phosphatidyl-ethanolamine N-methyltransferase), metabolite abundances (folate, S-adenosylmethionine, homocysteine, phosphatidyl-ethanolamine, and phosphatidylcholine), and duodenal microbes (genus Lactobacillus) to hepatic steatosis, which could provide new insights into the regulatory mechanism of fatty liver development.
Collapse
Affiliation(s)
- Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Fangren Lan
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Qianqian Zhou
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Xiaoli Guo
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Jiaming Jin
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Yanxin Guo
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Zhuocheng Hou
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Jiangxia Zheng
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Guiqin Wu
- Beijing Engineering Research Centre of Layer,
Beijing 101206, China
| | - Guangqi Li
- Beijing Engineering Research Centre of Layer,
Beijing 101206, China
| | - Yiyuan Yan
- Beijing Engineering Research Centre of Layer,
Beijing 101206, China
| | - Junying Li
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Qiugang Ma
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| |
Collapse
|
22
|
Biondi G, Marrano N, Borrelli A, Rella M, D’Oria R, Genchi VA, Caccioppoli C, Cignarelli A, Perrini S, Laviola L, Giorgino F, Natalicchio A. The p66 Shc Redox Protein and the Emerging Complications of Diabetes. Int J Mol Sci 2023; 25:108. [PMID: 38203279 PMCID: PMC10778847 DOI: 10.3390/ijms25010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Diabetes mellitus is a chronic metabolic disease, the prevalence of which is constantly increasing worldwide. It is often burdened by disabling comorbidities that reduce the quality and expectancy of life of the affected individuals. The traditional complications of diabetes are generally described as macrovascular complications (e.g., coronary heart disease, peripheral arterial disease, and stroke), and microvascular complications (e.g., diabetic kidney disease, retinopathy, and neuropathy). Recently, due to advances in diabetes management and the increased life expectancy of diabetic patients, a strong correlation between diabetes and other pathological conditions (such as liver diseases, cancer, neurodegenerative diseases, cognitive impairments, and sleep disorders) has emerged. Therefore, these comorbidities have been proposed as emerging complications of diabetes. P66Shc is a redox protein that plays a role in oxidative stress, apoptosis, glucose metabolism, and cellular aging. It can be regulated by various stressful stimuli typical of the diabetic milieu and is involved in various types of organ and tissue damage under diabetic conditions. Although its role in the pathogenesis of diabetes remains controversial, there is strong evidence regarding the involvement of p66Shc in the traditional complications of diabetes. In this review, we will summarize the evidence supporting the role of p66Shc in the pathogenesis of diabetes and its complications, focusing for the first time on the emerging complications of diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Francesco Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy (M.R.); (R.D.); (V.A.G.)
| | | |
Collapse
|
23
|
Suwała S, Białczyk A, Koperska K, Rajewska A, Krintus M, Junik R. Prevalence and Crucial Parameters in Diabesity-Related Liver Fibrosis: A Preliminary Study. J Clin Med 2023; 12:7760. [PMID: 38137829 PMCID: PMC10744287 DOI: 10.3390/jcm12247760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
Diabetes and obesity have been recognized as confirmed risk factors for the occurrence of liver fibrosis. Despite the long-standing acknowledgment of "diabesity", the simultaneous existence of diabetes and obesity, scholarly literature has shown limited attention to this topic. The aim of this pilot study was to assess the prevalence of liver fibrosis among individuals with diabetes (specifically those who are obese) in order to identify the key factors associated with hepatofibrosis and determine the most important associations and differences between patients with and without liver fibrosis. The research included a total of 164 participants (48.17% had comorbid obesity). Liver elastography (Fibroscan) was performed on these individuals in addition to laboratory tests. Liver fibrosis was found in 34.76% of type 2 diabetes patients; male gender almost doubled the risk of hepatofibrosis (RR 1.81) and diabesity nearly tripled this risk (RR 2.81; however, in degree III of obesity, the risk was elevated to 3.65 times higher). Anisocytosis, thrombocytopenia, or elevated liver enzymes raised the incidence of liver fibrosis by 1.78 to 2.47 times. In these individuals, liver stiffness was negatively correlated with MCV, platelet count, and albumin concentration; GGTP activity and HbA1c percentage were positively correlated. The regression analysis results suggest that the concentration of albumin and the activity of GGTP are likely to have a substantial influence on the future management of liver fibrosis in patients with diabesity. The findings of this study can serve as the basis for subsequent investigations and actions focused on identifying potential therapeutic and diagnostic avenues.
Collapse
Affiliation(s)
- Szymon Suwała
- Department of Endocrinology and Diabetology, Nicolaus Copernicus University, Collegium Medicum, 9 Sklodowskiej-Curie Street, 85-094 Bydgoszcz, Poland;
| | - Aleksandra Białczyk
- Evidence-Based Medicine Students Scientific Club of Department of Endocrinology and Diabetology, Nicolaus Copernicus University, Collegium Medicum, 9 Sklodowskiej-Curie Street, 85-094 Bydgoszcz, Poland; (A.B.); (K.K.); (A.R.)
| | - Kinga Koperska
- Evidence-Based Medicine Students Scientific Club of Department of Endocrinology and Diabetology, Nicolaus Copernicus University, Collegium Medicum, 9 Sklodowskiej-Curie Street, 85-094 Bydgoszcz, Poland; (A.B.); (K.K.); (A.R.)
| | - Alicja Rajewska
- Evidence-Based Medicine Students Scientific Club of Department of Endocrinology and Diabetology, Nicolaus Copernicus University, Collegium Medicum, 9 Sklodowskiej-Curie Street, 85-094 Bydgoszcz, Poland; (A.B.); (K.K.); (A.R.)
| | - Magdalena Krintus
- Department of Laboratory Medicine, Nicolaus Copernicus University, Collegium Medicum, 9 Sklodowskiej-Curie Street, 85-094 Bydgoszcz, Poland;
| | - Roman Junik
- Department of Endocrinology and Diabetology, Nicolaus Copernicus University, Collegium Medicum, 9 Sklodowskiej-Curie Street, 85-094 Bydgoszcz, Poland;
| |
Collapse
|
24
|
Li M, Zeng A, Tang X, Xu H, Xiong W, Guo Y. Circ_0004535/miR-1827/CASP8 network involved in type 2 diabetes mellitus with nonalcoholic fatty liver disease. Sci Rep 2023; 13:19807. [PMID: 37957232 PMCID: PMC10643362 DOI: 10.1038/s41598-023-47189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023] Open
Abstract
Diagnostic delay in type 2 diabetes mellitus (T2DM) with nonalcoholic fatty liver disease (NAFLD) patients often leads to a serious public health problem. Understanding the pathophysiological mechanisms of disease will help develop more effective treatments. High-throughput sequencing was used to determine the expression levels of circRNAs, and mRNAs in health controls, T2DM patients, and T2DM with NAFLD patients. Differentially expressed genes (DEcircRs, DEmRs) in T2DM with NAFLD were identified by differential analysis. The miRNAs with targeted relationship with the DEcircRs and DEmRs were respectively predicted to construct a ceRNA regulatory network. In addition, enrichment analysis of DEmRs in the ceRNA network was performed. The expression of important DEcircRs was further validated by quantitative real-time PCR (qRT-PCR). The steatosis was detected in glucose treated LO2 cells by overexpressing circ_0004535, and CASP8. There were 586 DEmRs, and 10 DEcircRs in both T2DM and T2DM with NAFLD patients. Combined with predicted results and differential analysis, the ceRNA networks were constructed. The DEmRs in the ceRNA networks were mainly enriched in Toll-like receptor signaling pathway, and apoptosis. Importantly, dual luciferase experiments validated the targeted binding of hsa_circ_0004535 and hsa-miR-1827 or hsa-miR-1827 and CASP8. qRT-PCR experiments validated that hsa_circ_0004535, and CASP8 was downregulated and hsa-miR-1827 was upregulated expression in peripheral blood of T2DM with NAFLD patients. Abnormal cell morphology, and increased lipid droplet fusion were observed in the glucose treated LO2 cells, overexpression of circ_0004535 and CASP8 ameliorated these changes. Our work provides a deeper understanding of ceRNA mediated pathogenesis of T2DM with NAFLD and provides a novel strategy for treatment.
Collapse
Affiliation(s)
- Min Li
- Graduate School of Xinjiang Medical University, Xinshi District, Ürümqi, 830054, China
| | - Ai Zeng
- B Chao Room, The Sixth Affiliated Hospital of Xinjiang Medical University, Tianshan District, Ürümqi, 830092, China
| | - Xinle Tang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Xinjiang Medical University, Tianshan District, Ürümqi, 830092, China
| | - Hui Xu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Xinjiang Medical University, Tianshan District, Ürümqi, 830092, China
| | - Wei Xiong
- Department of Endocrinology, The Sixth Affiliated Hospital of Xinjiang Medical University, Tianshan District, Ürümqi, 830092, China
| | - Yanying Guo
- Department of Endocrinology and Metabolic Diseases, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes Mellitus, Tianshan District, Ürümqi, 830011, China.
| |
Collapse
|
25
|
Tuero C, Becerril S, Ezquerro S, Neira G, Frühbeck G, Rodríguez A. Molecular and cellular mechanisms underlying the hepatoprotective role of ghrelin against NAFLD progression. J Physiol Biochem 2023; 79:833-849. [PMID: 36417140 DOI: 10.1007/s13105-022-00933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022]
Abstract
The underlying mechanisms for the development and progression of nonalcoholic fatty liver disease (NAFLD) are complex and multifactorial. Within the last years, experimental and clinical evidences support the role of ghrelin in the development of NAFLD. Ghrelin is a gut hormone that plays a major role in the short-term regulation of appetite and long-term regulation of adiposity. The liver constitutes a target for ghrelin, where this gut-derived peptide triggers intracellular pathways regulating lipid metabolism, inflammation, and fibrosis. Interestingly, circulating ghrelin levels are altered in patients with metabolic diseases, such as obesity, type 2 diabetes, and metabolic syndrome, which, in turn, are well-known risk factors for the pathogenesis of NAFLD. This review summarizes the molecular and cellular mechanisms involved in the hepatoprotective action of ghrelin, including the reduction of hepatocyte lipotoxicity via autophagy and fatty acid β-oxidation, mitochondrial dysfunction, endoplasmic reticulum stress and programmed cell death, the reversibility of the proinflammatory phenotype in Kupffer cells, and the inactivation of hepatic stellate cells. Together, the metabolic and inflammatory pathways regulated by ghrelin in the liver support its potential as a therapeutic target to prevent NAFLD in patients with metabolic disorders.
Collapse
Affiliation(s)
- Carlota Tuero
- Department of General Surgery, Clínica Universidad de Navarra, School of Medicine, University of Navarra, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Silvia Ezquerro
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
| | - Gabriela Neira
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain.
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
26
|
Hee SW, Chang YC, Su L, Chen IJ, Jeng YM, Hsieh ML, Chang YC, Li FA, Liao D, Chen SM, Chuang LM. 15-keto-PGE 2 alleviates nonalcoholic steatohepatitis through its covalent modification of NF-κB factors. iScience 2023; 26:107997. [PMID: 37810249 PMCID: PMC10551900 DOI: 10.1016/j.isci.2023.107997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/11/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023] Open
Abstract
15-keto-PGE2 is one of the eicosanoids with anti-inflammatory properties. In this study, we demonstrated that 15-keto-PGE2 post-translationally modified the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) subunits p105/p50 and p65 at Cys59 and Cys120 sites, respectively, hence inhibiting the activation of NF-κB signaling in macrophages. In mice fed a high-fat and high-sucrose diet (HFHSD), 15-keto-PGE2 treatment reduced pro-inflammatory cytokines and fasting glucose levels. In mice with non-alcoholic steatohepatitis (NASH) induced by a prolonged HFHSD, 15-keto-PGE2 treatment significantly decreased liver inflammation, lowered serum levels of alanine transaminase (ALT) and aspartate transferase (AST), and inhibited macrophage infiltration. It also reduced lipid droplet size and downregulated key regulators of lipogenesis. These findings highlight the potential of 15-keto-PGE2, through NF-κB modification, in preventing the development and progression of steatohepatitis, emphasizing the significance of endogenous lipid mediators in the inflammatory response.
Collapse
Affiliation(s)
- Siow-Wey Hee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Yi-Cheng Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei 100225, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Lynn Su
- Graduate Institute of Molecular Medicine, National Taiwan University, Taipei 100225, Taiwan
| | - Ing-Jung Chen
- Graduate Institute of Molecular Medicine, National Taiwan University, Taipei 100225, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University, Taipei, Taiwan
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Lun Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei 100225, Taiwan
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA
| | - Yu-Chia Chang
- Graduate Institute of Molecular Medicine, National Taiwan University, Taipei 100225, Taiwan
| | - Fu-An Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Daniel Liao
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei 100225, Taiwan
| | - Shiau-Mei Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
- Graduate Institute of Molecular Medicine, National Taiwan University, Taipei 100225, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei 100225, Taiwan
| |
Collapse
|
27
|
Bołdys A, Bułdak Ł, Maligłówka M, Surma S, Okopień B. Potential Therapeutic Strategies in the Treatment of Metabolic-Associated Fatty Liver Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1789. [PMID: 37893507 PMCID: PMC10608225 DOI: 10.3390/medicina59101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Metabolic-associated Fatty Liver Disease is one of the outstanding challenges in gastroenterology. The increasing incidence of the disease is undoubtedly connected with the ongoing obesity pandemic. The lack of specific symptoms in the early phases and the grave complications of the disease require an active approach to prompt diagnosis and treatment. Therapeutic lifestyle changes should be introduced in a great majority of patients; but, in many cases, the adherence is not satisfactory. There is a great need for an effective pharmacological therapy for Metabolic-Associated Fatty Liver Disease, especially before the onset of steatohepatitis. Currently, there are no specific recommendations on the selection of drugs to treat liver steatosis and prevent patients from progression toward more advanced stages (steatohepatitis, cirrhosis, and cancer). Therefore, in this Review, we provide data on the clinical efficacy of therapeutic interventions that might improve the course of Metabolic-Associated Fatty Liver Disease. These include the drugs used in the treatment of obesity and hyperlipidemias, as well as affecting the gut microbiota and endocrine system, and other experimental approaches, including functional foods. Finally, we provide advice on the selection of drugs for patients with concomitant Metabolic-Associated Fatty Liver Disease.
Collapse
Affiliation(s)
| | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland
| | | | | | | |
Collapse
|
28
|
Martin M, Motolani A, Kim HG, Collins AM, Alipourgivi F, Jin J, Wei H, Wood BA, Ma YY, Dong XC, Mirmira RG, Lu T. KDM2A Deficiency in the Liver Promotes Abnormal Liver Function and Potential Liver Damage. Biomolecules 2023; 13:1457. [PMID: 37892137 PMCID: PMC10604476 DOI: 10.3390/biom13101457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
Dysregulation of metabolic functions in the liver impacts the development of diabetes and metabolic disorders. Normal liver function can be compromised by increased inflammation via the activation of signaling such as nuclear factor (NF)-κB signaling. Notably, we have previously identified lysine demethylase 2A (KDM2A)-as a critical negative regulator of NF-κB. However, there are no studies demonstrating the effect of KDM2A on liver function. Here, we established a novel liver-specific Kdm2a knockout mouse model to evaluate KDM2A's role in liver functions. An inducible hepatic deletion of Kdm2a, Alb-Cre-Kdm2afl/fl (Kdm2a KO), was generated by crossing the Kdm2a floxed mice (Kdm2afl/fl) we established with commercial albumin-Cre transgenic mice (B6.Cg-Tg(Alb-cre)21Mgn/J). We show that under a normal diet, Kdm2a KO mice exhibited increased serum alanine aminotransferase (ALT) activity, L-type triglycerides (TG) levels, and liver glycogen levels vs. WT (Kdm2afl/fl) animals. These changes were further enhanced in Kdm2a liver KO mice in high-fat diet (HFD) conditions. We also observed a significant increase in NF-κB target gene expression in Kdm2a liver KO mice under HFD conditions. Similarly, the KO mice exhibited increased immune cell infiltration. Collectively, these data suggest liver-specific KDM2A deficiency may enhance inflammation in the liver, potentially through NF-κB activation, and lead to liver dysfunction. Our study also suggests that the established Kdm2afl/fl mouse model may serve as a powerful tool for studying liver-related metabolic diseases.
Collapse
Affiliation(s)
- Matthew Martin
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (A.M.); (F.A.); (J.J.); (H.W.); (Y.-Y.M.)
| | - Aishat Motolani
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (A.M.); (F.A.); (J.J.); (H.W.); (Y.-Y.M.)
| | - Hyeong-Geug Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.-G.K.); (X.C.D.)
| | - Amy M. Collins
- Department of Pathology and Laboratory Medicine, Indiana University Health, Indianapolis, IN 46202, USA; (A.M.C.); (B.A.W.)
| | - Faranak Alipourgivi
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (A.M.); (F.A.); (J.J.); (H.W.); (Y.-Y.M.)
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jiamin Jin
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (A.M.); (F.A.); (J.J.); (H.W.); (Y.-Y.M.)
| | - Han Wei
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (A.M.); (F.A.); (J.J.); (H.W.); (Y.-Y.M.)
| | - Barry A. Wood
- Department of Pathology and Laboratory Medicine, Indiana University Health, Indianapolis, IN 46202, USA; (A.M.C.); (B.A.W.)
| | - Yao-Ying Ma
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (A.M.); (F.A.); (J.J.); (H.W.); (Y.-Y.M.)
| | - X. Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.-G.K.); (X.C.D.)
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Tao Lu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (A.M.); (F.A.); (J.J.); (H.W.); (Y.-Y.M.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.-G.K.); (X.C.D.)
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
29
|
Tseng TS, Lin WT, Ting PS, Huang CK, Chen PH, Gonzalez GV, Lin HY. Sugar-Sweetened Beverages and Artificially Sweetened Beverages Consumption and the Risk of Nonalcoholic Fatty Liver (NAFLD) and Nonalcoholic Steatohepatitis (NASH). Nutrients 2023; 15:3997. [PMID: 37764782 PMCID: PMC10534429 DOI: 10.3390/nu15183997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are fast becoming the most common chronic liver disease and are often preventable with healthy dietary habits and weight management. Sugar-sweetened beverage (SSB) consumption is associated with obesity and NAFLD. However, the impact of different types of SSBs, including artificially sweetened beverages (ASBs), is not clear after controlling for total sugar intake and total caloric intake. The aim of this study was to examine the association between the consumption of different SSBs and the risk of NAFLD and NASH in US adults. The representativeness of 3739 US adults aged ≥20 years old who had completed 24 h dietary recall interviews and measurements, including dietary, SSBs, smoking, physical activity, and liver stiffness measurements, were selected from the National Health and Nutrition Examination Survey 2017-2020 surveys. Chi-square tests, t-tests, and weighted logistic regression models were utilized for analyses. The prevalence of NASH was 20.5%, and that of NAFLD (defined without NASH) was 32.7% of US. adults. We observed a higher prevalence of NASH/NAFLD in men, Mexican-Americans, individuals with sugar intake from SSBs, light-moderate alcohol use, lower physical activity levels, higher energy intake, obesity, and medical comorbidities. Heavy sugar consumption through SSBs was significantly associated with NAFLD (aOR = 1.60, 95% CI = 1.05-2.45). In addition, the intake of ASBs only (compared to the non-SSB category) was significantly associated with NAFLD (aOR = 1.78, 95% CI = 1.04-3.05), after adjusting for demographic, risk behaviors, and body mass index. A higher sugar intake from SSBs and exclusive ASB intake are both associated with the risk of NAFLD.
Collapse
Affiliation(s)
- Tung-Sung Tseng
- Behavior and Community Health Sciences Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Wei-Ting Lin
- Social, Behavioral, and Population Sciences, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, USA;
| | - Peng-Sheng Ting
- Division of Gastroenterology and Hepatology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Chiung-Kuei Huang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Po-Hung Chen
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 1830 East Monument Street, 4th Floor, Baltimore, MD 21287, USA;
| | - Gabrielle V. Gonzalez
- Behavior and Community Health Sciences Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Hui-Yi Lin
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| |
Collapse
|
30
|
Guo X, Zhou Q, Jin J, Lan F, Wen C, Li J, Yang N, Sun C. Hepatic steatosis is associated with dysregulated cholesterol metabolism and altered protein acetylation dynamics in chickens. J Anim Sci Biotechnol 2023; 14:108. [PMID: 37568219 PMCID: PMC10422840 DOI: 10.1186/s40104-023-00910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/28/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Hepatic steatosis is a prevalent manifestation of fatty liver, that has detrimental effect on the health and productivity of laying hens, resulting in economic losses to the poultry industry. Here, we aimed to systematically investigate the genetic regulatory mechanisms of hepatic steatosis in laying hens. METHODS Ninety individuals with the most prominent characteristics were selected from 686 laying hens according to the accumulation of lipid droplets in the liver, and were graded into three groups, including the control, mild hepatic steatosis and severe hepatic steatosis groups. A combination of transcriptome, proteome, acetylome and lipidome analyses, along with bioinformatics analysis were used to screen the key biological processes, modifications and lipids associated with hepatic steatosis. RESULTS The rationality of the hepatic steatosis grouping was verified through liver biochemical assays and RNA-seq. Hepatic steatosis was characterized by increased lipid deposition and multiple metabolic abnormalities. Integration of proteome and acetylome revealed that differentially expressed proteins (DEPs) interacted with differentially acetylated proteins (DAPs) and were involved in maintaining the metabolic balance in the liver. Acetylation alterations mainly occurred in the progression from mild to severe hepatic steatosis, i.e., the enzymes in the fatty acid oxidation and bile acid synthesis pathways were significantly less acetylated in severe hepatic steatosis group than that in mild group (P < 0.05). Lipidomics detected a variety of sphingolipids (SPs) and glycerophospholipids (GPs) were negatively correlated with hepatic steatosis (r ≤ -0.5, P < 0.05). Furthermore, the severity of hepatic steatosis was associated with a decrease in cholesterol and bile acid synthesis and an increase in exogenous cholesterol transport. CONCLUSIONS In addition to acquiring a global and thorough picture of hepatic steatosis in laying hens, we were able to reveal the role of acetylation in hepatic steatosis and depict the changes in hepatic cholesterol metabolism. The findings provides a wealth of information to facilitate a deeper understanding of the pathophysiology of fatty liver and contributes to the development of therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoli Guo
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193 China
| | - Qianqian Zhou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193 China
| | - Jiaming Jin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193 China
| | - Fangren Lan
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193 China
| | - Chaoliang Wen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193 China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193 China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193 China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
31
|
Park HJ, Choi J, Kim H, Yang DY, An TH, Lee EW, Han BS, Lee SC, Kim WK, Bae KH, Oh KJ. Cellular heterogeneity and plasticity during NAFLD progression. Front Mol Biosci 2023; 10:1221669. [PMID: 37635938 PMCID: PMC10450943 DOI: 10.3389/fmolb.2023.1221669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a progressive liver disease that can progress to nonalcoholic steatohepatitis (NASH), NASH-related cirrhosis, and hepatocellular carcinoma (HCC). NAFLD ranges from simple steatosis (or nonalcoholic fatty liver [NAFL]) to NASH as a progressive form of NAFL, which is characterized by steatosis, lobular inflammation, and hepatocellular ballooning with or without fibrosis. Because of the complex pathophysiological mechanism and the heterogeneity of NAFLD, including its wide spectrum of clinical and histological characteristics, no specific therapeutic drugs have been approved for NAFLD. The heterogeneity of NAFLD is closely associated with cellular plasticity, which describes the ability of cells to acquire new identities or change their phenotypes in response to environmental stimuli. The liver consists of parenchymal cells including hepatocytes and cholangiocytes and nonparenchymal cells including Kupffer cells, hepatic stellate cells, and endothelial cells, all of which have specialized functions. This heterogeneous cell population has cellular plasticity to adapt to environmental changes. During NAFLD progression, these cells can exert diverse and complex responses at multiple levels following exposure to a variety of stimuli, including fatty acids, inflammation, and oxidative stress. Therefore, this review provides insights into NAFLD heterogeneity by addressing the cellular plasticity and metabolic adaptation of hepatocytes, cholangiocytes, hepatic stellate cells, and Kupffer cells during NAFLD progression.
Collapse
Affiliation(s)
- Hyun-Ju Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Juyong Choi
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hyunmi Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Da-Yeon Yang
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Baek-Soo Han
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
32
|
Lin PC, Hsu WY, Lee PY, Hsu SH, Chiou SS. Insights into Hepatocellular Carcinoma in Patients with Thalassemia: From Pathophysiology to Novel Therapies. Int J Mol Sci 2023; 24:12654. [PMID: 37628834 PMCID: PMC10454908 DOI: 10.3390/ijms241612654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Thalassemia is a heterogeneous congenital hemoglobinopathy common in the Mediterranean region, Middle East, Indian subcontinent, and Southeast Asia with increasing incidence in Northern Europe and North America due to immigration. Iron overloading is one of the major long-term complications in patients with thalassemia and can lead to organ damage and carcinogenesis. Hepatocellular carcinoma (HCC) is one of the most common malignancies in both transfusion-dependent thalassemia (TDT) and non-transfusion-dependent thalassemia (NTDT). The incidence of HCC in patients with thalassemia has increased over time, as better chelation therapy confers a sufficiently long lifespan for the development of HCC. The mechanisms of iron-overloading-associated HCC development include the increased reactive oxygen species (ROS), inflammation cytokines, dysregulated hepcidin, and ferroportin metabolism. The treatment of HCC in patients with thalassemia was basically similar to those in general population. However, due to the younger age of HCC onset in thalassemia, regular surveillance for HCC development is mandatory in TDT and NTDT. Other supplemental therapies and experiences of novel treatments for HCC in the thalassemia population were also reviewed in this article.
Collapse
Affiliation(s)
- Pei-Chin Lin
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan; (P.-C.L.); (W.-Y.H.); (P.-Y.L.)
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Wan-Yi Hsu
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan; (P.-C.L.); (W.-Y.H.); (P.-Y.L.)
| | - Po-Yi Lee
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan; (P.-C.L.); (W.-Y.H.); (P.-Y.L.)
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Shyh-Shin Chiou
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan; (P.-C.L.); (W.-Y.H.); (P.-Y.L.)
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Division of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
| |
Collapse
|
33
|
Chen Q, Ren R, Sun Y, Xu J, Yang H, Li X, Xiao Y, Li J, Lyu W. The combination of metagenome and metabolome to compare the differential effects and mechanisms of fructose and sucrose on the metabolic disorders and gut microbiota in vitro and in vivo. Food Funct 2023. [PMID: 37470119 DOI: 10.1039/d3fo02246c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Sucrose and fructose are the most commonly used sweeteners in the modern food industry, but there are few comparative studies on the mechanisms by which fructose and sucrose affect host health. The aim of the present study was to explain the different effects of fructose and sucrose on host metabolism from the perspective of gut microbiota. Mice were fed for 16 weeks with normal drinking water (CON), 30% fructose drinking water (CF) and 30% sucrose drinking water (SUC). Compared with fructose treatment, sucrose caused significantly higher weight gain, epididymal fat deposition, hepatic steatosis, and jejunum histological injury. Sucrose increased the abundance of LPS-producing bacteria which was positively correlated with obesity traits, while fructose increased the abundance of Lactobacillus. An in vitro fermentation experiment also showed that fructose increased the abundance of Lactobacillus, while sucrose increased the abundance of Klebsiella and Escherichia. In addition, combined with microbial functional analysis and metabolomics data, fructose led to the enhancement of carbohydrate metabolism and TCA cycle capacity, and increased the production of glutamate. The cross-cooperation network greatly influenced the microbiota (Klebsiella, Lactobacillus), metabolites (glutamate, fructose 1,6-biosphosphate, citric acid), and genes encoding enzymes (pyruvate kinase, 6-phosphofructokinase 1, fructokinase, lactate dehydrogenase, aconitate hydratase, isocitrate dehydrogenase 3), suggesting that they may be the key differential factors in the process of fructose and sucrose catabolism. Therefore, the changes in gut microbiome mediated by fructose and sucrose are important reasons for their differential effects on host health and metabolism.
Collapse
Affiliation(s)
- Qu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Ruochen Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Yue Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Jing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Xiaoqiong Li
- Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Jinjun Li
- Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
34
|
Cuciureanu M, Caratașu CC, Gabrielian L, Frăsinariu OE, Checheriță LE, Trandafir LM, Stanciu GD, Szilagyi A, Pogonea I, Bordeianu G, Soroceanu RP, Andrițoiu CV, Anghel MM, Munteanu D, Cernescu IT, Tamba BI. 360-Degree Perspectives on Obesity. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1119. [PMID: 37374323 PMCID: PMC10304508 DOI: 10.3390/medicina59061119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Alarming statistics show that the number of people affected by excessive weight has surpassed 2 billion, representing approximately 30% of the world's population. The aim of this review is to provide a comprehensive overview of one of the most serious public health problems, considering that obesity requires an integrative approach that takes into account its complex etiology, including genetic, environmental, and lifestyle factors. Only an understanding of the connections between the many contributors to obesity and the synergy between treatment interventions can ensure satisfactory outcomes in reducing obesity. Mechanisms such as oxidative stress, chronic inflammation, and dysbiosis play a crucial role in the pathogenesis of obesity and its associated complications. Compounding factors such as the deleterious effects of stress, the novel challenge posed by the obesogenic digital (food) environment, and the stigma associated with obesity should not be overlooked. Preclinical research in animal models has been instrumental in elucidating these mechanisms, and translation into clinical practice has provided promising therapeutic options, including epigenetic approaches, pharmacotherapy, and bariatric surgery. However, more studies are necessary to discover new compounds that target key metabolic pathways, innovative ways to deliver the drugs, the optimal combinations of lifestyle interventions with allopathic treatments, and, last but not least, emerging biological markers for effective monitoring. With each passing day, the obesity crisis tightens its grip, threatening not only individual lives but also burdening healthcare systems and societies at large. It is high time we took action as we confront the urgent imperative to address this escalating global health challenge head-on.
Collapse
Affiliation(s)
- Magdalena Cuciureanu
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
| | - Cătălin-Cezar Caratașu
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Levon Gabrielian
- Department of Anatomy and Pathology, The University of Adelaide, Adelaide 5000, Australia;
| | - Otilia Elena Frăsinariu
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Laura Elisabeta Checheriță
- 2nd Dental Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laura Mihaela Trandafir
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Gabriela Dumitrița Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Andrei Szilagyi
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Ina Pogonea
- Department of Pharmacology and Clinical Pharmacology, “Nicolae Testemiţanu” State University of Medicine and Pharmacy, 2004 Chisinau, Moldova; (I.P.); (M.M.A.)
| | - Gabriela Bordeianu
- Department of Biochemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Radu Petru Soroceanu
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Călin Vasile Andrițoiu
- Specialization of Nutrition and Dietetics, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| | - Maria Mihalache Anghel
- Department of Pharmacology and Clinical Pharmacology, “Nicolae Testemiţanu” State University of Medicine and Pharmacy, 2004 Chisinau, Moldova; (I.P.); (M.M.A.)
| | - Diana Munteanu
- Institute of Mother and Child, “Nicolae Testemiţanu” State University of Medicine and Pharmacy, 2062 Chisinau, Moldova;
| | - Irina Teodora Cernescu
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
| | - Bogdan Ionel Tamba
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| |
Collapse
|
35
|
Chen Y, Wang W, Morgan MP, Robson T, Annett S. Obesity, non-alcoholic fatty liver disease and hepatocellular carcinoma: current status and therapeutic targets. Front Endocrinol (Lausanne) 2023; 14:1148934. [PMID: 37361533 PMCID: PMC10286797 DOI: 10.3389/fendo.2023.1148934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Obesity is a global epidemic and overwhelming evidence indicates that it is a risk factor for numerous cancers, including hepatocellular carcinoma (HCC), the third leading cause of cancer-related deaths worldwide. Obesity-associated hepatic tumorigenesis develops from nonalcoholic fatty liver disease (NAFLD), progressing to nonalcoholic steatohepatitis (NASH), cirrhosis and ultimately to HCC. The rising incidence of obesity is resulting in an increased prevalence of NAFLD and NASH, and subsequently HCC. Obesity represents an increasingly important underlying etiology of HCC, in particular as the other leading causes of HCC such as hepatitis infection, are declining due to effective treatments and vaccines. In this review, we provide a comprehensive overview of the molecular mechanisms and cellular signaling pathways involved in the pathogenesis of obesity-associated HCC. We summarize the preclinical experimental animal models available to study the features of NAFLD/NASH/HCC, and the non-invasive methods to diagnose NAFLD, NASH and early-stage HCC. Finally, since HCC is an aggressive tumor with a 5-year survival of less than 20%, we will also discuss novel therapeutic targets for obesity-associated HCC and ongoing clinical trials.
Collapse
Affiliation(s)
- Yinshuang Chen
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Maria P. Morgan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Stephanie Annett
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
36
|
Manilla V, Santopaolo F, Gasbarrini A, Ponziani FR. Type 2 Diabetes Mellitus and Liver Disease: Across the Gut-Liver Axis from Fibrosis to Cancer. Nutrients 2023; 15:nu15112521. [PMID: 37299482 DOI: 10.3390/nu15112521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Type 2 diabetes mellitus is a widespread disease worldwide, and is one of the cornerstones of metabolic syndrome. The existence of a strong relationship between diabetes and the progression of liver fibrosis has been demonstrated by several studies, using invasive and noninvasive techniques. Patients with type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD) show faster progression of fibrosis than patients without diabetes. Many confounding factors make it difficult to determine the exact mechanisms involved. What we know so far is that both liver fibrosis and T2DM are expressions of metabolic dysfunction, and we recognize similar risk factors. Interestingly, both are promoted by metabolic endotoxemia, a low-grade inflammatory condition caused by increased endotoxin levels and linked to intestinal dysbiosis and increased intestinal permeability. There is broad evidence on the role of the gut microbiota in the progression of liver disease, through both metabolic and inflammatory mechanisms. Therefore, dysbiosis that is associated with diabetes can act as a modifier of the natural evolution of NAFLD. In addition to diet, hypoglycemic drugs play an important role in this scenario, and their benefit is also the result of effects exerted in the gut. Here, we provide an overview of the mechanisms that explain why diabetic patients show a more rapid progression of liver disease up to hepatocellular carcinoma (HCC), focusing especially on those involving the gut-liver axis.
Collapse
Affiliation(s)
- Vittoria Manilla
- Digestive Disease Center-CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Santopaolo
- Digestive Disease Center-CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center-CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Digestive Disease Center-CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
37
|
Yang J, He J, Feng Y, Xiang M. Obesity contributes to hepatocellular carcinoma development via immunosuppressive microenvironment remodeling. Front Immunol 2023; 14:1166440. [PMID: 37266440 PMCID: PMC10231659 DOI: 10.3389/fimmu.2023.1166440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/05/2023] [Indexed: 06/03/2023] Open
Abstract
It is generally recognized that the initiation of obesity-related hepatocellular carcinoma (HCC) is closely associated with hepatic inflammation. However, the paradoxical role of inflammation in the initiation and progression of HCC is highlighted by the fact that the inflammatory HCC is accompanied by significant immune effector cells infiltration compared to non-inflammatory HCC and HCC with enhanced immune response exhibits better survival. Importantly, the cancer progression has been primarily attributed to the immunosuppression, which can also be induced by obesity. Furthermore, the increased risk of viral infection and thus viral-HCC in obese individuals supports the view that obesity contributes to HCC via immunosuppression. Here, we have reviewed the various mechanisms responsible for obesity-induced tumor immune microenvironment and immunosuppression in obesity-related HCC. We highlight that the obesity-induced immunosuppression originates from lipid disorder as well as metabolic reprogramming and propose potential therapeutic strategy for HCC based on the current success of immunotherapy.
Collapse
|
38
|
Wen X, Liu H, Luo X, Lui L, Fan J, Xing Y, Wang J, Qiao X, Li N, Wang G. Supplementation of Lactobacillus plantarum ATCC14917 mitigates non-alcoholic fatty liver disease in high-fat-diet-fed rats. Front Microbiol 2023; 14:1146672. [PMID: 37266005 PMCID: PMC10229879 DOI: 10.3389/fmicb.2023.1146672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Atherosclerosis and non-alcoholic fatty liver disease (NAFLD) have been increasing at an alarming rate worldwide. Many clinical studies have underlined the link between NAFLD and atherosclerosis. Our previous experiments have discovered that Lactobacillus (L.) plantarum ATCC14917 supplementation could decrease the progression of atherosclerotic lesion formation. In this study, we aimed to investigate the role of supplementation of L. plantarum ATCC14917 mitigates liver injury in rats fed with a high-fat diet (HFD, 45% kcal from fat). A total of 32 rats were randomly divided into four groups, including two intervention groups, who fed with HFD and administering either 1 × 107 or 1 × 109 colony forming units (CFU) of L. plantarum ATCC14917, the normal control group, and the HFD control group. The results showed that supplementation with low-dose and high-dose of L. plantarum ATCC14917 for 8 weeks could alleviate the body weight gain (p < 0.05), hepatic steatosis, and serum lipid metabolism (p < 0.05) in HFD-fed rats. Moreover, supplementation of L. plantarum ATCC 14917 decreased total cholesterol (TC), triglyceride (TG), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels (p < 0.05) in serum, and improved HFD-associated inflammation (p < 0.05). Furthermore, cecal contents were analyzed by high-throughput 16S ribosomal RNA sequencing. The results indicated that supplementation of L. plantarum ATCC 14917 could ameliorate HFD-induced gut dysbiosis. In summary, our findings suggest that supplementation of L. plantarum ATCC 14917 could mitigate NAFLD in rats, suggesting it may be considered as a probiotic agent for preventing HFD-induced obesity.
Collapse
Affiliation(s)
- Xingjian Wen
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Hejing Liu
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaoling Luo
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Li Lui
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Jiuyu Fan
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Yajing Xing
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Jia Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Xingfang Qiao
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Na Li
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Guixue Wang
- College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
39
|
Pellegrina D, Prayitno K, Azhie A, Pasini E, Baciu C, Fischer S, Reimand J, Bhat M. Transcriptomic changes in liver transplant recipients with non-alcoholic steatohepatitis indicate dysregulation of wound healing. Front Endocrinol (Lausanne) 2023; 14:1111614. [PMID: 37223041 PMCID: PMC10200958 DOI: 10.3389/fendo.2023.1111614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/12/2023] [Indexed: 05/25/2023] Open
Abstract
Background Non-alcoholic steatohepatitis (NASH) has become a leading indication for liver transplantation. However, it often recurs in the graft and can also arise de novo in individuals transplanted for other indications. Post-transplant NASH (PT-NASH) is more aggressive and leads to accelerated fibrosis. The mechanistic basis of PT-NASH has not yet been defined and no specific therapeutic strategies are currently available. Methods Here, we profiled the transcriptomes of livers with PT-NASH from liver transplant recipients to identify dysregulated genes, pathways, and molecular interaction networks. Results Transcriptomic changes in the PI3K-Akt pathway were observed in association with metabolic alterations in PT-NASH. Other significant changes in gene expression were associated with DNA replication, cell cycle, extracellular matrix organization, and wound healing. A systematic comparison with non-transplant NASH (NT-NASH) liver transcriptomes indicated an increased activation of wound healing and angiogenesis pathways in the post-transplant condition. Conclusion Beyond altered lipid metabolism, dysregulation of wound healing and tissue repair mechanisms may contribute to the accelerated development of fibrosis associated with PT-NASH. This presents an attractive therapeutic avenue to explore for PT-NASH to optimize the benefit and survival of the graft.
Collapse
Affiliation(s)
- Diogo Pellegrina
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Khairunnadiya Prayitno
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Amirhossein Azhie
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Elisa Pasini
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Cristina Baciu
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Sandra Fischer
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, Canada
| | - Jüri Reimand
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Mamatha Bhat
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Center, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
Lee DS, An TH, Kim H, Jung E, Kim G, Oh SY, Kim JS, Chun HJ, Jung J, Lee EW, Han BS, Han DH, Lee YH, Han TS, Hur K, Lee CH, Kim DS, Kim WK, Park JW, Koo SH, Seong JK, Lee SC, Kim H, Bae KH, Oh KJ. Tcf7l2 in hepatocytes regulates de novo lipogenesis in diet-induced non-alcoholic fatty liver disease in mice. Diabetologia 2023; 66:931-954. [PMID: 36759348 PMCID: PMC10036287 DOI: 10.1007/s00125-023-05878-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/28/2022] [Indexed: 02/11/2023]
Abstract
AIMS/HYPOTHESIS Non-alcoholic fatty liver disease (NAFLD) associated with type 2 diabetes may more easily progress towards severe forms of non-alcoholic steatohepatitis (NASH) and cirrhosis. Although the Wnt effector transcription factor 7-like 2 (TCF7L2) is closely associated with type 2 diabetes risk, the role of TCF7L2 in NAFLD development remains unclear. Here, we investigated how changes in TCF7L2 expression in the liver affects hepatic lipid metabolism based on the major risk factors of NAFLD development. METHODS Tcf7l2 was selectively ablated in the liver of C57BL/6N mice by inducing the albumin (Alb) promoter to recombine Tcf7l2 alleles floxed at exon 5 (liver-specific Tcf7l2-knockout [KO] mice: Alb-Cre;Tcf7l2f/f). Alb-Cre;Tcf7l2f/f and their wild-type (Tcf7l2f/f) littermates were fed a high-fat diet (HFD) or a high-carbohydrate diet (HCD) for 22 weeks to reproduce NAFLD/NASH. Mice were refed a standard chow diet or an HCD to stimulate de novo lipogenesis (DNL) or fed an HFD to provide exogenous fatty acids. We analysed glucose and insulin sensitivity, metabolic respiration, mRNA expression profiles, hepatic triglyceride (TG), hepatic DNL, selected hepatic metabolites, selected plasma metabolites and liver histology. RESULTS Alb-Cre;Tcf7l2f/f essentially exhibited increased lipogenic genes, but there were no changes in hepatic lipid content in mice fed a normal chow diet. However, following 22 weeks of diet-induced NAFLD/NASH conditions, liver steatosis was exacerbated owing to preferential metabolism of carbohydrate over fat. Indeed, hepatic Tcf7l2 deficiency enhanced liver lipid content in a manner that was dependent on the duration and amount of exposure to carbohydrates, owing to cell-autonomous increases in hepatic DNL. Mechanistically, TCF7L2 regulated the transcriptional activity of Mlxipl (also known as ChREBP) by modulating O-GlcNAcylation and protein content of carbohydrate response element binding protein (ChREBP), and targeted Srebf1 (also called SREBP1) via miRNA (miR)-33-5p in hepatocytes. Eventually, restoring TCF7L2 expression at the physiological level in the liver of Alb-Cre;Tcf7l2f/f mice alleviated liver steatosis without altering body composition under both acute and chronic HCD conditions. CONCLUSIONS/INTERPRETATION In mice, loss of hepatic Tcf7l2 contributes to liver steatosis by inducing preferential metabolism of carbohydrates via DNL activation. Therefore, TCF7L2 could be a promising regulator of the NAFLD associated with high-carbohydrate diets and diabetes since TCF7L2 deficiency may lead to development of NAFLD by promoting utilisation of excess glucose pools through activating DNL. DATA AVAILABILITY RNA-sequencing data have been deposited into the NCBI GEO under the accession number GSE162449 ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162449 ).
Collapse
Affiliation(s)
- Da Som Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hyunmi Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Eunsun Jung
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Gyeonghun Kim
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seung Yeon Oh
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Republic of Korea
| | - Jun Seok Kim
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Hye Jin Chun
- Department of Systems Biology, Glycosylation Network Research Center, Yonsei University, Seoul, Republic of Korea
| | - Jaeeun Jung
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Baek-Soo Han
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dai Hoon Han
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ho Lee
- Department of Systems Biology, Glycosylation Network Research Center, Yonsei University, Seoul, Republic of Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Su Han
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Keun Hur
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chul-Ho Lee
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dae-Soo Kim
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, ChunCheon-si, Gangwon-do, Republic of Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Je Kyung Seong
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
41
|
Kocaman Kalkan K, Şen S, Narlı B, Seymen CM, Yılmaz C. Effects of quercetin on hepatic fibroblast growth factor-21 (FGF-21) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) levels in rats fed with high fructose. Mol Biol Rep 2023; 50:4983-4997. [PMID: 37086297 DOI: 10.1007/s11033-023-08444-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND Available studies show that quercetin reduces Metabolic Syndrome (MetS) and its complications, increases insulin sensitivity and improves glucose levels. It has been reported that the increase in hepatic gene expressions of fibroblast growth factor-21 (FGF-21), an important metabolic regulator of insulin sensitivity, glucose and energy homeostasis, and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), which plays a central role in the regulation of cellular energy metabolism, eliminate the negative effects of fructose in fructose-fed rats. The main purpose of our study is to examine the effects of quercetin on hepatic FGF-21 and PGC-1α expressions and levels, as well as its protective and therapeutic role on MetS components in rats fed with fructose. METHODS AND RESULTS In our study, 24 Sprague Dawley male rats were divided into 4 groups: control, fructose, quercetin, fructose+quercetin (n = 6). During the 10-week experiment, quercetin was administered at a daily dose of 15 mg/kg body weight and fructose at a rate of 20%. Blood pressure and weights of all groups were measured and recorded. At the end of week 10, blood and liver tissue samples were taken. Serum insulin, glucose and triglyceride, total, HDL and VLDL cholesterol levels were determined from the samples. Insulin resistance was calculated using the HOMA-IR formula. Hepatic PGC-1α and FGF-21 protein levels and their mRNA expressions were determined. Criteria for metabolic syndrome were successfully established with fructose. It was observed that the administration of quercetin alone and in combination with fructose exerted positive effects and improved MetS criteria. It was determined that the administration of quercetin increased hepatic FGF-21 and PGC-1α protein levels and Messenger RNA (mRNA) expressions of them, which were decreased by fructose application. CONCLUSIONS The results of our study showed that 10-week administration of quercetin at 15 mg/kg exerted beneficial effects on lipid and carbohydrate metabolism in the fructose-mediated MetS model; therefore, quercetin may have great potential in the prevention and treatment of metabolic disorders.
Collapse
Affiliation(s)
| | - Serkan Şen
- Ataturk Vocational School of Health Services, Afyonkarahisar University of Health Sciences, Afyon, Turkey
| | - Belkıs Narlı
- Department of Medical Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Cemile Merve Seymen
- Department of Histology and Embryology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Canan Yılmaz
- Department of Medical Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
42
|
Huang J, Sigon G, Mullish BH, Wang D, Sharma R, Manousou P, Forlano R. Applying Lipidomics to Non-Alcoholic Fatty Liver Disease: A Clinical Perspective. Nutrients 2023; 15:nu15081992. [PMID: 37111211 PMCID: PMC10143024 DOI: 10.3390/nu15081992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
The prevalence of Non-alcoholic fatty liver disease (NAFLD) and associated complications, such as hepatocellular carcinoma (HCC), is growing worldwide, due to the epidemics of metabolic risk factors, such as obesity and type II diabetes. Among other factors, an aberrant lipid metabolism represents a crucial step in the pathogenesis of NAFLD and the development of HCC in this population. In this review, we summarize the evidence supporting the application of translational lipidomics in NAFLD patients and NAFLD associated HCC in clinical practice.
Collapse
Affiliation(s)
- Jian Huang
- Liver Unit, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W21NY, UK
| | - Giordano Sigon
- Liver Unit, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W21NY, UK
| | - Benjamin H Mullish
- Liver Unit, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W21NY, UK
| | - Dan Wang
- Liver Unit, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W21NY, UK
| | - Rohini Sharma
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London W21NY, UK
| | - Pinelopi Manousou
- Liver Unit, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W21NY, UK
| | - Roberta Forlano
- Liver Unit, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W21NY, UK
| |
Collapse
|
43
|
Silymarin for treatment of adults with nonalcoholic fatty liver disease. Cochrane Database Syst Rev 2023; 2023:CD015524. [PMCID: PMC10074766 DOI: 10.1002/14651858.cd015524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To evaluate the benefits and harms of silymarin in adults with nonalcoholic fatty liver disease (NAFLD).
Collapse
|
44
|
Swain MG, Pettersson B, Meyers O, Venerus M, Oscarsson J. A qualitative patient interview study to understand the experience of patients with nonalcoholic steatohepatitis. Hepatol Commun 2023; 7:e0036. [PMID: 36757391 PMCID: PMC9915959 DOI: 10.1097/hc9.0000000000000036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 02/10/2023] Open
Abstract
NASH is a potentially progressive form of NAFLD characterized by hepatocyte injury and liver inflammation which can cause fibrosis. Currently, there are limited data on the patient experience of NASH. Our aim was to use both literature review and patient interviews to understand the signs/symptoms and life impacts of NASH fibrosis stages F1-F4 that are important to patients, as well as begin to investigate the applicability of an instrument (ie, questionnaire) that may be used to capture patients' experiences. The literature review identified concepts (signs/symptoms and impacts) related to NASH fibrosis stages F1-F4 and the NASH-specific patient-reported outcome instrument (NASH-CHECK) for reporting patient experience of NASH. Interviews with 22 patients from Canada and the USA with NASH fibrosis stages F1-F4 revealed 27 signs/symptoms and 32 impacts that they felt were important, including fatigue, pain in the abdomen, worry, and frustration. Three concepts reported during patient interviews were not identified in the literature review. No concepts appeared to be exclusive to a specific fibrosis stage or presence/absence of obesity and no linear trends were identified between fibrosis stage or presence/absence of obesity and level of disturbance reported for concepts. The patient interviews supported the concepts included in the NASH-CHECK overall, demonstrating that it could be used to report the patient experience of NASH fibrosis stages F1-F4. Interviews with patients with NASH fibrosis stages F1-F4 revealed patients can self-report and elaborate on signs/symptoms and impacts related to the disease regardless of fibrosis stage. The NASH-CHECK was identified as a suitable instrument that could be used by patients with fibrosis stages F1-F4.
Collapse
Affiliation(s)
- Mark G. Swain
- Liver Unit, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Billie Pettersson
- Patient Centered Science, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals Medical, AstraZeneca, Gothenburg, Sweden
| | - Oren Meyers
- Patient Centered Endpoints, IQVIA, New York, New York, USA
| | | | - Jan Oscarsson
- Late-stage Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
45
|
Predicting Hepatotoxicity Associated with Low-Dose Methotrexate Using Machine Learning. J Clin Med 2023; 12:jcm12041599. [PMID: 36836131 PMCID: PMC9967588 DOI: 10.3390/jcm12041599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
An accurate prediction of the hepatotoxicity associated with low-dose methotrexate can provide evidence for a reasonable treatment choice. This study aimed to develop a machine learning-based prediction model to predict hepatotoxicity associated with low-dose methotrexate and explore the associated risk factors. Eligible patients with immune system disorders, who received low-dose methotrexate at West China Hospital between 1 January 2018, and 31 December 2019, were enrolled. A retrospective review of the included patients was conducted. Risk factors were selected from multiple patient characteristics, including demographics, admissions, and treatments. Eight algorithms, including eXtreme Gradient Boosting (XGBoost), AdaBoost, CatBoost, Gradient Boosting Decision Tree (GBDT), Light Gradient Boosting Machine (LightGBM), Tree-based Pipeline Optimization Tool (TPOT), Random Forest (RF), and Artificial Neural Network (ANN), were used to establish the prediction model. A total of 782 patients were included, and hepatotoxicity was detected in 35.68% (279/782) of the patients. The Random Forest model with the best predictive capacity was chosen to establish the prediction model (receiver operating characteristic curve 0.97, accuracy 64.33%, precision 50.00%, recall 32.14%, and F1 39.13%). Among the 15 risk factors, the highest score was a body mass index of 0.237, followed by age (0.198), the number of drugs (0.151), and the number of comorbidities (0.144). These factors demonstrated their importance in predicting hepatotoxicity associated with low-dose methotrexate. Using machine learning, this novel study established a predictive model for low-dose methotrexate-related hepatotoxicity. The model can improve medication safety in patients taking methotrexate in clinical practice.
Collapse
|
46
|
Eldosoky MA, Hammad R, Elmadbouly AA, Aglan RB, Abdel-Hamid SG, Alboraie M, Hassan DA, Shaheen MA, Rushdi A, Ahmed RM, Abdelbadea A, Abdelmageed NA, Elshafei A, Ali E, Abo-Elkheir OI, Zaky S, Hamdy NM, Lambert C. Diagnostic Significance of hsa-miR-21-5p, hsa-miR-192-5p, hsa-miR-155-5p, hsa-miR-199a-5p Panel and Ratios in Hepatocellular Carcinoma on Top of Liver Cirrhosis in HCV-Infected Patients. Int J Mol Sci 2023; 24:ijms24043157. [PMID: 36834570 PMCID: PMC9962339 DOI: 10.3390/ijms24043157] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Early hepatocellular carcinoma (HCC) diagnosis is challenging. Moreover, for patients with alpha-fetoprotein (AFP)-negative HCC, this challenge is augmented. MicroRNAs (miRs) profiles may serve as potential HCC molecular markers. We aimed to assess plasma homo sapiens-(hsa)-miR-21-5p, hsa-miR-155-5p, hsa-miR-192-5p, and hsa-miR-199a-5p-expression levels as a panel of biomarkers for HCC in chronic hepatitis C virus (CHCV) patients with liver cirrhosis (LC), especially AFP-negative HCC cases, as a step toward non-protein coding (nc) RNA precision medicine. SUBJECTS AND METHODS 79 patients enrolled with CHCV infection with LC, subclassified into an LC group without HCC (n = 40) and LC with HCC (n = 39). Real-time quantitative PCR was used to measure plasma hsa-miR-21-5p, hsa-miR-155-5p, hsa-miR-192-5p, and hsa-miR-199a-5p. RESULTS Plasma hsa-miR-21-5p and hsa-miR-155-5p demonstrated significant upregulation, while hsa-miR-199a-5p demonstrated significant downregulation in the HCC group (n = 39) when compared to the LC group (n = 40). hsa-miR-21-5p expression was positively correlated with serum AFP, insulin, and insulin resistance (r = 0.5, p < 0.001, r = 0.334, p = 0.01, and r = 0.303, p = 0.02, respectively). According to the ROC curves, for differentiating HCC from LC, combining AFP with each of hsa-miR-21-5p, hsa-miR-155-5p, and miR199a-5p improved the diagnostic sensitivity to 87%, 82%, and 84%, respectively, vs. 69% for AFP alone, with acceptable specificities of 77.5%, 77.5%, and 80%, respectively, and AUC = 0.89, 0.85, and 0.90, respectively vs. 0.85 for AFP alone. hsa-miR-21-5p/hsa-miR-199a-5p and hsa-miR-155-5p/hsa-miR-199a-5p ratios discriminated HCC from LC at AUC = 0.76 and 0.71, respectively, with sensitivities = 94% and 92% and specificities = 48% and 53%, respectively. Upregulation of plasma hsa-miR-21-5p was considered as an independent risk factor for HCC development [OR = 1.198(1.063-1.329), p = 0.002]. CONCLUSIONS Combining each of hsa-miR-21-5p, hsa-miR-155-5p, and hsa-miR-199a-5p with AFP made it possible to identify HCC development in the LC patients' cohort with higher sensitivity than using AFP alone. hsa-miR-21-5p/hsa-miR-199a-5p and hsa-miR-155-5p/hsa-miR-199a-5p ratios are potential HCC molecular markers for AFP-negative HCC patients. hsa-miR-21-5p was linked, clinically and via in silico proof, to insulin metabolism, inflammation, dyslipidemia, and tumorigenesis in the HCC patients' group as well as for an upregulated independent risk factor for the emergence of HCC from LC in the CHCV patients.
Collapse
Affiliation(s)
- Mona A. Eldosoky
- Clinical Pathology Department, Faculty of Medicine (for Girls), Al-Azhar University, Nasr City 11884, Egypt
| | - Reham Hammad
- Clinical Pathology Department, Faculty of Medicine (for Girls), Al-Azhar University, Nasr City 11884, Egypt
| | - Asmaa A. Elmadbouly
- Clinical Pathology Department, Faculty of Medicine (for Girls), Al-Azhar University, Nasr City 11884, Egypt
| | - Reda Badr Aglan
- Hepatology and Gastroenterology Department, National Liver Institute, Menoufia University, Shibin El-Kom 32514, Egypt
| | | | - Mohamed Alboraie
- Department of Internal Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Donia Ahmed Hassan
- Clinical Pathology Department, Faculty of Medicine (for Girls), Al-Azhar University, Nasr City 11884, Egypt
| | - Mohamed A. Shaheen
- Clinical Pathology Department, Faculty of Medicine (for Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Areej Rushdi
- Microbiology and Immunology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11884, Egypt
| | - Reem M. Ahmed
- Medical Biochemistry and Molecular Biology, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11884, Egypt
| | - Alzahra Abdelbadea
- Medical Biochemistry and Molecular Biology, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11884, Egypt
| | - Neamat A. Abdelmageed
- Hepatology, Gastroenterology and Infectious Diseases Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Elham Ali
- Molecular Biology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Cairo 11884, Egypt
| | - Omaima I. Abo-Elkheir
- Community Medicine and Public Health, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Samy Zaky
- Hepatology, Gastroenterology and Infectious Diseases Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo 11884, Egypt
| | - Nadia M. Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Correspondence:
| | - Claude Lambert
- Cytometry Unit, Immunology Laboratory, Saint-Etienne University Hospital, 42100 Saint-Etienne, France
| |
Collapse
|
47
|
Wu X, Wang Z, Luo L, Shu D, Wang K. Metabolomics in hepatocellular carcinoma: From biomarker discovery to precision medicine. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 4:1065506. [PMID: 36688143 PMCID: PMC9845953 DOI: 10.3389/fmedt.2022.1065506] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health burden, and is mostly diagnosed at late and advanced stages. Currently, limited and insensitive diagnostic modalities continue to be the bottleneck of effective and tailored therapy for HCC patients. Moreover, the complex reprogramming of metabolic patterns during HCC initiation and progression has been obstructing the precision medicine in clinical practice. As a noninvasive and global screening approach, metabolomics serves as a powerful tool to dynamically monitor metabolic patterns and identify promising metabolite biomarkers, therefore holds a great potential for the development of tailored therapy for HCC patients. In this review, we summarize the recent advances in HCC metabolomics studies, including metabolic alterations associated with HCC progression, as well as novel metabolite biomarkers for HCC diagnosis, monitor, and prognostic evaluation. Moreover, we highlight the application of multi-omics strategies containing metabolomics in biomarker discovery for HCC. Notably, we also discuss the opportunities and challenges of metabolomics in nowadays HCC precision medicine. As technologies improving and metabolite biomarkers discovering, metabolomics has made a major step toward more timely and effective precision medicine for HCC patients.
Collapse
Affiliation(s)
- Xingyun Wu
- West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, China
| | - Zihao Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Dan Shu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China,Correspondence: Kui Wang Dan Shu
| | - Kui Wang
- West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, China,Correspondence: Kui Wang Dan Shu
| |
Collapse
|
48
|
Zou J, Xiang Q, Tan D, Shi L, Liu X, Wu Y, Yu R. Zuogui-Jiangtang-Qinggan-Fang alleviates high-fat diet-induced type 2 diabetes mellitus with non-alcoholic fatty liver disease by modulating gut microbiome-metabolites-short chain fatty acid composition. Biomed Pharmacother 2023; 157:114002. [PMID: 36410120 DOI: 10.1016/j.biopha.2022.114002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) pathogenesis is affected by dysbiosis of the gut microbiome and the metabolites it generates. Therefore, restoring the equilibrium between the gut microbiome and the generated metabolites may have therapeutic potential for the syndrome. Zuogui Jiangtang Qinggan Fang (ZGJTQGF) is a Chinese herbal formulation used clinically to treat type 2 diabetic mellitus (T2DM) and fatty liver disease. However, its pharmacological mechanisms have not been well characterized. This work aimed to evaluate the hepatoprotective mechanism of ZGJTQGF in T2DM with NAFLD mice by incorporating gut microbiota, short-chain fatty acids(SCFAs), and metabolomic analysis, and then to provide strong support for clinical treatment of T2DM with NAFLD. The sequencing of 16 S rRNA revealed that ZGJTQGF therapy modified the composition and abundance of the gut microbiome, raised the level of SCFAs, and restored the intestinal mucosal barrier. The non-targeted metabolomic analysis of liver tissues identified 212 compounds, of which108 were differentially expressed between the HFD and ZGJTQGF groups. Moreover, L-glutamic acid, L-Phenylalanine, Glycine, Taurine, Deoxycholic acid, and citric acid levels were also considerably altered by ZGJTQGF. Our findings suggest that ZGJTQGF ameliorates HFD-induced hepatic steatosis by modulating the gut microbiota composition and its metabolites and boosting the levels of SCFAs. More notably, ZGJTQGF may be a promising medication for preventing and treating NAFLD.
Collapse
Affiliation(s)
- Junju Zou
- School of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; National Key Laboratory Cultivation Base of Chinese Medicinal Powder & Innovative Medicinal Jointly Established by Province and Ministry, Changsha, Hunan 410208, China
| | - Qin Xiang
- School of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Danni Tan
- School of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Liuyang Shi
- School of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiu Liu
- School of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Yongjun Wu
- School of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Traditional Chinese Medicine School of Pharmacy, Changsha, Hunan 410208, China.
| | - Rong Yu
- School of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
49
|
Mihai C, Mihai B, Prelipcean CC. Type 2 Diabetes Mellitus and Insulin Resistance in Nonalcoholic Fatty Liver Disease. ESSENTIALS OF NON-ALCOHOLIC FATTY LIVER DISEASE 2023:159-170. [DOI: 10.1007/978-3-031-33548-8_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
50
|
Terpenoids: Natural Compounds for Non-Alcoholic Fatty Liver Disease (NAFLD) Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010272. [PMID: 36615471 PMCID: PMC9822439 DOI: 10.3390/molecules28010272] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
Natural products have been the most productive source for the development of drugs. Terpenoids are a class of natural active products with a wide range of pharmacological activities and therapeutic effects, which can be used to treat a variety of diseases. Non-alcoholic fatty liver disease (NAFLD), a common metabolic disorder worldwide, results in a health burden and economic problems. A literature search was conducted to obtain information relevant to the treatment of NAFLD with terpenoids using electronic databases, namely PubMed, Web of Science, Science Direct, and Springer, for the period 2011-2021. In total, we found 43 terpenoids used in the treatment of NAFLD. Over a dozen terpenoid compounds of natural origin were classified into five categories according to their structure: monoterpenoids, sesquiterpenoids, diterpenoids, triterpenoids, and tetraterpenoids. We found that terpenoids play a therapeutic role in NAFLD, mainly by regulating lipid metabolism disorder, insulin resistance, oxidative stress, and inflammation. The AMPK, PPARs, Nrf-2, and SIRT 1 pathways are the main targets for terpenoid treatment. Terpenoids are promising drugs and will potentially create more opportunities for the treatment of NAFLD. However, current studies are restricted to animal and cell experiments, with a lack of clinical research and systematic structure-activity relationship (SAR) studies. In the future, we should further enrich the research on the mechanism of terpenoids, and carry out SAR studies and clinical research, which will increase the likelihood of breakthrough insights in the field.
Collapse
|