1
|
Zhang C, Zhang Q, Zhang X, Du S, Zhang Y, Wang X, Liu Y, Fang B, Chen J, Liu R, Hao Y, Li Y, Wang P, Zhao L, Feng H, Zhu L, Chen L, Chen S, Wang F, Jiang Z, Ji Y, Xiao R, Wang R, He J. Effects of synbiotics surpass probiotics alone in improving type 2 diabetes mellitus: A randomized, double-blind, placebo-controlled trial. Clin Nutr 2025; 44:248-258. [PMID: 39719724 DOI: 10.1016/j.clnu.2024.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND AND AIMS Combining probiotics and prebiotics in synbiotics may present a synergistic approach to improve type 2 diabetes mellitus (T2DM); however, further evidence is required to establish the comparative efficacy of synbiotics versus probiotics. This study aimed to evaluate the effects of Bifidobacterium animalis subsp. lactis MN-Gup (MN-Gup) and a synbiotic mixture of MN-Gup and galactooligosaccharide (MN-Gup-GOS) on glycemic control in T2DM patients and explore possible mechanisms. METHODS This randomized, double-blind, placebo-controlled clinical trial assigned 120 T2DM patients, to receive MN-Gup, MN-Gup-GOS, or placebo intervention for 12 weeks. The primary outcome was fasting blood glucose (FBG), with secondary outcomes including hemoglobin A1C (HbA1C), insulin, homeostatic model assessment of insulin resistance (HOMA-IR), inflammatory indicators, oxidative stress indicators, gastrointestinal hormones, gut microbiota, and bile acids (BAs). RESULTS The median age of the 120 participants was 59 years (interquartile range: 55-62 years), with 40 being men. Compared to baseline, all three groups exhibited significant reductions in FBG. Additionally, the MN-Gup-GOS group demonstrated significant decreases in HbA1c, serum insulin, and HOMA-IR after intervention, whereas no such reductions were observed in the placebo and MN-Gup groups. Regarding the between-group comparisons, the MN-Gup-GOS intervention showed a significantly greater reduction in FBG compared to the placebo (least squares mean difference [95 % CI], -0.69 [-1.29, -0.10] mmol/L, P = 0.022) and MN-Gup (-0.59 [-1.17, -0.01], P = 0.047) group, but not for other indicators of glucose metabolism. Additionally, MN-Gup and MN-Gup-GOS intervention, especially the latter, significantly modified inflammation, oxidative stress, gut microbiota, serum BAs, and GLP-1 levels. Correlation analysis showed significant associations between changes in certain gut microbiota (Bifidobacterium) and BAs (deoxycholic acid and lithocholic acid) with glycemic indicators. CONCLUSIONS The auxiliary effect of synbiotics MN-Gup-GOS on reducing FBG levels surpassed that of MN-Gup probiotics alone in T2DM patients, potentially attributed to the enhanced modulation of gut microbiota, BAs, and GLP-1 secretion. TRIAL REGISTRATION This study was registered on the website of www.chictr.org.cn, number ChiCTR2100052187.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Qi Zhang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Xiaoxu Zhang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Shuang Du
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing 101100, China
| | - Yong Zhang
- Department of Nutrition, The first medical Center of PLA General Hospital, Beijing 100039, China
| | - Xifan Wang
- Department of Obstetrics and Gynecology, Columbia University, New York 10032, USA
| | - Yinghua Liu
- Department of Nutrition, The first medical Center of PLA General Hospital, Beijing 100039, China
| | - Bing Fang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Juan Chen
- Research Center for Probiotics, China Agricultural University, Beijing 100193, China
| | - Rong Liu
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Yanling Hao
- Research Center for Probiotics, China Agricultural University, Beijing 100193, China
| | - Yixuan Li
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Pengjie Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Liang Zhao
- Research Center for Probiotics, China Agricultural University, Beijing 100193, China
| | - Haihong Feng
- Research Center for Probiotics, China Agricultural University, Beijing 100193, China; Hebei Engineering Research Center of Animal Product, Langfang 065200, China
| | - Longjiao Zhu
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Lishui Chen
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Shuxing Chen
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Fuqing Wang
- Tibet Tianhong Science and Technology Co., Ltd., Xizang 850000, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuting Ji
- Center for Mitochondrial Genetics and Health, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou 511458, China; School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ran Xiao
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing 101100, China.
| | - Ran Wang
- Research Center for Probiotics, China Agricultural University, Beijing 100193, China.
| | - Jingjing He
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Zhou W, Li X, Zhou H, Hu Y, Chen Y, Guo D. TNF-α/IL-1β/IL-1α/IL-12 inflammatory cytokine axes coupled with TLR1/TLR3/TLR5/MYD88 immune signaling pathway over-activation contribute to simultaneous carotid and coronary artery and occlusion in elderly patients. Cytokine 2025; 185:156808. [PMID: 39556941 DOI: 10.1016/j.cyto.2024.156808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/22/2024] [Accepted: 11/10/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND It remains difficult to evaluate the risk factors for concomitant carotid artery as well as coronary artery diseases in elderly patients. The aim of this research was to determine the TNF-α/IL-1β/IL-1α/IL-12 axes-TLR1/TLR3/TLR5/MYD88 immune signaling pathway interactions in coexistent carotid artery occlusion and coronary artery occlusion in elderly patients. METHODS Elderly patients, who underwent carotid ultrasonography and coronary computed tomography angiography, were consecutively included in this research. The analyzed groups consisted of those with coexistent carotid artery occlusion and coronary artery occlusion as well as healthy individuals were enrolled as control group. The circulating levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-1α (IL-1α), interleukin-12 (IL-12), toll-like receptor 1 (TLR1), toll-like receptor 3 (TLR3), toll-like receptor 5 (TLR5) and myeloid differentiation factor 88 (MYD88) were measured. RESULTS The biomarkers (TNF-α, IL-1β, IL-1α, IL-12, TLR1, TLR3, TLR5 and MYD88) were significantly increased in carotid artery occlusion + left circumflex coronary artery occlusion group when compared with control group and carotid artery occlusion + right coronary artery occlusion group, respectively (P < 0.001), and were further elevated in carotid artery occlusion + left anterior descending coronary artery occlusion group when compared to carotid artery occlusion + right coronary artery occlusion group and carotid artery occlusion + left circumflex coronary artery occlusion group, respectively (P < 0.001). CONCLUSION This research demonstrated that the TNF-α/IL-1β/IL-1α/IL-12 axes and TLR1/TLR3/TLR5/MYD88 immune signaling pathway implicated in the pathogenesis of carotid artery occlusion with coronary artery occlusion in elderly patients.
Collapse
Affiliation(s)
- Wenhang Zhou
- Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223005, China
| | - Xia Li
- Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223005, China
| | - Hualan Zhou
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| | - Youdong Hu
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| | - Ying Chen
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| | - Dianxuan Guo
- Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223005, China.
| |
Collapse
|
3
|
Li J, Ye J, Zhou Q, Guo K, Zhou Z. Impact of live microbe intake on cardiovascular disease and mortality in adults with diabetes: A nationwide cohort study. Diabetes Res Clin Pract 2024; 219:111942. [PMID: 39615795 DOI: 10.1016/j.diabres.2024.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVE This study examines the association between dietary intake of live microbes (LM) and the risk of cardiovascular disease (CVD) and cardiovascular mortality in adults with diabetes. METHODS A retrospective cohort study was conducted using National Health and Nutrition Examination Survey (NHANES) data from 2001 to 2010, with follow-up mortality data through December 31, 2019. A total of 3,955 adults with diabetes were included. Dietary LM intake was categorized as low (LLM), medium (MLM), or high (HLM). Multivariate weighted logistic regression assessed the relationship between LM intake and CVD, and weighted Cox proportional hazards models were used to evaluate cardiovascular mortality. RESULTS Among the 3,955 participants, 1,064 had CVD. MLM consumers had a significantly lower risk of CVD (OR: 0.55; 95 % CI: 0.33, 0.92) compared to non-consumers, with no significant associations for LLM and HLM. During a median follow-up of 10.5 years, 432 cardiovascular deaths occurred. MLM intake was associated with a lower risk of cardiovascular mortality (HR: 0.65; 95 % CI: 0.49, 0.86). CONCLUSION Moderate consumption of dietary live microbes is associated with reduced CVD risk and cardiovascular mortality in adults with diabetes. These findings suggest potential cardiovascular benefits from including LM in the diet of diabetic patients.
Collapse
Affiliation(s)
- Jiaqi Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jianan Ye
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qin Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Keyu Guo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
4
|
Zhao Z, Zhong L, Zhou P, Deng Y, Liu G, Li P, Zeng J, Zhang Y, Tang X, Zhang M. Impact of Dietary Fatty Acid Composition on the Intestinal Microbiota and Fecal Metabolism of Rats Fed a High-Fructose/High-Fat Diet. Nutrients 2024; 16:3774. [PMID: 39519607 PMCID: PMC11547413 DOI: 10.3390/nu16213774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: An inappropriate intake of dietary fats can disrupt the homeostasis of intestinal microbiota, affect the host's metabolic status, and increase the risk of chronic diseases. The impact of dietary fat types on the composition and metabolic functionality of the intestinal microbiota has become a research focus over recent years. The objective of this study was to explore the effects of regular peanut oil (PO) and high-oleic-acid peanut oil (HOPO) on the composition and metabolic function of the intestinal microbiota. Methods: A dietary intervention test was conducted on SD rats fed a high-fat/high-fructose (HFF) diet. The composition and metabolic functionality of the intestinal microbiota of the experimental rats were investigated by 16S rRNA gene sequencing and fecal metabolomics. Results: Compared with saturated fat, PO and HOPO enhanced the diversity of intestinal microbiota in HFF diet-fed rats. Compared with PO, HOPO significantly increased the relative abundance of Lachnospiraceae_NK4A136_group and Harryflintia (p < 0.05), which are able to generate butyrate and acetate. Compared with saturated fat, 318 and 271 fecal biomarkers were identified in PO and HOPO groups, respectively. In contrast, 68 fecal biomarkers were identified between the PO and HOPO groups. The inhibition of harmful proteolytic fermentation in the colon may represent the main regulatory mechanism. With regard to metabolic status, HOPO provided better control of body weight and insulin sensitivity than PO. Conclusions: Compared with saturated fat, peanut oils better regulated the composition and metabolic function of the intestinal microbiota. In addition, HOPO exhibited better regulatory effects than PO.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (Z.Z.)
| |
Collapse
|
5
|
Li S, Fan S, Ma Y, Xia C, Yan Q. Influence of gender, age, and body mass index on the gut microbiota of individuals from South China. Front Cell Infect Microbiol 2024; 14:1419884. [PMID: 39544283 PMCID: PMC11560914 DOI: 10.3389/fcimb.2024.1419884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024] Open
Abstract
Background The symbiotic gut microbiota is pivotal for human health, with its composition linked to various diseases and metabolic disorders. Despite its significance, there remains a gap in systematically evaluating how host phenotypes, such as gender, age, and body mass index (BMI), influence gut microbiota. Methodology/principal findings We conducted an analysis of the gut microbiota of 185 Chinese adults based on whole-metagenome shotgun sequencing of fecal samples. Our investigation focused on assessing the effects of gender, age, and BMI on gut microbiota across three levels: diversity, gene/phylogenetic composition, and functional composition. Our findings suggest that these phenotypes have a minor impact on shaping the gut microbiome compared to enterotypes, they do not correlate significantly within- or between-sample diversity. We identified a substantial number of phenotype-associated genes and metagenomic linkage groups (MLGs), indicating variations in gut microflora composition. Specifically, we observed a decline in beneficial Firmicutes microbes, such as Eubacterium, Roseburia, Faecalibacterium and Ruminococcus spp., in both older individuals and those with higher BMI, while potentially harmful microbes like Erysipelotrichaceae, Subdoligranulum and Streptococcus spp. increased with age. Additionally, Blautia and Dorea spp. were found to increase with BMI, aligning with prior research. Surprisingly, individuals who were older or overweight exhibited a lack of Bacteroidetes, a dominant phylum in the human gut microbiota that includes opportunistic pathogens, while certain species of the well-known probiotics Bifidobacterium were enriched in these groups, suggesting a complex interplay of these bacteria warranting further investigation. Regarding gender, several gender-associated MLGs from Bacteroides, Parabacteroides, Clostridium and Akkermansia were enriched in females. Functional analysis revealed a multitude of phenotype-associated KEGG orthologs (KOs). Conclusions/significance Our study underscores the influence of gender, age, and BMI on gut metagenomes, affecting both phylogenetic and functional composition. However, further investigation is needed to elucidate the precise roles of these bacteria, including both pathogens and probiotics.
Collapse
Affiliation(s)
- Shenghui Li
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Puensum Genetech Institute, Wuhan, China
| | - Shao Fan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yufang Ma
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chuan Xia
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Zhang S, Ma J, Ma Y, Yi J, Wang B, Wang H, Yang Q, Zhang K, Yan X, Sun D, You J. Engineering Probiotics for Diabetes Management: Advances, Challenges, and Future Directions in Translational Microbiology. Int J Nanomedicine 2024; 19:10917-10940. [PMID: 39493275 PMCID: PMC11530765 DOI: 10.2147/ijn.s492651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Background Diabetes Mellitus (DM) is a substantial health concern worldwide, and its incidence is progressively escalating. Conventional pharmacological interventions frequently entail undesirable side effects, and while probiotics offer benefits, they are hindered by constraints such as diminished stability and effectiveness within the gastrointestinal milieu. Given these complications, the advent of bioengineered probiotics is a promising alternative for DM management. Aim of Review The objective of this review is to provide an exhaustive synthesis of the most recent studies on the use of engineered probiotics in the management of DM. This study aimed to clarify the mechanisms through which these probiotics function, evaluate their clinical effectiveness, and enhance public awareness of their prospective advantages in the treatment of DM. Key Scientific Concepts of Review Scholarly critiques have explored diverse methodologies of probiotic engineering, including physical alteration, bioenrichment, and genetic manipulation. These techniques augment the therapeutic potency of probiotics by ameliorating gut microbiota, fortifying the intestinal barrier, modulating metabolic pathways, and regulating immune responses. Such advancements have established engineered probiotics as a credible therapeutic strategy for DM, potentially providing enhanced results compared to conventional treatments.
Collapse
Affiliation(s)
- Shenghao Zhang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Beier Wang
- Department of Hepatobiliary-Pancreatic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, Hong Kong SAR, 999077, People’s Republic of China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, People’s Republic of China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, 404000, People’s Republic of China
| | - Xiaoqing Yan
- The Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
- Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu hospital of Wenzhou Medical University, Yiwu, 322000, People’s Republic of China
| | - Jinfeng You
- Department of Obstetrics, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, 324000, People’s Republic of China
| |
Collapse
|
7
|
Xu J, Wang N, Yang L, Zhong J, Chen M. Intestinal flora and bile acid interactions impact the progression of diabetic kidney disease. Front Endocrinol (Lausanne) 2024; 15:1441415. [PMID: 39371929 PMCID: PMC11449830 DOI: 10.3389/fendo.2024.1441415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
In recent years, with the rapid development of omics technologies, researchers have shown that interactions between the intestinal flora and bile acids are closely related to the progression of diabetic kidney disease (DKD). By regulating bile acid metabolism and receptor expression, the intestinal flora affects host metabolism, impacts the immune system, and exacerbates kidney injury in DKD patients. To explore interactions among the gut flora, bile acids and DKD, as well as the related mechanisms, in depth, in this paper, we review the existing literature on correlations among the gut flora, bile acids and DKD. This review also summarizes the efficacy of bile acids and their receptors as well as traditional Chinese medicines in the treatment of DKD and highlights the unique advantages of bile acid receptors in DKD treatment. This paper is expected to reveal a new and important potential strategy for the clinical treatment of DKD.
Collapse
Affiliation(s)
| | | | | | | | - Ming Chen
- Department of Nephrology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Jiang Z, Qian M, Zhen Z, Yang X, Xu C, Zuo L, Jiang J, Zhang W, Hu N. Gut microbiota and metabolomic profile changes play critical roles in tacrolimus-induced diabetes in rats. Front Cell Infect Microbiol 2024; 14:1436477. [PMID: 39355267 PMCID: PMC11442430 DOI: 10.3389/fcimb.2024.1436477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/14/2024] [Indexed: 10/03/2024] Open
Abstract
Aims Hyperglycemia is one of the adverse effects of tacrolimus (TAC), but the underlying mechanism is not fully identified. We used multi-omics analysis to evaluate the changes in the gut microbiota and metabolic profile of rats with TAC-induced diabetes. Methods To establish a diabetic animal model, Sprague Dawley rats were divided randomly into two groups. Those in the TAC group received intraperitoneal injections of TAC (3 mg/kg) for 8 weeks, and those in the CON group served as the control. 16S rRNA sequencing was used to analyze fecal microbiota. The metabolites of the two groups were detected and analyzed by nontargeted and targeted metabolomics, including amino acids (AAs), bile acids (BAs), and short-chain fatty acids (SCFAs). Results The rats treated with TAC exhibited hyperglycemia as well as changes in the gut microbiota and metabolites. Specifically, their gut microbiota had significantly higher abundances of Escherichia-Shigella, Enterococcus, and Allobaculum, and significantly lower abundances of Ruminococcus, Akkermansia, and Roseburia. In addition, they had significantly reduced serum levels of AAs including asparagine, aspartic acid, glutamic acid, and methionine. With respect to BAs, they had significantly higher serum levels of taurocholic acid (TCA), and glycochenodeoxycholic acid (GCDCA), but significantly lower levels of taurodeoxycholic acid (TDCA) and tauroursodeoxycholic acid (TUDCA). There were no differences in the levels of SCFAs between the two groups. Correlations existed among glucose metabolism indexes (fasting blood glucose and fasting insulin), gut microbiota (Ruminococcus and Akkermansia), and metabolites (glutamic acid, hydroxyproline, GCDCA, TDCA, and TUDCA). Conclusions Both AAs and BAs may play crucial roles as signaling molecules in the regulation of TAC-induced diabetes.
Collapse
Affiliation(s)
- Zhenwei Jiang
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, Changzhou, China
| | - Minyan Qian
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, Changzhou, China
| | - Zeng Zhen
- Changzhou Key Laboratory of Human Use Experience Research & Transformation of Menghe Medical School, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Xuping Yang
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, Changzhou, China
| | - Caomei Xu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, Changzhou, China
| | - Li'an Zuo
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, Changzhou, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wenting Zhang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Pediatric Central Laboratory, Affiliated Changzhou Children's Hospital of Nantong University, Changzhou, China
| | - Nan Hu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, Changzhou, China
| |
Collapse
|
9
|
Huang J, Song Y, Cheng S, Yang X. Mechanism of action of FoxiangSan in diabetic gastroparesis: Gut microbiota and cAMP/PKA pathway. Heliyon 2024; 10:e35558. [PMID: 39211931 PMCID: PMC11357790 DOI: 10.1016/j.heliyon.2024.e35558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Diabetic gastroparesis, a common complication of type 2 diabetes (T2DM), presents a significant treatment challenge. FoxiangSan is emerging as a potential therapy. FoxiangSan is a traditional Chinese medicine formula with the potential for treating diabetic gastroparesis by modulating gut microbiota and cAMP/PKA signaling pathways. This study explores the mechanisms behind FoxiangSan's effects on T2DM-induced gastroparesis, focusing on its impact on gut microbiota and the cAMP/PKA pathway. A rat model of type 2 diabetic gastroparesis was established through a high-fat diet and streptozotocin (STZ) injection, and the effects of FoxiangSan were assessed. Additionally, protein expression related to the cAMP/PKA pathway was examined, and FoxiangSan's influence on gut microbiota was studied using 16S rRNA sequencing. FoxiangSan significantly alleviated hyperglycemia, improved gastric pathology in rats with gastroparesis, enhanced the expression of 5-HT4, cAMP, PKA, and pPKA in the gastric antrum, and rebalanced gut microbiota. FoxiangSan demonstrates the therapeutic potential for T2DM-associated gastroparesis by modulating the cAMP/PKA pathway and gut microbiota.
Collapse
Affiliation(s)
- Jukai Huang
- Department of Endocrinology, Beijing University of Chinese Medicine, Dongzhimen Hospital, Beijing, 100700, PR China
| | - Yaling Song
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, PR China
| | - Shuli Cheng
- Department of Intensive Care Unit, Beijing University of Chinese Medicine, Dongzhimen Hospital, Beijing, 100700, PR China
| | - Xiaohui Yang
- Department of Endocrinology, Beijing University of Chinese Medicine, Dongzhimen Hospital, Beijing, 100700, PR China
| |
Collapse
|
10
|
Gu S, Jiang C, Yu Z, Yang W, Wu C, Shao Y. The relationship between dietary intake of live microbes and insulin resistance among healthy adults in the US: a cross-sectional study from NHANES 2003-2020. Sci Rep 2024; 14:17666. [PMID: 39085369 PMCID: PMC11291967 DOI: 10.1038/s41598-024-68243-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Dietary intake of live microbes may benefit human health, but less is known about the role in insulin resistance. This study was developed with the goal of evaluating potential relationships between IR and dietary live microbes. The National Health and Nutrition Examination Survey (NHANES) dataset was leveraged to collect data from 6,333 subjects 18 + years of age. The Sanders system for the classification of dietary live microbe intake (containing Low (< 104 CFU/g), Medium (104-107 CFU/g), or High (> 107 CFU/g) levels of live microbes) was then used to separate these patients into three groups (low, medium, or high). Fasting blood glucose and insulin levels were used to approximate IR based on the homeostasis model of insulin resistance (HOMA-IR). Weighted linear regressions were used to assess the relationship between IR and live microbe intake. After fully adjusting for confounding factors, subjects in the groups exhibiting medium and high levels of live microbe intake exhibited HOMA-IR scores that were below those of subjects in the low group. The relationship between live microbe intake and HOMA-IR scores was also potentially impacted by ethnicity. In summary, a negative correlation was detected between dietary live microbe intake and HOMA-IR values.
Collapse
Affiliation(s)
- Shicheng Gu
- Department of Gastroenterology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Chenyu Jiang
- Department of Geriatric, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Zhenjun Yu
- Department of Gastroenterology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Wenyuan Yang
- Department of Gastroenterology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Chaoqun Wu
- Department of Gastroenterology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Yaojian Shao
- Department of Gastroenterology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China.
| |
Collapse
|
11
|
Yoon KN, Lee HG, Yeom SJ, Kim SS, Park JH, Song BS, Yi SW, Do YJ, Oh B, Oh SI, Eun JB, Park SH, Lee JH, Kim HB, Lee JH, Hur TY, Kim JK. Lactiplantibacillus argentoratensis AGMB00912 alleviates salmonellosis and modulates gut microbiota in weaned piglets: a pilot study. Sci Rep 2024; 14:15466. [PMID: 38965336 PMCID: PMC11224356 DOI: 10.1038/s41598-024-66092-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
This study aimed to evaluate the efficacy of Lactiplantibacillus argentoratensis AGMB00912 (LA) in reducing Salmonella Typhimurium infection in weaned piglets. The investigation focused on the influence of LA on the gut microbiota composition, growth performance, and Salmonella fecal shedding. The results indicated that LA supplementation significantly improved average daily gain and reduced the prevalence and severity of diarrhea. Fecal analysis revealed reduced Salmonella shedding in the LA-supplemented group. Furthermore, LA notably altered the composition of the gut microbiota, increasing the levels of beneficial Bacillus and decreasing those of harmful Proteobacteria and Spirochaetes. Histopathological examination showed less intestinal damage in LA-treated piglets than in the controls. The study also observed that LA affected metabolic functions related to carbohydrate, amino acid, and fatty acid metabolism, thereby enhancing gut health and resilience against infection. Short-chain fatty acid concentrations in the feces were higher in the LA group, suggesting improved gut microbial activity. LA supplementation enriched the population of beneficial bacteria, including Streptococcus, Clostridium, and Bifidobacterium, while reducing the number of harmful bacteria, such as Escherichia and Campylobacter. These findings indicate the potential of LA as a probiotic alternative for swine nutrition, offering protective effects to the gut microbiota against Salmonella infection.
Collapse
Affiliation(s)
- Ki-Nam Yoon
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Han Gyu Lee
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Seo-Joon Yeom
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Sang-Su Kim
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Jong-Heum Park
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Beom-Seok Song
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Seung-Won Yi
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Yoon Jung Do
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Byungkwan Oh
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Sang-Ik Oh
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seung-Hwan Park
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, 56212, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, 56212, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tai-Young Hur
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea.
| | - Jae-Kyung Kim
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea.
| |
Collapse
|
12
|
Li Z, Zhao Z, Chen S, Wang X, Wang D, Nie X, Yao Y. Ge-Gen-Qin-Lian decoction alleviates the symptoms of type 2 diabetes mellitus with inflammatory bowel disease via regulating the AGE-RAGE pathway. BMC Complement Med Ther 2024; 24:225. [PMID: 38858747 PMCID: PMC11163797 DOI: 10.1186/s12906-024-04526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND This study aimed to explore the mechanism of Ge-Gen-Qin-Lian decoction (GGQLD) in the alleviation of symptoms of type 2 diabetes mellitus (T2DM) with inflammatory bowel disease (IBD) by network pharmacology and experimental validation. METHODS The active components and targets of GGQLD were identified from the TCMSP database. The potential therapeutic targets of T2DM and IBD were identified from the GEO database and 4 online disease target databases. The PPI network and KEGG/GO analyses were performed with the common targets among GGQLD, T2DM and IBD. Molecular docking was carried out between the core compounds and hub targets. To verify the above results, UHPLC-MS technology was used to identify the chemical compounds in GGQLD, and a T2DM with IBD rat model was used to explore the mechanism by which GGQLD treats T2DM with IBD. RESULTS Totally, 70 potential therapeutic targets were identified among GGQLD, T2DM and IBD. Ten hub genes were selected from the PPI network. KEGG analysis revealed that GGQLD is tightly involved in the AGE-RAGE signaling pathway. Berberine, baicalein, wogonin, and quercitrin are the main active compounds of GGQLD. Animal experiments showed that GGQLD could decrease blood glucose and alleviate intestinal inflammation. Notably, the concentrations of AGEs, the expression of RAGE, c-JUN and NF-κB and the expression of inflammatory cytokines were decreased by GGQLD. CONCLUSIONS Our study initially demonstrated that GGQLD has favorable anti-hyperglycemic and anti-intestinal inflammation effects in a T2DM with IBD rat model, and the AGE-RAGE pathway plays a vital role in this process.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Nephrology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, No. 13, Shi Liu Gang Road, Haizhu District, Guangzhou, Guangdong Province, 510315, China
| | - Ziwei Zhao
- Department of Nephrology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, No. 13, Shi Liu Gang Road, Haizhu District, Guangzhou, Guangdong Province, 510315, China
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shujuan Chen
- Department of Nephrology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, No. 13, Shi Liu Gang Road, Haizhu District, Guangzhou, Guangdong Province, 510315, China
| | - Xiaojuan Wang
- Department of Nephrology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, No. 13, Shi Liu Gang Road, Haizhu District, Guangzhou, Guangdong Province, 510315, China
| | - Dongsheng Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiaoli Nie
- Department of Nephrology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, No. 13, Shi Liu Gang Road, Haizhu District, Guangzhou, Guangdong Province, 510315, China.
| | - Ye Yao
- Department of Nephrology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, No. 13, Shi Liu Gang Road, Haizhu District, Guangzhou, Guangdong Province, 510315, China.
| |
Collapse
|
13
|
Hasanian-Langroudi F, Ghasemi A, Hedayati M, Siadat SD, Tohidi M. Novel Insight into the Effect of Probiotics in the Regulation of the Most Important Pathways Involved in the Pathogenesis of Type 2 Diabetes Mellitus. Probiotics Antimicrob Proteins 2024; 16:829-844. [PMID: 37162668 DOI: 10.1007/s12602-023-10056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 05/11/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is considered one of the most common disorders worldwide. Although several treatment modalities have been developed, the existing interventions have not yielded the desired results. Therefore, researchers have focused on finding treatment choices with low toxicity and few adverse effects that could control T2DM efficiently. Various types of research on the role of gut microbiota in developing T2DM and its related complications have led to the growing interest in probiotic supplementation. Several properties make these organisms unique in terms of human health, including their low cost, high reliability, and good safety profile. Emerging evidence has demonstrated that three of the most important signaling pathways, including nuclear factor kappa B (NF-κB), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), and nuclear factor erythroid 2-related factor 2 (Nrf2), which involved in the pathogenesis of T2DM, play key functions in the effects of probiotics on this disease. Hence, we will focus on the clinical applications of probiotics in the management of T2DM. Then, we will also discuss the roles of the involvement of various probiotics in the regulation of the most important signaling pathways (NF-κB, PI3K/Akt, and Nrf2) involved in the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Farzaneh Hasanian-Langroudi
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box, Tehran, 19395-4763, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Maryam Tohidi
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box, Tehran, 19395-4763, Iran.
| |
Collapse
|
14
|
Zhang C, Fang B, Zhang N, Zhang Q, Niu T, Zhao L, Sun E, Wang J, Xiao R, He J, Li S, Chen J, Guo J, Xiong W, Wang R. The Effect of Bifidobacterium animalis subsp. lactis MN-Gup on Glucose Metabolism, Gut Microbiota, and Their Metabolites in Type 2 Diabetic Mice. Nutrients 2024; 16:1691. [PMID: 38892624 PMCID: PMC11174421 DOI: 10.3390/nu16111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Probiotics have garnered increasing attention as a potential therapeutic approach for type 2 diabetes mellitus (T2DM). Previous studies have confirmed that Bifidobacterium animalis subsp. lactis MN-Gup (MN-Gup) could stimulate the secretion of glucagon-like peptide-1 (GLP-1) in NCI-H716 cells, but whether MN-Gup has a hypoglycemic effect on T2DM in vivo remains unclear. In this study, a T2DM mouse model was constructed, with a high-fat diet and streptozotocin in mice, to investigate the effect of MN-Gup on diabetes. Then, different doses of MN-Gup (2 × 109 CFU/kg, 1 × 1010 CFU/kg) were gavaged for 6 weeks to investigate the effect of MN-Gup on glucose metabolism and its potential mechanisms. The results showed that a high-dose of MN-Gup significantly reduced the fasting blood glucose (FBG) levels and homeostasis model assessment-insulin resistance (HOMA-IR) of T2DM mice compared to the other groups. In addition, there were significant increases in the short-chain fatty acids (SCFAs), especially acetate, and GLP-1 levels in the MN-Gup group. MN-Gup increased the relative abundance of Bifidobacterium and decreased the number of Escherichia-Shigella and Staphylococcus. Moreover, the correlation analysis revealed that Bifidobacterium demonstrated a significant positive correlation with GLP-1 and a negative correlation with the incremental AUC. In summary, this study demonstrates that Bifidobacterium animalis subsp. lactis MN-Gup has significant hypoglycemic effects in T2DM mice and can modulate the gut microbiota, promoting the secretion of SCFAs and GLP-1.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Bing Fang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Nana Zhang
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Qi Zhang
- Research Center for Probiotics, China Agricultural University, Beijing 100193, China
| | - Tianjiao Niu
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing 101100, China
| | - Liang Zhao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Erna Sun
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing 101100, China
| | - Jian Wang
- Research Center for Probiotics, China Agricultural University, Beijing 100193, China
| | - Ran Xiao
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing 101100, China
| | - Jingjing He
- Research Center for Probiotics, China Agricultural University, Beijing 100193, China
| | - Shusen Li
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing 101100, China
| | - Juan Chen
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Jie Guo
- Research Center for Probiotics, China Agricultural University, Beijing 100193, China
| | - Wei Xiong
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Liang J, Li C, Chen Z, Guo F, Dou J, Wang T, Xu ZS. Progress of research and application of Heyndrickxia coagulans ( Bacillus coagulans) as probiotic bacteria. Front Cell Infect Microbiol 2024; 14:1415790. [PMID: 38863834 PMCID: PMC11165213 DOI: 10.3389/fcimb.2024.1415790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024] Open
Abstract
Probiotics are defined as living or dead bacteria and their byproducts that maintain the balance of the intestinal microbiome. They are non-toxic, non-pathogenic, and do not release any toxins either within or outside the body. Adequate consumption of probiotics can enhance metabolite production, increase immunity, maintain a balanced intestinal flora, and stimulate growth. Probiotics do not have negative antibiotic effects and help maintain the natural flora in animals in a balanced state or prevent dysbacteriosis. Heyndrickxia coagulans (H. coagulans) is a novel probiotic species that is gradually being used for the improvement of human health. Compared to commonly used probiotic lactic acid bacteria, H. coagulans can produce spores, which provide the species with high resistance to adverse conditions. Even though they are transient residents of the gut, beneficial bacteria can have a significant impact on the microbiota because they can outnumber harmful germs, and vice versa. This article discusses the probiotic mechanisms of H. coagulans and outlines the requirements for a substance to be classified as a probiotic. It also addresses how to assess strains that have recently been discovered to possess probiotic properties.
Collapse
Affiliation(s)
- Jie Liang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Chunhai Li
- Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zouquan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Fangyu Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Jiaxin Dou
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Zhen Shang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| |
Collapse
|
16
|
Adhikary K, Sarkar R, Maity S, Banerjee I, Chatterjee P, Bhattacharya K, Ahuja D, Sinha NK, Maiti R. The underlying causes, treatment options of gut microbiota and food habits in type 2 diabetes mellitus: a narrative review. J Basic Clin Physiol Pharmacol 2024; 35:153-168. [PMID: 38748886 DOI: 10.1515/jbcpp-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/01/2024] [Indexed: 07/05/2024]
Abstract
Type 2 diabetes mellitus is a long-lasting endocrine disorder characterized by persistent hyperglycaemia, which is often triggered by an entire or relative inadequacy of insulin production or insulin resistance. As a result of resistance to insulin (IR) and an overall lack of insulin in the body, type 2 diabetes mellitus (T2DM) is a metabolic illness that is characterized by hyperglycaemia. Notably, the occurrence of vascular complications of diabetes and the advancement of IR in T2DM are accompanied by dysbiosis of the gut microbiota. Due to the difficulties in managing the disease and the dangers of multiple accompanying complications, diabetes is a chronic, progressive immune-mediated condition that plays a significant clinical and health burden on patients. The frequency and incidence of diabetes among young people have been rising worldwide. The relationship between the gut microbiota composition and the physio-pathological characteristics of T2DM proposes a novel way to monitor the condition and enhance the effectiveness of therapies. Our knowledge of the microbiota of the gut and how it affects health and illness has changed over the last 20 years. Species of the genus Eubacterium, which make up a significant portion of the core animal gut microbiome, are some of the recently discovered 'generation' of possibly helpful bacteria. In this article, we have focused on pathogenesis and therapeutic approaches towards T2DM, with a special reference to gut bacteria from ancient times to the present day.
Collapse
Affiliation(s)
- Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Riya Sarkar
- Department of Medical Laboratory Technology, 231513 Dr. B. C. Roy Academy of Professional Courses , Durgapur, West Bengal, India
| | - Sriparna Maity
- Department of Medical Laboratory Technology, 231513 Dr. B. C. Roy Academy of Professional Courses , Durgapur, West Bengal, India
| | - Ipsita Banerjee
- Department of Nutrition, Paramedical College Durgapur, Durgapur, West Bengal, India
| | - Prity Chatterjee
- Department of Biotechnology, Paramedical College Durgapur, Durgapur, West Bengal, India
| | - Koushik Bhattacharya
- School of Paramedics and Allied Health Sciences, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Deepika Ahuja
- School of Paramedics and Allied Health Sciences, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Nirmalya Kumar Sinha
- Department of Nutrition and Department of NSS, Raja Narendra Lal Khan Women's College (Autonomous), Midnapore, West Bengal, India
| | - Rajkumar Maiti
- Department of Physiology, 326624 Bankura Christian College , Bankura, West Bengal, India
| |
Collapse
|
17
|
Ma X, Qiu Y, Mao M, Lu B, Zhao H, Pang Z, Li S. PuRenDan alleviates type 2 diabetes mellitus symptoms by modulating the gut microbiota and its metabolites. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117627. [PMID: 38147943 DOI: 10.1016/j.jep.2023.117627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/06/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE PuRenDan (PRD) is a traditional Chinese medicine formula comprising five herbs that have been traditionally used to treat type 2 diabetes mellitus (T2DM). While PRD has been shown to be effective in treating T2DM in clinical and animal studies, the mechanisms by which it works on the gut microbiome and metabolites related to T2DM are not well understood. AIM OF THE STUDY The objective of this study was to partially elucidate the mechanism of PRD in treating T2DM through analyses of the gut microbiota metagenome and metabolome. MATERIALS AND METHODS Sprague-Dawley rats were fed high-fat diets (HFDs) and injected with low-dose streptozotocin (STZ) to replicate T2DM models. Then the therapeutic effects of PRD were evaluated by measuring clinical markers such as blood glucose, insulin resistance (IR), lipid metabolism biomarkers (total cholesterol, low-density lipoprotein, non-esterified fatty acids, and triglycerides), and inflammatory factors (tumor necrosis factor alpha, interleukin-6 [IL-6], interferon gamma, and IL-1β). Colon contents were collected, and metagenomics, combined with ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry metabolic profiling, was performed to evaluate the effects of T2DM and PRD on gut microbiota and its metabolites in rats. Spearman analysis was used to calculate the correlation coefficient among different microbiota, clinical indices, and metabolites. RESULTS PRD exhibited significant improvement in blood glucose and IR, and reduced serum levels of lipid metabolism biomarkers and inflammatory factors. Moreover, the diversity and abundance of gut microbiota undergo significant changes in rats with T2DM that PRD was able to reverse. The gut microbiota associated with T2DM including Rickettsiaceae bacterium 4572_127, Psychrobacter pasteurii, Parabacteroides sp. CAG409, and Paludibacter propionicigenes were identified. The gut microbiota most closely related to PRD were Prevotella sp. 10(H), Parabacteroides sp. SN4, Flavobacteriales bacterium, Bacteroides massiliensis, Alistipes indistinctus, and Ruminococcus flavefaciens. Additionally, PRD regulated the levels of gut microbiota metabolites including pantothenic acid, 1-Methylhistamine, and 1-Methylhistidine; these affected metabolites were involved in pantothenate and coenzyme A biosynthesis, histidine metabolism, and secondary bile acid biosynthesis. Correlation analysis illustrated a close relationship among gut microbiota, its metabolites, and T2DM-related indexes. CONCLUSION Our study provides insights into the gut microbiota and its metabolites of PRD therapy for T2DM. It clarifies the role of gut microbiota and the metabolites in the pathogenesis of T2DM, highlighting the potential of PRD for the treatment of this disease.
Collapse
Affiliation(s)
- Xiaoqin Ma
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Yuqing Qiu
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Minghui Mao
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Binan Lu
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Huanhu Zhao
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Zongran Pang
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Shuchun Li
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| |
Collapse
|
18
|
Liu T, Zhao M, Zhang Y, Xu R, Fu Z, Jin T, Song J, Huang Y, Wang M, Zhao C. Polysaccharides from Phellinus linteus attenuate type 2 diabetes mellitus in rats via modulation of gut microbiota and bile acid metabolism. Int J Biol Macromol 2024; 262:130062. [PMID: 38340923 DOI: 10.1016/j.ijbiomac.2024.130062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is the most prevalent metabolic disorder. Polysaccharides from Phellinus linteus (PLP) have been found to have anti-diabetes effects, but the mechanism has not been elucidated. The purpose of this study was to investigate the mechanism of PLP on T2DM through the gut microbiota and bile acids metabolism. The T2DM rat model was induced by a high-fat high-carbohydrate (HFHC) diet and streptozocin (30 mg/kg). We found that PLP ameliorated diabetes symptoms. Besides, PLP intervention increased the abundance of g_Bacteroides, g_Parabacteroides, and g_Alistioes, which are associated with the biosynthesis of short-chain fatty acids (SCFAs) and bile acids (BAs) metabolism. Meanwhile, untargeted and targeted metabolomics indicated that PLP could regulate the composition of BAs and increase the levels of SCFAs. Real-time quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) were performed to analyze the expression levels of BAs metabolism enzymes in the liver. Finally, the results of correlation analysis and Glucagon-like peptide-1 (GLP-1) showed that PLP stimulated the release of GLP-1 by regulating SCFAs and BAs. In conclusion, this study demonstrated that PLP can regulate gut microbiota and BAs metabolism to promote GLP-1 secretion, thereby increasing insulin release, decreasing blood glucose and attenuating T2DM.
Collapse
Affiliation(s)
- Tingting Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Yumeng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Ruixiang Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Zixuan Fu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Tong Jin
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Jiaxi Song
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Yihe Huang
- School of Public Health, Shenyang Medical College, Huanghe North Street 146, Shenyang, Liaoning Province, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| |
Collapse
|
19
|
Kaul R, Paul P, Harfouche M, Saliba R, Chaari A. Microbiome-modulating nutraceuticals ameliorate dyslipidemia in type 2 diabetes: A systematic review, meta-analysis, and meta-regression of clinical trials. Diabetes Metab Res Rev 2024; 40:e3675. [PMID: 37381688 DOI: 10.1002/dmrr.3675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/26/2023] [Accepted: 05/19/2023] [Indexed: 06/30/2023]
Abstract
AIMS Type 2 Diabetes is intrinsically linked to cardiovascular disease (CVD) via diabetic dyslipidemia, both of which remain global health concerns with annually increasing prevalence. Given the established links between gut microbiome dysbiosis and metabolic diseases, its modulation is an attractive target to ameliorate metabolic imbalances in such patients. There is a need to quantitively summarise, analyse, and describe future directions in this field. METHODS We conducted a systematic review, meta-analysis, and meta-regression following searches in major scientific databases for clinical trials investigating the effect of pro/pre/synbiotics on lipid profile published until April 2022. Data were pooled using random-effects meta-analysis and reported as mean differences with 95% confidence intervals (CIs). PROSPERO No. CRD42022348525. RESULTS Data from 47 trial comparisons across 42 studies (n = 2692) revealed that, compared to placebo/control groups, the administration of pro/pre/synbiotics was associated with statistically significant changes in total cholesterol (-9.97 mg/dL [95% CI: -15.08; -4.87], p < 0.0001), low-density lipoprotein (-6.29 mg/dL [95% CI: -9.25; -3.33], p < 0.0001), high-density lipoprotein (+3.21 mg/dL [95% CI: 2.20; 4.22], p < 0.0001), very-low-density lipoprotein (-4.52 mg/dL [95% CI: -6.36; -2.67], p < 0.0001) and triglyceride (-22.93 mg/dL [95% CI: -33.99; -11.87], p < 0.001). These results are influenced by patient characteristics such as age or baseline BMI, and intervention characteristics such as dosage and duration. CONCLUSIONS Our study shows that adjunct supplementation with a subset of pro/pre/synbiotics ameliorates dyslipidemia in diabetic individuals and has the potential to reduce CVD risk. However, widespread inter-study heterogeneity and the presence of several unknown confounders limit their adoption in clinical practice; future trials should be designed with these in mind.
Collapse
Affiliation(s)
- Ridhima Kaul
- Medical Education Division, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
| | - Pradipta Paul
- Medical Education Division, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
| | - Manale Harfouche
- Infectious Disease Epidemiology Group, Weill Cornell Medicine - Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine - Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
| | - Reya Saliba
- Health Sciences Library, Weill Cornell Medicine - Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
| | - Ali Chaari
- Premedical Division, Weill Cornell Medicine - Qatar, Qatar Foundation - Education City, Doha, Qatar
| |
Collapse
|
20
|
Cao W, Fu X, Zhou J, Qi Q, Ye F, Li L, Wang L. The effect of the female genital tract and gut microbiome on reproductive dysfunction. Biosci Trends 2024; 17:458-474. [PMID: 38104979 DOI: 10.5582/bst.2023.01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Microorganisms are ubiquitous in the human body; they are present in various areas including the gut, mouth, skin, respiratory tract, and reproductive tract. The interaction between the microbiome and reproductive health has become an increasingly compelling area of study. Disruption of the female genital tract microbiome can significantly impact the metabolism of amino acids, carbohydrates, and lipids, increasing susceptibility to reproductive tract diseases such as vaginitis, chronic endometritis, endometrial polyps, endometriosis, and polycystic ovary syndrome. The gut microbiome, considered an endocrine organ, plays a crucial role in the reproductive endocrine system by interacting with hormones like estrogen and androgens. Imbalances in the gut microbiome composition can lead to various diseases and conditions, including polycystic ovary syndrome, endometriosis, and cancer, although research on their mechanisms remains limited. This review highlights the latest advancements in understanding the female genital tract and gut microbiomes in gynecological diseases. It also explores the potential of microbial communities in the treatment of reproductive diseases. Future research should focus on identifying the molecular mechanisms underlying the association between the microbiome and reproductive diseases to develop new and effective strategies for disease prevention, diagnosis, and treatment related to female reproductive organs.
Collapse
Affiliation(s)
- Wenli Cao
- Reproductive Medicine Center, Zhoushan Maternal and Child Health Care Hospital, Zhoushan, Zhejiang, China
| | - Xiayan Fu
- Reproductive Medicine Center, Zhoushan Maternal and Child Health Care Hospital, Zhoushan, Zhejiang, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Qing Qi
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Feijun Ye
- Reproductive Medicine Center, Zhoushan Maternal and Child Health Care Hospital, Zhoushan, Zhejiang, China
| | - Lisha Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
21
|
Shi B, Li H, He X. Advancing lifelong precision medicine for cardiovascular diseases through gut microbiota modulation. Gut Microbes 2024; 16:2323237. [PMID: 38411391 PMCID: PMC10900281 DOI: 10.1080/19490976.2024.2323237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
The gut microbiome is known as the tenth system of the human body that plays a vital role in the intersection between health and disease. The considerable inter-individual variability in gut microbiota poses both challenges and great prospects in promoting precision medicine in cardiovascular diseases (CVDs). In this review, based on the development, evolution, and influencing factors of gut microbiota in a full life circle, we summarized the recent advances on the characteristic alteration in gut microbiota in CVDs throughout different life stages, and depicted their pathological links in mechanism, as well as the highlight achievements of targeting gut microbiota in CVDs prevention, diagnosis and treatment. Personalized strategies could be tailored according to gut microbiota characteristics in different life stages, including gut microbiota-blood metabolites combined prediction and diagnosis, dietary interventions, lifestyle improvements, probiotic or prebiotic supplements. However, to fulfill the promise of a lifelong cardiovascular health, more mechanism studies should progress from correlation to causality and decipher novel mechanisms linking specific microbes and CVDs. It is also promising to use the burgeoning artificial intelligence and machine learning to target gut microbiota for developing diagnosis system and screening for new therapeutic interventions.
Collapse
Affiliation(s)
- Bozhong Shi
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Li
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomin He
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, National Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Guo S, Ma T, Kwok LY, Quan K, Li B, Wang H, Zhang H, Menghe B, Chen Y. Effects of postbiotics on chronic diarrhea in young adults: a randomized, double-blind, placebo-controlled crossover trial assessing clinical symptoms, gut microbiota, and metabolite profiles. Gut Microbes 2024; 16:2395092. [PMID: 39189588 PMCID: PMC11352714 DOI: 10.1080/19490976.2024.2395092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
Chronic diarrhea has a considerable impact on quality of life. This randomized, double-blind, placebo-controlled crossover intervention trial was conducted with 69 participants (36 in Group A, 33 in Group B), aiming to investigate the potential of postbiotics in alleviating diarrhea-associated symptoms. Participants received postbiotic Probio-Eco® and placebo for 21 days each in alternating order, with a 14-day washout period between interventions. The results showed that postbiotic intake resulted in significant improvements in Bristol stool scale score, defecation frequency, urgency, and anxiety. Moreover, the postbiotic intervention increased beneficial intestinal bacteria, including Dysosmobacter welbionis and Faecalibacterium prausnitzii, while reducing potential pathogens like Megamonas funiformis. The levels of gut Microviridae notably increased. Non-targeted metabolomics analysis revealed postbiotic-driven enrichment of beneficial metabolites, including α-linolenic acid and p-methoxycinnamic acid, and reduction of diarrhea-associated metabolites, including theophylline, piperine, capsaicin, and phenylalanine. Targeted metabolomics confirmed a significant increase in fecal butyric acid after postbiotic intervention. The levels of aromatic amino acids, phenylalanine and tryptophan, and their related metabolites, 5-hydroxytryptophan and kynurenine, decreased after the postbiotic intervention, suggesting diarrhea alleviation was through modulating the tryptophan-5-hydroxytryptamine and tryptophan-kynurenine pathways. Additionally, chenodeoxycholic acid, a diarrhea-linked primary bile acid, decreased substantially. In conclusion, postbiotics have shown promise in relieving chronic diarrhea.
Collapse
Affiliation(s)
- Shuai Guo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Teng Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Keyu Quan
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Bohai Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Huan Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Department of Clinical Nutrition, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Bilige Menghe
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yongfu Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
23
|
Guo H, Luo J, Lin H. Exploration of the pathogenesis of polycystic ovary syndrome based on gut microbiota: A review. Medicine (Baltimore) 2023; 102:e36075. [PMID: 38115365 PMCID: PMC10727628 DOI: 10.1097/md.0000000000036075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 12/21/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorde7r influenced by genetic, neuroendocrine, metabolic, environmental, and lifestyle factors. This paper delves into the increasingly recognized role of gut microbiota dysbiosis in the onset and progression of PCOS. Utilizing advances in next-generation sequencing and metabolomics, the research examines the intricate interaction between the gut microbiota and the central nervous system via the gut-brain axis. The paper highlights how disruptions in gut microbiota contribute significantly to PCOS by modulating the release of gut-brain peptides and activating inflammatory pathways. Through such mechanisms, gut microbiota dysbiosis is implicated in hyperandrogenism, insulin resistance, chronic inflammation, and metabolic disorders associated with PCOS. While the relationship between gut microbiota and PCOS has begun to be elucidated, this paper underscores the need for further research to identify specific bacterial strains and their metabolic byproducts as potential therapeutic targets. Therefore, comprehensive studies are urgently needed to understand and fundamentally treat the pathophysiological processes of PCOS, offering valuable insights for future treatment and prevention strategies.
Collapse
Affiliation(s)
- Hua Guo
- Graduate School of Guangxi University of Traditional Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, China
| | - Jing Luo
- Graduate School of Guangxi University of Traditional Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, China
| | - Hanmei Lin
- Department of Gynaecology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
24
|
Di Cesare F, Calgaro M, Ghini V, Squarzanti DF, De Prisco A, Visciglia A, Zanetta P, Rolla R, Savoia P, Amoruso A, Azzimonti B, Vitulo N, Tenori L, Luchinat C, Pane M. Exploring the Effects of Probiotic Treatment on Urinary and Serum Metabolic Profiles in Healthy Individuals. J Proteome Res 2023; 22:3866-3878. [PMID: 37970754 PMCID: PMC10696601 DOI: 10.1021/acs.jproteome.3c00548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023]
Abstract
Probiotics are live microorganisms that confer health benefits when administered in adequate amounts. They are used to promote gut health and alleviate various disorders. Recently, there has been an increasing interest in the potential effects of probiotics on human physiology. In the presented study, the effects of probiotic treatment on the metabolic profiles of human urine and serum using a nuclear magnetic resonance (NMR)-based metabonomic approach were investigated. Twenty-one healthy volunteers were enrolled in the study, and they received two different dosages of probiotics for 8 weeks. During the study, urine and serum samples were collected from volunteers before and during probiotic supplementation. The results showed that probiotics had a significant impact on the urinary and serum metabolic profiles without altering their phenotypes. This study demonstrated the effects of probiotics in terms of variations of metabolite levels resulting also from the different probiotic posology. Overall, the results suggest that probiotic administration may affect both urine and serum metabolomes, although more research is needed to understand the mechanisms and clinical implications of these effects. NMR-based metabonomic analysis of biofluids is a powerful tool for monitoring host-gut microflora dynamic interaction as well as for assessing the individual response to probiotic treatment.
Collapse
Affiliation(s)
- Francesca Di Cesare
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, Firenze 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Matteo Calgaro
- Department
of Biotechnology, University of Verona, Strada le Grazie, 15, Verona 37134, Italy
| | - Veronica Ghini
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, Firenze 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Diletta Francesca Squarzanti
- Department
of Health Sciences (DiSS), University of
Piemonte Orientale (UPO), Via Solaroli, 17, Novara 28100, Italy
- Center
for Translational Research on Autoimmune and Allergic Diseases (CAAD),
Department of Health Sciences (DiSS), University
of Piemonte Orientale (UPO), Corso Trieste, 15, Novara 28100, Italy
| | | | | | - Paola Zanetta
- Department
of Health Sciences (DiSS), University of
Piemonte Orientale (UPO), Via Solaroli, 17, Novara 28100, Italy
- Center
for Translational Research on Autoimmune and Allergic Diseases (CAAD),
Department of Health Sciences (DiSS), University
of Piemonte Orientale (UPO), Corso Trieste, 15, Novara 28100, Italy
| | - Roberta Rolla
- Department
of Health Sciences (DiSS), University of
Piemonte Orientale (UPO), Via Solaroli, 17, Novara 28100, Italy
| | - Paola Savoia
- Department
of Health Sciences (DiSS), University of
Piemonte Orientale (UPO), Via Solaroli, 17, Novara 28100, Italy
| | - Angela Amoruso
- Probiotical
Research Srl, Via Enrico
Mattei, 3, Novara 28100, Italy
| | - Barbara Azzimonti
- Department
of Health Sciences (DiSS), University of
Piemonte Orientale (UPO), Via Solaroli, 17, Novara 28100, Italy
- Center
for Translational Research on Autoimmune and Allergic Diseases (CAAD),
Department of Health Sciences (DiSS), University
of Piemonte Orientale (UPO), Corso Trieste, 15, Novara 28100, Italy
| | - Nicola Vitulo
- Department
of Biotechnology, University of Verona, Strada le Grazie, 15, Verona 37134, Italy
| | - Leonardo Tenori
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, Firenze 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, Firenze 50019, Italy
| | - Claudio Luchinat
- Consorzio
Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, Firenze 50019, Italy
- Giotto
Biotech S.r.l., Via Madonna
del Piano, 6, Sesto Fiorentino, Firenze 50019, Italy
| | - Marco Pane
- Probiotical
Research Srl, Via Enrico
Mattei, 3, Novara 28100, Italy
| |
Collapse
|
25
|
Fu Y, Lyu J, Wang S. The role of intestinal microbes on intestinal barrier function and host immunity from a metabolite perspective. Front Immunol 2023; 14:1277102. [PMID: 37876938 PMCID: PMC10591221 DOI: 10.3389/fimmu.2023.1277102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
The gut is colonized by many commensal microorganisms, and the diversity and metabolic patterns of microorganisms profoundly influence the intestinal health. These microbial imbalances can lead to disorders such as inflammatory bowel disease (IBD). Microorganisms produce byproducts that act as signaling molecules, triggering the immune system in the gut mucosa and controlling inflammation. For example, metabolites like short-chain fatty acids (SCFA) and secondary bile acids can release inflammatory-mediated signals by binding to specific receptors. These metabolites indirectly affect host health and intestinal immunity by interacting with the intestinal epithelial and mucosal immune cells. Moreover, Tryptophan-derived metabolites also play a role in governing the immune response by binding to aromatic hydrocarbon receptors (AHR) located on the intestinal mucosa, enhancing the intestinal epithelial barrier. Dietary-derived indoles, which are synthetic precursors of AHR ligands, work together with SCFA and secondary bile acids to reduce stress on the intestinal epithelium and regulate inflammation. This review highlights the interaction between gut microbial metabolites and the intestinal immune system, as well as the crosstalk of dietary fiber intake in improving the host microbial metabolism and its beneficial effects on the organism.
Collapse
Affiliation(s)
- Yifeng Fu
- Department of Cardiology, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People’s Hospital of Wenling), Wenling, Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jin Lyu
- Department of Pathology, the First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Shuangshuang Wang
- Department of Cardiology, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People’s Hospital of Wenling), Wenling, Zhejiang, China
| |
Collapse
|
26
|
Fu Y, Li S, Xiao Y, Liu G, Fang J. A Metabolite Perspective on the Involvement of the Gut Microbiota in Type 2 Diabetes. Int J Mol Sci 2023; 24:14991. [PMID: 37834439 PMCID: PMC10573635 DOI: 10.3390/ijms241914991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Type 2 diabetes (T2D) is a commonly diagnosed condition that has been extensively studied. The composition and activity of gut microbes, as well as the metabolites they produce (such as short-chain fatty acids, lipopolysaccharides, trimethylamine N-oxide, and bile acids) can significantly impact diabetes development. Treatment options, including medication, can enhance the gut microbiome and its metabolites, and even reverse intestinal epithelial dysfunction. Both animal and human studies have demonstrated the role of microbiota metabolites in influencing diabetes, as well as their complex chemical interactions with signaling molecules. This article focuses on the importance of microbiota metabolites in type 2 diabetes and provides an overview of various pharmacological and dietary components that can serve as therapeutic tools for reducing the risk of developing diabetes. A deeper understanding of the link between gut microbial metabolites and T2D will enhance our knowledge of the disease and may offer new treatment approaches. Although many animal studies have investigated the palliative and attenuating effects of gut microbial metabolites on T2D, few have established a complete cure. Therefore, conducting more systematic studies in the future is necessary.
Collapse
Affiliation(s)
| | | | | | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Y.F.); (S.L.); (Y.X.)
| | - Jun Fang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Y.F.); (S.L.); (Y.X.)
| |
Collapse
|
27
|
Patra D, Banerjee D, Ramprasad P, Roy S, Pal D, Dasgupta S. Recent insights of obesity-induced gut and adipose tissue dysbiosis in type 2 diabetes. Front Mol Biosci 2023; 10:1224982. [PMID: 37842639 PMCID: PMC10575740 DOI: 10.3389/fmolb.2023.1224982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
An imbalance in microbial homeostasis, referred to as dysbiosis, is critically associated with the progression of obesity-induced metabolic disorders including type 2 diabetes (T2D). Alteration in gut microbial diversity and the abundance of pathogenic bacteria disrupt metabolic homeostasis and potentiate chronic inflammation, due to intestinal leakage or release of a diverse range of microbial metabolites. The obesity-associated shifts in gut microbial diversity worsen the triglyceride and cholesterol level that regulates adipogenesis, lipolysis, and fatty acid oxidation. Moreover, an intricate interaction of the gut-brain axis coupled with the altered microbiome profile and microbiome-derived metabolites disrupt bidirectional communication for instigating insulin resistance. Furthermore, a distinct microbial community within visceral adipose tissue is associated with its dysfunction in obese T2D individuals. The specific bacterial signature was found in the mesenteric adipose tissue of T2D patients. Recently, it has been shown that in Crohn's disease, the gut-derived bacterium Clostridium innocuum translocated to the mesenteric adipose tissue and modulates its function by inducing M2 macrophage polarization, increasing adipogenesis, and promoting microbial surveillance. Considering these facts, modulation of microbiota in the gut and adipose tissue could serve as one of the contemporary approaches to manage T2D by using prebiotics, probiotics, or faecal microbial transplantation. Altogether, this review consolidates the current knowledge on gut and adipose tissue dysbiosis and its role in the development and progression of obesity-induced T2D. It emphasizes the significance of the gut microbiota and its metabolites as well as the alteration of adipose tissue microbiome profile for promoting adipose tissue dysfunction, and identifying novel therapeutic strategies, providing valuable insights and directions for future research and potential clinical interventions.
Collapse
Affiliation(s)
- Debarun Patra
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, Punjab, India
| | - Dipanjan Banerjee
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, India
| | - Palla Ramprasad
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, Punjab, India
| | - Soumyajit Roy
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, Punjab, India
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, Punjab, India
| | - Suman Dasgupta
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, India
| |
Collapse
|
28
|
Zhai L, Xiao H, Lin C, Wong HLX, Lam YY, Gong M, Wu G, Ning Z, Huang C, Zhang Y, Yang C, Luo J, Zhang L, Zhao L, Zhang C, Lau JYN, Lu A, Lau LT, Jia W, Zhao L, Bian ZX. Gut microbiota-derived tryptamine and phenethylamine impair insulin sensitivity in metabolic syndrome and irritable bowel syndrome. Nat Commun 2023; 14:4986. [PMID: 37591886 PMCID: PMC10435514 DOI: 10.1038/s41467-023-40552-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
The incidence of metabolic syndrome is significantly higher in patients with irritable bowel syndrome (IBS), but the mechanisms involved remain unclear. Gut microbiota is causatively linked with the development of both metabolic dysfunctions and gastrointestinal disorders, thus gut dysbiosis in IBS may contribute to the development of metabolic syndrome. Here, we show that human gut bacterium Ruminococcus gnavus-derived tryptamine and phenethylamine play a pathogenic role in gut dysbiosis-induced insulin resistance in type 2 diabetes (T2D) and IBS. We show levels of R. gnavus, tryptamine, and phenethylamine are positively associated with insulin resistance in T2D patients and IBS patients. Monoassociation of R. gnavus impairs insulin sensitivity and glucose control in germ-free mice. Mechanistically, treatment of R. gnavus-derived metabolites tryptamine and phenethylamine directly impair insulin signaling in major metabolic tissues of healthy mice and monkeys and this effect is mediated by the trace amine-associated receptor 1 (TAAR1)-extracellular signal-regulated kinase (ERK) signaling axis. Our findings suggest a causal role for tryptamine/phenethylamine-producers in the development of insulin resistance, provide molecular mechanisms for the increased prevalence of metabolic syndrome in IBS, and highlight the TAAR1 signaling axis as a potential therapeutic target for the management of metabolic syndrome induced by gut dysbiosis.
Collapse
Affiliation(s)
- Lixiang Zhai
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Haitao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Chengyuan Lin
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | | | - Yan Y Lam
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Mengxue Gong
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guojun Wu
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition, and Healthy. School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ziwan Ning
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chunhua Huang
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yijing Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chao Yang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jingyuan Luo
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lu Zhang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ling Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Johnson Yiu-Nam Lau
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lok-Ting Lau
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Wei Jia
- Phenome Research Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Liping Zhao
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition, and Healthy. School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, 08901, USA.
| | - Zhao-Xiang Bian
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China.
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
29
|
Hua R, Lam CS, Chu N, Yang A, Chow E, Cheung YT. Association between dietary supplement use and mortality among US adults with diabetes: a longitudinal cohort study. Nutr Metab (Lond) 2023; 20:33. [PMID: 37568221 PMCID: PMC10416493 DOI: 10.1186/s12986-023-00753-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Despite the popularity of dietary supplements, their effectiveness and safety in patients with diabetes remain controversial. Furthermore, evidence from clinical trials may not be generalizable to real-world settings. This study examined the association between dietary supplement use and mortality outcomes among patients with diabetes based on a nationally representative sample of US adults. METHODS This study analyzed data from National Health and Nutrition Examination Survey (NHANES) 1999-2018. Supplement users referred to adults with diabetes who reported the use of any dietary supplements in the last 30 days, and with a cumulative duration of ≥ 90 days. Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the associations between supplement use and all-cause mortality, and mortality from cardiovascular diseases (CVD), diabetes, and cancer. Subgroup analysis of different supplement classes (vitamins, minerals, botanicals, amino acids, fatty acids, probiotics and glucosamine) were also conducted. RESULTS We included 8,122 adults with diabetes (mean age: 59.4 years; 48.7% female), of whom 3,997 (54.0%) reported using supplements regularly. Vitamins (87.3%), minerals (75.3%) and botanicals (51.8%) were the most popular supplements. At a median follow-up of 6.9 years, 2447 all-cause deaths had occurred. Overall supplement use was not associated with risk of all-cause mortality among patients with diabetes (HR = 0.97, 95% CI: 0.87 to 1.08, P = 0.56). Subgroup analyses suggested that amino acid use was associated with a lower all-cause mortality (HR = 0.66, 95% CI: 0.46 to 0.96, P = 0.028), while the use of fatty acids (HR = 0.62, 95% CI: 0.42 to 0.92, P = 0.018) and glucosamine (HR = 0.69, 95% CI: 0.51 to 0.95, P = 0.022) supplements were significantly associated with lower CVD mortality. CONCLUSIONS Our results derived from real-world data suggested that overall supplement use was not associated with any mortality benefit in patients with diabetes. However, there is preliminary evidence that suggests a protective effect of amino acid use on all-cause mortality, and a benefit of fatty acids and glucosamine supplement use on CVD mortality. Future large-scale longitudinal studies are needed to investigate the association between dietary supplement use and other intermediate diabetes-related outcomes, such as glucose control and reducing diabetes-related complications.
Collapse
Affiliation(s)
- Rong Hua
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, 8th Floor, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Hong Kong SAR, China
| | - Chun Sing Lam
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, 8th Floor, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Hong Kong SAR, China
| | - Natural Chu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Aimin Yang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yin Ting Cheung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, 8th Floor, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Hong Kong SAR, China.
| |
Collapse
|
30
|
Xiao R, Wang L, Tian P, Jin X, Zhao J, Zhang H, Wang G, Zhu M. The Effect of Probiotic Supplementation on Glucolipid Metabolism in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:3240. [PMID: 37513657 PMCID: PMC10383415 DOI: 10.3390/nu15143240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
PURPOSE Type 2 diabetes mellitus (T2DM) is a persistent metabolic condition with an unknown pathophysiology. Moreover, T2DM remains a serious health risk despite advances in medication and preventive care. Randomised controlled trials (RCTs) have provided evidence that probiotics may have positive effects on glucolipid metabolism. Therefore, we performed a meta-analysis of RCTs to measure the effect of probiotic therapy on glucolipid metabolism in patients with T2DM. METHODS With no constraints on the language used in the literature, Excerpta Medica Database, PubMed, the Cochrane Library, and the Web of Science were searched for pertinent RCTs published between the date of creation and 18 August 2022. Stringent inclusion and exclusion criteria were applied by two reviewers to independently examine the literature. The risk of bias associated with the inclusion of the original studies was assessed using the Cochrane risk-of-bias tool, and Stata 15.0 was used to perform the meta-analysis. RESULTS Thirty-seven publications containing a total of 2502 research participants were included in the meta-analysis. The results showed that after a probiotic intervention, the experimental group showed a significant decrease in body mass index (standardised mean difference (SMD) = -0.42, 95% confidence interval (CI) [-0.76, -0.08]), fasting glucose concentration (SMD = -0.73, 95% CI [-0.97, -0.48]), fasting insulin concentration (SMD = -0.67, 95% CI [-0.99, -0.36]), glycated haemoglobin concentration (SMD = -0.55, 95% CI [-0.75, -0.35]), Homeostatic Model Assessment for Insulin Resistance score (SMD = -0.88, 95% CI [-1.17, -0.59]), triglyceride concentration (SMD = -0.30, 95% CI [-0.43, -0.17]), total cholesterol concentration (SMD = -0.27, 95% CI [-0.43, -0.11]), and low-density lipoprotein concentration (SMD = -0.20, 95% CI [-0.37, -0.04]), and an increase in high-density lipoprotein concentration (SMD = 0.31, 95% CI [0.08, 0.54]). Moreover, subgroup analyses showed that patients with a longer intervention time, or those who were treated with multiple strains of probiotics, may benefit more than those with a shorter intervention time or those who were treated with a single probiotic strain, respectively. CONCLUSION Probiotic supplementation improves glucolipid metabolism in patients with T2DM, offering an alternative approach for the treatment of these patients.
Collapse
Affiliation(s)
- Rui Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Xing Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Minmin Zhu
- Department of Anesthesiology and Pain Medicine, Jiangnan University Medical Center, Wuxi 214002, China
| |
Collapse
|
31
|
Changes in the Microbiota and their Roles in Patients with Type 2 Diabetes Mellitus. Curr Microbiol 2023; 80:132. [PMID: 36894807 DOI: 10.1007/s00284-023-03219-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 02/10/2023] [Indexed: 03/11/2023]
Abstract
An association between type 2 diabetes mellitus (T2DM) and gut microbiota is well established, but the results of related studies are inconsistent. The purpose of this investigation is to elucidate the characteristics of the gut microbiota in T2DM and non-diabetic subjects. Forty-five subjects were recruited for this study, including 29 T2DM patients and 16 non-diabetic subjects. Biochemical parameters, including body mass index (BMI), fasting plasma glucose (FPG), serum total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and hemoglobin A1c (HbA1c), were analyzed and correlated with the gut microbiota. Bacterial community composition and diversity were detected in fecal samples using direct smear, sequencing, and real-time polymerase chain reaction (PCR). In this study, it was observed that indicators such as BMI, FPG, HbA1c, TC, and TG in T2DM patients were on the rise, concurrent with dysbiosis of the microbiota. We observed an increase in Enterococci and a decrease in Bacteroides, Bifidobacteria, and Lactobacilli in patients with T2DM. Meanwhile, total short-chain fatty acids (SCFAs) and D-lactate concentrations were decreased in the T2DM group. In addition, FPG was positively correlated with Enterococcus and negatively correlated with Bifidobacteria, Bacteroides, and Lactobacilli. This study reveals that microbiota dysbiosis is associated with disease severity in patients with T2DM. The limitation of this study is that only common bacteria were noted in this study, and more in-depth related studies are urgently needed.
Collapse
|
32
|
Yan T, Liu T, Shi L, Yan L, Li Z, Zhang X, Dai X, Sun X, Yang X. Integration of microbial metabolomics and microbiomics uncovers a novel mechanism underlying the antidiabetic property of stachyose. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
33
|
Hasanpour A, Babajafari S, Mazloomi SM, Shams M. The effects of soymilk plus probiotics supplementation on cardiovascular risk factors in patients with type 2 diabetes mellitus: a randomized clinical trial. BMC Endocr Disord 2023; 23:36. [PMID: 36759798 PMCID: PMC9912676 DOI: 10.1186/s12902-023-01290-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is associated with an increased risk of cardiovascular diseases. This study aimed to assess the effects of soymilk plus probiotics co-administration on cardiovascular risk factors in T2DM patients. METHODS One hundred patients with T2DM (aged 40-75 years old) were randomly assigned into 4 groups (soymilk + probiotics supplement, soymilk + placebo, conventional milk + placebo, and probiotics supplement) for 6 weeks. Standard protocols were followed for the collection of fasting blood samples, dietary intakes, and anthropometric measurements. RESULTS It was shown that soymilk + probiotics consumption significantly decreased diastolic blood pressure (DBP) (p = 0.001), triglycerides (TG) (P < 0.001), total cholesterol (TC) (p < 0.01), and insulin (P < 0.003) levels and significantly increased high-density lipoprotein cholesterol (HDL-C) (P = 0.002) levels. Soymilk + placebo administration significantly decreased DBP (p = 0.01), insulin (p = 0.006), and TG (p = 0.001) levels and significantly increased HDL-C (p = 0.03) levels. A significant decrease in insulin (p = 0.003) and systolic blood pressure (SBP) (p = 0.01) levels and an increase in HDL-C (p = 0.04) levels were observed after supplementation with probiotics. Findings from between-group comparisons showed a significant decrease in SBP levels in the probiotics supplement group compared to conventional milk group (p < 0.05). CONCLUSION Soymilk and probiotics consumption might improve some cardiovascular risk factors in patients with T2DM. However, possible synergic effects while consumption of soymilk plus probiotics supplement didn't show in this study which warranted further research.
Collapse
Affiliation(s)
- Azimeh Hasanpour
- Department of Nutrition, School and Research Center of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Siavash Babajafari
- Department of Nutrition, School and Research Center of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyed Mohammad Mazloomi
- Department of Food Hygiene and Quality Control, School and Research Center of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mesbah Shams
- Department of Internal Medicine, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
34
|
Noni (Morinda citrifolia L.) fruit polysaccharide ameliorated high-fat diet-induced obesity by modulating gut microbiota and improving bile acid metabolism. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
35
|
Recent updates on targeting the molecular mediators of NAFLD. J Mol Med (Berl) 2023; 101:101-124. [PMID: 36792729 DOI: 10.1007/s00109-022-02282-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/29/2022] [Accepted: 12/21/2022] [Indexed: 02/17/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is rapidly becoming the most common disease worldwide in an era of rapid economic growth. NAFLD is a multifactorial disease, involving multiple genetic, metabolic, and environmental factors, and is closely associated with metabolic syndrome, obesity, and cardiovascular disease. NAFLD can be classified into nonalcoholic fatty liver disease (NAFL) and nonalcoholic steatohepatitis (NASH), which can both progress to cirrhosis and even hepatocellular carcinoma (HCC). Due to the enormous burden of NAFLD and its complications, no FDA-approved drugs for the treatment of NAFLD are on the market, and therapeutic targets and drug therapies are being actively investigated. In view of the various pathological mechanisms of NAFLD, numbers of preclinical studies and clinical trials have made rapid progress. This review mainly summarizes the most recently characterized mechanisms and therapeutic targets in each mechanism of NAFLD, focusing on the mechanism and application potential.
Collapse
|
36
|
Dora D, Bokhari SMZ, Aloss K, Takacs P, Desnoix JZ, Szklenárik G, Hurley PD, Lohinai Z. Implication of the Gut Microbiome and Microbial-Derived Metabolites in Immune-Related Adverse Events: Emergence of Novel Biomarkers for Cancer Immunotherapy. Int J Mol Sci 2023; 24:ijms24032769. [PMID: 36769093 PMCID: PMC9916922 DOI: 10.3390/ijms24032769] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have changed how we think about tumor management. Combinations of anti-programmed death ligand-1 (PD-L1) immunotherapy have become the standard of care in many advanced-stage cancers, including as a first-line therapy. Aside from improved anti-tumor immunity, the mechanism of action of immune checkpoint inhibitors (ICIs) exposes a new toxicity profile known as immune-related adverse effects (irAEs). This novel toxicity can damage any organ, but the skin, digestive and endocrine systems are the most frequently afflicted. Most ICI-attributed toxicity symptoms are mild, but some are severe and necessitate multidisciplinary side effect management. Obtaining knowledge on the various forms of immune-related toxicities and swiftly changing treatment techniques to lower the probability of experiencing severe irAEs has become a priority in oncological care. In recent years, there has been a growing understanding of an intriguing link between the gut microbiome and ICI outcomes. Multiple studies have demonstrated a connection between microbial metagenomic and metatranscriptomic patterns and ICI efficacy in malignant melanoma, lung and colorectal cancer. The immunomodulatory effect of the gut microbiome can have a real effect on the biological background of irAEs as well. Furthermore, specific microbial signatures and metabolites might be associated with the onset and severity of toxicity symptoms. By identifying these biological factors, novel biomarkers can be used in clinical practice to predict and manage potential irAEs. This comprehensive review aims to summarize the clinical aspects and biological background of ICI-related irAEs and their potential association with the gut microbiome and metabolome. We aim to explore the current state of knowledge on the most important and reliable irAE-related biomarkers of microbial origin and discuss the intriguing connection between ICI efficacy and toxicity.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Tuzolto St. 58, 1094 Budapest, Hungary
- Correspondence: (D.D.); (Z.L.)
| | | | - Kenan Aloss
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
| | - Peter Takacs
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Tuzolto St. 58, 1094 Budapest, Hungary
| | - Juliane Zsuzsanna Desnoix
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Tuzolto St. 58, 1094 Budapest, Hungary
| | - György Szklenárik
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
| | | | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
- National Korányi Institute of Pulmonology, Pihenő út 1-3, 1121 Budapest, Hungary
- Correspondence: (D.D.); (Z.L.)
| |
Collapse
|
37
|
Huang P, Yi S, Yu L, Tian F, Zhao J, Zhang H, Chen W, Zhai Q. Integrative analysis of the metabolome and transcriptome reveals the influence of Lactobacillus plantarum CCFM8610 on germ-free mice. Food Funct 2023; 14:388-398. [PMID: 36511852 DOI: 10.1039/d2fo03117e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study describes the influence of Lactobacillus plantarum CCFM8610 on the host by employing transcriptome and untargeted metabolomics. According to the enrichment analysis, three pathways, including the complement and coagulation cascade pathway, antigen processing and presentation pathways, and protein processing in the endoplasmic reticulum pathway, were affected by L. plantarum CCFM8610 colonization. According to partial least squares-discriminant analysis, five metabolites, L-methionine, D-tryptophan, indoleacrylic acid, DL-acetylcarnitine, and L-norleucine, were identified as key metabolites in the serum. Furthermore, integrative analysis of the metabolome and transcriptome revealed connections between enriched pathways and differential metabolites, and the regulation strategy of choline by affecting gene expression was proposed. Overall, the effects of L. plantarum CCFM8610 on host health were investigated after excluding the influence of gut microbes, which provides a valuable reference for studying the potential mechanisms of the effect of probiotics on host health.
Collapse
Affiliation(s)
- Pan Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shanrong Yi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
38
|
Paul P, Kaul R, Harfouche M, Arabi M, Al-Najjar Y, Sarkar A, Saliba R, Chaari A. The effect of microbiome-modulating probiotics, prebiotics and synbiotics on glucose homeostasis in type 2 diabetes: A systematic review, meta-analysis, and meta-regression of clinical trials. Pharmacol Res 2022; 185:106520. [DOI: 10.1016/j.phrs.2022.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022]
|
39
|
Probiotic Mechanisms Affecting Glucose Homeostasis: A Scoping Review. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081187. [PMID: 36013366 PMCID: PMC9409775 DOI: 10.3390/life12081187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/08/2023]
Abstract
The maintenance of a healthy status depends on the coexistence between the host organism and the microbiota. Early studies have already focused on the nutritional properties of probiotics, which may also contribute to the structural changes in the gut microbiota, thereby affecting host metabolism and homeostasis. Maintaining homeostasis in the body is therefore crucial and is reflected at all levels, including that of glucose, a simple sugar molecule that is an essential fuel for normal cellular function. Despite numerous clinical studies that have shown the effect of various probiotics on glucose and its homeostasis, knowledge about the exact function of their mechanism is still scarce. The aim of our review was to select in vivo and in vitro studies in English published in the last eleven years dealing with the effects of probiotics on glucose metabolism and its homeostasis. In this context, diverse probiotic effects at different organ levels were highlighted, summarizing their potential mechanisms to influence glucose metabolism and its homeostasis. Variations in results due to different methodological approaches were discussed, as well as limitations, especially in in vivo studies. Further studies on the interactions between probiotics, host microorganisms and their immunity are needed.
Collapse
|
40
|
Ma C, Liu D, Hao H, Wu X. Identification of the DPP-IV Inhibitory Peptides from Donkey Blood and Regulatory Effect on the Gut Microbiota of Type 2 Diabetic Mice. Foods 2022; 11:foods11142148. [PMID: 35885395 PMCID: PMC9316604 DOI: 10.3390/foods11142148] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
After being treated with protease K, peptides extracted from donkey blood were separated, identified, and characterized. The results showed that Sephadex G-25 medium purified with MW < 3 kDa had the highest dipeptidyl peptidase IV (DPP-IV) inhibition capacity. Three-hundred-and-thirty-four peptides were identified with UPLC−MS/MS. Peptide Ranker and molecular docking analysis were used to screen active peptides, and 16 peptides were finalized out of the 334. The results showed that the lowest binding energy between P7(YPWTQ) and DPP-IV was −9.1, and the second-lowest binding energy between P1(VDPENFRLL) and DPP-IV was −8.7. The active peptides(MW < 3 kDa) could cause a reduction in the fasting blood glucose levels of type 2 diabetic mice, improve glucose tolerance, and facilitate healing of the damaged structure of diabetic murine liver and pancreas. Meanwhile, the peptides were found to ameliorate the diabetic murine intestinal micro-ecological environment to a certain extent.
Collapse
|
41
|
Takkar B, Sheemar A, Jayasudha R, Soni D, Narayanan R, Venkatesh P, Shivaji S, Das T. Unconventional avenues to decelerated diabetic retinopathy. Surv Ophthalmol 2022; 67:1574-1592. [PMID: 35803389 DOI: 10.1016/j.survophthal.2022.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is an important microvascular complication of diabetes mellitus (DM), causing significant visual impairment worldwide. Current gold standards for retarding the progress of DR include blood sugar control and regular fundus screening. Despite these measures, the incidence and prevalence of DR and vision-threatening DR remain high. Given its slowly progressive course and long latent period, opportunities to contain or slow DR before it threatens vision must be explored. This narrative review assesses the recently described unconventional strategies to retard DR progression. These include gut-ocular flow, gene therapy, mitochondrial dysfunction-oxidative stress, stem cell therapeutics, neurodegeneration, anti-inflammatory treatments, lifestyle modification, and usage of phytochemicals. These therapies impact DR directly, while some of them also influence DM control. Most of these strategies are currently in the preclinical stage, and clinical evidence remains low. Nevertheless, our review suggests that these approaches have the potential for human use to prevent the progression of DR.
Collapse
Affiliation(s)
- Brijesh Takkar
- Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India; Indian Health Outcomes, Public Health, and Economics Research (IHOPE) Centre, L V Prasad Eye Institute, Hyderabad, India.
| | - Abhishek Sheemar
- Department of Ophthalmology, All India Institute of Medical Sciences, Jodhpur, India
| | | | - Deepak Soni
- Department of Ophthalmology, All India Institute of Medical Sciences, Bhopal, India
| | - Raja Narayanan
- Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India; Indian Health Outcomes, Public Health, and Economics Research (IHOPE) Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Pradeep Venkatesh
- Dr. RP Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Sisinthy Shivaji
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Taraprasad Das
- Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
42
|
Guo Z, Pan J, Zhu H, Chen ZY. Metabolites of Gut Microbiota and Possible Implication in Development of Diabetes Mellitus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5945-5960. [PMID: 35549332 DOI: 10.1021/acs.jafc.1c07851] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetes mellitus is characterized by having a disorder of glucose metabolism. The types of diabetes mellitus include type 1 diabetes mellitus, type 2 diabetes mellitus, gestational diabetes mellitus, and other specific types of diabetes mellitus. Many risk factors contribute to diabetes mellitus mainly including genetics, environment, obesity, and diet. In the recent years, gut microbiota has been shown to be linked to the development of diabetes. It has been reported that the gut microbiota composition of diabetic patients is different from that of healthy people. Although the mechanism behind the abnormality remains to be explored, most hypotheses focus on the inflammation response and leaky gut in relation to the changes in production of endotoxins and metabolites derived from the intestinal flora. Consequently, the above-mentioned abnormalities trigger a series of metabolic changes, gradually leading to development of hyperglycemia, insulin resistance, and diabetes. This review is (i) to summarize the differences in gut microbiota between diabetic patients and healthy people, (ii) to discuss the underlying mechanism(s) by which how lipopolysaccharide, diet, and metabolites of the gut microbiota affect diabetes, and (iii) to provide a new insight in the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Zinan Guo
- School of Food Science and Engineering, South China Food Safety Research Center, Foshan University, Foshan 528011, Guangdong, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China
| | - Jingjin Pan
- School of Food Science and Engineering, South China Food Safety Research Center, Foshan University, Foshan 528011, Guangdong, China
| | - Hanyue Zhu
- School of Food Science and Engineering, South China Food Safety Research Center, Foshan University, Foshan 528011, Guangdong, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China
| |
Collapse
|
43
|
He H, Sun Y, Zhang S, Zhang H, Su W, Guo Z, Zhang Y, Wen J, Li X, Hu J, Nie S. Arabinogalactan,
Bifidobacterium longum
, and
Faecalibacterium prausnitzii
improve insulin resistance in high‐fat diet‐induced C57BL/6J mice. EFOOD 2022. [DOI: 10.1002/efd2.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Huijun He
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Yonggan Sun
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Shanshan Zhang
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Wenwen Su
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Zheyu Guo
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Yanli Zhang
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Jiajia Wen
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Xiajialong Li
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| |
Collapse
|
44
|
Lee SHF, Ahmad SR, Lim YC, Zulkipli IN. The Use of Probiotic Therapy in Metabolic and Neurological Diseases. Front Nutr 2022; 9:887019. [PMID: 35592636 PMCID: PMC9110960 DOI: 10.3389/fnut.2022.887019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022] Open
Abstract
The human gut is home to trillions of microbes that interact with host cells to influence and contribute to body functions. The number of scientific studies focusing on the gut microbiome has exponentially increased in recent years. Studies investigating factors that may potentially affect the gut microbiome and may be used for therapeutic purposes in diseases where dysbioses in the gut microbiome have been shown are of particular interest. This review compiles current evidence available in the scientific literature on the use of probiotics to treat metabolic diseases and autism spectrum disorders (ASDs) to analyze the efficacy of probiotics in these diseases. To do this, we must first define the healthy gut microbiome before looking at the interplay between the gut microbiome and diseases, and how probiotics affect this interaction. In metabolic diseases, such as obesity and diabetes, probiotic supplementation positively impacts pathological parameters. Conversely, the gut–brain axis significantly impacts neurodevelopmental disorders such as ASDs. However, manipulating the gut microbiome and disease symptoms using probiotics has less pronounced effects on neurodevelopmental diseases. This may be due to a more complex interplay between genetics and the environment in these diseases. In conclusion, the use of microbe-based probiotic therapy may potentially have beneficial effects in ameliorating the pathology of various diseases. Validation of available data for the development of personalized treatment regimens for affected patients is still required.
Collapse
|
45
|
Su M, Hu R, Tang T, Tang W, Huang C. Review of the correlation between Chinese medicine and intestinal microbiota on the efficacy of diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:1085092. [PMID: 36760813 PMCID: PMC9905712 DOI: 10.3389/fendo.2022.1085092] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/06/2022] [Indexed: 01/26/2023] Open
Abstract
Diabetes mellitus is a serious metabolic disorder that can lead to a number of life-threatening complications. Studies have shown that intestinal microbiota is closely related to the development of diabetes, making it a potential target for the treatment of diabetes. In recent years, research on the active ingredients of traditional Chinese medicine (TCM), TCM compounds, and prepared Chinese medicines to regulate intestinal microbiota and improve the symptoms of diabetes mellitus is very extensive. We focus on the research progress of TCM active ingredients, herbal compounds, and prepared Chinese medicines in the treatment of diabetes mellitus in this paper. When diabetes occurs, changes in the abundance and function of the intestinal microbiota disrupt the intestinal environment by disrupting the intestinal barrier and fermentation. TCM and its components can increase the abundance of beneficial bacteria while decreasing the abundance of harmful bacteria, regulate the concentration of microbial metabolites, improve insulin sensitivity, regulate lipid metabolism and blood glucose, and reduce inflammation. TCM can be converted into active substances with pharmacological effects by intestinal microbiota, and these active substances can reverse intestinal microecological disorders and improve diabetes symptoms. This can be used as a reference for diabetes prevention and treatment.
Collapse
Affiliation(s)
- Min Su
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparation, Changsha Medical University, Changsha, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Rao Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Ting Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Weiwei Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Chunxia Huang
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparation, Changsha Medical University, Changsha, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
- *Correspondence: Chunxia Huang,
| |
Collapse
|