1
|
Wu Y, Yang L, Jiang W, Zhang X, Yao Z. Glycolytic dysregulation in Alzheimer's disease: unveiling new avenues for understanding pathogenesis and improving therapy. Neural Regen Res 2025; 20:2264-2278. [PMID: 39101629 DOI: 10.4103/nrr.nrr-d-24-00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/20/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments. The current therapeutic strategies, primarily based on cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists, offer limited symptomatic relief without halting disease progression, highlighting an urgent need for novel research directions that address the key mechanisms underlying Alzheimer's disease. Recent studies have provided insights into the critical role of glycolysis, a fundamental energy metabolism pathway in the brain, in the pathogenesis of Alzheimer's disease. Alterations in glycolytic processes within neurons and glial cells, including microglia, astrocytes, and oligodendrocytes, have been identified as significant contributors to the pathological landscape of Alzheimer's disease. Glycolytic changes impact neuronal health and function, thus offering promising targets for therapeutic intervention. The purpose of this review is to consolidate current knowledge on the modifications in glycolysis associated with Alzheimer's disease and explore the mechanisms by which these abnormalities contribute to disease onset and progression. Comprehensive focus on the pathways through which glycolytic dysfunction influences Alzheimer's disease pathology should provide insights into potential therapeutic targets and strategies that pave the way for groundbreaking treatments, emphasizing the importance of understanding metabolic processes in the quest for clarification and management of Alzheimer's disease.
Collapse
Affiliation(s)
- You Wu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | | | | | | | | |
Collapse
|
2
|
Taube W, Lauber B. Changes in the cortical GABAergic inhibitory system with ageing and ageing-related neurodegenerative diseases. J Physiol 2024. [PMID: 39722574 DOI: 10.1113/jp285656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
The human cortical inhibitory system is known to play a vital role for normal brain development, function, and plasticity. GABA is the most prominent inhibitory neurotransmitter in the CNS and is a key regulator not only for motor control and motor learning, but also for cognitive processes. With ageing and many neurodegenerative pathologies, a decline in GABAergic function in several cortical regions together with a reduced ability to task-specifically modulate and increase inhibition in the primary motor cortex has been observed. This decline in intracortical inhibition is associated with impaired motor control but also with diminished motor-cognitive (i.e. dual-tasking) and cognitive performance (e.g. executive functions). Furthermore, more general well-being such as sleep quality, stress resistance or non-specific pain perception are also associated with reduced GABA functioning. The current review highlights the interplay between changes in GABAergic function and changes in motor control, motor-cognitive and cognitive performance associated with healthy ageing, as well as in seniors with neurodegenerative diseases such as mild cognitive impairment. Furthermore, recent evidence highlighting the ability to up- or downregulate cortical inhibition by means of physical exercise programs is presented and discussed.
Collapse
Affiliation(s)
- Wolfgang Taube
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Benedikt Lauber
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
3
|
Lee WJ, Cho KJ, Kim GW. Mitigation of Atherosclerotic Vascular Damage and Cognitive Improvement Through Mesenchymal Stem Cells in an Alzheimer's Disease Mouse Model. Int J Mol Sci 2024; 25:13210. [PMID: 39684920 DOI: 10.3390/ijms252313210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition characterized by progressive memory loss and other cognitive disturbances. Patients with AD can be vulnerable to vascular damage, and damaged vessels can lead to cognitive impairment. Mesenchymal stem cell (MSC) treatment has shown potential in ameliorating AD pathogenesis, but its effect on vascular function remains unclear. This study aimed to improve cognitive function by alleviating atherosclerosis-induced vessel damage using MSCs in mice with a genetic AD background. In this study, a 5xFAD mouse model of AD was used, and atherosclerotic vessel damage was induced by high-fat diets (HFDs). MSCs were injected into the tail vein along with mannitol in 5xFAD mice on an HFD. MSCs were detected in the brain, and vascular damage was improved following MSC treatment. Behavioral tests showed that MSCs enhanced cognitive function, as measured by the Y-maze and passive avoidance tests. Additionally, muscle strength measured by the rotarod test was also increased by MSCs in AD mice with vessel damage induced by HFDs. Overall, our results suggest that stem cells can alleviate vascular damage caused by metabolic diseases, including HFDs, and vascular disease in individuals carrying the AD gene. Consequently, this alleviates cognitive decline related to vascular dementia symptoms.
Collapse
Affiliation(s)
- Woong Jin Lee
- Department of Neurology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyoung Joo Cho
- Department of Life Science, Kyonggi University, Suwon 16227, Republic of Korea
| | - Gyung Whan Kim
- Department of Neurology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Jing Y, Haeger A, Boumezbeur F, Binkofski F, Reetz K, Romanzetti S. Neuroenergetic alterations in neurodegenerative diseases: A systematic review and meta-analysis of in vivo 31P-MRS studies. Ageing Res Rev 2024; 101:102488. [PMID: 39243891 DOI: 10.1016/j.arr.2024.102488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Phosphorus magnetic resonance spectroscopy (31P-MRS) is applied for non-invasive studies of neuroenergetic metabolism in neurodegenerative diseases. However, the findings are inconsistent and have not yet been tested in meta-analyses. To address this gap, we performed a systematic review of 29 studies and conducted meta-analyses for 9 studies on Alzheimer's disease (AD, n = 140 patients), 9 studies on Parkinson's disease (PD, n = 183 patients), 3 studies on Progressive Supranuclear Palsy (PSP, n = 42 patients), and 2 studies on Multiple System Atrophy (MSA, n = 24 patients). Compared to controls, AD patients had a higher ratio of phosphomonoesters/phosphodiesters (PME/PDE) in the frontal lobe (MD = 0.049, p = 0.0003); PD patients showed decreases in PME/PDE in the putamen (MD = -0.050, p = 0.023) and adenosine triphosphate/inorganic phosphate (ATP/Pi) in the midbrain (MD = -0.274, p = 0.002); PSP patients presented increased phosphocreatine (PCr)/Pi in the basal ganglia (MD = 0.556, p = 0.030) and adenosine diphosphate (ADP)/Pi in the occipital lobe (MD = 0.005, p = 0.009); no significant effects were observed in MSA. Here, our review underlines the importance of 31P-MRS in the characterization of distinct neuroenergetic changes and its potential to improve the diagnosis and follow-up of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yinghua Jing
- Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-Brain Institute Molecular Neuroscience and Neuroimaging (INM-11), Research Centre Jülich and RWTH Aachen University, Aachen, Germany
| | - Alexa Haeger
- Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-Brain Institute Molecular Neuroscience and Neuroimaging (INM-11), Research Centre Jülich and RWTH Aachen University, Aachen, Germany
| | - Fawzi Boumezbeur
- NeuroSpin, CEA, CNRS UMR9027, Paris-Saclay University, Gif-sur-Yvette, France
| | - Ferdinand Binkofski
- Division for Clinical Cognitive Sciences, Department of Neurology, University Hospital RWTH Aachen, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-Brain Institute Molecular Neuroscience and Neuroimaging (INM-11), Research Centre Jülich and RWTH Aachen University, Aachen, Germany
| | - Sandro Romanzetti
- Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-Brain Institute Molecular Neuroscience and Neuroimaging (INM-11), Research Centre Jülich and RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
5
|
Jeong SH, Park S, Choi JS, Cho NJ, Moon JS, Gil HW. Indoxyl sulfate induces apoptotic cell death by inhibiting glycolysis in human astrocytes. Kidney Res Clin Pract 2024; 43:774-784. [PMID: 37956994 PMCID: PMC11615446 DOI: 10.23876/j.krcp.23.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Neurologic complications, such as cognitive and emotional dysfunction, have frequently been observed in chronic kidney disease (CKD) patients. Previous research shows that uremic toxins play a role in the pathogenesis of CKD-associated cognitive impairment. Since astrocytes contribute to the protection and survival of neurons, astrocyte function and brain metabolism may contribute to the pathogenesis of neurodegeneration. Indoxyl sulfate (IS) is the most popular uremic toxin. However, how IS-induced astrocyte injury brings about neurologic complications in CKD patients has not been elucidated. METHODS The rate of extracellular acidification was measured in astrocytes when IS (0.5-3 mM, 4 or 7 days) treatment was applied. The hexokinase 1 (HK1), pyruvate kinase isozyme M2 (PKM2), pyruvate dehydrogenase (PDH), and phosphofructokinase (PFKP) protein levels were also measured. The activation of the apoptotic pathway was investigated using a confocal microscope, fluorescence- activated cell sorting, and cell three-dimensional imaging was used. RESULTS In astrocytes, IS affected glycolysis in not only dose-dependently but also time-dependently. Additionally, HK1, PKM2, PDH, and PFKP levels were decreased in IS-treated group when compared to the control. The results were prominent in cases with higher doses and longer exposure duration. The apoptotic features after IS treatment were also observed. CONCLUSION Our results showed that the inhibition of glycolysis by IS in astrocytes leads to cell death via apoptosis. Specifically, longterm and higher-dose exposures had more serious effects on astrocytes. Our results suggest that the glycolysis pathway and related targets could provide a novel approach to cognitive dysfunction in CKD patients.
Collapse
Affiliation(s)
- Seung-Hyun Jeong
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Samel Park
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Jae-sung Choi
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Nam-Jun Cho
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hyo-Wook Gil
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| |
Collapse
|
6
|
Kazemeini S, Nadeem-Tariq A, Shih R, Rafanan J, Ghani N, Vida TA. From Plaques to Pathways in Alzheimer's Disease: The Mitochondrial-Neurovascular-Metabolic Hypothesis. Int J Mol Sci 2024; 25:11720. [PMID: 39519272 PMCID: PMC11546801 DOI: 10.3390/ijms252111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) presents a public health challenge due to its progressive neurodegeneration, cognitive decline, and memory loss. The amyloid cascade hypothesis, which postulates that the accumulation of amyloid-beta (Aβ) peptides initiates a cascade leading to AD, has dominated research and therapeutic strategies. The failure of recent Aβ-targeted therapies to yield conclusive benefits necessitates further exploration of AD pathology. This review proposes the Mitochondrial-Neurovascular-Metabolic (MNM) hypothesis, which integrates mitochondrial dysfunction, impaired neurovascular regulation, and systemic metabolic disturbances as interrelated contributors to AD pathogenesis. Mitochondrial dysfunction, a hallmark of AD, leads to oxidative stress and bioenergetic failure. Concurrently, the breakdown of the blood-brain barrier (BBB) and impaired cerebral blood flow, which characterize neurovascular dysregulation, accelerate neurodegeneration. Metabolic disturbances such as glucose hypometabolism and insulin resistance further impair neuronal function and survival. This hypothesis highlights the interconnectedness of these pathways and suggests that therapeutic strategies targeting mitochondrial health, neurovascular integrity, and metabolic regulation may offer more effective interventions. The MNM hypothesis addresses these multifaceted aspects of AD, providing a comprehensive framework for understanding disease progression and developing novel therapeutic approaches. This approach paves the way for developing innovative therapeutic strategies that could significantly improve outcomes for millions affected worldwide.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas A. Vida
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA; (S.K.); (A.N.-T.); (R.S.); (J.R.); (N.G.)
| |
Collapse
|
7
|
Shao Y, Xu J, Chen W, Hao M, Liu X, Zhang R, Wang Y, Dong Y. miR-135b: An emerging player in cardio-cerebrovascular diseases. J Pharm Anal 2024; 14:100997. [PMID: 39211791 PMCID: PMC11350494 DOI: 10.1016/j.jpha.2024.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 09/04/2024] Open
Abstract
miR-135 is a highly conserved miRNA in mammals and includes miR-135a and miR-135b. Recent studies have shown that miR-135b is a key regulatory factor in cardio-cerebrovascular diseases. It is involved in regulating the pathological process of myocardial infarction, myocardial ischemia/reperfusion injury, cardiac hypertrophy, atrial fibrillation, diabetic cardiomyopathy, atherosclerosis, pulmonary hypertension, cerebral ischemia/reperfusion injury, Parkinson's disease, and Alzheimer's disease. Obviously, miR-135b is an emerging player in cardio-cerebrovascular diseases and is expected to be an important target for the treatment of cardio-cerebrovascular diseases. However, the crucial role of miR-135b in cardio-cerebrovascular diseases and its underlying mechanism of action has not been reviewed. Therefore, in this review, we aimed to comprehensively summarize the role of miR-135b and the signaling pathway mediated by miR-135b in cardio-cerebrovascular diseases. Drugs targeting miR-135b for the treatment of diseases and related patents, highlighting the importance of this target and its utility as a therapeutic target for cardio-cerebrovascular diseases, have been discussed.
Collapse
Affiliation(s)
- Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Minglu Hao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Yanhong Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Yinying Dong
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| |
Collapse
|
8
|
Shi C, Xu J, Ding Y, Chen X, Yuan F, Zhu F, Duan C, Hu J, Lu H, Wu T, Jiang L. MCT1-mediated endothelial cell lactate shuttle as a target for promoting axon regeneration after spinal cord injury. Theranostics 2024; 14:5662-5681. [PMID: 39310103 PMCID: PMC11413787 DOI: 10.7150/thno.96374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Rationale: Spinal cord injury (SCI)-induced vascular damage causes ischemia and hypoxia at the injury site, which, in turn, leads to profound metabolic disruptions. The effects of these metabolic alterations on neural tissue remodeling and functional recovery have yet to be elucidated. The current study aimed to investigate the consequences of the SCI-induced hypoxic environment at the epicenter of the injury. Methods: This study employed metabolomics to assess changes in energy metabolism after SCI. The use of a lactate sensor identified lactate shuttle between endothelial cells (ECs) and neurons. Reanalysis of single-cell RNA sequencing data demonstrated reduced MCT1 expression in ECs after SCI. Additionally, an adeno-associated virus (AAV) overexpressing MCT1 was utilized to elucidate its role in endothelial-neuronal interactions, tissue repair, and functional recovery. Results: The findings revealed markedly decreased monocarboxylate transporter 1 (MCT1) expression that facilitates lactate delivery to neurons to support their energy metabolism in ECs post-SCI. This decreased expression of MCT1 disrupts lactate transport to neurons, resulting in a metabolic imbalance that impedes axonal regeneration. Strikingly, our results suggested that administering adeno-associated virus specifically to ECs to restore MCT1 expression enhances axonal regeneration and improves functional recovery in SCI mice. These findings indicate a novel link between lactate shuttling from endothelial cells to neurons following SCI and subsequent neural functional recovery. Conclusion: In summary, the current study highlights a novel metabolic pathway for therapeutic interventions in the treatment of SCI. Additionally, our findings indicate the potential benefits of targeting lactate transport mechanisms in recovery from SCI.
Collapse
Affiliation(s)
- Chaoran Shi
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Yinghe Ding
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Xingyi Chen
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Feifei Yuan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Fengzhang Zhu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Chunyue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Tianding Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Liyuan Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| |
Collapse
|
9
|
Correas AG, Olaso-Gonzalez G, Roca M, Blanco-Gandía MC, Nascimento C, Lahoz A, Rodriguez-Arias M, Miñarro J, Gomez-Cabrera MC, Viña J. Glucose 6 phosphate dehydrogenase overexpression rescues the loss of cognition in the double transgenic APP/PS1 mouse model of Alzheimer's disease. Redox Biol 2024; 75:103242. [PMID: 38908073 PMCID: PMC11253689 DOI: 10.1016/j.redox.2024.103242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
Mice models of Alzheimer's disease (APP/PS1) typically experience cognitive decline with age. G6PD overexpressing mice (G6PD-Tg) exhibit better protection from age-associated functional decline including improvements in metabolic and muscle functions as well as reduced frailty compared to their wild-type counterparts. Importantly G6PD-Tg mice show diminished accumulation of DNA oxidation in the brain at different ages in both males and females. To further explore the potential benefits of modulating the G6PD activity in neurodegenerative diseases, triple transgenic mice (3xTg G6PD) were generated, overexpressing APP, PSEN1, and G6PD genes. The cognitive decline characteristic of APP/PS1 mice was prevented in 3xTg G6PD mice, despite similar amyloid-β (Aβ) levels in the hippocampus. This challenges the dominant hypothesis in Alzheimer's disease (AD) etiology and the majority of therapeutic efforts in the field, based on the notion that Aβ is pivotal in cognitive preservation. Notably, the antioxidant properties of G6PD led to a decrease in oxidative stress parameters, such as improved GSH/GSSG and GSH/CysSSG ratios, without major changes in oxidative damage markers. Additionally, metabolic changes in 3xTg G6PD mice increased brain energy status, countering the hypometabolism observed in Alzheimer's models. Remarkably, a higher respiratory exchange ratio suggested increased carbohydrate utilization. The relative failures of Aβ-targeted clinical trials have raised significant skepticism on the amyloid cascade hypothesis and whether the development of Alzheimer's drugs has followed the correct path. Our findings highlight the significance of targeting glucose-metabolizing enzymes rather than solely focusing on Aβ in Alzheimer's research, advocating for a deeper exploration of glucose metabolism's role in cognitive preservation.
Collapse
Affiliation(s)
- Angela G Correas
- Freshage Research Group, Department of Physiology. Faculty of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Gloria Olaso-Gonzalez
- Freshage Research Group, Department of Physiology. Faculty of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain.
| | - Marta Roca
- Analytical Unit, Instituto de Investigación Sanitaria Fundación Hospital La Fe, Valencia, Spain
| | - Mari Carmen Blanco-Gandía
- Departamento de Psicología y Sociología, Facultad de Ciencias Sociales y Humanas, Universidad de Zaragoza, Teruel, Spain
| | - Carla Nascimento
- Freshage Research Group, Department of Physiology. Faculty of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Agustin Lahoz
- Analytical Unit, Instituto de Investigación Sanitaria Fundación Hospital La Fe, Valencia, Spain; Biomarkers and Precision Medicine Unit, Instituto de Investigación Sanitaria Fundación Hospital La Fe, Valencia, Spain
| | - Marta Rodriguez-Arias
- Unidad de Investigacion Psicobiologia de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicologia, Universidad de Valencia, Valencia, Spain
| | - José Miñarro
- Unidad de Investigacion Psicobiologia de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicologia, Universidad de Valencia, Valencia, Spain
| | - Mari Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology. Faculty of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - José Viña
- Freshage Research Group, Department of Physiology. Faculty of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| |
Collapse
|
10
|
Di Domenico F, Lanzillotta C, Perluigi M. Redox imbalance and metabolic defects in the context of Alzheimer disease. FEBS Lett 2024; 598:2047-2066. [PMID: 38472147 DOI: 10.1002/1873-3468.14840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024]
Abstract
Redox reactions play a critical role for intracellular processes, including pathways involved in metabolism and signaling. Reactive oxygen species (ROS) act either as second messengers or generators of protein modifications, fundamental mechanisms for signal transduction. Disturbance of redox homeostasis is associated with many disorders. Among these, Alzheimer's disease is a neurodegenerative pathology that presents hallmarks of oxidative damage such as increased ROS production, decreased activity of antioxidant enzymes, oxidative modifications of macromolecules, and changes in mitochondrial homeostasis. Interestingly, alteration of redox homeostasis is closely associated with defects of energy metabolism, involving both carbohydrates and lipids, the major energy fuels for the cell. As the brain relies exclusively on glucose metabolism, defects of glucose utilization represent a harmful event for the brain. During aging, a progressive perturbation of energy metabolism occurs resulting in brain hypometabolism. This condition contributes to increase neuronal cell vulnerability ultimately resulting in cognitive impairment. The current review discusses the crosstalk between alteration of redox homeostasis and brain energy defects that seems to act in concert in promoting Alzheimer's neurodegeneration.
Collapse
Affiliation(s)
- Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Italy
| | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
11
|
Cohen BM, Sonntag KC. Identifying the earliest-occurring clinically targetable precursors of late-onset Alzheimer's disease. EBioMedicine 2024; 106:105238. [PMID: 39002387 PMCID: PMC11284560 DOI: 10.1016/j.ebiom.2024.105238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024] Open
Abstract
Most cases of Alzheimer's disease (AD) are late-onset dementias (LOAD). However, research on AD is predominantly of early-onset disease (EOAD). The determinants of EOAD, gene variants of APP and presenilin proteins, are not the basic precursors of LOAD. Rather, multiple other genes and associated cellular processes underlie risk for LOAD. These determinants could be modified in individuals at risk for LOAD well before signs and symptoms appear. Studying brain cells produced from patient-derived induced-pluripotent-stem-cells (iPSC), in culture, will be instrumental in developing such interventions. This paper summarises evidence accrued from iPSC culture models identifying the earliest occurring clinically targetable determinants of LOAD. Results obtained and replicated, thus far, suggest that abnormalities of bioenergetics, lipid metabolism, digestive organelle function and inflammatory activity are primary processes underlying LOAD. The application of cell culture platforms will become increasingly important in research and also on LOAD detection, assessment, and treatment in the years ahead.
Collapse
Affiliation(s)
- Bruce M Cohen
- Harvard Medical School, Boston, MA, USA; Program for Neuropsychiatric Research, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA.
| | - Kai-Christian Sonntag
- Harvard Medical School, Boston, MA, USA; Laboratory for Translational Research on Neurodegeneration, Program for Neuropsychiatric Research, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA.
| |
Collapse
|
12
|
Gao CY, Qin GF, Zheng MC, Tian MJ, He YN, Wang PW. Banxia Xiexin Decoction Alleviated Cerebral Glucose Metabolism Disorder by Regulating Intestinal Microbiota in APP/PS1 Mice. Chin J Integr Med 2024; 30:701-712. [PMID: 37987962 DOI: 10.1007/s11655-023-3606-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 11/22/2023]
Abstract
OBJECTIVE To identify whether Banxia Xiexin Decoction (BXD) alleviates cerebral glucose metabolism disorder by intestinal microbiota regulation in APP/PS1 mice. METHODS Forty-five 3-month-old male APP/PS1 mice were divided into 3 groups using a random number table (n=15 per group), including a model group (MG), a liraglutide group (LG) and a BXD group (BG). Fifteen 3-month-old male C57BL/6J wild-type mice were used as the control group (CG). Mice in the BG were administered BXD granules by gavage at a dose of 6 g/(kg•d) for 3 months, while mice in the LG were injected intraperitoneally once daily with Liraglutide Injection (25 nmol/kg) for 3 months. Firstly, liquid chromatography with tandem-mass spectrometry was used to analyze the active components of BXD granules and the medicated serum of BXD. Then, the cognitive deficits, Aβ pathological change and synaptic plasticity markers, including synaptophysin (SYP) and postsynaptic density protein 95 (PSD95), were measured in APP/PS1 mice. Brain glucose uptake was detected by micropositron emission tomography. Intestinal microbial constituents were detected by 16S rRNA sequencing. The levels of intestinal glucagon-like peptide 1 (GLP-1) and cerebral GLP-1 receptor (GLP-1R), as well as the phosphoinositide-3-kinase/protein kinase B/glycogen synthase kinase-3β (PI3K/Akt/GSK3β) insulin signaling pathway were determined by immunohistochemical (IHC) staining and Western blot analysis, respectively. RESULTS BXD ameliorated cognitive deficits and Aβ pathological features (P<0.01). The expressions of SYP and PSD95 in the BG were higher than those in the MG (P<0.01). Brain glucose uptake in the BG was higher than that in the MG (P<0.01). The intestinal microbial composition in the BG was partially reversed. The levels of intestinal GLP-1 in the BG were higher than those in the MG (P<0.01). Compared with the MG, the expression levels of hippocampal GLP-1R, Akt, PI3K and p-PI3K in the BG were significantly increased (P<0.01), while the levels of GSK3β were reduced (P<0.01). CONCLUSION BXD exhibited protective effects against Alzheimer's disease by regulating the gut microbiota/GLP-1/GLP-1R, enhancing PI3K/Akt/GSK3β insulin signaling pathway, and improving brain glucose metabolism.
Collapse
Affiliation(s)
- Chen-Yan Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Gao-Feng Qin
- Neurology Department, Binzhou Medical University Hospital, Binzhou, Shandong Province, 256603, China
| | - Ming-Cui Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Mei-Jing Tian
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yan-Nan He
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Peng-Wen Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
13
|
Braga A, Chiacchiaretta M, Pellerin L, Kong D, Haydon PG. Astrocytic metabolic control of orexinergic activity in the lateral hypothalamus regulates sleep and wake architecture. Nat Commun 2024; 15:5979. [PMID: 39013907 PMCID: PMC11252394 DOI: 10.1038/s41467-024-50166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Neuronal activity undergoes significant changes during vigilance states, accompanied by an accommodation of energy demands. While the astrocyte-neuron lactate shuttle has shown that lactate is the primary energy substrate for sustaining neuronal activity in multiple brain regions, its role in regulating sleep/wake architecture is not fully understood. Here we investigated the involvement of astrocytic lactate supply in maintaining consolidated wakefulness by downregulating, in a cell-specific manner, the expression of monocarboxylate transporters (MCTs) in the lateral hypothalamus of transgenic mice. Our results demonstrate that reduced expression of MCT4 in astrocytes disrupts lactate supply to wake-promoting orexin neurons, impairing wakefulness stability. Additionally, we show that MCT2-mediated lactate uptake is necessary for maintaining tonic firing of orexin neurons and stabilizing wakefulness. Our findings provide both in vivo and in vitro evidence supporting the role of astrocyte-to-orexinergic neuron lactate shuttle in regulating proper sleep/wake stability.
Collapse
Affiliation(s)
- Alice Braga
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Martina Chiacchiaretta
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA.
| | - Luc Pellerin
- Inserm U1313, University and CHU of Poitiers, 86021, Poitiers, France
| | - Dong Kong
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA
- Division of Endocrinology, Department of Pediatrics, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Philip G Haydon
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
14
|
Onos KD, Lin PB, Pandey RS, Persohn SA, Burton CP, Miner EW, Eldridge K, Kanyinda JN, Foley KE, Carter GW, Howell GR, Territo PR. Assessment of neurovascular uncoupling: APOE status is a key driver of early metabolic and vascular dysfunction. Alzheimers Dement 2024; 20:4951-4969. [PMID: 38713704 PMCID: PMC11247674 DOI: 10.1002/alz.13842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia worldwide, with apolipoprotein Eε4 (APOEε4) being the strongest genetic risk factor. Current clinical diagnostic imaging focuses on amyloid and tau; however, new methods are needed for earlier detection. METHODS PET imaging was used to assess metabolism-perfusion in both sexes of aging C57BL/6J, and hAPOE mice, and were verified by transcriptomics, and immunopathology. RESULTS All hAPOE strains showed AD phenotype progression by 8 months, with females exhibiting the regional changes, which correlated with GO-term enrichments for glucose metabolism, perfusion, and immunity. Uncoupling analysis revealed APOEε4/ε4 exhibited significant Type-1 uncoupling (↓ glucose uptake, ↑ perfusion) at 8 and 12 months, while APOEε3/ε4 demonstrated Type-2 uncoupling (↑ glucose uptake, ↓ perfusion), while immunopathology confirmed cell specific contributions. DISCUSSION This work highlights APOEε4 status in AD progression manifests as neurovascular uncoupling driven by immunological activation, and may serve as an early diagnostic biomarker. HIGHLIGHTS We developed a novel analytical method to analyze PET imaging of 18F-FDG and 64Cu-PTSM data in both sexes of aging C57BL/6J, and hAPOEε3/ε3, hAPOEε4/ε4, and hAPOEε3/ε4 mice to assess metabolism-perfusion profiles termed neurovascular uncoupling. This analysis revealed APOEε4/ε4 exhibited significant Type-1 uncoupling (decreased glucose uptake, increased perfusion) at 8 and 12 months, while APOEε3/ε4 demonstrated significant Type-2 uncoupling (increased glucose uptake, decreased perfusion) by 8 months which aligns with immunopathology and transcriptomic signatures. This work highlights that there may be different mechanisms underlying age related changes in APOEε4/ε4 compared with APOEε3/ε4. We predict that these changes may be driven by immunological activation and response, and may serve as an early diagnostic biomarker.
Collapse
Affiliation(s)
| | - Peter B. Lin
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Ravi S. Pandey
- The Jackson Laboratory for Genomic MedicineFarmingtonConnecticutUSA
| | - Scott A. Persohn
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Charles P. Burton
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Ethan W. Miner
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Kierra Eldridge
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | | | - Kate E. Foley
- The Jackson LaboratoryBar HarborMaineUSA
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Gregory W. Carter
- The Jackson LaboratoryBar HarborMaineUSA
- The Jackson Laboratory for Genomic MedicineFarmingtonConnecticutUSA
| | | | - Paul R. Territo
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
- Department of MedicineDivision of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
15
|
Firth W, Robb JL, Stewart D, Pye KR, Bamford R, Oguro-Ando A, Beall C, Ellacott KLJ. Regulation of astrocyte metabolism by mitochondrial translocator protein 18 kDa. J Neurochem 2024; 168:1374-1401. [PMID: 38482552 DOI: 10.1111/jnc.16089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/26/2024]
Abstract
The mitochondrial translocator protein 18 kDa (TSPO) has been linked to functions from steroidogenesis to regulation of cellular metabolism and is an attractive therapeutic target for chronic CNS inflammation. Studies in Leydig cells and microglia indicate that TSPO function may vary between cells depending on their specialized roles. Astrocytes are critical for providing trophic and metabolic support in the brain. Recent work has highlighted that TSPO expression increases in astrocytes under inflamed conditions and may drive astrocyte reactivity. Relatively little is known about the role TSPO plays in regulating astrocyte metabolism and whether this protein is involved in immunometabolic processes in these cells. Using TSPO-deficient (TSPO-/-) mouse primary astrocytes in vitro (MPAs) and a human astrocytoma cell line (U373 cells), we performed extracellular metabolic flux analyses. We found that TSPO deficiency reduced basal cellular respiration and attenuated the bioenergetic response to glucopenia. Fatty acid oxidation was increased, and lactate production was reduced in TSPO-/- MPAs and U373 cells. Co-immunoprecipitation studies revealed that TSPO forms a complex with carnitine palmitoyltransferase 1a in U373 and MPAs, presenting a mechanism wherein TSPO may regulate FAO in these cells. Compared to TSPO+/+ cells, in TSPO-/- MPAs we observed attenuated tumor necrosis factor release following 3 h lipopolysaccharide (LPS) stimulation, which was enhanced at 24 h post-LPS stimulation. Together these data suggest that while TSPO acts as a regulator of metabolic flexibility, TSPO deficiency does not appear to modulate the metabolic response of MPAs to inflammation, at least in response to the model used in this study.
Collapse
Affiliation(s)
- Wyn Firth
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Josephine L Robb
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Daisy Stewart
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Katherine R Pye
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Rosemary Bamford
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Asami Oguro-Ando
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Craig Beall
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Kate L J Ellacott
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
16
|
Oliai SF, Shippy DC, Ulland TK. Mitigation of CXCL10 secretion by metabolic disorder drugs in microglial-mediated neuroinflammation. J Neuroimmunol 2024; 391:578364. [PMID: 38718558 PMCID: PMC11165694 DOI: 10.1016/j.jneuroim.2024.578364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Metabolic disorders are associated with several neurodegenerative diseases. We previously identified C-X-C motif chemokine ligand 10 (CXCL10), also known as interferon gamma-induced protein 10 (IP-10), as a major contributor to the type I interferon response in microglial-mediated neuroinflammation. Therefore, we hypothesized FDA-approved metabolic disorder drugs that attenuate CXCL10 secretion may be repurposed as a treatment for neurodegenerative diseases. Screening, dose curves, and cytotoxicity assays in LPS-stimulated microglia yielded treprostinil (hypertension), pitavastatin (hyperlipidemia), and eplerenone (hypertension) as candidates that significantly reduced CXCL10 secretion (in addition to other pro-inflammatory mediators) without impacting cell viability. Altogether, these data suggest metabolic disorder drugs that attenuate CXCL10 as potential treatments for neurodegenerative disease through mitigating microglial-mediated neuroinflammation.
Collapse
Affiliation(s)
- Sophia F Oliai
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Daniel C Shippy
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Tyler K Ulland
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
17
|
Cai J, Zhang S, Wu R, Huang J. Association between depression and diabetes mellitus and the impact of their comorbidity on mortality: Evidence from a nationally representative study. J Affect Disord 2024; 354:11-18. [PMID: 38447915 DOI: 10.1016/j.jad.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/16/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Depression and diabetes mellitus (DM) are major chronic noncommunicable diseases that impair one's mental and physical well-being and impose substantial burdens on the health system. Depressed individuals have an increased risk of impaired blood glucose, weight gain and dyslipidemia which could induce poorer long-term survival. METHODS 37,040 individuals from the National Health and Nutrition Examination Survey (NHANES) were included. Depressive symptoms were assessed by the Patient Health Questionnaire (PHQ-9) and classified by the total scores as no (0-4), mild (5-9), moderate (10-14), and severe (15-27). DM was determined based on self-reported medical history, clinical test results, and medication use. Logistic and Cox regression were the main statistical models. All analyses were based on weighted data from complex sampling. RESULTS The prevalence of DM was higher in depressed than non-depressed individuals (21.26 % vs. 13.75 %). The adjusted odds ratio (OR) (95 % CI) of comorbid DM increased with depression severity, from 1.00 (reference) for no depression, to 1.22 (1.09,1.36) for mild, 1.62 (1.37,1.92) for moderate, and 1.52(1.28,1.82) for severe depression. Comorbidity of DM and depression significantly associated with a higher risk of all-cause mortality, with a hazard ratio (HR) (95 % CI) = 2.09 (1.64,2.66). LIMITATIONS Dynamic demographic and metabolic data were not available. CONCLUSION Depression is associated with a higher risk of DM, which may be related to biological, socioeconomic, and medication-related factors. Comorbidity of the two worsens long-term survival. Therefore, blood glucose management and prevention of DM should be emphasized in depressed patients.
Collapse
Affiliation(s)
- Jingda Cai
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Songyan Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Renrong Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jing Huang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
18
|
Fraile-Ramos J, Reig-Vilallonga J, Giménez-Llort L. Glomerular Hypertrophy and Splenic Red Pulp Degeneration Concurrent with Oxidative Stress in 3xTg-AD Mice Model for Alzheimer's Disease and Its Exacerbation with Sex and Social Isolation. Int J Mol Sci 2024; 25:6112. [PMID: 38892297 PMCID: PMC11172848 DOI: 10.3390/ijms25116112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The continuously expanding field of Alzheimer's disease (AD) research is now beginning to defocus the brain to take a more systemic approach to the disease, as alterations in the peripheral organs could be related to disease progression. One emerging hypothesis is organ involvement in the process of Aβ clearance. In the present work, we aimed to examine the status and involvement of the kidney as a key organ for waste elimination and the spleen, which is in charge of filtering the blood and producing lymphocytes, and their influence on AD. The results showed morphological and structural changes due to acute amyloidosis in the kidney (glomeruli area) and spleen (red pulp area and red/white pulp ratio) together with reduced antioxidant defense activity (GPx) in 16-month-old male and female 3xTg-AD mice when compared to their age- and sex-matched non-transgenic (NTg) counterparts. All these alterations correlated with the anxious-like behavioral phenotype of this mouse model. In addition, forced isolation, a cause of psychological stress, had a negative effect by intensifying genotype differences and causing differences to appear in NTg animals. This study further supports the relevance of a more integrative view of the complex interplay between systems in aging, especially at advanced stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Juan Fraile-Ramos
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Josep Reig-Vilallonga
- Department of Anatomy, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
19
|
Benarroch E. What Is the Role of Lactate in Brain Metabolism, Plasticity, and Neurodegeneration? Neurology 2024; 102:e209378. [PMID: 38574305 DOI: 10.1212/wnl.0000000000209378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 04/06/2024] Open
|
20
|
Yu S, Guo F, Luo Y, Zhang X, Wang C, Liu Y, Zhang H. Electropositive Citric Acid-Polyethyleneimine Carbon Dots Carrying the PINK1 Gene Regulate ATP-Related Metabolic Dysfunction in APP/PS1-N2a Cells. Molecules 2024; 29:1907. [PMID: 38731398 PMCID: PMC11085363 DOI: 10.3390/molecules29091907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
(1) Background: Alzheimer's disease (AD) is characterized by β-amyloid (Aβ) peptide accumulation and mitochondrial dysfunction during the early stage of disease. PINK1 regulates the balance between mitochondrial homeostasis and bioenergy supply and demand via the PINK1/Parkin pathway, Na+/Ca2+ exchange, and other pathways. (2) Methods: In this study, we synthesized positively charged carbon dots (CA-PEI CDs) using citric acid (CA) and polyethyleneimine (PEI) and used them as vectors to express PINK1 genes in the APP/PS1-N2a cell line to determine mitochondrial function, electron transport chain (ETC) activity, and ATP-related metabolomics. (3) Results: Our findings showed that the CA-PEI CDs exhibit the characteristics of photoluminescence, low toxicity, and concentrated DNA. They are ideal biological carriers for gene delivery. PINK1 overexpression significantly increased the mitochondrial membrane potential in APP/PS1-N2a cells and reduced reactive-oxygen-species generation and Aβ1-40 and Aβ1-42 levels. An increase in the activity of NADH ubiquinone oxidoreductase (complex I, CI) and cytochrome C oxidase (complex IV, CIV) induces the oxidative phosphorylation of mitochondria, increasing ATP generation. (4) Conclusions: These findings indicate that the PINK gene can alleviate AD by increasing bioenergetic metabolism, reducing Aβ1-40 and Aβ1-42, and increasing ATP production.
Collapse
Affiliation(s)
- Si Yu
- Key Laboratory of Brain Science and Health Translational Medicine Research Center in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Feng Guo
- Key Laboratory of Brain Science and Health Translational Medicine Research Center in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Yuzhen Luo
- Key Laboratory of Brain Science and Health Translational Medicine Research Center in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Xingfang Zhang
- Key Laboratory of Brain Science and Health Translational Medicine Research Center in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Chenyu Wang
- Clinical Medical College, Gannan Medical University, Ganzhou 341000, China
| | - Yiheng Liu
- Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 571199, China
| | - Haiying Zhang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
21
|
Momina SS, Gandla K. Flavonoid-Rich Trianthema decandra Ameliorates Cognitive Dysfunction in the Hyperglycemic Rats. Biochem Genet 2024:10.1007/s10528-024-10744-2. [PMID: 38570442 DOI: 10.1007/s10528-024-10744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/14/2024] [Indexed: 04/05/2024]
Abstract
The present study was aimed at the evaluation of neuroprotective ability of methanolic extract of Trianthema decandra (METD) against hyperglycemia-related cognitive impairment in rats. The extract of T. decandra was standardized by TLC and HPTLC methods. To verify the identity and purity of isolated compounds, they were segregated and characterized using various techniques, including UV-visible spectrophotometry, FT-IR, H-NMR, and Mass spectroscopy. α-Amylase and α-glucosidase inhibition property of the extracts were assessed in-vitro. The screening of the neuroprotective effects of METD in hyperglycemic rats was done utilizing Morri's water (MWM) and elevated plus maze (EPM) model, as well as acetylcholinesterase (AChE) activity. The extracts of Trianthema decandra and its chemical constituents, namely quercetin and phytol, demonstrated a significant protective effect on enzymes like α-amylase and α-glucosidase. Methanol and hydroalcoholic extracts have shown the strongest inhibitory activity followed by chloroform extract. Quercetin and phytol were associated with the methanolic and chloroform extracts which were identified using TLC and HPTLC techniques. During the thirty days of the study, the induction of diabetes in the rats exhibited persistent hyperglycemia, hyperlipidemia, higher escape latency during training trials and reduced time spent in target quadrant in probe trial in Morris water maze test, and increased escape latency in EPM task. Regimen of METD (200 and 400 mg/kg) in the diabetic rats reduced the glucose levels in blood, lipid, and liver profile and showed positive results on Morri's water and elevated plus maze tasks. During the investigation, it was determined that Trianthema decandra extracts and the chemical constituent's quercetin and phytol in it had anti-diabetic and neuroprotective activities.
Collapse
Affiliation(s)
- Sayyada Saleha Momina
- Department of Pharmacognosy and Phytochemistry, Chaitanya (Deemed to be University), Gandipet, HimayathNagar (Vill), Hyderabad, Telangana, 500075, India
| | - Kumaraswamy Gandla
- Department of Pharmacy, Chaitanya (Deemed to be University), Gandipet, HimayathNagar (Vill), Hyderabad, Telangana, 500075, India.
| |
Collapse
|
22
|
Onos K, Lin PB, Pandey RS, Persohn SA, Burton CP, Miner EW, Eldridge K, Kanyinda JN, Foley KE, Carter GW, Howell GR, Territo PR. Assessment of Neurovascular Uncoupling: APOE Status is a Key Driver of Early Metabolic and Vascular Dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.13.571584. [PMID: 38168292 PMCID: PMC10760108 DOI: 10.1101/2023.12.13.571584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia worldwide, with apolipoprotein ε4 (APOEε4) being the strongest genetic risk factor. Current clinical diagnostic imaging focuses on amyloid and tau; however, new methods are needed for earlier detection. METHODS PET imaging was used to assess metabolism-perfusion in both sexes of aging C57BL/6J, and hAPOE mice, and were verified by transcriptomics, and immunopathology. RESULTS All hAPOE strains showed AD phenotype progression by 8 mo, with females exhibiting the regional changes, which correlated with GO-term enrichments for glucose metabolism, perfusion, and immunity. Uncoupling analysis revealed APOEε4/ε4 exhibited significant Type-1 uncoupling (↓ glucose uptake, ↑ perfusion) at 8 and 12 mo, while APOEε3/ε4 demonstrated Type-2 uncoupling (↑ glucose uptake, ↓ perfusion), while immunopathology confirmed cell specific contributions. DISCUSSION This work highlights APOEε4 status in AD progression manifest as neurovascular uncoupling driven by immunological activation, and may serve as an early diagnostic biomarker.
Collapse
Affiliation(s)
- Kristen Onos
- The Jackson Laboratory, Bar Harbor, ME 04609 USA
| | - Peter B. Lin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ravi S. Pandey
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Scott A. Persohn
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Charles P. Burton
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Ethan W. Miner
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Kierra Eldridge
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | | | - Kate E. Foley
- The Jackson Laboratory, Bar Harbor, ME 04609 USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Gregory W. Carter
- The Jackson Laboratory, Bar Harbor, ME 04609 USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | | | - Paul R. Territo
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis IN 46202 USA
| |
Collapse
|
23
|
Velu L, Pellerin L, Julian A, Paccalin M, Giraud C, Fayolle P, Guillevin R, Guillevin C. Early rise of glutamate-glutamine levels in mild cognitive impairment: Evidence for emerging excitotoxicity. J Neuroradiol 2024; 51:168-175. [PMID: 37777087 DOI: 10.1016/j.neurad.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Use proton magnetic resonance spectroscopy (1H-MRS) non invasive technique to assess the modifications of glutamate-glutamine (Glx) and gammaaminobutyric acid (GABA) brain levels in patients reporting a cognitive complain METHODS: Posterior cingular cortex 1H-MRS spectra of 46 patients (19 male, 27 female) aged 57 to 87 years (mean : 73.32 ± 7.33 years) with a cognitive complaint were examined with a MEGA PRESS sequence at 3T, and compounds Glutamateglutamine (Glx), GABA, Creatine (Cr) and NAA were measured. From this data the metabolite ratios Glx/Cr, GABA/Cr and NAA/Cr were calculated. In addition, all patient performed the Mini Mental State Evaluation (MMSE) and 2 groups were realized with the clinical threshold of 24. RESULTS 16 patients with MMSE 〈 24 and 30 patients with MMSE 〉 24. Significant increase of Glx/Cr in PCC of patients with MMSE 〈 24 compared to patients with MMSE 〉 24. Moreover, GABA/Cr ratio exhibited a trend for a decrease in PCC between the two groups, while they showed a significant decrease NAA/Cr ratio. CONCLUSION Our results concerning Glx are in agreement with a physiopathological hypothesis involving a biphasic variation of glutamate levels associated with excitotoxicity, correlated with the clinical evolution of the disease. These observations suggest that MRS assessment of glutamate levels could be helpful for both diagnosis and classification of cognitive impairment in stage.
Collapse
Affiliation(s)
- Laura Velu
- University Hospital center of Poitiers, Department of Imaging, France
| | - Luc Pellerin
- University of Poitiers and University Hospital center of Poitiers, France
| | - Adrien Julian
- University Hospital Center of Poitiers, Department of neurology, France
| | - Marc Paccalin
- University Hospital Center of Poitiers, Department of neurology, France
| | - Clément Giraud
- University Hospital center of Poitiers, Department of Imaging, France
| | - Pierre Fayolle
- University Hospital center of Poitiers, Department of Imaging, France
| | - Rémy Guillevin
- University Hospital center of Poitiers, Department of Imaging, France
| | - Carole Guillevin
- University Hospital center of Poitiers, Department of Imaging, France.
| |
Collapse
|
24
|
Bettinetti-Luque M, Trujillo-Estrada L, Garcia-Fuentes E, Andreo-Lopez J, Sanchez-Varo R, Garrido-Sánchez L, Gómez-Mediavilla Á, López MG, Garcia-Caballero M, Gutierrez A, Baglietto-Vargas D. Adipose tissue as a therapeutic target for vascular damage in Alzheimer's disease. Br J Pharmacol 2024; 181:840-878. [PMID: 37706346 DOI: 10.1111/bph.16243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023] Open
Abstract
Adipose tissue has recently been recognized as an important endocrine organ that plays a crucial role in energy metabolism and in the immune response in many metabolic tissues. With this regard, emerging evidence indicates that an important crosstalk exists between the adipose tissue and the brain. However, the contribution of adipose tissue to the development of age-related diseases, including Alzheimer's disease, remains poorly defined. New studies suggest that the adipose tissue modulates brain function through a range of endogenous biologically active factors known as adipokines, which can cross the blood-brain barrier to reach the target areas in the brain or to regulate the function of the blood-brain barrier. In this review, we discuss the effects of several adipokines on the physiology of the blood-brain barrier, their contribution to the development of Alzheimer's disease and their therapeutic potential. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Miriam Bettinetti-Luque
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Laura Trujillo-Estrada
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Garcia-Fuentes
- Unidad de Gestión Clínica Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
- CIBER de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Juana Andreo-Lopez
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Raquel Sanchez-Varo
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Lourdes Garrido-Sánchez
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
| | - Ángela Gómez-Mediavilla
- Departamento de Farmacología, Facultad de Medicina. Instituto Teófilo Hernando para la I+D de Fármacos, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuela G López
- Departamento de Farmacología, Facultad de Medicina. Instituto Teófilo Hernando para la I+D de Fármacos, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Melissa Garcia-Caballero
- Departamento de Biología Molecular y Bioquímica, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Antonia Gutierrez
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - David Baglietto-Vargas
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
25
|
Armenta-Castro A, Núñez-Soto MT, Rodriguez-Aguillón KO, Aguayo-Acosta A, Oyervides-Muñoz MA, Snyder SA, Barceló D, Saththasivam J, Lawler J, Sosa-Hernández JE, Parra-Saldívar R. Urine biomarkers for Alzheimer's disease: A new opportunity for wastewater-based epidemiology? ENVIRONMENT INTERNATIONAL 2024; 184:108462. [PMID: 38335627 DOI: 10.1016/j.envint.2024.108462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
While Alzheimer's disease (AD) diagnosis, management, and care have become priorities for healthcare providers and researcher's worldwide due to rapid population aging, epidemiologic surveillance efforts are currently limited by costly, invasive diagnostic procedures, particularly in low to middle income countries (LMIC). In recent years, wastewater-based epidemiology (WBE) has emerged as a promising tool for public health assessment through detection and quantification of specific biomarkers in wastewater, but applications for non-infectious diseases such as AD remain limited. This early review seeks to summarize AD-related biomarkers and urine and other peripheral biofluids and discuss their potential integration to WBE platforms to guide the first prospective efforts in the field. Promising results have been reported in clinical settings, indicating the potential of amyloid β, tau, neural thread protein, long non-coding RNAs, oxidative stress markers and other dysregulated metabolites for AD diagnosis, but questions regarding their concentration and stability in wastewater and the correlation between clinical levels and sewage circulation must be addressed in future studies before comprehensive WBE systems can be developed.
Collapse
Affiliation(s)
| | - Mónica T Núñez-Soto
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Kassandra O Rodriguez-Aguillón
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Alberto Aguayo-Acosta
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Mariel Araceli Oyervides-Muñoz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Shane A Snyder
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, Singapore
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain; Sustainability Cluster, School of Engineering at the UPES, Dehradun, Uttarakhand, India
| | - Jayaprakash Saththasivam
- Water Center, Qatar Environment & Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Qatar
| | - Jenny Lawler
- Water Center, Qatar Environment & Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Qatar
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
26
|
Rudisch DM, Krasko MN, Barnett DGS, Mueller KD, Russell JA, Connor NP, Ciucci MR. Early ultrasonic vocalization deficits and related thyroarytenoid muscle pathology in the transgenic TgF344-AD rat model of Alzheimer's disease. Front Behav Neurosci 2024; 17:1294648. [PMID: 38322496 PMCID: PMC10844490 DOI: 10.3389/fnbeh.2023.1294648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/01/2023] [Indexed: 02/08/2024] Open
Abstract
Background Alzheimer's disease (AD) is a progressive neurologic disease and the most common cause of dementia. Classic pathology in AD is characterized by inflammation, abnormal presence of tau protein, and aggregation of β-amyloid that disrupt normal neuronal function and lead to cell death. Deficits in communication also occur during disease progression and significantly reduce health, well-being, and quality of life. Because clinical diagnosis occurs in the mid-stage of the disease, characterizing the prodrome and early stages in humans is currently challenging. To overcome these challenges, we use the validated TgF344-AD (F344-Tg(Prp-APP, Prp-PS1)19/Rrrc) transgenic rat model that manifests cognitive, behavioral, and neuropathological dysfunction akin to AD in humans. Objectives The overarching goal of our work is to test the central hypothesis that pathology and related behavioral deficits such as communication dysfunction in part manifest in the peripheral nervous system and corresponding target tissues already in the early stages. The primary aims of this study are to test the hypotheses that: (1) changes in ultrasonic vocalizations (USV) occur in the prodromal stage at 6 months of age and worsen at 9 months of age, (2) inflammation as well as AD-related pathology can be found in the thyroarytenoid muscle (TA) at 12 months of age (experimental endpoint tissue harvest), and to (3) demonstrate that the TgF344-AD rat model is an appropriate model for preclinical investigations of early AD-related vocal deficits. Methods USVs were collected from male TgF344-AD (N = 19) and wildtype (WT) Fischer-344 rats (N = 19) at 6 months (N = 38; WT: n = 19; TgF344-AD: n = 19) and 9 months of age (N = 18; WT: n = 10; TgF344-AD: n = 8) and acoustically analyzed for duration, mean power, principal frequency, low frequency, high frequency, peak frequency, and call type. RT-qPCR was used to assay peripheral inflammation and AD-related pathology via gene expressions in the TA muscle of male TgF344-AD rats (n = 6) and WT rats (n = 6) at 12 months of age. Results This study revealed a significant reduction in mean power of ultrasonic calls from 6 to 9 months of age and increased peak frequency levels over time in TgF344-AD rats compared to WT controls. Additionally, significant downregulation of AD-related genes Uqcrc2, Bace2, Serpina3n, and Igf2, as well as downregulation of pro-inflammatory gene Myd88 was found in the TA muscle of TgF344-AD rats at 12 months of age. Discussion Our findings demonstrate early and progressive vocal deficits in the TgF344-AD rat model. We further provide evidence of dysregulation of AD-pathology-related genes as well as inflammatory genes in the TA muscles of TgF344-AD rats in the early stage of the disease, confirming this rat model for early-stage investigations of voice deficits and related pathology.
Collapse
Affiliation(s)
- Denis Michael Rudisch
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- UW Institute for Clinical and Translational Research, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Maryann N Krasko
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - David G S Barnett
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Kimberly D Mueller
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - John A Russell
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Nadine P Connor
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Michelle R Ciucci
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
27
|
Snytnikova O, Telegina D, Savina E, Tsentalovich Y, Kolosova N. Quantitative Metabolomic Analysis of the Rat Hippocampus: Effects of Age and of the Development of Alzheimer's Disease-Like Pathology. J Alzheimers Dis 2024; 99:S327-S344. [PMID: 37980669 DOI: 10.3233/jad-230706] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Background Alzheimer's disease (AD) is the most common type of dementia in the elderly. Incomplete knowledge about the pathogenesis of this disease determines the absence of medications for the treatment of AD today. Animal models can provide the necessary knowledge to understand the mechanisms of biochemical processes occurring in the body in health and disease. Objective To identify the most promising metabolomic predictors and biomarkers reflecting metabolic disorders in the development of AD signs. Methods High resolution 1H NMR spectroscopy was used for quantitative metabolomic profiling of the hippocampus of OXYS rats, an animal model of sporadic AD, which demonstrates key characteristics of this disease. Animals were examined during several key periods: 20 days group corresponds to the "preclinical" period preceding the development of AD signs, during their manifestation (3 months), and active progression (18 months). Wistar rats of the same age were used as control. Results Ranges of variation and mean concentrations were established for 59 brain metabolites. The main metabolic patterns during aging, which are involved in energy metabolism pathways and metabolic shifts of neurotransmitters, have been established. Of particular note is the significant increase of scyllo-inositol and decrease of hypotaurine in the hippocampus of OXYS rats as compared to Wistars for all studied age groups. Conclusions We suggest that the accumulation of scyllo-inositol and the reduction of hypotaurine in the brain, even at an early age, can be considered as predictors and potential biomarkers of the development of AD signs in OXYS rats and, probably, in humans.
Collapse
Affiliation(s)
- Olga Snytnikova
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Darya Telegina
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina Savina
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yuri Tsentalovich
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nataliya Kolosova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
28
|
Ramezani M, Fernando M, Eslick S, Asih PR, Shadfar S, Bandara EMS, Hillebrandt H, Meghwar S, Shahriari M, Chatterjee P, Thota R, Dias CB, Garg ML, Martins RN. Ketone bodies mediate alterations in brain energy metabolism and biomarkers of Alzheimer's disease. Front Neurosci 2023; 17:1297984. [PMID: 38033541 PMCID: PMC10687427 DOI: 10.3389/fnins.2023.1297984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. AD is a progressive neurodegenerative disorder characterized by cognitive dysfunction, including learning and memory deficits, and behavioral changes. Neuropathology hallmarks of AD such as amyloid beta (Aβ) plaques and neurofibrillary tangles containing the neuron-specific protein tau is associated with changes in fluid biomarkers including Aβ, phosphorylated tau (p-tau)-181, p-tau 231, p-tau 217, glial fibrillary acidic protein (GFAP), and neurofilament light (NFL). Another pathological feature of AD is neural damage and hyperactivation of astrocytes, that can cause increased pro-inflammatory mediators and oxidative stress. In addition, reduced brain glucose metabolism and mitochondrial dysfunction appears up to 15 years before the onset of clinical AD symptoms. As glucose utilization is compromised in the brain of patients with AD, ketone bodies (KBs) may serve as an alternative source of energy. KBs are generated from the β-oxidation of fatty acids, which are enhanced following consumption of ketogenic diets with high fat, moderate protein, and low carbohydrate. KBs have been shown to cross the blood brain barrier to improve brain energy metabolism. This review comprehensively summarizes the current literature on how increasing KBs support brain energy metabolism. In addition, for the first time, this review discusses the effects of ketogenic diet on the putative AD biomarkers such as Aβ, tau (mainly p-tau 181), GFAP, and NFL, and discusses the role of KBs on neuroinflammation, oxidative stress, and mitochondrial metabolism.
Collapse
Affiliation(s)
- Matin Ramezani
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Malika Fernando
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Shaun Eslick
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Prita R. Asih
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Sina Shadfar
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Heidi Hillebrandt
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Silochna Meghwar
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Maryam Shahriari
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Pratishtha Chatterjee
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Rohith Thota
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Cintia B. Dias
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Manohar L. Garg
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Ralph N. Martins
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
29
|
Wang Z, Zhang D, Cheng C, Lin Z, Zhou D, Sun Y, Li W, Yan J, Luo S, Qian Z, Li Z, Huang G. Supplementation of Medium-Chain Triglycerides Combined with Docosahexaenoic Acid Inhibits Amyloid Beta Protein Deposition by Improving Brain Glucose Metabolism in APP/PS1 Mice. Nutrients 2023; 15:4244. [PMID: 37836528 PMCID: PMC10574179 DOI: 10.3390/nu15194244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The deterioration of brain glucose metabolism predates the clinical onset of Alzheimer's disease (AD). Medium-chain triglycerides (MCTs) and docosahexaenoic acid (DHA) positively improve brain glucose metabolism and decrease the expression of AD-related proteins. However, the effects of the combined intervention are unclear. The present study explored the effects of the supplementation of MCTs combined with DHA in improving brain glucose metabolism and decreasing AD-related protein expression levels in APP/PS1 mice. The mice were assigned into four dietary treatment groups: the control group, MCTs group, DHA group, and MCTs + DHA group. The corresponding diet of the respective groups was fed to mice from the age of 3 to 11 months. The results showed that the supplementation of MCTs combined with DHA could increase serum octanoic acid (C8:0), decanoic acid (C10:0), DHA, and β-hydroxybutyrate (β-HB) levels; improve glucose metabolism; and reduce nerve cell apoptosis in the brain. Moreover, it also aided with decreasing the expression levels of amyloid beta protein (Aβ), amyloid precursor protein (APP), β-site APP cleaving enzyme-1 (BACE1), and presenilin-1 (PS1) in the brain. Furthermore, the supplementation of MCTs + DHA was significantly more beneficial than that of MCTs or DHA alone. In conclusion, the supplementation of MCTs combined with DHA could improve energy metabolism in the brain of APP/PS1 mice, thus decreasing nerve cell apoptosis and inhibiting the expression of Aβ.
Collapse
Affiliation(s)
- Zehao Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China; (Z.W.); (C.C.); (Z.L.); (D.Z.); (Y.S.); (W.L.); (S.L.)
| | - Dalong Zhang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China; (D.Z.); (Z.Q.)
| | - Cheng Cheng
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China; (Z.W.); (C.C.); (Z.L.); (D.Z.); (Y.S.); (W.L.); (S.L.)
| | - Zhenzhen Lin
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China; (Z.W.); (C.C.); (Z.L.); (D.Z.); (Y.S.); (W.L.); (S.L.)
| | - Dezheng Zhou
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China; (Z.W.); (C.C.); (Z.L.); (D.Z.); (Y.S.); (W.L.); (S.L.)
| | - Yue Sun
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China; (Z.W.); (C.C.); (Z.L.); (D.Z.); (Y.S.); (W.L.); (S.L.)
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China; (Z.W.); (C.C.); (Z.L.); (D.Z.); (Y.S.); (W.L.); (S.L.)
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China;
| | - Jing Yan
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China;
- Department of Social Medicine and Health Administration, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Suhui Luo
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China; (Z.W.); (C.C.); (Z.L.); (D.Z.); (Y.S.); (W.L.); (S.L.)
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China;
| | - Zhiyong Qian
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China; (D.Z.); (Z.Q.)
| | - Zhenshu Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China; (Z.W.); (C.C.); (Z.L.); (D.Z.); (Y.S.); (W.L.); (S.L.)
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China;
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China; (Z.W.); (C.C.); (Z.L.); (D.Z.); (Y.S.); (W.L.); (S.L.)
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China;
- Department of Critical Care Medicine and Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
30
|
Aleksandrova Y, Neganova M. Deciphering the Mysterious Relationship between the Cross-Pathogenetic Mechanisms of Neurodegenerative and Oncological Diseases. Int J Mol Sci 2023; 24:14766. [PMID: 37834214 PMCID: PMC10573395 DOI: 10.3390/ijms241914766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The relationship between oncological pathologies and neurodegenerative disorders is extremely complex and is a topic of concern among a growing number of researchers around the world. In recent years, convincing scientific evidence has accumulated that indicates the contribution of a number of etiological factors and pathophysiological processes to the pathogenesis of these two fundamentally different diseases, thus demonstrating an intriguing relationship between oncology and neurodegeneration. In this review, we establish the general links between three intersecting aspects of oncological pathologies and neurodegenerative disorders, i.e., oxidative stress, epigenetic dysregulation, and metabolic dysfunction, examining each process in detail to establish an unusual epidemiological relationship. We also focus on reviewing the current trends in the research and the clinical application of the most promising chemical structures and therapeutic platforms that have a modulating effect on the above processes. Thus, our comprehensive analysis of the set of molecular determinants that have obvious cross-functional pathways in the pathogenesis of oncological and neurodegenerative diseases can help in the creation of advanced diagnostic tools and in the development of innovative pharmacological strategies.
Collapse
Affiliation(s)
- Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
| |
Collapse
|
31
|
Yang F, Zhao D, Cheng M, Liu Y, Chen Z, Chang J, Dou Y. mTOR-Mediated Immunometabolic Reprogramming Nanomodulators Enable Sensitive Switching of Energy Deprivation-Induced Microglial Polarization for Alzheimer's Disease Management. ACS NANO 2023; 17:15724-15741. [PMID: 37565731 DOI: 10.1021/acsnano.3c03232] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Metabolic reprogramming that senses brain homeostasis imbalances is necessary to drive detrimental microglial polarization, and specific targeting of this process contributes to the flexible control of pathological inflammatory responses in Alzheimer's disease (AD), displaying distinctive therapeutic benefits. Herein, glutathione-functionalized gold nanocages loaded with the immunosuppressant fingolimod hydrochloride are developed as brain-targeted and microglia-located immunometabolic reprogramming nanomodulators (GAF NPs) for AD management. By virtue of glutathione-mediated transport properties, this nanomodulator can cross the blood-brain barrier and localize to microglia in AD lesions. Through blocking Akt/mTOR/HIF-1α signaling pathways, GAF NPs not only promote the dominated metabolic shift from glycolysis to oxidative phosphorylation under immune activation but also inhibit transporter-mediated glucose overconsumption by microglia. Correlation analysis based on real-time bioenergetic assessment and 18F-labeled fluorodeoxyglucose (FDG) PET reveals that brain glucose utilization and metabolism restored by GAF NP treatment can serve as a sensitive and effective indicator for microglial M1 to M2 polarization switching, ultimately alleviating neuroinflammation and its derived neurodegeneration as well as ameliorating cognitive decline in AD mice. This work highlights a potential nanomedicine aimed at modifying mTOR-mediated immunometabolic reprogramming to halt energy deprivation-induced AD progression.
Collapse
Affiliation(s)
- Fan Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| | - Dongju Zhao
- School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China
| | - Meng Cheng
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| | - Yining Liu
- School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China
| | - Ziyao Chen
- School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China
| | - Yan Dou
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| |
Collapse
|
32
|
Gatou MA, Vagena IA, Lagopati N, Pippa N, Gazouli M, Pavlatou EA. Functional MOF-Based Materials for Environmental and Biomedical Applications: A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2224. [PMID: 37570542 PMCID: PMC10421186 DOI: 10.3390/nano13152224] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Over the last ten years, there has been a growing interest in metal-organic frameworks (MOFs), which are a unique category of porous materials that combine organic and inorganic components. MOFs have garnered significant attention due to their highly favorable characteristics, such as environmentally friendly nature, enhanced surface area and pore volume, hierarchical arrangements, and adjustable properties, as well as their versatile applications in fields such as chemical engineering, materials science, and the environmental and biomedical sectors. This article centers on examining the advancements in using MOFs for environmental remediation purposes. Additionally, it discusses the latest developments in employing MOFs as potential tools for disease diagnosis and drug delivery across various ailments, including cancer, diabetes, neurological disorders, and ocular diseases. Firstly, a concise overview of MOF evolution and the synthetic techniques employed for creating MOFs are provided, presenting their advantages and limitations. Subsequently, the challenges, potential avenues, and perspectives for future advancements in the utilization of MOFs in the respective application domains are addressed. Lastly, a comprehensive comparison of the materials presently employed in these applications is conducted.
Collapse
Affiliation(s)
- Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.-A.V.); (N.L.); (M.G.)
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.-A.V.); (N.L.); (M.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.-A.V.); (N.L.); (M.G.)
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| |
Collapse
|
33
|
Yen C, Lin CL, Chiang MC. Exploring the Frontiers of Neuroimaging: A Review of Recent Advances in Understanding Brain Functioning and Disorders. Life (Basel) 2023; 13:1472. [PMID: 37511847 PMCID: PMC10381462 DOI: 10.3390/life13071472] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Neuroimaging has revolutionized our understanding of brain function and has become an essential tool for researchers studying neurological disorders. Functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) are two widely used neuroimaging techniques to review changes in brain activity. fMRI is a noninvasive technique that uses magnetic fields and radio waves to produce detailed brain images. An EEG is a noninvasive technique that records the brain's electrical activity through electrodes placed on the scalp. This review overviews recent developments in noninvasive functional neuroimaging methods, including fMRI and EEG. Recent advances in fMRI technology, its application to studying brain function, and the impact of neuroimaging techniques on neuroscience research are discussed. Advances in EEG technology and its applications to analyzing brain function and neural oscillations are also highlighted. In addition, advanced courses in neuroimaging, such as diffusion tensor imaging (DTI) and transcranial electrical stimulation (TES), are described, along with their role in studying brain connectivity, white matter tracts, and potential treatments for schizophrenia and chronic pain. Application. The review concludes by examining neuroimaging studies of neurodevelopmental and neurological disorders such as autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), Alzheimer's disease (AD), and Parkinson's disease (PD). We also described the role of transcranial direct current stimulation (tDCS) in ASD, ADHD, AD, and PD. Neuroimaging techniques have significantly advanced our understanding of brain function and provided essential insights into neurological disorders. However, further research into noninvasive treatments such as EEG, MRI, and TES is necessary to continue to develop new diagnostic and therapeutic strategies for neurological disorders.
Collapse
Affiliation(s)
- Chiahui Yen
- Department of International Business, Ming Chuan University, Taipei 111, Taiwan
| | - Chia-Li Lin
- Department of International Business, Ming Chuan University, Taipei 111, Taiwan
| | - Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
34
|
Latina V, Atlante A, Malerba F, La Regina F, Balzamino BO, Micera A, Pignataro A, Stigliano E, Cavallaro S, Calissano P, Amadoro G. The Cleavage-Specific Tau 12A12mAb Exerts an Anti-Amyloidogenic Action by Modulating the Endocytic and Bioenergetic Pathways in Alzheimer's Disease Mouse Model. Int J Mol Sci 2023; 24:ijms24119683. [PMID: 37298634 DOI: 10.3390/ijms24119683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Beyond deficits in hippocampal-dependent episodic memory, Alzheimer's Disease (AD) features sensory impairment in visual cognition consistent with extensive neuropathology in the retina. 12A12 is a monoclonal cleavage specific antibody (mAb) that in vivo selectively neutralizes the AD-relevant, harmful N-terminal 20-22 kDa tau fragment(s) (i.e., NH2htau) without affecting the full-length normal protein. When systemically injected into the Tg2576 mouse model overexpressing a mutant form of Amyloid Precursor Protein (APP), APPK670/671L linked to early onset familial AD, this conformation-specific tau mAb successfully reduces the NH2htau accumulating both in their brain and retina and, thus, markedly alleviates the phenotype-associated signs. By means of a combined biochemical and metabolic experimental approach, we report that 12A12mAb downregulates the steady state expression levels of APP and Beta-Secretase 1 (BACE-1) and, thus, limits the Amyloid beta (Aβ) production both in the hippocampus and retina from this AD animal model. The local, antibody-mediated anti-amyloidogenic action is paralleled in vivo by coordinated modulation of the endocytic (BIN1, RIN3) and bioenergetic (glycolysis and L-Lactate) pathways. These findings indicate for the first time that similar molecular and metabolic retino-cerebral pathways are modulated in a coordinated fashion in response to 12A12mAb treatment to tackle the neurosensorial Aβ accumulation in AD neurodegeneration.
Collapse
Affiliation(s)
- Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Francesca Malerba
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Federico La Regina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Bijorn Omar Balzamino
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo 6, 00184 Rome, Italy
| | - Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo 6, 00184 Rome, Italy
| | - Annabella Pignataro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Egidio Stigliano
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
35
|
Lactate and Lactylation in the Brain: Current Progress and Perspectives. Cell Mol Neurobiol 2023:10.1007/s10571-023-01335-7. [PMID: 36928470 DOI: 10.1007/s10571-023-01335-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/04/2023] [Indexed: 03/18/2023]
Abstract
As the final product of glycolysis, lactate features not only as an energy substrate, a metabolite, and a signaling molecule in a variety of diseases-such as cancer, inflammation, and sepsis-but also as a regulator of protein lactylation; this is a newly proposed epigenetic modification that is considered to be crucial for energy metabolism and signaling in brain tissues under both physiological and pathological conditions. In this review, evidence on lactylation from studies on lactate metabolism and disease has been summarized, revealing the function of lactate and its receptors in the regulation of brain function and summarizing the levels of lactylation expression in various brain diseases. Finally, the function of lactate and lactylation in the brain and the potential mechanisms of intervention in brain diseases are presented and discussed, providing optimal perspectives for future research on the role of lactylation in the brain.
Collapse
|
36
|
Roumes H, Pellerin L, Bouzier-Sore AK. Astrocytes as metabolic suppliers to support neuronal activity and brain functions. Essays Biochem 2023; 67:27-37. [PMID: 36504117 PMCID: PMC10011397 DOI: 10.1042/ebc20220080] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022]
Abstract
Energy metabolism is essential for brain function. In recent years, lactate shuttling between astrocytes and neurons has become a fundamental concept of neuroenergetics. However, it remains unclear to what extent this process is critical for different aspects of cognition, their underlying mechanisms, as well as for the signals used to monitor brain activation.
Collapse
Affiliation(s)
- Hélène Roumes
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, F-33000 Bordeaux, France
| | - Luc Pellerin
- Univ. Poitiers and CHU Poitiers, IRMETIST, INSERM U1313, F-86021 Poitiers, France
| | | |
Collapse
|
37
|
Shpakov AO, Zorina II, Derkach KV. Hot Spots for the Use of Intranasal Insulin: Cerebral Ischemia, Brain Injury, Diabetes Mellitus, Endocrine Disorders and Postoperative Delirium. Int J Mol Sci 2023; 24:3278. [PMID: 36834685 PMCID: PMC9962062 DOI: 10.3390/ijms24043278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
A decrease in the activity of the insulin signaling system of the brain, due to both central insulin resistance and insulin deficiency, leads to neurodegeneration and impaired regulation of appetite, metabolism, endocrine functions. This is due to the neuroprotective properties of brain insulin and its leading role in maintaining glucose homeostasis in the brain, as well as in the regulation of the brain signaling network responsible for the functioning of the nervous, endocrine, and other systems. One of the approaches to restore the activity of the insulin system of the brain is the use of intranasally administered insulin (INI). Currently, INI is being considered as a promising drug to treat Alzheimer's disease and mild cognitive impairment. The clinical application of INI is being developed for the treatment of other neurodegenerative diseases and improve cognitive abilities in stress, overwork, and depression. At the same time, much attention has recently been paid to the prospects of using INI for the treatment of cerebral ischemia, traumatic brain injuries, and postoperative delirium (after anesthesia), as well as diabetes mellitus and its complications, including dysfunctions in the gonadal and thyroid axes. This review is devoted to the prospects and current trends in the use of INI for the treatment of these diseases, which, although differing in etiology and pathogenesis, are characterized by impaired insulin signaling in the brain.
Collapse
Affiliation(s)
- Alexander O. Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | | | | |
Collapse
|
38
|
Ma T, Chang RCC, Macauley SL. Editorial: Metabolic signaling dysregulation and cognitive impairments in aging and Alzheimer's disease, volume II. Front Aging Neurosci 2023; 15:1150101. [PMID: 36819722 PMCID: PMC9936185 DOI: 10.3389/fnagi.2023.1150101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Affiliation(s)
- Tao Ma
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, LKS Faculty of Medicine, School of Biomedical Science, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Shannon L. Macauley
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
39
|
Liu Y, Liu S, Tang C, Tang K, Liu D, Chen M, Mao Z, Xia X. Transcranial alternating current stimulation combined with sound stimulation improves cognitive function in patients with Alzheimer's disease: Study protocol for a randomized controlled trial. Front Aging Neurosci 2023; 14:1068175. [PMID: 36698862 PMCID: PMC9869764 DOI: 10.3389/fnagi.2022.1068175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
Background The number of patients with Alzheimer's disease (AD) worldwide is increasing yearly, but the existing treatment methods have poor efficacy. Transcranial alternating current stimulation (tACS) is a new treatment for AD, but the offline effect of tACS is insufficient. To prolong the offline effect, we designed to combine tACS with sound stimulation to maintain the long-term post-effect. Materials and methods To explore the safety and effectiveness of tACS combined with sound stimulation and its impact on the cognition of AD patients. This trial will recruit 87 patients with mild to moderate AD. All patients were randomly divided into three groups. The change in Alzheimer's Disease Assessment Scale-Cognitive (ADAS-Cog) scores from the day before treatment to the end of treatment and 3 months after treatment was used as the main evaluation index. We will also explore the changes in the brain structural network, functional network, and metabolic network of AD patients in each group after treatment. Discussion We hope to conclude that tACS combined with sound stimulation is safe and tolerable in 87 patients with mild to moderate AD under three standardized treatment regimens. Compared with tACS alone or sound alone, the combination group had a significant long-term effect on cognitive improvement. To screen out a better treatment plan for AD patients. tACS combined with sound stimulation is a previously unexplored, non-invasive joint intervention to improve patients' cognitive status. This study may also identify the potential mechanism of tACS combined with sound stimulation in treating mild to moderate AD patients. Clinical Trial Registration Clinicaltrials.gov, NCT05251649. Registered on February 22, 2022.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | | | - Can Tang
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Keke Tang
- Guangzhou Kangzhi Digital Technology Co., Ltd., Guangzhou, China
| | - Di Liu
- Guangzhou Kangzhi Digital Technology Co., Ltd., Guangzhou, China
| | - Meilian Chen
- Guangzhou Kangzhi Digital Technology Co., Ltd., Guangzhou, China
| | - Zhiqi Mao
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Xuewei Xia
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
40
|
Somatic copy number variant load in neurons of healthy controls and Alzheimer's disease patients. Acta Neuropathol Commun 2022; 10:175. [PMID: 36451207 PMCID: PMC9714068 DOI: 10.1186/s40478-022-01452-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/27/2022] [Indexed: 12/03/2022] Open
Abstract
The possible role of somatic copy number variations (CNVs) in Alzheimer's disease (AD) aetiology has been controversial. Although cytogenetic studies suggested increased CNV loads in AD brains, a recent single-cell whole-genome sequencing (scWGS) experiment, studying frontal cortex brain samples, found no such evidence. Here we readdressed this issue using low-coverage scWGS on pyramidal neurons dissected via both laser capture microdissection (LCM) and fluorescence activated cell sorting (FACS) across five brain regions: entorhinal cortex, temporal cortex, hippocampal CA1, hippocampal CA3, and the cerebellum. Among reliably detected somatic CNVs identified in 1301 cells obtained from the brains of 13 AD patients and 7 healthy controls, deletions were more frequent compared to duplications. Interestingly, we observed slightly higher frequencies of CNV events in cells from AD compared to similar numbers of cells from controls (4.1% vs. 1.4%, or 0.9% vs. 0.7%, using different filtering approaches), although the differences were not statistically significant. On the technical aspects, we observed that LCM-isolated cells show higher within-cell read depth variation compared to cells isolated with FACS. To reduce within-cell read depth variation, we proposed a principal component analysis-based denoising approach that significantly improves signal-to-noise ratios. Lastly, we showed that LCM-isolated neurons in AD harbour slightly more read depth variability than neurons of controls, which might be related to the reported hyperploid profiles of some AD-affected neurons.
Collapse
|
41
|
Solas M, Zamarbide M, Ardanaz CG, Ramírez MJ, Pérez-Mediavilla A. The Cognitive Improvement and Alleviation of Brain Hypermetabolism Caused by FFAR3 Ablation in Tg2576 Mice Is Persistent under Diet-Induced Obesity. Int J Mol Sci 2022; 23:13591. [PMID: 36362376 PMCID: PMC9654726 DOI: 10.3390/ijms232113591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022] Open
Abstract
Obesity and aging are becoming increasingly prevalent across the globe. It has been established that aging is the major risk factor for Alzheimer's disease (AD), and it is becoming increasingly evident that obesity and the associated insulin resistance are also notably relevant risk factors. The biological plausibility of the link between high adiposity, insulin resistance, and dementia is central for understanding AD etiology, and to form bases for prevention efforts to decrease the disease burden. Several studies have demonstrated a strong association between short chain fatty acid receptor FFAR3 and insulin sensitivity. Interestingly, it has been recently established that FFAR3 mRNA levels are increased in early stages of the AD pathology, indicating that FFAR3 could play a key role in AD onset and progression. Indeed, in the present study we demonstrate that the ablation of the Ffar3 gene in Tg2576 mice prevents the development of cognitive deficiencies in advanced stages of the disease. Notably, this cognitive improvement is also maintained upon a severe metabolic challenge such as the exposure to high-fat diet (HFD) feeding. Moreover, FFAR3 deletion restores the brain hypermetabolism displayed by Tg2576 mice. Collectively, these data postulate FFAR3 as a potential novel target for AD.
Collapse
Affiliation(s)
- Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Marta Zamarbide
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Carlos G. Ardanaz
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - María J. Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Alberto Pérez-Mediavilla
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
| |
Collapse
|