1
|
Gaur K, Mohapatra L, Wal P, Parveen A, Kumar S, Gupta V. Deciphering the mechanisms and effects of hyperglycemia on skeletal muscle atrophy. Metabol Open 2024; 24:100332. [PMID: 39634609 PMCID: PMC11616592 DOI: 10.1016/j.metop.2024.100332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Hyperglycemia, a hallmark of diabetes mellitus, significantly contributes to skeletal muscle atrophy, characterized by progressive muscle mass and strength loss. This review summarizes the mechanisms of hyperglycemia-induced muscle atrophy, examines clinical evidence, and discusses preventive and therapeutic strategies. A systematic search of electronic databases, including PubMed, Scopus, and Web of Science, was conducted to identify relevant papers on hyperglycemic skeletal muscle atrophy. Key mechanisms include insulin resistance, chronic inflammation, oxidative stress, and mitochondrial dysfunction. Crucial molecular pathways involved are Phosphoinositide 3-kinase/Protein kinase B signaling, Forkhead box O transcription factors, the ubiquitin-proteasome system, and myostatin-mediated degradation. Hyperglycemia disrupts normal glucose and lipid metabolism, exacerbating muscle protein degradation and impairing synthesis. Clinical studies support the association between hyperglycemia and muscle atrophy, emphasizing the need for early diagnosis and intervention. Biomarkers, imaging techniques, and functional tests are vital for detecting and monitoring muscle atrophy in hyperglycemic patients. Management strategies focus on glycemic control, pharmacological interventions targeting specific molecular pathways, nutritional support, and tailored exercise regimens. Despite these advances, research gaps remain in understanding the long-term impact of hyperglycemia on muscle health and identifying novel therapeutic targets. The review aims to provide a comprehensive understanding of the mechanisms, clinical implications, and potential therapeutic strategies for addressing hyperglycemia-induced skeletal muscle atrophy.
Collapse
Affiliation(s)
- Khushboo Gaur
- Department of Pharmacy, PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, 209305, Uttar Pradesh, India
- Department of Pharmacy, Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Lucy Mohapatra
- Department of Pharmacy, Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Pranay Wal
- Department of Pharmacy, PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, 209305, Uttar Pradesh, India
| | - Amana Parveen
- Department of Pharmacy, PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, 209305, Uttar Pradesh, India
| | - Shivam Kumar
- Department of Pharmacy, S J Institute of Pharmacy Ramaipur, Kanpur, 209214, Uttar Pradesh, India
| | - Vaishali Gupta
- Department of Pharmacy, S J Institute of Pharmacy Ramaipur, Kanpur, 209214, Uttar Pradesh, India
| |
Collapse
|
2
|
Shafiee G, Marzban M, Abbaspour F, Darabi A, Balajam NZ, Farhadi A, Khaleghi MM, Taherzadeh H, Fahimfar N, Falahatzadeh A, Ghasemi N, Ostovar A, Nabipour I, Larijani B, Heshmat R. The impact of osteosarcopenia and its parameters on mortality of COVID-19 in-hospitalized older patients: the findings of BEH (Bushehr elderly health) program. J Diabetes Metab Disord 2024; 23:1919-1928. [PMID: 39610491 PMCID: PMC11599644 DOI: 10.1007/s40200-024-01443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/10/2024] [Indexed: 11/30/2024]
Abstract
Background It has been documented that old age and chronic diseases are associated with poor prognosis and mortality among COVID-19 patients. Osteosarcopenia is a geriatric syndrome with a considerable prevalence which increases morbidity and mortality. This study investigated the relationship between COVID-19 mortality and osteosarcopenia and its parameters in-hospitalized patients in Bushehr, Iran. Methods In this retrospective cohort study, participants of the Bushehr Elderly Health (BEH) program who were hospitalized due to COVID-19 between 1st March 2020 and 23rd September 2021 were assessed. Osteosarcopenia was considered as the presence of both osteopenia/osteoporosis and sarcopenia. We used the Cox proportional hazards model to identify the association between oteosarcopenia and the risk of COVID-mortality in 2442 person-days. Results Among 4173 participants,297 patients were in-hospitalized due to COVID-19. We found that 80(26.94%) patients expired due to COVID-19 during the follow-up period. Osteosarcopenia and its parameters were more prevalent in patients who expired. The incidence rate of mortality among osteosarcopenic patients was 5.04(3.43- 7.40) per 100 person-days. In the Cox proportional hazards models, osteosarcopenia and its parameters increase the risk of COVID-mortality [Osteosarcopenia: HRadjusment:1.73(1.00-3.01), sarcopenia: HRadjusment:1.72(1.00-2.99), Osteoporosis: HRadjusment:2.67(1.53-4.67), Low muscle mass: HRadjusment:1.90(1.05-3.46), low muscle strength: HRadjusment:1.80(1.03-3.16), and low gait speed: HRadj:2.39(1.31-4.38). The ORs of ICU admission and use of invasive mechanical ventilation among osteosarcopenic patients and its parameters were higher than those without it. Conclusions This study identified the impact of osteosarcopenia and its parameters on the mortality of in-hospitalized patients with COVID-19. Assessment of musculoskeletal disorders could help in early warning of older patients with severe COVID-19. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01443-1.
Collapse
Affiliation(s)
- Gita Shafiee
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Marzban
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD Australia
| | - Faeze Abbaspour
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Darabi
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Narges Zargar Balajam
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Farhadi
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Mehdi Khaleghi
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Sport Science Department, Human Faculty, Persian Gulf University, Bushehr, Iran
| | - Hossein Taherzadeh
- Educational Deputy Bahmani Campus, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Noushin Fahimfar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azar Falahatzadeh
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Negin Ghasemi
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Afshin Ostovar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Nabipour
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Di Ludovico A, La Bella S, Ciarelli F, Chiarelli F, Breda L, Mohn A. Skeletal muscle as a pro- and anti-inflammatory tissue: insights from children to adults and ultrasound findings. J Ultrasound 2024; 27:769-779. [PMID: 38907089 PMCID: PMC11496437 DOI: 10.1007/s40477-024-00917-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/11/2024] [Indexed: 06/23/2024] Open
Abstract
Previously regarded as a movement and posture control agent, the skeletal muscle is now recognized as an endocrine organ that may affect systemic inflammation and metabolic health. The discovery of myokines such as IL-6, released from skeletal muscle in response to physical exercise, is now one of the most recent insights. Myokines are the mediators of the balance between the pro-inflammatory and anti-inflammatory responses. This underscores the muscle function as a determinant of good health and prevention of diseases. Advances in ultrasound technology improved evaluation of muscle thickness, composition, and determining fat distribution. Combining imaging with molecular biology, researchers discovered the complicated interplay between muscle function, cytokine production and general health effects.The production of myokines with exercise showcasing the adaptability of muscles to high-stress conditions and contributing to metabolism and inflammation regulation. These findings have significant implications in order to provide improvement in metabolic and inflammatory diseases.
Collapse
Affiliation(s)
| | | | | | | | - Luciana Breda
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Angelika Mohn
- Department of Pediatrics, University of Chieti, Chieti, Italy
| |
Collapse
|
4
|
Zheng L, Rao Z, Wu J, Ma X, Jiang Z, Xiao W. Resistance Exercise Improves Glycolipid Metabolism and Mitochondrial Biogenesis in Skeletal Muscle of T2DM Mice via miR-30d-5p/SIRT1/PGC-1α Axis. Int J Mol Sci 2024; 25:12416. [PMID: 39596482 PMCID: PMC11595072 DOI: 10.3390/ijms252212416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Exercise is a recognized non-pharmacological treatment for improving glucose homeostasis in type 2 diabetes (T2DM), with resistance exercise (RE) showing promising results. However, the mechanism of RE improving T2DM has not been clarified. This study aims to investigate the effects of RE on glucose and lipid metabolism, insulin signaling, and mitochondrial function in T2DM mice, with a focus on the regulatory role of miR-30d-5p. Our results confirmed that RE significantly improved fasting blood glucose, IPGTT, and ITT in T2DM mice. Enhanced expression of IRS-1, p-PI3K, and p-Akt indicated improved insulin signaling. RE improved glycolipid metabolism, as well as mitochondrial biogenesis and dynamics in skeletal muscle of T2DM mice. We also found that miR-30d-5p was upregulated in T2DM, and was downregulated after RE. Additionally, in vitro, over-expression of miR-30d-5p significantly increased lipid deposition, and reduced glucose uptake and mitochondrial biogenesis. These observations were reversed after transfection with the miR-30d-5p inhibitor. Mechanistically, miR-30d-5p regulates glycolipid metabolism in skeletal muscle by directly targeting SIRT1, which affects the expression of PGC-1α, thereby influencing mitochondrial function and glycolipid metabolism. Taken together, RE effectively improves glucose and lipid metabolism and mitochondrial function in T2DM mice, partly through regulating the miR-30d-5p/SIRT1/PGC-1α axis. miR-30d-5p could serve as a potential therapeutic target for T2DM management.
Collapse
Affiliation(s)
- Lifang Zheng
- College of Physical Education, Shanghai University, Shanghai 200444, China; (L.Z.); (X.M.); (Z.J.)
| | - Zhijian Rao
- College of Physical Education, Shanghai Normal University, Shanghai 200234, China;
| | - Jiabin Wu
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China;
- The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaojie Ma
- College of Physical Education, Shanghai University, Shanghai 200444, China; (L.Z.); (X.M.); (Z.J.)
| | - Ziming Jiang
- College of Physical Education, Shanghai University, Shanghai 200444, China; (L.Z.); (X.M.); (Z.J.)
| | - Weihua Xiao
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China;
- The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
5
|
Guo W, Peng J, Su J, Xia J, Deng W, Li P, Chen Y, Liu G, Wang S, Huang J. The role and underlying mechanisms of irisin in exercise-mediated cardiovascular protection. PeerJ 2024; 12:e18413. [PMID: 39494293 PMCID: PMC11531754 DOI: 10.7717/peerj.18413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
Irisin, a product of the post-translational processing of fibronectin type III domain-containing protein 5 (FNDC5), is a novel myokine which is upregulated during exercise. This hormone not only promotes the transformation of white adipose tissue into a brown-fat-like phenotype but also enhances energy expenditure and mitigates fat accumulation. Its role is crucial in the management of certain metabolic disorders such as diabetes and heart disease. Of note, the type of exercise performed significantly affects blood irisin levels, indicating the critical role of physical activity in regulating this hormone. This article aims to summarize the current scientific understanding of the role of irisin and the mechanisms through which it mediates cardiovascular protection through exercise. Moreover, this article aims to establish irisin as a potential target for preventing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Wenhuang Guo
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Jianwei Peng
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Jiarui Su
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Jingbo Xia
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Weiji Deng
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Peilun Li
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Yilin Chen
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Guoqing Liu
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Shen Wang
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Junhao Huang
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
| |
Collapse
|
6
|
Sheptulina AF, Mamutova EM, Elkina AY, Timofeev YS, Metelskaya VA, Kiselev AR, Drapkina OM. Serum Irisin, Myostatin, and Myonectin Correlate with Metabolic Health Markers, Liver Disease Progression, and Blood Pressure in Patients with Metabolic Dysfunction-Associated Fatty Liver Disease and Hypertension. Metabolites 2024; 14:584. [PMID: 39590820 PMCID: PMC11596689 DOI: 10.3390/metabo14110584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Recent data indicate the involvement of skeletal muscles in the regulation of metabolism and in the pathogenesis of chronic noncommunicable diseases. The goal of our study was to describe the serum concentrations of myokines in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) and hypertension (HTN) and their correlation with laboratory parameters, blood pressure (BP), and MASLD severity. METHODS A total of 67 patients with MASLD and HTN underwent anthropometric measurements, laboratory tests, and point shear-wave elastography. The serum concentrations of myokines were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS Patients with detectable serum myonectin concentrations had significantly higher maximum systolic blood pressure (p = 0.022) and higher blood levels of uric acid (p = 0.029). Serum irisin concentration ≥ 6.1 μg/mL was associated with higher FLI values (p = 0.042) and liver stiffness (p = 0.034), as well as with slightly higher waist circumference (p = 0.082) and triglyceride level (p = 0.062). Patients with serum myostatin concentration ≥ 4.98 ng/mL were significantly older (p = 0.033) and had a lower blood albumin level (p = 0.043). CONCLUSIONS In conclusion, the myokine profile in patients with MASLD and HTN correlates both with the severity of MASLD and the parameters characteristic of metabolic health, suggesting the possible contribution of altered irisin, myonectin, and myostatin concentrations to the occurrence of cardiometabolic risks in patients with MASLD.
Collapse
Affiliation(s)
- Anna F. Sheptulina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Elvira M. Mamutova
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Anastasia Yu. Elkina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Intermediate Level Therapy, Saratov State Medical University, 410012 Saratov, Russia
| | - Yuriy S. Timofeev
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Victoria A. Metelskaya
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Anton R. Kiselev
- Coordinating Center for Fundamental Research, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Oxana M. Drapkina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| |
Collapse
|
7
|
Pérez-Regalado S, Leon J, Padial P, Benavente C, Almeida F, Bonitch-Góngora J, de la Fuente B, Feriche B. Exploring the Impact of Resistance Training at Moderate Altitude on Metabolic Cytokines in Humans: Implications for Adipose Tissue Dynamics. Int J Mol Sci 2024; 25:11418. [PMID: 39518972 PMCID: PMC11546518 DOI: 10.3390/ijms252111418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Hypobaric hypoxia (HH) limits oxygen supply to tissues and increases metabolic demands, especially during exercise. We studied the influence of HH exposure on the subcutaneous adipose tissue (SAT) thickness and circulating metabolic-related cytokines levels after a resistance training (RT) program. Twenty trained men participated in a traditional hypertrophy RT for 8 weeks (three sessions/week) under intermittent terrestrial HH (2320 m) or normoxia (N, 690 m) conditions. Before, at week 6, and after the RT, SAT, and vastus lateralis (VL) muscle thickness were measured by ultrasound. Blood samples were taken to analyse serum cytokines (IL-6, IL-15, irisin, and myostatin) by multiplex immunoassay. Our findings revealed a moderate reduction in IL-6 and irisin in HH following the RT (ES < -0.64; p < 0.05). Additionally, RT in HH promoted serum IL-15 release (ES = 0.890; p = 0.062), which exhibited a trivial inverse association with the reductions observed on SAT (-17.69%; p < 0.001) compared with N. RT in HH explained ~50% of SAT variance (p < 0.001). These results highlight the benefit of stressor factors linked to RT in HH on SAT through the modulation of serum metabolic cytokine profiles, suggesting a potential effect on overall body composition.
Collapse
Affiliation(s)
- Sergio Pérez-Regalado
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011 Granada, Spain; (S.P.-R.); (P.P.); (C.B.); (F.A.); (J.B.-G.); (B.F.)
| | - Josefa Leon
- Biosanitary Research Institute of Granada, ibs. Granada, 18012 Granada, Spain
- Clinical Management Unit of Digestive System, San Cecilio University Clinical Hospital, 18007 Granada, Spain
| | - Paulino Padial
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011 Granada, Spain; (S.P.-R.); (P.P.); (C.B.); (F.A.); (J.B.-G.); (B.F.)
| | - Cristina Benavente
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011 Granada, Spain; (S.P.-R.); (P.P.); (C.B.); (F.A.); (J.B.-G.); (B.F.)
| | - Filipa Almeida
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011 Granada, Spain; (S.P.-R.); (P.P.); (C.B.); (F.A.); (J.B.-G.); (B.F.)
| | - Juan Bonitch-Góngora
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011 Granada, Spain; (S.P.-R.); (P.P.); (C.B.); (F.A.); (J.B.-G.); (B.F.)
| | - Blanca de la Fuente
- High-Performance Centre of Sierra Nevada, Spanish Sports Council, 18196 Granada, Spain;
| | - Belén Feriche
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011 Granada, Spain; (S.P.-R.); (P.P.); (C.B.); (F.A.); (J.B.-G.); (B.F.)
| |
Collapse
|
8
|
Bhandari R, Lukas K, Lee K, Shamunee J, Almeida B, Guzman T, Echevarria M, Lindenfeld L, Nenninger C, Iukuridze A, Albanese S, Rhee JW, Chen S, Brenner C, Wong FL, Armenian SH. Feasibility of telehealth exercise and nicotinamide riboside supplementation in survivors of childhood cancer at risk for diabetes: A pilot randomized controlled trial. Pediatr Blood Cancer 2024:e31369. [PMID: 39387327 DOI: 10.1002/pbc.31369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Childhood cancer survivors (CCS) have a 50% higher risk of diabetes mellitus (DM) compared with the general population. Interventions in survivors with prediabetes (fasting glucose 100-125 mg/dL or hemoglobin A1c 5.7%-6.4%) may mitigate the development of DM and its attendant morbidity, but there is limited information on the feasibility of secondary prevention in this setting. METHODS This 6-week pilot feasibility 1:1 randomized controlled trial enrolled 20 CCS on a structured telehealth exercise program ± nicotinamide riboside (NR), a nicotinamide adenine dinucleotide precursor. Feasibility metrics were: (1) ≥50% of eligible CCS enrolled onto study; (2) ≥70% of participants completed baseline and end-of-study assessments; (3) ≥70% compliance with exercise and NR. Secondary endpoints included changes in biomarkers associated with glucose homeostasis and muscle health. RESULTS Median age (years) at cancer diagnosis was 16.5 (range, 1.5-21.5) and 35.5 (range, 18.0-67.0) at study enrollment. Enrollment rate was 87%, and 85% of participants completed baseline and end-of-study assessments. The mean percentage of exercise sessions completed was 86.6%; NR compliance was > 90%. There were no severe adverse events attributable to study interventions. Secondary endpoints were not significantly different between study arms at study completion. Myostatin decrease was observed in participants who completed a higher median number of exercise sessions and was associated with decreased intramuscular adipose tissue and increased lower extremity muscle cross-sectional area. CONCLUSIONS A telehealth exercise intervention ± NR supplementation was feasible in CCS with prediabetes. Future studies in larger cohorts may be needed to evaluate their beneficial effects on muscle health and DM risk among CCS.
Collapse
Affiliation(s)
- Rusha Bhandari
- Department of Population Sciences, City of Hope, Duarte, California, USA
- Department of Pediatrics, City of Hope, Duarte, California, USA
| | - Kara Lukas
- Department of Population Sciences, City of Hope, Duarte, California, USA
| | - Kyuwan Lee
- Department of Population Sciences, City of Hope, Duarte, California, USA
| | - Justin Shamunee
- Department of Population Sciences, City of Hope, Duarte, California, USA
| | - Brady Almeida
- Department of Population Sciences, City of Hope, Duarte, California, USA
| | - Tati Guzman
- Department of Population Sciences, City of Hope, Duarte, California, USA
| | - Meagan Echevarria
- Department of Population Sciences, City of Hope, Duarte, California, USA
| | - Lanie Lindenfeld
- Department of Population Sciences, City of Hope, Duarte, California, USA
| | | | - Aleksi Iukuridze
- Department of Population Sciences, City of Hope, Duarte, California, USA
| | - Sophia Albanese
- Department of Population Sciences, City of Hope, Duarte, California, USA
| | - June-Wha Rhee
- Department of Medicine, City of Hope, Duarte, California, USA
| | - Sitong Chen
- Department of Population Sciences, City of Hope, Duarte, California, USA
| | - Charles Brenner
- Department of Diabetes and Cancer Metabolism, City of Hope, Duarte, California, USA
| | - F Lennie Wong
- Department of Population Sciences, City of Hope, Duarte, California, USA
| | - Saro H Armenian
- Department of Population Sciences, City of Hope, Duarte, California, USA
- Department of Pediatrics, City of Hope, Duarte, California, USA
| |
Collapse
|
9
|
Deng S, Binte Sayeed U, Wagatsuma Y. Handgrip Strength Is Inversely Associated With the Progression of Kidney Damage in a General Japanese Population: A Prospective Cohort Study. Cureus 2024; 16:e71276. [PMID: 39525109 PMCID: PMC11550912 DOI: 10.7759/cureus.71276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Background Handgrip strength is an indicator of muscle function and a predictor of health outcomes. However, only a few studies have examined the association between handgrip strength and the development of kidney damage. This study aimed to investigate the longitudinal association of handgrip strength with kidney damage in a general Japanese population. Methods This prospective cohort study enrolled participants with normal kidney function who attended annual health check-ups in Ibaraki Prefecture, Japan, between April 2016 and March 2020. Clinical information, including data from blood and urine tests, physiological examinations, and handgrip strength tests, was collected at enrollment. Lifestyle information was also collected via a self-administered questionnaire. The study participants were followed up for the progression of kidney damage until March 2023. Relative handgrip strength was calculated by dividing the handgrip strength by the body mass index to adjust for differences in body mass. A Cox proportional hazards model was used to examine the relationship between relative handgrip strength and the progression of kidney damage. Results A total of 4304 participants with normal kidney function were enrolled in this study. During the mean follow-up period of approximately 4 years (SD 1.8 years), 15.4% of the participants developed kidney damage. After adjusting for covariates, higher relative handgrip strength was associated with a lower risk of kidney damage in men (HR = 0.63, 95% CI: 0.43 - 0.90; p = 0.012), but no significant association was observed in women. Conclusions Higher relative handgrip strength is associated with a lower risk of kidney damage in men. This finding highlights the importance of muscle strength in preventing kidney damage.
Collapse
Affiliation(s)
- Shiqi Deng
- Department of Clinical Trial and Clinical Epidemiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, JPN
| | - Urme Binte Sayeed
- Department of Clinical Trial and Clinical Epidemiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, JPN
| | - Yukiko Wagatsuma
- Department of Clinical Trial and Clinical Epidemiology, Institute of Medicine, University of Tsukuba, Tsukuba, JPN
| |
Collapse
|
10
|
Babar S, Saboor M. Erythroferrone in focus: emerging perspectives in iron metabolism and hematopathologies. BLOOD SCIENCE 2024; 6:e00198. [PMID: 39027903 PMCID: PMC11254117 DOI: 10.1097/bs9.0000000000000198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
Beyond its core role in iron metabolism, erythroferrone (ERFE) has emerged as a key player with far-reaching implications in various hematologic disorders. Its regulatory effect on hepcidin underlines its significance in conditions characterized by disrupted iron homeostasis. In β-thalassemia and myelodysplastic syndromes, its dysregulation intricately contributes to the clinical challenges of anemia and iron overload which highlights its potential as a therapeutic target. In anemia of chronic disease and iron deficiency anemia, ERFE presents a unique profile. In chronic kidney disease (CKD), the intricate interplay between ERFE, erythropoietin, and hepcidin undergoes dysregulation, contributing to the complex iron imbalance characteristic of this condition. Recent research suggests that ERFE plays a multifaceted role in restoring iron balance in CKD, beyond simply suppressing hepcidin production. The potential to modulate ERFE activity offers a novel approach to treating a spectrum of disorders associated with iron dysregulation. As our understanding of ERFE continues to evolve, it is poised to become a key focus in the development of targeted treatments, making it an exciting and dynamic area of ongoing research. Modulating ERFE activity presents a groundbreaking approach to treat iron dysregulation in conditions like iron deficiency anemia, thalassemia, and hemochromatosis. As new research unveils its intricate roles, ERFE has rapidly emerged as a key target for developing targeted therapies like ERFE agonists and antagonists. With promising studies underway, this dynamic field holds immense potential to improve patient outcomes, reduce complications, and offer personalized treatment options in hematology research. This comprehensive overview of ERFE's role across various conditions underscores its pivotal function in iron metabolism and associated pathologies.
Collapse
Affiliation(s)
- Sadia Babar
- Baqai Institute of Hematology, Baqai Medical University, Karachi, Pakistan
- Baqai Institute of Medical Technology, Baqai Medical University, Karachi, Pakistan
| | - Muhammad Saboor
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
11
|
Kim YE, Kim D, Kim J, Yun M, Kang ES. Association between appendicular skeletal muscle mass and myocardial glucose uptake measured by 18F-FDG PET. ESC Heart Fail 2024. [PMID: 39344859 DOI: 10.1002/ehf2.15086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/18/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Low muscle mass is associated with high insulin resistance and an increased risk of cardiovascular disease. This study aims to determine whether low muscle mass affects the alterations in myocardial substrate metabolism that are associated with the development of cardiovascular disease. METHOD The study included 299 individuals (182 men and 117 women) who underwent examination at the Severance Health Check-up Center between January 2018 and February 2019. Myocardial glucose uptake was assessed using [18F]-fluorodeoxyglucose-positron emission tomography (18F-FDG PET/CT) scanning. Direct segmental bioimpedance analysis was used to measure appendicular skeletal muscle mass (ASM). RESULTS We analysed men and women separately owing to sex-related body composition differences. ASM/Ht2 was significantly positively correlated with myocardial glucose uptake measured by 18F-FDG PET/CT [ln (SUVheart/liver)] only in men (r = 0.154, P = 0.038 in men; r = -0.042, P = 0.652 in women, respectively). In men, myocardial glucose uptake was significantly associated with ASM/Ht2 even after adjusting for multiple confounders in a multivariable linear regression model (standardized β = 0.397, P = 0.004, in men; β = - 0.051, P = 0.698, in women). In women, age (β = -0.424 P = 0.029) was independent determinants of myocardial glucose uptake. CONCLUSIONS In men, ASM was strongly associated with myocardial glucose uptake as measured by 18F-FDG PET/CT. In women, age was significantly correlated with myocardial substrate utilization, but not with ASM.
Collapse
Affiliation(s)
- Young-Eun Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dongwoo Kim
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jiwon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Seok Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
12
|
Letukienė A, Hendrixson V, Ginevičienė V. Current knowledge and scientific trends in myokines and exercise research in the context of obesity. Front Med (Lausanne) 2024; 11:1421962. [PMID: 39376657 PMCID: PMC11456489 DOI: 10.3389/fmed.2024.1421962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
The relationship between exercise and obesity has attracted increasing attention from researchers worldwide in recent years. The aim of the present study was to analyze the current knowledge and scientific trends of research into myokines and exercise in the context of obesity and provide ideas for future research strategies to prevent obesity. The study conducted a comprehensive bibliometric analysis of 300 scientific publications related to myokines, exercise, and obesity from 2004 to 2024. Applying the VOSviewer tool, the analysis revealed a significant increase over time in the number of publications on these topics, with a total of 1,142 related keywords identified. Key themes identified in the analysis included molecular processes, new organokines, skeletal muscle research, model organism studies, and human studies based on sex and age differences. The study highlighted the growing interest in the molecular mechanisms of obesity and role of myokines. Results showed a substantial increase in publications from 2014 to 2024, with a focus on new organokines (myokines, adipokines) and animal models. The analysis underscored the importance of myokines in modulating metabolic processes and their potential therapeutic implications in managing non-communicable diseases such as obesity. Furthermore, the study revealed the close relationship between exercise, myokine production, and regulation of metabolism, stress response, and inflammation. In conclusion, over the last years, increasing research interest has been focused on the molecular mechanisms of obesity and benefits of exercise, and probably will be focused on a set of myokines released during muscle contraction. A newly identified myokines has emerged as a promising marker for the prevention and control of obesity.
Collapse
|
13
|
Stenbäck V, Lehtonen I, Mäkelä KA, Raza GS, Ylinen V, Valtonen R, Hamari T, Walkowiak J, Tulppo M, Herzig KH. Effect of Single Session of Swedish Massage on Circulating Levels of Interleukin-6 and Insulin-like Growth Factor 1. Int J Mol Sci 2024; 25:9135. [PMID: 39273084 PMCID: PMC11394853 DOI: 10.3390/ijms25179135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 09/15/2024] Open
Abstract
Massage therapy increases muscle blood flow and heat, relieving pain, improving immune function, and increasing vagal activity. The mechanisms are unclear. Muscles release cytokines and other peptides called myokines. These myokines exert their effects on different tissues and organs in para-, auto-, and endocrine fashion. The aim of this intervention study was to investigate if massage therapy affects circulating myokine levels. A total of 46 healthy, normal-weight subjects (15 men) aged 18-35 were recruited. Forty-five minutes of massage Swedish therapy was applied to the back and hamstrings. Blood samples via cannula were taken at the baseline, during the massage (30 min), end of the massage (45 min), and 30 min and 1 h after the massage. Interleukin 6 (IL-6) and insulin-like growth factor 1 (IGF-1) were measured as surrogate markers by ELISAs. There was a significant increase in IL-6 from 1.09 pg/mL to 1.85 pg/mL over time (Wilks' Lambda Value 0.545, p < 0.000; repeated measures ANOVA). Pair-wise comparisons showed a significant increase after 1 h of massage. No significant increase was observed in IGF-1 levels. The change in myokine levels was not correlated with muscle mass (p = 0.16, 0.74). The increase in IL-6 suggests that there might be anti-inflammatory effects, affecting glucose and lipid metabolism pathways via IL-6 signaling to muscles, fat tissue, and the liver.
Collapse
Affiliation(s)
- Ville Stenbäck
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
| | - Inka Lehtonen
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
| | - Kari Antero Mäkelä
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
| | - Ghulam Shere Raza
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
| | - Venla Ylinen
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
| | - Rasmus Valtonen
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
| | - Tuomas Hamari
- Kontinkangas Unit, Educational Consortium OSAO, 90220 Oulu, Finland
| | - Jaroslaw Walkowiak
- Pediatric Gastroenterology and Metabolic Diseases, Pediatric Institute, Poznan University of Medical Sciences, 60572 Poznan, Poland
| | - Mikko Tulppo
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
- Biocenter Oulu, Medical Research Center (MRC), Oulu University Hospital, 90220 Oulu, Finland
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
- Pediatric Gastroenterology and Metabolic Diseases, Pediatric Institute, Poznan University of Medical Sciences, 60572 Poznan, Poland
- Biocenter Oulu, Medical Research Center (MRC), Oulu University Hospital, 90220 Oulu, Finland
| |
Collapse
|
14
|
Fang Z, Raza U, Song J, Lu J, Yao S, Liu X, Zhang W, Li S. Systemic aging fuels heart failure: Molecular mechanisms and therapeutic avenues. ESC Heart Fail 2024. [PMID: 39034866 DOI: 10.1002/ehf2.14947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Systemic aging influences various physiological processes and contributes to structural and functional decline in cardiac tissue. These alterations include an increased incidence of left ventricular hypertrophy, a decline in left ventricular diastolic function, left atrial dilation, atrial fibrillation, myocardial fibrosis and cardiac amyloidosis, elevating susceptibility to chronic heart failure (HF) in the elderly. Age-related cardiac dysfunction stems from prolonged exposure to genomic, epigenetic, oxidative, autophagic, inflammatory and regenerative stresses, along with the accumulation of senescent cells. Concurrently, age-related structural and functional changes in the vascular system, attributed to endothelial dysfunction, arterial stiffness, impaired angiogenesis, oxidative stress and inflammation, impose additional strain on the heart. Dysregulated mechanosignalling and impaired nitric oxide signalling play critical roles in the age-related vascular dysfunction associated with HF. Metabolic aging drives intricate shifts in glucose and lipid metabolism, leading to insulin resistance, mitochondrial dysfunction and lipid accumulation within cardiomyocytes. These alterations contribute to cardiac hypertrophy, fibrosis and impaired contractility, ultimately propelling HF. Systemic low-grade chronic inflammation, in conjunction with the senescence-associated secretory phenotype, aggravates cardiac dysfunction with age by promoting immune cell infiltration into the myocardium, fostering HF. This is further exacerbated by age-related comorbidities like coronary artery disease (CAD), atherosclerosis, hypertension, obesity, diabetes and chronic kidney disease (CKD). CAD and atherosclerosis induce myocardial ischaemia and adverse remodelling, while hypertension contributes to cardiac hypertrophy and fibrosis. Obesity-associated insulin resistance, inflammation and dyslipidaemia create a profibrotic cardiac environment, whereas diabetes-related metabolic disturbances further impair cardiac function. CKD-related fluid overload, electrolyte imbalances and uraemic toxins exacerbate HF through systemic inflammation and neurohormonal renin-angiotensin-aldosterone system (RAAS) activation. Recognizing aging as a modifiable process has opened avenues to target systemic aging in HF through both lifestyle interventions and therapeutics. Exercise, known for its antioxidant effects, can partly reverse pathological cardiac remodelling in the elderly by countering processes linked to age-related chronic HF, such as mitochondrial dysfunction, inflammation, senescence and declining cardiomyocyte regeneration. Dietary interventions such as plant-based and ketogenic diets, caloric restriction and macronutrient supplementation are instrumental in maintaining energy balance, reducing adiposity and addressing micronutrient and macronutrient imbalances associated with age-related HF. Therapeutic advancements targeting systemic aging in HF are underway. Key approaches include senomorphics and senolytics to limit senescence, antioxidants targeting mitochondrial stress, anti-inflammatory drugs like interleukin (IL)-1β inhibitors, metabolic rejuvenators such as nicotinamide riboside, resveratrol and sirtuin (SIRT) activators and autophagy enhancers like metformin and sodium-glucose cotransporter 2 (SGLT2) inhibitors, all of which offer potential for preserving cardiac function and alleviating the age-related HF burden.
Collapse
Affiliation(s)
- Zhuyubing Fang
- Cardiovascular Department of Internal Medicine, Karamay Hospital of People's Hospital of Xinjiang Uygur Autonomous Region, Karamay, Xinjiang Uygur Autonomous Region, China
| | - Umar Raza
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Jia Song
- Department of Medicine (Cardiovascular Research), Baylor College of Medicine, Houston, Texas, USA
| | - Junyan Lu
- Department of Cardiology, Zengcheng Branch of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shun Yao
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiaohong Liu
- Cardiovascular Department of Internal Medicine, Karamay Hospital of People's Hospital of Xinjiang Uygur Autonomous Region, Karamay, Xinjiang Uygur Autonomous Region, China
| | - Wei Zhang
- Outpatient Clinic of Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shujuan Li
- Department of Pediatric Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
15
|
Kubrak O, Jørgensen AF, Koyama T, Lassen M, Nagy S, Hald J, Mazzoni G, Madsen D, Hansen JB, Larsen MR, Texada MJ, Hansen JL, Halberg KV, Rewitz K. LGR signaling mediates muscle-adipose tissue crosstalk and protects against diet-induced insulin resistance. Nat Commun 2024; 15:6126. [PMID: 39033139 PMCID: PMC11271308 DOI: 10.1038/s41467-024-50468-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 07/04/2024] [Indexed: 07/23/2024] Open
Abstract
Obesity impairs tissue insulin sensitivity and signaling, promoting type-2 diabetes. Although improving insulin signaling is key to reversing diabetes, the multi-organ mechanisms regulating this process are poorly defined. Here, we screen the secretome and receptome in Drosophila to identify the hormonal crosstalk affecting diet-induced insulin resistance and obesity. We discover a complex interplay between muscle, neuronal, and adipose tissues, mediated by Bone Morphogenetic Protein (BMP) signaling and the hormone Bursicon, that enhances insulin signaling and sugar tolerance. Muscle-derived BMP signaling, induced by sugar, governs neuronal Bursicon signaling. Bursicon, through its receptor Rickets, a Leucine-rich-repeat-containing G-protein coupled receptor (LGR), improves insulin secretion and insulin sensitivity in adipose tissue, mitigating hyperglycemia. In mouse adipocytes, loss of the Rickets ortholog LGR4 blunts insulin responses, showing an essential role of LGR4 in adipocyte insulin sensitivity. Our findings reveal a muscle-neuronal-fat-tissue axis driving metabolic adaptation to high-sugar conditions, identifying LGR4 as a critical mediator in this regulatory network.
Collapse
Affiliation(s)
- Olga Kubrak
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Anne F Jørgensen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Mette Lassen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Jacob Hald
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | | | - Dennis Madsen
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | - Jacob B Hansen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | | | - Kenneth V Halberg
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark.
| |
Collapse
|
16
|
Shira KA, Thornton KJ, Murdoch BM, Becker GM, Chibisa GE, Murdoch GK. Expression and secretion of SPARC, FGF-21 and DCN in bovine muscle cells: Effects of age and differentiation. PLoS One 2024; 19:e0299975. [PMID: 38959242 PMCID: PMC11221754 DOI: 10.1371/journal.pone.0299975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/19/2024] [Indexed: 07/05/2024] Open
Abstract
Skeletal muscle growth is an economically important trait in the cattle industry. Secreted muscle-derived proteins, referred to as myokines, have important roles in regulating the growth, metabolism, and health of skeletal muscle in human and biomedical research models. Accumulating evidence supports the importance of myokines in skeletal muscle and whole-body health, though little is known about the potential presence and functional significance of these proteins in cattle. This study evaluates and confirms that secreted proteins acidic and rich in cysteine (SPARC), fibroblast growth factor 21 (FGF-21), myostatin (MSTN), and decorin (DCN) are expressed and SPARC, FGF-21, and DCN are secreted by primary bovine satellite cells from 3- (BSC3; n = 3) and 11- (BSC11; n = 3) month -old commercial angus steers. Cells were cultured and collected at zero, 12, 24, and 48 hours to characterize temporal expression and secretion from undifferentiated and differentiated cells. The expression of SPARC was higher in the undifferentiated (p = 0.04) and differentiated (p = 0.07) BSC11 than BSC3. The same was observed with protein secretion from undifferentiated (p <0.0001) BSC11 compared to BSC3. Protein secretion of FGF-21 was higher in undifferentiated BSC11 (p < 0.0001) vs. BSC3. DCN expression was higher in differentiated BSC11 (p = 0.006) vs. BSC3. Comparing undifferentiated vs. differentiated BSC, MSTN expression was higher in differentiated BSC3 (p ≤ 0.001) for 0, 12, and 24 hours and in BSC11 (p ≤ 0.03) for 0, 12, 24, and 48 hours. There is also a change over time for SPARC expression (p ≤ 0.03) in undifferentiated and differentiated BSC and protein secretion (p < 0.0001) in undifferentiated BSC, as well as FGF-21 expression (p = 0.007) in differentiated BSC. This study confirms SPARC, FGF-21, and DCN are secreted, and SPARC, FGF-21, MSTN, and DCN are expressed in primary bovine muscle cells with age and temporal differences.
Collapse
Affiliation(s)
- Katie A. Shira
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Kara J. Thornton
- Department of Animal, Dairy and Veterinary Science, Utah State University, Logan, Utah, United States of America
| | - Brenda M. Murdoch
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Gabrielle M. Becker
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Gwinyai E. Chibisa
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Gordon K. Murdoch
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, United States of America
- Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
17
|
Kump DS. Mechanisms Underlying the Rarity of Skeletal Muscle Cancers. Int J Mol Sci 2024; 25:6480. [PMID: 38928185 PMCID: PMC11204341 DOI: 10.3390/ijms25126480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Skeletal muscle (SKM), despite comprising ~40% of body mass, rarely manifests cancer. This review explores the mechanisms that help to explain this rarity, including unique SKM architecture and function, which prohibits the development of new cancer as well as negates potential metastasis to SKM. SKM also presents a unique immune environment that may magnify the anti-tumorigenic effect. Moreover, the SKM microenvironment manifests characteristics such as decreased extracellular matrix stiffness and altered lactic acid, pH, and oxygen levels that may interfere with tumor development. SKM also secretes anti-tumorigenic myokines and other molecules. Collectively, these mechanisms help account for the rarity of SKM cancer.
Collapse
Affiliation(s)
- David S Kump
- Department of Biological Sciences, Winston-Salem State University, 601 Martin Luther King Jr. Dr., Winston-Salem, NC 27110, USA
| |
Collapse
|
18
|
Wu K, Shieh JS, Qin L, Guo JJ. Mitochondrial mechanisms in the pathogenesis of chronic inflammatory musculoskeletal disorders. Cell Biosci 2024; 14:76. [PMID: 38849951 PMCID: PMC11162051 DOI: 10.1186/s13578-024-01259-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Chronic inflammatory musculoskeletal disorders characterized by prolonged muscle inflammation, resulting in enduring pain and diminished functionality, pose significant challenges for the patients. Emerging scientific evidence points to mitochondrial malfunction as a pivotal factor contributing to these ailments. Mitochondria play a critical role in powering skeletal muscle activity, but in the context of persistent inflammation, disruptions in their quantity, configuration, and performance have been well-documented. Various disturbances, encompassing alterations in mitochondrial dynamics (such as fission and fusion), calcium regulation, oxidative stress, biogenesis, and the process of mitophagy, are believed to play a central role in the progression of these disorders. Additionally, unfolded protein responses and the accumulation of fatty acids within muscle cells may adversely affect the internal milieu, impairing the equilibrium of mitochondrial functioning. The structural discrepancies between different mitochondrial subsets namely, intramyofibrillar and subsarcolemmal mitochondria likely impact their metabolic capabilities and susceptibility to inflammatory influences. The release of signals from damaged mitochondria is known to incite inflammatory responses. Intriguingly, migrasomes and extracellular vesicles serve as vehicles for intercellular transfer of mitochondria, aiding in the removal of impaired mitochondria and regulation of inflammation. Viral infections have been implicated in inducing stress on mitochondria. Prolonged dysfunction of these vital organelles sustains oxidative harm, metabolic irregularities, and heightened cytokine release, impeding the body's ability to repair tissues. This review provides a comprehensive analysis of advancements in understanding changes in the intracellular environment, mitochondrial architecture and distribution, biogenesis, dynamics, autophagy, oxidative stress, cytokines associated with mitochondria, vesicular structures, and associated membranes in the context of chronic inflammatory musculoskeletal disorders. Strategies targeting key elements regulating mitochondrial quality exhibit promise in the restoration of mitochondrial function, alleviation of inflammation, and enhancement of overall outcomes.
Collapse
Affiliation(s)
- Kailun Wu
- Department of Orthopedics, The Fourth Affiliated Hospital of Soochow University/Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, People's Republic of China
- Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Ju-Sheng Shieh
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 11490, Taiwan
| | - Ling Qin
- Musculoskeletal Research Laboratory of the Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Jiong Jiong Guo
- Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China.
- MOE China-Europe Sports Medicine Belt and Road Joint Laboratory, Soochow University, Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
19
|
Takase M, Nakamura T, Nakaya N, Kogure M, Hatanaka R, Nakaya K, Chiba I, Kanno I, Nochioka K, Tsuchiya N, Hirata T, Obara T, Ishikuro M, Uruno A, Kobayashi T, Kodama EN, Hamanaka Y, Orui M, Ogishima S, Nagaie S, Fuse N, Sugawara J, Izumi Y, Kuriyama S, Hozawa A. Relationships of Fat Mass Index and Fat-Free Mass Index with Low-Density Lipoprotein Cholesterol Levels in the Tohoku Medical Megabank Community-Based Cohort Study. J Atheroscler Thromb 2024; 31:979-1003. [PMID: 38325860 DOI: 10.5551/jat.64535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
AIMS Although fat mass (FM) and fat-free mass (FFM) have an impact on lipid metabolism, the relationship between different body composition phenotypes and lipid profiles is still unclear. By dividing the FM and FFM by the square of the height, respectively, the fat mass index (FMI) and fat-free mass index (FFMI) can be used to determine the variations in body composition. This study aimed to investigate the relationship of combined FMI and FFMI with low-density lipoprotein cholesterol (LDL-C) levels. METHODS This cross-sectional study comprised 5,116 men and 13,630 women without cardiovascular disease and without treatment for hypertension, and diabetes. Following sex-specific quartile classification, FMI and FFMI were combined into 16 groups. Elevated LDL-C levels were defined as LDL-C ≥ 140 mg/dL and/or dyslipidemia treatment. Multivariable logistic regression models were used to examine the relationships between combined FMI and FFMI and elevated LDL-C levels. RESULTS Overall, elevated LDL-C levels were found in 1,538 (30.1%) men and 5,434 (39.9%) women. In all FFMI subgroups, a higher FMI was associated with elevated LDL-C levels. Conversely, FFMI was inversely associated with elevated LDL-C levels in most FMI subgroups. Furthermore, the groups with the highest FMI and lowest FFMI had higher odds ratios for elevated LDL-C levels than those with the lowest FMI and highest FFMI. CONCLUSIONS Regardless of FFMI, FMI was positively associated with elevated LDL-C levels. Conversely, in the majority of FMI subgroups, FFMI was inversely associated with elevated LDL-C levels.
Collapse
Affiliation(s)
| | - Tomohiro Nakamura
- Tohoku Medical Megabank Organization, Tohoku University
- Kyoto Women's University
| | - Naoki Nakaya
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Mana Kogure
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Rieko Hatanaka
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Kumi Nakaya
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Ippei Chiba
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Ikumi Kanno
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Kotaro Nochioka
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
- Tohoku University Hospital, Tohoku University
| | - Naho Tsuchiya
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Takumi Hirata
- Tohoku Medical Megabank Organization, Tohoku University
- Institute for Clinical and Translational Science, Nara Medical University
| | - Taku Obara
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Mami Ishikuro
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Akira Uruno
- Tohoku Medical Megabank Organization, Tohoku University
| | - Tomoko Kobayashi
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
- Tohoku University Hospital, Tohoku University
| | - Eiichi N Kodama
- Tohoku Medical Megabank Organization, Tohoku University
- International Research Institute of Disaster Science, Tohoku University
| | | | - Masatsugu Orui
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Soichi Ogishima
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Satoshi Nagaie
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Nobuo Fuse
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Junichi Sugawara
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
- Tohoku University Hospital, Tohoku University
- Suzuki Memorial Hospital
| | - Yoko Izumi
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Shinichi Kuriyama
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
- International Research Institute of Disaster Science, Tohoku University
| | - Atsushi Hozawa
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| |
Collapse
|
20
|
La R, Yin Y, Ding W, He Z, Lu L, Xu B, Jiang D, Huang L, Jiang J, Zhou L, Wu Q. Is inflammation a missing link between relative handgrip strength with hyperlipidemia? Evidence from a large population-based study. Lipids Health Dis 2024; 23:159. [PMID: 38802799 PMCID: PMC11131302 DOI: 10.1186/s12944-024-02154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Relative handgrip strength (RHGS) was positively correlated with healthy levels of cardiovascular markers and negatively correlated with metabolic disease risk. However, its association with hyperlipidemia remains unknown. The present study investigated the link between RHGS and hyperlipidemia, utilizing data from the National Health and Nutrition Examination Survey (NHANES) and further examined the hypothesis that inflammation may serve a mediating role within this relationship. METHODS Data were extracted from 4610 participants in the NHANES database spanning 2011-2014 to explore the correlation between RHGS and hyperlipidemia using multivariate logistic regression models. Subgroup analyses were conducted to discern the correlation between RHGS and hyperlipidemia across diverse populations. Additionally, smooth curve fitting and threshold effect analysis were conducted to validate the association between RHGS and hyperlipidemia. Furthermore, the potential mediating effect of inflammation on this association was also explored. RESULTS According to the fully adjusted model, RHGS was negatively correlated with hyperlipidemia [odds ratio (OR) = 0.575, 95% confidence interval (CI) = 0.515 to 0.643], which was consistently significant across all populations, notably among women. Smooth curve fitting and threshold effect analysis substantiated the negative association between RHGS and hyperlipidemia. Moreover, the mediating effects analysis indicated the white blood cell (WBC) count, neutrophil (Neu) count, and lymphocyte (Lym) count played roles as the mediators, with mediation ratios of 7.0%, 4.3%, and 5.0%, respectively. CONCLUSIONS This study identified a prominent negative correlation between RHGS and hyperlipidemia. Elevated RHGS may serve as a protective factor against hyperlipidemia, potentially through mechanisms underlying the modulation of inflammatory processes.
Collapse
Affiliation(s)
- Rui La
- Department of Orthopedic Surgery and Sports Medicine, The First Affiliated Hospital of Soochow University, Institute of Orthopedics at Soochow University, Jiangsu, China
| | - Yunfei Yin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Wenquan Ding
- Department of Orthopedic Surgery and Sports Medicine, The First Affiliated Hospital of Soochow University, Institute of Orthopedics at Soochow University, Jiangsu, China
| | - Zhiyuan He
- Department of Orthopedic Surgery and Sports Medicine, The First Affiliated Hospital of Soochow University, Institute of Orthopedics at Soochow University, Jiangsu, China
| | - Lingchen Lu
- Department of Pediatric Surgery and Rehabilitation, Kunshan Maternity and Children's Health Care Hospital, Jiangsu, China
| | - Bin Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dinghua Jiang
- Department of Orthopedic Surgery and Sports Medicine, The First Affiliated Hospital of Soochow University, Institute of Orthopedics at Soochow University, Jiangsu, China
| | - Lixin Huang
- Department of Orthopedic Surgery and Sports Medicine, The First Affiliated Hospital of Soochow University, Institute of Orthopedics at Soochow University, Jiangsu, China.
| | - Jian Jiang
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea.
| | - Liyu Zhou
- Department of Orthopedic Surgery and Sports Medicine, The First Affiliated Hospital of Soochow University, Institute of Orthopedics at Soochow University, Jiangsu, China.
| | - Qian Wu
- Department of Orthopedic Surgery and Sports Medicine, The First Affiliated Hospital of Soochow University, Institute of Orthopedics at Soochow University, Jiangsu, China.
- Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju, Korea.
| |
Collapse
|
21
|
Wu O, Wu Y, Zhang X, Liu W, Zhang H, Khederzadeh S, Lu X, Zhu XW. Causal effect of interleukin (IL)-6 on blood pressure and hypertension: A mendelian randomization study. Immunogenetics 2024; 76:123-135. [PMID: 38427105 DOI: 10.1007/s00251-024-01332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/11/2024] [Indexed: 03/02/2024]
Abstract
To examine whether circulating interleukin-6 (IL-6) levels (CirIL6) have a causal effect on blood pressure using Mendelian randomization (MR) methods. We used data from genome-wide association studies (GWAS) of European ancestry to obtain genetic instruments for circulating IL-6 levels and blood pressure measurements. We applied several robust MR methods to estimate the causal effects and to test for heterogeneity and pleiotropy. We found that circulating IL-6 had a significant positive causal effect on systolic blood pressure (SBP) and pulmonary arterial hypertension (PAH), but not on diastolic blood pressure (DBP) or hypertension. We found that as CirIL6 genetically increased, SBP increased using Inverse Variance Weighted (IVW) method (for ukb-b-20175, β = 0.082 with SE = 0.032, P = 0.011; for ukb-a-360, β = 0.075 with SE = 0.031, P = 0.014) and weighted median (WM) method (for ukb-b-20175, β = 0.061 with SE = 0.022, P = 0.006; for ukb-a-360, β = 0.065 with SE = 0.027, P = 0.014). Moreover, CirIL6 may be associated with an increased risk of PAH using WM method (odds ratio (OR) = 15.503, 95% CI, 1.025-234.525, P = 0.048), but not with IVW method. Our study provides novel evidence that circulating IL-6 has a causal role in the development of SBP and PAH, but not DBP or hypertension. These findings suggest that IL-6 may be a potential therapeutic target for preventing or treating cardiovascular diseases and metabolic disorders. However, more studies are needed to confirm the causal effects of IL-6 on blood pressure and to elucidate the underlying mechanisms and pathways.
Collapse
Affiliation(s)
- Ou Wu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People's Republic of China.
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China.
| | - Ya Wu
- Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xingyu Zhang
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Wei Liu
- JFIntelligent Healthcare Technology Co., Ltd Building No.5-7, No.699 Tianxiang Avenue, Hi-Tech Zone, Nanchang, Jiangxi Province, People's Republic of China
| | - Hu Zhang
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital Affiliated with Medical College of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Saber Khederzadeh
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, People's Republic of China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, People's Republic of China
| | - Xi Lu
- Hangzhou Vocational and Technical College, Hangzhou, Zhejiang, People's Republic of China.
| | - Xiao-Wei Zhu
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, People's Republic of China.
| |
Collapse
|
22
|
Li X, Wei C, Jin Y, Zhang J, Zhong P, Zhang D, Huang X. Time-resolved map of serum metabolome profiling in D-galactose-induced aging rats with exercise intervention. iScience 2024; 27:108999. [PMID: 38362265 PMCID: PMC10867647 DOI: 10.1016/j.isci.2024.108999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/07/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Exercise, an intervention with wide-ranging effects on the whole body, has been shown to delay aging. Due to aging and exercise as modulator of metabolism, a picture of how exercise delayed D-galactose (D-gal)-induced aging in a time-resolved manner was presented in this paper. The mapping of molecular changes in response to exercise has become increasingly accessible with the development of omics techniques. To explore the dynamic changes during exercise, the serum of rats and D-gal-induced aging rats before, during, and after exercise was analyzed by untargeted metabolomics. The variation of metabolites was monitored to reveal the specific response to D-gal-induced senescence and exercise in multiple pathways, especially the basal amino acid metabolism, including glycine serine and threonine metabolism, cysteine and methionine metabolism, and tryptophan metabolism. The homeostasis was disturbed by D-gal and maintained by exercise. The paper was expected to provide a theoretical basis for the study of anti-aging exercise.
Collapse
Affiliation(s)
- Xue Li
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan Province 610041, China
| | - Changling Wei
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan Province 610041, China
| | - Yu Jin
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan Province 610041, China
| | - Jinmei Zhang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan Province 610041, China
| | - Pei Zhong
- iCarbonX Diagnostics (Zhuhai) Company Limited, Zhuhai, Guangdong Province 518110, China
| | - Deman Zhang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan Province 610041, China
| | - Xiaohan Huang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan Province 610041, China
| |
Collapse
|
23
|
Bahramzadeh A, Samavarchi Tehrani S, Goodarzi G, Seyyedebrahimi S, Meshkani R. Combination therapy of metformin and morin attenuates insulin resistance, inflammation, and oxidative stress in skeletal muscle of high-fat diet-fed mice. Phytother Res 2024; 38:912-924. [PMID: 38091524 DOI: 10.1002/ptr.8086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/25/2023] [Accepted: 11/26/2023] [Indexed: 02/15/2024]
Abstract
Lipid accumulation, inflammation, and oxidative stress are the most important causes of muscle insulin resistance. The aim of this study was to investigate the single and combined treatment effects of metformin (MET) and morin (MOR) on lipid accumulation, inflammation, and oxidative stress in the skeletal muscle of mice fed a high-fat diet. The mice were supplemented with MET (230 mg/kg diet), MOR (100 mg/kg diet), and MET + MOR for 9 weeks. Our results revealed that single treatment with MET or MOR, and with a stronger effect of MET + MOR combined treatment, reduced body weight gain, improved glucose intolerance and enhanced Akt phosphorylation in the muscle tissue. In addition, plasma and muscle triglyceride levels were decreased after treatment with MET and MOR. The expression of genes involved in macrophage infiltration and polarization and pro-inflammatory cytokines showed that MET + MOR combined treatment, significantly reduced inflammation in the muscle. Furthermore, combined treatment of MET + MOR with greater efficacy than the single treatment improved several oxidative stress markers in the muscle. Importantly, combined treatment of MET and MOR could increase the expression of nuclear factor erythroid 2-related factor 2, the master regulator of the antioxidant response. These findings suggest that combination of MET with MOR might ameliorate insulin resistance, inflammation, and oxidative stress in the skeletal muscle of mice fed high-fat diet.
Collapse
Affiliation(s)
- Arash Bahramzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadra Samavarchi Tehrani
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Science, Tehran, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathobiology and Laboratory Science, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - ShadiSadat Seyyedebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Xourafa G, Korbmacher M, Roden M. Inter-organ crosstalk during development and progression of type 2 diabetes mellitus. Nat Rev Endocrinol 2024; 20:27-49. [PMID: 37845351 DOI: 10.1038/s41574-023-00898-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/18/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by tissue-specific insulin resistance and pancreatic β-cell dysfunction, which result from the interplay of local abnormalities within different tissues and systemic dysregulation of tissue crosstalk. The main local mechanisms comprise metabolic (lipid) signalling, altered mitochondrial metabolism with oxidative stress, endoplasmic reticulum stress and local inflammation. While the role of endocrine dysregulation in T2DM pathogenesis is well established, other forms of inter-organ crosstalk deserve closer investigation to better understand the multifactorial transition from normoglycaemia to hyperglycaemia. This narrative Review addresses the impact of certain tissue-specific messenger systems, such as metabolites, peptides and proteins and microRNAs, their secretion patterns and possible alternative transport mechanisms, such as extracellular vesicles (exosomes). The focus is on the effects of these messengers on distant organs during the development of T2DM and progression to its complications. Starting from the adipose tissue as a major organ relevant to T2DM pathophysiology, the discussion is expanded to other key tissues, such as skeletal muscle, liver, the endocrine pancreas and the intestine. Subsequently, this Review also sheds light on the potential of multimarker panels derived from these biomarkers and related multi-omics for the prediction of risk and progression of T2DM, novel diabetes mellitus subtypes and/or endotypes and T2DM-related complications.
Collapse
Affiliation(s)
- Georgia Xourafa
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
| | - Melis Korbmacher
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany.
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
25
|
Xie X, Wu C, Hao Y, Wang T, Yang Y, Cai P, Zhang Y, Huang J, Deng K, Yan D, Lin H. Benefits and risks of drug combination therapy for diabetes mellitus and its complications: a comprehensive review. Front Endocrinol (Lausanne) 2023; 14:1301093. [PMID: 38179301 PMCID: PMC10766371 DOI: 10.3389/fendo.2023.1301093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Diabetes is a chronic metabolic disease, and its therapeutic goals focus on the effective management of blood glucose and various complications. Drug combination therapy has emerged as a comprehensive treatment approach for diabetes. An increasing number of studies have shown that, compared with monotherapy, combination therapy can bring significant clinical benefits while controlling blood glucose, weight, and blood pressure, as well as mitigating damage from certain complications and delaying their progression in diabetes, including both type 1 diabetes (T1D), type 2 diabetes (T2D) and related complications. This evidence provides strong support for the recommendation of combination therapy for diabetes and highlights the importance of combined treatment. In this review, we first provided a brief overview of the phenotype and pathogenesis of diabetes and discussed several conventional anti-diabetic medications currently used for the treatment of diabetes. We then reviewed several clinical trials and pre-clinical animal experiments on T1D, T2D, and their common complications to evaluate the efficacy and safety of different classes of drug combinations. In general, combination therapy plays a pivotal role in the management of diabetes. Integrating the effectiveness of multiple drugs enables more comprehensive and effective control of blood glucose without increasing the risk of hypoglycemia or other serious adverse events. However, specific treatment regimens should be tailored to individual patients and implemented under the guidance of healthcare professionals.
Collapse
Affiliation(s)
- Xueqin Xie
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Changchun Wu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuduo Hao
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Tianyu Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuhe Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Peiling Cai
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Huang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Kejun Deng
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Yan
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hao Lin
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
26
|
Halle JL, Counts BR, Zhang Q, James KM, Puppa MJ, Alway SE, Carson JA. Mouse skeletal muscle adaptations to different durations of treadmill exercise after the cessation of FOLFOX chemotherapy. Front Physiol 2023; 14:1283674. [PMID: 38028800 PMCID: PMC10648895 DOI: 10.3389/fphys.2023.1283674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
FOLFOX (5-fluorouracil, leucovorin, oxaliplatin) chemotherapy is a treatment for colorectal cancer that can induce persistent fatigue and metabolic dysfunction. Regular exercise after chemotherapy cessation is widely recommended for cancer patients and has been shown to improve fatigue resistance in mice. However, gaps remain in understanding whether the early systemic and skeletal muscle adaptations to regular exercise are altered by prior FOLFOX chemotherapy treatment. Furthermore, the effects of exercise duration on early metabolic and skeletal muscle transcriptional adaptations are not fully established. Purpose: Investigate the effects of prior FOLFOX chemotherapy treatment on the early adaptations to repeated short- or long-duration treadmill exercise, including the fasting regulation of circulating metabolic regulators, skeletal muscle COXIV activity and myokine/exerkine gene expression in male mice. Methods: Male C57BL6/J mice completed 4 cycles of FOLFOX or PBS and were allowed to recover for 4-weeks. Subsets of mice performed 14 sessions (6 d/wk, 18 m/min, 5% grade) of short- (10 min/d) or long-duration (55 min/d) treadmill exercise. Blood plasma and muscle tissues were collected 48-72 h after the last exercise bout for biochemical analyses. Results: Long-duration exercise increased fasting plasma osteocalcin, LIF, and IL-6 in healthy PBS mice, and these changes were ablated by prior FOLFOX treatment. Slow-oxidative soleus muscle COXIV activity increased in response to long-duration exercise in PBS mice, which was blocked by prior FOLFOX treatment. Fast-glycolytic plantaris muscle COXIV activity increased with short-duration exercise independent of FOLFOX administration. There was a main effect for long-duration exercise to increase fasting muscle IL-6 and COXIV mRNA expression independent of FOLFOX. FOLFOX administration reduced muscle IL-6, LIF, and BDNF mRNA expression irrespective of long-duration exercise. Interestingly, short-duration exercise suppressed the FOLXOX induction of muscle myostatin mRNA expression. Conclusion: FOLFOX attenuated early exercise adaptations related to fasting circulating osteocalcin, LIF, and IL-6. However, prior FOLFOX treatment did not alter the exercise adaptations of plantaris muscle COXIV activity and plasma adiponectin. An improved understanding of mechanisms underlying exercise adaptations after chemotherapy will provide the basis for successfully treating fatigue and metabolic dysfunction in cancer survivors.
Collapse
Affiliation(s)
- Jessica L. Halle
- Integrative Muscle Biology Laboratory, Division of Regenerative and Rehabilitative Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Brittany R. Counts
- Integrative Muscle Biology Laboratory, Division of Regenerative and Rehabilitative Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Quan Zhang
- Integrative Muscle Biology Laboratory, Division of Regenerative and Rehabilitative Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Kylie M. James
- Integrative Muscle Biology Laboratory, Division of Regenerative and Rehabilitative Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Melissa J. Puppa
- The University of Memphis, College of Health Sciences, Memphis, TN, United States
| | - Stephen E. Alway
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - James A. Carson
- Integrative Muscle Biology Laboratory, Division of Regenerative and Rehabilitative Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
27
|
Szűcs G, Pipicz M, Szabó MR, Csont T, Török L, Csonka C. Effect of Eccentric Exercise on Metabolic Health in Diabetes and Obesity. SPORTS MEDICINE - OPEN 2023; 9:91. [PMID: 37775653 PMCID: PMC10541389 DOI: 10.1186/s40798-023-00596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/12/2023] [Indexed: 10/01/2023]
Abstract
There is a growing body of evidence showing the importance of physical activity against civilization-induced metabolic diseases, including type 2 diabetes (T2DM) and obesity. Eccentric contraction, when skeletal muscles generate force by lengthening, is a unique type of skeletal muscle activity. Eccentric contraction may lead to better power production characteristics of the muscle because eccentric contraction requires less energy and can result in higher tension. Therefore, it is an ideal tool in the rehabilitation program of patients. However, the complex metabolic effect (i.e., fat mass reduction, increased lipid oxidation, improvement in blood lipid profile, and increased insulin sensitivity) of the eccentric contraction alone has scarcely been investigated. This paper aims to review the current literature to provide information on whether eccentric contraction can influence metabolic health and body composition in T2DM or obesity. We also discussed the potential role of myokines in mediating the effects of eccentric exercise. A better understanding of the mechanism of eccentric training and particularly their participation in the regulation of metabolic diseases may widen their possible therapeutic use and, thereby, may support the fight against the leading global risks for mortality in the world.
Collapse
Affiliation(s)
- Gergő Szűcs
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, 6720, Szeged, Hungary
| | - Márton Pipicz
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, 6720, Szeged, Hungary
| | - Márton Richárd Szabó
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, 6720, Szeged, Hungary
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, 6720, Szeged, Hungary
| | - László Török
- Department of Traumatology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, Szeged, 6720, Hungary
- Department of Sports Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Tisza Lajos krt. 107, Szeged, 6720, Hungary
| | - Csaba Csonka
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary.
- Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, 6720, Szeged, Hungary.
- Department of Sports Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Tisza Lajos krt. 107, Szeged, 6720, Hungary.
| |
Collapse
|
28
|
Lim JY, Kim E. The Role of Organokines in Obesity and Type 2 Diabetes and Their Functions as Molecular Transducers of Nutrition and Exercise. Metabolites 2023; 13:979. [PMID: 37755259 PMCID: PMC10537761 DOI: 10.3390/metabo13090979] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Maintaining systemic homeostasis requires the coordination of different organs and tissues in the body. Our bodies rely on complex inter-organ communications to adapt to perturbations or changes in metabolic homeostasis. Consequently, the liver, muscle, and adipose tissues produce and secrete specific organokines such as hepatokines, myokines, and adipokines in response to nutritional and environmental stimuli. Emerging evidence suggests that dysregulation of the interplay of organokines between organs is associated with the pathophysiology of obesity and type 2 diabetes (T2D). Strategies aimed at remodeling organokines may be effective therapeutic interventions. Diet modification and exercise have been established as the first-line therapeutic intervention to prevent or treat metabolic diseases. This review summarizes the current knowledge on organokines secreted by the liver, muscle, and adipose tissues in obesity and T2D. Additionally, we highlighted the effects of diet/nutrition and exercise on the remodeling of organokines in obesity and T2D. Specifically, we investigated the ameliorative effects of caloric restriction, selective nutrients including ω3 PUFAs, selenium, vitamins, and metabolites of vitamins, and acute/chronic exercise on the dysregulation of organokines in obesity and T2D. Finally, this study dissected the underlying molecular mechanisms by which nutrition and exercise regulate the expression and secretion of organokines in specific tissues.
Collapse
Affiliation(s)
- Ji Ye Lim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| |
Collapse
|
29
|
Balakrishnan R, Garcia PA, Veluthakal R, Huss JM, Hoolachan JM, Thurmond DC. Toward Ameliorating Insulin Resistance: Targeting a Novel PAK1 Signaling Pathway Required for Skeletal Muscle Mitochondrial Function. Antioxidants (Basel) 2023; 12:1658. [PMID: 37759961 PMCID: PMC10525748 DOI: 10.3390/antiox12091658] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 09/29/2023] Open
Abstract
The p21-activated kinase 1 (PAK1) is required for insulin-stimulated glucose uptake in skeletal muscle cells. However, whether PAK1 regulates skeletal muscle mitochondrial function, which is a central determinant of insulin sensitivity, is unknown. Here, the effect of modulating PAK1 levels (knockdown via siRNA, overexpression via adenoviral transduction, and/or inhibition of activation via IPA3) on mitochondrial function was assessed in normal and/or insulin-resistant rat L6.GLUT4myc and human muscle (LHCN-M2) myotubes. Human type 2 diabetes (T2D) and non-diabetic (ND) skeletal muscle samples were also used for validation of the identified signaling elements. PAK1 depletion in myotubes decreased mitochondrial copy number, respiration, altered mitochondrial structure, downregulated PGC1α (a core regulator of mitochondrial biogenesis and oxidative metabolism) and PGC1α activators, p38 mitogen-activated protein kinase (p38MAPK) and activating transcription factor 2 (ATF2). PAK1 enrichment in insulin-resistant myotubes improved mitochondrial function and rescued PGC1α expression levels. Activated PAK1 was localized to the cytoplasm, and PAK1 enrichment concurrent with p38MAPK inhibition did not increase PGC1α levels. PAK1 inhibition and enrichment also modified nuclear phosphorylated-ATF2 levels. T2D human samples showed a deficit for PGC1α, and PAK1 depletion in LHCN-M2 cells led to reduced mitochondrial respiration. Overall, the results suggest that PAK1 regulates muscle mitochondrial function upstream of the p38MAPK/ATF2/PGC1α-axis pathway.
Collapse
Affiliation(s)
- Rekha Balakrishnan
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E Duarte Road, Duarte, CA 91010, USA; (R.B.); (R.V.)
| | - Pablo A. Garcia
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E Duarte Road, Duarte, CA 91010, USA; (R.B.); (R.V.)
| | - Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E Duarte Road, Duarte, CA 91010, USA; (R.B.); (R.V.)
| | - Janice M. Huss
- School of Medicine, Washington University, 660 S Euclid Ave, St. Louis, MO 63110, USA;
| | - Joseph M. Hoolachan
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E Duarte Road, Duarte, CA 91010, USA; (R.B.); (R.V.)
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E Duarte Road, Duarte, CA 91010, USA; (R.B.); (R.V.)
| |
Collapse
|
30
|
Shakoor H, Hussein H, Al-Hassan N, Alketbi M, Kizhakkayil J, Platat C. The Muscle-Conditioned Medium Containing Protocatechuic Acid Improves Insulin Resistance by Modulating Muscle Communication with Liver and Adipose Tissue. Int J Mol Sci 2023; 24:9490. [PMID: 37298440 PMCID: PMC10253324 DOI: 10.3390/ijms24119490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
Diabetes mellitus is a public health concern, affecting 10.5% of the population. Protocatechuic acid (PCA), a polyphenol, exerts beneficial effects on insulin resistance and diabetes. This study investigated the role of PCA in improving insulin resistance and the crosstalk between muscle with liver and adipose tissue. C2C12 myotubes received four treatments: Control, PCA, insulin resistance (IR), and IR-PCA. Conditioned media from C2C12 was used to incubate HepG2 and 3T3-L1 adipocytes. The impact of PCA was analyzed on glucose uptake and signaling pathways. PCA (80 µM) significantly enhanced glucose uptake in C2C12, HepG2, and 3T3-L1 adipocytes (p < 0.05). In C2C12, PCA significantly elevated GLUT-4, IRS-1, IRS-2, PPAR-γ, P-AMPK, and P-Akt vs. Control (p ≤ 0.05), and modulated pathways in IR-PCA. In HepG2, PPAR-γ and P-Akt increased significantly in Control (CM) vs. No CM, and PCA dose upregulated PPAR-γ, P-AMPK, and P-AKT (p < 0.05). In the 3T3-L1 adipocytes, PI3K and GLUT-4 expression was elevated in PCA (CM) vs. No CM. A significant elevation of IRS-1, GLUT-4, and P-AMPK was observed in IR-PCA vs. IR (p ≤ 0.001). Herein, PCA strengthens insulin signaling by activating key proteins of that pathway and regulating glucose uptake. Further, conditioned media modulated crosstalk between muscle with liver and adipose tissue, thus regulating glucose metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | - Carine Platat
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (H.S.)
| |
Collapse
|
31
|
Jo IH, Song DS, Chang UI, Yang JM. Change in skeletal muscle mass is associated with hepatic steatosis in nonalcoholic fatty liver disease. Sci Rep 2023; 13:6920. [PMID: 37117864 PMCID: PMC10147659 DOI: 10.1038/s41598-023-34263-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/26/2023] [Indexed: 04/30/2023] Open
Abstract
The association between nonalcoholic fatty liver disease (NAFLD) and sarcopenia is known. We aimed to determine the association between skeletal muscle mass changes and NAFLD status. This retrospective single-center study analyzed patients who underwent health screening twice between November 2009 and December 2017, with a temporal gap of 6 ± 0.5 years. The degree of sarcopenia was assessed using appendicular skeletal muscle mass (ASM) adjusted for weight and body mass index (BMI). Changes in hepatic steatosis and fibrosis status were evaluated using noninvasive serum markers. Patients with a decrease in ASM/BMI (n = 353) had increased hepatic steatosis index (HSI) and fatty liver index (FLI) scores during 6 years (p < 0.05). The baseline sarcopenia group had a greater elevation in NAFLD fibrosis score (NFS) over 6 years than those without baseline sarcopenia. ASM changes over 6 years showed a negative correlation with variations in HSI (β = - 0.96 in ASM/Weight and -28.93 in ASM/BMI) and FLI (β = - 5.44 in ASM/Weight and - 167.12 in ASM/BMI). Subgroup analyses showed similar results according to sex and age. Sarcopenia may worsen steatosis and vice versa. Skeletal muscle status can be used to predict the course of NAFLD and establish individualized treatment strategies.
Collapse
Affiliation(s)
- Ik Hyun Jo
- Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Jungbu-Daero, Paldal-Gu, Suwon, Gyeonggi-Do, 16247, Republic of Korea
| | - Do Seon Song
- Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Jungbu-Daero, Paldal-Gu, Suwon, Gyeonggi-Do, 16247, Republic of Korea.
| | - U Im Chang
- Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Jungbu-Daero, Paldal-Gu, Suwon, Gyeonggi-Do, 16247, Republic of Korea
| | - Jin Mo Yang
- Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Jungbu-Daero, Paldal-Gu, Suwon, Gyeonggi-Do, 16247, Republic of Korea
| |
Collapse
|
32
|
Li W, Chen W. Weight cycling based on altered immune microenvironment as a result of metaflammation. Nutr Metab (Lond) 2023; 20:13. [PMID: 36814270 PMCID: PMC9945679 DOI: 10.1186/s12986-023-00731-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
As a result of the obesity epidemic, more people are concerned about losing weight; however, weight regain is common, leading to repeated weight loss and weight cycling. The health benefits of early weight loss are nullified by weight regain after weight cycling, which has much more severe metabolic consequences. Weight cycling alters body composition, resulting in faster fat recovery and slower muscle reconstruction. This evident fat accumulation, muscle loss, and ectopic fat deposition destroy the intestinal barrier, increase the permeability of the small intestinal epithelium, and cause the lipotoxicity of lipid metabolites and toxins to leak into extraintestinal tissues and circulation. It causes oxidative stress and hypoxia in local tissues and immune cell infiltration in various tissues, all contributing to the adaptation to this metabolic change. Immune cells transmit inflammatory responses in adipose and skeletal muscle tissue by secreting cytokines and adipokines, which mediate immune cell pathways and cause metaflammation and inefficient metabolic degradation. In this review, we focus on the regulatory function of the immunological microenvironment in the final metabolic outcome, with a particular emphasis on the cellular and molecular processes of local and systemic metaflammation induced by weight cycling-induced changes in body composition. Metaflammation in adipose and muscle tissues that is difficult to relieve may cause weight cycling. As this chronic low-grade inflammation spreads throughout the body, metabolic complications associated with weight cycling are triggered. Inhibiting the onset and progression of metabolic inflammation and enhancing the immune microenvironment of adipose and muscle tissues may be the first step in addressing weight cycling.
Collapse
Affiliation(s)
- Wanyang Li
- grid.413106.10000 0000 9889 6335Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| | - Wei Chen
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
33
|
The Multiple Functions of Insulin Put into Perspective: From Growth to Metabolism, and from Well-Being to Disease. Int J Mol Sci 2022; 24:ijms24010200. [PMID: 36613639 PMCID: PMC9820044 DOI: 10.3390/ijms24010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Insulin has pleiotropic effects, and is of importance both as a key regulator of glucose metabolism and as a growth factor [...].
Collapse
|
34
|
Llanos P, Palomero J. Reactive Oxygen and Nitrogen Species (RONS) and Cytokines-Myokines Involved in Glucose Uptake and Insulin Resistance in Skeletal Muscle. Cells 2022; 11:cells11244008. [PMID: 36552772 PMCID: PMC9776436 DOI: 10.3390/cells11244008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance onset in skeletal muscle is characterized by the impairment of insulin signaling, which reduces the internalization of glucose, known as glucose uptake, into the cell. Therefore, there is a deficit of intracellular glucose, which is the main source for energy production in the cell. This may compromise cellular viability and functions, leading to pathological dysfunction. Skeletal muscle fibers continuously generate reactive oxygen and nitrogen species (RONS). An excess of RONS produces oxidative distress, which may evoke cellular damage and dysfunction. However, a moderate level of RONS, which is called oxidative eustress, is critical to maintain, modulate and regulate cellular functions through reversible interactions between RONS and the components of cellular signaling pathways that control those functions, such as the facilitation of glucose uptake. The skeletal muscle releases peptides called myokines that may have endocrine and paracrine effects. Some myokines bind to specific receptors in skeletal muscle fibers and might interact with cellular signaling pathways, such as PI3K/Akt and AMPK, and facilitate glucose uptake. In addition, there are cytokines, which are peptides produced by non-skeletal muscle cells, that bind to receptors at the plasma membrane of skeletal muscle cells and interact with the cellular signaling pathways, facilitating glucose uptake. RONS, myokines and cytokines might be acting on the same signaling pathways that facilitate glucose uptake in skeletal muscle. However, the experimental studies are limited and scarce. The aim of this review is to highlight the current knowledge regarding the role of RONS, myokines and cytokines as potential signals that facilitate glucose uptake in skeletal muscle. In addition, we encourage researchers in the field to lead and undertake investigations to uncover the fundamentals of glucose uptake evoked by RONS, myokines, and cytokines.
Collapse
Affiliation(s)
- Paola Llanos
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago 8380544, Chile
- Centro de Estudios en Ejercicio, Metabolismo y Cáncer, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Jesus Palomero
- Department of Physiology and Pharmacology, Faculty of Medicine, Campus Miguel de Unamuno, Universidad de Salamanca, Av. Alfonso X El Sabio, 37007 Salamanca, Spain
- Institute of Neurosciences of Castilla y León (INCyL), 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-666-589-153
| |
Collapse
|
35
|
Kamalumpundi V, Shams E, Tucker C, Cheng L, Peterson J, Thangavel S, Ofori O, Correia M. Mechanisms and pharmacotherapy of hypertension associated with type 2 diabetes. Biochem Pharmacol 2022; 206:115304. [DOI: 10.1016/j.bcp.2022.115304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022]
|
36
|
Takasawa S, Shobatake R, Itaya‐Hironaka A, Makino M, Uchiyama T, Sakuramoto‐Tsuchida S, Takeda Y, Ota H, Yamauchi A. Upregulation of IL-8, osteonectin, and myonectin mRNAs by intermittent hypoxia via OCT1- and NRF2-mediated mechanisms in skeletal muscle cells. J Cell Mol Med 2022; 26:6019-6031. [PMID: 36457269 PMCID: PMC9753449 DOI: 10.1111/jcmm.17618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 12/04/2022] Open
Abstract
Sleep apnoea syndrome is characterized by recurrent episodes of oxygen desaturation and reoxygenation (intermittent hypoxia [IH]) and is a risk factor for insulin resistance/Type 2 diabetes. The induction of insulin resistance in skeletal muscle is a key phenomenon to develop diabetes. However, the mechanisms linking IH stress and insulin resistance remain elusive. We exposed human RD and mouse C2C12 muscle cells to normoxia or IH and measured their mRNA levels by real-time RT-PCR. We found that IH significantly increased the mRNA and protein levels of muscle-derived insulin resistance-factors (myokines) such as IL-8, osteonectin (ON), and myonectin (MN) in muscle cells. We further analysed the IH-induced expression mechanisms of IL-8, ON, and MN genes in muscle cells. Deletion analyses of the human myokine promoter(s) revealed that the regions -152 to -151 in IL-8, -105 to -99 in ON, and - 3741 to -3738 in MN promoters were responsible for the activation by IH in RD cells. The promoters contain consensus transcription factor binding sequences for OCT1 in IL-8 and MN promoters, and for NRF2 in ON promoter, respectively. The introduction of siRNA for OCT1 abolished the IH-induced expression(s) of IL-8 and MN and siRNA for NRF2 abolished the IH-induced expression of ON.
Collapse
Affiliation(s)
- Shin Takasawa
- Department of BiochemistryNara Medical UniversityNaraJapan
| | - Ryogo Shobatake
- Department of BiochemistryNara Medical UniversityNaraJapan,Department of NeurologyNara Medical UniversityNaraJapan,Department of NeurologyNara City HospitalNaraJapan
| | | | - Mai Makino
- Department of BiochemistryNara Medical UniversityNaraJapan
| | - Tomoko Uchiyama
- Department of BiochemistryNara Medical UniversityNaraJapan,Department of Diagnostic PathologyNara Medical UniversityNaraJapan
| | | | | | - Hiroyo Ota
- Department of BiochemistryNara Medical UniversityNaraJapan,Department of Respiratory MedicineNara Medical UniversityNaraJapan
| | - Akiyo Yamauchi
- Department of BiochemistryNara Medical UniversityNaraJapan
| |
Collapse
|
37
|
Berezin AA, Fushtey IM, Pavlov SV, Berezin AE. Predictive value of serum irisin for chronic heart failure in patients with type 2 diabetes mellitus. MOLECULAR BIOMEDICINE 2022; 3:34. [PMID: 36350412 PMCID: PMC9646681 DOI: 10.1186/s43556-022-00096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
We hypothesize that serum irisin can have additional discriminative potency for heart failure (HF) in individuals with type 2 diabetes mellitus (T2DM). The study group comprised 226 consecutive T2DM patients (153 patients with any HF phenotypes and 30 patients without HF) aged 41 to 65 years. The plasma levels N-terminal brain natriuretic pro-peptide (NT-proBNP) and irisin were detected by ELISA at the baseline of the study. We found that the most appropriate cut-off value of irisin (HF versus non-HF) were 10.4 ng/mL (area under curve [AUC] = 0.96, sensitivity = 81.0%, specificity = 88.0%; P = 0.0001). Cutoff point of NT-proBNP that distinguished patients with HF and without it was 750 pmol/L (AUC = 0.78; sensitivity = 72.7%, specificity 76.5%, p = 0.0001). Using multivariate comparative analysis we established that concentrations of irisin < 10.4 ng/mL (odds ration [OR] = 1.30; P = 0.001) and NT-proBNP > 750 pmol/mL (OR = 1.17; P = 0.042), left atrial volume index (LAVI) > 34 mL/m2 (OR = 1.06; P = 0.042) independently predicted HF. Irisin being added to NT-proBNP improved predictive modality for HF, whereas combination of NT-proBNP and LAVI > 34 mL/m2 did not. In conclusion, we established that irisin had independent predicted potency for HF in patients with established T2DM.
Collapse
|
38
|
Chen TH, Koh KY, Lin KMC, Chou CK. Mitochondrial Dysfunction as an Underlying Cause of Skeletal Muscle Disorders. Int J Mol Sci 2022; 23:12926. [PMID: 36361713 PMCID: PMC9653750 DOI: 10.3390/ijms232112926] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 09/19/2023] Open
Abstract
Mitochondria are an important energy source in skeletal muscle. A main function of mitochondria is the generation of ATP for energy through oxidative phosphorylation (OXPHOS). Mitochondrial defects or abnormalities can lead to muscle disease or multisystem disease. Mitochondrial dysfunction can be caused by defective mitochondrial OXPHOS, mtDNA mutations, Ca2+ imbalances, mitochondrial-related proteins, mitochondrial chaperone proteins, and ultrastructural defects. In addition, an imbalance between mitochondrial fusion and fission, lysosomal dysfunction due to insufficient biosynthesis, and/or defects in mitophagy can result in mitochondrial damage. In this review, we explore the association between impaired mitochondrial function and skeletal muscle disorders. Furthermore, we emphasize the need for more research to determine the specific clinical benefits of mitochondrial therapy in the treatment of skeletal muscle disorders.
Collapse
Affiliation(s)
- Tsung-Hsien Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Kok-Yean Koh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Kurt Ming-Chao Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chu-Kuang Chou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
- Obesity Center, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| |
Collapse
|
39
|
Zhu W, Peng K, Zhao Y, Xu C, Tao X, Liu Y, Huang Y, Yang X. Sodium butyrate attenuated diet-induced obesity, insulin resistance and inflammation partly by promoting fat thermogenesis via intro-adipose sympathetic innervation. Front Pharmacol 2022; 13:938760. [PMID: 36263123 PMCID: PMC9574364 DOI: 10.3389/fphar.2022.938760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence suggests that butyrate, a short-chain fatty acid, may have beneficial effects on obesity and its associated metabolic comorbidities, but the related molecular mechanism is largely unknown. This study aims to investigate the role of butyrate in diet-induced obesity and metabolic disorders and the relevant regulatory mechanisms. Here, dietary supplementation with Sodium butyrate (NaB) was carried out in mice fed with a high-fat diet (HFD) or chow diet. At week 14, mice on HFD displayed an obese phenotype and down-regulated expression of thermogenic regulators including Ucp-1 and Pgc-1α in adipose tissue. Excitingly, NaB add-on treatment abolished these detrimental effects. Moreover, the obesity-induced insulin resistance, inflammation, fatty liver, and intestinal dysfunction were also attenuated by NaB administration. Mechanistically, NaB can promote fat thermogenesis via the increased local sympathetic innervation of adipose tissue, and blocking the β3-adrenergic signaling pathway by 6-hydroxydopamine abolished NaB-induced thermogenesis. Our study reveals a potential pharmacological target for NaB to combat obesity and metabolic disorders.
Collapse
Affiliation(s)
- Wanlong Zhu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Ke Peng
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yan Zhao
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Changjing Xu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xuemei Tao
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuanzhi Liu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yilan Huang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
- *Correspondence: Yilan Huang, ; Xuping Yang,
| | - Xuping Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
- *Correspondence: Yilan Huang, ; Xuping Yang,
| |
Collapse
|
40
|
Octacosanol Modifies Obesity, Expression Profile and Inflammation Response of Hepatic Tissues in High-Fat Diet Mice. Foods 2022; 11:foods11111606. [PMID: 35681357 PMCID: PMC9180418 DOI: 10.3390/foods11111606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
The incidence of obesity has increased significantly on account of the alterations of living habits, especially changes in eating habits. In this study, we investigated the effect of octacosanol on lipid lowering and its molecular mechanism. High-fat diet (HFD)-induced obesity mouse model was used in the study. Thirty C57BL/6J mice were divided into control, HFD, and HFD+Oct groups randomly, and every group included ten mice. The mice of HFD+Oct group were intragastrically administrated 100 mg/kg/day of octacosanol. After 10 weeks for treatment, our results indicated that octacosanol supplementation decreased the body, liver, and adipose tissues weight of HFD mice; levels of TC, TG, and LDL-c were reduced in the plasma of HFD mice; and level of HDL-c were increased. H&E staining indicated that octacosanol supplementation reduces the size of fat droplets of hepatic tissues and adipose cells comparing with the HFD group. Gene chip analysis found that octacosanol regulated 72 genes involved in lipid metabolism in the tissues of liver comparing to the HFD group. IPA pathway network analysis indicated that PPAR and AMPK may play a pivotal role in the lipid-lowering function of octacosanol. Real-time quantitative PCR and Western blot showed that the octacosanol supplementation caused change of expression levels of AMPK, PPARs, FASN, ACC, SREBP-1c, and SIRT1, which were closely related to lipid metabolism. Taken together, our results suggest that octacosanol supplementation exerts a lipid-decreasing effect in the HFD-fed mice through modulating the lipid metabolism-related signal pathway.
Collapse
|