1
|
Ogoyi DO, Njagi J, Tonui W, Dass B, Quemada H, James S. Post-release monitoring pathway for the deployment of gene drive-modified mosquitoes for malaria control in Africa. Malar J 2024; 23:351. [PMID: 39567982 PMCID: PMC11580452 DOI: 10.1186/s12936-024-05179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Gene drive-modified mosquitoes (GDMMs) have been promoted as one of the innovative technologies that may control and eliminate malaria and other mosquito-borne diseases. Several products are in early stages of development, targeting either population suppression or population modification of the mosquito vector. However, there is no direct experience of conducting risk assessment for environmental releases and subsequent policies regarding conditions for post-release. This study was carried out to gain additional insights on the possible post-release concerns that may arise, as they may inform future risk assessment and planning for deployment. METHODS This study involved desktop reviews on post release monitoring experiences with previously released biological control products. Stakeholder consultations involving online surveys, and face to face workshop with experts from selected African countries from Eastern, Western, and Southern African regions was then carried out to establish post-release monitoring concerns for GDMMs. RESULTS Review of genetic biocontrol technologies showed only limited lessons from post-release monitoring regimes with a focus largely limited to efficacy. For genetically modified organisms general surveillance and case-specific monitoring is expected in some of the regions. A number of post-release monitoring concerns in relation to the protection goals of human and animal health, biodiversity, and water quality were identified. CONCLUSION Based on established- protection goals, several post-release monitoring concerns have been identified. Subject to a rigorous risk assessment process for future GDMMs products, the concerns may then be prioritized for post-release monitoring.
Collapse
Affiliation(s)
- Dorington O Ogoyi
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O BOX 52428, Nairobi, 00200, Kenya.
| | - Julia Njagi
- National Biosafety Authority, P.O. BOX 28251, Nairobi, 00100, Kenya
| | - Willy Tonui
- African Genetic Biocontrol Consortium (AGBC), Nairobi, Kenya
| | - Brinda Dass
- GeneConvene Global Collaborative, Foundation for the National Institutes of Health (FNIH), North Bethesda, MD, USA
| | - Hector Quemada
- GeneConvene Global Collaborative, Foundation for the National Institutes of Health (FNIH), North Bethesda, MD, USA
| | - Stephanie James
- GeneConvene Global Collaborative, Foundation for the National Institutes of Health (FNIH), North Bethesda, MD, USA
| |
Collapse
|
2
|
Castellon JT, Birhanie SK, Macias A, Casas R, Hans J, Brown MQ. Optimizing and synchronizing Aedes aegypti colony for Sterile Insect Technique application: Egg hatching, larval development, and adult emergence rate. Acta Trop 2024; 259:107364. [PMID: 39179165 DOI: 10.1016/j.actatropica.2024.107364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Mosquito Sterile Insect Technique (SIT) programs can be developed in smaller agencies through synchronization of the colony development to take advantage of the natural male early emergence. This paper examined key aspects of Ae. aegypti colony synchronization work, including egg hatching, larval development, and adult emergence to produce sufficient numbers of adult male mosquitoes within a specific timeframe for irradiation and release. Our data indicated that a relatively low percentage of males are required for colony propagation. Additional results highlighted that fresher Ae. aegypti eggs could yield as high as a 93 % hatching success than older eggs when placed under vacuum pressure in yeast infused water for 1.5 h. Eggs that were one-month old hatched (93 %) better than older eggs (0-32 %). A higher egg density in the hatching flask was correlated to a lower hatch rate, and higher larval density was related to unsynchronized pupae and delayed adult emergence. By keeping Ae. aegypti larvae at reasonable density, over 95 % of adults emerged on the first two days of emergence - indicating a high synchronicity. A standardized colony maintenance protocol therefore renders a synchronized larval development and adult male emergence which are critical in SIT programs.
Collapse
Affiliation(s)
| | - Solomon Kibret Birhanie
- West Valley Mosquito and Vector Control District, 1295 East Locust St, Ontario, California, USA.
| | - Ale Macias
- West Valley Mosquito and Vector Control District, 1295 East Locust St, Ontario, California, USA
| | - Rubi Casas
- West Valley Mosquito and Vector Control District, 1295 East Locust St, Ontario, California, USA
| | - Jacob Hans
- West Valley Mosquito and Vector Control District, 1295 East Locust St, Ontario, California, USA
| | - Michelle Q Brown
- West Valley Mosquito and Vector Control District, 1295 East Locust St, Ontario, California, USA
| |
Collapse
|
3
|
Le Goff G, Damiens D, Ruttee AH, Jean F, Payet L, Lebon C, Taconet P, Gaudillat B, Habchi-Hanriot N, Dehecq JS, Simard F, Gouagna LC. Spatial and temporal characterization of Aedes albopictus oviposition activity in candidate urban settings for sterile insect technique testing in La Reunion Island. Infect Dis Poverty 2024; 13:78. [PMID: 39456106 PMCID: PMC11515404 DOI: 10.1186/s40249-024-01250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Understanding of mosquito spatiotemporal dynamics is central to characterize candidate field sites for the sterile insect technique (SIT) testing, and is critical to the effective implementation and evaluation of pilot sterile male release programs. Here, we present a detailed description of Aedes albopictus (Skuse) egg-laying activity over a 6-year period in urban areas identified as potential SIT testing sites on Reunion Island. METHOD Weekly entomological collections using ovitraps were carried out in residential and adjacent uninhabited habitats in two urban areas, Duparc and Bois Rouge, in the municipality of Sainte Marie, Reunion Island. Time-series data incorporating the frequency of positive ovitraps and the total number of eggs/ovitrap recorded each time at each locality during the study period from May 2013 to December 2018 were analyzed with multifaceted statistical approaches including descriptive statistics and spatiotemporal analyses incorporating the role of climatic factors on overall ovitrap productivity. RESULTS During the ovitrap survey, the proportion of egg-positive ovitraps differed among study sites (χ2 = 50.21, df = 2, P < 0.001), being relatively lower in Duparc (89.5%) than in Bois-Rouges (95.3%) and the adjacent buffer zone (91.2%). Within each neighborhood, Ae. albopictus egg abundance varied by month in a roughly seasonal pattern marked by a single peak occurring more regularly February each year, a decline at the onset of the austral winter in July, followed by a period of lower ovitrap productivity in August and September. Fluctuation in both positivity rate and eggs densities per ovitraps were related to annual and seasonal variations in local temperature and rainfall (P < 0.001 in all cases). The spatial analysis also captured substantial between- and within-habitats heterogeneity, whereby the overall ovitrap productivity was higher in residential areas than in the buffer zone. CONCLUSIONS Collectively, these results reveal that the distribution of Ae. albopictus oviposition activity is shaped by local habitat heterogeneity and seasonal climatic factors. Overall, this study provides baseline insights into the reproductive dynamics of Ae. albopictus, which would assist in planning locally tailored SIT interventions, while addressing concerns related to focal areas of high egg-laying intensity and potential immigration of females from natural areas.
Collapse
Affiliation(s)
- Gilbert Le Goff
- Unité Mixte de Recherche "Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle" (MIVEGEC): Université Montpellier, Institut de Recherche pour le Développement, Centre National de Recherche Scientifique, Délégation Régionale Occitanie, Montpellier, France
- Institut de Recherche pour le Développement (IRD) La Réunion/Groupement d'Intérêt Public (GIP) Cyclotron Océan Indien, Recherche Santé Bio-Innovation, Sainte Clotilde, Reunion Island, France
| | - David Damiens
- Unité Mixte de Recherche "Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle" (MIVEGEC): Université Montpellier, Institut de Recherche pour le Développement, Centre National de Recherche Scientifique, Délégation Régionale Occitanie, Montpellier, France
- Institut de Recherche pour le Développement (IRD) La Réunion/Groupement d'Intérêt Public (GIP) Cyclotron Océan Indien, Recherche Santé Bio-Innovation, Sainte Clotilde, Reunion Island, France
| | - Abdoul-Hamid Ruttee
- Service de lutte anti vectorielle, Agence Régionale de Santé-Océan Indien (ARS-OI), Saint-Denis, Reunion Island, France
| | - Frédéric Jean
- Unité Mixte de Recherche "Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle" (MIVEGEC): Université Montpellier, Institut de Recherche pour le Développement, Centre National de Recherche Scientifique, Délégation Régionale Occitanie, Montpellier, France
- Institut de Recherche pour le Développement (IRD) La Réunion/Groupement d'Intérêt Public (GIP) Cyclotron Océan Indien, Recherche Santé Bio-Innovation, Sainte Clotilde, Reunion Island, France
| | - Laurent Payet
- Service de lutte anti vectorielle, Agence Régionale de Santé-Océan Indien (ARS-OI), Saint-Denis, Reunion Island, France
| | - Cyrille Lebon
- Unité Mixte de Recherche "Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle" (MIVEGEC): Université Montpellier, Institut de Recherche pour le Développement, Centre National de Recherche Scientifique, Délégation Régionale Occitanie, Montpellier, France
- Institut de Recherche pour le Développement (IRD) La Réunion/Groupement d'Intérêt Public (GIP) Cyclotron Océan Indien, Recherche Santé Bio-Innovation, Sainte Clotilde, Reunion Island, France
| | - Paul Taconet
- Unité Mixte de Recherche "Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle" (MIVEGEC): Université Montpellier, Institut de Recherche pour le Développement, Centre National de Recherche Scientifique, Délégation Régionale Occitanie, Montpellier, France
| | - Benjamin Gaudillat
- Institut de Recherche pour le Développement (IRD) La Réunion/Groupement d'Intérêt Public (GIP) Cyclotron Océan Indien, Recherche Santé Bio-Innovation, Sainte Clotilde, Reunion Island, France
| | - Nausicaa Habchi-Hanriot
- Service de lutte anti vectorielle, Agence Régionale de Santé-Océan Indien (ARS-OI), Saint-Denis, Reunion Island, France
| | - Jean-Sébastien Dehecq
- Service de lutte anti vectorielle, Agence Régionale de Santé-Océan Indien (ARS-OI), Saint-Denis, Reunion Island, France
| | - Frédéric Simard
- Unité Mixte de Recherche "Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle" (MIVEGEC): Université Montpellier, Institut de Recherche pour le Développement, Centre National de Recherche Scientifique, Délégation Régionale Occitanie, Montpellier, France
| | - Louis-Clément Gouagna
- Unité Mixte de Recherche "Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle" (MIVEGEC): Université Montpellier, Institut de Recherche pour le Développement, Centre National de Recherche Scientifique, Délégation Régionale Occitanie, Montpellier, France.
- Institut de Recherche pour le Développement (IRD) La Réunion/Groupement d'Intérêt Public (GIP) Cyclotron Océan Indien, Recherche Santé Bio-Innovation, Sainte Clotilde, Reunion Island, France.
| |
Collapse
|
4
|
Balatsos G, Blanco-Sierra L, Karras V, Puggioli A, Osório HC, Bellini R, Papachristos DP, Bouyer J, Bartumeus F, Papadopoulos NT, Michaelakis A. Residual Longevity of Recaptured Sterile Mosquitoes as a Tool to Understand Field Performance and Reveal Quality. INSECTS 2024; 15:826. [PMID: 39590425 PMCID: PMC11595144 DOI: 10.3390/insects15110826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
Invasive mosquito species, such as Aedes albopictus, pose significant threats to both ecosystems and public health due to their role in transmitting diseases, such as dengue, Zika, and chikungunya. The Sterile Insect Technique (SIT) is a promising vector control strategy aimed at reducing mosquito populations by releasing sterile males to mate with wild females and reduce their reproduction rates. In this study, we employed the captive cohort method, which assesses the remaining longevity of randomly caught released individuals, to assess the longevity and frailty dynamics of sterile and non-sterile Ae. albopictus males. Using a mark-release-recapture approach (MRR), we compared the residual lifespan of sterile and non-sterile released males with that of wild, non-sterile males, aiming to understand the frailty dynamics of released males and, therefore, their quality and field performance. Contrary to expectations, our results revealed that released sterile males showed increased longevity compared to non-sterile males. Further, the marking process did not impact the longevity between lab-kept and marked males, suggesting that the marking process does not adversely affect survival under controlled conditions. These findings underscore the importance of optimizing pre-release and mass-rearing practices to enhance the effectiveness of SIT programs. Our study also demonstrates for the first time the use of the captive cohort method for understanding the biological dynamics of sterile mosquito populations in SIT programs, providing valuable insights for improving vector control strategies.
Collapse
Affiliation(s)
- Georgios Balatsos
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 14561 Kifissia, Greece; (G.B.); (V.K.); (D.P.P.)
| | - Laura Blanco-Sierra
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), 14, 17300 Blanes, Girona, Spain; (L.B.-S.); (F.B.)
| | - Vasileios Karras
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 14561 Kifissia, Greece; (G.B.); (V.K.); (D.P.P.)
| | - Arianna Puggioli
- Centro Agricoltura Ambiente “G. Nicoli”, 40014 Crevalcore, Italy; (A.P.); (R.B.)
| | - Hugo Costa Osório
- Centre for Vectors and Infectious Diseases Research Doutor Francisco Cambournac (CEVDI), National Institute of Health Doutor Ricardo Jorge (INSA), Avenida da Liberdade 5, 2965-575 Palmela, Portugal;
- Faculty of Medicine, Environmental Health Institute (ISAMB), University of Lisbon, Av. Prof. Egas Moniz, Ed. Egas Moniz, Piso 0, Ala C, 1649-028 Lisboa, Portugal
| | - Romeo Bellini
- Centro Agricoltura Ambiente “G. Nicoli”, 40014 Crevalcore, Italy; (A.P.); (R.B.)
| | - Dimitrios P. Papachristos
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 14561 Kifissia, Greece; (G.B.); (V.K.); (D.P.P.)
| | - Jérémy Bouyer
- ASTRE, CIRAD, INRAE, Plate Forme CYROI, 2 rue Maxime Rivière, 97491 Sainte-Clotilde, La Réunion, France;
| | - Frederic Bartumeus
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), 14, 17300 Blanes, Girona, Spain; (L.B.-S.); (F.B.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys 23, 08010 Barcelona, Spain
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Nikos T. Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Magnisias, Greece
| | - Antonios Michaelakis
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 14561 Kifissia, Greece; (G.B.); (V.K.); (D.P.P.)
| |
Collapse
|
5
|
Amaro FIF, Soares P, Velo E, Carvalho DO, Gomez M, Balestrino F, Puggioli A, Bellini R, Osório HC. Mark-Release-Recapture Trial with Aedes albopictus (Diptera, Culicidae) Irradiated Males: Population Parameters and Climatic Factors. INSECTS 2024; 15:685. [PMID: 39336653 PMCID: PMC11432691 DOI: 10.3390/insects15090685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Aedes albopictus is considered one of the major invasive species in the world and can transmit viruses such as dengue, Zika, or chikungunya. The Sterile Insect Technique (SIT) can be used to suppress the native populations of Ae. albopictus. Mark-release-recapture (MRR) studies are crucial to support the development of the release strategy during the SIT application. Meanwhile, weather conditions can affect the MRR trial's results and it is critical to understand the influence of climatic factors on the results. In October 2022, 84,000 irradiated sterile males were released for three consecutive weeks in Faro, Southern Portugal. Mosquitoes were recaptured by human landing collection (HLC) one, two, four, and six days after release. Generalized linear models with a negative binomial family and log function were used to estimate the factors associated with the number of recaptured mosquitoes, prevalence ratios, and the 95% confidence intervals (CIs). A total of 84,000 sterile male mosquitoes were released, with 528 recaptured (0.8%) by HLC. The prevalence of recaptured mosquitoes was 23% lower when the wind intensity was moderate. Marked sterile males had an average median distance travelled of 88.7 m. The median probability of daily survival and the average life expectancy were 61.6% and 2.1 days, respectively. The wild male population estimate was 443.33 males/ha. Despite no statistically significant association being found with humidity, temperature, and precipitation, it is important to consider weather conditions during MRR trial analyses to obtain the best determinant estimation and a more efficient application of the SIT in an integrated vector management program.
Collapse
Affiliation(s)
- Fátima Isabel Falcão Amaro
- Centre for Vectors and Infectious Diseases Research Doutor Francisco Cambournac (CEVDI), National Institute of Health Doutor Ricardo Jorge (INSA), Avenida da Liberdade 5, 2965-575 Palmela, Portugal
- Environmental Health Institute (ISAMB), Faculty of Medicine, University of Lisbon, Av. Prof. Egas Moniz, Ed. Egas Moniz, Piso 0, Ala C, 1649-028 Lisboa, Portugal
| | - Patricia Soares
- Centre for Vectors and Infectious Diseases Research Doutor Francisco Cambournac (CEVDI), National Institute of Health Doutor Ricardo Jorge (INSA), Avenida da Liberdade 5, 2965-575 Palmela, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, NOVA University Lisbon, 1070-312 Lisbon, Portugal
- Centre of Statistics and its Applications (CEAUL), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Enkelejda Velo
- Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana 1001, Albania
| | - Danilo Oliveira Carvalho
- Insect Pest Control Subprogramme, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, 1400 Vienna, Austria
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA
| | - Maylen Gomez
- Insect Pest Control Subprogramme, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, 1400 Vienna, Austria
| | - Fabrizio Balestrino
- Centro Agricoltura Ambiente "G. Nicoli", Department of Sanitary Entomology and Zoology, 40014 Crevalcore, Italy
| | - Arianna Puggioli
- Centro Agricoltura Ambiente "G. Nicoli", Department of Sanitary Entomology and Zoology, 40014 Crevalcore, Italy
| | - Romeo Bellini
- Centro Agricoltura Ambiente "G. Nicoli", Department of Sanitary Entomology and Zoology, 40014 Crevalcore, Italy
| | - Hugo Costa Osório
- Centre for Vectors and Infectious Diseases Research Doutor Francisco Cambournac (CEVDI), National Institute of Health Doutor Ricardo Jorge (INSA), Avenida da Liberdade 5, 2965-575 Palmela, Portugal
- Environmental Health Institute (ISAMB), Faculty of Medicine, University of Lisbon, Av. Prof. Egas Moniz, Ed. Egas Moniz, Piso 0, Ala C, 1649-028 Lisboa, Portugal
| |
Collapse
|
6
|
Brass DP, Cobbold CA, Purse BV, Ewing DA, Callaghan A, White SM. Role of vector phenotypic plasticity in disease transmission as illustrated by the spread of dengue virus by Aedes albopictus. Nat Commun 2024; 15:7823. [PMID: 39242617 PMCID: PMC11379831 DOI: 10.1038/s41467-024-52144-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024] Open
Abstract
The incidence of vector-borne disease is on the rise globally, with burdens increasing in endemic countries and outbreaks occurring in new locations. Effective mitigation and intervention strategies require models that accurately predict both spatial and temporal changes in disease dynamics, but this remains challenging due to the complex and interactive relationships between environmental variation and the vector traits that govern the transmission of vector-borne diseases. Predictions of disease risk in the literature typically assume that vector traits vary instantaneously and independently of population density, and therefore do not capture the delayed response of these same traits to past biotic and abiotic environments. We argue here that to produce accurate predictions of disease risk it is necessary to account for environmentally driven and delayed instances of phenotypic plasticity. To show this, we develop a stage and phenotypically structured model for the invasive mosquito vector, Aedes albopictus, and dengue, the second most prevalent human vector-borne disease worldwide. We find that environmental variation drives a dynamic phenotypic structure in the mosquito population, which accurately predicts global patterns of mosquito trait-abundance dynamics. In turn, this interacts with disease transmission to capture historic dengue outbreaks. By comparing the model to a suite of simpler models, we reveal that it is the delayed phenotypic structure that is critical for accurate prediction. Consequently, the incorporation of vector trait relationships into transmission models is critical to improvement of early warning systems that inform mitigation and control strategies.
Collapse
Affiliation(s)
- Dominic P Brass
- UK Centre for Ecology & Hydrology, Benson Lane, Wallingford, Oxfordshire, UK.
- Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, UK.
| | - Christina A Cobbold
- School of Mathematics and Statistics, College of Science and Engineering, University of Glasgow, Glasgow, UK
| | - Bethan V Purse
- UK Centre for Ecology & Hydrology, Benson Lane, Wallingford, Oxfordshire, UK
| | - David A Ewing
- Biomathematics and Statistics Scotland, Edinburgh, UK
| | - Amanda Callaghan
- Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, UK
| | - Steven M White
- UK Centre for Ecology & Hydrology, Benson Lane, Wallingford, Oxfordshire, UK
| |
Collapse
|
7
|
Gato R, Menéndez Z, Rodríguez M, Gutiérrez-Bugallo G, Del Carmen Marquetti M. Advancing the art of mosquito control: the journey of the sterile insect technique against Aedes aegypti in Cuba. Infect Dis Poverty 2024; 13:61. [PMID: 39198869 PMCID: PMC11360771 DOI: 10.1186/s40249-024-01224-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/04/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Aedes aegypti, the primary vector of dengue, chikungunya, and Zika viruses, poses a significant public health threat worldwide. Traditional control methods using insecticides are increasingly challenged by resistance and environmental concerns. The sterile insect technique (SIT) offers an eco-friendly alternative that has been successfully applied to other insect pests. This article aims to briefly review Ae. aegypti management in Cuba, highlighting the accomplishments, challenges, and future directions of the SIT. MAIN BODY Here we provide a brief summary of the extensive history of Ae. aegypti control efforts in Cuba. After a successful eradication campaign in the 1980s, a resurgence of dengue cases has been observed in recent years, suggesting that traditional control methods may have limited effectiveness under current conditions. In response, Cuba initiated a phased approach to develop and evaluate the feasibility of SIT for Ae. aegypti control, starting in 2008. Initial research focused on Ae. aegypti mating behavior and sterilization methods, followed by successful laboratory and semi-field trials that demonstrated population suppression. The first open-field trial in 2020 confirmed the efficacy of the SIT in reducing Ae. aegypti populations under real-world conditions. Currently, the research is in a phase involving a cluster-randomized superiority-controlled trial. This planned trial will compare the standard vector control program with the same program augmented by the SIT, aiming to assess the impact of the SIT on dengue incidence as the primary outcome. Implementing robust epidemiological trials to evaluate the effectiveness of the SIT is complex due to potential spillover effects from mosquito and human movement across study areas. Additionally, conducting the SIT requires significant development and operational investments. Despite these challenges, the ongoing Cuban trial holds promise for establishing the SIT as an effective and sustainable tool for Ae. aegypti control and for reducing the burden of mosquito-borne diseases. CONCLUSIONS The phased evaluation conducted in Cuba confirms the efficacy of the SIT against Ae. aegypti, highlighting its potential for sustainable mosquito-borne disease management. The effective implementation of multi-site trials will be crucial in providing evidence of the potential of the sterile insect technique as part of a strategy to reduce the incidence of arboviral diseases.
Collapse
Affiliation(s)
- René Gato
- Sterile Insect Technique Laboratory, Department of Vector Control, Institute of Tropical Medicine Pedro Kourí, Havana, Cuba.
| | - Zulema Menéndez
- Sterile Insect Technique Laboratory, Department of Vector Control, Institute of Tropical Medicine Pedro Kourí, Havana, Cuba
| | - Misladys Rodríguez
- Department of Epidemiology, Institute of Tropical Medicine Pedro Kourí, Havana, Cuba
| | - Gladys Gutiérrez-Bugallo
- Toxicology and Genetics Laboratory, Department of Vector Control, Institute of Tropical Medicine Pedro Kourí, Havana, Cuba
| | - María Del Carmen Marquetti
- Ecology Laboratory, Department of Vector Control, Institute of Tropical Medicine Pedro Kourí, Havana, Cuba
| |
Collapse
|
8
|
Trefry SV, Aldridge RL, Sprague TR, Lowen RG, Erasmus JH, Pitt ML, Hahn DA, Nasar F, Gibson S, Linthicum KJ. Gamma-Irradiated Female Aedes aegypti Mosquitoes Exhibit Greater Susceptibility to Mayaro Virus. Am J Trop Med Hyg 2024; 111:421-428. [PMID: 38917780 PMCID: PMC11310611 DOI: 10.4269/ajtmh.23-0515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/13/2024] [Indexed: 06/27/2024] Open
Abstract
Mayaro virus (MAYV) is an alphavirus endemic in many parts of Central and South America transmitted to humans by Aedes aegypti. Currently, there is no vaccine or treatment of Mayaro infection, and therefore it is essential to control transmission by reducing populations of Ae. aegypti. Unfortunately, Ae. aegypti are extremely difficult to control with traditional integrated vector management (IVM) because of factors such as growing resistance to a dwindling list of registered insecticides and cryptic immature and adult habitats. The sterile insect technique (SIT) by irradiation is gaining traction as a novel supplemental tool to IVM. The SIT is being used operationally to release large numbers of sterilized colony-reared male mosquitoes in an intervention area to overwhelm females in the natural population, eventually causing population decline because of high frequencies of unfertilized eggs. However, little is known about the effect of irradiation on vector competence for mosquito-borne viruses such as MAYV in females that may be accidentally reared, irradiated, and released alongside males. In this investigation, we exposed female Ae. aegypti pupae to radiation and evaluated vector competence after inoculation with MAYV. Infection and dissemination rates of irradiated (10 and 40 Gy) Ae. aegypti were higher than those of non-irradiated cohorts at 7 and 14 days after infection. Although these results indicate a need to maintain effective sex sorting prior to irradiation and release of Ae. aegypti, our results are consistent with several previous observations that vectorial capacity and vector competence are likely lower in irradiated than in nonirradiated females.
Collapse
Affiliation(s)
- Stephanie V. Trefry
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Robert L. Aldridge
- Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, Florida
| | - Thomas R. Sprague
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
- BioFactura Inc., Frederick, Maryland
| | - Robert G. Lowen
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Jesse H. Erasmus
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Margaret L. Pitt
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Daniel A. Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida
| | - Farooq Nasar
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Seth Gibson
- Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, Florida
| | - Kenneth J. Linthicum
- Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, Florida
| |
Collapse
|
9
|
Hapugoda M, Gunawardena NS, Ranathunge T, Bouyer J, Maiga H, Karunathilake K, Withanage GP, Weerasinghe I, Sow BBD, Harishchandra J. Mark-Release-Recapture (MRR) of Sterile Male Aedes albopictus (Skuse) in Sri Lanka: Field Performance of Sterile Males and Estimation of the Wild Mosquito Population Density. INSECTS 2024; 15:466. [PMID: 39057199 PMCID: PMC11276655 DOI: 10.3390/insects15070466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/28/2024]
Abstract
Dengue is an important mosquito-borne disease in Sri Lanka. The Sterile Insect Technique (SIT) is an environment-friendly and novel method that can suppress dengue vector mosquitoes in Sri Lanka. This study aimed to evaluate the field performance of sterile males and the density of wild male Aedes albopictus (Skuse) using a Mark-Release-Recapture (MRR) assay. Laboratory-colonized male pupae were exposed to 50 Gy gamma using a Co60 source. Sterile males (approx. 10,000) marked with fluorescent dust were released weekly for 4 consecutive weeks (January-February 2021) in a geographically isolated 30 ha site in Gampaha. Results show sterile males could disperse up to 543.8 m with a mean distance of 255.1 ± 44.6 m and survive up to 6 days with a mean life expectancy of 3.55 ± 2.32 days. A high field mating competitiveness of sterile males based on a Fried value of 0.47 ± 0.007 and significant induced sterility in the wild eggs in the second generation were found. The mean wild male mosquito population density was 163 males/ha. The data generated will be useful for designing future trials in Sri Lanka and other countries with similar situations.
Collapse
Affiliation(s)
- Menaka Hapugoda
- Molecular Medicine Unit, Faculty of Medicine, University of Kelaniya, Ragama 11010, Sri Lanka; (N.S.G.); (G.P.W.)
| | - Nilmini Silva Gunawardena
- Molecular Medicine Unit, Faculty of Medicine, University of Kelaniya, Ragama 11010, Sri Lanka; (N.S.G.); (G.P.W.)
| | - Tharaka Ranathunge
- Department of Zoology, Faculty of Science, Eastern University, Batticaloa 30000, Sri Lanka;
| | - Jeremy Bouyer
- Insect Pest Control Subprogramme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, 1400 Vienna, Austria; (J.B.); (H.M.)
- UMR ASTRE (Animal Santé Territoires Risques et Ecosystèmes), CIRAD, Plate Forme CYROI, 2 rue Maxime Rivière, 97491 Sainte-Clotilde, La Réunion, France
| | - Hamidou Maiga
- Insect Pest Control Subprogramme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, 1400 Vienna, Austria; (J.B.); (H.M.)
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso 01 BP 545, Burkina Faso;
| | - Kankanige Karunathilake
- Department of Sociology, Faculty of Social Science, University of Kelaniya, Kelaniya 11010, Sri Lanka;
| | - Gayan Parakrama Withanage
- Molecular Medicine Unit, Faculty of Medicine, University of Kelaniya, Ragama 11010, Sri Lanka; (N.S.G.); (G.P.W.)
| | - Indika Weerasinghe
- National Dengue Control Unit, Public Health Complex, Ministry of Health, Narahenpita, Colombo 01000, Sri Lanka;
| | - Bazoumana B. D. Sow
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso 01 BP 545, Burkina Faso;
| | - Jeevanie Harishchandra
- Anti-Malaria Campaign (AMC), Public Health Complex, Ministry of Health, Narahenpita, Colombo 01000, Sri Lanka;
| |
Collapse
|
10
|
Silva JRDA, de Oliveira AA, França LP, da Cruz JD, Amaral ACF. Exploring the Larvicidal and Adulticidal Activity against Aedes aegypti of Essential Oil from Bocageopsis multiflora. Molecules 2024; 29:2240. [PMID: 38792102 PMCID: PMC11124082 DOI: 10.3390/molecules29102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigates the chemical composition of the essential oil obtained from the leaves of Bocageopsis multiflora (Mart.) R.E.Fr (Annonaceae), examining its effectiveness in combating both the larvae and adult forms of Aedes aegypti mosquitoes. Additionally, for a deeper understanding of the insecticidal activity, toxicity properties and molecular docking calculations were conducted using the main compounds of this essential oil. GC/MS analysis revealed the presence of 26 constituents, representing 95.2% of the essential oil, with the major components identified as the sesquiterpenes α-selinene, β-selinene, and β-elemene. Larvicidal assays demonstrated potent activity of this essential oil with significant LC50 values of 40.8 and 39.4 μg/mL at 24 and 48 h, respectively. Adulticidal assessments highlighted strong efficacy with LC50 of 12.5 µg/mL. Molecular docking analysis identified optimal interaction activities of α-selinene and β-selinene with key Aedes proteins. The in silico studies comparing synthetic insecticides with the major sesquiterpenes of the essential oil revealed that β-selinene exhibited a significantly higher binding affinity compared to the other two sesquiterpenes. Also, ADMET studies of the three main sesquiterpenes indicated acceptable drug-like properties. In these findings, safety evaluations showed low toxicity and skin sensitization for the main sesquiterpenes, contrasting with commercial synthetic insecticides. Therefore, in silico analyses suggest promising interactions with Aedes proteins, indicating its potential as an effective alternative to conventional insecticides These results show the larvicidal and adulticidal potential of the essential oil from Bocageopsis multiflora against Aedes aegypti, supported by its predominant constituents, α-selinene, β-selinene and β-elemene.
Collapse
Affiliation(s)
- Jefferson Rocha de Andrade Silva
- Laboratório de Cromatografia, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus 69077-000, Brazil; (A.A.d.O.); (L.P.F.)
| | - Aimêe Almeida de Oliveira
- Laboratório de Cromatografia, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus 69077-000, Brazil; (A.A.d.O.); (L.P.F.)
| | - Leandro Pereira França
- Laboratório de Cromatografia, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus 69077-000, Brazil; (A.A.d.O.); (L.P.F.)
| | - Jefferson Diocesano da Cruz
- Laboratório de Plantas Medicinais e Derivados, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, Brazil;
| | - Ana Claudia Fernandes Amaral
- Laboratório de Plantas Medicinais e Derivados, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, Brazil;
| |
Collapse
|
11
|
Dumont Y, Yatat-Djeumen IV. About contamination by sterile females and residual male fertility on the effectiveness of the sterile insect technique. Impact on disease vector control and disease control. Math Biosci 2024; 370:109165. [PMID: 38387836 DOI: 10.1016/j.mbs.2024.109165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/19/2023] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
The sterile insect technique (SIT) is a technique to control pests and vectors of diseases by releasing mainly sterile males. Several challenges need to be solved before large-scale field application in order to guarantee its success. In this paper we intend to focus on two important issues: residual fertility in released (sterile) males and contamination of each release by sterile females. Indeed, sterile males are never 100% sterile, that is there is always a small proportion, ɛ, of fertile males (sperm of) within the sterile males population. Among the sterile insects that are released, a certain proportion, ϵF, of them are sterile females due to imperfect mechanical sex-separation technique. This can be particularly problematic when arthropod viruses are circulating, because mosquito females, even sterile, are vectors of diseases. Various upper bound values are given in the entomological literature for ϵF and ɛ without clear explanations. In this work, we aim to show that these values are related to the biological parameters of the targeted vector, the sterile insects release rate, and the epidemiological parameters of a vector-borne disease, like Dengue. We extend results studied separately in Aronna and Dumont (2020), Dumont and Yatat-Djeumen (2022). To study the impact of both issues, we develop and study a SIT-entomological-epidemiological mathematical model, with application to Dengue. Qualitative analysis of the model is carried out to highlight threshold values that shape the overall dynamics of the system. We show that vector elimination is possible only when Nɛ<1, where N is the basic-offspring number related to the targeted wild population. To ensure the success of SIT control, we recommend that the issue of residual fertility be addressed as a priority and then that contamination by sterile females be minimized with each release.
Collapse
Affiliation(s)
- Y Dumont
- CIRAD, Umr AMAP, Pôle de Protection des Plantes, F-97410 Saint Pierre, France; AMAP, Univ Montpellier, CIRAD, CNRS, INRA, IRD, Montpellier, France; University of Pretoria, Department of Mathematics and Applied Mathematics, Pretoria, South Africa.
| | - I V Yatat-Djeumen
- CIRAD, Umr AMAP, F-34398 Montpellier, France; University of Yaoundé I, National Advanced School of Engineering of Yaoundé, Department of Mathematics and Physics, Yaoundé, Cameroon; UMI 209 IRD/UPMC UMMISCO, Bondy, France
| |
Collapse
|
12
|
Balatsos G, Karras V, Puggioli A, Balestrino F, Bellini R, Papachristos DP, Milonas PG, Papadopoulos NT, Malfacini M, Carrieri M, Kapranas A, Mamai W, Mastronikolos G, Lytra I, Bouyer J, Michaelakis A. Sterile Insect Technique (SIT) field trial targeting the suppression of Aedes albopictus in Greece. Parasite 2024; 31:17. [PMID: 38530210 PMCID: PMC10964849 DOI: 10.1051/parasite/2024020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
The sterile insect technique (SIT) involves releasing large numbers of sterile males to outcompete wild males in mating with females, leading to a decline in pest populations. In the current study, we conducted a suppression trial in Greece against the invasive dengue vector mosquito Aedes albopictus (Skuse) through the weekly release of sterile males for 22 weeks from June to September 2019. Our approach included the long-distance transport of sterile mosquitoes, and their release at a density of 2,547 ± 159 sterile males per hectare per week as part of an area-wide integrated pest management strategy (AW-IPM). The repeated releases of sterile males resulted in a gradual reduction in egg density, reaching 78% from mid-June to early September. This reduction remained between 70% and 78% for four weeks after the end of the releases. Additionally, in the SIT intervention area, the ovitrap index, representing the percentage of traps containing eggs, remained lower throughout the trial than in the control area. This trial represents a significant advance in the field of mosquito control, as it explores the viability and efficacy of producing and transporting sterile males from a distant facility to the release area. Our results provide valuable insights for future SIT programmes targeting Ae. Albopictus, and the methodology we employed can serve as a starting point for developing more refined and effective release protocols, including the transportation of sterile males over long distances from production units to intervention areas.
Collapse
Affiliation(s)
- Georgios Balatsos
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute 14561 Kifissia Greece
| | - Vasileios Karras
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute 14561 Kifissia Greece
| | | | - Fabrizio Balestrino
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture Seibersdorf A-2444 Vienna Austria
| | - Romeo Bellini
- Centro Agricoltura Ambiente “G. Nicoli” 40014 Crevalcore Italy
| | - Dimitrios P. Papachristos
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute 14561 Kifissia Greece
| | - Panagiotis G. Milonas
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute 14561 Kifissia Greece
| | - Nikos T. Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly 38446 Magnisias Greece
| | - Marco Malfacini
- Centro Agricoltura Ambiente “G. Nicoli” 40014 Crevalcore Italy
| | - Marco Carrieri
- Centro Agricoltura Ambiente “G. Nicoli” 40014 Crevalcore Italy
| | - Apostolos Kapranas
- Laboratory of Applied Zoology and Parasitology (Entomology), School of Agriculture, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Wadaka Mamai
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture Seibersdorf A-2444 Vienna Austria
| | - George Mastronikolos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly 38446 Magnisias Greece
| | - Ioanna Lytra
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute 14561 Kifissia Greece
| | - Jérémy Bouyer
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture Seibersdorf A-2444 Vienna Austria
- ASTRE, CIRAD 34398 Montpellier France
- ASTRE, Cirad, INRAE, Univ. Montpellier, Plateforme Technologique CYROI Sainte-Clotilde La Réunion France
| | - Antonios Michaelakis
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute 14561 Kifissia Greece
| |
Collapse
|
13
|
Boonyuan W, Panthawong A, Thannarin T, Kongratarporn T, Khamvarn V, Chareonviriyaphap T, Nararak J. Irritant and repellent behaviors of sterile male Aedes aegypti (L.) (Diptera: Culicidae) mosquitoes are crucial in the development of disease control strategies applying sterile insect technique. PeerJ 2024; 12:e17038. [PMID: 38529314 PMCID: PMC10962334 DOI: 10.7717/peerj.17038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/12/2024] [Indexed: 03/27/2024] Open
Abstract
The mosquito Aedes aegypti, known to transmit important arboviral diseases, including dengue, chikungunya, Zika and yellow fever. Given the importance of this disease vector, a number of control programs have been proposed involving the use of the sterile insect technique (SIT). However, the success of this technique hinges on having a good understanding of the biology and behavior of the male mosquito. Behavioral responses of Ae. aegypti male populations developed for SIT technology were tested under laboratory conditions against chemical and natural irritants and repellents using an excito-repellency (ER) chamber. The results showed that there were no significant behavioral escape responses in any of the radiation-sterilized male Ae. aegypti test populations when exposed to citronella, DEET, transfluthrin, and deltamethrin, suggesting that SIT did not suppress the expected irritancy and repellency (avoidance) behaviors. The type of information reported in the current study is vital in defining the effects of SIT on vector behavior and understanding how such behavior may influence the success of SIT technology with regard to other vector control interventions.
Collapse
Affiliation(s)
- Wasana Boonyuan
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok, Thailand
| | - Amonrat Panthawong
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Thodsapon Thannarin
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok, Thailand
| | - Titima Kongratarporn
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok, Thailand
| | - Vararas Khamvarn
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok, Thailand
| | | | - Jirod Nararak
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
14
|
Miranda LS, Rudd SR, Mena O, Hudspeth PE, Barboza-Corona JE, Park HW, Bideshi DK. The Perpetual Vector Mosquito Threat and Its Eco-Friendly Nemeses. BIOLOGY 2024; 13:182. [PMID: 38534451 DOI: 10.3390/biology13030182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mosquitoes are the most notorious arthropod vectors of viral and parasitic diseases for which approximately half the world's population, ~4,000,000,000, is at risk. Integrated pest management programs (IPMPs) have achieved some success in mitigating the regional transmission and persistence of these diseases. However, as many vector-borne diseases remain pervasive, it is obvious that IPMP successes have not been absolute in eradicating the threat imposed by mosquitoes. Moreover, the expanding mosquito geographic ranges caused by factors related to climate change and globalization (travel, trade, and migration), and the evolution of resistance to synthetic pesticides, present ongoing challenges to reducing or eliminating the local and global burden of these diseases, especially in economically and medically disadvantaged societies. Abatement strategies include the control of vector populations with synthetic pesticides and eco-friendly technologies. These "green" technologies include SIT, IIT, RIDL, CRISPR/Cas9 gene drive, and biological control that specifically targets the aquatic larval stages of mosquitoes. Regarding the latter, the most effective continues to be the widespread use of Lysinibacillus sphaericus (Ls) and Bacillus thuringiensis subsp. israelensis (Bti). Here, we present a review of the health issues elicited by vector mosquitoes, control strategies, and lastly, focus on the biology of Ls and Bti, with an emphasis on the latter, to which no resistance has been observed in the field.
Collapse
Affiliation(s)
- Leticia Silva Miranda
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Sarah Renee Rudd
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Integrated Biomedical Graduate Studies, and School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Oscar Mena
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Piper Eden Hudspeth
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - José E Barboza-Corona
- Departmento de Alimentos, Posgrado en Biociencias, Universidad de Guanajuato Campus Irapuato-Salamanca, Irapuato 36500, Guanajuato, Mexico
| | - Hyun-Woo Park
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Dennis Ken Bideshi
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| |
Collapse
|
15
|
Aldridge RL, Gibson S, Linthicum KJ. Aedes aegypti Controls AE. Aegypti: SIT and IIT-An Overview. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2024; 40:32-49. [PMID: 38427588 DOI: 10.2987/23-7154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
The sterile insect technique (SIT) and the incompatible insect technique (IIT) are emerging and potentially revolutionary tools for controlling Aedes aegypti (L.), a prominent worldwide mosquito vector threat to humans that is notoriously difficult to reduce or eliminate in intervention areas using traditional integrated vector management (IVM) approaches. Here we provide an overview of the discovery, development, and application of SIT and IIT to Ae. aegypti control, and innovations and advances in technology, including transgenics, that could elevate these techniques to a worldwide sustainable solution to Ae. aegypti when combined with other IVM practices.
Collapse
|
16
|
Zhang H, Trueman E, Hou X, Chew DX, Deng L, Liew J, Chia T, Xi Z, Tan CH, Cai Y. Different mechanisms of X-ray irradiation-induced male and female sterility in Aedes aegypti. BMC Biol 2023; 21:274. [PMID: 38012718 PMCID: PMC10683188 DOI: 10.1186/s12915-023-01757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Aedes aegypti (Ae. aegypti) is the major vector that transmits many diseases including dengue, Zika, and filariasis in tropical and subtropical regions. Due to the growing resistance to chemical-based insecticides, biological control methods have become an emerging direction to control mosquito populations. The sterile insect technique (SIT) deploys high doses of ionizing radiation to sterilize male mosquitoes before the release. The Wolbachia-based population suppression method of the incompatible insect technique (IIT) involves the release of Wolbachia-infected males to sterilize uninfected field females. Due to the lack of perfect sex separation tools, a low percentage of female contamination is detected in the male population. To prevent the unintentional release of these Wolbachia-infected females which might result in population replacement, a low dose of X-ray irradiation is deployed to sterilize any female escapees. However, it remains unclear whether these irradiation-induced male and female sterilizations share common mechanisms. RESULTS In this work, we set out to define the minimum dose of X-ray radiation required for complete female sterilization in Ae. aegypti (NEA-EHI strain). Further results showed that this minimum dose of X-ray irradiation for female sterilization significantly reduced male fertility. Similar results have been reported previously in several operational trials. By addressing the underlying causes of the sterility, our results showed that male sterility is likely due to chromosomal damage in the germ cells induced by irradiation. In contrast, female sterility appears to differ and is likely initiated by the elimination of the somatic supporting cells, which results in the blockage of the ovariole maturation. Building upon these findings, we identified the minimum dose of X-ray irradiation on the Wolbachia-infected NEA-EHI (wAlbB-SG) strain, which is currently being used in the IIT-SIT field trial. Compared to the uninfected parental strain, a lower irradiation dose could fully sterilize wAlbB-SG females. This suggests that Wolbachia-carrying mosquitoes are more sensitive to irradiation, consistent with a previous report showing that a lower irradiation dose fully sterilized Wolbachia-infected Ae. aegypti females (Brazil and Mexican strains) compared to those uninfected controls. CONCLUSIONS Our findings thus reveal the distinct mechanisms of ionizing X-ray irradiation-induced male or female sterility in Ae. aegypti mosquitoes, which may help the design of X-ray irradiation-based vector control methods.
Collapse
Affiliation(s)
- Heng Zhang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
- Present address: Institute of Infectious Disease, Shenzhen Bay Laboratory, Shenzhen, 518000, China
| | - Emma Trueman
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
| | - Xinjun Hou
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - De Xian Chew
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
| | - Lu Deng
- Environmental Health Institute, National Environment Agency, Singapore, 138667, Singapore
| | - Jonathan Liew
- Environmental Health Institute, National Environment Agency, Singapore, 138667, Singapore
| | - Tania Chia
- Environmental Health Institute, National Environment Agency, Singapore, 138667, Singapore
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Cheong Huat Tan
- Environmental Health Institute, National Environment Agency, Singapore, 138667, Singapore.
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
17
|
Tur C, Almenar D, Zacarés M, Benlloch-Navarro S, Pla I, Dalmau V. Suppression Trial through an Integrated Vector Management of Aedes albopictus (Skuse) Based on the Sterile Insect Technique in a Non-Isolated Area in Spain. INSECTS 2023; 14:688. [PMID: 37623398 PMCID: PMC10455479 DOI: 10.3390/insects14080688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
In recent years, Aedes albopictus (Skuse, 1984) has expanded its distribution globally due to its high ecological plasticity. This expansion has increased the population's susceptibility to contracting diseases such as dengue, Zika, and chikungunya, among others, which are transmitted by this mosquito species. In the absence of effective control methods, the application of the sterile insect technique (SIT) is proposed as part of an integrated vector management (IVM) program. From 2007 to 2020, this strategy has been tested in a non-isolated mosquito population urban area of 45 ha, representative of the municipalities of the Valencian region (Spain). The population levels of adult females and eggs collected in the traps have been reduced by 70-80% compared to the control area, demonstrating its efficacy in reducing mosquito populations. This work analyzes the impact of the migration of the wild mosquito population from the peri-urban area to the urban core.
Collapse
Affiliation(s)
- Carlos Tur
- Empresa de Transformación Agraria S.A., S.M.E, M.P. (TRAGSA), Avenida de la Industria 26, 46980 Paterna, Spain; (D.A.); (S.B.-N.); (I.P.)
- Doctoral School, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001 Valencia, Spain
| | - David Almenar
- Empresa de Transformación Agraria S.A., S.M.E, M.P. (TRAGSA), Avenida de la Industria 26, 46980 Paterna, Spain; (D.A.); (S.B.-N.); (I.P.)
| | - Mario Zacarés
- Department of Basic and Transversal Sciences, Faculty of Veterinary and Experimental Sciences, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001 Valencia, Spain;
| | - Sandra Benlloch-Navarro
- Empresa de Transformación Agraria S.A., S.M.E, M.P. (TRAGSA), Avenida de la Industria 26, 46980 Paterna, Spain; (D.A.); (S.B.-N.); (I.P.)
| | - Ignacio Pla
- Empresa de Transformación Agraria S.A., S.M.E, M.P. (TRAGSA), Avenida de la Industria 26, 46980 Paterna, Spain; (D.A.); (S.B.-N.); (I.P.)
- Doctoral School, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001 Valencia, Spain
| | - Vicente Dalmau
- Conselleria de Agricultura, Desarrollo Rural, Emergencia Climática y Transición Ecológica, Apdo Correos 125, 46460 Silla, Spain;
| |
Collapse
|
18
|
Boucheikhchoukh M, Lafri I, Chamssidine Combo A, Regalado C, Barthés C, Leulmi H. Assessing the Effectiveness of Qista Baited Traps in Capturing Mosquito Vectors of Diseases in the Camargue Region (France) and Investigating Their Diversity. Animals (Basel) 2023; 13:1809. [PMID: 37409687 DOI: 10.3390/ani13111809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023] Open
Abstract
Nuisance, allergy, and vector role: mosquitoes are responsible for numerous inconveniences. Several strategies have been employed to fight against this confirmed vector. To record the diversity of mosquito vectors in Camargue (France) and assess the effectiveness of the Qista trap, six BAMs were deployed as a belt barrier to protect the Espeyran Castle (Saint-Gilles, Camargue). Prior to evaluating the reduction in the nuisance rate, recovery nets from the traps and human landing catches (HLC) were utilized twice a week in the treated and control areas. Overall, 85,600 mosquitoes were captured, belonging to eleven species, namely Aedes albopictus, Aedes caspius, Aedes detritus, Aedes dorsalis, Aedes rossicus, Aedes vexans, Anopheles maculipennis, Culex pipiens, Culex modestus, Culiseta annulata and Culiseta longiareolata. The six BAM devices trapped 84,461 mosquitoes. The average capture rate per BAM is 76.92 mosquitoes per day. The rate of nuisance has decreased from 4.33 ± 2.88 before the deployment to 1.59 ± 2.77 after BAM implantation. The Qista BAM trap seems to be an excellent tool for reducing the nuisance rate and may help researchers to optimize trapping methods by obtaining more significant sample sizes. It may also allow the updating of the host-seeking mosquito species' reported biodiversity in the south of France.
Collapse
Affiliation(s)
- Mehdi Boucheikhchoukh
- Department of Veterinary Sciences, Chadli Bendjedid El Tarf University, PB 73, El-Tarf 36000, Algeria
| | - Ismail Lafri
- Department of Veterinary Sciences, Blida 1 University, Blida 09000, Algeria
| | | | - Christophe Regalado
- Department of "Licence Sciences et Technologies", Université Grenoble Alpes, 480 Avenue Centrale Domaine Universitaire, 38400 Saint-Martin-d'Hères, France
- Department of "Génie Biologique", Aix-Marseille Université, 19 Boulevard Saint Jean Chrysostome, 04000 Digne les Bains, France
| | - César Barthés
- Qista Techno BAM, 130 Lubéron Avenue, 13560 Sénas, France
- Department of "Génie Biologique", Université de Caen Basse Normandie-Campus 2, Boulevard du Maréchal Juin, CEDEX 5, 14032 Caen, France
| | - Hamza Leulmi
- Qista Techno BAM, 130 Lubéron Avenue, 13560 Sénas, France
| |
Collapse
|
19
|
Devillers J, David JP, Barrès B, Alout H, Lapied B, Chouin S, Dusfour I, Billault C, Mekki F, Attig I, Corbel V. Integrated Plan of Insecticide Resistance Surveillance in Mosquito Vectors in France. INSECTS 2023; 14:insects14050457. [PMID: 37233085 DOI: 10.3390/insects14050457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/26/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
Mosquito-borne diseases such as malaria, dengue, or chikungunya have been re-emerging all over the world, including in Europe. Managing resistance to public health pesticides in mosquitoes is essential and requires global, integrated, and coordinated actions and strong engagement of decision-makers, scientists, and public health operators. In this context, the present work aims at proposing an integrated plan of resistance surveillance in France and in the French Overseas territories in order to provide graduated and appropriate responses according to the situation. Briefly, the plan relies on periodic monitoring of insecticide resistance at the population level in predefined sites using adequate biological, molecular, and/or biochemical approaches and a stratification of the level of resistance risk at the scale of territory to adjust surveillance and vector control actions. The plan relies on the latest methods and indicators used for resistance monitoring as recommended by the World Health Organization in order to prevent or slow down its extension in space and time. The plan has been developed for France but can be easily adapted to other countries in order to provide a coordinated response to the growing problem of mosquito resistance in Europe.
Collapse
Affiliation(s)
| | - Jean-Philippe David
- Laboratoire d'Ecologie Alpine, UMR UGA-USMB-CNRS 5553, Université Grenoble Alpes, 38041 Grenoble Cedex 9, France
| | - Benoit Barrès
- Université de Lyon, Anses, INRAE, USC CASPER, 69364 Lyon Cedex 7, France
| | - Haoues Alout
- ASTRE, UMR117 INRAE-CIRAD, 34398 Montpellier Cedex 5, France
| | - Bruno Lapied
- Université Angers, INRAE, SIFCIR, SFR QUASAV, 49045 Angers Cedex, France
| | - Sébastien Chouin
- Conseil Départemental de la Charente-Maritime, DEM, Démoustication, 17076 La Rochelle, France
| | - Isabelle Dusfour
- Institut de Recherche pour le Développement (IRD), MIVEGEC, Univ. Montpellier, CNRS, IRD, 34394 Montpellier, France
| | | | | | | | - Vincent Corbel
- Institut de Recherche pour le Développement (IRD), MIVEGEC, Univ. Montpellier, CNRS, IRD, 34394 Montpellier, France
- Laboratório de Fisiologia e Controle de Artrópodes Vetores (Laficave), Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (FIOCRUZ), Rio de Janeiro CEP 21040-360, Brazil
| |
Collapse
|
20
|
de Castro Poncio L, Apolinário dos Anjos F, de Oliveira DA, de Oliveira da Rosa A, Piraccini Silva B, Rebechi D, Pedrosa JM, da Costa Franciscato DA, de Souza C, Paldi N. Prevention of a dengue outbreak via the large-scale deployment of Sterile Insect Technology in a Brazilian city: a prospective study. LANCET REGIONAL HEALTH. AMERICAS 2023; 21:100498. [PMID: 37187486 PMCID: PMC10176055 DOI: 10.1016/j.lana.2023.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/28/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
Background Dengue is a global problem that seems to be worsening, as hyper-urbanization associated with climate change has led to a significant increase in the abundance and geographical spread of its principal vector, the Aedes aegypti mosquito. Currently available solutions have not been able to stop the spread of dengue which shows the urgent need to implement alternative technologies as practical solutions. In a previous pilot trial, we demonstrated the efficacy and safety of the method 'Natural Vector Control' (NVC) in suppressing the Ae. aegypti vector population and in blocking the occurrence of an outbreak of dengue in the treated areas. Here, we expand the use of the NVC program in a large-scale 20 months intervention period in an entire city in southern Brazil. Methods Sterile male mosquitoes were produced from locally sourced Ae. aegypti mosquitoes by using a treatment that includes double-stranded RNA and thiotepa. Weekly massive releases of sterile male mosquitoes were performed in predefined areas of Ortigueira city from November 2020 to July 2022. Mosquito monitoring was performed by using ovitraps during the entire intervention period. Dengue incidence data was obtained from the Brazilian National Disease Surveillance System. Findings During the two epidemiological seasons, the intervention in Ortigueira resulted in up to 98.7% suppression of live progeny of field Ae. aegypti mosquitoes recorded over time. More importantly, when comparing the 2020 and 2022 dengue outbreaks that occurred in the region, the post-intervention dengue incidence in Ortigueira was 97% lower compared to the control cities. Interpretation The NVC method was confirmed to be a safe and efficient way to suppress Ae. aegypti field populations and prevent the occurrence of a dengue outbreak. Importantly, it has been shown to be applicable in large-scale, real-world conditions. Funding This study was funded by Klabin S/A and Forrest Innovations Ltd.
Collapse
Affiliation(s)
| | | | | | | | | | - Débora Rebechi
- Forrest Brasil Tecnologia Ltda, São José dos Pinhais, PR, Brazil
| | | | | | | | - Nitzan Paldi
- Forrest Innovations Ltd, Rehovot, Israel
- Corresponding author. Forrest Innovations Ltd, 13 Gad Feinstein Street, Rehovot, Israel.
| |
Collapse
|
21
|
James S, Santos M. The Promise and Challenge of Genetic Biocontrol Approaches for Malaria Elimination. Trop Med Infect Dis 2023; 8:201. [PMID: 37104327 PMCID: PMC10140850 DOI: 10.3390/tropicalmed8040201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Malaria remains an ongoing public health challenge, with over 600,000 deaths in 2021, of which approximately 96% occurred in Africa. Despite concerted efforts, the goal of global malaria elimination has stalled in recent years. This has resulted in widespread calls for new control methods. Genetic biocontrol approaches, including those focused on gene-drive-modified mosquitoes (GDMMs), aim to prevent malaria transmission by either reducing the population size of malaria-transmitting mosquitoes or making the mosquitoes less competent to transmit the malaria parasite. The development of both strategies has advanced considerably in recent years, with successful field trials of several biocontrol methods employing live mosquito products and demonstration of the efficacy of GDMMs in insectary-based studies. Live mosquito biocontrol products aim to achieve area-wide control with characteristics that differ substantially from current insecticide-based vector control methods, resulting in some different considerations for approval and implementation. The successful field application of current biocontrol technologies against other pests provides evidence for the promise of these approaches and insights into the development pathway for new malaria control agents. The status of technical development as well as current thinking on the implementation requirements for genetic biocontrol approaches are reviewed, and remaining challenges for public health application in malaria prevention are discussed.
Collapse
Affiliation(s)
- Stephanie James
- Foundation for the National Institutes of Health, North Bethesda, MD 20852, USA
| | | |
Collapse
|
22
|
Regulatory and policy considerations for the implementation of gene drive-modified mosquitoes to prevent malaria transmission. Transgenic Res 2023; 32:17-32. [PMID: 36920721 PMCID: PMC10102045 DOI: 10.1007/s11248-023-00335-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/20/2023] [Indexed: 03/16/2023]
Abstract
Gene drive-modified mosquitoes (GDMMs) are being developed as possible new tools to prevent transmission of malaria and other mosquito-borne diseases. To date no GDMMs have yet undergone field testing. This early stage is an opportune time for developers, supporters, and possible users to begin to consider the potential regulatory requirements for eventual implementation of these technologies in national or regional public health programs, especially as some of the practical implications of these requirements may take considerable planning, time and coordination to address. Several currently unresolved regulatory questions pertinent to the implementation of GDMMs are examined, including: how the product will be defined; what the registration/approval process will be for placing new GDMM products on the market; how the potential for transboundary movement of GDMMs can be addressed; and what role might be played by existing multinational bodies and agreements in authorization decisions. Regulation and policies applied for registration of other genetically modified organisms or other living mosquito products are assessed for relevance to the use case of GDMMs to prevent malaria in Africa. Multiple national authorities are likely to be involved in decision-making, according to existing laws in place within each country for certain product classes. Requirements under the Cartagena Protocol on Biodiversity will be considered relevant in most countries, as may existing regulatory frameworks for conventional pesticide, medical, and biocontrol products. Experience suggests that standard regulatory processes, evidence requirements, and liability laws differ from country to country. Regional mechanisms will be useful to address some of the important challenges.
Collapse
|
23
|
Bisia M, Papadopoulos P, Filis S, Beleri S, Tegos N, Lamprou GK, Balatsos G, Papachristos D, Michaelakis A, Patsoula E. Field Evaluation of Commonly Used Adult Mosquito Traps in Greece. Vector Borne Zoonotic Dis 2023; 23:119-128. [PMID: 36888960 DOI: 10.1089/vbz.2022.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Background: Entomological monitoring activities are a major part of mosquito and mosquito-borne diseases surveillance. Several trapping methods are implemented worldwide, aiming to gather data on species composition and their abundance in various study areas. Methods: Several methodological modifications, such as trapping systems baited with attractants or carbon dioxide, have been proposed to increase trap efficiency. The aim of this study was to test different trap types, commonly used in Greece to collect mosquitoes, with the addition of the Biogents Sentinel lure. Moreover, traps were placed in two distinct land types and two different heights above the ground to compare their efficacy. West Nile Virus is endemic in Greece, so we also aimed to detect viral presence and circulation in selected mosquito pools. Results: Adult mosquitoes of Aedes albopictus, Culex pipiens s.l., and Culiseta longiareolata were collected in both study areas. The trap type had a significant impact on the total collections, while the trap position and interaction between trap and position did not significantly affect mosquito catches. WNV was detected in Cx. pipiens s.l. pools examined from the two study areas. Conclusion: This study emphasizes the role of trapping methods as a key component for monitoring and surveillance of adult mosquito populations, reflecting that several trap types present with different mosquito species capture and catch rates.
Collapse
Affiliation(s)
- Marina Bisia
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Athens, Greece
| | - Pavlos Papadopoulos
- Department of Public Health Policy, School of Public Health, University of West Attika, Athens, Greece
| | - Stelios Filis
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Athens, Greece.,Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula Beleri
- Department of Public Health Policy, School of Public Health, University of West Attika, Athens, Greece
| | - Nikolaos Tegos
- Department of Public Health Policy, School of Public Health, University of West Attika, Athens, Greece
| | - George K Lamprou
- Laboratory of Organic Chemical Technology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Georgios Balatsos
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Athens, Greece
| | - Dimitrios Papachristos
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Athens, Greece
| | - Antonios Michaelakis
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Athens, Greece
| | - Eleni Patsoula
- Department of Public Health Policy, School of Public Health, University of West Attika, Athens, Greece
| |
Collapse
|
24
|
Wang LM, Li N, Ren CP, Peng ZY, Lu HZ, Li D, Wu XY, Zhou ZX, Deng JY, Zheng ZH, Wang RQ, Du YN, Wang DQ, Deng SQ. Sterility of Aedes albopictus by X-ray Irradiation as an Alternative to γ-ray Irradiation for the Sterile Insect Technique. Pathogens 2023; 12:102. [PMID: 36678450 PMCID: PMC9867157 DOI: 10.3390/pathogens12010102] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
The mosquito Aedes albopictus can transmit various arboviral diseases, posing a severe threat to human health. As an environmentally friendly method, sterile insect technology (SIT) is considered an alternative to traditional methods such as chemical pesticides to control Ae. albopictus. In SIT, the sterility of male mosquitoes can be achieved by γ-ray or X-ray radiation. Compared with γ-rays, X-rays are easier to obtain, cheaper, and less harmful. However, there is a lack of comparative assessment of these two types of radiation for SIT under the same controlled conditions. Here, we compared the effects of X-ray and γ-ray radiation on the sterility of Ae. albopictus males under laboratory-controlled conditions. Neither type of radiation affected the number of eggs but significantly reduced the survival time and hatch rate. The same dose of γ-rays caused a higher sterility effect on males than X-rays but had a more significant impact on survival. However, X-rays could achieve the same sterility effect as γ-rays by increasing the radiation dose. For example, X-rays of 60 Gy induced 99% sterility, similar to γ-rays of 40 Gy. In the test of male mating competitiveness, the induced sterility and the male mating competitiveness index were also identical at the same release ratio (sterile males/fertile males). At a release ratio of 7:1, nearly 80% of eggs failed to hatch. Sterile males produced by X-ray and γ-ray radiation had similar male competitiveness in competition with field males. In conclusion, a higher dose of X-rays is required to achieve the same sterility effect, compared to γ-rays. When γ-rays are not readily available, high-dose X-rays can be used instead. This study provides data supporting the selection of more suitable radiation for the field release of sterile male mosquitoes.
Collapse
Affiliation(s)
- Lin-Min Wang
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Ni Li
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Cui-Ping Ren
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhe-Yu Peng
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Hong-Zheng Lu
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Dong Li
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xin-Yu Wu
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zi-Xin Zhou
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jian-Yi Deng
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zi-Han Zheng
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Ruo-Qing Wang
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yi-Nan Du
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Duo-Quan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Sheng-Qun Deng
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
25
|
Kayesh MEH, Khalil I, Kohara M, Tsukiyama-Kohara K. Increasing Dengue Burden and Severe Dengue Risk in Bangladesh: An Overview. Trop Med Infect Dis 2023; 8:tropicalmed8010032. [PMID: 36668939 PMCID: PMC9866424 DOI: 10.3390/tropicalmed8010032] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Dengue is a prevalent and rapidly spreading mosquito-borne viral disease affecting humans. The geographic range of dengue is expanding, and much like in many other tropical regions of the world, dengue has become a major public health issue in Bangladesh. Until a large epidemic dengue outbreak in 2000, sporadic outbreaks have occurred in Bangladesh since 1964. After 2000, varying intensities of dengue activity were observed each year until 2018. However, in 2019, Bangladesh experienced the largest dengue epidemic in its history, with 101,354 dengue cases and 164 dengue-related deaths. Notably, this outbreak occurred in many regions that were previously considered free of the disease. As of 10 December 2022, a total of 60,078 dengue cases and 266 dengue-related deaths were reported in Bangladesh, with the 2022 outbreak being the second largest since 2000. There is an increased genetic diversity of the dengue virus (DENV) in Bangladesh and all four DENV serotypes are prevalent and co-circulating, which increases the risk for severe dengue owing to the antibody-dependent enhancement effect. Vector control remains the mainstay of dengue outbreak prevention; however, the vector control programs adopted in Bangladesh seem inadequate, requiring improved vector control strategies. In this review, we provide an overview of the epidemiology of DENV infection and the risks for a severe dengue outbreak in Bangladesh. Additionally, we discuss different dengue vector control strategies, from which the most suitable and effective measures can be applied in the context of Bangladesh for tackling future dengue epidemics.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
- Correspondence: (M.E.H.K.); (K.T.-K.); Tel.: +88-025-506-1677 (M.E.H.K.); +81-99-285-3589 (K.T.-K.)
| | - Ibrahim Khalil
- Department of Livestock Services, Ministry of Fisheries & Livestock, Government of the Peoples Republic of Bangladesh, Dhaka 1215, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Correspondence: (M.E.H.K.); (K.T.-K.); Tel.: +88-025-506-1677 (M.E.H.K.); +81-99-285-3589 (K.T.-K.)
| |
Collapse
|
26
|
Evans KG, Neale ZR, Holly B, Canizela CC, Juliano SA. Survival-Larval Density Relationships in the Field and Their Implications for Control of Container-Dwelling Aedes Mosquitoes. INSECTS 2022; 14:17. [PMID: 36661946 PMCID: PMC9860540 DOI: 10.3390/insects14010017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Population density can affect survival, growth, development time, and adult size and fecundity, which are collectively known as density-dependent effects. Container Aedes larvae often attain high densities in nature, and those densities may be reduced when larval control is applied. We tested the hypothesis that density-dependent effects on survival are common and strong in nature and could result in maximal adult production at intermediate densities for Aedes aegypti, Aedes albopictus, and Aedes triseriatus. We surveyed naturally occurring densities in field containers, then introduced larvae at a similar range of densities, and censused the containers for survivors. We analyzed the survival-density relationships by nonlinear regressions, which showed that survival-density relationships vary among seasons, sites, and species. For each Aedes species, some sites and times yielded predictions that larval density reduction would yield the same (compensation), or more (overcompensation), adults than no larval density reduction. Thus, larval control targeting these Aedes species cannot always be assumed to yield a reduction in the number of adult mosquitoes. We suggest that mosquito control targeting larvae may be made more effective by: Imposing maximum mortality; targeting populations when larval abundances are low; and knowing the shape of the survival-density response of the target population.
Collapse
|
27
|
Carvalho DO, Morreale R, Stenhouse S, Hahn DA, Gomez M, Lloyd A, Hoel D. A sterile insect technique pilot trial on Captiva Island: defining mosquito population parameters for sterile male releases using mark-release-recapture. Parasit Vectors 2022; 15:402. [PMID: 36320036 PMCID: PMC9628054 DOI: 10.1186/s13071-022-05512-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022] Open
Abstract
Background The sterile insect technique (SIT), which involves area-wide inundative releases of sterile insects to suppress the reproduction of a target species, has proven to be an effective pest control method. The technique demands the continuous release of sterilized insects in quantities that ensure a high sterile male:wild male ratio for the suppression of the wild population over succeeding generations. Methods For these releases, it is important to determine several ecological and biological population parameters, including the longevity of the released males in the field, the dispersal of the released males and the wild pest population size. The Lee County Mosquito Control District initiated a study in a 47-ha portion of Captiva Island (Florida, USA), an island with a total area of 230 ha, to define biological SIT parameters for Aedes aegypti (L.), an invasive disease-vectoring mosquito known to be difficult to control due to a combination of daytime biting activity, use of cryptic breeding habitats that are difficult to target with conventional night-time ultra-low volume methods, and emerging resistance to commonly used insecticides. Another goal was to assess patterns of dispersal and survival for laboratory-reared sterile Ae. aegypti males released over time in the pilot site. These parameters will be used to evaluate the efficacy of a SIT suppression program for Ae. aegypti on Captiva Island. Results Over the course of seven mark-release-recapture studies using single- and multiple-point releases, 190,504 sterile marked males were released, for which the recapture rate was 1.5% over a mean period of 12 days. The mean distance traveled by sterile males of the local strain of Ae. aegypti that has colonized Captiva Island was 201.7 m from the release point, with an observed maximum traveled distance of 404.5 m. The released sterile mosquitoes had a probability of daily survival of 0.67 and an average life expectancy of ~ 2.46 days. Conclusions These data together with the population size estimate and sterile:wild ratio provide a solid basis for planning the SIT operational phase which is aimed at mosquito population suppression. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05512-3.
Collapse
Affiliation(s)
- Danilo O. Carvalho
- grid.420221.70000 0004 0403 8399Insect Pest Control Subprogramme, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, 1400 Vienna, Austria
| | - Rachel Morreale
- Lee County Mosquito Control District, 15191 Homestead Road, Lehigh Acres, FL 33971 USA
| | - Steven Stenhouse
- Lee County Mosquito Control District, 15191 Homestead Road, Lehigh Acres, FL 33971 USA
| | - Daniel A. Hahn
- grid.15276.370000 0004 1936 8091Department of Entomology and Nematology, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611 USA
| | - Maylen Gomez
- grid.420221.70000 0004 0403 8399Insect Pest Control Subprogramme, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, 1400 Vienna, Austria
| | - Aaron Lloyd
- Lee County Mosquito Control District, 15191 Homestead Road, Lehigh Acres, FL 33971 USA
| | - David Hoel
- Lee County Mosquito Control District, 15191 Homestead Road, Lehigh Acres, FL 33971 USA
| |
Collapse
|
28
|
Pimid M, Krishnan KT, Ahmad AH, Mohd Naim D, Chambers GK, Mohd Nor SA, Ab Majid AH. Parentage Assignment Using Microsatellites Reveals Multiple Mating in Aedes aegypti (Diptera: Culicidae): Implications for Mating Dynamics. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1525-1533. [PMID: 35733165 DOI: 10.1093/jme/tjac081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 06/15/2023]
Abstract
The mosquito Aedes aegypti is the primary vector of the dengue, yellow fever, and chikungunya viruses. Evidence shows that Ae. aegypti males are polyandrous whereas Ae. aegypti females are monandrous in mating. However, the degree to which Ae. aegypti males and females can mate with different partners has not been rigorously tested. Therefore, this study examined the rates of polyandry via parentage assignment in three sets of competitive mating experiments using wild-type male and female Ae. aegypti. Parentage assignment was monitored using nine microsatellite DNA markers. All Ae. aegypti offspring were successfully assigned to parents with 80% or 95% confidence using CERVUS software. The results showed that both male and female Ae. aegypti mated with up to 3-4 different partners. Adults contributed differentially to the emergent offspring, with reproductive outputs ranging from 1 to 25 viable progeny. This study demonstrates a new perspective on the capabilities of male and female Ae. aegypti in mating. These findings are significant because successful deployment of reproductive control methods using genetic modification or sterile Ae. aegypti must consider the following criteria regarding their mating fitness: 1) choosing Ae. aegypti males that can mate with many different females; 2) testing how transformed Ae. aegypti male perform with polyandrous females; and 3) prioritizing the selection of polyandrous males and/or females Ae. aegypti that have the most offspring.
Collapse
Affiliation(s)
- Marcela Pimid
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Kelantan, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Kumara Thevan Krishnan
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Kelantan, Malaysia
| | - Abu Hassan Ahmad
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Darlina Mohd Naim
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Geoffrey K Chambers
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, 6140 Wellington, New Zealand
| | - Siti Azizah Mohd Nor
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Terengganu, Malaysia
| | - Abdul Hafiz Ab Majid
- Household & Structural Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
29
|
Velo E, Balestrino F, Kadriaj P, Carvalho DO, Dicko A, Bellini R, Puggioli A, Petrić D, Michaelakis A, Schaffner F, Almenar D, Pajovic I, Beqirllari A, Ali M, Sino G, Rogozi E, Jani V, Nikolla A, Porja T, Goga T, Fălcuă E, Kavran M, Pudar D, Mikov O, Ivanova-Aleksandrova N, Cvetkovikj A, Akıner MM, Mikovic R, Tafaj L, Bino S, Bouyer J, Mamai W. A Mark-Release-Recapture Study to Estimate Field Performance of Imported Radio-Sterilized Male Aedes albopictus in Albania. Front Bioeng Biotechnol 2022; 10:833698. [PMID: 36051578 PMCID: PMC9424856 DOI: 10.3389/fbioe.2022.833698] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 06/24/2022] [Indexed: 11/14/2022] Open
Abstract
The pathogen transmitting Aedes albopictus mosquito is spreading rapidly in Europe, putting millions of humans and animals at risk. This species is well-established in Albania since its first detection in 1979. The sterile insect technique (SIT) is increasingly gaining momentum worldwide as a component of area-wide-integrated pest management. However, estimating how the sterile males will perform in the field and the size of target populations is crucial for better decision-making, designing and elaborating appropriate SIT pilot trials, and subsequent large-scale release strategies. A mark-release-recapture (MRR) experiment was carried out in Albania within a highly urbanized area in the city of Tirana. The radio-sterilized adults of Ae. albopictus Albania strain males were transported by plane from Centro Agricoltura Ambiente (CAA) mass-production facility (Bologna, Italy), where they were reared. In Albania, sterile males were sugar-fed, marked with fluorescent powder, and released. The aim of this study was to estimate, under field conditions, their dispersal capacity, probability of daily survival and competitiveness, and the size of the target population. In addition, two adult mosquito collection methods were also evaluated: BG-Sentinel traps baited with BG-Lure and CO2, (BGS) versus human landing catch (HLC). The overall recapture rates did not differ significantly between the two methods (2.36% and 1.57% of the total male released were recaptured respectively by BGS and HLC), suggesting a similar trapping efficiency under these conditions. Sterile males traveled a mean distance of 93.85 ± 42.58 m and dispersed up to 258 m. Moreover, they were observed living in the field up to 15 days after release with an average life expectancy of 4.26 ± 0.80 days. Whether mosquitoes were marked with green, blue, yellow, or pink, released at 3.00 p.m. or 6.00 p.m., there was no significant difference in the recapture, dispersal, and survival rates in the field. The Fried competitiveness index was estimated at 0.28. This mark-release-recapture study provided important data for better decision-making and planning before moving to pilot SIT trials in Albania. Moreover, it also showed that both BG-traps and HLC were successful in monitoring adult mosquitoes and provided similar estimations of the main entomological parameters needed.
Collapse
Affiliation(s)
- Enkelejda Velo
- Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
- *Correspondence: Enkelejda Velo, ; Wadaka Mamai,
| | - Fabrizio Balestrino
- Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
- Centro Agricoltura Ambiente (Italy), Crevalcore, Italy
| | - Përparim Kadriaj
- Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| | | | - Ahmadou Dicko
- Statistics for Development–STATS4D, Sacre Coeur III, Dakar, Senegal
| | - Romeo Bellini
- Centro Agricoltura Ambiente (Italy), Crevalcore, Italy
| | | | - Dusan Petrić
- Faculty of Agriculture, University of Novi Sad, Vojvodina, Serbia
| | - Antonios Michaelakis
- Scient.Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Kifissia, Greece
| | | | - David Almenar
- Empresa de Transformación Agraria S.A., S.M.E, M.P. (TRAGSA), Paterna, Spain
| | - Igor Pajovic
- Biotechnical Faculty, University of Montenegro, Podgorica, Montenegro
| | | | | | - Gjergji Sino
- Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| | - Elton Rogozi
- Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| | - Vjola Jani
- Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| | | | - Tanja Porja
- Department of Physics, Faculty of Natural Sciences, “MeteoAlb” Politechnic University of Tirana, Tirana, Albania
| | - Thanas Goga
- Aide to the Prime Minister, Albania Department of Risk Communication and Community Engagement, WHE Balkan Hub, WHO Regional Office for Europe, Belgrade, Serbia
| | - Elena Fălcuă
- “Cantacuzino” National Military-Medical Institute for Research and Development, Bucharest, Romania
| | - Mihaela Kavran
- Faculty of Agriculture, University of Novi Sad, Vojvodina, Serbia
| | - Dubravka Pudar
- Faculty of Agriculture, University of Novi Sad, Vojvodina, Serbia
| | - Ognyan Mikov
- National Centre of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | | | - Aleksandar Cvetkovikj
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine-Skopje, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Muhammet Mustafa Akıner
- Department of Biology, Faculty of Arts and Sciences Department of Biology, Recep Tayyip Erdogan University, Rize, Turkey
| | - Rados Mikovic
- Veterinary Diagnostics Laboratory, Podgorica, Montenegro
| | - Lindita Tafaj
- Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| | - Silva Bino
- Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| | - Jeremy Bouyer
- Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Wadaka Mamai
- Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
- Institute for Agricultural Research for Development (IRAD), Yaounde, Cameroon
- *Correspondence: Enkelejda Velo, ; Wadaka Mamai,
| |
Collapse
|
30
|
Buezo Montero S, Gabrieli P, Poinsignon A, Zamble BZH, Lombardo F, Remoue F, Arcà B. Human IgG responses to the Aedes albopictus 34k2 salivary protein: analyses in Réunion Island and Bolivia confirm its suitability as marker of host exposure to the tiger mosquito. Parasit Vectors 2022; 15:260. [PMID: 35858924 PMCID: PMC9301888 DOI: 10.1186/s13071-022-05383-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The rapid worldwide spreading of Aedes aegypti and Aedes albopictus is expanding the risk of arboviral diseases transmission, pointing out the urgent need to improve monitoring and control of mosquito vector populations. Assessment of human-vector contact, currently estimated by classical entomological methods, is crucial to guide planning and implementation of control measures and evaluate transmission risk. Antibody responses to mosquito genus-specific salivary proteins are emerging as a convenient complementary tool for assessing host exposure to vectors. We previously showed that IgG responses to the Ae. albopictus 34k2 salivary protein (al34k2) allow detection of seasonal and geographic variation of human exposure to the tiger mosquito in two temperate areas of Northeast Italy. The main aim of this study was to confirm and extend these promising findings to tropical areas with ongoing arboviral transmission. METHODS IgG responses to al34k2 and to the Ae. aegypti orthologous protein ae34k2 were measured by ELISA in cohorts of subjects only exposed to Ae. albopictus (Réunion Island), only exposed to Ae. aegypti (Bolivia) or unexposed to both these vectors (North of France). RESULTS AND CONCLUSION Anti-al34k2 IgG levels were significantly higher in sera of individuals from Réunion Island than in unexposed controls, indicating that al34k2 may be a convenient and reliable proxy for whole saliva or salivary gland extracts as an indicator of human exposure to Ae. albopictus. Bolivian subjects, exposed to bites of Ae. aegypti, carried in their sera IgG recognizing the Ae. albopictus al34k2 protein, suggesting that this salivary antigen can also detect, even though with low sensitivity, human exposure to Ae. aegypti. On the contrary, due to the high background observed in unexposed controls, the recombinant ae34k2 appeared not suitable for the evaluation of human exposure to Aedes mosquitoes. Overall, this study confirmed the suitability of anti-al34k2 IgG responses as a specific biomarker of human exposure to Ae. albopictus and, to a certain extent, to Ae. aegypti. Immunoassays based on al34k2 are expected to be especially effective in areas where Ae. albopictus is the main arboviral vector but may also be useful in areas where Ae. albopictus and Ae. aegypti coexist.
Collapse
Affiliation(s)
- Sara Buezo Montero
- Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Present Address: Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074 Tübingen, Germany
| | - Paolo Gabrieli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Anne Poinsignon
- MIVEGEC, University of Montpellier, IRD, CNRS, 34000 Montpellier, France
| | | | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Franck Remoue
- MIVEGEC, University of Montpellier, IRD, CNRS, 34000 Montpellier, France
| | - Bruno Arcà
- Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
31
|
Bonds JAS, Collins CM, Gouagna L. Could species-focused suppression of Aedes aegypti, the yellow fever mosquito, and Aedes albopictus, the tiger mosquito, affect interacting predators? An evidence synthesis from the literature. PEST MANAGEMENT SCIENCE 2022; 78:2729-2745. [PMID: 35294802 PMCID: PMC9323472 DOI: 10.1002/ps.6870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The risks of Aedes aegypti and Aedes albopictus nuisance and vector-borne diseases are rising and the adverse effects of broad-spectrum insecticide application have promoted species-specific techniques, such as sterile insect technique (SIT) and other genetic strategies, as contenders in their control operations. When specific vector suppression is proposed, potential effects on predators and wider ecosystem are some of the first stakeholder questions. These are not the only Aedes vectors of human diseases, but are those for which SIT and genetic strategies are of most interest. They vary ecologically and in habitat origin, but both have behaviorally human-adapted forms with expanding ranges. The aquatic life stages are where predation is strongest due to greater resource predictability and limited escape opportunity. These vectors' anthropic forms usually use ephemeral water bodies and man-made containers as larval habitats; predators that occur in these are mobile, opportunistic and generalist. No literature indicates that any predator depends on larvae of either species. As adults, foraging theory predicts these mosquitoes are of low profitability to predators. Energy expended hunting and consuming will mostly outweigh their energetic benefit. Moreover, as adult biomass is mobile and largely disaggregated, any predator is likely to be a generalist and opportunist. This work, which summarizes much of the literature currently available on the predators of Ae. aegypti and Ae. albopictus, indicates it is highly unlikely that any predator species depends on them. Species-specific vector control to reduce nuisance and disease is thus likely to be of negligible or limited impact on nontarget predators. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Louis‐Clément Gouagna
- UMR MIVEGEC (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle)IRD‐CNRS‐Univ. MontpellierMontpellierFrance
| |
Collapse
|
32
|
Balestrino F, Bouyer J, Vreysen MJB, Veronesi E. Impact of Irradiation on Vector Competence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) for Dengue and Chikungunya Viruses. Front Bioeng Biotechnol 2022; 10:876400. [PMID: 35721847 PMCID: PMC9204086 DOI: 10.3389/fbioe.2022.876400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Effective control strategies against arthropod disease vectors are amongst the most powerful tools to prevent the spread of vector-borne diseases. The sterile insect technique (SIT) is an effective and sustainable autocidal control method that has recently shown effective population suppression against different Aedes vector species worldwide. The SIT approach for mosquito vectors requires the release of radio-sterilized male mosquitoes only, but currently available sex separation techniques cannot ensure the complete elimination of females resulting in short-term risk of increased biting rate and arboviral disease transmission. In this study, we compared for the first time the transmission of dengue and chikungunya viruses in Aedes aegypti and Aedes albopictus females exposed as pupae to an irradiation dose of 40 Gy. Females of both species were fed on blood spiked with either dengue or chikungunya viruses, and body parts were tested for virus presence by real-time RT-PCR at different time points. No differences were observed in the dissemination efficiency of the dengue virus in irradiated and unirradiated Ae. albopictus and Ae. aegypti mosquitoes. The dissemination of the chikungunya virus was higher in Ae. albopictus than in Ae. Aegypti, and irradiation increased the virus load in both species. However, we did not observe differences in the transmission efficiency for chikungunya (100%) and dengue (8–27%) between mosquito species, and irradiation did not impact transmissibility. Further implications of these results on the epidemiology of vector-borne diseases in the field are discussed.
Collapse
Affiliation(s)
- Fabrizio Balestrino
- National Centre for Vector Entomology, Vetsuisse Faculty, Institute of Parasitology, University of Zürich, Zürich, Switzerland
- Centro Agricoltura Ambiente “G. Nicoli”, Sanitary Entomology and Zoology Department, Crevalcore, Italy
- *Correspondence: Fabrizio Balestrino,
| | - Jérémy Bouyer
- CIRAD, UMR ASTRE CIRAD-INRA « Animals, Health, Territories, Risks and Ecosystems », Montpellier, France
- FAO/IAEA Insect Pest Control Laboratory (IPCL), FAO/IAEA Joint Division of Nuclear Techniques in Food and Agriculture (NAFA), FAO/IAEA Agriculture and Biotechnology Laboratories, Vienna, Austria
| | - Marc J. B. Vreysen
- FAO/IAEA Insect Pest Control Laboratory (IPCL), FAO/IAEA Joint Division of Nuclear Techniques in Food and Agriculture (NAFA), FAO/IAEA Agriculture and Biotechnology Laboratories, Vienna, Austria
| | - Eva Veronesi
- National Centre for Vector Entomology, Vetsuisse Faculty, Institute of Parasitology, University of Zürich, Zürich, Switzerland
- Laboratory of Applied Microbiology, Department of Environment, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Bellinzona, Switzerland
| |
Collapse
|
33
|
Jiménez-Alejo A, Pacheco-Soriano AL, Liedo P, Marina CF, Bond JG, Rodríguez-Ramos JC, Valle J, Dor A. Acceptance of a Sterile Male Releases Pilot Project to Reduce Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae) Populations and Its Associated Factors: A Community-based Cross-sectional Survey in South Chiapas, Mexico. Acta Trop 2022; 233:106573. [DOI: 10.1016/j.actatropica.2022.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 12/01/2022]
|
34
|
Pilot trial using mass field-releases of sterile males produced with the incompatible and sterile insect techniques as part of integrated Aedes aegypti control in Mexico. PLoS Negl Trop Dis 2022; 16:e0010324. [PMID: 35471983 PMCID: PMC9041844 DOI: 10.1371/journal.pntd.0010324] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/12/2022] [Indexed: 12/13/2022] Open
Abstract
Background The combination of Wolbachia-based incompatible insect technique (IIT) and radiation-based sterile insect technique (SIT) can be used for population suppression of Aedes aegypti. Our main objective was to evaluate whether open-field mass-releases of wAlbB-infected Ae. aegypti males, as part of an Integrated Vector Management (IVM) plan led by the Mexican Ministry of Health, could suppress natural populations of Ae. aegypti in urbanized settings in south Mexico. Methodology/Principal findings We implemented a controlled before-and-after quasi-experimental study in two suburban localities of Yucatan (Mexico): San Pedro Chimay (SPC), which received IIT-SIT, and San Antonio Tahdzibichén used as control. Release of wAlbB Ae. aegypti males at SPC extended for 6 months (July-December 2019), covering the period of higher Ae. aegypti abundance. Entomological indicators included egg hatching rates and outdoor/indoor adult females collected at the release and control sites. Approximately 1,270,000 lab-produced wAlbB-infected Ae. aegypti males were released in the 50-ha treatment area (2,000 wAlbB Ae. aegypti males per hectare twice a week in two different release days, totaling 200,000 male mosquitoes per week). The efficacy of IIT-SIT in suppressing indoor female Ae. aegypti density (quantified from a generalized linear mixed model showing a statistically significant reduction in treatment versus control areas) was 90.9% a month after initiation of the suppression phase, 47.7% two months after (when number of released males was reduced in 50% to match local abundance), 61.4% four months after (when initial number of released males was re-established), 88.4% five months after and 89.4% at six months after the initiation of the suppression phase. A proportional, but lower, reduction in outdoor female Ae. aegypti was also quantified (range, 50.0–75.2% suppression). Conclusions/Significance Our study, the first open-field pilot implementation of Wolbachia IIT-SIT in Mexico and Latin-America, confirms that inundative male releases can significantly reduce natural populations of Ae. aegypti. More importantly, we present successful pilot results of the integration of Wolbachia IIT-SIT within a IVM plan implemented by Ministry of Health personnel. Wild-type female Ae. aegypti mating with released males carrying the maternally inherited bacteria Wolbachia produce infertile eggs, leading to important reductions in mosquito population size. We present results from pilot open-field mass-releases of Ae. aegypti males infected with the Wolbachia strain wAlbB (termed incompatible insect technique, IIT) and irradiated to prevent accidental female mosquito colonization (termed sterile insect technique, SIT). Our IIT-SIT approach was implemented by the Mexican Ministry of Health within an Integrated Vector Management (IVM) plan to suppress natural populations of Ae. aegypti. Approximately 1,270,000 lab-produced wAlbB-infected Ae. aegypti males were released in a 50-ha. town of Yucatan over a period of 24 weeks. Throughout the suppression phase, we observed significant reductions in egg hatching, outdoor and indoor female Ae. aegypti densities in the release town compared to a similar town used as control. The largest effect was on the number of indoor Ae. aegypti females per house (Prokopack collections) which reached a 90% efficacy. Our study, the first report of an open-field pilot-study with mass-releases of sterile Ae. aegypti males produced with IIT-SIT in Mexico and Latin-America, confirms findings from other settings showing important reductions in entomological indices due to inundative incompatible male releases.
Collapse
|
35
|
Marina CF, Liedo P, Bond JG, R. Osorio A, Valle J, Angulo-Kladt R, Gómez-Simuta Y, Fernández-Salas I, Dor A, Williams T. Comparison of Ground Release and Drone-Mediated Aerial Release of Aedes aegypti Sterile Males in Southern Mexico: Efficacy and Challenges. INSECTS 2022; 13:insects13040347. [PMID: 35447790 PMCID: PMC9025923 DOI: 10.3390/insects13040347] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 01/25/2023]
Abstract
Sterile males of Aedes aegypti were released once a week for 8 weeks to evaluate the dispersal efficiency of ground and aerial drone release methods in a rural village of 26 Ha in southern Mexico. Indoor and outdoor BG-Sentinel traps were placed in 13−16 houses distributed throughout the village. The BG traps were activated 48 h after the release of the sterile males and functioned for a 24 h period following each release. Over the 8-week period of simultaneous ground and aerial releases, an average of 85,117 ± 6457 sterile males/week were released at ground level and 86,724 ± 6474 sterile males/week were released using an aerial drone. The ground release method resulted in higher numbers of captured males (mean = 5.1 ± 1.4, range 1.1−15.7 sterile males/trap) compared with the aerial release method (mean = 2.6 ± 0.8, range 0.5−7.3 sterile males/trap) (p < 0.05). Similarly, the prevalence of traps that captured at least one sterile male was significantly higher for ground release compared to the aerial release method (p < 0.01). The lower numbers of sterile males captured in the aerial release method could be due to mortality or physical injury caused by the chilling process for immobilization, or the compaction of these insects during transport and release. However, aerial releases by a two-person team distributed insects over the entire village in just 20 min, compared to ~90 min of work for a five-person team during the ground release method. Ground release also resulted in higher aggregations of males and some villagers reported feeling discomfort from the presence of large numbers of mosquitoes in and around their houses. We conclude that modifications to the handling and transport of sterile males and the design of containers used to store males are required to avoid injury and to improve the efficiency of aerial releases for area-wide SIT-based population suppression programs targeted at mosquito vectors of human disease.
Collapse
Affiliation(s)
- Carlos F. Marina
- Centro Regional de Investigación en Salud Pública—Instituto Nacional de Salud Pública, Tapachula 30700, Chiapas, Mexico; (J.G.B.); (A.R.O.); (I.F.-S.)
- Correspondence: (C.F.M.); (T.W.)
| | - Pablo Liedo
- El Colegio de la Frontera Sur (ECOSUR), Unidad Tapachula, Tapachula 30700, Chiapas, Mexico; (P.L.); (J.V.); (A.D.)
| | - J. Guillermo Bond
- Centro Regional de Investigación en Salud Pública—Instituto Nacional de Salud Pública, Tapachula 30700, Chiapas, Mexico; (J.G.B.); (A.R.O.); (I.F.-S.)
| | - Adriana R. Osorio
- Centro Regional de Investigación en Salud Pública—Instituto Nacional de Salud Pública, Tapachula 30700, Chiapas, Mexico; (J.G.B.); (A.R.O.); (I.F.-S.)
| | - Javier Valle
- El Colegio de la Frontera Sur (ECOSUR), Unidad Tapachula, Tapachula 30700, Chiapas, Mexico; (P.L.); (J.V.); (A.D.)
| | | | - Yeudiel Gómez-Simuta
- Programa Moscas de la Fruta (SADER-IICA), Metapa de Domínguez 30860, Chiapas, Mexico;
| | - Ildefonso Fernández-Salas
- Centro Regional de Investigación en Salud Pública—Instituto Nacional de Salud Pública, Tapachula 30700, Chiapas, Mexico; (J.G.B.); (A.R.O.); (I.F.-S.)
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza 66450, Nuevo León, Mexico
| | - Ariane Dor
- El Colegio de la Frontera Sur (ECOSUR), Unidad Tapachula, Tapachula 30700, Chiapas, Mexico; (P.L.); (J.V.); (A.D.)
- Consejo Nacional de Ciencia y Tecnologiá (Investigadora por México CONACYT), El Colegio de la Frontera Sur, Unidad Tapachula, Tapachula 30700, Chiapas, Mexico
| | - Trevor Williams
- Instituto de Ecología AC (INECOL), Xalapa 91073, Veracruz, Mexico
- Correspondence: (C.F.M.); (T.W.)
| |
Collapse
|
36
|
Mastronikolos GD, Kapranas A, Balatsos GK, Ioannou C, Papachristos DP, Milonas PG, Puggioli A, Pajović I, Petrić D, Bellini R, Michaelakis A, Papadopoulos NT. Quality Control Methods for Aedes albopictus Sterile Male Transportation. INSECTS 2022; 13:179. [PMID: 35206755 PMCID: PMC8878208 DOI: 10.3390/insects13020179] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 12/27/2022]
Abstract
Genetic based mosquito control methods have been gaining ground in recent years for their potential to achieve effective suppression or replacement of vector populations without hampering environments or causing any public health risk. These methods require the mass rearing of the target species in large facilities sized to produce millions of sterile males, as already well established for a number of insects of agricultural importance. Assessing the performance of released males in Sterile Insect Technique (SIT) control programs is of the utmost importance for the success of the operation. Besides the negative effects of mass rearing and sterilization, the handling of sterilized insects and shipment to distant areas may also negatively impact the quality of sterilized males. The aim of the current study was to design and executive quality control (QC) tests for sterilized Aedes albopictus (Asian tiger mosquito) males delivered by air shipment from the mass production facility located in Italy to Greece and Montenegro field release sites. Mass reared mosquito strains were based on biological materials received from Italy, Greece and Montenegro. Tests conducted at the mass rearing facility before transportation revealed a rather high residual female contamination following mechanical sex separation (approximately 1.5% females, regardless of the mosquito strain). Irradiated males of all three mosquito strains induced high levels of sterility to females. Shipment lasting approximately 24 h resulted in approximately 15% mortality, while when shipment lasted nearly two days this increased to almost 40%. The flight ability of sterilized males following one day transportation time was satisfactory (over 60%). The response of sterile males to food and water starvation was comparable and slightly lower than that of wild non-transported males. Longevity of sterile males was shorter than that of wild counterparts and it seems it was not affected by mating to wild females. Both mating propensity and mating competitiveness for wild virgin females was higher for the wild, control males compared to the sterile, transported ones. Overall, the performance of sterile male Ae. albopictus delivered from the mass rearing facility of Italy to Greece in approximately 24 h was satisfactory. Transportation lasting two days or longer incurred detrimental effects on males, which called into question the outcome of the SIT release programs. In conclusion, our results demonstrate the need of quality control procedures, especially when sterile male production facilities are not near to the releasing point. Transportation could be a serious drawback for the implementation of Sterile Insect Releases and, consequently, it is important to establish an efficient and fast transportation of sterilized males in advance.
Collapse
Affiliation(s)
- Georgios D. Mastronikolos
- Laboratory of Entomology Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece; (G.D.M.); (C.I.)
| | - Apostolos Kapranas
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 14561 Kifissia, Greece; (A.K.); (G.K.B.); (D.P.P.); (P.G.M.); (A.M.)
- Laboratory of Applied Zoology and Parasitology, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - George K. Balatsos
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 14561 Kifissia, Greece; (A.K.); (G.K.B.); (D.P.P.); (P.G.M.); (A.M.)
| | - Charalampos Ioannou
- Laboratory of Entomology Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece; (G.D.M.); (C.I.)
| | - Dimitrios P. Papachristos
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 14561 Kifissia, Greece; (A.K.); (G.K.B.); (D.P.P.); (P.G.M.); (A.M.)
| | - Panagiotis G. Milonas
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 14561 Kifissia, Greece; (A.K.); (G.K.B.); (D.P.P.); (P.G.M.); (A.M.)
| | - Arianna Puggioli
- Centro Agricoltura Ambiente “G. Nicoli”, 40014 Crevalcore, Italy; (A.P.); (R.B.)
| | - Igor Pajović
- Biotechnical Faculty, University of Montenegro, 81000 Podgorica, Montenegro;
| | - Dušan Petrić
- Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Romeo Bellini
- Centro Agricoltura Ambiente “G. Nicoli”, 40014 Crevalcore, Italy; (A.P.); (R.B.)
| | - Antonios Michaelakis
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 14561 Kifissia, Greece; (A.K.); (G.K.B.); (D.P.P.); (P.G.M.); (A.M.)
| | - Nikos T. Papadopoulos
- Laboratory of Entomology Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece; (G.D.M.); (C.I.)
| |
Collapse
|
37
|
Guissou C, Quinlan MM, Sanou R, Ouédraogo RK, Namountougou M, Diabaté A. Preparing an Insectary in Burkina Faso to Support Research in Genetic Technologies for Malaria Control. Vector Borne Zoonotic Dis 2022; 22:18-28. [PMID: 34995157 PMCID: PMC8787693 DOI: 10.1089/vbz.2021.0041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The Institut de Recherche en Sciences de la Santé (IRSS) of Burkina Faso, West Africa, was the first African institution to import transgenic mosquitoes for research purposes. A shift from the culture of mosquito research to regulated biotechnology research and considerable management capacity is needed to set up and run the first insectary for transgenic insects in a country that applied and adapted the existing biosafety framework, first developed for genetically modified (GM) crops, to this new area of research. The additional demands arise from the separate regulatory framework for biotechnology, referencing the Cartagena Protocol on Biosafety, and the novelty of the research strain, making public understanding and acceptance early in the research pathway important. The IRSS team carried out extensive preparations following recommendations for containment of GM arthropods and invested efforts in local community engagement and training with scientific colleagues throughout the region. Record keeping beyond routine practice was established to maintain evidence related to regulatory requirements and risk assumptions. The National Biosafety Agency of Burkina Faso, Agence Nationale de Biosécurité (ANB), granted the permits for import of the self-limiting transgenic mosquito strain, which took place in November 2016, and for conducting studies in the IRSS facility in Bobo-Dioulasso. Compliance with permit terms and conditions of the permits and study protocols continued until the conclusion of studies, when the transgenic colonies were terminated. All this required close coordination between management and the insectary teams, as well as others. This article outlines the experiences of the IRSS to support others undertaking such studies. The IRSS is contributing to the ongoing development of genetic technologies for malaria control, as a partner of Target Malaria. The ultimate objective of the innovation is to reduce malaria transmission by using GM mosquitoes of the same species released to reduce the disease-vectoring native populations of Anopheles gambiae s.l.
Collapse
Affiliation(s)
- Charles Guissou
- Institut de Recherche en Sciences de la Santé-Direction Régionale de l''Ouest (IRSS-DRO), Bobo-Dioulasso, Burkina Faso
| | - M Megan Quinlan
- Centre for Environmental Policy, Imperial College London, United Kingdom
| | - Roger Sanou
- Institut de Recherche en Sciences de la Santé-Direction Régionale de l''Ouest (IRSS-DRO), Bobo-Dioulasso, Burkina Faso
| | - Robert K Ouédraogo
- Institut de Recherche en Sciences de la Santé-Direction Régionale de l''Ouest (IRSS-DRO), Bobo-Dioulasso, Burkina Faso
| | - Moussa Namountougou
- Institut de Recherche en Sciences de la Santé-Direction Régionale de l''Ouest (IRSS-DRO), Bobo-Dioulasso, Burkina Faso
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé-Direction Régionale de l''Ouest (IRSS-DRO), Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
38
|
Caputo B, Langella G, Petrella V, Virgillito C, Manica M, Filipponi F, Varone M, Primo P, Puggioli A, Bellini R, D’Antonio C, Iesu L, Tullo L, Rizzo C, Longobardi A, Sollazzo G, Perrotta MM, Fabozzi M, Palmieri F, Saccone G, Rosà R, della Torre A, Salvemini M. Aedes albopictus bionomics data collection by citizen participation on Procida Island, a promising Mediterranean site for the assessment of innovative and community-based integrated pest management methods. PLoS Negl Trop Dis 2021; 15:e0009698. [PMID: 34529653 PMCID: PMC8445450 DOI: 10.1371/journal.pntd.0009698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023] Open
Abstract
In the last decades, the colonization of Mediterranean Europe and of other temperate regions by Aedes albopictus created an unprecedented nuisance problem in highly infested areas and new public health threats due to the vector competence of the species. The Sterile Insect Technique (SIT) and the Incompatible Insect Technique (IIT) are insecticide-free mosquito-control methods, relying on mass release of irradiated/manipulated males, able to complement existing and only partially effective control tools. The validation of these approaches in the field requires appropriate experimental settings, possibly isolated to avoid mosquito immigration from other infested areas, and preliminary ecological and entomological data. We carried out a 4-year study in the island of Procida (Gulf of Naples, Italy) in strict collaboration with local administrators and citizens to estimate the temporal dynamics, spatial distribution, and population size of Ae. albopictus and the dispersal and survival of irradiated males. We applied ovitrap monitoring, geo-spatial analyses, mark-release-recapture technique, and a citizen-science approach. Results allow to predict the seasonal (from April to October, with peaks of 928-9,757 males/ha) and spatial distribution of the species, highlighting the capacity of Ae. albopictus population of Procida to colonize and maintain high frequencies in urban as well as in sylvatic inhabited environments. Irradiated males shown limited ability to disperse (mean daily distance travelled <60m) and daily survival estimates ranging between 0.80 and 0.95. Overall, the ecological characteristics of the island, the acquired knowledge on Ae. albopictus spatial and temporal distribution, the high human and Ae. albopictus densities and the positive attitude of the resident population in being active parts in innovative mosquito control projects provide the ground for evidence-based planning of the interventions and for the assessment of their effectiveness. In addition, the results highlight the value of creating synergies between research groups, local administrators, and citizens for affordable monitoring (and, in the future, control) of mosquito populations.
Collapse
Affiliation(s)
- Beniamino Caputo
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Giuliano Langella
- Department of Agriculture, University of Naples Federico II, Naples, Italy
| | - Valeria Petrella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Chiara Virgillito
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
- Department of Biodiversity and Molecular Ecology, Edmund Mach Foundation, San Michele all’Adige, Italy
| | - Mattia Manica
- Department of Biodiversity and Molecular Ecology, Edmund Mach Foundation, San Michele all’Adige, Italy
- Center for Health Emergencies, Bruno Kessler Foundation, Trento, Italy
| | - Federico Filipponi
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
- Istituto Superiore per la Protezione e la Ricerca Ambientale, Rome, Italy
| | - Marianna Varone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Pasquale Primo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Romeo Bellini
- Centro Agricoltura Ambiente “Giorgio Nicoli”, Crevalcore, Italy
| | | | - Luca Iesu
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Liliana Tullo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Ciro Rizzo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Germano Sollazzo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Miriana Fabozzi
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Fabiana Palmieri
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Giuseppe Saccone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Edmund Mach Foundation, San Michele all’Adige, Italy
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige (TN), Italy
| | - Alessandra della Torre
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
39
|
Matiadis D, Liggri PGV, Kritsi E, Tzioumaki N, Zoumpoulakis P, Papachristos DP, Balatsos G, Sagnou M, Michaelakis A. Curcumin Derivatives as Potential Mosquito Larvicidal Agents against Two Mosquito Vectors, Culex pipiens and Aedes albopictus. Int J Mol Sci 2021; 22:8915. [PMID: 34445622 PMCID: PMC8396198 DOI: 10.3390/ijms22168915] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/18/2021] [Accepted: 08/13/2021] [Indexed: 01/06/2023] Open
Abstract
Vector-borne diseases have appeared or re-emerged in many Southern Europe countries making the transmission of infectious diseases by mosquitoes (vectors) one of the greatest worldwide health threats. Larvicides have been used extensively for the control of Aedes (Stegomyia) albopictus (Skuse, 1895) (Diptera: Culicidae) and Culex pipiens Linnaeus, 1758 (Diptera: Culicidae) mosquitoes in urban and semi-urban environments, causing the increasing resistance of mosquitoes to commercial insecticides. In this study, 27 curcuminoids and monocarbonyl curcumin derivatives were synthesised and evaluated as potential larvicidal agents against Cx. pipiens and Ae. albopictus. Most of the compounds were more effective against larvae of both mosquito species. Four of the tested compounds, curcumin, demethoxycurcumin, curcumin-BF2 complex and a monocarbonyl tetramethoxy curcumin derivative exhibited high activity against both species. In Cx. pipiens the recorded LC50 values were 6.0, 9.4, 5.0 and 32.5 ppm, respectively, whereas in Ae. albopictus they exhibited LC50 values of 9.2, 36.0, 5.5 and 23.6 ppm, respectively. No conclusive structure activity relationship was evident from the results and the variety of descriptors values generated in silico provided some insight to this end.
Collapse
Affiliation(s)
- Dimitris Matiadis
- Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece;
| | - Panagiota G. V. Liggri
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (P.G.V.L.); (N.T.)
- Benaki Phytopathological Institute, Scientific Directorate of Entomology and Agricultural Zoology, 14561 Kifissia, Greece; (D.P.P.); (G.B.)
| | - Eftichia Kritsi
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece; (E.K.); (P.Z.)
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
| | - Niki Tzioumaki
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (P.G.V.L.); (N.T.)
- Benaki Phytopathological Institute, Scientific Directorate of Entomology and Agricultural Zoology, 14561 Kifissia, Greece; (D.P.P.); (G.B.)
| | - Panagiotis Zoumpoulakis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece; (E.K.); (P.Z.)
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
| | - Dimitrios P. Papachristos
- Benaki Phytopathological Institute, Scientific Directorate of Entomology and Agricultural Zoology, 14561 Kifissia, Greece; (D.P.P.); (G.B.)
| | - George Balatsos
- Benaki Phytopathological Institute, Scientific Directorate of Entomology and Agricultural Zoology, 14561 Kifissia, Greece; (D.P.P.); (G.B.)
| | - Marina Sagnou
- Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece;
| | - Antonios Michaelakis
- Benaki Phytopathological Institute, Scientific Directorate of Entomology and Agricultural Zoology, 14561 Kifissia, Greece; (D.P.P.); (G.B.)
| |
Collapse
|
40
|
Bourtzis K, Vreysen MJB. Sterile Insect Technique (SIT) and Its Applications. INSECTS 2021; 12:638. [PMID: 34357298 PMCID: PMC8304793 DOI: 10.3390/insects12070638] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 12/22/2022]
Abstract
Although most insect species have a beneficial role in the ecosystems, some of them represent major plant pests and disease vectors for livestock and humans. During the last six-seven decades, the sterile insect technique (SIT) has been used as part of area-wide integrated pest management strategies to suppress, contain, locally eradicate or prevent the (re)invasion of insect pest populations and disease vectors worldwide. This Special Issue on "Sterile insect technique (SIT) and its applications", which consists of 27 manuscripts (7 reviews and 20 original research articles), provides an update on the research and development efforts in this area. The manuscripts report on all the different components of the SIT package including mass-rearing, development of genetic sexing strains, irradiation, quality control as well as field trials.
Collapse
Affiliation(s)
- Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, A-2444 Seibersdorf, Austria
| | - Marc J. B. Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, A-2444 Seibersdorf, Austria
| |
Collapse
|
41
|
Gato R, Menéndez Z, Prieto E, Argilés R, Rodríguez M, Baldoquín W, Hernández Y, Pérez D, Anaya J, Fuentes I, Lorenzo C, González K, Campo Y, Bouyer J. Sterile Insect Technique: Successful Suppression of an Aedes aegypti Field Population in Cuba. INSECTS 2021; 12:insects12050469. [PMID: 34070177 PMCID: PMC8158475 DOI: 10.3390/insects12050469] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/06/2021] [Accepted: 05/15/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary The sterile insect technique (SIT) is a species-specific and environment-friendly method of insect control that relies on the release of large numbers of sterile insects. Mating released sterile males with wild females leads to a decrease in the reproductive potential and to the local suppression of the target population. There is increased interest in applying this approach to manage disease-transmitting mosquito populations. The main focus of this pilot trial was to assess the efficacy of the SIT for the suppression of Aedes aegypti populations. Two areas in Havana city, Cuba, were selected as control and release trial sites. The presence, density and fertility of the target wild population were monitored through a network of ovitraps. Approximately 1,270,000 irradiated Ae. aegypti males were released in the 50 ha target area over a period of 20 weeks. The released mosquitoes showed excellent mating competitiveness and induced high levels of sterility in the wild Ae. aegypti population. The target natural population was suppressed as reflected in the ovitrap index and in the mean number of eggs/trap values which dropped to zero by the last 3 weeks of the trial. We conclude that the released sterile male Ae. aegypti competed successfully and induced significant sterility in the local target Ae. aegypti population, resulting in suppression of the vector. Abstract Dengue virus infections are a serious public health problem worldwide. Aedes aegypti is the primary vector of dengue in Cuba. As there is no vaccine or specific treatment, the control efforts are directed to the reduction of mosquito populations. The indiscriminate use of insecticides can lead to adverse effects on ecosystems, including human health. The sterile insect technique is a species-specific and environment-friendly method of insect population control based on the release of large numbers of sterile insects, ideally males only. The success of this technique for the sustainable management of agricultural pests has encouraged its evaluation for the population suppression of mosquito vector species. Here, we describe an open field trial to evaluate the effect of the release of irradiated male Ae. aegypti on a wild population. The pilot trial was carried out in a suburb of Havana and compared the mosquito population density before and after the intervention, in both untreated control and release areas. The wild population was monitored by an ovitrap network, recording frequency and density of eggs as well as their hatch rate. A significant amount of sterility was induced in the field population of the release area, as compared with the untreated control area. The ovitrap index and the mean number of eggs/trap declined dramatically after 12 and 5 weeks of releases, respectively. For the last 3 weeks, no eggs were collected in the treatment area, clearly indicating a significant suppression of the wild target population. We conclude that the sterile males released competed successfully and induced enough sterility to suppress the local Ae. aegypti population.
Collapse
Affiliation(s)
- René Gato
- Instituto Pedro Kourí, Autopista Novia del Mediodia, La Lisa, La Habana 11400, Cuba; (Z.M.); (M.R.); (W.B.); (Y.H.); (D.P.); (J.A.); (I.F.); (C.L.); (K.G.); (Y.C.)
- Correspondence: ; Tel.: +53-5346-3992
| | - Zulema Menéndez
- Instituto Pedro Kourí, Autopista Novia del Mediodia, La Lisa, La Habana 11400, Cuba; (Z.M.); (M.R.); (W.B.); (Y.H.); (D.P.); (J.A.); (I.F.); (C.L.); (K.G.); (Y.C.)
| | - Enrique Prieto
- Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, Calle 30 y 5ta ave. Miramar, La Habana 11300, Cuba;
| | - Rafael Argilés
- Insect Pest Control Subprogramme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, IAEA Vienna, Wagramer Strasse 5, 1400 Vienna, Austria; (R.A.); (J.B.)
| | - Misladys Rodríguez
- Instituto Pedro Kourí, Autopista Novia del Mediodia, La Lisa, La Habana 11400, Cuba; (Z.M.); (M.R.); (W.B.); (Y.H.); (D.P.); (J.A.); (I.F.); (C.L.); (K.G.); (Y.C.)
| | - Waldemar Baldoquín
- Instituto Pedro Kourí, Autopista Novia del Mediodia, La Lisa, La Habana 11400, Cuba; (Z.M.); (M.R.); (W.B.); (Y.H.); (D.P.); (J.A.); (I.F.); (C.L.); (K.G.); (Y.C.)
| | - Yisel Hernández
- Instituto Pedro Kourí, Autopista Novia del Mediodia, La Lisa, La Habana 11400, Cuba; (Z.M.); (M.R.); (W.B.); (Y.H.); (D.P.); (J.A.); (I.F.); (C.L.); (K.G.); (Y.C.)
| | - Dennis Pérez
- Instituto Pedro Kourí, Autopista Novia del Mediodia, La Lisa, La Habana 11400, Cuba; (Z.M.); (M.R.); (W.B.); (Y.H.); (D.P.); (J.A.); (I.F.); (C.L.); (K.G.); (Y.C.)
| | - Jorge Anaya
- Instituto Pedro Kourí, Autopista Novia del Mediodia, La Lisa, La Habana 11400, Cuba; (Z.M.); (M.R.); (W.B.); (Y.H.); (D.P.); (J.A.); (I.F.); (C.L.); (K.G.); (Y.C.)
| | - Ilario Fuentes
- Instituto Pedro Kourí, Autopista Novia del Mediodia, La Lisa, La Habana 11400, Cuba; (Z.M.); (M.R.); (W.B.); (Y.H.); (D.P.); (J.A.); (I.F.); (C.L.); (K.G.); (Y.C.)
| | - Claudia Lorenzo
- Instituto Pedro Kourí, Autopista Novia del Mediodia, La Lisa, La Habana 11400, Cuba; (Z.M.); (M.R.); (W.B.); (Y.H.); (D.P.); (J.A.); (I.F.); (C.L.); (K.G.); (Y.C.)
| | - Keren González
- Instituto Pedro Kourí, Autopista Novia del Mediodia, La Lisa, La Habana 11400, Cuba; (Z.M.); (M.R.); (W.B.); (Y.H.); (D.P.); (J.A.); (I.F.); (C.L.); (K.G.); (Y.C.)
| | - Yudaisi Campo
- Instituto Pedro Kourí, Autopista Novia del Mediodia, La Lisa, La Habana 11400, Cuba; (Z.M.); (M.R.); (W.B.); (Y.H.); (D.P.); (J.A.); (I.F.); (C.L.); (K.G.); (Y.C.)
| | - Jérémy Bouyer
- Insect Pest Control Subprogramme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, IAEA Vienna, Wagramer Strasse 5, 1400 Vienna, Austria; (R.A.); (J.B.)
| |
Collapse
|