1
|
Veg E, Hashmi K, Raza S, Joshi S, Rahman Khan A, Khan T. The Role of Nanomaterials in Diagnosis and Targeted Drug Delivery. Chem Biodivers 2025; 22:e202401581. [PMID: 39313849 DOI: 10.1002/cbdv.202401581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Nanomaterials have evolved into the most useful resources in all spheres of life. Their small size imparts them with unique properties and they can also be designed and engineered according to the specific need. The use of nanoparticles (NPs) in medicine is particularly quite revolutionary as it has opened new therapeutic avenues to diagnose, treat and manage diseases in an efficient and timely manner. The review article presents the biomedical applications of nanomaterials including bioimaging, magnetic hypothermia and photoablation therapy, with a particular focus on disease diagnosis and targeted drug delivery. Nanobiosensors are highly specific and can be delivered into cells to investigate important biomarkers. They are also used for targeted drug delivery and deliver theranostic agents to specific sites of interest. Other than these factors, the review also explores the role of nano-based drug delivery systems for the management and treatment of nervous system disorders, tuberculosis and orthopaedics. The nano-capsulated drugs can be transported by blood to the targeted site for a sustained release over a prolonged period. Some other applications like their role in invasive surgery, photodynamic therapy and quantum dot imaging have also been explored. Despite that, the safety concerns related to nanomedicine are also pertinent to comprehend as well as the biodistribution of NPs in the body and the mechanistic insight.
Collapse
Affiliation(s)
- Ekhlakh Veg
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Kulsum Hashmi
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Saman Raza
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Seema Joshi
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| |
Collapse
|
2
|
Kheiriabad S, Jafari A, Namvar Aghdash S, Ezzati Nazhad Dolatabadi J, Andishmand H, Jafari SM. Applications of Advanced Nanomaterials in Biomedicine, Pharmaceuticals, Agriculture, and Food Industry. BIONANOSCIENCE 2024; 14:4298-4321. [DOI: 10.1007/s12668-024-01506-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 01/06/2025]
|
3
|
Zalke JB, Bhaiyya ML, Jain PA, Sakharkar DN, Kalambe J, Narkhede NP, Thakre MB, Rotake DR, Kulkarni MB, Singh SG. A Machine Learning Assisted Non-Enzymatic Electrochemical Biosensor to Detect Urea Based on Multi-Walled Carbon Nanotube Functionalized with Copper Oxide Micro-Flowers. BIOSENSORS 2024; 14:504. [PMID: 39451717 PMCID: PMC11505716 DOI: 10.3390/bios14100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Detecting urea is crucial for diagnosing related health conditions and ensuring timely medical intervention. The addition of machine learning (ML) technologies has completely changed the field of biochemical sensing, providing enhanced accuracy and reliability. In the present work, an ML-assisted screen-printed, flexible, electrochemical, non-enzymatic biosensor was proposed to quantify urea concentrations. For the detection of urea, the biosensor was modified with a multi-walled carbon nanotube-zinc oxide (MWCNT-ZnO) nanocomposite functionalized with copper oxide (CuO) micro-flowers (MFs). Further, the CuO-MFs were synthesized using a standard sol-gel approach, and the obtained particles were subjected to various characterization techniques, including X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and Fourier transform infrared (FTIR) spectroscopy. The sensor's performance for urea detection was evaluated by assessing the dependence of peak currents on analyte concentration using cyclic voltammetry (CV) at different scan rates of 50, 75, and 100 mV/s. The designed non-enzymatic biosensor showed an acceptable linear range of operation of 0.5-8 mM, and the limit of detection (LoD) observed was 78.479 nM, which is well aligned with the urea concentration found in human blood and exhibits a good sensitivity of 117.98 mA mM-1 cm-2. Additionally, different regression-based ML models were applied to determine CV parameters to predict urea concentrations experimentally. ML significantly improves the accuracy and reliability of screen-printed biosensors, enabling accurate predictions of urea levels. Finally, the combination of ML and biosensor design emphasizes not only the high sensitivity and accuracy of the sensor but also its potential for complex non-enzymatic urea detection applications. Future advancements in accurate biochemical sensing technologies are made possible by this strong and dependable methodology.
Collapse
Affiliation(s)
- Jitendra B. Zalke
- Department of Electronics Engineering, Ramdeobaba University, Nagpur 440013, MH, India; (J.B.Z.); (M.L.B.); (J.K.); (N.P.N.)
| | - Manish L. Bhaiyya
- Department of Electronics Engineering, Ramdeobaba University, Nagpur 440013, MH, India; (J.B.Z.); (M.L.B.); (J.K.); (N.P.N.)
| | - Pooja A. Jain
- Department of Biomedical Engineering, Shri Ramdeobaba College of Engineering and Management, Nagpur 440013, MH, India; (P.A.J.); (D.N.S.)
| | - Devashree N. Sakharkar
- Department of Biomedical Engineering, Shri Ramdeobaba College of Engineering and Management, Nagpur 440013, MH, India; (P.A.J.); (D.N.S.)
| | - Jayu Kalambe
- Department of Electronics Engineering, Ramdeobaba University, Nagpur 440013, MH, India; (J.B.Z.); (M.L.B.); (J.K.); (N.P.N.)
| | - Nitin P. Narkhede
- Department of Electronics Engineering, Ramdeobaba University, Nagpur 440013, MH, India; (J.B.Z.); (M.L.B.); (J.K.); (N.P.N.)
| | - Mangesh B. Thakre
- Department of Chemistry, D.R.B. Sindhu Mahavidhyalaya, Nagpur 440017, MH, India;
| | - Dinesh R. Rotake
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502284, TG, India;
| | - Madhusudan B. Kulkarni
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Electronics and Communication Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal 576104, KA, India
| | - Shiv Govind Singh
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502284, TG, India;
| |
Collapse
|
4
|
Chen WK, Zhao X, Liu XY, Xie XY, Zeng Y, Cui G. Photoinduced Nonadiabatic Dynamics of a Single-Walled Carbon Nanotube-Porphyrin Complex. J Phys Chem A 2024; 128:8803-8815. [PMID: 39344670 DOI: 10.1021/acs.jpca.4c04544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) have gained a lot of attention in the past few decades due to their promising optoelectronic properties. In addition, SWCNTs can form complexes that have good chemical stability and transport properties with other optical functional materials through noncovalent interactions. Elucidating the detailed mechanism of these complexes is of great significance for improving their optoelectronic properties. Nevertheless, simulating the photoinduced dynamics of these complexes accurately is rather challenging since they usually contain hundreds of atoms. To save computational efforts, most of the previous works have ignored the excitonic effects by employing nonadiabatic carrier (electron and hole) dynamics simulations. To properly consider the influence of excitonic effects on the photoinduced ultrafast processes of the SWCNT-tetraphenyl porphyrin (H2TPP) complex and to further improve the computational efficiency, we developed the nonadiabatic molecular dynamics (NAMD) method based on the extended tight binding-based simplified Tamm-Dancoff approximation (sTDA-xTB), which is applied to study the ultrafast photoinduced dynamics of the noncovalent SWCNT-porphyrin complex. In combination with statically electronic structure calculations, the present work successfully reveals the detailed microscopic mechanism of the ultrafast excitation energy transfer process of the complex. Upon local excitation on the H2TPP molecule, an ultrafast energy transfer process occurs from H2TPP (SWCNT-H2TPP*) to SWCNT (SWCNT*-H2TPP) within 10 fs. Then, two slower processes corresponding to the energy transfer from H2TPP to SWCNT and hole transfer from H2TPP to SWCNT take place in the 1 ps time scale. The sTDA-xTB-based electronic structure calculation and NAMD simulation results not only match the previous experimental observations from static and transient spectra but also provide more insights into the detailed information on the complex's photoinduced dynamics. Therefore, the sTDA-xTB-based NAMD method is a powerful theoretical tool for studying the ultrafast photoinduced dynamics in large extended systems with a large number of electronically excited states, which could be helpful for the subsequent design of SWCNT-based functional materials.
Collapse
Affiliation(s)
- Wen-Kai Chen
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Xi Zhao
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiao-Ying Xie
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Mamidi N, Delgadillo RMV, Sustaita AO, Lozano K, Yallapu MM. Current nanocomposite advances for biomedical and environmental application diversity. Med Res Rev 2024. [PMID: 39287199 DOI: 10.1002/med.22082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/29/2023] [Accepted: 08/25/2024] [Indexed: 09/19/2024]
Abstract
Nanocomposite materials are emerging as key players in addressing critical challenges in healthcare, energy storage, and environmental remediation. These innovative systems hold great promise in engineering effective solutions for complex problems. Nanocomposites have demonstrated various advantages such as simplicity, versatility, lightweight, and potential cost-effectiveness. By reinforcing synthetic and natural polymers with nanomaterials, a range of nanocomposites have exhibited unique physicochemical properties, biocompatibility, and biodegradability. Current research on nanocomposites has demonstrated promising clinical and translational applications. Over the past decade, the production of nanocomposites has emerged as a critical nano-structuring methodology due to their adaptability and controllable surface structure. This comprehensive review article systematically addresses two principal domains. A comprehensive survey of metallic and nonmetallic nanomaterials (nanofillers), elucidating their efficacy as reinforcing agents in polymeric matrices. Emphasis is placed on the methodical design and engineering principles governing the development of functional nanocomposites. Additionally, the review provides an exhaustive examination of recent noteworthy advancements in industrial, environmental, biomedical, and clinical applications within the realms of nanocomposite materials. Finally, the review concludes by highlighting the ongoing challenges facing nanocomposites in a wide range of applications.
Collapse
Affiliation(s)
- Narsimha Mamidi
- School of Pharmacy, Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Ramiro M V Delgadillo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Alan O Sustaita
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Karen Lozano
- Mechanical Engineering Department, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| |
Collapse
|
6
|
Esmaeili M, Ghasemi S, Shariati L, Karbasi S. Evaluating the osteogenic properties of polyhydroxybutyrate-zein/multiwalled carbon nanotubes (MWCNTs) electrospun composite scaffold for bone tissue engineering applications. Int J Biol Macromol 2024; 276:133829. [PMID: 39002904 DOI: 10.1016/j.ijbiomac.2024.133829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/29/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
In this investigation, the electrospun nanocomposite scaffolds were developed utilizing poly-3-hydroxybutyrate (PHB), zein, and multiwalled carbon nanotubes (MWCNTs) at varying concentrations of MWCNTs including 0.5 and 1 wt%. Based on the SEM evaluations, the scaffold containing 1 wt% MWCNTs (PZ-1C) exhibited the lowest fiber diameter (384 ± 99 nm) alongside a suitable porosity percentage. The presence of zein and MWCNT in the chemical structure of the scaffold was evaluated by FTIR. Furthermore, TEM images revealed the alignment of MWCNTs with the fibers. Adding 1 % MWCNTs to the PHB-zein scaffold significantly enhanced tensile strength by about 69 % and reduced elongation by about 31 %. Hydrophilicity, surface roughness, crystallinity, and biomineralization were increased by incorporating 1 wt% MWCNTs, while weight loss after in vitro degradation was decreased. The MG-63 cells exhibited enhanced attachment, viability, ALP secretion, calcium deposition, and gene expression (COLI, RUNX2, and OCN) when cultivated on the scaffold containing MWCNTs compared to the scaffolds lacking MWCNTs. Moreover, the study found that MWCNTs significantly reduced platelet adhesion and hemolysis rates below 4 %, indicating their favorable anti-hemolysis properties. Regarding the aforementioned results, the PZ-1C electrospun composite scaffold is a promising scaffold with osteogenic properties for bone tissue engineering applications.
Collapse
Affiliation(s)
- Mahdie Esmaeili
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Hezarjerib Ave, Isfahan 8174673461, Iran
| | - Saeid Ghasemi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
7
|
Eivazzadeh-Keihan R, Saadatidizaji Z, Mahdavi M, Maleki A, Irani M, Zare I. Recent advances in gold nanoparticles-based biosensors for tuberculosis determination. Talanta 2024; 275:126099. [PMID: 38640517 DOI: 10.1016/j.talanta.2024.126099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/16/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Tuberculosis (TB) is one of the major killer diseases affecting lung parenchymal tissues. Mycobacterium tuberculosis (Mtb) is the bacterium that causes it. It most commonly affects the lungs, although it can affect any part of the body, including the stomach, glands, bones, and nervous system. Although anti-mycobacterial drugs are available, it remains a major threat to public health due to the rise of drug-resistant strains, and early and accurate diagnosis is very important. Currently, research science and medical communities are focusing on the use of cost-effective biosensors to manage human biological processes and assess accurate health diagnostics. Due to their high sensitivity in chemical and biological assays, nanomaterials have been considered in the field of biosensors for better diagnosis, and among them, gold nanoparticles (AuNPs) can play an important role in accelerating the diagnosis of TB. Superior biocompatibility, conductivity, catalytic properties, high surface-to-volume ratio, and high density enable their widespread use in the fabrication of biosensors. This review evaluates the diagnostic accuracy of AuNP-based biosensors for the detection of Mtb. According to different transducers of biosensors, their structure, performance, advantages and limitations are summarized and compared. Moreover, the upcoming challenges in their analytical performance have been highlighted and the strategies to overcome those challenges have been briefly discussed.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Zahra Saadatidizaji
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mohammad Irani
- Department of Pharmaceutics, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd., Shiraz, 7178795844, Iran.
| |
Collapse
|
8
|
Ahmed M, Kurungottu P, Swetha K, Atla S, Ashok N, Nagamalleswari E, Bonam SR, Sahu BD, Kurapati R. Role of NLRP3 inflammasome in nanoparticle adjuvant-mediated immune response. Biomater Sci 2024. [PMID: 38867716 DOI: 10.1039/d4bm00439f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome is pivotal in orchestrating the immune response induced by nanoparticle adjuvants. Understanding the intricate mechanisms underlying the activation of NLRP3 inflammasome by these adjuvants is crucial for deciphering their immunomodulatory properties. This review explores the involvement of the NLRP3 inflammasome in mediating immune responses triggered by nanoparticle adjuvants. It delves into the signaling pathways and cellular mechanisms involved in NLRP3 activation, highlighting its significance in modulating the efficacy and safety of nanoparticle-based adjuvants. A comprehensive grasp of the interplay between NLRP3 inflammasome and nanoparticle adjuvants holds promise for optimizing vaccine design and advancing immunotherapeutic strategies.
Collapse
Affiliation(s)
- Momitul Ahmed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India.
| | - Pavithra Kurungottu
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India.
| | - K Swetha
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India.
| | - Sandeep Atla
- Texas A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Nivethitha Ashok
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India.
| | - Easa Nagamalleswari
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India.
| | - Rajendra Kurapati
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India.
| |
Collapse
|
9
|
Rosa MA, Granja A, Nunes C, Reis S, da Silva ABS, Leal KNDS, Arruda MAZ, Gorup LF, Santos MG, Dias MVS, Figueiredo EC. Magnetic carbon nanotubes modified with proteins and hydrophilic monomers: Cytocompatibility, in-vitro toxicity assays and permeation across biological interfaces. Int J Biol Macromol 2024; 269:131962. [PMID: 38692550 DOI: 10.1016/j.ijbiomac.2024.131962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/26/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Carbon nanotubes are promising materials for biomedical applications like delivery systems and tissue scaffolds. In this paper, magnetic carbon nanotubes (M-CNTs) covered with bovine serum albumin (M-CNTs-BSA) or functionalized with hydrophilic monomers (M-CNTs-HL) were synthesized, characterized, and evaluated concerning their interaction with Caco-2 cells. There is no comparison between these two types of functionalization, and this study aimed to verify their influence on the material's interaction with the cells. Different concentrations of the nanotubes were applied to investigate cytotoxicity, cell metabolism, oxidative stress, apoptosis, and capability to cross biomimetic barriers. The materials showed cytocompatibility up to 100 μg mL-1 and a hemolysis rate below 2 %. Nanotubes' suspensions were allowed to permeate Caco-2 monolayers for up to 8 h under the effect of the magnetic field. Magnetic nanoparticles associated with the nanotubes allowed estimation of permeation through the monolayers, with values ranging from 0.50 to 7.19 and 0.27 to 9.30 × 10-3 μg (equivalent to 0.43 to 6.22 and 0.23 to 9.54 × 10-2 % of the initially estimated mass of magnetic nanoparticles) for cells exposed and non-exposed to the magnets, respectively. Together, these results support that the developed materials are promising for applications in biomedical and biotechnological fields.
Collapse
Affiliation(s)
- Mariana Azevedo Rosa
- Laboratory of Toxicant and Drug Analyses, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Andreia Granja
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Cláudia Nunes
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Ana Beatriz Santos da Silva
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil
| | - Ketolly Natanne da Silva Leal
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil
| | - Marco Aurélio Zezzi Arruda
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil
| | - Luiz Fernando Gorup
- Institute of Chemistry, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil; School of Chemistry and Food Science, Federal University of Rio Grande, Av. Italia km 8 Bairro Carreiros, 96203-900 Rio Grande, RS, Brazil; Materials Engineering, Federal University of Pelotas, Campus Porto, 96010-610 Pelotas, RS, Brazil
| | - Mariane Gonçalves Santos
- Laboratory of Toxicant and Drug Analyses, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | | | - Eduardo Costa Figueiredo
- Laboratory of Toxicant and Drug Analyses, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil.
| |
Collapse
|
10
|
Kny E, Hasler R, Luczak W, Knoll W, Szunerits S, Kleber C. State of the art and future research directions of materials science applied to electrochemical biosensor developments. Anal Bioanal Chem 2024; 416:2247-2259. [PMID: 38006442 DOI: 10.1007/s00216-023-05054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Centralized laboratories in which analytical processes are automated to enable the analysis of large numbers of samples at relatively low cost are used for analytical testing throughout the world. However, healthcare is changing, partly due to the general recognition that care needs to be more patient-centered and putting the patient at the center of action. One way to achieve this goal is to consider point-of-care testing (PoC) devices as alternative analytical concepts. This requires miniaturization of current analytical concepts and the use of cost-effective diagnostic tools with appropriate sensitivity and specificity. Electrochemical sensors are ideally adapted as they provide robust, low-cost, and miniaturized solutions for the detection of variable analytes, yet lack the high sensitivity comparable to more classical diagnosis approaches. Advances in nanotechnology have opened up a plethora of different nanomaterials to be applied as electrode and/or sensing materials in electrochemical biosensors. The choice of materials significantly influences the sensor's sensitivity, selectivity, and overall performance. A critical review of the state of the art with respect to the development of the utilized materials (between 2019 and 2023) and where the field is heading to are the focus of this article.
Collapse
Affiliation(s)
- Erich Kny
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
| | - Roger Hasler
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
| | - Wiktor Luczak
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
| | - Wolfgang Knoll
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
| | - Sabine Szunerits
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Christoph Kleber
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria.
| |
Collapse
|
11
|
Rele S, Thakur CK, Khan F, Baral B, Saini V, Karthikeyan C, Moorthy NSHN, Jha HC. Curcumin coating: a novel solution to mitigate inherent carbon nanotube toxicity. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:24. [PMID: 38526738 PMCID: PMC10963536 DOI: 10.1007/s10856-024-06789-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Multi-walled Carbon Nanotubes (MWCNTs) are inert structures with high aspect ratios that are widely used as vehicles for targeted drug delivery in cancer and many other diseases. They are largely non-toxic in nature however, when cells are exposed to these nanotubes for prolonged durations or at high concentrations, they show certain adverse effects. These include cytotoxicity, inflammation, generation of oxidative stress, and genotoxicity among others. To combat such adverse effects, various moieties can be attached to the surface of these nanotubes. Curcumin is a known anti-inflammatory, antioxidant and cytoprotective compound derived from a medicinal plant called Curcuma longa. In this study, we have synthesized and characterized Curcumin coated-lysine functionalized MWCNTs and further evaluated the cytoprotective, anti-inflammatory, antioxidant and antiapoptotic effect of Curcumin coating on the surface of MWCNTs. The results show a significant decrease in the level of inflammatory molecules like IL-6, IL-8, IL-1β, TNFα and NFκB in cells exposed to Curcumin-coated MWCNTs as compared to the uncoated ones at both transcript and protein levels. Further, compared to the uncoated samples, there is a reduction in ROS production and upregulation of antioxidant enzyme-Catalase in the cells treated with Curcumin-coated MWCNTs. Curcumin coating also helped in recovery of mitochondrial membrane potential in the cells exposed to MWCNTs. Lastly, cells exposed to Curcumin-coated MWCNTs showed reduced cell death as compared to the ones exposed to uncoated MWCNTs. Our findings suggest that coating of Curcumin on the surface of MWCNTs reduces its ability to cause inflammation, oxidative stress, and cell death.
Collapse
Affiliation(s)
- Samiksha Rele
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, MP, 453552, India
| | - Chanchal Kiran Thakur
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak, MP, 484887, India
| | - Fatima Khan
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak, MP, 484887, India
| | - Budhadev Baral
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, MP, 453552, India
| | - Vaishali Saini
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, MP, 453552, India
| | - Chandrabose Karthikeyan
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak, MP, 484887, India
| | - N S Hari Narayana Moorthy
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak, MP, 484887, India.
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, MP, 453552, India.
| |
Collapse
|
12
|
Jian HJ, Anand A, Lai JY, Huang CC, Ma DHK, Lai CC, Chang HT. Ultrahigh-Efficacy VEGF Neutralization Using Carbonized Nanodonuts: Implications for Intraocular Anti-Angiogenic Therapy. Adv Healthc Mater 2024; 13:e2302881. [PMID: 38130100 DOI: 10.1002/adhm.202302881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Ocular angiogenesis, associated with diseases such as retinopathy of prematurity and diabetic retinopathy, is a leading cause of irreversible vision loss. Herein, carbon nanodonuts (CNDs) with a donut-shaped structure are synthesized using sodium alginate (SA) and 1,8-diaminooctane (DAO) through a one-step thermal process. The formation of SA/DAO-CNDs occurs through a crosslinking reaction between SA and DAO, creating amide bonds followed by partial carbonization. In human retinal pigment epithelial cells exposed to H2 O2 or lipopolysaccharide, the SA/DAO-CNDs display a more than fivefold reduction in reactive oxygen species and proinflammatory cytokines, such as IL-6 and IL-1β, when compared to carbonized nanomaterials produced exclusively from SA. Furthermore, the CNDs effectively inhibit vascular endothelial growth factor A-165 (VEGF-A165 )-induced cell migration and tube formation in human umbilical vein endothelial cells due to their strong affinity for VEGF-A165 , with a dissociation constant of 2.2 × 10-14 M, over 1600 times stronger than the commercial drug bevacizumab (Avastin). Trypsin digestion coupled with LC-MS/MS analysis reveals that VEGF-A165 interacts with SA/DAO-CNDs through its heparin-binding domain, leading to activity loss. The SA/DAO-CNDs demonstrate excellent biocompatibility and potent anti-angiogenic effects in chicken embryos and rabbit eyes. These findings suggest that SA/DAO-CNDs hold promise as a therapeutic agent for treating various angiogenesis-related ocular diseases.
Collapse
Affiliation(s)
- Hong-Jyuan Jian
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Anisha Anand
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Jui-Yang Lai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - David Hui-Kang Ma
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
- Department of Chinese Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chi-Chun Lai
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, 20401, Taiwan
| | - Huan-Tsung Chang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan
- Center for Advanced Biomaterials and Technology Innovation, Chang Gung University, Taoyuan, 33302, Taiwan
- Division of Breast Surgery, Department of General Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
| |
Collapse
|
13
|
Sarma K, Akther MH, Ahmad I, Afzal O, Altamimi ASA, Alossaimi MA, Jaremko M, Emwas AH, Gautam P. Adjuvant Novel Nanocarrier-Based Targeted Therapy for Lung Cancer. Molecules 2024; 29:1076. [PMID: 38474590 DOI: 10.3390/molecules29051076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 03/14/2024] Open
Abstract
Lung cancer has the lowest survival rate due to its late-stage diagnosis, poor prognosis, and intra-tumoral heterogeneity. These factors decrease the effectiveness of treatment. They release chemokines and cytokines from the tumor microenvironment (TME). To improve the effectiveness of treatment, researchers emphasize personalized adjuvant therapies along with conventional ones. Targeted chemotherapeutic drug delivery systems and specific pathway-blocking agents using nanocarriers are a few of them. This study explored the nanocarrier roles and strategies to improve the treatment profile's effectiveness by striving for TME. A biofunctionalized nanocarrier stimulates biosystem interaction, cellular uptake, immune system escape, and vascular changes for penetration into the TME. Inorganic metal compounds scavenge reactive oxygen species (ROS) through their photothermal effect. Stroma, hypoxia, pH, and immunity-modulating agents conjugated or modified nanocarriers co-administered with pathway-blocking or condition-modulating agents can regulate extracellular matrix (ECM), Cancer-associated fibroblasts (CAF),Tyro3, Axl, and Mertk receptors (TAM) regulation, regulatory T-cell (Treg) inhibition, and myeloid-derived suppressor cells (MDSC) inhibition. Again, biomimetic conjugation or the surface modification of nanocarriers using ligands can enhance active targeting efficacy by bypassing the TME. A carrier system with biofunctionalized inorganic metal compounds and organic compound complex-loaded drugs is convenient for NSCLC-targeted therapy.
Collapse
Affiliation(s)
- Kangkan Sarma
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Md Habban Akther
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Manal A Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Preety Gautam
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| |
Collapse
|
14
|
Reamon-Buettner SM, Rittinghausen S, Klauke A, Hiemisch A, Ziemann C. Malignant peritoneal mesotheliomas of rats induced by multiwalled carbon nanotubes and amosite asbestos: transcriptome and epigenetic profiles. Part Fibre Toxicol 2024; 21:3. [PMID: 38297314 PMCID: PMC10829475 DOI: 10.1186/s12989-024-00565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Malignant mesothelioma is an aggressive cancer that often originates in the pleural and peritoneal mesothelium. Exposure to asbestos is a frequent cause. However, studies in rodents have shown that certain multiwalled carbon nanotubes (MWCNTs) can also induce malignant mesothelioma. The exact mechanisms are still unclear. To gain further insights into molecular pathways leading to carcinogenesis, we analyzed tumors in Wistar rats induced by intraperitoneal application of MWCNTs and amosite asbestos. Using transcriptomic and epigenetic approaches, we compared the tumors by inducer (MWCNTs or amosite asbestos) or by tumor type (sarcomatoid, epithelioid, or biphasic). RESULTS Genome-wide transcriptome datasets, whether grouped by inducer or tumor type, showed a high number of significant differentially expressed genes (DEGs) relative to control peritoneal tissues. Bioinformatic evaluations using Ingenuity Pathway Analysis (IPA) revealed that while the transcriptome datasets shared commonalities, they also showed differences in DEGs, regulated canonical pathways, and affected molecular functions. In all datasets, among highly- scoring predicted canonical pathways were Phagosome Formation, IL8 Signaling, Integrin Signaling, RAC Signaling, and TREM1 Signaling. Top-scoring activated molecular functions included cell movement, invasion of cells, migration of cells, cell transformation, and metastasis. Notably, we found many genes associated with malignant mesothelioma in humans, which showed similar expression changes in the rat tumor transcriptome datasets. Furthermore, RT-qPCR revealed downregulation of Hrasls, Nr4a1, Fgfr4, and Ret or upregulation of Rnd3 and Gadd45b in all or most of the 36 tumors analyzed. Bisulfite sequencing of Hrasls, Nr4a1, Fgfr4, and Ret revealed heterogeneity in DNA methylation of promoter regions. However, higher methylation percentages were observed in some tumors compared to control tissues. Lastly, global 5mC DNA, m6A RNA and 5mC RNA methylation levels were also higher in tumors than in control tissues. CONCLUSIONS Our findings may help better understand how exposure to MWCNTs can lead to carcinogenesis. This information is valuable for risk assessment and in the development of safe-by-design strategies.
Collapse
Affiliation(s)
- Stella Marie Reamon-Buettner
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany.
| | - Susanne Rittinghausen
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - Annika Klauke
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - Andreas Hiemisch
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - Christina Ziemann
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
15
|
Uthman A, AL-Rawi N, Saeed MH, Eid B, Al-Rawi NH. Tunable theranostics: innovative strategies in combating oral cancer. PeerJ 2024; 12:e16732. [PMID: 38188167 PMCID: PMC10771769 DOI: 10.7717/peerj.16732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Objective This study aims to assess and compare the potential of advanced nano/micro delivery systems, including quantum dots, carbon nanotubes, magnetic nanoparticles, dendrimers, and microneedles, as theranostic platforms for oral cancer. Furthermore, we seek to evaluate their respective advantages and disadvantages over the past decade. Materials and Methods A comprehensive literature search was performed using Google Scholar and PubMed, with a focus on articles published between 2013 and 2023. Search queries included the specific advanced delivery system as the primary term, followed by oral cancer as the secondary term (e.g., "quantum dots AND oral cancer," etc.). Results The advanced delivery platforms exhibited notable diagnostic and therapeutic advantages when compared to conventional techniques or control groups. These benefits encompassed improved tumor detection and visualization, enhanced precision in targeting tumors with reduced harm to neighboring tissues, and improved drug solubility and distribution, leading to enhanced drug absorption and tumor uptake. Conclusion The findings suggest that advanced nano/micro delivery platforms hold promise for addressing numerous challenges associated with chemotherapy. By enabling precise targeting of cancerous cells, these platforms have the potential to mitigate adverse effects on surrounding healthy tissues, thus encouraging the development of innovative diagnostic and therapeutic strategies for oral cancer.
Collapse
Affiliation(s)
- Asmaa Uthman
- Department of Diagnostic and Surgical Dental Sciences, College of Dentistry, Gulf Medical University, Ajman, United Arab Emirates
| | - Noor AL-Rawi
- Department of Pharmaceutics and Pharmaceutical Technology, University of Sharjah, Sharjah, United Arab Emirates
| | - Musab Hamed Saeed
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Ajman University, Centre of Medical and Bio-allied Health Sciences Research,, Ajman, United Arab Emirates
| | - Bassem Eid
- Department of Restorative Dental Sciences, College of Dentistry, Gulf Medical University, Ajman, Ajman, United Arab Emirates
| | - Natheer H. Al-Rawi
- University of Sharjah, Sharjah Institute of Medical Research, Sharjah, United Arab Emirates
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
16
|
Nazarzadeh Zare E, Khorsandi D, Zarepour A, Yilmaz H, Agarwal T, Hooshmand S, Mohammadinejad R, Ozdemir F, Sahin O, Adiguzel S, Khan H, Zarrabi A, Sharifi E, Kumar A, Mostafavi E, Kouchehbaghi NH, Mattoli V, Zhang F, Jucaud V, Najafabadi AH, Khademhosseini A. Biomedical applications of engineered heparin-based materials. Bioact Mater 2024; 31:87-118. [PMID: 37609108 PMCID: PMC10440395 DOI: 10.1016/j.bioactmat.2023.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023] Open
Abstract
Heparin is a negatively charged polysaccharide with various chain lengths and a hydrophilic backbone. Due to its fascinating chemical and physical properties, nontoxicity, biocompatibility, and biodegradability, heparin has been extensively used in different fields of medicine, such as cardiovascular and hematology. This review highlights recent and future advancements in designing materials based on heparin for various biomedical applications. The physicochemical and mechanical properties, biocompatibility, toxicity, and biodegradability of heparin are discussed. In addition, the applications of heparin-based materials in various biomedical fields, such as drug/gene delivery, tissue engineering, cancer therapy, and biosensors, are reviewed. Finally, challenges, opportunities, and future perspectives in preparing heparin-based materials are summarized.
Collapse
Affiliation(s)
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, United States
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, 34396, Turkey
| | - Hulya Yilmaz
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Sara Hooshmand
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatma Ozdemir
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Onur Sahin
- Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - Sevin Adiguzel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, 34396, Turkey
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D'Oltremare pad. 20, 80125, Naples, Italy
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | | | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Feng Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, United States
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, United States
| |
Collapse
|
17
|
Ray JL, Postma B, Kendall RL, Ngo MD, Foo CX, Saunders B, Ronacher K, Gowdy KM, Holian A. Estrogen contributes to sex differences in M2a macrophages during multi-walled carbon nanotube-induced respiratory inflammation. FASEB J 2024; 38:e23350. [PMID: 38071600 PMCID: PMC10752389 DOI: 10.1096/fj.202301571rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
Lung diseases characterized by type 2 inflammation are reported to occur with a female bias in prevalence/severity in both humans and mice. This includes previous work examining multi-walled carbon nanotube (MWCNT)-induced eosinophilic inflammation, in which a more exaggerated M2a phenotype was observed in female alveolar macrophages (AMs) compared to males. The mechanisms responsible for this sex difference in AM phenotype are still unclear, but estrogen receptor (ER) signaling is a likely contributor. Accordingly, male AMs downregulated ERα expression after MWCNT exposure while female AMs did not. Thus, ER antagonist Fulvestrant was administered prior to MWCNT instillation. In females, Fulvestrant significantly attenuated MWCNT-induced M2a gene expression and eosinophilia without affecting IL-33. In males, Fulvestrant did not affect eosinophil recruitment but reduced IL-33 and M2a genes compared to controls. Regulation of cholesterol efflux and oxysterol synthesis is a potential mechanism through which estrogen promotes the M2a phenotype. Levels of oxysterols 25-OHC and 7α,25-OHC were higher in the airways of MWCNT-exposed males compared to MWCNT-females, which corresponds with the lower IL-1β production and greater macrophage recruitment previously observed in males. Sex-based changes in cholesterol efflux transporters Abca1 and Abcg1 were also observed after MWCNT exposure with or without Fulvestrant. In vitro culture with estrogen decreased cellular cholesterol and increased the M2a response in female AMs, but did not affect cholesterol content in male AMs and reduced M2a polarization. These results reveal the modulation of (oxy)sterols as a potential mechanism through which estrogen signaling may regulate AM phenotype resulting in sex differences in downstream respiratory inflammation.
Collapse
Affiliation(s)
- Jessica L. Ray
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Britten Postma
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Rebekah L. Kendall
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Minh Dao Ngo
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Cheng Xiang Foo
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Brett Saunders
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Katharina Ronacher
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Kymberly M. Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Andrij Holian
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
18
|
Gupta P, Sharma S, Jabin S, Jadoun S. Chitosan nanocomposite for tissue engineering and regenerative medicine: A review. Int J Biol Macromol 2024; 254:127660. [PMID: 37907176 DOI: 10.1016/j.ijbiomac.2023.127660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023]
Abstract
Regenerative medicine and tissue engineering have emerged as a multidisciplinary promising field in the quest to address the limitations of traditional medical approaches. One of the key aspects of these fields is the development of such types of biomaterials that can mimic the extracellular matrix and provide a conducive environment for tissue regeneration. In this regard, chitosan has played a vital role which is a naturally derived linear bi-poly-aminosaccharide, and has gained significant attention due to its biocompatibility and unique properties. Chitosan possesses many unique physicochemical properties, making it a significant polysaccharide for different applications such as agriculture, nutraceutical, biomedical, food, nutraceutical, packaging, etc. as well as significant material for developing next-generation hydrogel and bio-scaffolds for regenerative medicinal applications. Moreover, chitosan can be easily modified to incorporate desirable properties, such as improved mechanical strength, enhanced biodegradability, and controlled release of bioactive molecules. Blending chitosan with other polymers or incorporating nanoparticles into its matrix further expands its potential in tissue engineering applications. This review summarizes the most recent studies of the last 10 years based on chitosan, blends, and nanocomposites and their application in bone tissue engineering, hard tissue engineering, dental implants, dental tissue engineering, dental fillers, and cartilage tissue engineering.
Collapse
Affiliation(s)
- Priti Gupta
- Department of Chemistry, Manav Rachna University, Faridabad, Haryana 121001, India.
| | - Shilpa Sharma
- Department of Chemistry, Manav Rachna University, Faridabad, Haryana 121001, India.
| | - Shagufta Jabin
- Department of Chemistry, Faculty of Engineering, Manav Rachna International Institute of Research & Studies, Faridabad, India.
| | - Sapana Jadoun
- Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Avda. General Velásquez, 1775 Arica, Chile.
| |
Collapse
|
19
|
Gendron D, Bubak G. Carbon Nanotubes and Graphene Materials as Xenobiotics in Living Systems: Is There a Consensus on Their Safety? J Xenobiot 2023; 13:740-760. [PMID: 38132708 PMCID: PMC10744618 DOI: 10.3390/jox13040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Carbon nanotubes and graphene are two types of nanomaterials that have unique properties and potential applications in various fields, including biomedicine, energy storage, and gas sensing. However, there is still a debate about the safety of these materials, and there is yet to be a complete consensus on their potential risks to human health and the environment. While some studies have provided recommendations for occupational exposure limits, more research is needed to fully understand the potential risks of these materials to human health and the environment. In this review, we will try to summarize the advantages and disadvantages of using carbon nanotubes and graphene as well as composites containing them in the context of their biocompatibility and toxicity to living systems. In addition, we overview current policy guidelines and technical regulations regarding the safety of carbon-based nanomaterials.
Collapse
Affiliation(s)
- David Gendron
- Kemitek, Cégep de Thetford, 835 Rue Mooney, Thetford Mines, QC G6G 0A5, Canada
| | - Grzegorz Bubak
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland;
| |
Collapse
|
20
|
Lee SS, Oudjedi F, Kirk AG, Paliouras M, Trifiro MA. Photothermal therapy of papillary thyroid cancer tumor xenografts with targeted thyroid stimulating hormone receptor antibody functionalized multiwalled carbon nanotubes. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
AbstractMultiwalled carbon nanotubes (MWCNTs) are being widely investigated in multiple biomedical applications including, and not limited to, drug delivery, gene therapy, imaging, biosensing, and tissue engineering. Their large surface area and aspect ratio in addition to their unique structural, optical properties, and thermal conductivity also make them potent candidates for novel hyperthermia therapy. Here we introduce thyroid hormone stimulating receptor (TSHR) antibody–conjugate–MWCNT formulation as an enhanced tumor targeting and light-absorbing device for the photoablation of xenografted BCPAP papillary thyroid cancer tumors. To ensure successful photothermal tumor ablation, we determined three key criteria that needed to be addressed: (1) predictive pre-operational modeling; (2) real-time monitoring of the tumor ablation process; and (3) post-operational follow-up to assess the efficacy and ensure complete response with minimal side effects. A COMSOL-based model of spatial temperature distributions of MWCNTs upon selected laser irradiation of the tumor was prepared to accurately predict the internal tumor temperature. This modeling ensured that 4.5W of total laser power delivered over 2 min, would cause an increase of tumor temperature above 45 ℃, and be needed to completely ablate the tumor while minimizing the damage to neighboring tissues. Experimentally, our temperature monitoring results were in line with our predictive modeling, with effective tumor photoablation leading to a significantly reduced post 5-week tumor recurrence using the TSHR-targeted MWCNTs. Ultimately, the results from this study support a utility for photosensitive biologically modified MWCNTs as a cancer therapeutic modality. Further studies will assist with the transition of photothermal therapy from preclinical studies to clinical evaluations.
Collapse
|
21
|
Goncu Y, Ay N. Boron Nitride's Morphological Role in the Design of Injectable Hyaluronic Acid Based Hybrid Artificial Synovial Fluid. ACS Biomater Sci Eng 2023; 9:6345-6356. [PMID: 37847245 DOI: 10.1021/acsbiomaterials.3c01121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The treatment process of osteoarthritis (OA) is challenging as it affects not only cartilage but also subchondral bone, ligament attachment capsules, synovium, and surrounding muscle tissue. Therefore, the search for preventive treatment or methods to slow the onset of the condition. Hexagonal boron nitride (hBN) has a graphite-like lamellar structure and is thought to facilitate cartilage movement for biomedical applications, just like in bearing systems. Hyaluronic acid (HA) is one of the natural polymers that can be used to transport boron nitride and maintain its presence in joints for a long time. In this study, hybrid hydrogels were formulated by using boron nitride nanoparticles and nanosheets. The rheological properties of the hydrogels were evaluated according to the structural differences of hBN. Characterizations have shown that hybrid hydrogels can be produced in injectable form, and the rheological properties are strongly related to the structural properties of the added particle. It has been determined that hBN added to the hydrogel structure reduces the dynamic viscosity of the zero-shear point and the deformation rate of the hydrogel and also changes the viscoelastic properties of the hydrogel depending on boron nitride's structural differences. The suggested mechanism is the hybrid hydrogel that exhibits lower viscosity as the layers detach from each other or disperses the agglomerates under applied shear stress. hBN, which has been proposed as a new strategy for joint injections, is thought to be a promising candidate for the treatment of OA due to its lamellar structures.
Collapse
Affiliation(s)
- Yapıncak Goncu
- Department of Biomedical Engineering, Eskisehir Osmangazi University, Engineering Architecture Faculty, Meselik Campus, Eskisehir 26480, Turkiye
| | - Nuran Ay
- Department of Material Science and Engineering, Eskisehir Technical University, Engineering Faculty, Ikieylul Campus, Eskisehir 26555, Turkiye
| |
Collapse
|
22
|
Mehrotra S, Dey S, Sachdeva K, Mohanty S, Mandal BB. Recent advances in tailoring stimuli-responsive hybrid scaffolds for cardiac tissue engineering and allied applications. J Mater Chem B 2023; 11:10297-10331. [PMID: 37905467 DOI: 10.1039/d3tb00450c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
To recapitulate bio-physical properties and functional behaviour of native heart tissues, recent tissue engineering-based approaches are focused on developing smart/stimuli-responsive materials for interfacing cardiac cells. Overcoming the drawbacks of the traditionally used biomaterials, these smart materials portray outstanding mechanical and conductive properties while promoting cell-cell interaction and cell-matrix transduction cues in such excitable tissues. To date, a large number of stimuli-responsive materials have been employed for interfacing cardiac tissues alone or in combination with natural/synthetic materials for cardiac tissue engineering. However, their comprehensive classification and a comparative analysis of the role played by these materials in regulating cardiac cell behaviour and in vivo metabolism are much less discussed. In an attempt to cover the recent advances in fabricating stimuli-responsive biomaterials for engineering cardiac tissues, this review details the role of these materials in modulating cardiomyocyte behaviour, functionality and surrounding matrix properties. Furthermore, concerns and challenges regarding the clinical translation of these materials and the possibility of using such materials for the fabrication of bio-actuators and bioelectronic devices are discussed.
Collapse
Affiliation(s)
- Shreya Mehrotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India. biman.mandal@iitg,ac.in
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India
| | - Kunj Sachdeva
- DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Sujata Mohanty
- DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India. biman.mandal@iitg,ac.in
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
23
|
Roy A, Ta BQ, Azadmehr M, Aasmundtveit KE. Post-CMOS processing challenges and design developments of CMOS-MEMS microheaters for local CNT synthesis. MICROSYSTEMS & NANOENGINEERING 2023; 9:136. [PMID: 37937184 PMCID: PMC10625928 DOI: 10.1038/s41378-023-00598-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 11/09/2023]
Abstract
Carbon nanotubes (CNTs) can be locally grown on custom-designed CMOS microheaters by a thermal chemical vapour deposition (CVD) process to utilize the sensing capabilities of CNTs in emerging micro- and nanotechnology applications. For such a direct CMOS-CNT integration, a key requirement is the development of necessary post-processing steps on CMOS chips for fabricating CMOS-MEMS polysilicon heaters that can locally generate the required CNT synthesis temperatures (~650-900 °C). In our post-CMOS processing, a subtractive fabrication technique is used for micromachining the polysilicon heaters, where the passivation layers in CMOS are used as masks to protect the electronics. For dielectric etching, it is necessary to achieve high selectivity, uniform etching and a good etch rate to fully expose the polysilicon layers without causing damage. We achieved successful post-CMOS processing by developing two-step reactive ion etching (RIE) of the SiO2 dielectric layer and making design improvements to a second-generation CMOS chip. After the dry etching process, CMOS-MEMS microheaters are partially suspended by SiO2 wet etching with minimum damage to the exposed aluminium layers, to obtain high thermal isolation. The fabricated microheaters are then successfully utilized for synthesizing CNTs by a local thermal CVD process. The CMOS post-processing challenges and design aspects to fabricate CMOS-MEMS polysilicon microheaters for such high-temperature applications are detailed in this article. Our developed process for heterogeneous monolithic integration of CMOS-CNT shows promise for wafer-level manufacturing of CNT-based sensors by incorporating additional steps in an already existing foundry CMOS process.
Collapse
Affiliation(s)
- Avisek Roy
- Department of Microsystems, University of South-Eastern Norway, 3184 Horten, Norway
| | - Bao Q. Ta
- Department of Microsystems, University of South-Eastern Norway, 3184 Horten, Norway
| | - Mehdi Azadmehr
- Department of Microsystems, University of South-Eastern Norway, 3184 Horten, Norway
| | - Knut E. Aasmundtveit
- Department of Microsystems, University of South-Eastern Norway, 3184 Horten, Norway
| |
Collapse
|
24
|
Shahryari M, Nazari-Golshan A, Nourazar SS, Abedi M. Investigating the atomic behavior of carbon nanotubes as nanopumps. Sci Rep 2023; 13:18068. [PMID: 37872394 PMCID: PMC10593745 DOI: 10.1038/s41598-023-45298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023] Open
Abstract
In this study, we utilized molecular dynamics (MD) simulations to investigate the nano pumping process of Carbon Nanotube (CNT) in an aqueous environment. In this research, an attempt has been made to investigate and analyze the pumping process of fullerene C20 and water molecules through a carbon nanotube that is externally stimulated by two oscillators. It should be noted that this nano pump is completely immersed in an aqueous environment and the inside and outside of the carbon nanotube is filled with water molecules. To simulate the aqueous environment with NaCl impurities and carbon structures, we employed the Universal Force Field and Tersoff interatomic potentials, respectively. The stability of the simulated structures was demonstrated through an equilibrium process, which was a result of the appropriate settings in our MD simulations. To describe the CNT nano pumping process, we analyzed the velocity and translational/rotational components of C20 kinetic energy over time steps. By decreasing the water impurity concentration from 0.50 to 0.075 mol/l, the nano pumping time varied from 10.98 to 10.11 ps, respectively. Additionally, optimization of the atomic wave producing in the nano pumping process led to a further decrease in pumping time to 10.01 ps. Finally, a 2.86% variation in calculated results was observed by changing the water MD simulation model from SPC to TIP4P.
Collapse
Affiliation(s)
- Mehran Shahryari
- Satellite Research Institute, Iranian Space Research Center, Tehran, 1997994313, Iran
| | | | - S Salman Nourazar
- Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, 15875-4413, Iran
| | - Mohsen Abedi
- Satellite Research Institute, Iranian Space Research Center, Tehran, 1997994313, Iran
| |
Collapse
|
25
|
Paul S, Biswas P. Curvature induced structural changes of the chicken villin headpiece subdomain by single walled carbon nanotubes. Phys Chem Chem Phys 2023; 25:26094-26102. [PMID: 37740317 DOI: 10.1039/d3cp03773h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Carbon nanotubes (CNTs) are identified as potential candidates for drug and biomolecular loading and delivery. CNTs of different chiralities have different diameters, which may significantly affect their abilities to interact with different types of biomolecules. Herein, we employ classical molecular dynamics simulation to provide insight into the curvature-dependent interactions between a model protein, chicken villin headpiece subdomain (HP36), with CNTs having chiralities (8,8), (12,12), and (20,20). It is revealed that, with increasing radii, the protein encounters more aromatic carbon atoms on the surface of the CNT, leading to its increasing strength of adsorption. However, the extent of adsorption has a limiting magnitude, after which an increase in the radius of the nanotube has practically no effect on the extent of adsorption. Spontaneous encapsulation of the protein was demonstrated using a (28,28) CNT, where the protein is found to undergo insignificant structural perturbation. Finally, steered molecular dynamics simulations have been performed to mimic the force-induced release of the protein from within the nanotube cavity. It has been identified that a minimum force of ∼300 pN and a minimum velocity of 4 Å ns-1 are required to release the protein from the CNT at 300 K. Any external force below the critical magnitude and inducing velocity less than 4 Å ns-1 allows the translocation of the protein through the inner surface of the CNT; however, before being released, the protein undergoes unfolding, thereby losing the secondary structure and biological activity.
Collapse
Affiliation(s)
- Srijita Paul
- Department of Chemistry, University of Delhi, Delhi, India.
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, Delhi, India.
| |
Collapse
|
26
|
Sasidharan S, Saudagar P. 4',7-dihydroxyflavone conjugated carbon nanotube formulation demonstrates improved efficacy against Leishmania parasite. Biochim Biophys Acta Gen Subj 2023; 1867:130416. [PMID: 37463617 DOI: 10.1016/j.bbagen.2023.130416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023]
Abstract
One of the global problems of rising concern is the spread of the neglected tropical disease, leishmaniasis. There are several drugs used for the treatment of the disease but the repertoire of drugs has drawbacks like toxicity and low therapeutic value. Considering the need for new drugs, we studied the synthesis of 4',7-dihydroxyflavone conjugated multi-walled carbon nanotubes (47DHF-MWCNTs) and evaluated their anti-leishmanial activity against Leishmania donovani. The compound 47DHF was conjugated to the acid oxidized MWCTNs by Steglich esterification. The synthesized 47DHF-MWCNTs were characterized by UV spectroscopy, and, from the zeta value of 35 mV, they were found to be stable. 47DHF-MWCNTs possessed 84% drug loading efficiency and 63% cumulative drug release at intra-macrophage pH of 5.8. Moreover, the evaluation of 47DHF-MWCNTs for activity showed an IC50 value of 0.051 ± 0.01 μg/ml and 0.072 ± 0.01 μg/ml against the promastigote and amastigote form, respectively. 47DHF-MWCNTs exhibited an infectivity index of 42 and selectivity index of 95, suggesting the activity of 47DHF-MWCNTs against intracellular amastigotes in the study. The 47DHF-MWCNTs also had low cytotoxicity towards macrophage cells. Fascinatingly, the 47DHF-MWCNTs treatment causes a high accumulation of ROS in the promastigotes suggesting the mechanism of anti-leishmanial activity to be ROS mediated. Summarizing from our results, we propose for the first time a novel 47DHF conjugated MWCNTs capable of anti-leishmanial activity with lower cytotoxicity that has a huge potential to be a formulation against leishmaniasis.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal 506004, Telangana, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal 506004, Telangana, India.
| |
Collapse
|
27
|
Elsori D, Rashid G, Khan NA, Sachdeva P, Jindal R, Kayenat F, Sachdeva B, Kamal MA, Babker AM, Fahmy SA. Nanotube breakthroughs: unveiling the potential of carbon nanotubes as a dual therapeutic arsenal for Alzheimer's disease and brain tumors. Front Oncol 2023; 13:1265347. [PMID: 37799472 PMCID: PMC10548133 DOI: 10.3389/fonc.2023.1265347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/23/2023] [Indexed: 10/07/2023] Open
Abstract
Alzheimer's disease (AD) and brain tumors are debilitating neurological conditions that pose significant challenges in current medical practices. Existing treatment options for AD primarily focus on symptom management, and brain tumors often require aggressive therapeutic approaches. Novel disease-modifying strategies and therapeutic agents are urgently needed to address the underlying causes of AD pathogenesis and improve brain tumor management. In recent years, nanoparticles (NPs) have shown promise as valuable tools in diagnosing and managing various brain disorders, including AD. Among these, carbon nanotubes (CNTs) have garnered attention for their unique properties and biomedical potential. Their ability to cross the blood-brain barrier (BBB) with ease opens up new possibilities for targeted drug delivery and neuroprotection. This literature review aims to explore the versatile nature of CNTs, which can be functionalized with various biomolecules or substances due to their sp2 hybridization. This adaptability enables them to specifically target cells and deliver medications under specific environmental conditions. Moreover, CNTs possess an exceptional capacity to penetrate cell membranes, making them valuable tools in the treatment of AD and brain tumors. By delving into the role of CNTs in biomedicine, this review sheds light on their potential in managing AD, offering a glimpse of hope for effective disease-modifying options. Understanding the mechanisms of CNTs' action and their capabilities in targeting and delivering medication to affected cells will pave the way for innovative therapeutic strategies that can improve the lives of those afflicted with these devastating neurological conditions. The exploration of CNTs as a dual therapeutic arsenal for both brain tumors and Alzheimer's disease holds great promise and may usher in a new era of effective treatment strategies for these challenging conditions.
Collapse
Affiliation(s)
- Deena Elsori
- Faculty of Resillience, Deans Office Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Gowhar Rashid
- Amity Medical School, Amity University Gurgaon, Haryana, India
| | - Nihad Ashraf Khan
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Punya Sachdeva
- Department of Neuropyschology and Neurosciences, Amity University, Noida, UP, India
| | - Riya Jindal
- Department of Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Falak Kayenat
- Department of Biotechnology, Jamia Hamdard University, New Delhi, India
| | - Bhuvi Sachdeva
- Department of Physics and Astrophysics, Bhagini Nivedita College, University of Delhi, New Delhi, India
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Asaad Ma Babker
- Department of Medical Laboratory Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| |
Collapse
|
28
|
Nader K, Shetta A, Saber S, Mamdouh W. The potential of carbon-based nanomaterials in hepatitis C virus treatment: a review of carbon nanotubes, dendrimers and fullerenes. DISCOVER NANO 2023; 18:116. [PMID: 37715929 PMCID: PMC10505122 DOI: 10.1186/s11671-023-03895-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
HCV, hepatitis C virus, is a virus that causes damage to the liver. Both chronic infection or lack of treatment increase morbidity except if it is an acute infection, as the body clears the virus without any intervention. Also, the virus has many genotypes, and until now, there has yet to be a single treatment capable of affecting and treating all these genotypes at once. This review will discuss the main and most used old treatments, IFN-a, PEG IFN-a, Ribavirin, Celgosvir, and sofosbuvir alone and with the combination of other drugs and their drawbacks. They should be given in combination to improve the effect on the virus compared with being administrated independently, as in the case of sofosbuvir. For these reasons, the need for new treatments and diagnostic tools arises, and the rule of nanotechnology comes here. The role of carbon nanotubes, dendrimers, and fullerenes will be discussed. CNTs, carbon nanotubes, are one-dimensional structures composed of a cylindrical sheet of graphite and are mainly used for diagnostic purposes against HCV. Dendrimers, three-dimensional highly branched structures, are macromolecules that provide better drug delivery and treatment options due to their unique structure that can be modified, producing versatile types; each has unique properties. Fullerenes which are cage like structures derived and closely related to CNTs, and composed of carbon atoms that can be substituted by other atoms which in return open unlimited usage for these carbon based materials. Fullerenes rule is unique since it has two mechanisms that prevent the virus from binding and acting on the virus-replicating enzyme. However, their charge needs to be determined; otherwise, it will lead to cytotoxicity. Lastly, no review has been done on the role of nanotechnology against HCV yet.
Collapse
Affiliation(s)
- Karim Nader
- Department of Mechanical Engineering, School of Sciences and Engineering, The American University in Cairo (AUC), Cairo, 11835, Egypt
| | - Amro Shetta
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), Cairo, 11835, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Wael Mamdouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), Cairo, 11835, Egypt.
| |
Collapse
|
29
|
Prakash S. Nano-based drug delivery system for therapeutics: a comprehensive review. Biomed Phys Eng Express 2023; 9:052002. [PMID: 37549657 DOI: 10.1088/2057-1976/acedb2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Nanomedicine and nano-delivery systems hold unlimited potential in the developing sciences, where nanoscale carriers are employed to efficiently deliver therapeutic drugs at specifically targeted sites in a controlled manner, imparting several advantages concerning improved efficacy and minimizing adverse drug reactions. These nano-delivery systems target-oriented delivery of drugs with precision at several site-specific, with mild toxicity, prolonged circulation time, high solubility, and long retention time in the biological system, which circumvent the problems associated with the conventional delivery approach. Recently, nanocarriers such as dendrimers, liposomes, nanotubes, and nanoparticles have been extensively investigated through structural characteristics, size manipulation, and selective diagnosis through disease imaging molecules, which are very effective and introduce a new paradigm shift in drugs. In this review, the use of nanomedicines in drug delivery has been demonstrated in treating various diseases with significant advances and applications in different fields. In addition, this review discusses the current challenges and future directions for research in these promising fields as well.
Collapse
Affiliation(s)
- Satyendra Prakash
- Centre of Biotechnology, Faculty of Science, University of Allahabad, Allahabad, India
| |
Collapse
|
30
|
Gatou MA, Vagena IA, Pippa N, Gazouli M, Pavlatou EA, Lagopati N. The Use of Crystalline Carbon-Based Nanomaterials (CBNs) in Various Biomedical Applications. CRYSTALS 2023; 13:1236. [DOI: 10.3390/cryst13081236] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
This review study aims to present, in a condensed manner, the significance of the use of crystalline carbon-based nanomaterials in biomedical applications. Crystalline carbon-based nanomaterials, encompassing graphene, graphene oxide, reduced graphene oxide, carbon nanotubes, and graphene quantum dots, have emerged as promising materials for the development of medical devices in various biomedical applications. These materials possess inorganic semiconducting attributes combined with organic π-π stacking features, allowing them to efficiently interact with biomolecules and present enhanced light responses. By harnessing these unique properties, carbon-based nanomaterials offer promising opportunities for future advancements in biomedicine. Recent studies have focused on the development of these nanomaterials for targeted drug delivery, cancer treatment, and biosensors. The conjugation and modification of carbon-based nanomaterials have led to significant advancements in a plethora of therapies and have addressed limitations in preclinical biomedical applications. Furthermore, the wide-ranging therapeutic advantages of carbon nanotubes have been thoroughly examined in the context of biomedical applications.
Collapse
Affiliation(s)
- Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
31
|
Abreu S, Vale N, Soares OSGP. Combination of CNTs with Classical Drugs for Treatment in Human Colorectal Adenocarcinoma (HT-29) Cell Line. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1933. [PMID: 37446448 DOI: 10.3390/nano13131933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Due to the increase in new types of cancer cells and resistance to drugs, conventional cancer treatments are sometimes insufficient. Therefore, an alternative is to apply nanotechnology to biomedical areas, minimizing side effects and drug resistance and improving treatment efficacy. This work aims to find a promising cancer treatment in the human colorectal adenocarcinoma cell line (HT-29) to minimize the viability of cells (IC50) by using carbon nanotubes (CNTs) combined with different drugs (5-fluorouracil (5-FU) and two repurposing drugs-tacrine (TAC) and ethionamide (ETA). Several CNT samples with different functional groups (-O, -N, -S) and textural properties were prepared and characterized by elemental and thermogravimetry analysis, size distribution, and textural and temperature programmed desorption. The samples that interacted most with the drugs and contributed to improving HT-29 cell treatment were samples doped with nitrogen and sulfur groups (CNT-BM-N and CNT-H2SO4-BM) with IC50 1.98 and 2.50 µmol∙dm-3 from 5-FU and 15.32 and 15.81 µmol∙dm-3 from TAC. On the other hand, ETA had no activity, even combined with the CNTs. These results allow us to conclude that the activity was improved for both 5-FU and TAC when combined with CNTs.
Collapse
Affiliation(s)
- Sara Abreu
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
| | - Olívia Salomé G P Soares
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
32
|
Nascimento ATD, Mendes AX, Begeng JM, Duchi S, Stoddart PR, Quigley AF, Kapsa RMI, Ibbotson MR, Silva SM, Moulton SE. A tissue-engineered neural interface with photothermal functionality. Biomater Sci 2023. [PMID: 37194340 DOI: 10.1039/d3bm00139c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Neural interfaces are well-established as a tool to understand the behaviour of the nervous system via recording and stimulation of living neurons, as well as serving as neural prostheses. Conventional neural interfaces based on metals and carbon-based materials are generally optimised for high conductivity; however, a mechanical mismatch between the interface and the neural environment can significantly reduce long-term neuromodulation efficacy by causing an inflammatory response. This paper presents a soft composite material made of gelatin methacryloyl (GelMA) containing graphene oxide (GO) conjugated with gold nanorods (AuNRs). The soft hydrogel presents stiffness within the neural environment range of modulus below 5 kPa, while the AuNRs, when exposed to light in the near infrared range, provide a photothermal response that can be used to improve the spatial and temporal precision of neuromodulation. These favourable properties can be maintained at safer optical power levels when combined with electrical stimulation. In this paper we provide mechanical and biological characterization of the optical activity of the GO-AuNR composite hydrogel. The optical functionality of the material has been evaluated via photothermal stimulation of explanted rat retinal tissue. The outcomes achieved with this study encourage further investigation into optical and electrical costimulation parameters for a range of biomedical applications.
Collapse
Affiliation(s)
- Adriana Teixeira do Nascimento
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Alexandre Xavier Mendes
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - James M Begeng
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- National Vision Research Institute, The Australian College of Optometry, Carlton, VIC 3058, Australia
| | - Serena Duchi
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- Department of Surgery, University of Melbourne, St Vincent's Hospital, Melbourne, Victoria 3065, Australia
| | - Paul R Stoddart
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Anita F Quigley
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Victoria 3065, Australia
| | - Robert M I Kapsa
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Victoria 3065, Australia
| | - Michael R Ibbotson
- National Vision Research Institute, The Australian College of Optometry, Carlton, VIC 3058, Australia
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Saimon M Silva
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.
| |
Collapse
|
33
|
Elkodous MA, Olojede SO, Sahoo S, Kumar R. Recent advances in modification of novel carbon-based composites: Synthesis, properties, and biotechnological/ biomedical applications. Chem Biol Interact 2023; 379:110517. [PMID: 37149208 DOI: 10.1016/j.cbi.2023.110517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/12/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Nowadays, carbon-based materials owing to great interest in biomedical science/biotechnology and applied for effective diagnosis and treatment of disease. To enhance the effectiveness of carbon nanotubes (CNTs)/graphene-based materials for bio-medical science/technology applications, different kinds of surface modification/functionalization were developed for the attachment of metal oxides nanostructures, biomolecules and polymers. The attachment of pharmaceutical agents with CNTs/graphene, make it a favorable candidate in research field of bio-medical science/technology applications. Surface modified/functionalized CNTs and graphene derivatives materials integrated with pharmaceutical agents has been developed for the purpose of cancer therapy, antibacterial action, pathogens bio detection, drug and gene delivery. Surface modification or functionalization of CNT/graphene materials provides good platform for pharmaceutical agents attachment with improved surface Raman scattering, fluorescence and its quenching capability. Graphene-based biosensing and bioimaging technologies are widely applied to identify numerous trace level analytes. These fluorescent and electrochemical sensors are utilized primarily for detecting organic, inorganic, and biomolecules. In this article, we highlights and summarized overview of the current research progress concerned on the CNTs/graphene-based materials as a new generation materials for detection and treatment of diseases.
Collapse
Affiliation(s)
- M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan; Center for Nanotechnology (CNT), School of Engineering and Applied Sciences, Nile University, Sheikh Zayed, Giza, 16453, Egypt
| | - Samuel Oluwaseun Olojede
- Nanotechnology Platforms, Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Sumanta Sahoo
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Rajesh Kumar
- Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India.
| |
Collapse
|
34
|
Popovich KD, Vagner SA, Murashko DT, Ten GN, Ryabkin DI, Savelyev MS, Kitsyuk EP, Gerasimenko EA, Edelbekova P, Konovalov AN, Telyshev DV, Selishchev SV, Gerasimenko AY. Stability and Thrombogenicity Analysis of Collagen/Carbon Nanotube Nanocomposite Coatings Using a Reversible Microfluidic Device. MEMBRANES 2023; 13:403. [PMID: 37103830 PMCID: PMC10144663 DOI: 10.3390/membranes13040403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Currently, the development of stable and antithrombogenic coatings for cardiovascular implants is socially important. This is especially important for coatings exposed to high shear stress from flowing blood, such as those on ventricular assist devices. A method of layer-by-layer formation of nanocomposite coatings based on multi-walled carbon nanotubes (MWCNT) in a collagen matrix is proposed. A reversible microfluidic device with a wide range of flow shear stresses has been developed for hemodynamic experiments. The dependence of the resistance on the presence of a cross-linking agent for collagen chains in the composition of the coating was demonstrated. Optical profilometry determined that collagen/c-MWCNT and collagen/c-MWCNT/glutaraldehyde coatings obtained sufficiently high resistance to high shear stress flow. However, the collagen/c-MWCNT/glutaraldehyde coating was almost twice as resistant to a phosphate-buffered solution flow. A reversible microfluidic device made it possible to assess the level of thrombogenicity of the coatings by the level of blood albumin protein adhesion to the coatings. Raman spectroscopy demonstrated that the adhesion of albumin to collagen/c-MWCNT and collagen/c-MWCNT/glutaraldehyde coatings is 1.7 and 1.4 times lower than the adhesion of protein to a titanium surface, widely used for ventricular assist devices. Scanning electron microscopy and energy dispersive spectroscopy determined that blood protein was least detected on the collagen/c-MWCNT coating, which contained no cross-linking agent, including in comparison with the titanium surface. Thus, a reversible microfluidic device is suitable for preliminary testing of the resistance and thrombogenicity of various coatings and membranes, and nanocomposite coatings based on collagen and c-MWCNT are suitable candidates for the development of cardiovascular devices.
Collapse
Affiliation(s)
- Kristina D. Popovich
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street 2-4, 119435 Moscow, Russia
- Institute of Biomedical Systems, National Research University of Electronic Technology, Shokin Square 1, Zelenograd, 124498 Moscow, Russia
| | - Sergey A. Vagner
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street 2-4, 119435 Moscow, Russia
| | - Denis T. Murashko
- Institute of Biomedical Systems, National Research University of Electronic Technology, Shokin Square 1, Zelenograd, 124498 Moscow, Russia
| | - Galina N. Ten
- Department of Physics, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia
| | - Dmitry I. Ryabkin
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street 2-4, 119435 Moscow, Russia
- Institute of Biomedical Systems, National Research University of Electronic Technology, Shokin Square 1, Zelenograd, 124498 Moscow, Russia
| | - Mikhail S. Savelyev
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street 2-4, 119435 Moscow, Russia
- Institute of Biomedical Systems, National Research University of Electronic Technology, Shokin Square 1, Zelenograd, 124498 Moscow, Russia
| | - Evgeny P. Kitsyuk
- Scientific-Manufacturing Complex “Technological Centre”, Shokin Square 1, bld. 7 off. 7237, 124498 Moscow, Russia
| | - Ekaterina A. Gerasimenko
- Institute of Biomedical Systems, National Research University of Electronic Technology, Shokin Square 1, Zelenograd, 124498 Moscow, Russia
- Orthopedic Department, State Autonomous Institution of Health of the City of Moscow, Dental Clinic No.35, Building 1638, Zelenograd, 124365 Moscow, Russia
| | - Polina Edelbekova
- Insitute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, 32a Leninsky Av., 119991 Moscow, Russia
| | | | - Dmitry V. Telyshev
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street 2-4, 119435 Moscow, Russia
- Institute of Biomedical Systems, National Research University of Electronic Technology, Shokin Square 1, Zelenograd, 124498 Moscow, Russia
| | - Sergey V. Selishchev
- Institute of Biomedical Systems, National Research University of Electronic Technology, Shokin Square 1, Zelenograd, 124498 Moscow, Russia
| | - Alexander Yu. Gerasimenko
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street 2-4, 119435 Moscow, Russia
- Institute of Biomedical Systems, National Research University of Electronic Technology, Shokin Square 1, Zelenograd, 124498 Moscow, Russia
| |
Collapse
|
35
|
Arockiaraj M, Kavitha SRJ, Klavžar S, Fiona JC, Balasubramanian K. Topological, Spectroscopic and Energetic Properties of Cycloparaphenylene Series. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2186442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Affiliation(s)
| | | | - Sandi Klavžar
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
- Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
| | - J. Celin Fiona
- Department of Mathematics, Loyola College, Chennai, India
| | | |
Collapse
|
36
|
Stevens K, Thamwattana N, Tran‐Duc T. Continuum Modeling with Functional Lennard–Jones Parameters for DNA‐Graphene Interactions. ADVANCED THEORY AND SIMULATIONS 2023. [DOI: 10.1002/adts.202200896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Affiliation(s)
- Kyle Stevens
- School of Information and Physical Sciences University of Newcastle, University Dr Callaghan New South Wales 2308 Australia
| | - Ngamta Thamwattana
- School of Information and Physical Sciences University of Newcastle, University Dr Callaghan New South Wales 2308 Australia
| | - Thien Tran‐Duc
- School of Mathematical Sciences University of Adelaide Adelaide South Australia 5005 Australia
| |
Collapse
|
37
|
Kougkolos G, Golzio M, Laudebat L, Valdez-Nava Z, Flahaut E. Hydrogels with electrically conductive nanomaterials for biomedical applications. J Mater Chem B 2023; 11:2036-2062. [PMID: 36789648 DOI: 10.1039/d2tb02019j] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hydrogels, soft 3D materials of cross-linked hydrophilic polymer chains with a high water content, have found numerous applications in biomedicine because of their similarity to native tissue, biocompatibility and tuneable properties. In general, hydrogels are poor conductors of electric current, due to the insulating nature of commonly-used hydrophilic polymer chains. A number of biomedical applications require or benefit from an increased electrical conductivity. These include hydrogels used as scaffolds for tissue engineering of electroactive cells, as strain-sensitive sensors and as platforms for controlled drug delivery. The incorporation of conductive nanomaterials in hydrogels results in nanocomposite materials which combine electrical conductivity with the soft nature, flexibility and high water content of hydrogels. Here, we review the state of the art of such materials, describing the theories of current conduction in nanocomposite hydrogels, outlining their limitations and highlighting methods for improving their electrical conductivity.
Collapse
Affiliation(s)
- Georgios Kougkolos
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse CEDEX 9, France. .,LAPLACE, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse CEDEX 9, France.
| | - Muriel Golzio
- IPBS, Université de Toulouse, NRS UMR, UPS, 31077 Toulouse CEDEX 4, France
| | - Lionel Laudebat
- LAPLACE, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse CEDEX 9, France. .,INU Champollion, Université de Toulouse, 81012 Albi, France
| | - Zarel Valdez-Nava
- LAPLACE, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse CEDEX 9, France.
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse CEDEX 9, France.
| |
Collapse
|
38
|
Bubols GB, Arbo MD, Peruzzi CP, Cestonaro LV, Altknecht LF, Fão N, Göethel G, Nascimento SN, Paese K, Amaral MG, Bergmann CP, Pohlmann AR, Guterres SS, Garcia SC. Characterization and in vivo toxicological evaluation of multi-walled carbon nanotubes: a low-dose repeated intratracheal administration study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36405-36421. [PMID: 36547826 DOI: 10.1007/s11356-022-24653-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
This study characterized and investigated the toxicity of two multi-walled carbon nanotubes (MWCNT) NM-401 and NM-403 at 60 and 180 µg after four repeated intratracheal instillations; follow-up times were 3, 7, 30, and 90 days after the last instillation. NM-401 was needle-like, long, and thick, while NM-403 was entangled, short, and thin. Both MWCNT types induced transient pulmonary and systemic alterations in renal function and oxidative lipid damage markers in recent times. Animals showed general toxicity in the immediate times after exposures, in addition to increased pulmonary LDH release at day 3. In further times, decreased liver and kidney relative weights were noted at higher MWCNT doses. Lung histological damages included pulmonary fibrosis, for both MWCNT types, similarly to asbestos; single liver and kidney histological alterations were present. Repeated instillations led to persistent pulmonary damage at low doses, and possibly the extrapulmonary effects may be associated with the consecutive exposures.
Collapse
Affiliation(s)
- Guilherme Borges Bubols
- Laboratório de Toxicologia (LATOX), Faculdade de Farmácia, Anexo II, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua São Luis, 150, Anexo II, Santana, Porto Alegre, CEP: 90620-170, Brazil
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marcelo Dutra Arbo
- Laboratório de Toxicologia (LATOX), Faculdade de Farmácia, Anexo II, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua São Luis, 150, Anexo II, Santana, Porto Alegre, CEP: 90620-170, Brazil
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Caroline Portela Peruzzi
- Laboratório de Toxicologia (LATOX), Faculdade de Farmácia, Anexo II, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua São Luis, 150, Anexo II, Santana, Porto Alegre, CEP: 90620-170, Brazil
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Larissa Vivan Cestonaro
- Laboratório de Toxicologia (LATOX), Faculdade de Farmácia, Anexo II, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua São Luis, 150, Anexo II, Santana, Porto Alegre, CEP: 90620-170, Brazil
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Louise Figueiredo Altknecht
- Laboratório de Toxicologia (LATOX), Faculdade de Farmácia, Anexo II, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua São Luis, 150, Anexo II, Santana, Porto Alegre, CEP: 90620-170, Brazil
| | - Nuryan Fão
- Laboratório de Toxicologia (LATOX), Faculdade de Farmácia, Anexo II, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua São Luis, 150, Anexo II, Santana, Porto Alegre, CEP: 90620-170, Brazil
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Gabriela Göethel
- Laboratório de Toxicologia (LATOX), Faculdade de Farmácia, Anexo II, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua São Luis, 150, Anexo II, Santana, Porto Alegre, CEP: 90620-170, Brazil
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Sabrina Nunes Nascimento
- Laboratório de Toxicologia (LATOX), Faculdade de Farmácia, Anexo II, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua São Luis, 150, Anexo II, Santana, Porto Alegre, CEP: 90620-170, Brazil
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Karina Paese
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório 405 de Nanotecnologia, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Marta Gonçalves Amaral
- Centro de Desenvolvimento Tecnológico (CDTec), Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Carlos Pérez Bergmann
- Laboratório de Materiais Cerâmicos (LACER), Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Adriana Raffin Pohlmann
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Instituto de Química, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Silvia Stanisçuaski Guterres
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório 405 de Nanotecnologia, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Solange Cristina Garcia
- Laboratório de Toxicologia (LATOX), Faculdade de Farmácia, Anexo II, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua São Luis, 150, Anexo II, Santana, Porto Alegre, CEP: 90620-170, Brazil.
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
39
|
Vardakas P, Kartsonakis IA, Kyriazis ID, Kainourgios P, Trompeta AFA, Charitidis CA, Kouretas D. Pristine, carboxylated, and hybrid multi-walled carbon nanotubes exert potent antioxidant activities in in vitro-cell free systems. ENVIRONMENTAL RESEARCH 2023; 220:115156. [PMID: 36574796 DOI: 10.1016/j.envres.2022.115156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) are tubular-shaped carbon allotropes, composed of multiple concentric graphene cylinders. The extended systems of conjugated double bonds, that MWCNTs are constituted by, provide them with high electron affinities, enabling them to act as electron donors or acceptors. Consequently, their potential biomedical applications, as synthetic antioxidant agents, are of particular interest. Based on the above, the purpose of the present study was to evaluate the intrinsic antioxidant properties of pristine and carboxylated MWCNTs, as well as of novel hybrid nanocomposites of MWCNTs and inorganic nanoparticles. To this end, after the synthesis and characterization of MWCNTs, their antiradical, reducing, and antigenotoxic properties were assessed in cell-free assays, using a methodological approach that has been recently proposed by our research group. According to our results, most of the tested MWCNTs exhibited strong antioxidant activities. More elaborately, the hybrid material of MWCNTs and ferrous oxide nanoparticles, i.e., CNTs@Fe3O4, showed robust scavenging capacities in all free-radical scavenging assays examined. As regards reducing properties, the pristine MWCNTs, i.e., CNTs-Ref, exhibited the greater electron donating capacity. Finally, in terms of antigenotoxic properties, the hybrid material of MWCNTs and silicon carbide nanoparticles, i.e., CNTs@SiC, exhibited potent ability to inhibit the formation of peroxyl radicals, thus preventing from the oxidative DNA damage. Conclusively, our findings suggest that the MWCNTs of the study could be considered as promising broad-spectrum antioxidants, however, further investigations are required to evaluate their toxicological profile in cell-based and in vivo systems.
Collapse
Affiliation(s)
- Periklis Vardakas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Ioannis A Kartsonakis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 15780, Athens, Greece
| | - Ioannis D Kyriazis
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Panagiotis Kainourgios
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 15780, Athens, Greece
| | - Aikaterini Flora A Trompeta
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 15780, Athens, Greece
| | - Constantinos A Charitidis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 15780, Athens, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece.
| |
Collapse
|
40
|
Polokhin AA, Shaman YP, Itrin PA, Panyaev IS, Sysa AA, Selishchev SV, Kitsyuk EP, Pavlov AA, Gerasimenko AY. Tapered Optical Fiber Sensor Coated with Single-Walled Carbon Nanotubes for Dye Sensing Application. MICROMACHINES 2023; 14:579. [PMID: 36984998 PMCID: PMC10056110 DOI: 10.3390/mi14030579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The present study aimed to improve the optical sensing performance of tapered optical fiber sensors toward aqueous Rhodamine B solution of different concentrations by applying single-walled carbon nanotubes (SWCNTs). The functional coating was formed on the surface of the tapered optical fiber sensor using an aerosol layer-by-layer deposition method. Before deposition, the SWCNTs were processed with multistage liquid-phase treatment in order to form a stable dispersion. The effect of SWCNT treatment was investigated through Raman spectroscopy. The deposition of 220 layers caused a reduction of up to 60% of the initial optical power of radiation propagating through the optical fiber core. The optical fiber sensor coated with SWCNTs demonstrated significantly higher sensitivity compared to a non-coated sensor in the range of 2-32 mg/L of Rhodamine B concentration in an aqueous solution. The experimental results demonstrated that the sensitivity was increased 10 times from 32 (mg/L)-1, for the non-coated sensor, up to 317 (mg/L)-1 after SWCNT coating deposition. Moreover, the SWCNT-coated sensor demonstrated high repeatability that allowed for the evaluation of the concentration regardless of the previously analyzed dye concentration.
Collapse
Affiliation(s)
- Aleksandr A. Polokhin
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, 124498 Moscow, Russia
| | - Yuri P. Shaman
- Scientific-Manufacturing Complex “Technological Centre”, Shokin Square 1, bld. 7 off. 7237, 124498 Moscow, Russia
| | - Pavel A. Itrin
- S.P. Kapitsa Research and Technology Institute, Ulyanovsk State University, 42 Leo Tolstoy Str., 432017 Ulyanovsk, Russia
| | - Ivan S. Panyaev
- S.P. Kapitsa Research and Technology Institute, Ulyanovsk State University, 42 Leo Tolstoy Str., 432017 Ulyanovsk, Russia
| | - Artem A. Sysa
- Scientific-Manufacturing Complex “Technological Centre”, Shokin Square 1, bld. 7 off. 7237, 124498 Moscow, Russia
| | - Sergey V. Selishchev
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, 124498 Moscow, Russia
| | - Evgeny P. Kitsyuk
- Scientific-Manufacturing Complex “Technological Centre”, Shokin Square 1, bld. 7 off. 7237, 124498 Moscow, Russia
| | - Alexander A. Pavlov
- Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, Leninsky Prospekt 32A, 119991 Moscow, Russia
| | - Alexander Yu. Gerasimenko
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, 124498 Moscow, Russia
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
| |
Collapse
|
41
|
Li Z, Xiao M, Jin C, Zhang Z. Toward the Commercialization of Carbon Nanotube Field Effect Transistor Biosensors. BIOSENSORS 2023; 13:326. [PMID: 36979538 PMCID: PMC10046102 DOI: 10.3390/bios13030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The development of biosensors based on field-effect transistors (FETs) using atomically thick carbon nanotubes (CNTs) as a channel material has the potential to revolutionize the related field due to their small size, high sensitivity, label-free detection, and real-time monitoring capabilities. Despite extensive research efforts to improve the sensitivity, selectivity, and practicality of CNT FET-based biosensors, their commercialization has not yet been achieved due to the non-uniform and unstable device performance, difficulties in their fabrication, the immaturity of sensor packaging processes, and a lack of reliable modification methods. This review article focuses on the practical applications of CNT-based FET biosensors for the detection of ultra-low concentrations of biologically relevant molecules. We discuss the various factors that affect the sensors' performance in terms of materials, device architecture, and sensor packaging, highlighting the need for a robust commercial process that prioritizes product performance. Additionally, we review recent advances in the application of CNT FET biosensors for the ultra-sensitive detection of various biomarkers. Finally, we examine the key obstacles that currently hinder the large-scale deployment of these biosensors, aiming to identify the challenges that must be addressed for the future industrialization of CNT FET sensors.
Collapse
Affiliation(s)
- Zhongyu Li
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
- Jihua Laboratory, Foshan 528200, China
| | - Mengmeng Xiao
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
| | - Chuanhong Jin
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
- Jihua Laboratory, Foshan 528200, China
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhiyong Zhang
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
- Jihua Laboratory, Foshan 528200, China
| |
Collapse
|
42
|
Thakur CK, Karthikeyan C, Abou-Dahech MS, Altabakha MMAM, Al Shahwan MJS, Ashby CR, Tiwari AK, Babu RJ, Moorthy NSHN. Microwave-Assisted Functionalization of Multi-Walled Carbon Nanotubes for Biosensor and Drug Delivery Applications. Pharmaceutics 2023; 15:pharmaceutics15020335. [PMID: 36839659 PMCID: PMC9962829 DOI: 10.3390/pharmaceutics15020335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Microwave-assisted synthetic methods have emerged as a popular technique for surface modification and the functionalization of multi-walled carbon nanotubes (MWCNTs) for diverse drug delivery applications. Microwave-induced functionalization of MWCNTs provides a high functionalization and requires less time than conventional techniques. Microwave methods are simple, fast, and effective for the covalent and noncovalent conjugation of MWCNTs with various biomolecules and polymers. The present review focuses on the synthetic and drug delivery applications of microwave irradiation techniques (MITs) for the functionalization of MWCNTs, using amino acids and other molecular frameworks containing amino groups, vitamins, proteins, epoxy moieties, metal nanoparticles, and polymers.
Collapse
Affiliation(s)
- Chanchal Kiran Thakur
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak 484887, Madhya Pradesh, India
| | - Chandrabose Karthikeyan
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak 484887, Madhya Pradesh, India
| | - Mariam Sami Abou-Dahech
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Moawia Mohd A. M. Altabakha
- Department of Pharmaceutical Sciences, College of Pharmacy, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Moayad Jamal Saeed Al Shahwan
- Department of Pharmaceutical Sciences, College of Pharmacy, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Charles R. Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy, St. John’s University, New York, NY 11431, USA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - R. Jayachandra Babu
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Correspondence: (R.J.B.); (N.S.H.N.M.)
| | - Narayana Subbiah Hari Narayana Moorthy
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak 484887, Madhya Pradesh, India
- Correspondence: (R.J.B.); (N.S.H.N.M.)
| |
Collapse
|
43
|
Lee SS, Paliouras M, Trifiro MA. Functionalized Carbon Nanoparticles as Theranostic Agents and Their Future Clinical Utility in Oncology. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010108. [PMID: 36671680 PMCID: PMC9854994 DOI: 10.3390/bioengineering10010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Over the years, research of nanoparticle applications in pre-clinical and clinical applications has greatly advanced our therapeutic and imaging approaches to many diseases, most notably neoplastic disorders. In particular, the innate properties of inorganic nanomaterials, such as gold and iron oxide, as well as carbon-based nanoparticles, have provided the greatest opportunities in cancer theranostics. Carbon nanoparticles can be used as carriers of biological agents to enhance the therapeutic index at a tumor site. Alternatively, they can also be combined with external stimuli, such as light, to induce irreversible physical damaging effects on cells. In this review, the recent advances in carbon nanoparticles and their use in cancer theranostics will be discussed. In addition, the set of evaluations that will be required during their transition from laboratory investigations toward clinical trials will be addressed.
Collapse
Affiliation(s)
- Seung S. Lee
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Lady Davis Institute for Medical Research—Jewish General Hospital, Montreal, QC H4A 3J1, Canada
| | - Miltiadis Paliouras
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Lady Davis Institute for Medical Research—Jewish General Hospital, Montreal, QC H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Department of Oncology, McGill University, Montreal, QC H4A 3J1, Canada
- Correspondence:
| | - Mark A. Trifiro
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Lady Davis Institute for Medical Research—Jewish General Hospital, Montreal, QC H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
44
|
Shilpi S, Gulbake AS, Chouhan S, Kumar P. Functionalized Carbon Nanotubes, Graphene Oxide, Fullerenes, and Nanodiamonds: Emerging Theranostic Nanomedicines. MULTIFUNCTIONAL AND TARGETED THERANOSTIC NANOMEDICINES 2023:187-213. [DOI: 10.1007/978-981-99-0538-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
45
|
Ramesh M, Janani R, Deepa C, Rajeshkumar L. Nanotechnology-Enabled Biosensors: A Review of Fundamentals, Design Principles, Materials, and Applications. BIOSENSORS 2022; 13:40. [PMID: 36671875 PMCID: PMC9856107 DOI: 10.3390/bios13010040] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 05/14/2023]
Abstract
Biosensors are modern engineering tools that can be widely used for various technological applications. In the recent past, biosensors have been widely used in a broad application spectrum including industrial process control, the military, environmental monitoring, health care, microbiology, and food quality control. Biosensors are also used specifically for monitoring environmental pollution, detecting toxic elements' presence, the presence of bio-hazardous viruses or bacteria in organic matter, and biomolecule detection in clinical diagnostics. Moreover, deep medical applications such as well-being monitoring, chronic disease treatment, and in vitro medical examination studies such as the screening of infectious diseases for early detection. The scope for expanding the use of biosensors is very high owing to their inherent advantages such as ease of use, scalability, and simple manufacturing process. Biosensor technology is more prevalent as a large-scale, low cost, and enhanced technology in the modern medical field. Integration of nanotechnology with biosensors has shown the development path for the novel sensing mechanisms and biosensors as they enhance the performance and sensing ability of the currently used biosensors. Nanoscale dimensional integration promotes the formulation of biosensors with simple and rapid detection of molecules along with the detection of single biomolecules where they can also be evaluated and analyzed critically. Nanomaterials are used for the manufacturing of nano-biosensors and the nanomaterials commonly used include nanoparticles, nanowires, carbon nanotubes (CNTs), nanorods, and quantum dots (QDs). Nanomaterials possess various advantages such as color tunability, high detection sensitivity, a large surface area, high carrier capacity, high stability, and high thermal and electrical conductivity. The current review focuses on nanotechnology-enabled biosensors, their fundamentals, and architectural design. The review also expands the view on the materials used for fabricating biosensors and the probable applications of nanotechnology-enabled biosensors.
Collapse
Affiliation(s)
- Manickam Ramesh
- Department of Mechanical Engineering, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, Tamil Nadu, India
| | - Ravichandran Janani
- Department of Physics, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, Tamil Nadu, India
| | - Chinnaiyan Deepa
- Department of Artificial Intelligence & Data Science, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, Tamil Nadu, India
| | - Lakshminarasimhan Rajeshkumar
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamil Nadu, India
| |
Collapse
|
46
|
Bagheri B, Surwase SS, Lee SS, Park H, Faraji Rad Z, Trevaskis NL, Kim YC. Carbon-based nanostructures for cancer therapy and drug delivery applications. J Mater Chem B 2022; 10:9944-9967. [PMID: 36415922 DOI: 10.1039/d2tb01741e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Synthesis, design, characterization, and application of carbon-based nanostructures (CBNSs) as drug carriers have attracted a great deal of interest over the past half of the century because of their promising chemical, thermal, physical, optical, mechanical, and electrical properties and their structural diversity. CBNSs are well-known in drug delivery applications due to their unique features such as easy cellular uptake, high drug loading ability, and thermal ablation. CBNSs, including carbon nanotubes, fullerenes, nanodiamond, graphene, and carbon quantum dots have been quite broadly examined for drug delivery systems. This review not only summarizes the most recent studies on developing carbon-based nanostructures for drug delivery (e.g. delivery carrier, cancer therapy and bioimaging), but also tries to deal with the challenges and opportunities resulting from the expansion in use of these materials in the realm of drug delivery. This class of nanomaterials requires advanced techniques for synthesis and surface modifications, yet a lot of critical questions such as their toxicity, biodistribution, pharmacokinetics, and fate of CBNSs in biological systems must be answered.
Collapse
Affiliation(s)
- Babak Bagheri
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. .,School of Engineering, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Sachin S Surwase
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Su Sam Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Heewon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Zahra Faraji Rad
- School of Engineering, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC, 3052, Australia
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
47
|
Assessment of Pristine Carbon Nanotubes Toxicity in Rodent Models. Int J Mol Sci 2022; 23:ijms232315343. [PMID: 36499665 PMCID: PMC9739793 DOI: 10.3390/ijms232315343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Carbon nanotubes are increasingly used in nanomedicine and material chemistry research, mostly because of their small size over a large surface area. Due to their properties, they are very attractive candidates for use in medicine and as drug carriers, contrast agents, biological platforms, and so forth. Carbon nanotubes (CNTs) may affect many organs, directly or indirectly, so there is a need for toxic effects evaluation. The main mechanisms of toxicity include oxidative stress, inflammation, the ability to damage DNA and cell membrane, as well as necrosis and apoptosis. The research concerning CNTs focuses on different animal models, functionalization, ways of administration, concentrations, times of exposure, and a variety of properties, which have a significant effect on toxicity. The impact of pristine CNTs on toxicity in rodent models is being increasingly studied. However, it is immensely difficult to compare obtained results since there are no standardized tests. This review summarizes the toxicity issues of pristine CNTs in rodent models, as they are often the preferred model for human disease studies, in different organ systems, while considering the various factors that affect them. Regardless, the results showed that the majority of toxicological studies using rodent models revealed some toxic effects. Even with different properties, carbon nanotubes were able to generate inflammation, fibrosis, or biochemical changes in different organs. The problem is that there are only a small amount of long-term toxicity studies, which makes it impossible to obtain a good understanding of later effects. This article will give a greater overview of the situation on toxicity in many organs. It will allow researchers to look at the toxicity of carbon nanotubes in a broader context and help to identify studies that are missing to properly assess toxicity.
Collapse
|
48
|
Raja IS, Kang MS, Hong SW, Bae H, Kim B, Hwang YS, Cha JM, Han DW. State-of-the-art techniques for promoting tissue regeneration: Combination of three-dimensional bioprinting and carbon nanomaterials. Int J Bioprint 2022; 9:635. [PMID: 36844243 PMCID: PMC9947385 DOI: 10.18063/ijb.v9i1.635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/23/2022] [Indexed: 11/06/2022] Open
Abstract
181Biofabrication approaches, such as three-dimensional (3D) bioprinting of hydrogels, have recently garnered increasing attention, especially in the construction of 3D structures that mimic the complexity of tissues and organs with the capacity for cytocompatibility and post-printing cellular development. However, some printed gels show poor stability and maintain less shape fidelity if parameters such as polymer nature, viscosity, shear-thinning behavior, and crosslinking are affected. Therefore, researchers have incorporated various nanomaterials as bioactive fillers into polymeric hydrogels to address these limitations. Carbon-family nanomaterials (CFNs), hydroxyapatites, nanosilicates, and strontium carbonates have been incorporated into printed gels for application in various biomedical fields. In this review, following the compilation of research publications on CFNs-containing printable gels in various tissue engineering applications, we discuss the types of bioprinters, the prerequisites of bioink and biomaterial ink, as well as the progress and challenges of CFNs-containing printable gels in this field.
Collapse
Affiliation(s)
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, South Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, South Korea
| | - Hojae Bae
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul, 05029, Republic of Korea
| | - Bongju Kim
- Dental Life Science Research Institute/Innovation Research & Support Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, South Korea
| | - Yu-Shik Hwang
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 02447, South Korea
| | - Jae Min Cha
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon 22012, South Korea,Corresponding authors: Jae Min Cha () Dong-Wook Han ()
| | - Dong-Wook Han
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, South Korea,Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, South Korea,Corresponding authors: Jae Min Cha () Dong-Wook Han ()
| |
Collapse
|
49
|
Merodio-Perea RG, Lado-Touriño I, Páez-Pavón A, Talayero C, Galán-Salazar A, Aït-Salem O. Mechanical Properties of Cement Reinforced with Pristine and Functionalized Carbon Nanotubes: Simulation Studies. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7734. [PMID: 36363327 PMCID: PMC9658619 DOI: 10.3390/ma15217734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Concrete is well known for its compression resistance, making it suitable for any kind of construction. Several research studies show that the addition of carbon nanostructures to concrete allows for construction materials with both a higher resistance and durability, while having less porosity. Among the mentioned nanostructures are carbon nanotubes (CNTs), which consist of long cylindrical molecules with a nanoscale diameter. In this work, molecular dynamics (MD) simulations have been carried out, to study the effect of pristine or carboxyl functionalized CNTs inserted into a tobermorite crystal on the mechanical properties (elastic modulus and interfacial shear strength) of the resulting composites. The results show that the addition of the nanostructure to the tobermorite crystal increases the elastic modulus and the interfacial shear strength, observing a positive relation between the mechanical properties and the atomic interactions established between the tobermorite crystal and the CNT surface. In addition, functionalized CNTs present enhanced mechanical properties.
Collapse
Affiliation(s)
- Rosario G. Merodio-Perea
- Department of Industrial and Aerospace Engineering, School of Architecture, Engineering and Design, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Dabrowski B, Zuchowska A, Brzozka Z. Graphene oxide internalization into mammalian cells – a review. Colloids Surf B Biointerfaces 2022; 221:112998. [DOI: 10.1016/j.colsurfb.2022.112998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/07/2022]
|