1
|
Campàs M, Reverté J, Tudó À, Alkassar M, Diogène J, Sureda FX. Automated Patch Clamp for the Detection of Tetrodotoxin in Pufferfish Samples. Mar Drugs 2024; 22:176. [PMID: 38667793 PMCID: PMC11050952 DOI: 10.3390/md22040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Tetrodotoxin (TTX) is a marine toxin responsible for many intoxications around the world. Its presence in some pufferfish species and, as recently reported, in shellfish, poses a serious health concern. Although TTX is not routinely monitored, there is a need for fast, sensitive, reliable, and simple methods for its detection and quantification. In this work, we describe the use of an automated patch clamp (APC) system with Neuro-2a cells for the determination of TTX contents in pufferfish samples. The cells showed an IC50 of 6.4 nM for TTX and were not affected by the presence of muscle, skin, liver, and gonad tissues of a Sphoeroides pachygaster specimen (TTX-free) when analysed at 10 mg/mL. The LOD achieved with this technique was 0.05 mg TTX equiv./kg, which is far below the Japanese regulatory limit of 2 mg TTX equiv./kg. The APC system was applied to the analysis of extracts of a Lagocephalus sceleratus specimen, showing TTX contents that followed the trend of gonads > liver > skin > muscle. The APC system, providing an in vitro toxicological approach, offers the advantages of being sensitive, rapid, and reliable for the detection of TTX-like compounds in seafood.
Collapse
Affiliation(s)
- Mònica Campàs
- IRTA, Marine and Continental Waters (AMiC) Programme, Ctra. Poble Nou del Delta, km. 5.5, 43540 La Ràpita, Spain; (J.R.); (M.A.); (J.D.)
| | - Jaume Reverté
- IRTA, Marine and Continental Waters (AMiC) Programme, Ctra. Poble Nou del Delta, km. 5.5, 43540 La Ràpita, Spain; (J.R.); (M.A.); (J.D.)
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain;
| | - Àngels Tudó
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain;
| | - Mounira Alkassar
- IRTA, Marine and Continental Waters (AMiC) Programme, Ctra. Poble Nou del Delta, km. 5.5, 43540 La Ràpita, Spain; (J.R.); (M.A.); (J.D.)
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain;
| | - Jorge Diogène
- IRTA, Marine and Continental Waters (AMiC) Programme, Ctra. Poble Nou del Delta, km. 5.5, 43540 La Ràpita, Spain; (J.R.); (M.A.); (J.D.)
| | - Francesc X. Sureda
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain;
| |
Collapse
|
2
|
Balabantaray SR, Singh PK, Pandey AK, Chaturvedi BK, Sharma AK. Forecasting global plastic production and microplastic emission using advanced optimised discrete grey model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123039-123054. [PMID: 37980320 DOI: 10.1007/s11356-023-30799-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/27/2023] [Indexed: 11/20/2023]
Abstract
Plastic pollution has become a prominent and pressing environmental concern within the realm of pollution. In recent times, microplastics have entered our ecosystem, especially in freshwater. In the contemporary global landscape, there exists a mounting apprehension surrounding the manifold environmental and public health issues that have emerged as a result of the substantial accumulation of microplastics. The objective of the current study is to employ an enhanced grey prediction model in order to forecast global plastic production and microplastic emissions. This study compared the accuracy level of the four grey prediction models, namely, EGM (1,1, α, θ), DGM (1,1), EGM (1,1), and DGM (1,1, α) models, to evaluate the accuracy levels. As per the estimation of the study, DGM (1,1, α) was found to be more suitable with higher accuracy levels to predict microplastic emission. The EGM (1,1, α, θ) model has slightly better accuracy than the DGM (1,1, α) model in predicting global plastic production. Various accuracy measurement tools (MAPE and RMSE) were used to determine the model's efficiency. There has been a gradual growth in both plastic production and microplastic emission. The current study using the DGM (1,1, α) model predicted that microplastic emission would be 1,084,018 by 2030. The present study aims to provide valuable insights for policymakers in formulating effective strategies to address the complex issues arising from the release of microplastics into the environment and the continuous production of plastic materials.
Collapse
Affiliation(s)
| | | | - Alok Kumar Pandey
- Centre for Integrated Rural Development, Banaras Hindu University, Varanasi, India
| | | | - Aditya Kumar Sharma
- School of Liberal Arts and Management, DIT University, Makka Wala, Uttarakhand, India
| |
Collapse
|
3
|
Pal P, Anand U, Saha SC, Sundaramurthy S, Okeke ES, Kumar M, Radha, Bontempi E, Albertini E, Dey A, Di Maria F. Novel CRISPR/Cas technology in the realm of algal bloom biomonitoring: Recent trends and future perspectives. ENVIRONMENTAL RESEARCH 2023; 231:115989. [PMID: 37119838 DOI: 10.1016/j.envres.2023.115989] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 04/09/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023]
Abstract
In conjunction with global climate change, progressive ocean warming, and acclivity in pollution and anthropogenic eutrophication, the incidence of harmful algal blooms (HABs) and cyanobacterial harmful algal blooms (CHABs) continue to expand in distribution, frequency, and magnitude. Algal bloom-related toxins have been implicated in human health disorders and ecological dysfunction and are detrimental to the national and global economy. Biomonitoring programs based on traditional monitoring protocols were characterised by some limitations that can be efficiently overdone using the CRISPR/Cas technology. In the present review, the potential and challenges of exploiting the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas technology for early detection of HABs and CHABs-associated toxigenic species were analysed. Based on more than 30 scientific papers, the main results indicate the great potential of CRISPR/Cas technology for this issue, even if the high sensitivity detected for the Cas12 and Cas13 platforms represents a possible interference risk.
Collapse
Affiliation(s)
- Pracheta Pal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Suchismita Chatterjee Saha
- Department of Zoology, Nabadwip Vidyasagar College (affiliated to the University of Kalyani), Nabadwip, West Bengal, 741302, India
| | - Suresh Sundaramurthy
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, Madhya Pradesh, India
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, 400019, Maharashtra, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123, Brescia, Italy
| | - Emidio Albertini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| | - Francesco Di Maria
- Dipartimento di Ingegneria, University of Perugia, Via G. Duranti 93, 06125, Perugia, Italy.
| |
Collapse
|
4
|
Pottier I, Lewis RJ, Vernoux JP. Ciguatera Fish Poisoning in the Caribbean Sea and Atlantic Ocean: Reconciling the Multiplicity of Ciguatoxins and Analytical Chemistry Approach for Public Health Safety. Toxins (Basel) 2023; 15:453. [PMID: 37505722 PMCID: PMC10467118 DOI: 10.3390/toxins15070453] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023] Open
Abstract
Ciguatera is a major circumtropical poisoning caused by the consumption of marine fish and invertebrates contaminated with ciguatoxins (CTXs): neurotoxins produced by endemic and benthic dinoflagellates which are biotransformed in the fish food-web. We provide a history of ciguatera research conducted over the past 70 years on ciguatoxins from the Pacific Ocean (P-CTXs) and Caribbean Sea (C-CTXs) and describe their main chemical, biochemical, and toxicological properties. Currently, there is no official method for the extraction and quantification of ciguatoxins, regardless their origin, mainly due to limited CTX-certified reference materials. In this review, the extraction and purification procedures of C-CTXs are investigated, considering specific objectives such as isolating reference materials, analysing fish toxin profiles, or ensuring food safety control. Certain in vitro assays may provide sufficient sensitivity to detect C-CTXs at sub-ppb levels in fish, but they do not allow for individual identification of CTXs. Recent advances in analysis using liquid chromatography coupled with low- or high-resolution mass spectrometry provide new opportunities to identify known C-CTXs, to gain structural insights into new analogues, and to quantify C-CTXs. Together, these methods reveal that ciguatera arises from a multiplicity of CTXs, although one major form (C-CTX-1) seems to dominate. However, questions arise regarding the abundance and instability of certain C-CTXs, which are further complicated by the wide array of CTX-producing dinoflagellates and fish vectors. Further research is needed to assess the toxic potential of the new C-CTX and their role in ciguatera fish poisoning. With the identification of C-CTXs in the coastal USA and Eastern Atlantic Ocean, the investigation of ciguatera fish poisoning is now a truly global effort.
Collapse
Affiliation(s)
- Ivannah Pottier
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France;
| | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | | |
Collapse
|
5
|
Reverté J, Alkassar M, Diogène J, Campàs M. Detection of Ciguatoxins and Tetrodotoxins in Seafood with Biosensors and Other Smart Bioanalytical Systems. Foods 2023; 12:foods12102043. [PMID: 37238861 DOI: 10.3390/foods12102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The emergence of marine toxins such as ciguatoxins (CTXs) and tetrodotoxins (TTXs) in non-endemic regions may pose a serious food safety threat and public health concern if proper control measures are not applied. This article provides an overview of the main biorecognition molecules used for the detection of CTXs and TTXs and the different assay configurations and transduction strategies explored in the development of biosensors and other biotechnological tools for these marine toxins. The advantages and limitations of the systems based on cells, receptors, antibodies, and aptamers are described, and new challenges in marine toxin detection are identified. The validation of these smart bioanalytical systems through analysis of samples and comparison with other techniques is also rationally discussed. These tools have already been demonstrated to be useful in the detection and quantification of CTXs and TTXs, and are, therefore, highly promising for their implementation in research activities and monitoring programs.
Collapse
Affiliation(s)
- Jaume Reverté
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Mounira Alkassar
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Jorge Diogène
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Mònica Campàs
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| |
Collapse
|
6
|
De la Paz JF, Zambrano NO, Ortiz FC, Llanos-Rivera A. A New Bioassay for the Detection of Paralytic and Amnesic Biotoxins Based on Motor Behavior Impairments of Zebrafish Larvae. Int J Mol Sci 2023; 24:ijms24087466. [PMID: 37108629 PMCID: PMC10144378 DOI: 10.3390/ijms24087466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The global concern about the increase of harmful algal bloom events and the possible impacts on food safety and aquatic ecosystems presents the necessity for the development of more accessible techniques for biotoxin detection for screening purposes. Considering the numerous advantages that zebrafish present as a biological model and particularly as a toxicants sentinel, we designed a sensitive and accessible test to determine the activity of paralytic and amnesic biotoxins using zebrafish larvae immersion. The ZebraBioTox bioassay is based on the automated recording of larval locomotor activity using an IR microbeam locomotion detector, and manual assessment of four complementary responses under a simple stereoscope: survival, periocular edema, body balance, and touch response. This 24 h acute static bioassay was set up in 96-well microplates using 5 dpf zebrafish larvae. For paralytic toxins, a significant decrease in locomotor activity and touch response of the larvae was detected, allowing a detection threshold of 0.1-0.2 µg/mL STXeq. In the case of the amnesic toxin the effect was reversed, detecting hyperactivity with a detection threshold of 10 µg/mL domoic acid. We propose that this assay might be used as a complementary tool for environmental safety monitoring.
Collapse
Affiliation(s)
- Javiera F De la Paz
- Laboratorio de Embriotoxicología e Interacción Desarrollo Ambiente (LEIDA), Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile
- Laboratorio de Toxicología Acuática, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4070386, Chile
- Danio Biotechnologies, SpA, Santiago 8271199, Chile
| | - Nicolás O Zambrano
- Laboratorio de Toxicología Acuática, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4070386, Chile
- Danio Biotechnologies, SpA, Santiago 8271199, Chile
| | - Fernando C Ortiz
- Mechanisms of Myelin Formation and Repair Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Alameda 3363, Estación Central, Santiago 9170022, Chile
| | - Alejandra Llanos-Rivera
- Laboratorio de Toxicología Acuática, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4070386, Chile
| |
Collapse
|
7
|
Recent developments in biosensing strategies for the detection of small molecular contaminants to ensure food safety in aquaculture and fisheries. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Alkassar M, Leonardo S, Diogène J, Campàs M. Immobilisation of Neuro-2a cells on electrodes and electrochemical detection of MTT formazan crystals to assess their viability. Bioelectrochemistry 2022; 148:108274. [DOI: 10.1016/j.bioelechem.2022.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2022]
|
9
|
Moreira M, Soliño L, Marques CL, Laizé V, Pousão-Ferreira P, Costa PR, Soares F. Cytotoxic and Hemolytic Activities of Extracts of the Fish Parasite Dinoflagellate Amyloodinium ocellatum. Toxins (Basel) 2022; 14:toxins14070467. [PMID: 35878205 PMCID: PMC9316444 DOI: 10.3390/toxins14070467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
The dinoflagellate Amyloodinium ocellatum is the etiological agent of a parasitic disease named amyloodiniosis. Mortalities of diseased fish are usually attributed to anoxia, osmoregulatory impairment, or opportunistic bacterial infections. Nevertheless, the phylogenetic proximity of A. ocellatum to a group of toxin-producing dinoflagellates from Pfiesteria, Parvodinium and Paulsenella genera suggests that it may produce toxin-like compounds, adding a new dimension to the possible cause of mortalities in A. ocellatum outbreaks. To address this question, extracts prepared from different life stages of the parasite were tested in vitro for cytotoxic effects using two cell lines derived from branchial arches (ABSa15) and the caudal fin (CFSa1) of the gilthead seabream (Sparus aurata), and for hemolytic effects using erythrocytes purified from the blood of gilthead seabream juveniles. Cytotoxicity and a strong hemolytic effect, similar to those observed for Karlodinium toxins, were observed for the less polar extracts of the parasitic stage (trophont). A similar trend was observed for the less polar extracts of the infective stage (dinospores), although cell viability was only affected in the ABSa15 line. These results suggest that A. ocellatum produces tissue-specific toxic compounds that may have a role in the attachment of the dinospores’ and trophonts’ feeding process.
Collapse
Affiliation(s)
- Márcio Moreira
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- IPMA—Portuguese Institute for the Ocean and Atmosphere, EPPO—Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Lucía Soliño
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- IPMA—Portuguese Institute for the Ocean and Atmosphere, Av. Alfredo Magalhães Ramalho, n° 6, 1495-165 Algés, Portugal
| | - Cátia L. Marques
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- IPMA—Portuguese Institute for the Ocean and Atmosphere, EPPO—Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Vincent Laizé
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Pedro Pousão-Ferreira
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- IPMA—Portuguese Institute for the Ocean and Atmosphere, EPPO—Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Pedro Reis Costa
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- IPMA—Portuguese Institute for the Ocean and Atmosphere, Av. Alfredo Magalhães Ramalho, n° 6, 1495-165 Algés, Portugal
| | - Florbela Soares
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- IPMA—Portuguese Institute for the Ocean and Atmosphere, EPPO—Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
- Correspondence:
| |
Collapse
|
10
|
Reductive Amination for LC-MS Signal Enhancement and Confirmation of the Presence of Caribbean Ciguatoxin-1 in Fish. Toxins (Basel) 2022; 14:toxins14060399. [PMID: 35737060 PMCID: PMC9245599 DOI: 10.3390/toxins14060399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Ciguatera poisoning is a global health concern caused by the consumption of seafood containing ciguatoxins (CTXs). Detection of CTXs poses significant analytical challenges due to their low abundance even in highly toxic fish, the diverse and in-part unclarified structures of many CTX congeners, and the lack of reference standards. Selective detection of CTXs requires methods such as liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) or high-resolution MS (LC-HRMS). While HRMS data can provide greatly improved resolution, it is typically less sensitive than targeted LC-MS/MS and does not reliably comply with the FDA guidance level of 0.1 µg/kg CTXs in fish tissue that was established for Caribbean CTX-1 (C-CTX-1). In this study, we provide a new chemical derivatization approach employing a fast and simple one-pot derivatization with Girard's reagent T (GRT) that tags the C-56-ketone intermediate of the two equilibrating C-56 epimers of C-CTX-1 with a quaternary ammonium moiety. This derivatization improved the LC-MS/MS and LC-HRMS responses to C-CTX-1 by approximately 40- and 17-fold on average, respectively. These improvements in sensitivity to the GRT-derivative of C-CTX-1 are attributable to: the improved ionization efficiency caused by insertion of a quaternary ammonium ion; the absence of adduct-ions and water-loss peaks for the GRT derivative in the mass spectrometer, and; the prevention of on-column epimerization (at C-56 of C-CTX-1) by GRT derivatization, leading to much better chromatographic peak shapes. This C-CTX-1-GRT derivatization strategy mitigates many of the shortcomings of current LC-MS analyses for C-CTX-1 by improving instrument sensitivity, while at the same time adding selectivity due to the reactivity of GRT with ketones and aldehydes.
Collapse
|
11
|
Otero P, Silva M. Emerging Marine Biotoxins in European Waters: Potential Risks and Analytical Challenges. Mar Drugs 2022; 20:199. [PMID: 35323498 PMCID: PMC8955394 DOI: 10.3390/md20030199] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/15/2022] [Accepted: 03/05/2022] [Indexed: 01/21/2023] Open
Abstract
Harmful algal blooms pose a challenge regarding food safety due to their erratic nature and forming circumstances which are yet to be disclosed. The best strategy to protect human consumers is through legislation and monitoring strategies. Global warming and anthropological intervention aided the migration and establishment of emerging toxin producers into Europe's temperate waters, creating a new threat to human public health. The lack of information, standards, and reference materials delay effective solutions, being a matter of urgent resolution. In this work, the recent findings of the presence of emerging azaspiracids, spirolildes, pinnatoxins, gymnodimines, palitoxins, ciguatoxins, brevetoxins, and tetrodotoxins on European Coasts are addressed. The information concerning emerging toxins such as new matrices, locations, and toxicity assays is paramount to set the risk assessment guidelines, regulatory levels, and analytical methodology that would protect the consumers.
Collapse
Affiliation(s)
- Paz Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Veterinary Science, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Marisa Silva
- MARE—Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
- Department of Plant Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
12
|
Díaz PA, Álvarez G, Pizarro G, Blanco J, Reguera B. Lipophilic Toxins in Chile: History, Producers and Impacts. Mar Drugs 2022; 20:122. [PMID: 35200651 PMCID: PMC8874607 DOI: 10.3390/md20020122] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 01/27/2023] Open
Abstract
A variety of microalgal species produce lipophilic toxins (LT) that are accumulated by filter-feeding bivalves. Their negative impacts on human health and shellfish exploitation are determined by toxic potential of the local strains and toxin biotransformations by exploited bivalve species. Chile has become, in a decade, the world's major exporter of mussels (Mytilus chilensis) and scallops (Argopecten purpuratus) and has implemented toxin testing according to importing countries' demands. Species of the Dinophysis acuminata complex and Protoceratium reticulatum are the most widespread and abundant LT producers in Chile. Dominant D. acuminata strains, notwithstanding, unlike most strains in Europe rich in okadaic acid (OA), produce only pectenotoxins, with no impact on human health. Dinophysis acuta, suspected to be the main cause of diarrhetic shellfish poisoning outbreaks, is found in the two southernmost regions of Chile, and has apparently shifted poleward. Mouse bioassay (MBA) is the official method to control shellfish safety for the national market. Positive results from mouse tests to mixtures of toxins and other compounds only toxic by intraperitoneal injection, including already deregulated toxins (PTXs), force unnecessary harvesting bans, and hinder progress in the identification of emerging toxins. Here, 50 years of LST events in Chile, and current knowledge of their sources, accumulation and effects, are reviewed. Improvements of monitoring practices are suggested, and strategies to face new challenges and answer the main questions are proposed.
Collapse
Affiliation(s)
- Patricio A. Díaz
- Centro i~mar (CeBiB), Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile;
| | - Gonzalo Álvarez
- Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1781421, Chile;
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo 17811421, Chile
| | - Gemita Pizarro
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Enrique Abello 0552, Punta Arenas 6200000, Chile;
| | - Juan Blanco
- Centro de Investigacións Mariñas (Xunta de Galicia), Apto. 13, 36620 Vilanova de Arousa, Pontevedra, Spain;
| | - Beatriz Reguera
- Centro Oceanográfico de Vigo (IEO, CSIC), Subida a Radio Faro 50, 36390 Vigo, Pontevedra, Spain
| |
Collapse
|
13
|
Katikou P, Gokbulut C, Kosker AR, Campàs M, Ozogul F. An Updated Review of Tetrodotoxin and Its Peculiarities. Mar Drugs 2022; 20:md20010047. [PMID: 35049902 PMCID: PMC8780202 DOI: 10.3390/md20010047] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
Tetrodotoxin (TTX) is a crystalline, weakly basic, colorless organic substance and is one of the most potent marine toxins known. Although TTX was first isolated from pufferfish, it has been found in numerous other marine organisms and a few terrestrial species. Moreover, tetrodotoxication is still an important health problem today, as TTX has no known antidote. TTX poisonings were most commonly reported from Japan, Thailand, and China, but today the risk of TTX poisoning is spreading around the world. Recent studies have shown that TTX-containing fish are being found in other regions of the Pacific and in the Indian Ocean, as well as the Mediterranean Sea. This review aims to summarize pertinent information available to date on the structure, origin, distribution, mechanism of action of TTX and analytical methods used for the detection of TTX, as well as on TTX-containing organisms, symptoms of TTX poisoning, and incidence worldwide.
Collapse
Affiliation(s)
- Panagiota Katikou
- Ministry of Rural Development and Food, Directorate of Research, Innovation and Education, Hapsa & Karatasou 1, 54626 Thessaloniki, Greece
- Correspondence: (P.K.); (F.O.)
| | - Cengiz Gokbulut
- Department of Pharmacology, Faculty of Medicine, Balikesir University, Balikesir 10145, Turkey;
| | - Ali Rıza Kosker
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey;
| | - Mònica Campàs
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain;
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey;
- Correspondence: (P.K.); (F.O.)
| |
Collapse
|
14
|
Wang XF, Wang Q, Zhang YX, Yang JL, Zhao DH. Magnetic Amino-Modified Multiwalled Carbon Nanotube (MWCNT) Based Magnetic Dispersive Solid-Phase Extraction (m-dSPE) for the Determination of Paralytic Shellfish Toxins in Bivalve Mollusks with Hydrophilic Interaction Liquid Chromatography–Tandem Mass Spectrometry (HILIC-MS/MS). ANAL LETT 2021. [DOI: 10.1080/00032719.2021.2015772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xu-Feng Wang
- Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Guangzhou, China
- Ministry of Agriculture and Rural Affairs, Key Lab. of Aquatic Product Processing, Guangzhou, China
| | - Qiang Wang
- Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Guangzhou, China
- Ministry of Agriculture and Rural Affairs, Key Lab. of Aquatic Product Processing, Guangzhou, China
| | - Ying-Xia Zhang
- Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Guangzhou, China
- Ministry of Agriculture and Rural Affairs, Key Lab. of Aquatic Product Processing, Guangzhou, China
| | - Jin-Lan Yang
- Environmental Monitoring Centre of Ocean and Fishery, Guangzhou, China
| | - Dong-Hao Zhao
- Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Guangzhou, China
- Ministry of Agriculture and Rural Affairs, Key Lab. of Aquatic Product Processing, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
| |
Collapse
|
15
|
Ginés I, Gaiani G, Ruhela A, Skouridou V, Campàs M, Masip L. Nucleic acid lateral flow dipstick assay for the duplex detection of Gambierdiscus australes and Gambierdiscus excentricus. HARMFUL ALGAE 2021; 110:102135. [PMID: 34887012 DOI: 10.1016/j.hal.2021.102135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The proliferation of harmful microalgae endangers aquatic ecosystems and can have serious economic implications on a global level. Harmful microalgae and their associated toxins also pose a threat to human health since they can cause seafood-borne diseases such as ciguatera. Implementation of DNA-based molecular methods together with appropriate detection strategies in monitoring programs can support the efforts for effective prevention of potential outbreaks. A PCR-lateral flow assay (PCR-LFA) in dipstick format was developed in this work for the detection of two Gambierdiscus species, G. australes and G. excentricus, which are known to produce highly potent neurotoxins known as ciguatoxins and have been associated with ciguatera outbreaks. Duplex PCR amplification of genomic DNA from strains of these species utilizing species-specific ssDNA tailed primers and a common primer containing the binding sequence of scCro DNA binding protein resulted in the generation of hybrid ssDNA-dsDNA amplicons. These were captured on the dipsticks via hybridization with complementary probes and detected with a scCro/carbon nanoparticle (scCro/CNPs) conjugate. The two different test zones on the dipsticks allowed the discrimination of the two species and the assay exhibited high sensitivity, 6.3 pg/μL of genomic DNA from both G. australes and G. excentricus. The specificity of the approach was also demonstrated using genomic DNA from non-target Gambierdiscus species and other microalgae genera which did not produce any signals. The possibility to use cells directly for amplification instead of purified genomic DNA suggested the compatibility of the approach with field sample testing. Future work is required to further explore the potential use of the strategy for on-site analysis and its applicability to other toxic species.
Collapse
Affiliation(s)
- Iris Ginés
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007 Tarragona, Spain
| | - Greta Gaiani
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Ankur Ruhela
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007 Tarragona, Spain
| | - Vasso Skouridou
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007 Tarragona, Spain
| | - Mònica Campàs
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Lluis Masip
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007 Tarragona, Spain.
| |
Collapse
|
16
|
O'Neill A, Morrell N, Turner AD, Maskrey BH. Method performance verification for the combined detection and quantitation of the marine neurotoxins cyclic imines and brevetoxin shellfish metabolites in mussels (Mytilus edulis) and oysters (Crassostrea gigas) by UHPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122864. [PMID: 34343946 DOI: 10.1016/j.jchromb.2021.122864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/17/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
A single laboratory method performance verification is reported for a rapid sensitive UHPLC-MS/MS method for the quantification of eight cyclic imine and two brevetoxin analogues in two bivalve shellfish matrices: mussel (Mytilus edulis) and Pacific oyster (Crassostrea gigas). Targeted cyclic imine analogues were from the spirolide, gymnodimine and pinnatoxin groups, namely 20-Me-SPX-C, 13-desMe-SPX-C, 13,19-didesMe-SPX-C, GYM-A, 12-Me-GYM, PnTx-E, PnTx-F and PnTx-G. Brevetoxin analogues consisted of the shellfish metabolites BTX-B5 and S-desoxy-BTX-B2. A rapid dispersive extraction was used as well as a fast six-minute UHPLC-MS/MS analysis. Mobile phase prepared using ammonium fluoride and methanol was optimised for both chromatographic separation and MS/MS response to suit all analytes. Method performance verification checks for both matrices were carried out. Matrix influence was acceptable for the majority of analogues with the MS response for all analogues being linear across an appropriate range of concentrations. In terms of limits of detection and quantitation the method was shown to be highly sensitive when compared with other methods. Acceptable recoveries were found with most analogues, with laboratory precision in terms of intra- and inter-batch precision deemed appropriate. The method was applied to environmental shellfish samples with results showing low concentrations of cyclic imines to be present. The method is fast and highly sensitive for the detection and quantification of all targeted analogues, in both mussel and oyster matrices. Consequently, the method has been shown to provide a useful tool for simultaneous monitoring for the presence or future emergence of these two toxin groups in shellfish.
Collapse
Affiliation(s)
- Alison O'Neill
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Nadine Morrell
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Andrew D Turner
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Benjamin H Maskrey
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom.
| |
Collapse
|
17
|
Hassoun AER, Ujević I, Mahfouz C, Fakhri M, Roje-Busatto R, Jemaa S, Nazlić N. Occurrence of domoic acid and cyclic imines in marine biota from Lebanon-Eastern Mediterranean Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142542. [PMID: 33035983 DOI: 10.1016/j.scitotenv.2020.142542] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/07/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Marine biotoxins are naturally existing chemicals produced by toxic algae and can accumulate in marine biota. When consumed with seafood, these phycotoxins can cause human intoxication with symptoms varying from barely-noticed illness to death depending on the type of toxin and its concentration. Recently, the occurrence of marine biotoxins has been given special attention in the Mediterranean as it increased in frequency and severity due to anthropogenic pressures and climate change. Up to our knowledge, no previous study reported the presence of lipophilic toxins (LTs) and cyclic imines (CIs) in marine biota in Lebanon. Hence, this study reports LTs and CIs in marine organisms: one gastropod (Phorcus turbinatus), two bivalves (Spondylus spinosus and Patella rustica complex) and one fish species (Siganus rivulatus), collected from various Lebanese coastal areas. The results show values below the limit of detection (LOD) for okadaic acid, dinophysistoxin-1 and 2, pectenotoxin-1 and 2, yessotoxins, azaspiracids and saxitoxins. The spiny oyster (S. spinosus) showed the highest levels of domoic acid (DA; 3.88 mg kg-1), gymnodimine (GYM-B) and spirolide (SPX) (102.9 and 15.07 μg kg-1, respectively) in congruence with the occurrence of high abundance of Pseudo-nitzchia spp., Gymnodinium spp., and Alexandrium spp. DA levels were below the European Union (EU) regulatory limit, but higher than the Lowest Observed Adverse Effect Level (0.9 μg g-1) for neurotoxicity in humans and lower than the Acute Reference Dose (30 μg kg-1 bw) both set by the European Food Safety Authority (EFSA, 2009). Based on these findings, it is unlikely that a health risk exists due to the exposure to these toxins through seafood consumption in Lebanon. Despite this fact, the chronic toxicity of DA, GYMs and SPXs remains unclear and the effect of the repetitive consumption of contaminated seafood needs to be more investigated.
Collapse
Affiliation(s)
- Abed El Rahman Hassoun
- National Council for Scientific Research, National Center for Marine Sciences, P.O. Box, 534, Batroun, Lebanon.
| | - Ivana Ujević
- Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia
| | - Céline Mahfouz
- National Council for Scientific Research, National Center for Marine Sciences, P.O. Box, 534, Batroun, Lebanon
| | - Milad Fakhri
- National Council for Scientific Research, National Center for Marine Sciences, P.O. Box, 534, Batroun, Lebanon
| | - Romana Roje-Busatto
- Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia
| | - Sharif Jemaa
- National Council for Scientific Research, National Center for Marine Sciences, P.O. Box, 534, Batroun, Lebanon
| | - Nikša Nazlić
- Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia
| |
Collapse
|
18
|
Rivera AA, Aballay-González A, Gonçalves AT, Tarifeño E, Ulloa V, Gallardo JJ, Astuya-Villalón A. Search for potential biomarkers for saxitoxin detection. Toxicol In Vitro 2021; 72:105092. [PMID: 33440187 DOI: 10.1016/j.tiv.2021.105092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/19/2020] [Accepted: 01/07/2021] [Indexed: 11/18/2022]
Abstract
The Neuro-2a cell assay has been a promising in vitro alternative for the detection of saxitoxin (STX)-like toxins. However, its application is problematic in samples with complex matrices containing different toxins, whose mechanisms of action could be antagonistic. In the search of alternative procedures that reduce or avoid this interference, we evaluated the transcriptional modulation produced by a 24-h exposure to STX in Neuro-2a cells under three conditions: exposure to STX (33 nM), a mussel meat matrix (12.5 mg meat/mL) and a fortified sample (STX-fortified matrix). Differential gene expression was evaluated by RNA-seq after Illumina high-throughput sequencing, and data were analyzed to identify genes differentially expressed regardless of the matrix. From the 9487 identified genes, 213 were differentially expressed of these, 10 genes were identified as candidate markers for STX detection due to their regulation by STX regardless of the matrix interference. Expression dynamics of 7 of these candidate genes (Fgf-1, Adgrb2, Tfpt, Zfr2, Nup 35, Fam195a, and Dusp7) was further evaluated by qRT-PCR analysis of cells exposed to different concentrations of STX for up to 24 h. A downregulation of some markers expression was observed, namely Nup35 (involved in nucleo-cytoplasmic transporter activity) and Zfr-2 (involved in nucleic acids binding), whereas Fgf-1 (apoptosis signaling) was significantly upregulated. Markers' expression was not influenced by the matrix, suggesting that gene expression variations are directly related to STX response. These results support the potential of these genes as biomarkers for the development of an alternative STX-like toxins screening method.
Collapse
Affiliation(s)
- Alejandra A Rivera
- Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile; Laboratorio de Biotoxinas de la Universidad de Concepción (LBTx-UdeC), Facultad de Ciencias Naturales y Oceanografía, Departamento de Oceanografía, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile
| | - Ambbar Aballay-González
- Laboratorio de Biotoxinas de la Universidad de Concepción (LBTx-UdeC), Facultad de Ciencias Naturales y Oceanografía, Departamento de Oceanografía, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile
| | - Ana Teresa Gonçalves
- Interdisciplinary Center for Aquaculture Research, INCAR, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile
| | - Estefanía Tarifeño
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile
| | - Viviana Ulloa
- Laboratorio de Biotoxinas de la Universidad de Concepción (LBTx-UdeC), Facultad de Ciencias Naturales y Oceanografía, Departamento de Oceanografía, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile
| | - Juan José Gallardo
- Departamento de Ingeniería Química, Escuela Superior de Ingeniería, Universidad de Almería, Carretera Sacramento, Calle San Urbano s/n, La Cañada, Almería, Spain
| | - Allisson Astuya-Villalón
- Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile; Laboratorio de Biotoxinas de la Universidad de Concepción (LBTx-UdeC), Facultad de Ciencias Naturales y Oceanografía, Departamento de Oceanografía, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile.
| |
Collapse
|
19
|
Longo S, Sibat M, Darius HT, Hess P, Chinain M. Effects of pH and Nutrients (Nitrogen) on Growth and Toxin Profile of the Ciguatera-Causing Dinoflagellate Gambierdiscus polynesiensis (Dinophyceae). Toxins (Basel) 2020; 12:E767. [PMID: 33291542 PMCID: PMC7761829 DOI: 10.3390/toxins12120767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Ciguatera poisoning is a foodborne disease caused by the consumption of seafood contaminated with ciguatoxins (CTXs) produced by dinoflagellates in the genera Gambierdiscus and Fukuyoa. Ciguatera outbreaks are expected to increase worldwide with global change, in particular as a function of its main drivers, including changes in sea surface temperature, acidification, and coastal eutrophication. In French Polynesia, G. polynesiensis is regarded as the dominant source of CTXs entering the food web. The effects of pH (8.4, 8.2, and 7.9), Nitrogen:Phosphorus ratios (24N:1P vs. 48N:1P), and nitrogen source (nitrates vs. urea) on growth rate, biomass, CTX levels, and profiles were examined in four clones of G. polynesiensis at different culture age (D10, D21, and D30). Results highlight a decrease in growth rate and cellular biomass at low pH when urea is used as a N source. No significant effect of pH, N:P ratio, and N source on the overall CTX content was observed. Up to ten distinct analogs of Pacific ciguatoxins (P-CTXs) could be detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in clone NHA4 grown in urea, at D21. Amounts of more oxidized P-CTX analogs also increased under the lowest pH condition. These data provide interesting leads for the custom production of CTX standards.
Collapse
Affiliation(s)
- Sébastien Longo
- Laboratory of Marine Biotoxins, Institut Louis Malardé-UMR241 EIO (IFREMER, ILM, IRD, UPF), 98713 Papeete, Tahiti, French Polynesia; (H.T.D.); (M.C.)
| | - Manoëlla Sibat
- Phycotoxins Laboratory, IFREMER, Rue de I’lle d’Yeu, 44311 Nantes, France; (M.S.); (P.H.)
| | - Hélène Taiana Darius
- Laboratory of Marine Biotoxins, Institut Louis Malardé-UMR241 EIO (IFREMER, ILM, IRD, UPF), 98713 Papeete, Tahiti, French Polynesia; (H.T.D.); (M.C.)
| | - Philipp Hess
- Phycotoxins Laboratory, IFREMER, Rue de I’lle d’Yeu, 44311 Nantes, France; (M.S.); (P.H.)
| | - Mireille Chinain
- Laboratory of Marine Biotoxins, Institut Louis Malardé-UMR241 EIO (IFREMER, ILM, IRD, UPF), 98713 Papeete, Tahiti, French Polynesia; (H.T.D.); (M.C.)
| |
Collapse
|
20
|
Silva M, Rodríguez I, Barreiro A, Kaufmann M, Neto AI, Hassouani M, Sabour B, Alfonso A, Botana LM, Vasconcelos V. Lipophilic toxins occurrence in non-traditional invertebrate vectors from North Atlantic Waters (Azores, Madeira, and Morocco): Update on geographical tendencies and new challenges for monitoring routines. MARINE POLLUTION BULLETIN 2020; 161:111725. [PMID: 33080436 DOI: 10.1016/j.marpolbul.2020.111725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/15/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
In the last decades, due to monitoring programs and strict legislation poisoning incidents occurrence provoked by ingestion of naturally contaminated marine organisms has decreased. However, climate change and anthropogenic interference contributed to the expansion and establishment of toxic alien species to more temperate ecosystems. In this work, the coasts of Madeira, São Miguel islands and the northwestern Moroccan coast were surveyed for four groups of lipophilic toxins (yessotoxins, azaspiracids, pectenotoxins, and spirolides), searching for new vectors and geographical tendencies. Twenty-four species benthic organisms were screened using UHPLC-MS/MS technique. We report 19 new vectors for these toxins, six of them with commercial interest (P. aspera, P. ordinaria, C. lampas, P. pollicipes, H. tuberculata and P. lividus). Regarding toxin uptake a south-north gradient was detected. This study contributes to the update of monitoring routines and legislation policies, comprising a wider range of vectors, to better serve consumers and ecosystems preservation.
Collapse
Affiliation(s)
- Marisa Silva
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4619-007, Portugal; Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 S/N Matosinhos, Portugal.
| | - Inés Rodríguez
- Laboratorio CIFGA S.A., Avda. Benigno Rivera no. 56, 27003 Lugo, Spain; Department of Pharmacology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain.
| | - Aldo Barreiro
- Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 S/N Matosinhos, Portugal
| | - Manfred Kaufmann
- Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 S/N Matosinhos, Portugal; University of Madeira, Faculty of Life Sciences, Marine Biology Station of Funchal, 9000-107 Funchal, Portugal; Center of Interdisciplinary Marine and Environmental Research of Madeira-CIIMAR-Madeira, Edif. Madeira Tecnopolo, Caminho da Penteada, 9020-105 Funchal, Portugal.
| | - Ana Isabel Neto
- Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 S/N Matosinhos, Portugal; cE3c/GBA-Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group, Department of Biology, Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, São Miguel, Azores, Portugal.
| | - Meryem Hassouani
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4619-007, Portugal; Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 S/N Matosinhos, Portugal
| | - Brahim Sabour
- Phycology Research Unit-Biotechnology, Ecosystems Ecology and Valorization Laboratory, Faculty of Sciences El Jadida, University Chouaib Doukkali, BP20 El Jadida, Morocco.
| | - Amparo Alfonso
- Department of Pharmacology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain.
| | - Luis M Botana
- Department of Pharmacology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain.
| | - Vitor Vasconcelos
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4619-007, Portugal; Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 S/N Matosinhos, Portugal.
| |
Collapse
|
21
|
Gaiani G, Leonardo S, Tudó À, Toldrà A, Rey M, Andree KB, Tsumuraya T, Hirama M, Diogène J, O'Sullivan CK, Alcaraz C, Campàs M. Rapid detection of ciguatoxins in Gambierdiscus and Fukuyoa with immunosensing tools. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111004. [PMID: 32768745 DOI: 10.1016/j.ecoenv.2020.111004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Consumption of seafood contaminated with ciguatoxins (CTXs) leads to a foodborne disease known as ciguatera. Primary producers of CTXs are epibenthic dinoflagellates of the genera Gambierdiscus and Fukuyoa. In this study, thirteen Gambierdiscus and Fukuyoa strains were cultured, harvested at exponential phase, and CTXs were extracted with an implemented rapid protocol. Microalgal extracts were obtained from pellets with a low cell abundance (20,000 cell/mL) and were then analyzed with magnetic bead (MB)-based immunosensing tools (colorimetric immunoassay and electrochemical immunosensor). It is the first time that these approaches are used to screen Gambierdiscus and Fukuyoa strains, providing not only a global indication of the presence of CTXs, but also the ability to discriminate between two series of congeners (CTX1B and CTX3C). Analysis of the microalgal extracts revealed the presence of CTXs in 11 out of 13 strains and provided new information about Gambierdiscus and Fukuyoa toxin profiles. The use of immunosensing tools in the analysis of microalgal extracts facilitates the elucidation of further knowledge regarding these dinoflagellate genera and can contribute to improved ciguatera risk assessment and management.
Collapse
Affiliation(s)
- G Gaiani
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - S Leonardo
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - À Tudó
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - A Toldrà
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - M Rey
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - K B Andree
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - T Tsumuraya
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka, 599-8570, Japan
| | - M Hirama
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka, 599-8570, Japan
| | - J Diogène
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - C K O'Sullivan
- Departament D'Enginyeria Química, URV, Av. Països Catalans 26, 43007, Tarragona, Spain; ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - C Alcaraz
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - M Campàs
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain.
| |
Collapse
|
22
|
Tudó À, Gaiani G, Rey Varela M, Tsumuraya T, Andree KB, Fernández-Tejedor M, Campàs M, Diogène J. Further advance of Gambierdiscus Species in the Canary Islands, with the First Report of Gambierdiscus belizeanus. Toxins (Basel) 2020; 12:toxins12110692. [PMID: 33142836 PMCID: PMC7693352 DOI: 10.3390/toxins12110692] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022] Open
Abstract
Ciguatera Poisoning (CP) is a human food-borne poisoning that has been known since ancient times to be found mainly in tropical and subtropical areas, which occurs when fish or very rarely invertebrates contaminated with ciguatoxins (CTXs) are consumed. The genus of marine benthic dinoflagellates Gambierdiscus produces CTX precursors. The presence of Gambierdiscus species in a region is one indicator of CP risk. The Canary Islands (North Eastern Atlantic Ocean) is an area where CP cases have been reported since 2004. In the present study, samplings for Gambierdiscus cells were conducted in this area during 2016 and 2017. Gambierdiscus cells were isolated and identified as G. australes, G. excentricus, G. caribaeus, and G. belizeanus by molecular analysis. In this study, G. belizeanus is reported for the first time in the Canary Islands. Gambierdiscus isolates were cultured, and the CTX-like toxicity of forty-one strains was evaluated with the neuroblastoma cell-based assay (neuro-2a CBA). G. excentricus exhibited the highest CTX-like toxicity (9.5-2566.7 fg CTX1B equiv. cell-1) followed by G. australes (1.7-452.6.2 fg CTX1B equiv. cell-1). By contrast, the toxicity of G. belizeanus was low (5.6 fg CTX1B equiv. cell-1), and G. caribaeus did not exhibit CTX-like toxicity. In addition, for the G. belizeanus strain, the production of CTXs was evaluated with a colorimetric immunoassay and an electrochemical immunosensor resulting in G. belizeanus producing two types of CTX congeners (CTX1B and CTX3C series congeners) and can contribute to CP in the Canary Islands.
Collapse
Affiliation(s)
- Àngels Tudó
- Institut de Recerca i Tecnologies Agroalimentàries (IRTA), Ctra. Poble Nou Km 5.5, Sant Carles de la Ràpita, 43540 Tarragona, Spain; (À.T.); (G.G.); (M.R.V.); (K.B.A.); (M.F.-T.); (M.C.)
| | - Greta Gaiani
- Institut de Recerca i Tecnologies Agroalimentàries (IRTA), Ctra. Poble Nou Km 5.5, Sant Carles de la Ràpita, 43540 Tarragona, Spain; (À.T.); (G.G.); (M.R.V.); (K.B.A.); (M.F.-T.); (M.C.)
| | - Maria Rey Varela
- Institut de Recerca i Tecnologies Agroalimentàries (IRTA), Ctra. Poble Nou Km 5.5, Sant Carles de la Ràpita, 43540 Tarragona, Spain; (À.T.); (G.G.); (M.R.V.); (K.B.A.); (M.F.-T.); (M.C.)
| | - Takeshi Tsumuraya
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka 599-8570, Japan;
| | - Karl B. Andree
- Institut de Recerca i Tecnologies Agroalimentàries (IRTA), Ctra. Poble Nou Km 5.5, Sant Carles de la Ràpita, 43540 Tarragona, Spain; (À.T.); (G.G.); (M.R.V.); (K.B.A.); (M.F.-T.); (M.C.)
| | - Margarita Fernández-Tejedor
- Institut de Recerca i Tecnologies Agroalimentàries (IRTA), Ctra. Poble Nou Km 5.5, Sant Carles de la Ràpita, 43540 Tarragona, Spain; (À.T.); (G.G.); (M.R.V.); (K.B.A.); (M.F.-T.); (M.C.)
| | - Mònica Campàs
- Institut de Recerca i Tecnologies Agroalimentàries (IRTA), Ctra. Poble Nou Km 5.5, Sant Carles de la Ràpita, 43540 Tarragona, Spain; (À.T.); (G.G.); (M.R.V.); (K.B.A.); (M.F.-T.); (M.C.)
| | - Jorge Diogène
- Institut de Recerca i Tecnologies Agroalimentàries (IRTA), Ctra. Poble Nou Km 5.5, Sant Carles de la Ràpita, 43540 Tarragona, Spain; (À.T.); (G.G.); (M.R.V.); (K.B.A.); (M.F.-T.); (M.C.)
- Correspondence:
| |
Collapse
|
23
|
Santillo MF. Trends using biological target-based assays for drug detection in complex sample matrices. Anal Bioanal Chem 2020; 412:3975-3982. [PMID: 32372275 DOI: 10.1007/s00216-020-02681-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022]
Abstract
In vivo, drug molecules interact with their biological targets (e.g., enzymes, receptors, ion channels, transporters), thereby eliciting therapeutic effects. Assays that measure the interaction between drugs and bio-targets may be used as drug biosensors, which are capable of broadly detecting entire drug classes without prior knowledge of their chemical structure. This Trends article covers recent developments in bio-target-based screening assays for detecting drugs associated with the following areas: illicit products marketed as dietary supplements, food-producing animals, and bodily fluids. General challenges and considerations associated with using bio-target assays are also presented. Finally, future applications of these assays for drug detection are suggested based upon current needs.
Collapse
Affiliation(s)
- Michael F Santillo
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration (FDA), 8301 Muirkirk Rd, Laurel, MD, 20708, USA.
| |
Collapse
|
24
|
Leonardo S, Gaiani G, Tsumuraya T, Hirama M, Turquet J, Sagristà N, Rambla-Alegre M, Flores C, Caixach J, Diogène J, O'Sullivan CK, Alcaraz C, Campàs M. Addressing the Analytical Challenges for the Detection of Ciguatoxins Using an Electrochemical Biosensor. Anal Chem 2020; 92:4858-4865. [PMID: 32133843 DOI: 10.1021/acs.analchem.9b04499] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The importance of ciguatoxins (CTXs) in seafood safety and their emerging occurrence in locations far away from tropical areas highlight the need for simple and low-cost methods for the sensitive and rapid detection of these potent marine toxins to protect seafood consumers. Herein, an electrochemical immunosensor for the detection of CTXs is presented. A sandwich configuration is proposed, using magnetic beads (MBs) as immobilization supports for two capture antibodies, with their combination facilitating the detection of CTX1B, CTX3C, 54-deoxyCTX1B, and 51-hydroxyCTX3C. PolyHRP-streptavidin is used for the detection of the biotinylated detector antibody. Experimental conditions are first optimized using colorimetry, and these conditions are subsequently used for electrochemical detection on electrode arrays. Limits of detection at the pg/mL level are achieved for CTX1B and 51-hydroxyCTX3C. The applicability of the immunosensor to the analysis of fish samples is demonstrated, attaining detection of CTX1B at contents as low as 0.01 μg/kg and providing results in correlation with those obtained using mouse bioassay (MBA) and cell-based assay (CBA), and confirmed by liquid chromatography coupled to high-resolution mass spectrometry (LC-ESI-HRMS). This user-friendly bioanalytical tool for the rapid detection of CTXs can be used to mitigate ciguatera risk and contribute to the protection of consumer health.
Collapse
Affiliation(s)
- Sandra Leonardo
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Greta Gaiani
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Takeshi Tsumuraya
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, Osaka 599-8570, Japan
| | - Masahiro Hirama
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, Osaka 599-8570, Japan
| | - Jean Turquet
- Citeb, C/o CYROI, 2 Rue Maxime Rivière, 97490 Sainte Clotilde, La Réunion, France
| | - Núria Sagristà
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | | | - Cintia Flores
- Mass Spectrometry Laboratory/Organic Pollutants, IDAEA-CSIC, C. Jordi Girona 18, 08034 Barcelona, Spain
| | - Josep Caixach
- Mass Spectrometry Laboratory/Organic Pollutants, IDAEA-CSIC, C. Jordi Girona 18, 08034 Barcelona, Spain
| | - Jorge Diogène
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Ciara K O'Sullivan
- Departament d'Enginyeria Química, URV, Av. Països Catalans 26, 43007 Tarragona, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Carles Alcaraz
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Mònica Campàs
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| |
Collapse
|
25
|
Rossignoli AE, Tudó A, Bravo I, Díaz PA, Diogène J, Riobó P. Toxicity Characterisation of Gambierdiscus Species from the Canary Islands. Toxins (Basel) 2020; 12:toxins12020134. [PMID: 32098095 PMCID: PMC7076799 DOI: 10.3390/toxins12020134] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/16/2023] Open
Abstract
In the last decade, several outbreaks of ciguatera fish poisoning (CFP) have been reported in the Canary Islands (central northeast Atlantic Ocean), confirming ciguatera as an emerging alimentary risk in this region. Five Gambierdiscus species, G. australes, G. excentricus, G. silvae, G. carolinianus and G. caribaeus, have been detected in macrophytes from this area and are known to produce the ciguatoxins (CTXs) that cause CFP. A characterization of the toxicity of these species is the first step in identifying locations in the Canary Islands at risk of CFP. Therefore, in this study the toxicity of 63 strains of these five Gambierdiscus species were analysed using the erythrocyte lysis assay to evaluate their maitotoxin (MTX) content. In addition, 20 of the strains were also analysed in a neuroblastoma Neuro-2a (N2a) cytotoxicity assay to determine their CTX-like toxicity. The results allowed the different species to be grouped according to their ratios of CTX-like and MTX-like toxicity. MTX-like toxicity was especially high in G. excentricus and G. australes but much lower in the other species and lowest in G. silvae. CTX-like toxicity was highest in G. excentricus, which produced the toxin in amounts ranging between 128.2 ± 25.68 and 510.6 ± 134.2 fg CTX1B equivalents (eq) cell−1 (mean ± SD). In the other species, CTX concentrations were as follows: G. carolinianus (100.84 ± 18.05 fg CTX1B eq cell−1), G. australes (31.1 ± 0.56 to 107.16 ± 21.88 fg CTX1B eq cell−1), G. silvae (12.19 ± 0.62 to 76.79 ± 4.97 fg CTX1B eq cell−1) and G. caribaeus (<LOD to 90.37 ± 15.89 fg CTX1B eq cell−1). Unlike the similar CTX-like toxicity of G. australes and G. silvae strains from different locations, G. excentricus and G. caribaeus differed considerably according to the origin of the strain. These differences emphasise the importance of species identification to assess the regional risk of CFP.
Collapse
Affiliation(s)
- Araceli E. Rossignoli
- Instituto Español de Oceanografía, Centro Ocenográfico de Vigo, Subida a Radiofaro 50, 36390 Vigo, Spain;
- Correspondence: ; Tel.: +34-986492111; Fax: +34-986498626
| | - Angels Tudó
- IRTA, Ctra. Poble Nou, km. 5.5, 43540 Sant Carles de la Ràpita, Spain; (A.T.); (J.D.)
| | - Isabel Bravo
- Instituto Español de Oceanografía, Centro Ocenográfico de Vigo, Subida a Radiofaro 50, 36390 Vigo, Spain;
| | - Patricio A. Díaz
- Centro i~mar & CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile;
| | - Jorge Diogène
- IRTA, Ctra. Poble Nou, km. 5.5, 43540 Sant Carles de la Ràpita, Spain; (A.T.); (J.D.)
| | - Pilar Riobó
- Department of Photobiology and Toxinology of Phytoplankton, Instituto de Investigaciones Marinas, CSIC, Eduardo Cabello 6, 36208 Vigo, Spain;
| |
Collapse
|
26
|
Wells ML, Karlson B, Wulff A, Kudela R, Trick C, Asnaghi V, Berdalet E, Cochlan W, Davidson K, De Rijcke M, Dutkiewicz S, Hallegraeff G, Flynn KJ, Legrand C, Paerl H, Silke J, Suikkanen S, Thompson P, Trainer VL. Future HAB science: Directions and challenges in a changing climate. HARMFUL ALGAE 2020; 91:101632. [PMID: 32057342 DOI: 10.1016/j.hal.2019.101632] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 06/10/2023]
Abstract
There is increasing concern that accelerating environmental change attributed to human-induced warming of the planet may substantially alter the patterns, distribution and intensity of Harmful Algal Blooms (HABs). Changes in temperature, ocean acidification, precipitation, nutrient stress or availability, and the physical structure of the water column all influence the productivity, composition, and global range of phytoplankton assemblages, but large uncertainty remains about how integration of these climate drivers might shape future HABs. Presented here are the collective deliberations from a symposium on HABs and climate change where the research challenges to understanding potential linkages between HABs and climate were considered, along with new research directions to better define these linkages. In addition to the likely effects of physical (temperature, salinity, stratification, light, changing storm intensity), chemical (nutrients, ocean acidification), and biological (grazer) drivers on microalgae (senso lato), symposium participants explored more broadly the subjects of cyanobacterial HABs, benthic HABs, HAB effects on fisheries, HAB modelling challenges, and the contributions that molecular approaches can bring to HAB studies. There was consensus that alongside traditional research, HAB scientists must set new courses of research and practices to deliver the conceptual and quantitative advances required to forecast future HAB trends. These different practices encompass laboratory and field studies, long-term observational programs, retrospectives, as well as the study of socioeconomic drivers and linkages with aquaculture and fisheries. In anticipation of growing HAB problems, research on potential mitigation strategies should be a priority. It is recommended that a substantial portion of HAB research among laboratories be directed collectively at a small sub-set of HAB species and questions in order to fast-track advances in our understanding. Climate-driven changes in coastal oceanographic and ecological systems are becoming substantial, in some cases exacerbated by localized human activities. That, combined with the slow pace of decreasing global carbon emissions, signals the urgency for HAB scientists to accelerate efforts across disciplines to provide society with the necessary insights regarding future HAB trends.
Collapse
Affiliation(s)
- Mark L Wells
- School of Marine Sciences, University of Maine, Orono, ME, 04469, USA; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 36 Baochubei Road, Hangzhou, 310012, China.
| | - Bengt Karlson
- SMHI/Swedish Meteorological and Hydrological Institute, Forskning & utveckling, oceanografi/Research & development, oceanography, Sven Källfelts gata 15, 426 71 Västra Frölunda, Sweden
| | - Angela Wulff
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE405 30 Göteborg, Sweden
| | - Raphael Kudela
- Ocean Sciences Department, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Charles Trick
- Department of Biology, Western University & Interfaculty Program in Public Health, Schulich School of Medicine and Dentistry, 1151 Richmond St. N, London, ON, N6A 5B7, Canada
| | - Valentina Asnaghi
- Università degli Studi di Genova (DiSTAV), C.so Europa 26, 16132 Genova, Italy
| | - Elisa Berdalet
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta, 37-49 08003, Barcelona, Catalonia, Spain
| | - William Cochlan
- Estuary & Ocean Science Center, Romberg Tiburon Campus, San Francisco State University, 3150 Paradise Drive, Tiburon, CA, 94920-1205, USA
| | - Keith Davidson
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, Scotland, UK
| | - Maarten De Rijcke
- Flanders Marine Institute (VLIZ), InnovOcean site, Wandelaarkaai 7, 8400 Ostend, Belgium
| | - Stephanie Dutkiewicz
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Gustaaf Hallegraeff
- Institute for Marine and Antarctic Studies, University of Tasmania Private Bag 129 Hobart, TAS 7001, Australia
| | - Kevin J Flynn
- Department of Biosciences, Singleton Campus, Swansea University, Swansea, SA2 8PP, Wales, UK
| | - Catherine Legrand
- Linnaeus University, Centre for Ecology and Evolution in Microbial Model Systems, Faculty of Health and Life Sciences, SE-39182, Kalmar, Sweden
| | - Hans Paerl
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, 28557, USA
| | - Joe Silke
- Marine Institute, Renville, Oranmore, Co. Galway, H91 R673, Ireland
| | - Sanna Suikkanen
- Finnish Environment Institute, Marine Research Centre, Latokartanonkaari 11, FI-00790 Helsinki, Finland
| | - Peter Thompson
- Marine and Atmospheric Science, CSIRO, Castray Esplanade, Hobart, TAS 7000, Australia
| | - Vera L Trainer
- Environment and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| |
Collapse
|
27
|
Abstract
Due to the expanding occurrence of marine toxins, and their potential impact on human health, there is an increased need for tools for their rapid and efficient detection. We give an overview of the use of magnetic beads (MBs) for the detection of marine toxins in shellfish and fish samples, with an emphasis on their incorporation into electrochemical biosensors. The use of MBs as supports for the immobilization of toxins or antibodies, as signal amplifiers as well as for target pre-concentration, is reviewed. In addition, the exploitation of MBs in Systematic Evolution of Ligands by Exponential enrichment (SELEX) for the selection of aptamers is presented. These MB-based strategies have led to the development of sensitive, simple, reliable and robust analytical systems for the detection of toxins in natural samples, with applicability in seafood safety and human health protection.
Collapse
|
28
|
Aballay-González A, Gallardo-Rodriguez JJ, Silva-Higuera M, Rivera A, Ulloa V, Delgado-Rivera L, Rivera-Belmar A, Astuya A. Neuro-2a cell-based assay for toxicity equivalency factor - proposal and evaluation in Chilean contaminated shellfish samples. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 37:162-173. [DOI: 10.1080/19440049.2019.1676919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ambbar Aballay-González
- Laboratorio de Biotoxinas UdeC, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Concepción, Chile
| | | | - Macarena Silva-Higuera
- Laboratorio de Biotoxinas UdeC, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Concepción, Chile
| | - Alejandra Rivera
- Laboratorio de Biotoxinas UdeC, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Concepción, Chile
| | - Viviana Ulloa
- Laboratorio de Biotoxinas UdeC, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Lorena Delgado-Rivera
- Laboratorio de Toxinas Marinas y Micotoxinas, Sección de Química de Alimentos, Departamento de Salud Ambiental, Instituto de Salud Pública de Chile, Ñuñoa, Chile
| | - Andrea Rivera-Belmar
- Departamento de Alimentación y Nutrición, División de Salud y Política Pública, Subsecretaría de Salud Pública, Ministerio de Salud, Santiago, Chile
| | - Allisson Astuya
- Laboratorio de Biotoxinas UdeC, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
29
|
Katikou P. Public Health Risks Associated with Tetrodotoxin and Its Analogues in European Waters: Recent Advances after The EFSA Scientific Opinion. Toxins (Basel) 2019; 11:E240. [PMID: 31035492 PMCID: PMC6562576 DOI: 10.3390/toxins11050240] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 12/22/2022] Open
Abstract
Tetrodotoxin (TTX) and its analogues are naturally occurring toxins responsible worldwide for human intoxication cases and fatalities, mainly associated with pufferfish consumption. In the last decade, TTXs were detected in marine bivalves and gastropods from European waters. As TTXs are not regulated or monitored at EU level, their unexpected occurrence in shellfish raised concerns as a food safety hazard and revealed the necessity of a thorough assessment on the public health risks associated with their presence. For this reason, the European Food Safety Authority (EFSA) was requested by the European Commission to provide a scientific opinion, finally adopted in March 2017, according to which a provisional concentration below 44 μg TTX equivalents/kg shellfish meat, based on a large portion size of 400 g, was considered not to result in adverse effects in humans. The EFSA expert panel, however, recognized a number of shortcomings and uncertainties related to the unavailability of sufficient scientific data and provided relevant recommendations for future research to overcome these data gaps identified in order to further refine the risk assessment on TTXs. The present review aims to summarize the knowledge obtained towards addressing these recommendations in the two years following publication of the EFSA opinion, at the same time highlighting the points requiring further investigation.
Collapse
Affiliation(s)
- Panagiota Katikou
- Ministry of Rural Development and Food, Directorate General of Rural Development, Directorate of Research, Innovation and Education, Hapsa & Karatasou 1, 54626 Thessaloniki, Greece.
| |
Collapse
|
30
|
Detection of tetrodotoxins in juvenile pufferfish Lagocephalus sceleratus (Gmelin, 1789) from the North Aegean Sea (Greece) by an electrochemical magnetic bead-based immunosensing tool. Food Chem 2019; 290:255-262. [PMID: 31000045 DOI: 10.1016/j.foodchem.2019.03.148] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/18/2019] [Accepted: 03/29/2019] [Indexed: 11/20/2022]
Abstract
Two small Lagocephalus sceleratus juveniles were captured in picarel targeting catches from North Aegean Sea (Greece) in the autumn of 2017. An electrochemical immunosensing tool using magnetic beads as immobilisation support was developed and applied to the rapid screening of tetrodotoxins (TTXs), potent neurotoxins that constitute a food safety hazard when present in seafood. This tool revealed the presence of TTXs in both individuals. Results were compared with those provided by mELISA and LC-HRMS, the latter confirming the presence of TTX. Some of the tissues contained TTX contents close to or above 2 mg/kg. L. sceleratus juveniles had been considered as non-toxic and, to our knowledge, this is the first report of high TTX levels in small L. sceleratus individuals. Such specimens can be mistaken with other edible species, posing a threat to consumers. The availability of low-cost and user-friendly tools for TTXs detection will contribute to guarantee seafood safety.
Collapse
|
31
|
A Strategy to Replace the Mouse Bioassay for Detecting and Identifying Lipophilic Marine Biotoxins by Combining the Neuro-2a Bioassay and LC-MS/MS Analysis. Mar Drugs 2018; 16:md16120501. [PMID: 30545061 PMCID: PMC6315780 DOI: 10.3390/md16120501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 01/13/2023] Open
Abstract
Marine biotoxins in fish and shellfish can cause several symptoms in consumers, such as diarrhea, amnesia, or even death by paralysis. Monitoring programs are in place for testing shellfish on a regular basis. In some countries testing is performed using the so-called mouse bioassay, an assay that faces ethical concerns not only because of animal distress, but also because it lacks specificity and results in high amounts of false positives. In Europe, for lipophilic marine biotoxins (LMBs), a chemical analytical method using LC-MS/MS was developed as an alternative and is now the reference method. However, safety is often questioned when relying solely on such a method, and as a result, the mouse bioassay might still be used. In this study the use of a cell-based assay for screening, i.e., the neuro-2a assay, in combination with the official LC-MS/MS method was investigated as a new alternative strategy for the detection and quantification of LMBs. To this end, samples that had been tested previously with the mouse bioassay were analyzed in the neuro-2a bioassay and the LC-MS/MS method. The neuro-2a bioassay was able to detect all LMBs at the regulatory levels and all samples that tested positive in the mouse bioassay were also suspect in the neuro-2a bioassay. In most cases, these samples contained toxin levels (yessotoxins) that explain the outcome of the bioassay but did not exceed the established maximum permitted levels.
Collapse
|
32
|
Daguer H, Hoff RB, Molognoni L, Kleemann CR, Felizardo LV. Outbreaks, toxicology, and analytical methods of marine toxins in seafood. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Gu H, Duan N, Xia Y, Hun X, Wang H, Wang Z. Magnetic Separation-Based Multiple SELEX for Effectively Selecting Aptamers against Saxitoxin, Domoic Acid, and Tetrodotoxin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9801-9809. [PMID: 30153406 DOI: 10.1021/acs.jafc.8b02771] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, a novel magnetic separation-based multiple systematic evolution of ligands by exponential enrichment (SELEX) was applied to select aptamers simultaneously against three kinds of marine biotoxins, including domoic acid (DA), saxitoxin (STX), and tetrodotoxin (TTX). Magnetic reduced graphene oxide (MRGO) was prepared to adsorb unbound ssDNAs and simplify the separation step. In the multiple SELEX, after the initial twelve rounds of selection against mixed targets and the subsequent four respective rounds of selection against each single target, the three resulting ssDNA pools were cloned, sequenced, and analyzed. Several aptamer candidates were selected and subjected to the binding affinity and specificity test. Finally, DA-06 ( Kd = 62.07 ± 19.97 nM), TTX-07 ( Kd = 44.12 ± 15.38 nM), and STX-41 ( Kd = 61.44 ± 23.18 nM) showed high affinity and good specificity for DA, TTX, and STX, respectively. They were also applied to detect and quantify DA, TTX, and STX successfully. The other two multitarget aptamers, DA-01 and TTX-27, were also obtained, which can bind with either DA or TTX. These aptamers provide alternative recognition molecules to antibodies for biosensor applications.
Collapse
Affiliation(s)
- Huajie Gu
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Chemical Biology and Materials Engineering , Suzhou University of Science and Technology , Suzhou 215009 , China
- Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province , Jiangnan University , Wuxi 214122 , China
| | - Nuo Duan
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province , Jiangnan University , Wuxi 214122 , China
| | - Yu Xia
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province , Jiangnan University , Wuxi 214122 , China
| | - Xu Hun
- College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , China
| | - Haitao Wang
- National National of Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian 116034 , China
| | - Zhouping Wang
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- National National of Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian 116034 , China
- Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province , Jiangnan University , Wuxi 214122 , China
| |
Collapse
|
34
|
LI H, WEI X, GU C, SU K, WAN H, HU N, WANG P. A Dual Functional Cardiomyocyte-based Hybrid-biosensor for the Detection of Diarrhetic Shellfish Poisoning and Paralytic Shellfish Poisoning Toxins. ANAL SCI 2018; 34:893-900. [DOI: 10.2116/analsci.18p029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hongbo LI
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences
| | - Xinwei WEI
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
| | - Chenlei GU
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
| | - Kaiqi SU
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
| | - Hao WAN
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
| | - Ning HU
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
- Department of Biomedical Engineering, Tufts University
| | - Ping WANG
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences
| |
Collapse
|
35
|
Soliño L, Costa PR. Differential toxin profiles of ciguatoxins in marine organisms: Chemistry, fate and global distribution. Toxicon 2018; 150:124-143. [DOI: 10.1016/j.toxicon.2018.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 01/03/2023]
|
36
|
Hattenrath-Lehmann TK, Lusty MW, Wallace RB, Haynes B, Wang Z, Broadwater M, Deeds JR, Morton SL, Hastback W, Porter L, Chytalo K, Gobler CJ. Evaluation of Rapid, Early Warning Approaches to Track Shellfish Toxins Associated with Dinophysis and Alexandrium Blooms. Mar Drugs 2018; 16:md16010028. [PMID: 29342840 PMCID: PMC5793076 DOI: 10.3390/md16010028] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/20/2017] [Accepted: 01/06/2018] [Indexed: 11/16/2022] Open
Abstract
Marine biotoxin-contaminated seafood has caused thousands of poisonings worldwide this century. Given these threats, there is an increasing need for improved technologies that can be easily integrated into coastal monitoring programs. This study evaluates approaches for monitoring toxins associated with recurrent toxin-producing Alexandrium and Dinophysis blooms on Long Island, NY, USA, which cause paralytic and diarrhetic shellfish poisoning (PSP and DSP), respectively. Within contrasting locations, the dynamics of pelagic Alexandrium and Dinophysis cell densities, toxins in plankton, and toxins in deployed blue mussels (Mytilus edulis) were compared with passive solid-phase adsorption toxin tracking (SPATT) samplers filled with two types of resin, HP20 and XAD-2. Multiple species of wild shellfish were also collected during Dinophysis blooms and used to compare toxin content using two different extraction techniques (single dispersive and double exhaustive) and two different toxin analysis assays (liquid chromatography/mass spectrometry and the protein phosphatase inhibition assay (PP2A)) for the measurement of DSP toxins. DSP toxins measured in the HP20 resin were significantly correlated (R2 = 0.7–0.9, p < 0.001) with total DSP toxins in shellfish, but were detected more than three weeks prior to detection in deployed mussels. Both resins adsorbed measurable levels of PSP toxins, but neither quantitatively tracked Alexandrium cell densities, toxicity in plankton or toxins in shellfish. DSP extraction and toxin analysis methods did not differ significantly (p > 0.05), were highly correlated (R2 = 0.98–0.99; p < 0.001) and provided complete recovery of DSP toxins from standard reference materials. Blue mussels (Mytilus edulis) and ribbed mussels (Geukensia demissa) were found to accumulate DSP toxins above federal and international standards (160 ng g−1) during Dinophysis blooms while Eastern oysters (Crassostrea virginica) and soft shell clams (Mya arenaria) did not. This study demonstrated that SPATT samplers using HP20 resin coupled with PP2A technology could be used to provide early warning of DSP, but not PSP, events for shellfish management.
Collapse
Affiliation(s)
| | - Mark W Lusty
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY 11968, USA.
| | - Ryan B Wallace
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY 11968, USA.
| | - Bennie Haynes
- Stressor Detection and Impacts Division, National Centers for Coastal Ocean Science, NOAA National Ocean Service, Charleston, CA 29412, USA.
| | - Zhihong Wang
- JHT, Inc., under contract to NOAA, NOAA Charleston Lab, National Centers for Coastal Ocean Science, NOAA National Ocean Service, 219 Fort Johnson Road, Charleston, CA 29412, USA.
| | - Maggie Broadwater
- Stressor Detection and Impacts Division, National Centers for Coastal Ocean Science, NOAA National Ocean Service, Charleston, CA 29412, USA.
| | - Jonathan R Deeds
- US Food and Drug Administration Center for Food Safety and Applied Nutrition, College Park, MD 20740, USA.
| | - Steve L Morton
- Stressor Detection and Impacts Division, National Centers for Coastal Ocean Science, NOAA National Ocean Service, Charleston, CA 29412, USA.
| | - William Hastback
- New York State Department of Environmental Conservation, Setauket, NY 11733, USA.
| | - Leonora Porter
- New York State Department of Environmental Conservation, Setauket, NY 11733, USA.
| | - Karen Chytalo
- New York State Department of Environmental Conservation, Setauket, NY 11733, USA.
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY 11968, USA.
| |
Collapse
|
37
|
Sharifian S, Homaei A, Kim SK, Satari M. Production of newfound alkaline phosphatases from marine organisms with potential functions and industrial applications. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Litaker RW, Holland WC, Hardison DR, Pisapia F, Hess P, Kibler SR, Tester PA. Ciguatoxicity of Gambierdiscus and Fukuyoa species from the Caribbean and Gulf of Mexico. PLoS One 2017; 12:e0185776. [PMID: 29045489 PMCID: PMC5646788 DOI: 10.1371/journal.pone.0185776] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 09/19/2017] [Indexed: 11/22/2022] Open
Abstract
Dinoflagellate species belonging to the genera Gambierdiscus and Fukuyoa produce ciguatoxins (CTXs), potent neurotoxins that concentrate in fish causing ciguatera fish poisoning (CFP) in humans. While the structures and toxicities of ciguatoxins isolated from fish in the Pacific and Caribbean are known, there are few data on the variation in toxicity between and among species of Gambierdiscus and Fukuyoa. Quantifying the differences in species-specific toxicity is especially important to developing an effective cell-based risk assessment strategy for CFP. This study analyzed the ciguatoxicity of 33 strains representing seven Gambierdiscus and one Fukuyoa species using a cell based Neuro-2a cytotoxicity assay. All strains were isolated from either the Caribbean or Gulf of Mexico. The average toxicity of each species was inversely proportional to growth rate, suggesting an evolutionary trade-off between an investment in growth versus the production of defensive compounds. While there is 2- to 27-fold variation in toxicity within species, there was a 1740-fold difference between the least and most toxic species. Consequently, production of CTX or CTX-like compounds is more dependent on the species present than on the random occurrence of high or low toxicity strains. Seven of the eight species tested (G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, Gambierdiscus ribotype 2, G. silvae and F. ruetzleri) exhibited low toxicities, ranging from 0 to 24.5 fg CTX3C equivalents cell-1, relative to G. excentricus, which had a toxicity of 469 fg CTX3C eq. cell-1. Isolates of G. excentricus from other regions have shown similarly high toxicities. If the hypothesis that G. excentricus is the primary source of ciguatoxins in the Atlantic is confirmed, it should be possible to identify areas where CFP risk is greatest by monitoring only G. excentricus abundance using species-specific molecular assays.
Collapse
Affiliation(s)
- R. Wayne Litaker
- National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research, Beaufort, North Carolina, United States of America
- * E-mail:
| | - William C. Holland
- National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research, Beaufort, North Carolina, United States of America
| | - D. Ransom Hardison
- National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research, Beaufort, North Carolina, United States of America
| | - Francesco Pisapia
- L'Institut Français de Recherche pour l'Exploitation de la Mer, Laboratoire Phycotoxines, Nantes, France
| | - Philipp Hess
- L'Institut Français de Recherche pour l'Exploitation de la Mer, Laboratoire Phycotoxines, Nantes, France
| | - Steven R. Kibler
- National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research, Beaufort, North Carolina, United States of America
| | | |
Collapse
|
39
|
Bodero M, Bovee TFH, Wang S, Hoogenboom RLAP, Klijnstra MD, Portier L, Hendriksen PJM, Gerssen A. Screening for the presence of lipophilic marine biotoxins in shellfish samples using the neuro-2a bioassay. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 35:351-365. [PMID: 28884655 DOI: 10.1080/19440049.2017.1368720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The neuro-2a bioassay is considered as one of the most promising cell-based in vitro bioassays for the broad screening of seafood products for the presence of marine biotoxins. The neuro-2a assay has been shown to detect a wide array of toxins like paralytic shellfish poisons (PSPs), ciguatoxins, and also lipophilic marine biotoxins (LMBs). However, the neuro-2a assay is rarely used for routine testing of samples due to matrix effects that, for example, lead to false positives when testing for LMBs. As a result there are only limited data on validation and evaluation of its performance on real samples. In the present study, the standard extraction procedure for LMBs was adjusted by introducing an additional clean-up step with n-hexane. Recovery losses due to this extra step were less than 10%. This wash step was a crucial addition in order to eliminate false-positive outcomes due to matrix effects. Next, the applicability of this assay was assessed by testing a broad range of shellfish samples contaminated with various LMBs, including diarrhetic shellfish toxins/poisons (DSPs). For comparison, the samples were also analysed by LC-MS/MS. Standards of all regulated LMBs were tested, including analogues of some of these toxins. The neuro-2a cells showed good sensitivity towards all compounds. Extracts of 87 samples, both blank and contaminated with various toxins, were tested. The neuro-2a outcomes were in line with those of LC-MS/MS analysis and support the applicability of this assay for the screening of samples for LMBs. However, for use in a daily routine setting, the test might be further improved and we discuss several recommended modifications which should be considered before a full validation is carried out.
Collapse
Affiliation(s)
- Marcia Bodero
- a BU Bioassays and Authenticity, RIKILT Wageningen University & Research , Wageningen , the Netherlands.,b Division of Toxicology , Wageningen University and Research , Wageningen , the Netherlands
| | - Toine F H Bovee
- a BU Bioassays and Authenticity, RIKILT Wageningen University & Research , Wageningen , the Netherlands
| | - Si Wang
- a BU Bioassays and Authenticity, RIKILT Wageningen University & Research , Wageningen , the Netherlands
| | - Ron L A P Hoogenboom
- a BU Bioassays and Authenticity, RIKILT Wageningen University & Research , Wageningen , the Netherlands
| | - Mirjam D Klijnstra
- a BU Bioassays and Authenticity, RIKILT Wageningen University & Research , Wageningen , the Netherlands
| | - Liza Portier
- a BU Bioassays and Authenticity, RIKILT Wageningen University & Research , Wageningen , the Netherlands
| | - Peter J M Hendriksen
- a BU Bioassays and Authenticity, RIKILT Wageningen University & Research , Wageningen , the Netherlands
| | - Arjen Gerssen
- a BU Bioassays and Authenticity, RIKILT Wageningen University & Research , Wageningen , the Netherlands
| |
Collapse
|
40
|
Coccini T, Caloni F, De Simone U. Human neuronal cell based assay: A new in vitro model for toxicity evaluation of ciguatoxin. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:200-213. [PMID: 28437641 DOI: 10.1016/j.etap.2017.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/31/2017] [Accepted: 04/02/2017] [Indexed: 06/07/2023]
Abstract
Ciguatoxins (CTXs) are emerging marine neurotoxins representing the main cause of ciguatera fish poisoning, an intoxication syndrome which configures a health emergency and constitutes an evolving issue constantly changing due to new vectors and derivatives of CTXs, as well as their presence in new non-endemic areas. The study applied the neuroblastoma cell model of human origin (SH-SY5Y) to evaluate species-specific mechanistic information on CTX toxicity. Metabolic functionality, cell morphology, cytosolic Ca2+i responses, neuronal cell growth and proliferation were assessed after short- (4-24h) and long-term exposure (10days) to P-CTX-3C. In SH-SY5Y, P-CTX-3C displayed a powerful cytotoxicity requiring the presence of both Veratridine and Ouabain. SH-SY5Y were very sensitive to Ouabain: 10 and 0.25nM appeared the optimal concentrations, for short- and long-term toxicity studies, respectively, to be used in co-incubation with Veratridine (25μM), simulating the physiological and pathological endogenous Ouabain levels in humans. P-CTX-3C cytotoxic effect, on human neurons co-incubated with OV (Ouabain+Veratridine) mix, was expressed starting from 100pM after short- and 25pM after long-term exposure. Notably, P-CTX-3C alone at 25nM induced cytotoxicity after 24h and prolonged exposure. This human brain-derived cell line appears a suitable cell-based-model to evaluate cytotoxicity of CTX present in marine food contaminated at low toxic levels and to characterize the toxicological profile of other/new congeners.
Collapse
Affiliation(s)
- Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, Poison Control Centre, Toxicology Unit, Maugeri Clinical Scientific Institutes S.p.A.-BS, IRCCS Pavia, Pavia Italy.
| | - Francesca Caloni
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Milano, Italy
| | - Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, Poison Control Centre, Toxicology Unit, Maugeri Clinical Scientific Institutes S.p.A.-BS, IRCCS Pavia, Pavia Italy
| |
Collapse
|
41
|
Affiliation(s)
- Silvia Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Serena Silvestro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
42
|
Wharton RE, Feyereisen MC, Gonzalez AL, Abbott NL, Hamelin EI, Johnson RC. Quantification of saxitoxin in human blood by ELISA. Toxicon 2017; 133:110-115. [PMID: 28495477 DOI: 10.1016/j.toxicon.2017.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
Abstract
Saxitoxin (STX) is a potent marine toxin that causes paralytic shellfish poisoning (PSP) which can result in significant morbidity and mortality in humans. Low lethal doses, rapid onset of PSP symptoms, and brief STX half-life in vivo require sensitive and rapid diagnostic techniques to monitor human exposures. Our laboratory has validated an enzyme-linked immunosorbent assay (ELISA) for quantitative detection of STX from 0.020 to 0.80 ng/mL in human whole blood and from 0.06 to 2.0 ng/mL in dried human blood which is simple, sensitive, rapid, and cost-effective. To our knowledge, this is the first validated method for the quantitation of saxitoxin in whole blood. Microsampling devices were used in sample collection which allows for standardized collection of blood, stable storage, and cost-efficient shipping. Quality control precision and accuracy were evaluated over the course of validation and were within 20% of theoretical concentrations. No detectable background concentrations of STX were found among fifty whole blood and dried blood convenience samples. Additionally, ten spiked individual whole blood and dried blood samples were tested for accuracy and precision and were within 20% of theoretical concentrations. Gonyautoxins 2&3 (GTX2&3) cross-reacted with this ELISA by 21%, but all other structurally related PSP toxins tested cross-reacted less than two percent. While clinical diagnosis or treatment of PSP would be unaffected by GTX2&3 cross-reactivity by ELISA, to accurately quantify individual PSP toxins, these results should be coupled with high performance liquid chromatography mass spectrometry measurements.
Collapse
Affiliation(s)
- Rebekah E Wharton
- Battelle Memorial Institute at the Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Melanie C Feyereisen
- Battelle Memorial Institute at the Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Andrea L Gonzalez
- Oak Ridge Institute for Science and Education Fellow at the Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nicole L Abbott
- Oak Ridge Institute for Science and Education Fellow at the Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elizabeth I Hamelin
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Rudolph C Johnson
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
43
|
Dechraoui Bottein MY, Clausing RJ. Receptor-Binding Assay for the Analysis of Marine Toxins. RECENT ADVANCES IN THE ANALYSIS OF MARINE TOXINS 2017. [DOI: 10.1016/bs.coac.2017.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
44
|
Doucette GJ, Kudela RM. In Situ and Real-Time Identification of Toxins and Toxin-Producing Microorganisms in the Environment. RECENT ADVANCES IN THE ANALYSIS OF MARINE TOXINS 2017. [DOI: 10.1016/bs.coac.2017.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
45
|
Roué M, Darius HT, Picot S, Ung A, Viallon J, Gaertner-Mazouni N, Sibat M, Amzil Z, Chinain M. Evidence of the bioaccumulation of ciguatoxins in giant clams (Tridacna maxima) exposed to Gambierdiscus spp. cells. HARMFUL ALGAE 2016; 57:78-87. [PMID: 30170724 DOI: 10.1016/j.hal.2016.05.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 06/08/2023]
Abstract
Ciguatera Fish Poisoning (CFP) is a foodborne disease classically related to the consumption of tropical coral reef fishes contaminated with ciguatoxins (CTXs), neurotoxins produced by dinoflagellates of the Gambierdiscus genus. Severe atypical ciguatera-like incidents involving giant clams, a marine resource highly consumed in the South Pacific, are also frequently reported in many Pacific Islands Countries and Territories. The present study was designed to assess the ability of giant clams to accumulate CTXs in their tissues and highlight the potential health risks associated with their consumption. Since giant clams are likely to be exposed to both free-swimming Gambierdiscus cells and dissolved CTXs in natural environment, ex situ contamination experiments were conducted as follows: giant clams were exposed to live or lyzed cells of TB92, a highly toxic strain of G. polynesiensis containing 5.83±0.85pg P-CTX-3C equiv.cell-1vs. HIT0, a weakly toxic strain of G. toxicus containing only (2.05±1.16)×10-3pg P-CTX-3C equiv.cell-1, administered over a 48h period at a concentration of 150cellsmL-1. The presence of CTXs in giant clams tissues was further assessed using the mouse neuroblastoma cell-based assay (CBA-N2a). Results showed that giant clams exposed to either lyzed or live cells of TB92 were able to bioaccumulate CTXs at concentrations well above the safety limit recommended for human consumption, i.e. 3.28±1.37 and 2.92±1.03ng P-CTX-3C equiv.g-1 flesh (wet weight), respectively, which represented approximately 3% of the total toxin load administered to the animals. In contrast, giant clams exposed to live or lyzed cells of HIT0 were found to be free of toxins, suggesting that in the nature, the risk of contamination of these bivalves is established only in the presence of highly toxic blooms of Gambierdiscus. Liquid chromatography-mass spectrometry (LC-MS/MS) analyses confirmed CBA-N2a results and also revealed that P-CTX-3B was the major CTX congener retained in the tissues of giant clams fed with TB92 cells. To the best of our knowledge, this study is the first to provide evidence of the bioaccumulation of Gambierdiscus CTXs in giant clams and confirms that these bivalve molluscs can actually constitute another pathway in ciguatera poisonings. While most monitoring programs currently focus on fish toxicity, these findings stress the importance of a concomitant surveillance of these marine invertebrates in applicable locations for an accurate assessment of ciguatera risk.
Collapse
Affiliation(s)
- Mélanie Roué
- Institut de Recherche pour le Développement (IRD) - UMR 241-EIO, PO Box 529, 98713 Papeete, Tahiti, French Polynesia.
| | - Hélène Taiana Darius
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae - UMR 241-EIO, PO Box 30, 98713 Papeete, Tahiti, French Polynesia
| | - Sandy Picot
- Institut de Recherche pour le Développement (IRD) - UMR 241-EIO, PO Box 529, 98713 Papeete, Tahiti, French Polynesia; Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae - UMR 241-EIO, PO Box 30, 98713 Papeete, Tahiti, French Polynesia
| | - André Ung
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae - UMR 241-EIO, PO Box 30, 98713 Papeete, Tahiti, French Polynesia
| | - Jérôme Viallon
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae - UMR 241-EIO, PO Box 30, 98713 Papeete, Tahiti, French Polynesia
| | - Nabila Gaertner-Mazouni
- Université de la Polynésie Française (UPF) - UMR 241-EIO, PO Box 6570, 98702 Faa'a, Tahiti, French Polynesia
| | - Manoella Sibat
- Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Phycotoxins Laboratory, PO Box 21105, 44311 Nantes, France
| | - Zouher Amzil
- Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Phycotoxins Laboratory, PO Box 21105, 44311 Nantes, France
| | - Mireille Chinain
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae - UMR 241-EIO, PO Box 30, 98713 Papeete, Tahiti, French Polynesia
| |
Collapse
|
46
|
Alloisio S, Giussani V, Nobile M, Chiantore M, Novellino A. Microelectrode array (MEA) platform as a sensitive tool to detect and evaluate Ostreopsis cf. ovata toxicity. HARMFUL ALGAE 2016; 55:230-237. [PMID: 28073536 DOI: 10.1016/j.hal.2016.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 06/06/2023]
Abstract
In the last decade, the occurrence of harmful dinoflagellate blooms of the genus Ostreopsis has increased both in frequency and in geographic distribution with adverse impacts on public health and the economy. Ostreopsis species are producers of palytoxin-like toxins (putative palytoxin and ovatoxins) which are among the most potent natural non-protein compounds known to date, exhibiting extreme toxicity in mammals, including humans. Most existing toxicological data are derived from in vivo mouse assay and are related to acute effects of pure palytoxin, without considering that the toxicity mechanism of dinoflagellates can be dependent on the varying composition of complex biotoxins mixture and on the presence of cellular components. In this study, in vitro neuronal networks coupled to microelectrode array (MEA)-based system are proposed, for the first time, as sensitive biosensors for the evaluation of marine alga toxicity on mammalian cells. Toxic effect was investigated by testing three different treatments of laboratory cultured Ostreopsis cf. ovata cells: filtered and re-suspended algal cells; filtered, re-suspended and sonicated algal cells; conditioned growth medium devoid of algal cells. The great sensitivity of this system revealed the mixture of PTLX-complex analogues naturally released in the growth medium and the different potency of the three treatments to inhibit the neuronal network spontaneous electrical activity. Moreover, by means of the multiparametric analysis of neuronal network activity, the approach revealed a different toxicity mechanism of the cellular component compared to the algal conditioned growth medium, highlighting the potential active role of the first treatment.
Collapse
Affiliation(s)
- Susanna Alloisio
- ETT S.p.A., via Sestri 37, Genoa 16154, Italy; CNR-Institute of Biophysics (IBF), Via De Marini 6, 16149 Genoa, Italy.
| | | | - Mario Nobile
- CNR-Institute of Biophysics (IBF), Via De Marini 6, 16149 Genoa, Italy
| | | | - Antonio Novellino
- ETT S.p.A., via Sestri 37, Genoa 16154, Italy; CNR-Institute of Biophysics (IBF), Via De Marini 6, 16149 Genoa, Italy
| |
Collapse
|
47
|
Aballay-Gonzalez A, Ulloa V, Rivera A, Hernández V, Silva M, Caprile T, Delgado-Rivera L, Astuya A. Matrix effects on a cell-based assay used for the detection of paralytic shellfish toxins in bivalve shellfish samples. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:869-75. [DOI: 10.1080/19440049.2016.1166741] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ambbar Aballay-Gonzalez
- Laboratory of Cell Culture and Marine Genomics, Marine Biotechnology Unit, Faculty of Natural and Oceanographic Sciences, University of Concepcion, Concepción, Chile
| | - Viviana Ulloa
- Laboratory of Cell Culture and Marine Genomics, Marine Biotechnology Unit, Faculty of Natural and Oceanographic Sciences, University of Concepcion, Concepción, Chile
| | - Alejandra Rivera
- Laboratory of Cell Culture and Marine Genomics, Marine Biotechnology Unit, Faculty of Natural and Oceanographic Sciences, University of Concepcion, Concepción, Chile
- Sur-Austral COPAS Program, University of Concepcion, Concepción, Chile
| | - Víctor Hernández
- Natural Products Chemistry Laboratory, Botanic Department, Natural and Oceanographic Sciences, University of Concepcion, Concepción, Chile
| | - Macarena Silva
- Laboratory of Cell Culture and Marine Genomics, Marine Biotechnology Unit, Faculty of Natural and Oceanographic Sciences, University of Concepcion, Concepción, Chile
| | - Teresa Caprile
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepcion, Concepción, Chile
| | - Lorena Delgado-Rivera
- Laboratory of Marine Toxins and Mycotoxins, Food Chemistry Section, Environmental Health Department, Institute of Public Health Chile, Ñuñoa, Chile
| | - Allisson Astuya
- Laboratory of Cell Culture and Marine Genomics, Marine Biotechnology Unit, Faculty of Natural and Oceanographic Sciences, University of Concepcion, Concepción, Chile
- Sur-Austral COPAS Program, University of Concepcion, Concepción, Chile
| |
Collapse
|
48
|
Konopińska K, Pietrzak M, Mazur R, Malinowska E. Analytical characterization of IgG–cTpp and IgG–Mn-cTpp conjugates. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s1088424615500984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Herein, the conjugation of carboxylated tetraphenylporphyrin or its derivative containing manganese cation and model protein — immunoglobulin G is presented. The obtained IgG–cTpp and IgG–Mn-cTpp conjugates were subsequently used for model immunoassays construction. The IgG–cTpp formation was confirmed using size-exclusion chromatography. Thanks to the unique properties of applied labels the assay analysis was carried out with both spectrophotometric and spectrofluorimetric detection. The assays were performed creating semi-quantitative detection system using 96-well plates. The incubation time, ensuring full saturation of the surface with secondary antibodies was also optimized. Moreover, in the case of IgG–Mn-cTpp conjugates we present the possibility of both direct and indirect determination of the label, the latter based on the catalytic activity of Mn-cTpp, which allows for amplification of the measured signal. We proved that both cTpp and Mn-cTpp may be successfully used for protein labeling and serve as universal tracers for various formats of affinity assays and sensors.
Collapse
Affiliation(s)
- Kamila Konopińska
- Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Mariusz Pietrzak
- Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Radosław Mazur
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Elżbieta Malinowska
- Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
49
|
An innovative method based on quick, easy, cheap, effective, rugged, and safe extraction coupled to desorption electrospray ionization-high resolution mass spectrometry for screening the presence of paralytic shellfish toxins in clams. Talanta 2016; 147:416-21. [DOI: 10.1016/j.talanta.2015.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 11/17/2022]
|