1
|
Barreira-Silva P, Lian Y, Kaufmann SHE, Moura-Alves P. The role of the AHR in host-pathogen interactions. Nat Rev Immunol 2024:10.1038/s41577-024-01088-4. [PMID: 39415055 DOI: 10.1038/s41577-024-01088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/18/2024]
Abstract
Host-microorganism encounters take place in many different ways and with different types of outcomes. Three major types of microorganisms need to be distinguished: (1) pathogens that cause harm to the host and must be controlled; (2) environmental microorganisms that can be ignored but must be controlled at higher abundance; and (3) symbiotic microbiota that require support by the host. Recent evidence indicates that the aryl hydrocarbon receptor (AHR) senses and initiates signalling and gene expression in response to a plethora of microorganisms and infectious conditions. It was originally identified as a receptor that binds xenobiotics. However, it was subsequently found to have a critical role in numerous biological processes, including immunity and inflammation and was recently classified as a pattern recognition receptor. Here we review the role of the AHR in host-pathogen interactions, focusing on AHR sensing of different microbial classes, the ligands involved, responses elicited and disease outcomes. Moreover, we explore the therapeutic potential of targeting the AHR in the context of infection.
Collapse
Affiliation(s)
- Palmira Barreira-Silva
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Yilong Lian
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, USA
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pedro Moura-Alves
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
2
|
Bahman F, Choudhry K, Al-Rashed F, Al-Mulla F, Sindhu S, Ahmad R. Aryl hydrocarbon receptor: current perspectives on key signaling partners and immunoregulatory role in inflammatory diseases. Front Immunol 2024; 15:1421346. [PMID: 39211042 PMCID: PMC11358079 DOI: 10.3389/fimmu.2024.1421346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a versatile environmental sensor and transcription factor found throughout the body, responding to a wide range of small molecules originating from the environment, our diets, host microbiomes, and internal metabolic processes. Increasing evidence highlights AhR's role as a critical regulator of numerous biological functions, such as cellular differentiation, immune response, metabolism, and even tumor formation. Typically located in the cytoplasm, AhR moves to the nucleus upon activation by an agonist where it partners with either the aryl hydrocarbon receptor nuclear translocator (ARNT) or hypoxia-inducible factor 1β (HIF-1β). This complex then interacts with xenobiotic response elements (XREs) to control the expression of key genes. AhR is notably present in various crucial immune cells, and recent research underscores its significant impact on both innate and adaptive immunity. This review delves into the latest insights on AhR's structure, activating ligands, and its multifaceted roles. We explore the sophisticated molecular pathways through which AhR influences immune and lymphoid cells, emphasizing its emerging importance in managing inflammatory diseases. Furthermore, we discuss the exciting potential of developing targeted therapies that modulate AhR activity, opening new avenues for medical intervention in immune-related conditions.
Collapse
Affiliation(s)
- Fatemah Bahman
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Khubaib Choudhry
- Department of Human Biology, University of Toronto, Toronto, ON, Canada
| | - Fatema Al-Rashed
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sardar Sindhu
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
- Animal & Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
3
|
Rogovskii V. Tumor-produced immune regulatory factors as a therapeutic target in cancer treatment. Front Immunol 2024; 15:1416458. [PMID: 39206193 PMCID: PMC11349530 DOI: 10.3389/fimmu.2024.1416458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- Vladimir Rogovskii
- Department of Molecular Pharmacology and Radiobiology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
4
|
Ma S, Wu Q, Wu W, Tian Y, Zhang J, Chen C, Sheng X, Zhao F, Ding L, Wang T, Zhao L, Xie Y, Wang Y, Yue X, Wu Z, Wei J, Zhang K, Liang X, Gao L, Wang H, Wang G, Li C, Ma C. Urolithin A Hijacks ERK1/2-ULK1 Cascade to Improve CD8 + T Cell Fitness for Antitumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310065. [PMID: 38447147 PMCID: PMC11095213 DOI: 10.1002/advs.202310065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/20/2024] [Indexed: 03/08/2024]
Abstract
According to the latest evidence, the microbial metabolite Urolithin A (UA), known for its role in promoting cellular health, modulates CD8+ T cell-mediated antitumor activity. However, the direct target protein of UA and its underlying mechanism remains unclear. Here, this research identifies ERK1/2 as the specific target crucial for UA-mediated CD8+ T cell activation. Even at low doses, UA markedly enhances the persistence and effector functions of primary CD8+ cytotoxic T lymphocytes (CTLs) and human chimeric antigen receptor (CAR) T cells both in vitro and in vivo. Mechanistically, UA interacts directly with ERK1/2 kinases, enhancing their activation and subsequently facilitating T cell activation by engaging ULK1. The UA-ERK1/2-ULK1 axis promotes autophagic flux in CD8+ CTLs, enhancing cellular metabolism and maintaining reactive oxygen species (ROS) levels, as evidenced by increased oxygen consumption and extracellular acidification rates. UA-treated CD8+ CTLs also display elevated ATP levels and enhanced spare respiratory capacity. Overall, UA activates ERK1/2, inducing autophagy and metabolic adaptation, showcasing its potential in tumor immunotherapy and interventions for diseases involving ERKs.
Collapse
Affiliation(s)
- Shuaiya Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Qi Wu
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Wenxian Wu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
- Guangdong Key Laboratory of Age‐Related Cardiac and Cerebral DiseaseDepartment of NeurologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdong524001P. R. China
- Shenzhen Research Institute of Shandong UniversityShenzhen518057P. R. China
| | - Ye Tian
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Jie Zhang
- Advanced Medical Research InstituteCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Chaojia Chen
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Xue Sheng
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Fangcheng Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Lu Ding
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Taixia Wang
- Central LaboratoryTongji University School of MedicineTongji UniversityShanghai200072P. R. China
| | - Laixi Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Yuying Xie
- Guangdong Key Laboratory of Age‐Related Cardiac and Cerebral DiseaseDepartment of NeurologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdong524001P. R. China
| | - Yongxiang Wang
- Guangdong Key Laboratory of Age‐Related Cardiac and Cerebral DiseaseDepartment of NeurologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdong524001P. R. China
| | - Xuetian Yue
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Jian Wei
- Department of PhysiologySchool of Basic Medical SciencesShandong UniversityJinan250012P. R. China
| | - Kun Zhang
- Central LaboratoryTongji University School of MedicineTongji UniversityShanghai200072P. R. China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Hongyan Wang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031P. R. China
| | - Guihua Wang
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Histology and EmbryologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| |
Collapse
|
5
|
Chamoli M, Rane A, Foulger A, Chinta SJ, Shahmirzadi AA, Kumsta C, Nambiar DK, Hall D, Holcom A, Angeli S, Schmidt M, Pitteri S, Hansen M, Lithgow GJ, Andersen JK. A drug-like molecule engages nuclear hormone receptor DAF-12/FXR to regulate mitophagy and extend lifespan. NATURE AGING 2023; 3:1529-1543. [PMID: 37957360 PMCID: PMC10797806 DOI: 10.1038/s43587-023-00524-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/12/2023] [Indexed: 11/15/2023]
Abstract
Autophagy-lysosomal function is crucial for maintaining healthy lifespan and preventing age-related diseases. The transcription factor TFEB plays a key role in regulating this pathway. Decreased TFEB expression is associated with various age-related disorders, making it a promising therapeutic target. In this study, we screened a natural product library and discovered mitophagy-inducing coumarin (MIC), a benzocoumarin compound that enhances TFEB expression and lysosomal function. MIC robustly increases the lifespan of Caenorhabditis elegans in an HLH-30/TFEB-dependent and mitophagy-dependent manner involving DCT-1/BNIP3 while also preventing mitochondrial dysfunction in mammalian cells. Mechanistically, MIC acts by inhibiting ligand-induced activation of the nuclear hormone receptor DAF-12/FXR, which, in turn, induces mitophagy and extends lifespan. In conclusion, our study uncovers MIC as a promising drug-like molecule that enhances mitochondrial function and extends lifespan by targeting DAF-12/FXR. Furthermore, we discovered DAF-12/FXR as a previously unknown upstream regulator of HLH-30/TFEB and mitophagy.
Collapse
Affiliation(s)
| | - Anand Rane
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Anna Foulger
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Shankar J Chinta
- Buck Institute for Research on Aging, Novato, CA, USA
- Touro University California, Vallejo, CA, USA
| | - Azar Asadi Shahmirzadi
- Buck Institute for Research on Aging, Novato, CA, USA
- University of Southern California, Los Angeles, CA, USA
| | - Caroline Kumsta
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - David Hall
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Angelina Holcom
- Buck Institute for Research on Aging, Novato, CA, USA
- University of Southern California, Los Angeles, CA, USA
| | | | - Minna Schmidt
- Buck Institute for Research on Aging, Novato, CA, USA
- University of Southern California, Los Angeles, CA, USA
| | | | - Malene Hansen
- Buck Institute for Research on Aging, Novato, CA, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | | |
Collapse
|
6
|
Tang JS, Stephens R, Li Y, Cait A, Gell K, Faulkner S, Grooby A, Herst PM, O'Sullivan D, Gasser O. Polyphenol and glucosinolate-derived AhR modulators regulate GPR15 expression on human CD4+ T cells. J Nutr Biochem 2023; 122:109456. [PMID: 37788725 DOI: 10.1016/j.jnutbio.2023.109456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/24/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
Diets high in fruit and vegetables are perceived to be beneficial for intestinal homeostasis, in health as well as in the context of inflammatory bowel diseases (IBDs). Recent breakthroughs in the field of immunology have highlighted the importance of the ligand-activated transcription factor aryl hydrocarbon receptor (AhR) as a critical regulator of mucosal immunity, including the intestinal trafficking of CD4+ helper T cells, an immune cell subset implicated in a wide range of homeostatic and pathogenic processes. Specifically, the AhR has been shown to directly regulate the expression of the chemoattractant receptor G Protein-Coupled Receptor 15 (GPR15) on CD4+ T cells. GPR15 is an important gut homing marker whose expression on CD4+ T cells in the peripheral circulation is elevated in patients suffering from ulcerative colitis, raising the possibility that, in this setting, the beneficial effect of a diet rich in fruits and vegetables may be mediated through the modulation of GPR15 expression. To address this, we screened physiologically-relevant polyphenol and glucosinolate metabolites for their ability to affect both AhR activity and GPR15 expression. Our complementary approach and associated findings suggest that polyphenol and glucosinolate metabolites can regulate GPR15 expression on human CD4+ T cells in an AhR-dependent manner.
Collapse
Affiliation(s)
- Jeffry S Tang
- Malaghan Institute of Medical Research, Wellington, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand.
| | - Ruth Stephens
- Malaghan Institute of Medical Research, Wellington, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Yanyan Li
- Malaghan Institute of Medical Research, Wellington, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Alissa Cait
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Katie Gell
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Sophie Faulkner
- Malaghan Institute of Medical Research, Wellington, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Alix Grooby
- Malaghan Institute of Medical Research, Wellington, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Patries M Herst
- Malaghan Institute of Medical Research, Wellington, New Zealand; Department of Radiation Therapy, University of Otago, Wellington, New Zealand
| | - David O'Sullivan
- Malaghan Institute of Medical Research, Wellington, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Olivier Gasser
- Malaghan Institute of Medical Research, Wellington, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand.
| |
Collapse
|
7
|
Shen CK, Huang BR, Charoensaensuk V, Yang LY, Tsai CF, Liu YS, Lai SW, Lu DY, Yeh WL, Lin C. Inhibitory Effects of Urolithins, Bioactive Gut Metabolites from Natural Polyphenols, against Glioblastoma Progression. Nutrients 2023; 15:4854. [PMID: 38068712 PMCID: PMC10708538 DOI: 10.3390/nu15234854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
We previously reported that proinflammatory cytokines, particularly tumor necrosis factor (TNF)-α, promoted tumor migration, invasion, and proliferation, thus worsening the prognosis of glioblastoma (GBM). Urolithins, the potent metabolites produced by the gut from pomegranate polyphenols, have anticancer properties. To develop an effective therapy for GBM, this study aimed to study the effects of urolithins against GBM. Urolithin A and B significantly reduced GBM migration, reduced epithelial-mesenchymal transition, and inhibited tumor growth. Moreover, urolithin A and B inhibited TNF-α-induced vascular cell adhesion molecule (VCAM)-1 and programmed death ligand 1 (PD-L1) expression, thereby reducing human monocyte (HM) binding to GBM cells. Aryl hydrocarbon receptor (AhR) level had higher expression in patients with glioma than in healthy individuals. Urolithins are considered pharmacological antagonists of AhR. We demonstrated that the inhibition of AhR reduced TNF-α-stimulated VCAM-1 and PD-L1 expression. Furthermore, human macrophage condition medium enhanced expression of PD-L1 in human GBM cells. Administration of the AhR antagonist attenuated the enhancement of PD-L1, indicating the AhR modulation in GBM progression. The modulatory effects of urolithins in GBM involve inhibiting the Akt and epidermal growth factor receptor pathways. The present study suggests that urolithins can inhibit GBM progression and provide valuable information for anti-GBM strategy.
Collapse
Affiliation(s)
- Ching-Kai Shen
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404328, Taiwan;
| | - Bor-Ren Huang
- School of Medicine, Tzu Chi University, Taichung 404, Taiwan
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 404, Taiwan
| | - Vichuda Charoensaensuk
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404328, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan
- Laboratory for Neural Repair, China Medical University Hospital, Taichung 404327, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan;
| | - Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404328, Taiwan
| | - Sheng-Wei Lai
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404328, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404328, Taiwan
- Department of Photonics and Communication Engineering, Asia University, Taichung 41354, Taiwan
| | - Wei-Lan Yeh
- Department of Biochemistry, School of Medicine, China Medical University, Taichung 40402, Taiwan;
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
| | - Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
8
|
Vázquez-Gómez G, Petráš J, Dvořák Z, Vondráček J. Aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) play both distinct and common roles in the regulation of colon homeostasis and intestinal carcinogenesis. Biochem Pharmacol 2023; 216:115797. [PMID: 37696457 DOI: 10.1016/j.bcp.2023.115797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Both aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) belong among key regulators of xenobiotic metabolism in the intestinal tissue. AhR in particular is activated by a wide range of environmental and dietary carcinogens. The data accumulated over the last two decades suggest that both of these transcriptional regulators play a much wider role in the maintenance of gut homeostasis, and that both transcription factors may affect processes linked with intestinal tumorigenesis. Intestinal epithelium is continuously exposed to a wide range of AhR, PXR and dual AhR/PXR ligands formed by intestinal microbiota or originating from diet. Current evidence suggests that specific ligands of both AhR and PXR can protect intestinal epithelium against inflammation and assist in the maintenance of epithelial barrier integrity. AhR, and to a lesser extent also PXR, have been shown to play a protective role against inflammation-induced colon cancer, or, in mouse models employing overactivation of Wnt/β-catenin signaling. In contrast, other evidence suggests that both receptors may contribute to modulation of transformed colon cell behavior, with a potential to promote cancer progression and/or chemoresistance. The review focuses on both overlapping and separate roles of the two receptors in these processes, and on possible implications of their activity within the context of intestinal tissue.
Collapse
Affiliation(s)
- Gerardo Vázquez-Gómez
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic
| | - Jiří Petráš
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic.
| |
Collapse
|
9
|
Li X, Xu L, Peng X, Zhang H, Kang M, Jiang Y, Shi H, Chen H, Zhao C, Yu Y, Ma R, Li X, Cao Y. The alleviating effect of ellagic acid on DSS-induced colitis via regulating gut microbiomes and gene expression of colonic epithelial cells. Food Funct 2023; 14:7550-7561. [PMID: 37526638 DOI: 10.1039/d3fo01226c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The anti-inflammatory effect of ellagic acid (EA) and its possible underlying mechanism in dextran sulfate sodium (DSS)-induced mouse chronic colonic inflammation were studied. It was observed that EA administration significantly alleviated the colonic inflammation phenotypes, including decreasing the disease activity index (DAI), enhancing the body weight loss, and improving the shortened length of the colon and pathological damage of colon tissue. Additionally, EA reshaped the constitution of the gut microbiota by elevating the ratio of Bacteroidetes along with Bacteroides and Muribaculaceae, while decreasing the proportion of Firmicutes. The Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 (PICRUSt2) revealed that the metabolic function of the gut microbiota was also changed. Furthermore, mouse colon transcriptome analysis showed that the tight junction and peroxisome proliferator-activated receptor (PPAR) signaling pathways were activated and the expressions of related genes were upregulated after EA intervention. These results showed that EA could remodel the gut bacterial composition, change the intestinal epithelial cell gene expressions in mice, and consequently improve the colonic inflammatory symptoms.
Collapse
Affiliation(s)
- Xiaoqing Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou City, Guangdong Province, 510642, China.
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Lu Xu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou City, Guangdong Province, 510642, China.
| | - Xinan Peng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou City, Guangdong Province, 510642, China.
| | - Huiting Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou City, Guangdong Province, 510642, China.
| | - Meng Kang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou City, Guangdong Province, 510642, China.
| | - Yiqi Jiang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou City, Guangdong Province, 510642, China.
| | - Haibo Shi
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Haiyan Chen
- Guangdong Testing Institute of Product Quality Supervision (GQI), Foshan, 528300, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yigang Yu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ruiting Ma
- Eastroc Beverage Group Co., Ltd, Shenzhen, 518057, China
| | - Xueli Li
- Eastroc Beverage Group Co., Ltd, Shenzhen, 518057, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou City, Guangdong Province, 510642, China.
| |
Collapse
|
10
|
Morgan EW, Dong F, Annalora AJ, Murray IA, Wolfe T, Erickson R, Gowda K, Amin SG, Petersen KS, Kris-Etherton PM, Marcus CB, Walk ST, Patterson AD, Perdew GH. Contribution of Circulating Host and Microbial Tryptophan Metabolites Toward Ah Receptor Activation. Int J Tryptophan Res 2023; 16:11786469231182510. [PMID: 37441265 PMCID: PMC10334013 DOI: 10.1177/11786469231182510] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/31/2023] [Indexed: 07/15/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that plays an integral role in homeostatic maintenance by regulating cellular functions such as cellular differentiation, metabolism, barrier function, and immune response. An important but poorly understood class of AHR activators are compounds derived from host and bacterial metabolism of tryptophan. The commensal bacteria of the gut microbiome are major producers of tryptophan metabolites known to activate the AHR, while the host also produces AHR activators through tryptophan metabolism. We used targeted mass spectrometry-based metabolite profiling to determine the presence and metabolic source of these metabolites in the sera of conventional mice, germ-free mice, and humans. Surprisingly, sera concentrations of many tryptophan metabolites are comparable between germ-free and conventional mice. Therefore, many major AHR-activating tryptophan metabolites in mouse sera are produced by the host, despite their presence in feces and mouse cecal contents. Here we present an investigation of AHR activation using a complex mixture of tryptophan metabolites to examine the biological relevance of circulating tryptophan metabolites. AHR activation is rarely studied in the context of a mixture at relevant concentrations, as we present here. The AHR activation potentials of individual and pooled metabolites were explored using cell-based assays, while ligand binding competition assays and ligand docking simulations were used to assess the detected metabolites as AHR agonists. The physiological and biomedical relevance of the identified metabolites was investigated in the context of a cell-based model for rheumatoid arthritis. We present data that reframe AHR biology to include the presence of a mixture of ubiquitous tryptophan metabolites, improving our understanding of homeostatic AHR activity and models of AHR-linked diseases.
Collapse
Affiliation(s)
- Ethan W Morgan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, USA
| | - Fangcong Dong
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, USA
| | - Andrew J Annalora
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA
| | - Iain A Murray
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, USA
| | - Trenton Wolfe
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, USA
| | - Reece Erickson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, USA
| | - Krishne Gowda
- Department of Pharmacology Penn State College of Medicine, Hershey, USA
| | - Shantu G Amin
- Department of Pharmacology Penn State College of Medicine, Hershey, USA
| | - Kristina S Petersen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, USA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, USA
| | - Craig B Marcus
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA
| | - Seth T Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, USA
| |
Collapse
|
11
|
Chen X, Patterson AD, Perdew GH, Murray IA, Kellogg JJ. Molecular networking identifies an AHR-modulating benzothiazole from white button mushrooms ( Agaricus bisporus). J Funct Foods 2023; 106:105602. [PMID: 37397272 PMCID: PMC10312048 DOI: 10.1016/j.jff.2023.105602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Diet-derived aryl hydrocarbon receptor (AHR) ligands have potential to maintain gut health. However, among the myriad bioactive compounds from foods, identifying novel functional ligands which would significantly impact gastrointestinal health is a challenge. In this study, a novel AHR modulator is predicted, identified, and characterized in the white button mushroom (Agaricus bisporus). Using a molecular networking approach, a methylated analog to benzothiazole was indicated in white button mushrooms, which was subsequently isolated and identified as 2-amino-4-methyl-benzothiazole(2A4). Cell-based AHR transcriptional assays revealed that 2-amino-4-methyl-benzothiazole possesses agonistic activity and upregulated CYP1A1 expression. This contrasts with previous findings that whole white button mushroom extract has overall antagonistic activity in vivo, underscoring the importance of studying the roles each chemical component plays in a whole food. The findings suggest that 2-amino-4-methyl-benzothiazole is a previously unidentified AHR modulator from white button mushroom and demonstrate that molecular networking has potential to identify novel receptor modulators from natural products.
Collapse
|
12
|
Dong F, Murray IA, Annalora A, Coslo D, Desai D, Gowda K, Yang J, Wang D, Koo I, Hao F, Amin SG, Patterson AD, Marcus C, Perdew GH. Complex chemical signals dictate Ah receptor activation through the gut-lung axis. FASEB J 2023; 37:e23010. [PMID: 37272852 PMCID: PMC10264151 DOI: 10.1096/fj.202300703r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023]
Abstract
The aryl hydrocarbon receptor (AHR) mediates intestinal barrier homeostasis. Many AHR ligands are also CYP1A1/1B1 substrates, which can result in rapid clearance within the intestinal tract, limiting systemic exposure and subsequent AHR activation. This led us to the hypothesis that there are dietary substrates of CYP1A1/1B1 that functionally increase the half-life of potent AHR ligands. We examined the potential of urolithin A (UroA), a gut bacterial metabolite of ellagitannins, as a CYP1A1/1B1 substrate to enhance AHR activity in vivo. UroA is a competitive substrate for CYP1A1/1B1 in an in vitro competition assay. A broccoli-containing diet promotes the gastric formation of the potent hydrophobic AHR ligand and CYP1A1/1B1 substrate, 5,11-dihydroindolo[3,2-b]carbazole (ICZ). In mice, dietary exposure to UroA in a 10% broccoli diet led to a coordinated increase in duodenal, cardiac, and pulmonary AHR activity, but no increase in activity in the liver. Thus, CYP1A1 dietary competitive substrates can lead to enhanced systemic AHR ligand distribution from the gut, likely through the lymphatic system, increasing AHR activation in key barrier tissues. Finally, this report will lead to a reassessment of the dynamics of distribution of other hydrophobic chemicals present in the diet.
Collapse
Affiliation(s)
- Fangcong Dong
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Iain A. Murray
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew Annalora
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Denise Coslo
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Dhimant Desai
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033 USA
| | - Krishne Gowda
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033 USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Dingbowen Wang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shantu G. Amin
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033 USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Craig Marcus
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Gary H. Perdew
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
13
|
Ma M, Wang Y, Fan S, Huang Y, Su X, Lu C. Urolithin A Alleviates Colitis in Mice by Improving Gut Microbiota Dysbiosis, Modulating Microbial Tryptophan Metabolism, and Triggering AhR Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7710-7722. [PMID: 37167350 DOI: 10.1021/acs.jafc.3c00830] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Urolithin A (UroA) is a microbial metabolite derived from ellagitannins and ellagic acid with good bioavailability. In this study, we explored the anticolitis activity of UroA and clarified the mechanism by 16S rDNA sequencing and metabonomics. UroA alleviated dextran sulfate sodium (DSS)-induced colitis in mice, characterized by a decreased disease activity index, increased colon length, and improved colonic histopathological lesions, along with inhibited phosphorylation of the mitogen-activated protein kinase signaling pathway. In addition, UroA improved gut microbiota dysbiosis and modulated the microbiota metabolome. Furthermore, targeted metabolomics focused on tryptophan catabolites showed that UroA significantly increased the production of indole-3-aldehyde (IAld) and subsequently led to increased colonic expression of aryl hydrocarbon receptor (AhR) and promoted the serum content of IL-22 in mice with colitis. Collectively, our data identified a novel anticolitis mechanism of UroA by improving gut microbiota dysbiosis, modulating microbial tryptophan metabolism, promoting IAld production, and triggering AhR/IL-22 axis activation. However, a limitation noted in this study is that these beneficial effects of UroA were found at 50 μM in vitro and 20 mg/kg in vivo, which were nonphysiological concentrations.
Collapse
Affiliation(s)
- Mingxia Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo City 315211, China
- School of Marine Science, Ningbo University, Ningbo City 315832, China
| | - Yanxin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo City 315211, China
- School of Marine Science, Ningbo University, Ningbo City 315832, China
| | - Siqing Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo City 315211, China
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo City 315832, China
| | - Yumeng Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo City 315211, China
- School of Marine Science, Ningbo University, Ningbo City 315832, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo City 315211, China
- School of Marine Science, Ningbo University, Ningbo City 315832, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo City 315211, China
- School of Marine Science, Ningbo University, Ningbo City 315832, China
| |
Collapse
|
14
|
Pinto CJG, Ávila-Gálvez MÁ, Lian Y, Moura-Alves P, Nunes Dos Santos C. Targeting the aryl hydrocarbon receptor by gut phenolic metabolites: A strategy towards gut inflammation. Redox Biol 2023; 61:102622. [PMID: 36812782 PMCID: PMC9958510 DOI: 10.1016/j.redox.2023.102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The Aryl Hydrocarbon Receptor (AHR) is a ligand-dependent transcription factor able to control complex transcriptional processes in several cell types, which has been correlated with various diseases, including inflammatory bowel diseases (IBD). Numerous studies have described different compounds as ligands of this receptor, like xenobiotics, natural compounds, and several host-derived metabolites. Dietary (poly)phenols have been studied regarding their pleiotropic activities (e.g., neuroprotective and anti-inflammatory), but their AHR modulatory capabilities have also been considered. However, dietary (poly)phenols are submitted to extensive metabolism in the gut (e.g., gut microbiota). Thus, the resulting gut phenolic metabolites could be key players modulating AHR since they are the ones that reach the cells and may exert effects on the AHR throughout the gut and other organs. This review aims at a comprehensive search for the most abundant gut phenolic metabolites detected and quantified in humans to understand how many have been described as AHR modulators and what could be their impact on inflammatory gut processes. Even though several phenolic compounds have been studied regarding their anti-inflammatory capacities, only 1 gut phenolic metabolite, described as AHR modulator, has been evaluated on intestinal inflammatory models. Searching for AHR ligands could be a novel strategy against IBD.
Collapse
Affiliation(s)
- Catarina J G Pinto
- iNOVA4Health, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - María Ángeles Ávila-Gálvez
- iNOVA4Health, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal
| | - Yilong Lian
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, Oxford, United Kingdom
| | - Pedro Moura-Alves
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, Oxford, United Kingdom.
| | - Cláudia Nunes Dos Santos
- iNOVA4Health, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal.
| |
Collapse
|
15
|
Rosales-Hernández MC, Bello M, Toledano JV, Feregrino BCE, Correa Basurto J, Fragoso Morales LG, Torres-Ramos MA. Molecular dynamics simulations depict structural motions of the whole human aryl hydrocarbon receptor influencing its binding of ligands and HSP90. J Biomol Struct Dyn 2023; 41:13138-13153. [PMID: 36705144 DOI: 10.1080/07391102.2023.2171132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/15/2023] [Indexed: 01/28/2023]
Abstract
The aryl hydrocarbon receptor (AhR) has broad biological functions when its ligands activate it; the non-binding interactions with AhR have not been fully elucidated due to the absence of a complete tridimensional (3D) structure. Therefore, utilization of the whole 3D structure from Homo sapiens AhR by in silico studies will allow us to better study and analyze the binding mode of its full and partial agonists, and antagonists, as well as its interaction with the HSP90 chaperone. The 3D AhR structure was obtained from I-TASSER and subjected to molecular dynamics (MD) simulations to obtain different structural conformations and determine the most populated AhR conformer by clustering analyses. The AhR-3D structures selected from MD simulations and those from clustering analyses were used to achieve docking studies with some of its ligands and protein-protein docking with HSP90. Once the AhR-3D structure was built, its Ramachandran maps and energy showed a well-qualified 3D model. MD simulations showed that the per-Arnt-Sim homology (PAS) PAS A, PAS B, and Q domains underwent conformational changes, identifying the conformation when agonists were binding also, and HSP90 was binding near the PAS A, PAS B, and Q domains. However, when antagonists are binding, HSP90 does not bind near the PAS A, PAS B, and Q domains. These studies show that the complex agonist-AhR-HSP90 can be formed, but this complex is not formed when an antagonist is binding. Knowing the conformations when the ligands bind to AHR and the behavior of HSP90 allows for an understanding of its activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrago e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Ciudad de México, Mexico
| | - Martiniano Bello
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Seccion de Estudios de Posgrado. Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, México City, Mexico
| | - Jazziel Velazquez Toledano
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrago e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Ciudad de México, Mexico
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Seccion de Estudios de Posgrado. Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, México City, Mexico
| | - Barbara Citlali Escudero Feregrino
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrago e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Ciudad de México, Mexico
- Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, México
| | - José Correa Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Seccion de Estudios de Posgrado. Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, México City, Mexico
| | - Leticia Guadalupe Fragoso Morales
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrago e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Ciudad de México, Mexico
| | | |
Collapse
|
16
|
Morgan EW, Dong F, Annalora A, Murray IA, Wolfe T, Erickson R, Gowda K, Amin SG, Petersen KS, Kris-Etherton PM, Marcus C, Walk ST, Patterson AD, Perdew GH. Contribution of circulating host and microbial tryptophan metabolites towards Ah receptor activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525691. [PMID: 36747842 PMCID: PMC9900944 DOI: 10.1101/2023.01.26.525691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that plays an integral role in homeostatic maintenance by regulating cellular functions such as cellular differentiation, metabolism, barrier function, and immune response. An important but poorly understood class of AHR activators are compounds derived from host and bacterial metabolism of tryptophan. The commensal bacteria of the gut microbiome are major producers of tryptophan metabolites known to activate the AHR, while the host also produces AHR activators through tryptophan metabolism. We used targeted mass spectrometry-based metabolite profiling to determine the presence and metabolic source of these metabolites in the sera of conventional mice, germ-free mice, and humans. Surprisingly, sera concentrations of many tryptophan metabolites are comparable between germ-free and conventional mice. Therefore, many major AHR-activating tryptophan metabolites in mouse sera are produced by the host, despite their presence in feces and mouse cecal contents. AHR activation is rarely studied in the context of a mixture at relevant concentrations, as we present here. The AHR activation potentials of individual and pooled metabolites were explored using cell-based assays, while ligand binding competition assays and ligand docking simulations were used to assess the detected metabolites as AHR agonists. The physiological and biomedical relevance of the identified metabolites was investigated in the context of cell-based models for cancer and rheumatoid arthritis. We present data here that reframe AHR biology to include the presence of ubiquitous tryptophan metabolites, improving our understanding of homeostatic AHR activity and models of AHR-linked diseases.
Collapse
|
17
|
Xu X, Liu Z, Yao L. The Synthesis of Urolithins and their Derivatives and the Modes of Antitumor Action. Mini Rev Med Chem 2023; 23:80-87. [PMID: 35578881 DOI: 10.2174/1389557522666220516125500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Urolithins are microbial metabolites derived from berries and pomegranate fruits, which display anti-inflammatory, anti-oxidative, and anti-aging activities. There are eight natural urolithins (urolithin A-E, M5, M6 and M7), which have been isolated by now. Structurally, urolithins are phenolic compounds and belong to 6H-dibenzo [b,d] pyran-6-one. They have drawn considerable attention because of their vast range of biological activities and health benefits. Recent studies also suggest that they possess anti-SARS-CoV-2 and anticancer effects. In this article, the recent advances in the synthesis of urolithins and their derivatives from 2015 to 2021 are reviewed. To improve or overcome the solubility and metabolism stability issues, the modifications of urolithins are mainly centered on the hydroxy group and lactone group, and some compounds have been found to display promising results and the potential for further study. The possible modes of antitumor action of urolithin are also discussed. Several signaling pathways, including PI3K-Akt, Wnt/β-catenin pathways, and multiple receptors (aryl hydrocarbon receptor, estrogen and androgen receptors) and enzymes (tyrosinase and lactate dehydrogenase) are involved in the antitumor activity of urolithins.
Collapse
Affiliation(s)
- Xiangrong Xu
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Zhuanhong Liu
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Lei Yao
- School of Pharmacy, Yantai University, Yantai 264005, China
| |
Collapse
|
18
|
Jin XH, Fang JQ, Wang JG, Xu B, Wang X, Liu SH, Chen F, Liu JJ. PCL NGCs integrated with urolithin-A-loaded hydrogels for nerve regeneration. J Mater Chem B 2022; 10:8771-8784. [PMID: 36196763 DOI: 10.1039/d2tb01624a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammation and oxidative stress are among the leading causes of poor prognosis after peripheral nerve injury (PNI). Urolithin-A (UA), an intermediate product produced by the catabolism of ellagitannins in the gastrointestinal tract, has anti-inflammatory, antioxidant, and immunomodulatory properties for inflammation, oxidative damage, and aging-related diseases. Hence, we prepared UA-loaded hydrogels and embedded them in the lumen of PCL nerve guide conduits (NGCs). The hydrogels continuously released appropriate doses of UA into the microenvironment. Based on in vitro studies, UA facilitates cell proliferation and reduces oxidative damage. Besides, the experimental evaluation revealed good biocompatibility of the materials involved. We implanted NGCs into rat models to bridge the sciatic nerve defects in an in vivo study. The sciatic functional index of the PCL/collagen/UA group was comparable to that of the autograft group. Additionally, the consequences of electrophysiological, gastrocnemius muscle and nerve histology assessment of the PCL/collagen/UA group were better than those in the PCL and PCL/collagen groups and close to those in the autograft group. In this study, UA sustained release via the PCL/collagen/UA NGC was found to be an effective alternative treatment for PNI, validating our hypothesis that UA could promote regeneration of nerve tissue.
Collapse
Affiliation(s)
- Xue-Han Jin
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China.
| | - Jia-Qi Fang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China.
| | - Jian-Guang Wang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China.
| | - Bo Xu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China.
| | - Xu Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Shu-Hao Liu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China.
| | - Feng Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China.
| | - Jun-Jian Liu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China.
| |
Collapse
|
19
|
Sanmarco LM, Chao CC, Wang YC, Kenison JE, Li Z, Rone JM, Rejano-Gordillo CM, Polonio CM, Gutierrez-Vazquez C, Piester G, Plasencia A, Li L, Giovannoni F, Lee HG, Faust Akl C, Wheeler MA, Mascanfroni I, Jaronen M, Alsuwailm M, Hewson P, Yeste A, Andersen BM, Franks DG, Huang CJ, Ekwudo M, Tjon EC, Rothhammer V, Takenaka M, de Lima KA, Linnerbauer M, Guo L, Covacu R, Queva H, Fonseca-Castro PH, Bladi MA, Cox LM, Hodgetts KJ, Hahn ME, Mildner A, Korzenik J, Hauser R, Snapper SB, Quintana FJ. Identification of environmental factors that promote intestinal inflammation. Nature 2022; 611:801-809. [PMID: 36266581 PMCID: PMC9898826 DOI: 10.1038/s41586-022-05308-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
Genome-wide association studies have identified risk loci linked to inflammatory bowel disease (IBD)1-a complex chronic inflammatory disorder of the gastrointestinal tract. The increasing prevalence of IBD in industrialized countries and the augmented disease risk observed in migrants who move into areas of higher disease prevalence suggest that environmental factors are also important determinants of IBD susceptibility and severity2. However, the identification of environmental factors relevant to IBD and the mechanisms by which they influence disease has been hampered by the lack of platforms for their systematic investigation. Here we describe an integrated systems approach, combining publicly available databases, zebrafish chemical screens, machine learning and mouse preclinical models to identify environmental factors that control intestinal inflammation. This approach established that the herbicide propyzamide increases inflammation in the small and large intestine. Moreover, we show that an AHR-NF-κB-C/EBPβ signalling axis operates in T cells and dendritic cells to promote intestinal inflammation, and is targeted by propyzamide. In conclusion, we developed a pipeline for the identification of environmental factors and mechanisms of pathogenesis in IBD and, potentially, other inflammatory diseases.
Collapse
Affiliation(s)
- Liliana M Sanmarco
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chun-Cheih Chao
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yu-Chao Wang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jessica E Kenison
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhaorong Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph M Rone
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Claudia M Rejano-Gordillo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carolina M Polonio
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina Gutierrez-Vazquez
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gavin Piester
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Agustin Plasencia
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lucinda Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Federico Giovannoni
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hong-Gyun Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Camilo Faust Akl
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ivan Mascanfroni
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Merja Jaronen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Moneera Alsuwailm
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Patrick Hewson
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ada Yeste
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian M Andersen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Diana G Franks
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Chien-Jung Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Millicent Ekwudo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emily C Tjon
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Veit Rothhammer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maisa Takenaka
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kalil Alves de Lima
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mathias Linnerbauer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lydia Guo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruxandra Covacu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hugo Queva
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Maha Al Bladi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura M Cox
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kevin J Hodgetts
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | | | - Joshua Korzenik
- Department of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Russ Hauser
- Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Scott B Snapper
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
20
|
García-Niño WR, Ibarra-Lara L, Cuevas-Magaña MY, Sánchez-Mendoza A, Armada E. Protective activities of ellagic acid and urolithins against kidney toxicity of environmental pollutants: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103960. [PMID: 35995378 DOI: 10.1016/j.etap.2022.103960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/07/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Oxidative stress and inflammation are two possible mechanisms related to nephrotoxicity caused by environmental pollutants. Ellagic acid, a powerful antioxidant phytochemical, may have great relevance in mitigating pollutant-induced nephrotoxicity and preventing the progression of kidney disease. This review discusses the latest findings on the protective effects of ellagic acid, its metabolic derivatives, the urolithins, against kidney toxicity caused by heavy metals, pesticides, mycotoxins, and organic air pollutants. We describe the chelating, antioxidant, anti-inflammatory, antifibrotic, antiautophagic, and antiapoptotic properties of ellagic acid to attenuate nephrotoxicity. Furthermore, we present the molecular targets and signaling pathways that are regulated by these antioxidants, and suggest some others that should be explored. Nevertheless, the number of reports is still limited to establish the efficacy of ellagic acid against kidney damage induced by environmental pollutants. Therefore, additional preclinical studies on this topic are required, as well as the development of well-designed clinical trials.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico.
| | - Luz Ibarra-Lara
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| | - Mayra Yael Cuevas-Magaña
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| | - Alicia Sánchez-Mendoza
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| | - Elisabeth Armada
- Department of Plant Molecular Biology, Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca 62210, Morelos, Mexico
| |
Collapse
|
21
|
Sahashi H, Kato A, Yoshida M, Hayashi K, Naitoh I, Hori Y, Natsume M, Jinno N, Kachi K, Asano G, Toyohara T, Kito Y, Ammanamanchi S, Kataoka H. Urolithin A targets the AKT/WNK1 axis to induce autophagy and exert anti-tumor effects in cholangiocarcinoma. Front Oncol 2022; 12:963314. [PMID: 36212467 PMCID: PMC9539031 DOI: 10.3389/fonc.2022.963314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Urolithin A (UA; 3,8-dihydroxybenzo[c]chromen-6-one), a metabolite generated by intestinal bacteria during the biotransformation of ellagitannins, has gained considerable attention in treating several cancers. Cholangiocarcinoma (CCA) remains one of the most lethal cancers; it grows in a special environment constantly exposed to both blood and bile. Since UA is known to undergo enterohepatic recirculation, we hypothesized that UA might have significant antitumor effects in CCA. Here, we investigated the therapeutic potential of UA in CCA and aimed to elucidate its mechanisms, including autophagy. UA treatment inhibited cell proliferation and induced G2/M phase cell cycle arrest in CCA cells. UA also suppressed cell migration and invasion, but did not cause apoptosis. Furthermore, Western blotting and immunocytochemistry demonstrated increased LC3-II accumulation, while electron microscopy demonstrated induced autophagosomes after UA treatment, suggesting that UA upregulated autophagy in CCA cells. In xenograft mice treated with UA, tumor growth was inhibited with increased LC3-II levels. On the other hand, phospho-kinase array demonstrated downregulation of the AKT/WNK1 pathway. LC3-II expression was elevated in WNK1 knocked down cells, indicating that WNK1 is the key signal for regulating autophagy. Thus, UA exerted antitumor effects by suppressing the AKT/WNK1 signaling pathway and inducing autophagy. In conclusion, UA, a natural, well-tolerated compound, may be a promising therapeutic candidate for advanced CCA.
Collapse
Affiliation(s)
- Hidenori Sahashi
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Akihisa Kato
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
- *Correspondence: Akihisa Kato,
| | - Michihiro Yoshida
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kazuki Hayashi
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Itaru Naitoh
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yasuki Hori
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Makoto Natsume
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Naruomi Jinno
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kenta Kachi
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Go Asano
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Tadashi Toyohara
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yusuke Kito
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Sudhakar Ammanamanchi
- Department of Internal Medicine, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
22
|
Gandhi GR, Antony PJ, Ceasar SA, Vasconcelos ABS, Montalvão MM, Farias de Franca MN, Resende ADS, Sharanya CS, Liu Y, Hariharan G, Gan RY. Health functions and related molecular mechanisms of ellagitannin-derived urolithins. Crit Rev Food Sci Nutr 2022; 64:280-310. [PMID: 35959701 DOI: 10.1080/10408398.2022.2106179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ellagitannins are vital bioactive polyphenols that are widely distributed in a variety of plant-based foods. The main metabolites of ellagitannins are urolithins, and current research suggests that urolithins provide a variety of health benefits. This review focused on the role of the gut bacteria in the conversion of ellagitannins to urolithins. Based on the results of in vitro and in vivo studies, the health benefits of urolithins, including antioxidant, anti-inflammatory, anti-cancer, anti-obesity, anti-diabetic, anti-aging, cardiovascular protective, neuroprotective, kidney protective, and muscle mass protective effects, were thoroughly outlined, with a focus on their associated molecular mechanisms. Finally, we briefly commented on urolithins' safety. Overall, urolithins' diverse health benefits indicate the potential utilization of ellagitannins and urolithins in the creation of functional foods and nutraceuticals to treat and prevent some chronic diseases.
Collapse
Affiliation(s)
- Gopalsamy Rajiv Gandhi
- Department of Biosciences, Rajagiri College of Social Sciences, Kalamaserry, Kochi, India
| | | | | | - Alan Bruno Silva Vasconcelos
- Postgraduate Program of Physiological Sciences (PROCFIS), Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | - Monalisa Martins Montalvão
- Postgraduate Program of Physiological Sciences (PROCFIS), Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | - Mariana Nobre Farias de Franca
- Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, CEP, Sergipe, Brazil
| | - Ayane de Sá Resende
- Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, CEP, Sergipe, Brazil
| | | | - Yi Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Govindasamy Hariharan
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous) affiliated to the Bharathidasan University, Tiruchirapalli, India
| | - Ren-You Gan
- Nepal Jesuit Society, St. Xavier's College, Jawalakhel, Lalitpur Dt. Kathmandu, Nepal
| |
Collapse
|
23
|
Lu X, Qi C, Zheng J, Sun M, Jin L, Sun J. The Antidepressant Effect of Deoiled Sunflower Seeds on Chronic Unpredictable Mild Stress in Mice Through Regulation of Microbiota–Gut–Brain Axis. Front Nutr 2022; 9:908297. [PMID: 35859751 PMCID: PMC9289741 DOI: 10.3389/fnut.2022.908297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives Sunflower seeds provide tryptophan-rich proteins with the potential to protect against depression. Tryptophan is a precursor of serotonin and a substrate for the production of indole derivatives by gut microbiota. This study aimed to investigate the association between the depression-alleviating effects of deoiled and dechlorogenic sunflower seeds (DSFS) and regulation of gut microbiota. Materials and Methods Male C57BL/6J mice were fed a diet comprising a source of soy protein (normal and model control), DSFS or whey protein concentrate (positive control) for 7 weeks, and chronic stress-induced depression was induced. Results Feeding the DSFS diet prevented depression-like behaviors, intestinal barrier damage, elevated plasma corticosterone, and reduced hippocampal serotonin levels in mice. Meanwhile, Feeding the DSFS diet significantly altered the gut microbiota structure, characterized by elevated relative abundances of Ileibacterium valens, Ruminococcus flavefaciens, Clostridium scindens, and Olsenella massiliensis, which were inversely associated with depressive behaviors and markers of mucosal barrier damage. DSFS also altered the gut metabolite profile, prevented depression-induced gut L-tryptophan depletion, and upregulated its metabolite indoleacetaldehyde. Conclusion Feeding the DSFS diet prevented depression in mice by remodeling the gut microbiota and bacterial tryptophan metabolism.
Collapse
Affiliation(s)
- Xiaomeng Lu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- National R&D Center for Nuts Processing Technology, Qiaqia Food Co., Ltd., Hefei, China
| | - Ce Qi
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Jie Zheng
- National R&D Center for Nuts Processing Technology, Qiaqia Food Co., Ltd., Hefei, China
| | - Mei Sun
- National R&D Center for Nuts Processing Technology, Qiaqia Food Co., Ltd., Hefei, China
| | - Long Jin
- National R&D Center for Nuts Processing Technology, Qiaqia Food Co., Ltd., Hefei, China
- *Correspondence: Long Jin,
| | - Jin Sun
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- Jin Sun,
| |
Collapse
|
24
|
Groestlinger J, Seidl C, Varga E, Del Favero G, Marko D. Combinatory Exposure to Urolithin A, Alternariol, and Deoxynivalenol Affects Colon Cancer Metabolism and Epithelial Barrier Integrity in vitro. Front Nutr 2022; 9:882222. [PMID: 35811943 PMCID: PMC9263571 DOI: 10.3389/fnut.2022.882222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/15/2022] [Indexed: 12/13/2022] Open
Abstract
The human gastrointestinal tract is an important site of nutrient absorption and a crucial barrier against xenobiotics. It regularly faces “chemical cocktails” composed of food constituents, their human and microbial metabolites, and foodborne contaminants, such as mycotoxins. Hence, the colonic epithelium adapts to dietary molecules tuning its immune response, structural integrity, and metabolism to maintain intestinal homeostasis. While gut microbiota metabolites of berry ellagitannins, such as urolithin A (Uro A) might contribute to physiological epithelial barrier integrity, foodborne co-contaminating mycotoxins like alternariol (AOH) and deoxynivalenol (DON) could hamper epithelial function. Hence, we investigated the response of differentiated Caco-2 cells (clone C2BBe1) in vitro to the three compounds alone or in binary mixtures. In virtue of the possible interactions of Uro A, AOH, and DON with the aryl hydrocarbon receptor (AhR) pathway, potential effects on phase-I-metabolism enzymes and epithelial structural integrity were taken as endpoints for the evaluation. Finally, Liquid chromatography tandem mass spectrometry measurements elucidated the absorption, secretion, and metabolic capacity of the cells under single and combinatory exposure scenarios. Uro A and AOH as single compounds, and as a binary mixture, were capable to induce CYP1A1/1A2/1B1 enzymes triggered by the AhR pathway. In light of its ribosome inhibiting capacity, the trichothecene suppressed the effects of both dibenzo-α-pyrones. In turn, cellular responsiveness to Uro A and AOH could be sustained when co-exposed to DON-3-sulfate, instead of DON. Colonic epithelial structural integrity was rather maintained after incubation with Uro A and AOH: this was reinforced in the combinatory exposure scenario and disrupted by DON, an effect, opposed in combination. Passage through the cells as well as the metabolism of Uro A and AOH were rather influenced by co-exposure to DON, than by interaction with each other. Therefore, we conclude that although single foodborne bioactive substances individually could either support or disrupt the epithelial structure and metabolic capacity of colon cancer, exposure to chemical mixtures changes the experimental outcome and calls for the need of combinatory investigations for proper risk assessment.
Collapse
Affiliation(s)
- Julia Groestlinger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Carina Seidl
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna, Austria
- *Correspondence: Giorgia Del Favero,
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Doris Marko,
| |
Collapse
|
25
|
Rogovskii V. The therapeutic potential of urolithin A for cancer treatment and prevention. Curr Cancer Drug Targets 2022; 22:717-724. [PMID: 35657053 DOI: 10.2174/1568009622666220602125343] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Urolithin A is the metabolite of natural polyphenol ellagic acid and ellagitannins, generated by gut microbiota. Urolithin A is better absorbed in the gastrointestinal tract than its parent substances. Thus, the variable effects of ellagitannin-reach food (like pomegranate fruit, walnuts, tea, and others) on people's health might be linked with the differences in individual microbiota content. Urolithin A possesses various anti-inflammatory and anticancer effects, shown by in vivo and in vitro studies. OBJECTIVE In the current review, we consider anti-inflammatory and direct anticancer urolithin A effects as well as their molecular mechanisms, which might be the basement of clinical trials, estimating urolithin A anticancer effects. CONCLUSION Urolithin A attenuated the pro-inflammatory factors production (IL-6, IL-1β, NOS2 and others) in vitro studies. Oral urolithin A treatment caused prominent anticancer and anti-inflammatory action in various in vivo studies, including colitis rat model, carrageenan-induced paw edema mice model, models of pancreatic cancer, and models of obesity. The main molecular mechanisms of these effects might be the modulation of aryl hydrocarbon receptors, which antagonism may lead to decreasing of chronic inflammation. Other primary targets of urolithin A might be the processes of protein phosphorylation (for instance, it decreases the phosphorylation of protein kinase B) and p53 stabilization. Anti-inflammatory effects of urolithin A can be reached in physiologically relevant concentrations. This might be of vital importance for preventing immune suppression, associated with chronic inflammation in cancer. Considering the favorable urolithin A safety profile, it is the promising compound for cancer treatment and prevention.
Collapse
Affiliation(s)
- Vladimir Rogovskii
- Department of molecular pharmacology and radiobiology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
26
|
Current Therapeutic Landscape and Safety Roadmap for Targeting the Aryl Hydrocarbon Receptor in Inflammatory Gastrointestinal Indications. Cells 2022; 11:cells11101708. [PMID: 35626744 PMCID: PMC9139855 DOI: 10.3390/cells11101708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/30/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023] Open
Abstract
Target modulation of the AhR for inflammatory gastrointestinal (GI) conditions holds great promise but also the potential for safety liabilities both within and beyond the GI tract. The ubiquitous expression of the AhR across mammalian tissues coupled with its role in diverse signaling pathways makes development of a “clean” AhR therapeutically challenging. Ligand promiscuity and diversity in context-specific AhR activation further complicates targeting the AhR for drug development due to limitations surrounding clinical translatability. Despite these concerns, several approaches to target the AhR have been explored such as small molecules, microbials, PROTACs, and oligonucleotide-based approaches. These various chemical modalities are not without safety liabilities and require unique de-risking strategies to parse out toxicities. Collectively, these programs can benefit from in silico and in vitro methodologies that investigate specific AhR pathway activation and have the potential to implement thresholding parameters to categorize AhR ligands as “high” or “low” risk for sustained AhR activation. Exploration into transcriptomic signatures for AhR safety assessment, incorporation of physiologically-relevant in vitro model systems, and investigation into chronic activation of the AhR by structurally diverse ligands will help address gaps in our understanding regarding AhR-dependent toxicities. Here, we review the role of the AhR within the GI tract, novel therapeutic modality approaches to target the AhR, key AhR-dependent safety liabilities, and relevant strategies that can be implemented to address drug safety concerns. Together, this review discusses the emerging therapeutic landscape of modalities targeting the AhR for inflammatory GI indications and offers a safety roadmap for AhR drug development.
Collapse
|
27
|
Yadav A, Yadav SS, Singh S, Dabur R. Natural products: Potential therapeutic agents to prevent skeletal muscle atrophy. Eur J Pharmacol 2022; 925:174995. [PMID: 35523319 DOI: 10.1016/j.ejphar.2022.174995] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 12/16/2022]
Abstract
The skeletal muscle (SkM) is the largest organ, which plays a vital role in controlling musculature, locomotion, body heat regulation, physical strength, and metabolism of the body. A sedentary lifestyle, aging, cachexia, denervation, immobilization, etc. Can lead to an imbalance between protein synthesis and degradation, which is further responsible for SkM atrophy (SmA). To date, the understanding of the mechanism of SkM mass loss is limited which also restricted the number of drugs to treat SmA. Thus, there is an urgent need to develop novel approaches to regulate muscle homeostasis. Presently, some natural products attained immense attraction to regulate SkM homeostasis. The natural products, i.e., polyphenols (resveratrol, curcumin), terpenoids (ursolic acid, tanshinone IIA, celastrol), flavonoids, alkaloids (tomatidine, magnoflorine), vitamin D, etc. exhibit strong potential against SmA. Some of these natural products have been reported to have equivalent potential to standard treatments to prevent body lean mass loss. Indeed, owing to the large complexity, diversity, and slow absorption rate of bioactive compounds made their usage quite challenging. Moreover, the use of natural products is controversial due to their partially known or elusive mechanism of action. Therefore, the present review summarizes various experimental and clinical evidence of some important bioactive compounds that shall help in the development of novel strategies to counteract SmA elicited by various causes.
Collapse
Affiliation(s)
- Aarti Yadav
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Surender Singh Yadav
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sandeep Singh
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rajesh Dabur
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
28
|
Lopatina A, Kukushkina A, Melnikov M, Rogovskii V. Prospects for the use of polyphenols in multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:36-43. [DOI: 10.17116/jnevro202212207236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Gold A, Zhu J. Not just a gut feeling: a deep exploration of functional bacterial metabolites that can modulate host health. Gut Microbes 2022; 14:2125734. [PMID: 36127825 PMCID: PMC9519022 DOI: 10.1080/19490976.2022.2125734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/09/2022] [Indexed: 02/04/2023] Open
Abstract
Bacteria have been known to reside in the human gut for roughly two centuries, but their modulatory effects on host health status are still not fully characterized. The gut microbiota is known to interact with dietary components and nutrients, producing functional metabolites that may alter host metabolic processes. The majority of thoroughly researched and understood gut microbial metabolites fall into two categories: short-chain fatty acids (SCFAs) and bacterial derivatives of dietary tryptophan. Despite the heavy emphasis on these metabolites, other metabolites stemming from microbial origin have significant impacts on host health and disease states. In this narrative review, we summarize eight recent studies elucidating novel bacterial metabolites, detailing the process by which these metabolites are identified, their actions within specific categories of human health, and how diet may impact production of these metabolites. With similar future mechanistic research, a more complete picture of bacterial impact on host metabolism may be constructed.
Collapse
Affiliation(s)
- Andrew Gold
- Human Nutrition Program & James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jiangjiang Zhu
- Human Nutrition Program & James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
30
|
Diotallevi C, Fontana M, Latimer C, Ternan NG, Pourshahidi LK, Lawther R, O'Connor G, Conterno L, Gasperotti M, Angeli A, Lotti C, Bianchi M, Vrhovsek U, Fava F, Gobbetti M, Gill CIR, Tuohy KM. Ex Vivo Fecal Fermentation of Human Ileal Fluid Collected After Wild Strawberry Consumption Modulates Human Microbiome Community Structure and Metabolic Output and Protects Against DNA Damage in Colonic Epithelial Cells. Mol Nutr Food Res 2021; 66:e2100405. [PMID: 34821456 DOI: 10.1002/mnfr.202100405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/09/2021] [Indexed: 11/06/2022]
Abstract
SCOPE Wild strawberries (Fragaria vesca) are richer in (poly)phenols than common commercial strawberry varieties, e.g., Fragaria × ananassa. (Poly)phenols and their microbiota-derived metabolites are hypothesized to exert bioactivity within the human gut mucosa. To address this, the effects of wild strawberries are investigated with respect to their bioactivity and microbiota-modulating capacity using both in vitro and ex vivo approaches. METHODS AND RESULTS Ileal fluids collected pre- (0h) and post-consumption (8h) of 225 g wild strawberries by ileostomates (n = 5) and also in vitro digested strawberry varieties (Fragaria vesca and Fragaria × ananassa Duchesne) supernatants are collected. Subsequent fermentation of these supernatants using an in vitro batch culture proximal colon model reveals significant treatment-specific changes in microbiome community structure in terms of alpha but not beta diversity at 24 h. Nutri-kinetic analysis reveals a significant increase in the concentration of gut microbiota catabolites, including 3-(4hydroxyphenyl)propionic acid, 3-(3-hydroxyphenyl)propanoic acid, and benzoic acid. Furthermore, post-berry ileal fermentates (24 h) significantly (p < 0.01) decrease DNA damage (% Tail DNA, COMET assay) in both HT29 cells (∼45%) and CCD 841 CoN cells (∼25%) compared to untreated controls. CONCLUSIONS Post berry consumption fermentates exhibit increased overall levels of (poly)phenolic metabolites, which retains their bioactivity, reducing DNA damage in colonocytes.
Collapse
Affiliation(s)
- Camilla Diotallevi
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy.,Freie Universität Bozen-Libera Università di Bolzano, Faculty of Science and Technology, Bolzano (BZ), Italy
| | - Massimiliano Fontana
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy.,Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, UK
| | - Cheryl Latimer
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel G Ternan
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, UK
| | - L Kirsty Pourshahidi
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, UK
| | - Roger Lawther
- Altnagelvin Area Hospital, Western Health and Social Care Trust, Londonderry, UK
| | - Gloria O'Connor
- Altnagelvin Area Hospital, Western Health and Social Care Trust, Londonderry, UK
| | - Lorenza Conterno
- Fermentation and Distillation Group, Laimburg Research Centre, Vadena (BZ), Italy
| | - Mattia Gasperotti
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Andrea Angeli
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Cesare Lotti
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Martina Bianchi
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Urska Vrhovsek
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Francesca Fava
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Marco Gobbetti
- Freie Universität Bozen-Libera Università di Bolzano, Faculty of Science and Technology, Bolzano (BZ), Italy
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, UK
| | - Kieran M Tuohy
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| |
Collapse
|
31
|
Senobari Z, Karimi G, Jamialahmadi K. Ellagitannins, promising pharmacological agents for the treatment of cancer stem cells. Phytother Res 2021; 36:231-242. [PMID: 34697838 DOI: 10.1002/ptr.7307] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/19/2022]
Abstract
Human tumors comprise subpopulations of cells called cancer stem cells (CSCs) that possess stemness properties. CSCs can initiate tumors and cause recurrence, metastasis and are also responsible for chemo- and radio-resistance. CSCs may use signaling pathways similar to normal stem cells, including Notch, JAK/STAT, Wnt and Hedgehog pathways. Ellagitannins (ETs) are a broad group of substances with chemopreventive and anticancer activities. The antitumor activity of ETs and their derivatives are mainly related to their antiinflammatory capacity. They are therefore able to modulate secretory growth factors and pro-inflammatory mediators such as IL-6, TGF-β, TNF-α, IL-1β and IFN-γ. Evidence suggests that ETs display their anticancer effect by targeting CSCs and disrupting stem cell signaling. However, there are still few studies in this field. Therefore, high-quality studies are needed to firmly establish the clinical efficacy of the ETs on CSCs. This paper reviews the structures, sources and pharmacokinetics of ETs. It also focuses on the function of ETs and their effects on CSCs-related cytokines and the relationship between ETs and signaling pathways in CSCs.
Collapse
Affiliation(s)
- Zohre Senobari
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Domínguez-Avila JA, Villa-Rodriguez JA, Montiel-Herrera M, Pacheco-Ordaz R, Roopchand DE, Venema K, González-Aguilar GA. Phenolic Compounds Promote Diversity of Gut Microbiota and Maintain Colonic Health. Dig Dis Sci 2021; 66:3270-3289. [PMID: 33111173 DOI: 10.1007/s10620-020-06676-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/13/2020] [Indexed: 02/08/2023]
Abstract
The role of non-energy-yielding nutrients on health has been meticulously studied, and the evidence shows that a compound can exert significant effects on health even if not strictly required by the organism. Phenolic compounds are among the most widely studied molecules that fit this description; they are found in plants as secondary metabolites and are not required by humans for growth or development, but they can influence a wide array of processes that modulate health across multiple organs and systems. The lower gastrointestinal tract is a prime site of action of phenolic compounds, namely, by their effects on gut microbiota and colonic health. As with humans, phenolic compounds are not required by most bacteria but can be substrates of others; in fact, some phenolic compounds exert antibacterial actions. A diet rich in phenolic compounds can lead to qualitative and quantitative effects on gut microbiota, thereby inducing indirect health effects in mammals through the action of these microorganisms. Moreover, phenolic compounds may be fermented by the gut microbiota, thereby modulating the compounds bioactivity. In the colon, phenolic compounds promote anti-inflammatory, anti-oxidant and antiproliferative actions. The aim of the present review is to highlight the role of phenolic compounds on maintaining or restoring a healthy microbiota and overall colonic health. Mechanisms of action that substantiate the reported evidence will also be discussed.
Collapse
Affiliation(s)
- J Abraham Domínguez-Avila
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304, Hermosillo, Sonora, Mexico.
| | - Jose A Villa-Rodriguez
- Center for Digestive Health, Department of Food Science, Institute for Food Nutrition and Health, Rutgers, The State University of New Jersey, 61 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Marcelino Montiel-Herrera
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico
| | - Ramón Pacheco-Ordaz
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304, Hermosillo, Sonora, Mexico
| | - Diana E Roopchand
- Center for Digestive Health, Department of Food Science, Institute for Food Nutrition and Health, Rutgers, The State University of New Jersey, 61 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Koen Venema
- Centre for Healthy Eating and Food Innovation, Maastricht University - Campus Venlo, St. Jansweg 20, 5928 RC, Venlo, The Netherlands
| | - Gustavo A González-Aguilar
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304, Hermosillo, Sonora, Mexico
| |
Collapse
|
33
|
Hasheminezhad SH, Boozari M, Iranshahi M, Yazarlu O, Sahebkar A, Hasanpour M, Iranshahy M. A mechanistic insight into the biological activities of urolithins as gut microbial metabolites of ellagitannins. Phytother Res 2021; 36:112-146. [PMID: 34542202 DOI: 10.1002/ptr.7290] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/06/2021] [Accepted: 09/04/2021] [Indexed: 12/26/2022]
Abstract
Urolithins are the gut metabolites produced from ellagitannin-rich foods such as pomegranates, tea, walnuts, as well as strawberries, raspberries, blackberries, and cloudberries. Urolithins are of growing interest due to their various biological activities including cardiovascular protection, anti-inflammatory activity, anticancer properties, antidiabetic activity, and antiaging properties. Several studies mostly based on in vitro and in vivo experiments have investigated the potential mechanisms of urolithins which support the beneficial effects of urolithins in the treatment of several diseases such as Alzheimer's disease, type 2 diabetes mellitus, liver disease, cardiovascular disease, and various cancers. It is now obvious that urolithins can involve several cellular mechanisms including inhibition of MDM2-p53 interaction, modulation of mitogen-activated protein kinase pathway, and suppressing nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activity. Antiaging activity is the most appealing and probably the most important property of urolithin A that has been investigated in depth in recent studies, owing to its unique effects on activation of mitophagy and mitochondrial biogenesis. A recent clinical trial showed that urolithin A is safe up to 2,500 mg/day and can improve mitochondrial biomarkers in elderly patients. Regarding the importance of mitochondria in the pathophysiology of many diseases, urolithins merit further research especially in clinical trials to unravel more aspects of their clinical significance. Besides the nutritional value of urolithins, recent studies proved that urolithins can be used as pharmacological agents to prevent or cure several diseases. Here, we comprehensively review the potential role of urolithins as new therapeutic agents with a special focus on the molecular pathways that have been involved in their biological effects. The pharmacokinetics of urolithins is also included.
Collapse
Affiliation(s)
| | - Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Yazarlu
- Department of General Surgery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Tang JS, Cait A, Li Y, Abolins-Thompson H, Gell K, Herst PM, O'Sullivan D, Gasser O. Practical Approach To Explore the Effects of Polyphenols on Aryl Hydrocarbon Receptor Regulated Immune Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8625-8633. [PMID: 34338516 DOI: 10.1021/acs.jafc.1c02095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The ligand-activated aryl hydrocarbon receptor (AhR) is an important molecular regulator of immune function, whose activity can be modulated by dietary glucosinolate- and tryptophan-derived metabolites. In contrast, the potential use of polyphenols as dietary regulators of AhR-dependent immunity remains unclear. In this perspective, we discuss how cellular metabolism may alter the net effect of polyphenols on AhR, thus potentially reconciling some of the conflicting observations reported in the literature. We further provide a methodological roadmap, across the fields of immunology, metabolomics, and gut microbial ecology, to explore the potential effects of polyphenol-rich diets on AhR-regulated immune function in humans.
Collapse
Affiliation(s)
- Jeffry S Tang
- Malaghan Institute of Medical Research, Post Office Box 7060, Wellington 6242, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Alissa Cait
- Malaghan Institute of Medical Research, Post Office Box 7060, Wellington 6242, New Zealand
| | - Yanyan Li
- Malaghan Institute of Medical Research, Post Office Box 7060, Wellington 6242, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Helena Abolins-Thompson
- Malaghan Institute of Medical Research, Post Office Box 7060, Wellington 6242, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Katie Gell
- Malaghan Institute of Medical Research, Post Office Box 7060, Wellington 6242, New Zealand
| | - Patries M Herst
- Malaghan Institute of Medical Research, Post Office Box 7060, Wellington 6242, New Zealand
- Department of Radiation Therapy, University of Otago, Wellington 6021, New Zealand
| | - David O'Sullivan
- Malaghan Institute of Medical Research, Post Office Box 7060, Wellington 6242, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Olivier Gasser
- Malaghan Institute of Medical Research, Post Office Box 7060, Wellington 6242, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| |
Collapse
|
35
|
He Y, Yocum L, Alexander PG, Jurczak MJ, Lin H. Urolithin A Protects Chondrocytes From Mechanical Overloading-Induced Injuries. Front Pharmacol 2021; 12:703847. [PMID: 34220525 PMCID: PMC8245698 DOI: 10.3389/fphar.2021.703847] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/04/2021] [Indexed: 01/10/2023] Open
Abstract
Physiological mechanical stimulation has been shown to promote chondrogenesis, but excessive mechanical loading results in cartilage degradation. Currently, the underlying mechanotransduction pathways in the context of physiological and injurious loading are not fully understood. In this study, we aim to identify the critical factors that dictate chondrocyte response to mechanical overloading, as well as to develop therapeutics that protect chondrocytes from mechanical injuries. Specifically, human chondrocytes were loaded in hyaluronic hydrogel and then subjected to dynamic compressive loading under 5% (DL-5% group) or 25% strain (DL-25% group). Compared to static culture and DL-5%, DL-25% reduced cartilage matrix formation from chondrocytes, which was accompanied by the increased senescence level, as revealed by higher expression of p21, p53, and senescence-associated beta-galactosidase (SA-β-Gal). Interestingly, mitophagy was suppressed by DL-25%, suggesting a possible role for the restoration mitophagy in reducing cartilage degeneration with mechanical overloading. Next, we treated the mechanically overloaded samples (DL-25%) with Urolithin A (UA), a natural metabolite previously shown to enhance mitophagy in other cell types. qRT-PCR, histology, and immunostaining results confirmed that UA treatment significantly increased the quantity and quality of cartilage matrix deposition. Interestingly, UA also suppressed the senescence level induced by mechanical overloading, demonstrating its senomorphic potential. Mechanistic analysis confirmed that UA functioned partially by enhancing mitophagy. In summary, our results show that mechanical overloading results in cartilage degradation partially through the impairment of mitophagy. This study also identifies UA's novel use as a compound that can protect chondrocytes from mechanical injuries, supporting high-quality cartilage formation/maintenance.
Collapse
Affiliation(s)
- Yuchen He
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Lauren Yocum
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Peter G Alexander
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
36
|
Rønning SB, Voldvik V, Bergum SK, Aaby K, Borge GIA. Ellagic acid and urolithin A modulate the immune response in LPS-stimulated U937 monocytic cells and THP-1 differentiated macrophages. Food Funct 2021; 11:7946-7959. [PMID: 32832941 DOI: 10.1039/c9fo03008e] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dietary polyphenols are subjected, following ingestion, to an extensive metabolism, and the molecules that act at the cellular and tissue level will be, most likely, metabolites rather than native polyphenols. The mechanisms behind the positive effects exerted by polyphenols are not yet completely elucidated, since most in vitro studies use unmetabolised polyphenols rather than the metabolites present in the body. The aim of this study was to investigate and compare the potential effect of phenolic metabolites on the immune response using U937 monocyte and THP-1 macrophage cell cultures. Of the 16 metabolites tested, urolithins (Uro), and Uro A, in particular were the most potent, showing a modest increase in basal NF-κB activity and a reduction in lipopolysaccaride (LPS)-induced NF-κB activity, gene expression and secretion of pro-inflammatory cytokines. Protocatechuic acid and its sulfate/glucuronide metabolites reduced LPS-induced NF-κB activity, but not IL-6 and TNF-α cytokine secretion. Interestingly, both ellagic acid and its metabolite Uro A had immunomodulating effects, although they regulated the immune response differently, and both reduced LPS-induced NF-κB activity in U937 cells. However, while Uro A dramatically reduced IL-6 and IL-10 mRNA expression, no effect could be observed with ellagic acid. In THP-1 cells, treatment with ellagic acid dramatically reduced the expression of Toll-like receptor 4, while Uro A had no effect. The dual role observed for Uro A, showing both a modest increase in basal NF-κB activity and a reduction in LPS-induced NF-κB activity, as well as a reduction in LPS-induced pro-inflammatory cytokine secretion, makes this metabolite particularly interesting for further studies in animals and humans.
Collapse
|
37
|
Generoso JS, Giridharan VV, Lee J, Macedo D, Barichello T. The role of the microbiota-gut-brain axis in neuropsychiatric disorders. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2021; 43:293-305. [PMID: 32667590 PMCID: PMC8136391 DOI: 10.1590/1516-4446-2020-0987] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
The microbiota-gut-brain axis is a bidirectional signaling mechanism between the gastrointestinal tract and the central nervous system. The complexity of the intestinal ecosystem is extraordinary; it comprises more than 100 trillion microbial cells that inhabit the small and large intestine, and this interaction between microbiota and intestinal epithelium can cause physiological changes in the brain and influence mood and behavior. Currently, there has been an emphasis on how such interactions affect mental health. Evidence indicates that intestinal microbiota are involved in neurological and psychiatric disorders. This review covers evidence for the influence of gut microbiota on the brain and behavior in Alzheimer disease, dementia, anxiety, autism spectrum disorder, bipolar disorder, major depressive disorder, Parkinson's disease, and schizophrenia. The primary focus is on the pathways involved in intestinal metabolites of microbial origin, including short-chain fatty acids, tryptophan metabolites, and bacterial components that can activate the host's immune system. We also list clinical evidence regarding prebiotics, probiotics, and fecal microbiota transplantation as adjuvant therapies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jaqueline S. Generoso
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Vijayasree V. Giridharan
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Juneyoung Lee
- Department of Neurology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Danielle Macedo
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Ribeirão Preto, SP, Brazil
| | - Tatiana Barichello
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
38
|
Immunomodulatory Role of Urolithin A on Metabolic Diseases. Biomedicines 2021; 9:biomedicines9020192. [PMID: 33671880 PMCID: PMC7918969 DOI: 10.3390/biomedicines9020192] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Urolithin A (UroA) is a gut metabolite produced from ellagic acid-containing foods such as pomegranates, berries, and walnuts. UroA is of growing interest due to its therapeutic potential for various metabolic diseases based on immunomodulatory properties. Recent advances in UroA research suggest that UroA administration attenuates inflammation in various tissues, including the brain, adipose, heart, and liver tissues, leading to the potential delay or prevention of the onset of Alzheimer’s disease, type 2 diabetes mellitus, and non-alcoholic fatty liver disease. In this review, we focus on recent updates of the anti-inflammatory function of UroA and summarize the potential mechanisms by which UroA may help attenuate the onset of diseases in a tissue-specific manner. Therefore, this review aims to shed new insights into UroA as a potent anti-inflammatory molecule to prevent immunometabolic diseases, either by dietary intervention with ellagic acid-rich food or by UroA administration as a new pharmaceutical drug.
Collapse
|
39
|
Trajectory Shifts in Interdisciplinary Research of the Aryl Hydrocarbon Receptor-A Personal Perspective on Thymus and Skin. Int J Mol Sci 2021; 22:ijms22041844. [PMID: 33673338 PMCID: PMC7918350 DOI: 10.3390/ijms22041844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Identifying historical trajectories is a useful exercise in research, as it helps clarify important, perhaps even “paradigmatic”, shifts in thinking and moving forward in science. In this review, the development of research regarding the role of the transcription factor “aryl hydrocarbon receptor” (AHR) as a mediator of the toxicity of environmental pollution towards a link between the environment and a healthy adaptive response of the immune system and the skin is discussed. From this fascinating development, the opportunities for targeting the AHR in the therapy of many diseases become clear.
Collapse
|
40
|
Kikuchi H, Harata K, Madhyastha H, Kuribayashi F. Ellagic acid and its fermentative derivative urolithin A show reverse effects on the gp91-phox gene expression, resulting in opposite alterations in all- trans retinoic acid-induced superoxide generating activity of U937 cells. Biochem Biophys Rep 2021; 25:100891. [PMID: 33490645 PMCID: PMC7806786 DOI: 10.1016/j.bbrep.2020.100891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/08/2020] [Accepted: 12/18/2020] [Indexed: 11/30/2022] Open
Abstract
Ellagitannins (esters composed of glucose and ellagic acid) are hydrolyzed to generate ellagic acid in gut followed by conversion of ellagic acid to urolithins such as urolithin A by intestinal bacteria. Since urolithins are absorbed by gut easier than ellagitannins and ellagic acid, and show various physiological activities (e.g. anti-cancer, anti-cardiovascular disease, anti-diabetes mellitus, anti-obesity and anti-Alzheimer disease activities), they are expected as excellent health-promoting phytochemicals. Here, using human monoblast U937 cells, we investigated the effect of ellagic acid and urolithin A on the superoxide anion (O2−)-generating system of phagocytes, which is consisted of five specific protein factors (membrane proteins: p22-phox and gp91-phox, cytosolic proteins: p40-phox, p47-phox and p67-phox). Twenty micromolar of urolithin A enhanced the all-trans retinoic acid (ATRA)-induced O2−-generating activity (to ~175%) while 20 μM ellagic acid inhibited the ATRA-induced O2−-generating activity (to ~70%). Semiquantitative RT-PCR showed that transcription level of gp91-phox was certainly decreased (to ~70%) in ATRA plus ellagic acid-treated cells, while that of gp91-phox was significantly increased (to ~160%) in ATRA plus urolithin A-treated cells. Chromatin immunoprecipitation assay suggested that urolithin A enhanced acetylations of Lys-9 residues of histone H3 within chromatin surrounding the promoter region of gp91-phox gene, but ellagic acid suppressed the acetylations. Immunoblotting also revealed that ATRA plus urolithin A-treatment up-regulated protein levels of p22-phox (to ~160%) and gp91-phox (to ~170%) although ATRA plus ellagic acid-treatment down-regulated protein levels of p22-phox (to ~70%) and gp91-phox (to ~60%). These results suggested that conversion of ellagic acid to urolithin A in gut may bring about reverse effects on the gp91-phox gene expression, resulting in opposite alterations in O2−-generating activity of intestinal macrophages. Ellagic acid down-regulated the ATRA-induced O2−-generating activity. Ellagic acid significantly suppressed transcription of gp91-phox gene. Urolithin An up-regulated the ATRA-induced O2−-generating activity. Urolithin A significantly enhanced transcription of gp91-phox gene. Production of urolithin A by gut bacteria may affect the intestinal macrophages.
Collapse
Affiliation(s)
- Hidehiko Kikuchi
- Department of Food and Nutrition, Shokei University Junior College, 2-6-78 Kuhonji, Chuo-ku, Kumamoto, 862-8678, Japan
| | - Kaori Harata
- Department of Food and Nutrition, Shokei University Junior College, 2-6-78 Kuhonji, Chuo-ku, Kumamoto, 862-8678, Japan
| | - Harishkumar Madhyastha
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Futoshi Kuribayashi
- Department of Biochemistry, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| |
Collapse
|
41
|
AhR and Cancer: From Gene Profiling to Targeted Therapy. Int J Mol Sci 2021; 22:ijms22020752. [PMID: 33451095 PMCID: PMC7828536 DOI: 10.3390/ijms22020752] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that has been shown to be an essential regulator of a broad spectrum of biological activities required for maintaining the body’s vital functions. AhR also plays a critical role in tumorigenesis. Its role in cancer is complex, encompassing both pro- and anti-tumorigenic activities. Its level of expression and activity are specific to each tumor and patient, increasing the difficulty of understanding the activating or inhibiting roles of AhR ligands. We explored the role of AhR in tumor cell lines and patients using genomic data sets and discuss the extent to which AhR can be considered as a therapeutic target.
Collapse
|
42
|
Westfall S, Caracci F, Zhao D, Wu QL, Frolinger T, Simon J, Pasinetti GM. Microbiota metabolites modulate the T helper 17 to regulatory T cell (Th17/Treg) imbalance promoting resilience to stress-induced anxiety- and depressive-like behaviors. Brain Behav Immun 2021; 91:350-368. [PMID: 33096252 PMCID: PMC7986984 DOI: 10.1016/j.bbi.2020.10.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 02/08/2023] Open
Abstract
Chronic stress disrupts immune homeostasis while gut microbiota-derived metabolites attenuate inflammation, thus promoting resilience to stress-induced immune and behavioral abnormalities. There are both peripheral and brain region-specific maladaptations of the immune response to chronic stress that produce interrelated mechanistic considerations required for the design of novel therapeutic strategies for prevention of stress-induced psychological impairment. This study shows that a combination of probiotics and polyphenol-rich prebiotics, a synbiotic, attenuates the chronic-stress induced inflammatory responses in the ileum and the prefrontal cortex promoting resilience to the consequent depressive- and anxiety-like behaviors in male mice. Pharmacokinetic studies revealed that this effect may be attributed to specific synbiotic-produced metabolites including 4-hydroxyphenylpropionic, 4-hydroxyphenylacetic acid and caffeic acid. Using a model of chronic unpredictable stress, behavioral abnormalities were associated to strong immune cell activation and recruitment in the ileum while inflammasome pathways were implicated in the prefrontal cortex and hippocampus. Chronic stress also upregulated the ratio of activated proinflammatory T helper 17 (Th17) to regulatory T cells (Treg) in the liver and ileum and it was predicted with ingenuity pathway analysis that the aryl hydrocarbon receptor (AHR) could be driving the synbiotic's effect on the ileum's inflammatory response to stress. Synbiotic treatment indiscriminately attenuated the stress-induced immune and behavioral aberrations in both the ileum and the brain while in a gut-immune co-culture model, the synbiotic-specific metabolites promoted anti-inflammatory activity through the AHR. Overall, this study characterizes a novel synbiotic treatment for chronic-stress induced behavioral impairments while defining a putative mechanism of gut-microbiota host interaction for modulating the peripheral and brain immune systems.
Collapse
Affiliation(s)
- Susan Westfall
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA
| | - Francesca Caracci
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA
| | - Danyue Zhao
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Qing-li Wu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Tal Frolinger
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA
| | - James Simon
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Giulio Maria Pasinetti
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA; Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA.
| |
Collapse
|
43
|
Tsaktanis T, Beyer T, Nirschl L, Linnerbauer M, Grummel V, Bussas M, Tjon E, Mühlau M, Korn T, Hemmer B, Quintana FJ, Rothhammer V. Aryl Hydrocarbon Receptor Plasma Agonist Activity Correlates With Disease Activity in Progressive MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 8:8/2/e933. [PMID: 33361385 PMCID: PMC7768947 DOI: 10.1212/nxi.0000000000000933] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The relationship between serum aryl hydrocarbon receptor (AHR) agonistic activity levels with disease severity, its modulation over the course of relapsing-remitting MS (RRMS), and its regulation in progressive MS (PMS) are unknown. Here, we report the analysis of AHR agonistic activity levels in cross-sectional and longitudinal serum samples of patients with RRMS and PMS. METHODS In a cross-sectional investigation, a total of 36 control patients diagnosed with noninflammatory diseases, 84 patients with RRMS, 35 patients with secondary progressive MS (SPMS), and 41 patients with primary progressive MS (PPMS) were included in this study. AHR activity was measured in a cell-based luciferase assay and correlated with age, sex, the presence of disease-modifying therapies, Expanded Disability Status Scale scores, and disease duration. In a second longitudinal investigation, we analyzed AHR activity in 13 patients diagnosed with RRMS over a period from 4 to 10 years and correlated AHR agonistic activity with white matter atrophy and lesion load volume changes. RESULTS In RRMS, AHR ligand levels were globally decreased and associated with disease duration and neurologic disability. In SPMS and PPMS, serum AHR agonistic activity was decreased and correlated with disease severity. Finally, in longitudinal serum samples of patients with RRMS, decreased AHR agonistic activity was linked to progressive CNS atrophy and increased lesion load. CONCLUSIONS These findings suggest that serum AHR agonist levels negatively correlate with disability in RRMS and PMS and decrease longitudinally in correlation with MRI markers of disease progression. Thus, serum AHR agonistic activity may serve as novel biomarker for disability progression in MS.
Collapse
Affiliation(s)
- Thanos Tsaktanis
- From the Department of Neurology (T.T., T.B., L.N., M.L., V.G., M.B., M.M., T.K., B.H., V.R.), Klinikum rechts der Isar, Technical University of Munich; Department of Neurology (T.T., V.R.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg; Munich Cluster for Systems Neurology (SyNergy) (T.K., B.H.), Germany; Ann Romney Center for Neurologic Diseases (E.T., F.J.Q.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard (F.J.Q.), Cambridge, MA; and TUM-Neuroimaging Center (M.B., M.M.), Klinikum rechts der Isar, Technische Universität München, Germany
| | - Tobias Beyer
- From the Department of Neurology (T.T., T.B., L.N., M.L., V.G., M.B., M.M., T.K., B.H., V.R.), Klinikum rechts der Isar, Technical University of Munich; Department of Neurology (T.T., V.R.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg; Munich Cluster for Systems Neurology (SyNergy) (T.K., B.H.), Germany; Ann Romney Center for Neurologic Diseases (E.T., F.J.Q.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard (F.J.Q.), Cambridge, MA; and TUM-Neuroimaging Center (M.B., M.M.), Klinikum rechts der Isar, Technische Universität München, Germany
| | - Lucy Nirschl
- From the Department of Neurology (T.T., T.B., L.N., M.L., V.G., M.B., M.M., T.K., B.H., V.R.), Klinikum rechts der Isar, Technical University of Munich; Department of Neurology (T.T., V.R.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg; Munich Cluster for Systems Neurology (SyNergy) (T.K., B.H.), Germany; Ann Romney Center for Neurologic Diseases (E.T., F.J.Q.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard (F.J.Q.), Cambridge, MA; and TUM-Neuroimaging Center (M.B., M.M.), Klinikum rechts der Isar, Technische Universität München, Germany
| | - Mathias Linnerbauer
- From the Department of Neurology (T.T., T.B., L.N., M.L., V.G., M.B., M.M., T.K., B.H., V.R.), Klinikum rechts der Isar, Technical University of Munich; Department of Neurology (T.T., V.R.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg; Munich Cluster for Systems Neurology (SyNergy) (T.K., B.H.), Germany; Ann Romney Center for Neurologic Diseases (E.T., F.J.Q.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard (F.J.Q.), Cambridge, MA; and TUM-Neuroimaging Center (M.B., M.M.), Klinikum rechts der Isar, Technische Universität München, Germany
| | - Verena Grummel
- From the Department of Neurology (T.T., T.B., L.N., M.L., V.G., M.B., M.M., T.K., B.H., V.R.), Klinikum rechts der Isar, Technical University of Munich; Department of Neurology (T.T., V.R.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg; Munich Cluster for Systems Neurology (SyNergy) (T.K., B.H.), Germany; Ann Romney Center for Neurologic Diseases (E.T., F.J.Q.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard (F.J.Q.), Cambridge, MA; and TUM-Neuroimaging Center (M.B., M.M.), Klinikum rechts der Isar, Technische Universität München, Germany
| | - Mathias Bussas
- From the Department of Neurology (T.T., T.B., L.N., M.L., V.G., M.B., M.M., T.K., B.H., V.R.), Klinikum rechts der Isar, Technical University of Munich; Department of Neurology (T.T., V.R.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg; Munich Cluster for Systems Neurology (SyNergy) (T.K., B.H.), Germany; Ann Romney Center for Neurologic Diseases (E.T., F.J.Q.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard (F.J.Q.), Cambridge, MA; and TUM-Neuroimaging Center (M.B., M.M.), Klinikum rechts der Isar, Technische Universität München, Germany
| | - Emily Tjon
- From the Department of Neurology (T.T., T.B., L.N., M.L., V.G., M.B., M.M., T.K., B.H., V.R.), Klinikum rechts der Isar, Technical University of Munich; Department of Neurology (T.T., V.R.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg; Munich Cluster for Systems Neurology (SyNergy) (T.K., B.H.), Germany; Ann Romney Center for Neurologic Diseases (E.T., F.J.Q.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard (F.J.Q.), Cambridge, MA; and TUM-Neuroimaging Center (M.B., M.M.), Klinikum rechts der Isar, Technische Universität München, Germany
| | - Mark Mühlau
- From the Department of Neurology (T.T., T.B., L.N., M.L., V.G., M.B., M.M., T.K., B.H., V.R.), Klinikum rechts der Isar, Technical University of Munich; Department of Neurology (T.T., V.R.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg; Munich Cluster for Systems Neurology (SyNergy) (T.K., B.H.), Germany; Ann Romney Center for Neurologic Diseases (E.T., F.J.Q.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard (F.J.Q.), Cambridge, MA; and TUM-Neuroimaging Center (M.B., M.M.), Klinikum rechts der Isar, Technische Universität München, Germany
| | - Thomas Korn
- From the Department of Neurology (T.T., T.B., L.N., M.L., V.G., M.B., M.M., T.K., B.H., V.R.), Klinikum rechts der Isar, Technical University of Munich; Department of Neurology (T.T., V.R.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg; Munich Cluster for Systems Neurology (SyNergy) (T.K., B.H.), Germany; Ann Romney Center for Neurologic Diseases (E.T., F.J.Q.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard (F.J.Q.), Cambridge, MA; and TUM-Neuroimaging Center (M.B., M.M.), Klinikum rechts der Isar, Technische Universität München, Germany
| | - Bernhard Hemmer
- From the Department of Neurology (T.T., T.B., L.N., M.L., V.G., M.B., M.M., T.K., B.H., V.R.), Klinikum rechts der Isar, Technical University of Munich; Department of Neurology (T.T., V.R.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg; Munich Cluster for Systems Neurology (SyNergy) (T.K., B.H.), Germany; Ann Romney Center for Neurologic Diseases (E.T., F.J.Q.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard (F.J.Q.), Cambridge, MA; and TUM-Neuroimaging Center (M.B., M.M.), Klinikum rechts der Isar, Technische Universität München, Germany
| | - Francisco J Quintana
- From the Department of Neurology (T.T., T.B., L.N., M.L., V.G., M.B., M.M., T.K., B.H., V.R.), Klinikum rechts der Isar, Technical University of Munich; Department of Neurology (T.T., V.R.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg; Munich Cluster for Systems Neurology (SyNergy) (T.K., B.H.), Germany; Ann Romney Center for Neurologic Diseases (E.T., F.J.Q.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard (F.J.Q.), Cambridge, MA; and TUM-Neuroimaging Center (M.B., M.M.), Klinikum rechts der Isar, Technische Universität München, Germany
| | - Veit Rothhammer
- From the Department of Neurology (T.T., T.B., L.N., M.L., V.G., M.B., M.M., T.K., B.H., V.R.), Klinikum rechts der Isar, Technical University of Munich; Department of Neurology (T.T., V.R.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg; Munich Cluster for Systems Neurology (SyNergy) (T.K., B.H.), Germany; Ann Romney Center for Neurologic Diseases (E.T., F.J.Q.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard (F.J.Q.), Cambridge, MA; and TUM-Neuroimaging Center (M.B., M.M.), Klinikum rechts der Isar, Technische Universität München, Germany.
| |
Collapse
|
44
|
Murray IA, Perdew GH. How Ah Receptor Ligand Specificity Became Important in Understanding Its Physiological Function. Int J Mol Sci 2020; 21:ijms21249614. [PMID: 33348604 PMCID: PMC7766308 DOI: 10.3390/ijms21249614] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Increasingly, the aryl hydrocarbon receptor (AHR) is being recognized as a sensor for endogenous and pseudo-endogenous metabolites, and in particular microbiota and host generated tryptophan metabolites. One proposed explanation for this is the role of the AHR in innate immune signaling within barrier tissues in response to the presence of microorganisms. A number of cytokine/chemokine genes exhibit a combinatorial increase in transcription upon toll-like receptors and AHR activation, supporting this concept. The AHR also plays a role in the enhanced differentiation of intestinal and dermal epithelium leading to improved barrier function. Importantly, from an evolutionary perspective many of these tryptophan metabolites exhibit greater activation potential for the human AHR when compared to the rodent AHR. These observations underscore the importance of the AHR in barrier tissues and may lead to pharmacologic therapeutic intervention.
Collapse
|
45
|
Singh B, Mal G, Sharma D, Sharma R, Antony CP, Kalra RS. Gastrointestinal biotransformation of phytochemicals: Towards futuristic dietary therapeutics and functional foods. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Urolithin A augments angiogenic pathways in skeletal muscle by bolstering NAD + and SIRT1. Sci Rep 2020; 10:20184. [PMID: 33214614 PMCID: PMC7678835 DOI: 10.1038/s41598-020-76564-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022] Open
Abstract
Urolithin A (UA) is a natural compound that is known to improve muscle function. In this work we sought to evaluate the effect of UA on muscle angiogenesis and identify the underlying molecular mechanisms. C57BL/6 mice were administered with UA (10 mg/body weight) for 12–16 weeks. ATP levels and NAD+ levels were measured using in vivo 31P NMR and HPLC, respectively. UA significantly increased ATP and NAD+ levels in mice skeletal muscle. Unbiased transcriptomics analysis followed by Ingenuity Pathway Analysis (IPA) revealed upregulation of angiogenic pathways upon UA supplementation in murine muscle. The expression of the differentially regulated genes were validated using quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). Angiogenic markers such as VEGFA and CDH5 which were blunted in skeletal muscles of 28 week old mice were found to be upregulated upon UA supplementation. Such augmentation of skeletal muscle vascularization was found to be bolstered via Silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor-gamma coactivator-1-alpha (PGC-1α) pathway. Inhibition of SIRT1 by selisistat EX527 blunted UA-induced angiogenic markers in C2C12 cells. Thus this work provides maiden evidence demonstrating that UA supplementation bolsters skeletal muscle ATP and NAD+ levels causing upregulated angiogenic pathways via a SIRT1-PGC-1α pathway.
Collapse
|
47
|
Dong F, Hao F, Murray IA, Smith PB, Koo I, Tindall AM, Kris-Etherton PM, Gowda K, Amin SG, Patterson AD, Perdew GH. Intestinal microbiota-derived tryptophan metabolites are predictive of Ah receptor activity. Gut Microbes 2020; 12:1-24. [PMID: 32783770 PMCID: PMC7524359 DOI: 10.1080/19490976.2020.1788899] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Commensal microbiota-dependent tryptophan catabolism within the gastrointestinal tract is known to exert profound effects upon host physiology, including the maintenance of epithelial barrier and immune function. A number of abundant microbiota-derived tryptophan metabolites exhibit activation potential for the aryl hydrocarbon receptor (AHR). Gene expression facilitated by AHR activation through the presence of dietary or microbiota-generated metabolites can influence gastrointestinal homeostasis and confer protection from intestinal challenges. Utilizing untargeted mass spectrometry-based metabolomics profiling, combined with AHR activity screening assays, we identify four previously unrecognized tryptophan metabolites, present in mouse cecal contents and human stool, with the capacity to activate AHR. Using GC/MS and LC/MS platforms, quantification of these novel AHR activators, along with previously established AHR-activating tryptophan metabolites, was achieved, providing a relative order of abundance. Using physiologically relevant concentrations and quantitative gene expression analyses, the relative efficacy of these tryptophan metabolites with regard to mouse or human AHR activation potential is examined. These data reveal indole, 2-oxindole, indole-3-acetic acid and kynurenic acid as the dominant AHR activators in mouse cecal contents and human stool from participants on a controlled diet. Here we provide the first documentation of the relative abundance and AHR activation potential of a panel of microbiota-derived tryptophan metabolites. Furthermore, these data reveal the human AHR to be more sensitive, at physiologically relevant concentrations, to tryptophan metabolite activation than mouse AHR. Additionally, correlation analyses indicate a relationship linking major tryptophan metabolite abundance with AHR activity, suggesting these cecal/fecal metabolites represent biomarkers of intestinal AHR activity.
Collapse
Affiliation(s)
- Fangcong Dong
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| | - Iain A. Murray
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| | - Philip B. Smith
- The Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, PA, USA
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| | - Alyssa M. Tindall
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Penny M. Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Krishne Gowda
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Shantu G. Amin
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| | - Gary H. Perdew
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA,CONTACT Gary H. Perdew Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
48
|
Dvorak Z, Klapholz M, Burris TP, Willing BP, Gioiello A, Pellicciari R, Galli F, March J, O'Keefe SJ, Sartor RB, Kim CH, Levy M, Mani S. Weak Microbial Metabolites: a Treasure Trove for Using Biomimicry to Discover and Optimize Drugs. Mol Pharmacol 2020; 98:343-349. [PMID: 32764096 PMCID: PMC7485585 DOI: 10.1124/molpharm.120.000035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
For decades, traditional drug discovery has used natural product and synthetic chemistry approaches to generate libraries of compounds, with some ending as promising drug candidates. A complementary approach has been to adopt the concept of biomimicry of natural products and metabolites so as to improve multiple drug-like features of the parent molecule. In this effort, promiscuous and weak interactions between ligands and receptors are often ignored in a drug discovery process. In this Emerging Concepts article, we highlight microbial metabolite mimicry, whereby parent metabolites have weak interactions with their receptors that then have led to discrete examples of more potent and effective drug-like molecules. We show specific examples of parent-metabolite mimics with potent effects in vitro and in vivo. Furthermore, we show examples of emerging microbial ligand-receptor interactions and provide a context in which these ligands could be improved as potential drugs. A balanced conceptual advance is provided in which we also acknowledge potential pitfalls-hyperstimulation of finely balanced receptor-ligand interactions could also be detrimental. However, with balance, we provide examples of where this emerging concept needs to be tested. SIGNIFICANCE STATEMENT: Microbial metabolite mimicry is a novel way to expand on the chemical repertoire of future drugs. The emerging concept is now explained using specific examples of the discovery of therapeutic leads from microbial metabolites.
Collapse
Affiliation(s)
- Zdenek Dvorak
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Max Klapholz
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Thomas P Burris
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Benjamin P Willing
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Antimo Gioiello
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Roberto Pellicciari
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Francesco Galli
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - John March
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Stephen J O'Keefe
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - R Balfour Sartor
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Chang H Kim
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Maayan Levy
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Sridhar Mani
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| |
Collapse
|
49
|
Song JY, Shen TC, Hou YC, Chang JF, Lu CL, Liu WC, Chen PJ, Chen BH, Zheng CM, Lu KC. Influence of Resveratrol on the Cardiovascular Health Effects of Chronic Kidney Disease. Int J Mol Sci 2020; 21:E6294. [PMID: 32878067 PMCID: PMC7504483 DOI: 10.3390/ijms21176294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) is closely related to chronic kidney disease (CKD), and patients with CKD have a high risk of CVD-related mortality. Traditional CVD risk factors cannot account for the higher cardiovascular risk of patients with CKD, and standard CVD interventions cannot reduce the mortality rates among patients with CKD. Nontraditional factors related to mineral and vitamin-D metabolic disorders provide some explanation for the increased CVD risk. Non-dialyzable toxins, indoxyl sulfate (IS) and p-cresol sulfate (PCS)-produced in the liver by colonic microorganisms-cause kidney and vascular dysfunction. Plasma trimethylamine-N-oxide (TMAO)-a gut microbe-dependent metabolite of dietary L-carnitine and choline-is elevated in CKD and related to vascular disease, resulting in poorer long-term survival. Therefore, the modulation of colonic flora can improve prospects for patients with CKD. Managing metabolic syndrome, anemia, and abnormal mineral metabolism is recommended for the prevention of CVD in patients with CKD. Considering nontraditional risk factors, the use of resveratrol (RSV), a nutraceutical, can be helpful for patients with CVD and CKD. This paper discusses the beneficial effects of RSV on biologic, pathophysiological and clinical responses, including improvements in intestinal epithelial integrity, modulation of the intestinal microbiota and reduction in hepatic synthesis of IS, PCS and TMAO in patients with CVD and CKD.
Collapse
Affiliation(s)
- Jenn-Yeu Song
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (J.-Y.S.); (T.-C.S.)
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Ta-Chung Shen
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (J.-Y.S.); (T.-C.S.)
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Yi-Chou Hou
- Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 234, Taiwan;
| | - Jia-Feng Chang
- Division of Nephrology, Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan;
| | - Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Wen-Chih Liu
- Division of Nephrology, Department of Medicine, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242, Taiwan;
| | - Po-Jui Chen
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan City 325, Taiwan; (P.-J.C.); (B.-H.C.)
| | - Bo-Hau Chen
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan City 325, Taiwan; (P.-J.C.); (B.-H.C.)
| | - Cai-Mei Zheng
- Taipei Medical University-Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei City 235, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| |
Collapse
|
50
|
Urolithin A suppresses high glucose-induced neuronal amyloidogenesis by modulating TGM2-dependent ER-mitochondria contacts and calcium homeostasis. Cell Death Differ 2020; 28:184-202. [PMID: 32704090 DOI: 10.1038/s41418-020-0593-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022] Open
Abstract
Hyperglycemia in diabetes mellitus (DM) patients is a causative factor for amyloidogenesis and induces neuropathological changes, such as impaired neuronal integrity, neurodegeneration, and cognitive impairment. Regulation of mitochondrial calcium influx from the endoplasmic reticulum (ER) is considered a promising strategy for the prevention of mitochondrial ROS (mtROS) accumulation that occurs in the Alzheimer's disease (AD)-associated pathogenesis in DM patients. Among the metabolites of ellagitannins that are produced in the gut microbiome, urolithin A has received an increasing amount of attention as a novel candidate with anti-oxidative and neuroprotective effects in AD. Here, we investigated the effect of urolithin A on high glucose-induced amyloidogenesis caused by mitochondrial calcium dysregulation and mtROS accumulation resulting in neuronal degeneration. We also identified the mechanism related to mitochondria-associated ER membrane (MAM) formation. We found that urolithin A-lowered mitochondrial calcium influx significantly alleviated high glucose-induced mtROS accumulation and expression of amyloid beta (Aβ)-producing enzymes, such as amyloid precursor protein (APP) and β-secretase-1 (BACE1), as well as Aβ production. Urolithin A injections in a streptozotocin (STZ)-induced diabetic mouse model alleviated APP and BACE1 expressions, Tau phosphorylation, Aβ deposition, and cognitive impairment. In addition, high glucose stimulated MAM formation and transglutaminase type 2 (TGM2) expression. We first discovered that urolithin A significantly reduced high glucose-induced TGM2 expression. In addition, disruption of the AIP-AhR complex was involved in urolithin A-mediated suppression of high glucose-induced TGM2 expression. Markedly, TGM2 silencing inhibited inositol 1, 4, 5-trisphosphate receptor type 1 (IP3R1)-voltage-dependent anion-selective channel protein 1 (VDAC1) interactions and prevented high glucose-induced mitochondrial calcium influx and mtROS accumulation. We also found that urolithin A or TGM2 silencing prevented Aβ-induced mitochondrial calcium influx, mtROS accumulation, Tau phosphorylation, and cell death in neuronal cells. In conclusion, we suggest that urolithin A is a promising candidate for the development of therapies to prevent DM-associated AD pathogenesis by reducing TGM2-dependent MAM formation and maintaining mitochondrial calcium and ROS homeostasis.
Collapse
|