1
|
Ancel S, Michaud J, Migliavacca E, Jomard C, Fessard A, Garcia P, Karaz S, Raja S, Jacot GE, Desgeorges T, Sánchez-García JL, Tauzin L, Ratinaud Y, Brinon B, Métairon S, Pinero L, Barron D, Blum S, Karagounis LG, Heshmat R, Ostovar A, Farzadfar F, Scionti I, Mounier R, Gondin J, Stuelsatz P, Feige JN. Nicotinamide and pyridoxine stimulate muscle stem cell expansion and enhance regenerative capacity during aging. J Clin Invest 2024; 134:e163648. [PMID: 39531334 PMCID: PMC11645154 DOI: 10.1172/jci163648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Skeletal muscle relies on resident muscle stem cells (MuSCs) for growth and repair. Aging and muscle diseases impair MuSC function, leading to stem cell exhaustion and regenerative decline that contribute to the progressive loss of skeletal muscle mass and strength. In the absence of clinically available nutritional solutions specifically targeting MuSCs, we used a human myogenic progenitor high-content imaging screen of natural molecules from food to identify nicotinamide (NAM) and pyridoxine (PN) as bioactive nutrients that stimulate MuSCs and have a history of safe human use. NAM and PN synergize via CK1-mediated cytoplasmic β-catenin activation and AKT signaling to promote amplification and differentiation of MuSCs. Oral treatment with a combination of NAM and PN accelerated muscle regeneration in vivo by stimulating MuSCs, increased muscle strength during recovery, and overcame MuSC dysfunction and regenerative failure during aging. Levels of NAM and bioactive PN spontaneously declined during aging in model organisms and interindependently associated with muscle mass and walking speed in a cohort of 186 aged people. Collectively, our results establish the NAM/PN combination as a nutritional intervention that stimulates MuSCs, enhances muscle regeneration, and alleviates age-related muscle decline with a direct opportunity for clinical translation.
Collapse
Affiliation(s)
- Sara Ancel
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Joris Michaud
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | | | - Charline Jomard
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Aurélie Fessard
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Pauline Garcia
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Sonia Karaz
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Sruthi Raja
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Guillaume E. Jacot
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Thibaut Desgeorges
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | | | - Loic Tauzin
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| | - Yann Ratinaud
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Benjamin Brinon
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Sylviane Métairon
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| | - Lucas Pinero
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Denis Barron
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Stephanie Blum
- Translational Research, Nestlé Health Science, Lausanne, Switzerland
| | - Leonidas G. Karagounis
- Translational Research, Nestlé Health Science, Lausanne, Switzerland
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Ostovar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Farzadfar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Isabella Scionti
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Rémi Mounier
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Julien Gondin
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Pascal Stuelsatz
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Jerome N. Feige
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Yin L, Tong Y, Xie R, Zhang Z, Islam ZH, Zhang K, Burger J, Hoyt N, Kent EW, Marcum WA, Johnston C, Kanchetty R, Tetz Z, Stanisic S, Huang Y, Guo LW, Gong S, Wang B. Targeted NAD + repletion via biomimetic nanoparticle enables simultaneous management of intimal hyperplasia and accelerated re-endothelialization: A proof-of-concept study toward next-generation of endothelium-protective, anti-restenotic therapy. J Control Release 2024; 376:806-815. [PMID: 39461367 DOI: 10.1016/j.jconrel.2024.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 09/24/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Endovascular interventions often fail due to restenosis, primarily caused by smooth muscle cell (SMC) proliferation, leading to intimal hyperplasia (IH). Current strategies to prevent restenosis are far from perfect and impose significant collateral damage on the fragile endothelial cell (EC), causing profound thrombotic risks. Nicotinamide adenine dinucleotide (NAD+) is a co-enzyme and signaling substrate implicated in redox and metabolic homeostasis, with a pleiotropic role in protecting against cardiovascular diseases. However, a functional link between NAD+ repletion and the delicate duo of IH and EC regeneration has yet to be established. NAD+ repletion has been historically challenging due to its poor cellular uptake and low bioavailability. We have recently invented the first nanocarrier that enables direct intracellular delivery of NAD+ in vivo. Combining the merits of this prototypic NAD+-loaded calcium phosphate (CaP) nanoparticle (NP) and biomimetic surface functionalization, we created a biomimetic P-NAD+-NP with platelet membrane coating, which enabled an injectable modality that targets IH with excellent biocompatibility. Using human cell primary culture, we demonstrated the benefits of NP-assisted NAD+ repletion in selectively inhibiting the excessive proliferation of aortic SMC, while differentially protecting aortic EC from apoptosis. Moreover, in a rat balloon angioplasty model, a single-dose treatment with intravenously injected P-NAD+-NP immediately post angioplasty not only mitigated IH, but also accelerated the regeneration of EC (re-endothelialization) in vivo in comparison to control groups (i.e., saline, free NAD+ solution, empty CaP-NP). Collectively, our current study provides proof-of-concept evidence supporting the role of targeted NAD+ repletion nanotherapy in managing restenosis and improving reendothelialization.
Collapse
Affiliation(s)
- Li Yin
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60603, USA; Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 310058, China
| | - Yao Tong
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Ruosen Xie
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Zhanpeng Zhang
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Zain Husain Islam
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Kaijie Zhang
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60603, USA; Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 310058, China
| | - Jacobus Burger
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Nicholas Hoyt
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Eric William Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - William Aaron Marcum
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Campbell Johnston
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Rohan Kanchetty
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Zoe Tetz
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Sophia Stanisic
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Yitao Huang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Shaoqin Gong
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - Bowen Wang
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60603, USA; Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
3
|
Han HJ, Kim H, Yu HG, Park JU, Bae JH, Lee JH, Hong JK, Baik JY. Evaluation of NAD + precursors for improved metabolism and productivity of antibody-producing CHO cell. Biotechnol J 2024; 19:e2400311. [PMID: 39167557 DOI: 10.1002/biot.202400311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
In the previous study, the culture medium was treated with nicotinamide adenine dinucleotide (NAD+) under the hypothesis that NAD+ regeneration is a major factor causing excessive lactate accumulation in Chinese hamster ovary (CHO) cells. The NAD+ treatment improved metabolism by not only reducing the Warburg effect but also enhancing oxidative phosphorylation, leading to enhanced antibody production. Building on this, four NAD+ precursors - nicotinamide mononucleotide (NMN), nicotinic acid (NA), nicotinamide riboside (NR), and nicotinamide (NAM) - were tested to elevate intracellular NAD+ levels more economically. First, the ability of CHO cells to utilize both the salvage and Preiss-Handler pathways for NAD+ biosynthesis was verified, and then the effect of NAD+ precursors on CHO cell cultures was evaluated. These precursors increased intracellular NAD+ levels by up to 70.6% compared to the non-treated group. Culture analysis confirmed that all the precursors induced metabolic changes and that NMN, NA, and NR improved productivity akin to NAD+ treatment, with comparable integral viable cell density. Despite the positive effects such as the increase in the specific productivity and changes in cellular glucose metabolism, none of the precursors surpassed direct NAD+ treatment in antibody titer, presumably due to the reduction in nucleoside availability, as evidenced by the decrease in ATP levels in the NAD+ precursor-treated groups. These results underscore the complexity of cellular metabolism as well as the necessity for further investigation to optimize NAD+ precursor treatment strategies, potentially with the supplementation of nucleoside precursors. Our findings suggest a feasible approach for improving CHO cell culture performances by using NAD+ precursors as medium and feed components for the biopharmaceutical production.
Collapse
Affiliation(s)
- Hye-Jin Han
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Hagyeong Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Hyun Gyu Yu
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Jong Uk Park
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Joo Hee Bae
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Ji Hwan Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Jong Kwang Hong
- Division of Biological Science and Technology, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Jong Youn Baik
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| |
Collapse
|
4
|
Qiu S, Shao S, Zhang Y, Zhang Y, Yin J, Hong Y, Yang J, Tan X, Di C. Comparison of protective effects of nicotinamide mononucleotide and nicotinamide riboside on DNA damage induced by cisplatin in HeLa cells. Biochem Biophys Rep 2024; 37:101655. [PMID: 38333051 PMCID: PMC10851195 DOI: 10.1016/j.bbrep.2024.101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Background Previous studies have shown that the nicotinamide adenine dinucleotide (NAD+) precursors, nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR), protect against endogenously or exogenously induced DNA damage. However, whether the two compounds have the same or different efficacy against DNA damage is not clear. In the current study, we systematically compared the effects of NMN and NR on cisplatin-induced DNA damage in HeLa cells. Methods To evaluate the protective effects of NMN or NR, HeLa cells were pretreated with different doses of NMN or NR followed with 10 μM of cisplatin treatment. Cell viability was examined by Trypan blue staining assay. For observing the DNA damage repair process, HeLa cells were treated with 10 μM of cisplatin for 12 h, followed with 10 mM NMN or NR treatment for another 8, 16, 24, or 32 h, DNA damage levels were assessed for each time point by immunofluorescent staining against phosphor-H2AX (γH2AX) and alkaline comet assay. The effects of NMN and NR on intracellular NAD+ and reactive oxygen species (ROS) levels were also determined. Results NMN and NR treatment alone did not have any significant effects on cell viability, however, both can protect HeLa cells from cisplatin-induced decrease of cell viability with similar efficacy in a dose-dependent manner. On the other hand, while both can reduce the DNA damage levels in cisplatin-treated cells, NR exhibited better protective effect. However, both appeared to boost the DNA damage repair process with similar efficacy. NMN or NR treatment alone could increase cellular NAD+ levels, and both can reverse cisplatin-induced decrease of NAD+ levels. Finally, while neither NMN nor NR affected cellular ROS levels, both inhibited cisplatin-induced increase of ROS with no significant difference between them. Conclusion NR have a better protective effect against cisplatin-induced DNA damage than NMN.
Collapse
Affiliation(s)
- Shuting Qiu
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Shihan Shao
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yunheng Zhang
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yingying Zhang
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Jie Yin
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Yu Hong
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Jun Yang
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Xiaohua Tan
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Chunhong Di
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
5
|
Chini CCS, Cordeiro HS, Tran NLK, Chini EN. NAD metabolism: Role in senescence regulation and aging. Aging Cell 2024; 23:e13920. [PMID: 37424179 PMCID: PMC10776128 DOI: 10.1111/acel.13920] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
The geroscience hypothesis proposes that addressing the biology of aging could directly prevent the onset or mitigate the severity of multiple chronic diseases. Understanding the interplay between key aspects of the biological hallmarks of aging is essential in delivering the promises of the geroscience hypothesis. Notably, the nucleotide nicotinamide adenine dinucleotide (NAD) interfaces with several biological hallmarks of aging, including cellular senescence, and changes in NAD metabolism have been shown to be involved in the aging process. The relationship between NAD metabolism and cellular senescence appears to be complex. On the one hand, the accumulation of DNA damage and mitochondrial dysfunction induced by low NAD+ can promote the development of senescence. On the other hand, the low NAD+ state that occurs during aging may inhibit SASP development as this secretory phenotype and the development of cellular senescence are both highly metabolically demanding. However, to date, the impact of NAD+ metabolism on the progression of the cellular senescence phenotype has not been fully characterized. Therefore, to explore the implications of NAD metabolism and NAD replacement therapies, it is essential to consider their interactions with other hallmarks of aging, including cellular senescence. We propose that a comprehensive understanding of the interplay between NAD boosting strategies and senolytic agents is necessary to advance the field.
Collapse
Affiliation(s)
- Claudia Christiano Silva Chini
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| | - Heidi Soares Cordeiro
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| | - Ngan Le Kim Tran
- Center for Clinical and Translational Science and Mayo Clinic Graduate School of Biomedical SciencesMayo ClinicJacksonvilleFloridaUSA
| | - Eduardo Nunes Chini
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| |
Collapse
|
6
|
Saito Y, Sato K, Jinno S, Nakamura Y, Nobukuni T, Ogishima S, Mizuno S, Koshiba S, Kuriyama S, Ohneda K, Morifuji M. Effect of Nicotinamide Mononucleotide Concentration in Human Milk on Neurodevelopmental Outcome: The Tohoku Medical Megabank Project Birth and Three-Generation Cohort Study. Nutrients 2023; 16:145. [PMID: 38201974 PMCID: PMC10780616 DOI: 10.3390/nu16010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/25/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
(1) Background: Breast milk is the only source of nutrition for breastfed infants, but few studies have examined the relationship between breast milk micronutrients and infant neurodevelopmental outcome in exclusively breastfed infants. The aim of this study was to characterize the association between nicotinamide adenine dinucleotide (NAD)-related compounds in the breast milk of Japanese subjects and infant neurodevelopmental outcome. (2) Methods: A total of 150 mother-child pairs were randomly selected from the three-generation cohort of the Tohoku Medical Megabank in Japan. Infants were exclusively breastfed for up to 6 months. Breast milk was collected at 1 month postpartum, and the quantity of NAD-related substances in the breast milk was quantified. The mothers also completed developmental questionnaires at 6, 12, and 24 months. The relationship between the concentration of NAD-related substances in breast milk and developmental indicators was evaluated via ordinal logistic regression analysis. (3) Results: Nicotinamide mononucleotide (NMN) was quantified as the major NAD precursor in breast milk. The median amount of NMN in the breast milk was 9.2 μM. The NMN concentration in breast milk was the only NAD-related substance in breast milk that showed a significant positive correlation with neurodevelopmental outcome in infants at 24 months. (4) Conclusions: The results suggest that NMN in human milk may be an important nutrient for early childhood development.
Collapse
Affiliation(s)
- Yoshie Saito
- Wellness Science Labs, Meiji Holdings Co., Ltd., Hachioji 192-0919, Japan;
| | - Keigo Sato
- Food Microbiology and Function Research Laboratory, Meiji Co., Ltd., Hachioji 192-0919, Japan; (K.S.); (S.J.); (Y.N.)
| | - Shinji Jinno
- Food Microbiology and Function Research Laboratory, Meiji Co., Ltd., Hachioji 192-0919, Japan; (K.S.); (S.J.); (Y.N.)
| | - Yoshitaka Nakamura
- Food Microbiology and Function Research Laboratory, Meiji Co., Ltd., Hachioji 192-0919, Japan; (K.S.); (S.J.); (Y.N.)
| | - Takahiro Nobukuni
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.N.); (S.O.); (S.M.); (S.K.); (S.K.); (K.O.)
| | - Soichi Ogishima
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.N.); (S.O.); (S.M.); (S.K.); (S.K.); (K.O.)
- Graduate School of Medicine, Tohoku University, Sendai 980-8573, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Satoshi Mizuno
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.N.); (S.O.); (S.M.); (S.K.); (S.K.); (K.O.)
| | - Seizo Koshiba
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.N.); (S.O.); (S.M.); (S.K.); (S.K.); (K.O.)
- Graduate School of Medicine, Tohoku University, Sendai 980-8573, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Shinichi Kuriyama
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.N.); (S.O.); (S.M.); (S.K.); (S.K.); (K.O.)
- Graduate School of Medicine, Tohoku University, Sendai 980-8573, Japan
- International Research Institute of Disaster Science, Tohoku University, Sendai 980-0845, Japan
| | - Kinuko Ohneda
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.N.); (S.O.); (S.M.); (S.K.); (S.K.); (K.O.)
- Graduate School of Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Masashi Morifuji
- Wellness Science Labs, Meiji Holdings Co., Ltd., Hachioji 192-0919, Japan;
| |
Collapse
|
7
|
Bhasin S, Seals D, Migaud M, Musi N, Baur JA. Nicotinamide Adenine Dinucleotide in Aging Biology: Potential Applications and Many Unknowns. Endocr Rev 2023; 44:1047-1073. [PMID: 37364580 DOI: 10.1210/endrev/bnad019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/28/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Recent research has unveiled an expansive role of NAD+ in cellular energy generation, redox reactions, and as a substrate or cosubstrate in signaling pathways that regulate health span and aging. This review provides a critical appraisal of the clinical pharmacology and the preclinical and clinical evidence for therapeutic effects of NAD+ precursors for age-related conditions, with a particular focus on cardiometabolic disorders, and discusses gaps in current knowledge. NAD+ levels decrease throughout life; age-related decline in NAD+ bioavailability has been postulated to be a contributor to many age-related diseases. Raising NAD+ levels in model organisms by administration of NAD+ precursors improves glucose and lipid metabolism; attenuates diet-induced weight gain, diabetes, diabetic kidney disease, and hepatic steatosis; reduces endothelial dysfunction; protects heart from ischemic injury; improves left ventricular function in models of heart failure; attenuates cerebrovascular and neurodegenerative disorders; and increases health span. Early human studies show that NAD+ levels can be raised safely in blood and some tissues by oral NAD+ precursors and suggest benefit in preventing nonmelanotic skin cancer, modestly reducing blood pressure and improving lipid profile in older adults with obesity or overweight; preventing kidney injury in at-risk patients; and suppressing inflammation in Parkinson disease and SARS-CoV-2 infection. Clinical pharmacology, metabolism, and therapeutic mechanisms of NAD+ precursors remain incompletely understood. We suggest that these early findings provide the rationale for adequately powered randomized trials to evaluate the efficacy of NAD+ augmentation as a therapeutic strategy to prevent and treat metabolic disorders and age-related conditions.
Collapse
Affiliation(s)
- Shalender Bhasin
- Department of Medicine, Harvard Medical School, Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Douglas Seals
- Department of Integrative Physiology and Medicine, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Marie Migaud
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of Southern Alabama, Mobile, AL 36688, USA
| | - Nicolas Musi
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joseph A Baur
- Department of Physiology, Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Dhuguru J, Dellinger RW, Migaud ME. Defining NAD(P)(H) Catabolism. Nutrients 2023; 15:3064. [PMID: 37447389 DOI: 10.3390/nu15133064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Dietary vitamin B3 components, such as nicotinamide and nicotinic acid, are precursors to the ubiquitous redox cofactor nicotinamide adenine dinucleotide (NAD+). NAD+ levels are thought to decline with age and disease. While the drivers of this decline remain under intense investigation, strategies have emerged seeking to functionally maintain NAD+ levels through supplementation with NAD+ biosynthetic intermediates. These include marketed products, such as nicotinamide riboside (NR) and its phosphorylated form (NMN). More recent developments have shown that NRH (the reduced form of NR) and its phosphorylated form NMNH also increases NAD+ levels upon administration, although they initially generate NADH (the reduced form of NAD+). Other means to increase the combined levels of NAD+ and NADH, NAD(H), include the inhibition of NAD+-consuming enzymes or activation of biosynthetic pathways. Multiple studies have shown that supplementation with an NAD(H) precursor changes the profile of NAD(H) catabolism. Yet, the pharmacological significance of NAD(H) catabolites is rarely considered although the distribution and abundance of these catabolites differ depending on the NAD(H) precursor used, the species in which the study is conducted, and the tissues used for the quantification. Significantly, some of these metabolites have emerged as biomarkers in physiological disorders and might not be innocuous. Herein, we review the known and emerging catabolites of the NAD(H) metabolome and highlight their biochemical and physiological function as well as key chemical and biochemical reactions leading to their formation. Furthermore, we emphasize the need for analytical methods that inform on the full NAD(H) metabolome since the relative abundance of NAD(H) catabolites informs how NAD(H) precursors are used, recycled, and eliminated.
Collapse
Affiliation(s)
- Jyothi Dhuguru
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | | | - Marie E Migaud
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
| |
Collapse
|
9
|
Biotechnological production of reduced and oxidized NAD + precursors. Food Res Int 2023; 165:112560. [PMID: 36869544 DOI: 10.1016/j.foodres.2023.112560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Dysregulation of nicotinamide adenine dinucleotide (NAD+) homeostasis by increased activity of NAD+ consumers or reduced NAD+ biosynthesis plays an important role in the onset of prevalent, often age-related, diseases, such as diabetes, neuropathies or nephropathies. To counteract such dysregulation, NAD+ replenishment strategies can be used. Among these, administration of vitamin B3 derivatives (NAD+ precursors) has garnered attention in recent years. However, the high market price of these compounds and their limited availability, pose important limitations to their use in nutritional or biomedical applications. To overcome these limitations, we have designed an enzymatic method for the synthesis and purification of (1) the oxidized NAD+ precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR), (2) their reduced forms NMNH and NRH, and (3) their deaminated forms nicotinic acid mononucleotide (NaMN) and nicotinic acid riboside (NaR). Starting from NAD+ or NADH as substrates, we use a combination of three highly overexpressed soluble recombinant enzymes; (a) a NAD+ pyrophosphatase, (b) an NMN deamidase, and (c) a 5'-nucleotidase, to produce these six precursors. Finally, we validate the activity of the enzymatically produced molecules as NAD+ enhancers in cell culture.
Collapse
|
10
|
Lee JH, Kang HI, Kim S, Ahn YB, Kim H, Hong JK, Baik JY. NAD + supplementation improves mAb productivity in CHO cells via a glucose metabolic shift. Biotechnol J 2023; 18:e2200570. [PMID: 36717516 DOI: 10.1002/biot.202200570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
Aerobic glycolysis and its by-product lactate accumulation are usually associated with adverse culture phenotypes such as poor cell viability and productivity. Due to the lack of knowledge on underlying mechanisms and accompanying biological processes, the regulation of aerobic glycolysis has been an ongoing challenge in culture process development for therapeutic protein productivity. Nicotinamide adenine dinucleotide (NAD+ ), a coenzyme and co-substrate in energy metabolism, promotes the conversion of inefficient glycolysis into an efficient oxidative phosphorylation (OXPHOS) pathway. However, the effect of NAD+ on Chinese hamster ovary (CHO) cells for biopharmaceutical production has not been reported yet. In this work, we aimed to elucidate the influence of NAD+ on cell culture performance by examining metabolic shifts and mAb productivity. The supplementation of NAD+ increased the intracellular concentration of NAD+ and promoted SIRT3 expression. Antibody titer and the specific productivity in the growth phase were improved by up to 1.82- and 1.88-fold, respectively, with marginal restrictions on cell growth. NAD+ significantly reduced the accumulation of reactive oxygen species (ROS) and the lactate yield from glucose, determined by lactate accumulation versus glucose consumption (YLAC/GLC ). In contrast, OXPHOS capacity and amino acid consumption rate increased substantially. Collectively, these results suggest that NAD+ contributes to improving therapeutic protein productivity in bioprocessing via inducing an energy metabolic shift.
Collapse
Affiliation(s)
- Ji Hwan Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Hye-Im Kang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Suheon Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Yeong Bin Ahn
- Division of Biological Science and Technology, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Hagyeong Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Jong Kwang Hong
- Division of Biological Science and Technology, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Jong Youn Baik
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| |
Collapse
|
11
|
Gao Y, Wei X, Wei P, Lu H, Zhong L, Tan J, Liu H, Liu Z. MOTS-c Functionally Prevents Metabolic Disorders. Metabolites 2023; 13:metabo13010125. [PMID: 36677050 PMCID: PMC9866798 DOI: 10.3390/metabo13010125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Mitochondrial-derived peptides are a family of peptides encoded by short open reading frames in the mitochondrial genome, which have regulatory effects on mitochondrial functions, gene expression, and metabolic homeostasis of the body. As a new member of the mitochondrial-derived peptide family, mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) is regarding a peptide hormone that could reduce insulin resistance, prevent obesity, improve muscle function, promote bone metabolism, enhance immune regulation, and postpone aging. MOTS-c plays these physiological functions mainly through activating the AICAR-AMPK signaling pathways by disrupting the folate-methionine cycle in cells. Recent studies have shown that the above hormonal effect can be achieved through MOTS-c regulating the expression of genes such as GLUT4, STAT3, and IL-10. However, there is a lack of articles summarizing the genes and pathways involved in the physiological activity of MOTS-c. This article aims to summarize and interpret the interesting and updated findings of MOTS-c-associated genes and pathways involved in pathological metabolic processes. Finally, it is expected to develop novel diagnostic markers and treatment approaches with MOTS-c to prevent and treat metabolic disorders in the future.
Collapse
Affiliation(s)
- Yue Gao
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Xinran Wei
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Pingying Wei
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, China
| | - Huijie Lu
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, China
| | - Luying Zhong
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Hongbo Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Guilin 541199, China
- Correspondence: (H.L); (Z.L.); Tel.: +86-773-5892890 (Z.L.)
| | - Zheng Liu
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
- Correspondence: (H.L); (Z.L.); Tel.: +86-773-5892890 (Z.L.)
| |
Collapse
|
12
|
Sonntag T, Ancel S, Karaz S, Cichosz P, Jacot G, Giner MP, Sanchez-Garcia JL, Pannérec A, Moco S, Sorrentino V, Cantó C, Feige JN. Nicotinamide riboside kinases regulate skeletal muscle fiber-type specification and are rate-limiting for metabolic adaptations during regeneration. Front Cell Dev Biol 2022; 10:1049653. [PMID: 36438552 PMCID: PMC9682158 DOI: 10.3389/fcell.2022.1049653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 08/27/2023] Open
Abstract
Nicotinamide riboside kinases (NRKs) control the conversion of dietary Nicotinamide Riboside (NR) to NAD+, but little is known about their contribution to endogenous NAD+ turnover and muscle plasticity during skeletal muscle growth and remodeling. Using NRK1/2 double KO (NRKdKO) mice, we investigated the influence of NRKs on NAD+ metabolism and muscle homeostasis, and on the response to neurogenic muscle atrophy and regeneration following muscle injury. Muscles from NRKdKO animals have altered nicotinamide (NAM) salvage and a decrease in mitochondrial content. In single myonuclei RNAseq of skeletal muscle, NRK2 mRNA expression is restricted to type IIx muscle fibers, and perturbed NAD+ turnover and mitochondrial metabolism shifts the fiber type composition of NRKdKO muscle to fast glycolytic IIB fibers. NRKdKO does not influence muscle atrophy during denervation but alters muscle repair after myofiber injury. During regeneration, muscle stem cells (MuSCs) from NRKdKO animals hyper-proliferate but fail to differentiate. NRKdKO also alters the recovery of NAD+ during muscle regeneration as well as mitochondrial adaptations and extracellular matrix remodeling required for tissue repair. These metabolic perturbations result in a transient delay of muscle regeneration which normalizes during myofiber maturation at late stages of regeneration via over-compensation of anabolic IGF1-Akt signaling. Altogether, we demonstrate that NAD+ synthesis controls mitochondrial metabolism and fiber type composition via NRK1/2 and is rate-limiting for myogenic commitment and mitochondrial maturation during skeletal muscle repair.
Collapse
Affiliation(s)
- Tanja Sonntag
- Nestle Institute of Health Sciences, Lausanne, Switzerland
- EPFL School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sara Ancel
- Nestle Institute of Health Sciences, Lausanne, Switzerland
- EPFL School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sonia Karaz
- Nestle Institute of Health Sciences, Lausanne, Switzerland
| | | | | | - Maria Pilar Giner
- Nestle Institute of Food Safety & Analytical Sciences, Lausanne, Switzerland
| | | | - Alice Pannérec
- Nestle Institute of Health Sciences, Lausanne, Switzerland
| | - Sofia Moco
- Nestle Institute of Food Safety & Analytical Sciences, Lausanne, Switzerland
| | | | - Carles Cantó
- Nestle Institute of Health Sciences, Lausanne, Switzerland
- EPFL School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jérôme N. Feige
- Nestle Institute of Health Sciences, Lausanne, Switzerland
- EPFL School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Kropotov A, Kulikova V, Solovjeva L, Yakimov A, Nerinovski K, Svetlova M, Sudnitsyna J, Plusnina A, Antipova M, Khodorkovskiy M, Migaud ME, Gambaryan S, Ziegler M, Nikiforov A. Purine nucleoside phosphorylase controls nicotinamide riboside metabolism in mammalian cells. J Biol Chem 2022; 298:102615. [PMID: 36265580 PMCID: PMC9667316 DOI: 10.1016/j.jbc.2022.102615] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
Nicotinamide riboside (NR) is an effective precursor of nicotinamide adenine dinucleotide (NAD) in human and animal cells. NR supplementation can increase the level of NAD in various tissues and thereby improve physiological functions that are weakened or lost in experimental models of aging or various human pathologies. However, there are also reports questioning the efficacy of NR supplementation. Indeed, the mechanisms of its utilization by cells are not fully understood. Herein, we investigated the role of purine nucleoside phosphorylase (PNP) in NR metabolism in mammalian cells. Using both PNP overexpression and genetic knockout, we show that after being imported into cells by members of the equilibrative nucleoside transporter family, NR is predominantly metabolized by PNP, resulting in nicotinamide (Nam) accumulation. Intracellular cleavage of NR to Nam is prevented by the potent PNP inhibitor Immucillin H in various types of mammalian cells. In turn, suppression of PNP activity potentiates NAD synthesis from NR. Combining pharmacological inhibition of PNP with NR supplementation in mice, we demonstrate that the cleavage of the riboside to Nam is strongly diminished, maintaining high levels of NR in blood, kidney, and liver. Moreover, we show that PNP inhibition stimulates Nam mononucleotide and NAD+ synthesis from NR in vivo, in particular, in the kidney. Thus, we establish PNP as a major regulator of NR metabolism in mammals and provide evidence that the health benefits of NR supplementation could be greatly enhanced by concomitant downregulation of PNP activity.
Collapse
Affiliation(s)
- Andrey Kropotov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Veronika Kulikova
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St Petersburg, Russia
| | - Ljudmila Solovjeva
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Alexander Yakimov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia,Research Center of Nanobiotechnologies, Peter the Great St Petersburg Polytechnic University, St Petersburg, Russia
| | - Kirill Nerinovski
- Department of Nuclear Physics Research Methods, St Petersburg State University, St Petersburg, Russia
| | - Maria Svetlova
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Julia Sudnitsyna
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St Petersburg, Russia
| | - Alena Plusnina
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Maria Antipova
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Mikhail Khodorkovskiy
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia,Research Center of Nanobiotechnologies, Peter the Great St Petersburg Polytechnic University, St Petersburg, Russia
| | - Marie E. Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St Petersburg, Russia
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, Bergen, Norway,For correspondence: Andrey Nikiforov; Mathias Ziegler
| | - Andrey Nikiforov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia,For correspondence: Andrey Nikiforov; Mathias Ziegler
| |
Collapse
|
14
|
Nicotinamide riboside kinase 1 protects against diet and age-induced pancreatic β-cell failure. Mol Metab 2022; 66:101605. [PMID: 36165811 PMCID: PMC9557729 DOI: 10.1016/j.molmet.2022.101605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Disturbances in NAD+ metabolism have been described as a hallmark for multiple metabolic and age-related diseases, including type 2 diabetes. While alterations in pancreatic β-cell function are critical determinants of whole-body glucose homeostasis, the role of NAD+ metabolism in the endocrine pancreas remains poorly explored. Here, we aimed to evaluate the role of nicotinamide riboside (NR) metabolism in maintaining NAD+ levels and pancreatic β-cell function in pathophysiological conditions. METHODS Whole body and pancreatic β-cell-specific NRK1 knockout (KO) mice were metabolically phenotyped in situations of high-fat feeding and aging. We also analyzed pancreatic β-cell function, β-cell mass and gene expression. RESULTS We first demonstrate that NRK1, the essential enzyme for the utilization of NR, is abundantly expressed in pancreatic β-cells. While NR treatment did not alter glucose-stimulated insulin secretion in pancreatic islets from young healthy mice, NRK1 knockout mice displayed glucose intolerance and compromised β-cells response to a glucose challenge upon high-fat feeding or aging. Interestingly, β cell dysfunction stemmed from the functional failure of other organs, such as liver and kidney, and the associated changes in circulating peptides and hormones, as mice lacking NRK1 exclusively in β-cells did not show altered glucose homeostasis. CONCLUSIONS This work unveils a new physiological role for NR metabolism in the maintenance of glucose tolerance and pancreatic β-cell function in high-fat feeding or aging conditions.
Collapse
|
15
|
Lund NC, Kayode Y, McReynolds MR, Clemmer DC, Hudson H, Clerc I, Hong HK, Brenchley JM, Bass J, D'Aquila RT, Taylor HE. mTOR regulation of metabolism limits LPS-induced monocyte inflammatory and procoagulant responses. Commun Biol 2022; 5:878. [PMID: 36028574 PMCID: PMC9412771 DOI: 10.1038/s42003-022-03804-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Translocated lipopolysaccharide (LPS) activates monocytes via TLR4 and is hypothesized to increase cardiovascular disease risk in persons living with HIV. We tested whether mTOR activity supports LPS-stimulated monocyte production of pro-inflammatory cytokines and tissue factor (TF), as it propels the inflammatory response in several immune cell types besides monocytes. However, multi-omics analyses here demonstrate that mTOR activates a metabolic pathway that limits abundance of these gene products in monocytes. Treatment of primary human monocytes with catalytic mTOR inhibitors (mTORi) increased LPS-induced polyfunctional responses, including production of IL-1β, IL-6, and the pro-coagulant, TF. NF-κB-driven transcriptional activity is enhanced with LPS stimulation after mTORi treatment to increase expression of F3 (TF). Moreover, intracellular NAD+ availability is restricted due to decreased salvage pathway synthesis. These results document mTOR-mediated restraint of the LPS-induced transcriptional response in monocytes and a metabolic mechanism informing strategies to reverse enhanced risk of coagulopathy in pro-inflammatory states.
Collapse
Affiliation(s)
- Nina C Lund
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yetunde Kayode
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Deanna C Clemmer
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Hannah Hudson
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Isabelle Clerc
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Hee-Kyung Hong
- Division of Endocrinology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Disease, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Joseph Bass
- Division of Endocrinology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Richard T D'Aquila
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Harry E Taylor
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
16
|
Cercillieux A, Ciarlo E, Canto C. Balancing NAD + deficits with nicotinamide riboside: therapeutic possibilities and limitations. Cell Mol Life Sci 2022; 79:463. [PMID: 35918544 PMCID: PMC9345839 DOI: 10.1007/s00018-022-04499-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 12/21/2022]
Abstract
Alterations in cellular nicotinamide adenine dinucleotide (NAD+) levels have been observed in multiple lifestyle and age-related medical conditions. This has led to the hypothesis that dietary supplementation with NAD+ precursors, or vitamin B3s, could exert health benefits. Among the different molecules that can act as NAD+ precursors, Nicotinamide Riboside (NR) has gained most attention due to its success in alleviating and treating disease conditions at the pre-clinical level. However, the clinical outcomes for NR supplementation strategies have not yet met the expectations generated in mouse models. In this review we aim to provide a comprehensive view on NAD+ biology, what causes NAD+ deficits and the journey of NR from its discovery to its clinical development. We also discuss what are the current limitations in NR-based therapies and potential ways to overcome them. Overall, this review will not only provide tools to understand NAD+ biology and assess its changes in disease situations, but also to decide which NAD+ precursor could have the best therapeutic potential.
Collapse
Affiliation(s)
- Angelique Cercillieux
- Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Eleonora Ciarlo
- Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015, Lausanne, Switzerland
| | - Carles Canto
- Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015, Lausanne, Switzerland.
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
17
|
Canto C. NAD + Precursors: A Questionable Redundancy. Metabolites 2022; 12:metabo12070630. [PMID: 35888754 PMCID: PMC9316858 DOI: 10.3390/metabo12070630] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/12/2022] Open
Abstract
The last decade has seen a strong proliferation of therapeutic strategies for the treatment of metabolic and age-related diseases based on increasing cellular NAD+ bioavailability. Among them, the dietary supplementation with NAD+ precursors—classically known as vitamin B3—has received most of the attention. Multiple molecules can act as NAD+ precursors through independent biosynthetic routes. Interestingly, eukaryote organisms have conserved a remarkable ability to utilize all of these different molecules, even if some of them are scarcely found in nature. Here, we discuss the possibility that the conservation of all of these biosynthetic pathways through evolution occurred because the different NAD+ precursors might serve specialized purposes.
Collapse
Affiliation(s)
- Carles Canto
- Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015 Lausanne, Switzerland; ; Tel.: +41-(0)-216326116
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Ruszkiewicz JA, Bürkle A, Mangerich A. Fueling genome maintenance: On the versatile roles of NAD + in preserving DNA integrity. J Biol Chem 2022; 298:102037. [PMID: 35595095 PMCID: PMC9194868 DOI: 10.1016/j.jbc.2022.102037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
NAD+ is a versatile biomolecule acting as a master regulator and substrate in various cellular processes, including redox regulation, metabolism, and various signaling pathways. In this article, we concisely and critically review the role of NAD+ in mechanisms promoting genome maintenance. Numerous NAD+-dependent reactions are involved in the preservation of genome stability, the cellular DNA damage response, and other pathways regulating nucleic acid metabolism, such as gene expression and cell proliferation pathways. Of note, NAD+ serves as a substrate to ADP-ribosyltransferases, sirtuins, and potentially also eukaryotic DNA ligases, all of which regulate various aspects of DNA integrity, damage repair, and gene expression. Finally, we critically analyze recent developments in the field as well as discuss challenges associated with therapeutic actions intended to raise NAD+ levels.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
19
|
Jablonska P, Mierzejewska P, Tomczyk M, Koszalka P, Franczak M, Kawecka A, Kutryb-Zajac B, Braczko A, Smolenski RT, Slominska EM. Differences in Extracellular NAD+ and NMN Metabolism on the Surface of Vascular Endothelial Cells. BIOLOGY 2022; 11:biology11050675. [PMID: 35625403 PMCID: PMC9137893 DOI: 10.3390/biology11050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary Nicotinamide adenine dinucleotide (NAD+) is a multifunctional metabolite involved in many key cellular processes. Outside the cell, NAD+ or its metabolites are important signaling molecules, related especially to calcium homeostasis, which controls the functioning of the heart. The cleavage of NAD+ or its precursor, nicotinamide mononucleotide (NMN), produces derivatives entering the cell to rebuild the intracellular NAD+ pool, which is important for cells with high energy turnover. Abnormalities in NAD+ and NMN metabolism can lead to cell aging and the development of cardiovascular diseases. In this study, we demonstrated that the extracellular metabolism of NAD+ and NMN is vastly different in the vascular endothelium obtained from different species and locations. This may have implications for strategies to modulate the NAD+ system and may cause difficulties for comparing the results of different reports. Abstract The disruption of the metabolism of extracellular NAD+ and NMN may affect related signaling cascades and pathologies, such as cardiovascular or respiratory system diseases. We aimed to study NAD+ and NMN hydrolysis on surface endothelial cells of diverse origins and with genetically modified nucleotide catabolism pathways. We tested lung endothelial cells isolated from C57BL/6 J wild-type (WT) and C57BL/6 J CD73 knockout (CD73 KO) mice, the transfected porcine iliac artery endothelial cell line (PIEC) with the human E5NT gene for CD73 (PIEC CD73), and a mock-transfected control (PIEC MOCK), as well as HMEC-1 and H5V cells. Substrate conversion into the product was followed by high-performance liquid chromatography (HPLC). We showed profound differences in extracellular NAD+ and NMN metabolism related to the vessel origin, species diversity, and type of culture. We also confirmed the involvement of CD38 and CD73 in NAD+ and NMN cleavage.
Collapse
Affiliation(s)
- Patrycja Jablonska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (P.J.); (P.M.); (M.T.); (M.F.); (A.K.); (B.K.-Z.); (A.B.); (R.T.S.)
| | - Paulina Mierzejewska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (P.J.); (P.M.); (M.T.); (M.F.); (A.K.); (B.K.-Z.); (A.B.); (R.T.S.)
| | - Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (P.J.); (P.M.); (M.T.); (M.F.); (A.K.); (B.K.-Z.); (A.B.); (R.T.S.)
| | - Patrycja Koszalka
- Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Marika Franczak
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (P.J.); (P.M.); (M.T.); (M.F.); (A.K.); (B.K.-Z.); (A.B.); (R.T.S.)
| | - Ada Kawecka
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (P.J.); (P.M.); (M.T.); (M.F.); (A.K.); (B.K.-Z.); (A.B.); (R.T.S.)
| | - Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (P.J.); (P.M.); (M.T.); (M.F.); (A.K.); (B.K.-Z.); (A.B.); (R.T.S.)
| | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (P.J.); (P.M.); (M.T.); (M.F.); (A.K.); (B.K.-Z.); (A.B.); (R.T.S.)
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (P.J.); (P.M.); (M.T.); (M.F.); (A.K.); (B.K.-Z.); (A.B.); (R.T.S.)
| | - Ewa M. Slominska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (P.J.); (P.M.); (M.T.); (M.F.); (A.K.); (B.K.-Z.); (A.B.); (R.T.S.)
- Correspondence:
| |
Collapse
|
20
|
Nicotinic Acid Riboside Regulates Nrf-2/P62-Related Oxidative Stress and Autophagy to Attenuate Doxorubicin-Induced Cardiomyocyte Injury. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6293329. [PMID: 35242876 PMCID: PMC8888081 DOI: 10.1155/2022/6293329] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 12/03/2022]
Abstract
Doxorubicin (Dox) is an effective chemotherapeutic drug for the treatment of various cancers. Due to its potential fatal cardiotoxic side effects, the clinical application is often limited. Dexrazoxane (Dex) is the only drug approved by the Food and Drug Administration (FDA) for the prevention of Dox-induced cardiotoxicity but has side effects. Thus, more protective strategies should be explored. If NAD+ plays a role in maintaining heart function, its precursor prospectively alleviates Dox-induced cellular injury. Here, we studied the protective effects of nicotinic acid riboside (NAR) on Dox-induced cardiotoxicity in vivo and in vitro. We found that NAR significantly improved the cardiac function of Dox-treated mice by restoring ejection fraction (EF), fractional shortening (FS), and serum level of cardiac troponin (cTnI). NAR not only reduced malondialdehyde (MDA), lactate dehydrogenase (LDH), and reactive oxygen species (ROS) levels in Dox-treated cardiomyocytes but also further promoted the activities of cardiac superoxide dismutase (SOD) and glutathione (GSH). Following exposure to 5 μM Dox, cotreatment with NAR exhibited increased cell viability with a decrease in the apoptosis cell population. Moreover, the levels of apoptosis-related proteins, as well as proteins involved in oxidative stress and autophagy, were altered after NAR treatment. Collectively, these findings underline the protective potential of NAR against Dox-induced cardiomyocyte injury by regulating Nrf-2/P62-related oxidative stress and autophagy, which could potentially promote survival.
Collapse
|
21
|
Peluso A, Damgaard MV, Mori MAS, Treebak JT. Age-Dependent Decline of NAD +-Universal Truth or Confounded Consensus? Nutrients 2021; 14:nu14010101. [PMID: 35010977 PMCID: PMC8747183 DOI: 10.3390/nu14010101] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential molecule involved in various metabolic reactions, acting as an electron donor in the electron transport chain and as a co-factor for NAD+-dependent enzymes. In the early 2000s, reports that NAD+ declines with aging introduced the notion that NAD+ metabolism is globally and progressively impaired with age. Since then, NAD+ became an attractive target for potential pharmacological therapies aiming to increase NAD+ levels to promote vitality and protect against age-related diseases. This review summarizes and discusses a collection of studies that report the levels of NAD+ with aging in different species (i.e., yeast, C. elegans, rat, mouse, monkey, and human), to determine whether the notion that overall NAD+ levels decrease with aging stands true. We find that, despite systematic claims of overall changes in NAD+ levels with aging, the evidence to support such claims is very limited and often restricted to a single tissue or cell type. This is particularly true in humans, where the development of NAD+ levels during aging is still poorly characterized. There is a need for much larger, preferably longitudinal, studies to assess how NAD+ levels develop with aging in various tissues. This will strengthen our conclusions on NAD metabolism during aging and should provide a foundation for better pharmacological targeting of relevant tissues.
Collapse
Affiliation(s)
- Augusto Peluso
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark; (A.P.); (M.V.D.)
| | - Mads V. Damgaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark; (A.P.); (M.V.D.)
| | - Marcelo A. S. Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, São Paulo 13083-862, Brazil;
- Obesity and Comorbidities Research Center, University of Campinas, São Paulo 13083-862, Brazil
- Experimental Medicine Research Cluster, University of Campinas, São Paulo 13083-862, Brazil
| | - Jonas T. Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark; (A.P.); (M.V.D.)
- Correspondence: ; Tel.: +45-24805398
| |
Collapse
|
22
|
Piquereau J, Boitard SE, Ventura-Clapier R, Mericskay M. Metabolic Therapy of Heart Failure: Is There a Future for B Vitamins? Int J Mol Sci 2021; 23:30. [PMID: 35008448 PMCID: PMC8744601 DOI: 10.3390/ijms23010030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/17/2023] Open
Abstract
Heart failure (HF) is a plague of the aging population in industrialized countries that continues to cause many deaths despite intensive research into more effective treatments. Although the therapeutic arsenal to face heart failure has been expanding, the relatively short life expectancy of HF patients is pushing towards novel therapeutic strategies. Heart failure is associated with drastic metabolic disorders, including severe myocardial mitochondrial dysfunction and systemic nutrient deprivation secondary to severe cardiac dysfunction. To date, no effective therapy has been developed to restore the cardiac energy metabolism of the failing myocardium, mainly due to the metabolic complexity and intertwining of the involved processes. Recent years have witnessed a growing scientific interest in natural molecules that play a pivotal role in energy metabolism with promising therapeutic effects against heart failure. Among these molecules, B vitamins are a class of water soluble vitamins that are directly involved in energy metabolism and are of particular interest since they are intimately linked to energy metabolism and HF patients are often B vitamin deficient. This review aims at assessing the value of B vitamin supplementation in the treatment of heart failure.
Collapse
Affiliation(s)
- Jérôme Piquereau
- UMR-S 1180, Inserm Unit of Signaling and Cardiovascular Pathophysiology, Faculty of Pharmacy, Université Paris-Saclay, 92296 Chatenay-Malabry, France; (S.E.B.); (R.V.-C.)
| | | | | | - Mathias Mericskay
- UMR-S 1180, Inserm Unit of Signaling and Cardiovascular Pathophysiology, Faculty of Pharmacy, Université Paris-Saclay, 92296 Chatenay-Malabry, France; (S.E.B.); (R.V.-C.)
| |
Collapse
|
23
|
She J, Sheng R, Qin ZH. Pharmacology and Potential Implications of Nicotinamide Adenine Dinucleotide Precursors. Aging Dis 2021; 12:1879-1897. [PMID: 34881075 PMCID: PMC8612620 DOI: 10.14336/ad.2021.0523] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/23/2021] [Indexed: 12/21/2022] Open
Abstract
Coenzyme I (nicotinamide adenine dinucleotide, NAD+/NADH) and coenzyme II (nicotinamide adenine dinucleotide phosphate, NADP+/NADPH) are involved in various biological processes in mammalian cells. NAD+ is synthesised through the de novo and salvage pathways, whereas coenzyme II cannot be synthesised de novo. NAD+ is a precursor of coenzyme II. Although NAD+ is synthesised in sufficient amounts under normal conditions, shortage in its supply due to over consumption and its decreased synthesis has been observed with increasing age and under certain disease conditions. Several studies have proved that in a wide range of tissues, such as liver, skin, muscle, pancreas, and fat, the level of NAD+ decreases with age. However, in the brain tissue, the level of NADH gradually increases and that of NAD+ decreases in aged people. The ratio of NAD+/NADH indicates the cellular redox state. A decrease in this ratio affects the cellular anaerobic glycolysis and oxidative phosphorylation functions, which reduces the ability of cells to produce ATP. Therefore, increasing the exogenous NAD+ supply under certain disease conditions or in elderly people may be beneficial. Precursors of NAD+ have been extensively explored and have been reported to effectively increase NAD+ levels and possess a broad range of functions. In this review article, we discuss the pharmacokinetics and pharmacodynamics of NAD+ precursors.
Collapse
Affiliation(s)
- Jing She
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
24
|
Camarca A, Minazzato G, Pennacchio A, Capo A, Amici A, D’Auria S, Raffaelli N. Characterization of Two NMN Deamidase Mutants as Possible Probes for an NMN Biosensor. Int J Mol Sci 2021; 22:ijms22126334. [PMID: 34199271 PMCID: PMC8231969 DOI: 10.3390/ijms22126334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/02/2022] Open
Abstract
Nicotinamide mononucleotide (NMN) is a key intermediate in the nicotinamide adenine dinucleotide (NAD+) biosynthesis. Its supplementation has demonstrated beneficial effects on several diseases. The aim of this study was to characterize NMN deamidase (PncC) inactive mutants to use as possible molecular recognition elements (MREs) for an NMN-specific biosensor. Thermal stability assays and steady-state fluorescence spectroscopy measurements were used to study the binding of NMN and related metabolites (NaMN, Na, Nam, NR, NAD, NADP, and NaAD) to the PncC mutated variants. In particular, the S29A PncC and K61Q PncC variant forms were selected since they still preserve the ability to bind NMN in the micromolar range, but they are not able to catalyze the enzymatic reaction. While S29A PncC shows a similar affinity also for NaMN (the product of the PncC catalyzed reaction), K61Q PncC does not interact significantly with it. Thus, PncC K61Q mutant seems to be a promising candidate to use as specific probe for an NMN biosensor.
Collapse
Affiliation(s)
- Alessandra Camarca
- Institute of Food Sciences, National Research Council, Via Roma 64, 83100 Avellino, Italy; (A.C.); (A.P.); (A.C.)
| | - Gabriele Minazzato
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Angela Pennacchio
- Institute of Food Sciences, National Research Council, Via Roma 64, 83100 Avellino, Italy; (A.C.); (A.P.); (A.C.)
| | - Alessandro Capo
- Institute of Food Sciences, National Research Council, Via Roma 64, 83100 Avellino, Italy; (A.C.); (A.P.); (A.C.)
| | - Adolfo Amici
- Department of Clinical Sciences DISCO, Section of Biochemistry, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Sabato D’Auria
- Institute of Food Sciences, National Research Council, Via Roma 64, 83100 Avellino, Italy; (A.C.); (A.P.); (A.C.)
- Department of Biology, Agriculture and Food Science, CNR, Piazzale Aldo Moro 7, 00125 Rome, Italy
- Correspondence: (S.D.); (N.R.); Tel.: +39-3683422770 (S.D.); +39-71-2204-682 (N.R.); Fax: +39-71-2204-677 (N.R.)
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
- Correspondence: (S.D.); (N.R.); Tel.: +39-3683422770 (S.D.); +39-71-2204-682 (N.R.); Fax: +39-71-2204-677 (N.R.)
| |
Collapse
|
25
|
Buonvicino D, Ranieri G, Pittelli M, Lapucci A, Bragliola S, Chiarugi A. SIRT1-dependent restoration of NAD+ homeostasis after increased extracellular NAD+ exposure. J Biol Chem 2021; 297:100855. [PMID: 34097876 PMCID: PMC8233143 DOI: 10.1016/j.jbc.2021.100855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 01/07/2023] Open
Abstract
In the last several years, NAD+ supplementation has emerged as an innovative and safe therapeutic strategy for a wide spectrum of disorders, including diabetes and neuropathy. However, critical questions remain as to how NAD+ and its precursors are taken up by cells, as well as the effects of long-lasting intracellular NAD+ (iNAD+) increases. Here, we investigated the kinetics of iNAD+ levels in different cell types challenged with prolonged exposure to extracellular NAD+ (eNAD+). Surprisingly, we found that after the initial increase, iNAD+ contents decreased back to control levels (iNAD+ resetting). Focusing our attention on HeLa cells, we found that oxygen and ATP consumption occurred with similar temporal kinetics after eNAD+ exposure. Using [3H]NAD+ and [14C]NAD+, we determined that NAD+ resetting was not due to increased dinucleotide extrusion but rather due to reduced uptake of cleaved NAD+ products. Indeed, eNAD+ exposure reduced the expression of the ecto-5′-nucleotidase CD73, the nicotinamide adenine mononucleotide transporter solute carrier family 12 member 8, and the nicotinamide riboside kinase. Interestingly, silencing the NAD+-sensor enzyme sirtuin 1 prevented eNAD+-dependent transcriptional repression of ecto-5′-nucleotidase, solute carrier family 12 member 8, and nicotinamide riboside kinase, as well as iNAD+ resetting. Our findings provide the first evidence for a sirtuin 1–mediated homeostatic response aimed at maintaining physiological iNAD+ levels in conditions of excess eNAD+ availability. These data may be of relevance for therapies designed to support the NAD+ metabolome via extracellular supplementation of the dinucleotide or its precursors.
Collapse
Affiliation(s)
- Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.
| | - Giuseppe Ranieri
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Maria Pittelli
- Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Andrea Lapucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Stefania Bragliola
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
26
|
Gasparrini M, Sorci L, Raffaelli N. Enzymology of extracellular NAD metabolism. Cell Mol Life Sci 2021; 78:3317-3331. [PMID: 33755743 PMCID: PMC8038981 DOI: 10.1007/s00018-020-03742-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Extracellular NAD represents a key signaling molecule in different physiological and pathological conditions. It exerts such function both directly, through the activation of specific purinergic receptors, or indirectly, serving as substrate of ectoenzymes, such as CD73, nucleotide pyrophosphatase/phosphodiesterase 1, CD38 and its paralog CD157, and ecto ADP ribosyltransferases. By hydrolyzing NAD, these enzymes dictate extracellular NAD availability, thus regulating its direct signaling role. In addition, they can generate from NAD smaller signaling molecules, like the immunomodulator adenosine, or they can use NAD to ADP-ribosylate various extracellular proteins and membrane receptors, with significant impact on the control of immunity, inflammatory response, tumorigenesis, and other diseases. Besides, they release from NAD several pyridine metabolites that can be taken up by the cell for the intracellular regeneration of NAD itself. The extracellular environment also hosts nicotinamide phosphoribosyltransferase and nicotinic acid phosphoribosyltransferase, which inside the cell catalyze key reactions in NAD salvaging pathways. The extracellular forms of these enzymes behave as cytokines, with pro-inflammatory functions. This review summarizes the current knowledge on the extracellular NAD metabolome and describes the major biochemical properties of the enzymes involved in extracellular NAD metabolism, focusing on the contribution of their catalytic activities to the biological function. By uncovering the controversies and gaps in their characterization, further research directions are suggested, also to better exploit the great potential of these enzymes as therapeutic targets in various human diseases.
Collapse
Affiliation(s)
- Massimiliano Gasparrini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Leonardo Sorci
- Division of Bioinformatics and Biochemistry, Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
27
|
Kropotov A, Kulikova V, Nerinovski K, Yakimov A, Svetlova M, Solovjeva L, Sudnitsyna J, Migaud ME, Khodorkovskiy M, Ziegler M, Nikiforov A. Equilibrative Nucleoside Transporters Mediate the Import of Nicotinamide Riboside and Nicotinic Acid Riboside into Human Cells. Int J Mol Sci 2021; 22:ijms22031391. [PMID: 33573263 PMCID: PMC7866510 DOI: 10.3390/ijms22031391] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 01/02/2023] Open
Abstract
Nicotinamide riboside (NR), a new form of vitamin B3, is an effective precursor of nicotinamide adenine dinucleotide (NAD+) in human and animal cells. The introduction of NR into the body effectively increases the level of intracellular NAD+ and thereby restores physiological functions that are weakened or lost in experimental models of aging and various pathologies. Despite the active use of NR in applied biomedicine, the mechanism of its transport into mammalian cells is currently not understood. In this study, we used overexpression of proteins in HEK293 cells, and metabolite detection by NMR, to show that extracellular NR can be imported into cells by members of the equilibrative nucleoside transporter (ENT) family ENT1, ENT2, and ENT4. After being imported into cells, NR is readily metabolized resulting in Nam generation. Moreover, the same ENT-dependent mechanism can be used to import the deamidated form of NR, nicotinic acid riboside (NAR). However, NAR uptake into HEK293 cells required the stimulation of its active utilization in the cytosol such as phosphorylation by NR kinase. On the other hand, we did not detect any NR uptake mediated by the concentrative nucleoside transporters (CNT) CNT1, CNT2, or CNT3, while overexpression of CNT3, but not CNT1 or CNT2, moderately stimulated NAR utilization by HEK293 cells.
Collapse
Affiliation(s)
- Andrey Kropotov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.K.); (V.K.); (M.S.); (L.S.); (M.K.)
| | - Veronika Kulikova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.K.); (V.K.); (M.S.); (L.S.); (M.K.)
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia;
| | - Kirill Nerinovski
- Department of Nuclear Physics Research Methods, St. Petersburg State University, St. Petersburg 199034, Russia;
| | - Alexander Yakimov
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia;
| | - Maria Svetlova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.K.); (V.K.); (M.S.); (L.S.); (M.K.)
| | - Ljudmila Solovjeva
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.K.); (V.K.); (M.S.); (L.S.); (M.K.)
| | - Julia Sudnitsyna
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia;
| | - Marie E. Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA;
| | - Mikhail Khodorkovskiy
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.K.); (V.K.); (M.S.); (L.S.); (M.K.)
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia;
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway;
| | - Andrey Nikiforov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.K.); (V.K.); (M.S.); (L.S.); (M.K.)
- Correspondence: ; Tel.: +7-812-297-1829
| |
Collapse
|
28
|
Kiani M, Rabiee N, Bagherzadeh M, Ghadiri AM, Fatahi Y, Dinarvand R, Webster TJ. Improved green biosynthesis of chitosan decorated Ag- and Co 3O 4-nanoparticles: A relationship between surface morphology, photocatalytic and biomedical applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 32:102331. [PMID: 33181272 DOI: 10.1016/j.nano.2020.102331] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
AgNPs@Chitosan and Co3O4-NPs@Chitosan were fabricated with Salvia hispanica. Results showed MZI values of 5 and 30 mm for Co3O4-NPs- and AgNPs@Chitosan against S. aureus, and 15 and 21 mm for Co3O4-NPs- and AgNPs@Chitosan against E. coli (24 h, 20 μg/mL), respectively. MTT assays showed up to 80% and 90%, 71% and 75%, and 91% and 94% mammalian cell viability for the green synthesized, chemically synthesized AgNPs and green synthesized AgNPs@Chitosan for HEK-293 and PC12 cells, respectively, and 70% and 71%, 59% and 62%, and 88% and 73% for the related Co3O4-NPs (24 h, 20 μg/mL). The photocatalytic activities showed dye degradation after 135 and 105 min for AgNPs@Chitosan and Co3O4-NPs@Chitosan, respectively. FESEM results showed differences in particle sizes (32 ± 3.0 nm for the AgNPs and 41 ± 3.0 nm for the Co3O4NPs) but AFM results showed lower roughness of the AgNPs@Chitosan (7.639 ± 0.85 nm) compared to Co3O4NPs@Chitosan (9.218 ± 0.93 nm), which resulted in potential biomedical applications.
Collapse
Affiliation(s)
- Mahsa Kiani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | | | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
29
|
Sonavane M, Hayat F, Makarov M, Migaud ME, Gassman NR. Dihydronicotinamide riboside promotes cell-specific cytotoxicity by tipping the balance between metabolic regulation and oxidative stress. PLoS One 2020; 15:e0242174. [PMID: 33166357 PMCID: PMC7652347 DOI: 10.1371/journal.pone.0242174] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/27/2020] [Indexed: 01/17/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+), the essential cofactor derived from vitamin B3, is both a coenzyme in redox enzymatic processes and substrate in non-redox events; processes that are intimately implicated in all essential bioenergetics. A decrease in intracellular NAD+ levels is known to cause multiple metabolic complications and age-related disorders. One NAD+ precursor is dihydronicotinamide riboside (NRH), which increases NAD+ levels more potently in both cultured cells and mice than current supplementation strategies with nicotinamide riboside (NR), nicotinamide mononucleotide (NMN) or vitamin B3 (nicotinamide and niacin). However, the consequences of extreme boosts in NAD+ levels are not fully understood. Here, we demonstrate the cell-specific effects of acute NRH exposure in mammalian cells. Hepatocellular carcinoma (HepG3) cells show dose-dependent cytotoxicity when supplemented with 100–1000 μM NRH. Cytotoxicity was not observed in human embryonic kidney (HEK293T) cells over the same dose range of NRH. PUMA and BAX mediate the cell-specific cytotoxicity of NRH in HepG3. When supplementing HepG3 with 100 μM NRH, a significant increase in ROS was observed concurrent with changes in the NAD(P)H and GSH/GSSG pools. NRH altered mitochondrial membrane potential, increased mitochondrial superoxide formation, and induced mitochondrial DNA damage in those cells. NRH also caused metabolic dysregulation, altering mitochondrial respiration. Altogether, we demonstrated the detrimental consequences of an extreme boost of the total NAD (NAD+ + NADH) pool through NRH supplementation in HepG3. The cell-specific effects are likely mediated through the different metabolic fate of NRH in these cells, which warrants further study in other systemic models.
Collapse
Affiliation(s)
- Manoj Sonavane
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, United States of America
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
| | - Faisal Hayat
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL, United States of America
| | - Mikhail Makarov
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL, United States of America
| | - Marie E. Migaud
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL, United States of America
| | - Natalie R. Gassman
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, United States of America
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
- * E-mail:
| |
Collapse
|
30
|
Kiani M, Rabiee N, Bagherzadeh M, Ghadiri AM, Fatahi Y, Dinarvand R, Webster TJ. High-gravity-assisted green synthesis of palladium nanoparticles: the flowering of nanomedicine. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 30:102297. [DOI: 10.1016/j.nano.2020.102297] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/15/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
|
31
|
Hayat F, Migaud ME. Nicotinamide riboside-amino acid conjugates that are stable to purine nucleoside phosphorylase. Org Biomol Chem 2020; 18:2877-2885. [PMID: 32236231 PMCID: PMC7953427 DOI: 10.1039/d0ob00134a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nutraceutical Nicotinamide Riboside (NR), an efficacious biosynthetic precursor to NAD, is readily metabolized by the purine nucleoside phosphorylase (PNP). Access to the PNP-stable versions of NR is difficult because the glycosidic bond of NR is easily cleaved. Unlike NR, NRH, the reduced form of NR, offers sufficient chemical stability to allow the successful functionalisation of the ribosyl-moiety. Here, we report on a series of NRH and NR derived amino acid conjugates, generated in good to excellent yields and show that O5'-esterification prevents the PNP-catalyzed phosphorolysis of these NR prodrugs.
Collapse
Affiliation(s)
- Faisal Hayat
- Mitchell Cancer Institute, Department of Pharmacology, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36693, USA.
| | - Marie E Migaud
- Mitchell Cancer Institute, Department of Pharmacology, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36693, USA.
| |
Collapse
|
32
|
Matasic DS, Yoon JY, McLendon JM, Mehdi H, Schmidt MS, Greiner AM, Quinones P, Morgan GM, Boudreau RL, Irani K, Brenner C, London B. Modulation of the cardiac sodium channel Na V1.5 peak and late currents by NAD + precursors. J Mol Cell Cardiol 2020; 141:70-81. [PMID: 32209328 PMCID: PMC7234910 DOI: 10.1016/j.yjmcc.2020.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/09/2019] [Accepted: 01/08/2020] [Indexed: 01/02/2023]
Abstract
RATIONALE The cardiac sodium channel NaV1.5, encoded by SCN5A, produces the rapidly inactivating depolarizing current INa that is responsible for the initiation and propagation of the cardiac action potential. Acquired and inherited dysfunction of NaV1.5 results in either decreased peak INa or increased residual late INa (INa,L), leading to tachy/bradyarrhythmias and sudden cardiac death. Previous studies have shown that increased cellular NAD+ and NAD+/NADH ratio increase INa through suppression of mitochondrial reactive oxygen species and PKC-mediated NaV1.5 phosphorylation. In addition, NAD+-dependent deacetylation of NaV1.5 at K1479 by Sirtuin 1 increases NaV1.5 membrane trafficking and INa. The role of NAD+ precursors in modulating INa remains unknown. OBJECTIVE To determine whether and by which mechanisms the NAD+ precursors nicotinamide riboside (NR) and nicotinamide (NAM) affect peak INa and INa,Lin vitro and cardiac electrophysiology in vivo. METHODS AND RESULTS The effects of NAD+ precursors on the NAD+ metabolome and electrophysiology were studied using HEK293 cells expressing wild-type and mutant NaV1.5, rat neonatal cardiomyocytes (RNCMs), and mice. NR increased INa in HEK293 cells expressing NaV1.5 (500 μM: 51 ± 18%, p = .02, 5 mM: 59 ± 22%, p = .03) and RNCMs (500 μM: 60 ± 26%, p = .02, 5 mM: 74 ± 39%, p = .03) while reducing INa,L at the higher concentration (RNCMs, 5 mM: -45 ± 11%, p = .04). NR (5 mM) decreased NaV1.5 K1479 acetylation but increased INa in HEK293 cells expressing a mutant form of NaV1.5 with disruption of the acetylation site (NaV1.5-K1479A). Disruption of the PKC phosphorylation site abolished the effect of NR on INa. Furthermore, NAM (5 mM) had no effect on INa in RNCMs or in HEK293 cells expressing wild-type NaV1.5, but increased INa in HEK293 cells expressing NaV1.5-K1479A. Dietary supplementation with NR for 10-12 weeks decreased QTc in C57BL/6 J mice (0.35% NR: -4.9 ± 2.0%, p = .14; 1.0% NR: -9.5 ± 2.8%, p = .01). CONCLUSIONS NAD+ precursors differentially regulate NaV1.5 via multiple mechanisms. NR increases INa, decreases INa,L, and warrants further investigation as a potential therapy for arrhythmic disorders caused by NaV1.5 deficiency and/or dysfunction.
Collapse
Affiliation(s)
- Daniel S Matasic
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Jin-Young Yoon
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Jared M McLendon
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Haider Mehdi
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Mark S Schmidt
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Alexander M Greiner
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Pravda Quinones
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Gina M Morgan
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Ryan L Boudreau
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Kaikobad Irani
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Charles Brenner
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Barry London
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America.
| |
Collapse
|
33
|
Braidy N, Liu Y. NAD+ therapy in age-related degenerative disorders: A benefit/risk analysis. Exp Gerontol 2020; 132:110831. [PMID: 31917996 DOI: 10.1016/j.exger.2020.110831] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential pyridine nucleotide that is present in all living cells. NAD+ acts as an important cofactor and substrate for a multitude of biological processes including energy production, DNA repair, gene expression, calcium-dependent secondary messenger signalling and immunoregulatory roles. The de novo synthesis of NAD+ is primarily dependent on the kynurenine pathway (KP), although NAD+ can also be recycled from nicotinic acid (NA), nicotinamide (NAM) and nicotinamide riboside (NR). NAD+ levels have been reported to decline during ageing and age-related diseases. Recent studies have shown that raising intracellular NAD+ levels represents a promising therapeutic strategy for age-associated degenerative diseases in general and to extend lifespan in small animal models. A systematic review of the literature available on Medline, Embase and Pubmed was undertaken to evaluate the potential health and/or longevity benefits due to increasing NAD+ levels. A total of 1545 articles were identified and 147 articles (113 preclinical and 34 clinical) met criteria for inclusion. Most studies indicated that the NAD+ precursors NAM, NR, nicotinamide mononucleotide (NMN), and to a lesser extent NAD+ and NADH had a favourable outcome on several age-related disorders associated with the accumulation of chronic oxidative stress, inflammation and impaired mitochondrial function. While these compounds presented with a limited acute toxicity profile, evidence is still quite limited and long-term human clinical trials are still nascent in the current literature. Potential risks in raising NAD+ levels in various clinical disorders using NAD+ precursors include the accumulation of putative toxic metabolites, tumorigenesis and promotion of cellular senescence. Therefore, NAD+ metabolism represents a promising target and further studies are needed to recapitulate the preclinical benefits in human clinical trials.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia.
| | - Yue Liu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|