1
|
Zhao Y, Chen P, Hu Y, Liu J, Jiang Y, Zeng X, Deng G, Shi J, Li Y, Tian G, Liu J, Chen H. Recombinant duck enteritis virus bearing the hemagglutinin genes of H5 and H7 influenza viruses is an ideal multivalent live vaccine in ducks. Emerg Microbes Infect 2024; 13:2284301. [PMID: 37966272 PMCID: PMC10769552 DOI: 10.1080/22221751.2023.2284301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/12/2023] [Indexed: 11/16/2023]
Abstract
Due to the fact that many avian influenza viruses that kill chickens are not lethal to ducks, farmers are reluctant to use avian influenza inactivated vaccines on ducks. Large numbers of unvaccinated ducks play an important role in the transmission of avian influenza viruses from wild birds to domestic poultry, creating a substantial challenge to vaccination strategies for avian influenza control. To solve this problem, we constructed a recombinant duck enteritis virus (DEV), rDEV-dH5/H7, using a live attenuated DEV vaccine strain (vDEV) as a vector. rDEV-dH5/H7 carries the hemagglutinin gene of two H5 viruses [GZ/S4184/17 (H5N6) (clade 2.3.4.4 h) and LN/SD007/17 (H5N1) (clade 2.3.2.1d)] and an H7 virus [GX/SD098/17 (H7N9)]. These three hemagglutinin genes were stably inherited in rDEV-dH5/H7 and expressed in rDEV-dH5/H7-infected cells. Animal studies revealed that rDEV-dH5/H7 and vDEV induced similar neutralizing antibody responses and protection against lethal DEV challenge. Importantly, rDEV-dH5/H7 induced strong and long-lasting hemagglutinin inhibition antibodies against different H5 and H7 viruses and provided complete protection against challenges with homologous and heterologous highly pathogenic H5 and H7 influenza viruses in ducks. Our study shows that rDEV-dH5/H7 could serve as an ideal live attenuated vaccine to protect ducks against infection with lethal DEV and highly pathogenic avian influenza viruses.
Collapse
Affiliation(s)
- Yubo Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Pucheng Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yuzhen Hu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jing Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yongping Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yanbing Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jinxiong Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| |
Collapse
|
2
|
Yamaji R, Zhang W, Kamata A, Adlhoch C, Swayne DE, Pereyaslov D, Wang D, Neumann G, Pavade G, Barr IG, Peiris M, Webby RJ, Fouchier RAM, Von Dobschütz S, Fabrizio T, Shu Y, Samaan M. Pandemic risk characterisation of zoonotic influenza A viruses using the Tool for Influenza Pandemic Risk Assessment (TIPRA). THE LANCET. MICROBE 2024:100973. [PMID: 39396528 DOI: 10.1016/j.lanmic.2024.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 10/15/2024]
Abstract
A systematic risk assessment approach is essential for evaluating the relative risk of influenza A viruses (IAVs) with pandemic potential. To achieve this, the Tool for Influenza Pandemic Risk Assessment (TIPRA) was developed under the Global Influenza Programme of WHO. Since its release in 2016 and update in 2020, TIPRA has been used to assess the pandemic risk of 11 zoonotic IAVs across ten evaluation rounds. Notably, A(H7N9), A(H9N2), and A(H5) clade 2.3.4.4 viruses were re-evaluated owing to changes in epidemiological characteristics or virus properties. A(H7N9) viruses had the highest relative risk at the time of assessment, highlighting the importance of continuous monitoring and reassessment as changes in epidemiological trends within animal and human populations can alter risk profiles. The knowledge gaps identified throughout the ten risk assessments should help to guide the efficient use of resources for future research, including surveillance. The TIPRA tool reflects the One Health approach and has proven crucial for closely monitoring virus dynamics in both human and non-human populations to enhance preparedness for potential IAV pandemics.
Collapse
Affiliation(s)
- Reina Yamaji
- Global Influenza Programme, Epidemic and Pandemic Preparedness and Prevention, WHO Emergency Programme, World Health Organization, Geneva, Switzerland
| | - Wenqing Zhang
- Global Influenza Programme, Epidemic and Pandemic Preparedness and Prevention, WHO Emergency Programme, World Health Organization, Geneva, Switzerland
| | - Akiko Kamata
- The Food and Agriculture Organization of the UN (FAO), Rome, Italy
| | - Cornelia Adlhoch
- European Centre for Disease Prevention and Control, Solna, Sweden
| | | | - Dmitriy Pereyaslov
- Global Influenza Programme, Epidemic and Pandemic Preparedness and Prevention, WHO Emergency Programme, World Health Organization, Geneva, Switzerland
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, China CDC, Changping District, Beijing, China
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Richard J Webby
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Sophie Von Dobschütz
- The Food and Agriculture Organization of the UN (FAO), Rome, Italy; Emerging Diseases and Zoonoses Unit, Department for Epidemic and Pandemic Preparedness and Prevention, World Health Organization, Geneva, Switzerland
| | - Thomas Fabrizio
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Yuelong Shu
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Magdi Samaan
- Global Influenza Programme, Epidemic and Pandemic Preparedness and Prevention, WHO Emergency Programme, World Health Organization, Geneva, Switzerland.
| |
Collapse
|
3
|
Warren CJ, Brookes SM, Arnold ME, Irvine RM, Hansen RDE, Brown IH, Banyard AC, Slomka MJ. Assessment of Survival Kinetics for Emergent Highly Pathogenic Clade 2.3.4.4 H5Nx Avian Influenza Viruses. Viruses 2024; 16:889. [PMID: 38932181 PMCID: PMC11209063 DOI: 10.3390/v16060889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
High pathogenicity avian influenza viruses (HPAIVs) cause high morbidity and mortality in poultry species. HPAIV prevalence means high numbers of infected wild birds could lead to spill over events for farmed poultry. How these pathogens survive in the environment is important for disease maintenance and potential dissemination. We evaluated the temperature-associated survival kinetics for five clade 2.3.4.4 H5Nx HPAIVs (UK field strains between 2014 and 2021) incubated at up to three temperatures for up to ten weeks. The selected temperatures represented northern European winter (4 °C) and summer (20 °C); and a southern European summer temperature (30 °C). For each clade 2.3.4.4 HPAIV, the time in days to reduce the viral infectivity by 90% at temperature T was established (DT), showing that a lower incubation temperature prolonged virus survival (stability), where DT ranged from days to weeks. The fastest loss of viral infectivity was observed at 30 °C. Extrapolation of the graphical DT plots to the x-axis intercept provided the corresponding time to extinction for viral decay. Statistical tests of the difference between the DT values and extinction times of each clade 2.3.4.4 strain at each temperature indicated that the majority displayed different survival kinetics from the other strains at 4 °C and 20 °C.
Collapse
Affiliation(s)
- Caroline J. Warren
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK; (S.M.B.); (R.M.I.); (R.D.E.H.); (I.H.B.); (A.C.B.)
| | - Sharon M. Brookes
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK; (S.M.B.); (R.M.I.); (R.D.E.H.); (I.H.B.); (A.C.B.)
| | - Mark E. Arnold
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Sutton Bonington, Loughborough LE12 5RB, UK;
| | - Richard M. Irvine
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK; (S.M.B.); (R.M.I.); (R.D.E.H.); (I.H.B.); (A.C.B.)
- Office of the Chief Veterinary Officer (OCVO), Welsh Government, Cathays Park, Cardiff CF10 3NQ, UK
| | - Rowena D. E. Hansen
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK; (S.M.B.); (R.M.I.); (R.D.E.H.); (I.H.B.); (A.C.B.)
- Veterinary Advice Services, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Ian H. Brown
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK; (S.M.B.); (R.M.I.); (R.D.E.H.); (I.H.B.); (A.C.B.)
- WOAH/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency, (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Ashley C. Banyard
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK; (S.M.B.); (R.M.I.); (R.D.E.H.); (I.H.B.); (A.C.B.)
- WOAH/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency, (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Marek J. Slomka
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK; (S.M.B.); (R.M.I.); (R.D.E.H.); (I.H.B.); (A.C.B.)
| |
Collapse
|
4
|
Shalaby S, Awadin W, Manzoor R, Karam R, Mohamadin M, Salem S, El-Shaieb A. Pathological and phylogenetic characteristics of fowl AOAV-1 and H5 isolated from naturally infected Meleagris Gallopavo. BMC Vet Res 2024; 20:216. [PMID: 38773480 PMCID: PMC11107055 DOI: 10.1186/s12917-024-04029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/22/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND In this study, we investigated the prevalence of respiratory viruses in four Hybrid Converter Turkey (Meleagris gallopavo) farms in Egypt. The infected birds displayed severe respiratory signs, accompanied by high mortality rates, suggesting viral infections. Five representative samples from each farm were pooled and tested for H5 & H9 subtypes of avian influenza viruses (AIVs), Avian Orthoavulavirus-1 (AOAV-1), and turkey rhinotracheitis (TRT) using real-time RT-PCR and conventional RT-PCR. Representative tissue samples from positive cases were subjected to histopathology and immunohistochemistry (IHC). RESULTS The PCR techniques confirmed the presence of AOAV-1 and H5 AIV genes, while none of the tested samples were positive for H9 or TRT. Microscopic examination of tissue samples revealed congestion and hemorrhage in the lungs, liver, and intestines with leukocytic infiltration. IHC revealed viral antigens in the lungs, liver, and intestines. Phylogenetic analysis revealed that H5 HA belonged to 2.3.4.4b H5 sublineage and AOAV-1 belonged to VII 1.1 genotype. CONCLUSIONS The study highlights the need for proper monitoring of hybrid converter breeds for viral diseases, and the importance of vaccination programs to prevent unnecessary losses. To our knowledge, this is the first study that reports the isolation of AOAV-1 and H5Nx viruses from Hybrid Converter Turkeys in Egypt.
Collapse
Affiliation(s)
- Shady Shalaby
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura City, 35516, Egypt.
| | - Walaa Awadin
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura City, 35516, Egypt.
| | - Rashid Manzoor
- Veterinary Science Program, Faculty of Health Sciences, Higher Colleges of Technology, P.O. Box 7946, Sharjah City, UAE.
| | - Reham Karam
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura City, 35516, Egypt
| | - Mahmoud Mohamadin
- Veterinary Science Program, Faculty of Health Sciences, Higher Colleges of Technology, P.O. Box 7946, Sharjah City, UAE
| | - Sanaa Salem
- Department of Pathology, Zagazig Branch, Agriculture Research Centre (ARC), Animal Health Research Institute (AHRI), P.O. Box 44516, Zagazig City, Egypt
| | - Ahmed El-Shaieb
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura City, 35516, Egypt
- Faculty of Veterinary Medicine, Egyptian Chinese University, Ain Shams City, 4541312, Egypt
| |
Collapse
|
5
|
Lee SH, Jeong S, Cho AY, Kim TH, Choi YJ, Lee H, Song CS, Nahm SS, Swayne DE, Lee DH. Caught Right on the Spot: Isolation and Characterization of Clade 2.3.4.4b H5N8 High Pathogenicity Avian Influenza Virus from a Common Pochard ( Aythya ferina) Being Attacked by a Peregrine Falcon ( Falco peregrinus). Avian Dis 2024; 68:72-79. [PMID: 38687111 DOI: 10.1637/aviandiseases-d-23-00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/12/2023] [Indexed: 05/02/2024]
Abstract
We isolated a high pathogenicity avian influenza (HPAI) virus from a common pochard (Aythya ferina) that was being attacked by a bird of prey in South Korea in December 2020. Genetic analyses indicated that the isolate was closely related to the clade 2.3.4.4b H5N8 HPAI viruses found in South Korea and Japan during the winter season of 2020-2021. The histopathological examination revealed multifocal necrotizing inflammation in the liver, kidney, and spleen. Viral antigens were detected in the liver, kidney, spleen, trachea, intestine, and pancreas, indicating the HPAI virus caused a systemic infection. The presence of immunoreactivity for the viral antigen was observed in the cells involved in multifocal necrotic inflammation. Notably, epitheliotropic-positive patterns were identified in the epithelial cells of the trachea, mucosal epithelium of the intestine, and ductular epithelium of the pancreas. These findings provide direct evidence supporting the possibility of HPAI transmission from infected waterfowl to predators.
Collapse
Affiliation(s)
- Sun-Hak Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Sol Jeong
- National Institute of Wildlife Disease Control and Prevention (NIWDC), 1, Songam-gil, Gwangsan-gu, Gwangju, Republic of Korea
| | - Andrew Y Cho
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Tae-Hyeon Kim
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Yun-Jeong Choi
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Heesu Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Chang-Seon Song
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
- Konkuk University Zoonotic Diseases Research Center, Konkuk University, Seoul, Republic of Korea
| | - Sang-Soep Nahm
- Department of Veterinary Anatomy, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | | | - Dong-Hun Lee
- Konkuk University Zoonotic Diseases Research Center, Konkuk University, Seoul, Republic of Korea,
- Wildlife Health Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Rudometova NB, Fando AA, Kisakova LA, Kisakov DN, Borgoyakova MB, Litvinova VR, Yakovlev VA, Tigeeva EV, Vahitov DI, Sharabrin SV, Shcherbakov DN, Evseenko VI, Ivanova KI, Gudymo AS, Ilyicheva TN, Marchenko VY, Ilyichev AA, Rudometov AP, Karpenko LI. Immunogenic and Protective Properties of Recombinant Hemagglutinin of Influenza A (H5N8) Virus. Vaccines (Basel) 2024; 12:143. [PMID: 38400127 PMCID: PMC10893068 DOI: 10.3390/vaccines12020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, we characterized recombinant hemagglutinin (HA) of influenza A (H5N8) virus produced in Chinese hamster ovary cells (CHO-K1s). Immunochemical analysis showed that the recombinant hemagglutinin was recognized by the serum of ferrets infected with influenza A (H5N8) virus, indicating that its antigenic properties were retained. Two groups of Balb/c mice were immunized with intramuscular injection of recombinant hemagglutinin or propiolactone inactivated A/Astrakhan/3212/2020 (H5N8) influenza virus. The results demonstrated that both immunogens induced a specific antibody response as determined by ELISA. Virus neutralization assay revealed that sera of immunized animals were able to neutralize A/turkey/Stavropol/320-01/2020 (H5N8) influenza virus-the average neutralizing titer was 2560. Immunization with both recombinant HA/H5 hemagglutinin and inactivated virus gave 100% protection against lethal H5N8 virus challenge. This study shows that recombinant HA (H5N8) protein may be a useful antigen candidate for developing subunit vaccines against influenza A (H5N8) virus with suitable immunogenicity and protective efficacy.
Collapse
Affiliation(s)
- Nadezhda B. Rudometova
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Anastasia A. Fando
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Lyubov A. Kisakova
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Denis N. Kisakov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Mariya B. Borgoyakova
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Victoria R. Litvinova
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Vladimir A. Yakovlev
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Elena V. Tigeeva
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Danil I. Vahitov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Sergey V. Sharabrin
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Dmitriy N. Shcherbakov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Veronika I. Evseenko
- Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Novosibirsk Region, Russia;
| | - Ksenia I. Ivanova
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Andrei S. Gudymo
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Tatiana N. Ilyicheva
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Vasiliy Yu. Marchenko
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Alexander A. Ilyichev
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Andrey P. Rudometov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| | - Larisa I. Karpenko
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia (L.A.K.); (D.N.K.); (M.B.B.); (V.R.L.); (E.V.T.); (D.I.V.); (S.V.S.); (D.N.S.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.I.); (A.P.R.); (L.I.K.)
| |
Collapse
|
7
|
Sakuma S, Tanikawa T, Tsunekuni R, Mine J, Kumagai A, Miyazawa K, Takadate Y, Uchida Y. Experimental Infection of Chickens with H5N8 High Pathogenicity Avian Influenza Viruses Isolated in Japan in the Winter of 2020-2021. Viruses 2023; 15:2293. [PMID: 38140534 PMCID: PMC10748181 DOI: 10.3390/v15122293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
During the winter of 2020-2021, numerous outbreaks of high pathogenicity avian influenza (HPAI) were caused by viruses of the subtype H5N8 in poultry over a wide region in Japan. The virus can be divided into five genotypes-E1, E2, E3, E5, and E7. The major genotype responsible for the outbreaks was E3, followed by E2. To investigate the cause of these outbreaks, we experimentally infected chickens with five representative strains of each genotype. We found that the 50% chicken infectious dose differed by up to 75 times among the five strains, and the titer of the E3 strains (102.75 50% egg infectious dose (EID50)) was the lowest, followed by that of the E2 strains (103.50 EID50). In viral transmission experiments, in addition to the E3 and E2 strains, the E5 strain was transmitted to naïve chickens with high efficiency (>80%), whereas the other strains had low efficiencies (<20%). We observed a clear difference in the virological characteristics among the five strains isolated in the same season. The higher infectivity of the E3 and E2 viruses in chickens may have caused the large number of HPAI outbreaks in Japan during this season.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuko Uchida
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba 305-0856, Ibaraki, Japan; (S.S.); (T.T.); (R.T.); (J.M.); (A.K.); (K.M.); (Y.T.)
| |
Collapse
|
8
|
Hegazy AM, Hassanin O, Hemele MAM, Momenah MA, Al-Saeed FA, Shakak AO, El-Tarabily KA, El-Saadony MT, Tolba HMN. Evaluation of the immuno-stimulatory effect of aqueous neem (Azadirachta indica) leaf extract against highly pathogenic avian influenza (H5N8) in experimental chickens. Poult Sci 2023; 102:103043. [PMID: 37741118 PMCID: PMC10520533 DOI: 10.1016/j.psj.2023.103043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/25/2023] Open
Abstract
The recently detected clade 2.3.4.4 of the highly pathogenic avian influenza (HPAI) H5N8 virus in poultry encouraged us to study the efficacy of the 6 most extensively used saleable H5 poultry vaccinations (bivalent [AI + ND], Re-5 H5N1, H5N1, H5N3, monovalent AI, monovalent ND) with or without aqueous 8% neem (Azadirachta indica) leaf extract as an immunostimulant. One hundred thirty birds were randomly divided into 7 groups. Groups 1, 2, 3, 4, 5, and 6 were divided into 2 subgroups (G1a, G2a, G3a, G4a, G5a, G6a) and (G1b, G2b, G3b, G4b, G5b, G6b) with 10 birds each. Subgroups (G1a, G2a, G3a, G4a, G5a, G6a) received the (bivalent [AI + ND], Re-H5N1, H5N1, H5N3, monovalent AI, monovalent ND) vaccines, while subgroups (G1b, G2b, G3b, G4b, G5b, G6b) received the same previous vaccination but treated with neem leaf extract administrated 2 d before and after vaccination, and G7 with 10 birds was kept unvaccinated as positive control group. Clinical signs of the challenged group showed conjunctivitis, closed eyes, cyanosis in comb and wattle, ocular discharge, and greenish diarrhea, while postmortem lesions showed congested trachea and lung, hemorrhage on the shank, proventriculus, and pancreas; gelatinous fluid submandibular, congestion of all organs (septicemia), mottled spleen. The clinical signs and lesions were mild in neem leaf extract treated with bivalent vaccine and Re-H5N1 while moderate in monovalent vaccine and H5N3 with or without neem leaf extract treated and reached severe in the group immunized with H5N1 with or without neem leaf extract treatment. The protection levels in the bivalent vaccine (AI + ND), Re-5 H5N1, and H5N3 treated with neem leaf extract, were 80%, 80%, and 60%, respectively, while bivalent vaccine (AI + ND), Re-5 H5N1 and H5N3 without treatment were 60%, 60%, and 40%, respectively. The virus shedding was prevented in groups vaccinated with bivalent vaccine and Re-H5N1 vaccine treated with neem leaf extract, while decreased in the group vaccinated with H5N3 with neem leaf extract and Re-H5N1 without neem leaf extract compared with H5N3, H5N1, and monovalent vaccine. The immunological response after vaccination was stronger in the bivalent vaccine group than in the other commercial vaccine groups treated with neem leaf extract, with geometric mean titer (GMTs) of 315.2 and 207.9 at the third and fourth weeks, respectively. The use of immunostimulant antiviral medicinal plants, such as neem, completely protected chicken flocks against HPAI (H5N8) and prevented AI virus shedding, leading us to the conclusion that the use of bivalent vaccines induces a higher immune response than other different commercial vaccines.
Collapse
Affiliation(s)
- Ahmed M Hegazy
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ola Hassanin
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mai A M Hemele
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Maha Abdullah Momenah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Fatimah A Al-Saeed
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Amani Osman Shakak
- Faculty of Medical Laboratory Sciences, University of Shendi, Shendi 142, Sudan; Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Hala M N Tolba
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
9
|
Marandino A, Tomás G, Panzera Y, Leizagoyen C, Pérez R, Bassetti L, Negro R, Rodríguez S, Pérez R. Spreading of the High-Pathogenicity Avian Influenza (H5N1) Virus of Clade 2.3.4.4b into Uruguay. Viruses 2023; 15:1906. [PMID: 37766312 PMCID: PMC10536905 DOI: 10.3390/v15091906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Avian influenza viruses (genus Alphainfluenzavirus, family Orthomyxoviridae) infect avian and mammal hosts. In 2022, the high pathogenicity avian influenza virus (H5N1) spread to South America, resulting in the loss of thousands of wild birds, including endangered species, and severely impacting the global poultry industry. OBJECTIVES We analyzed the complete genomes of influenza viruses obtained from wild birds and backyard poultry in Uruguay between February and May 2023. METHODS Twelve complete genomes were obtained in 2023 from cloacal swabs using Illumina sequencing. Genomes were phylogenetically analyzed with regional and global strains. FINDINGS The identified strains have multiple basic amino acids at the hemagglutinin cleavage sites, which is typical for highly pathogenic strains. The Uruguayan viruses belonged to hemagglutinin clade 2.3.4.4b of the H5N1 subtype. A reassortment in North America has resulted in some segments of South American strains being of Eurasian or North American origins. The Uruguayan viruses shared a common ancestor with South American strains from Argentina and Chile. The influenza viruses displayed a spatiotemporal divergence pattern rather than being host-specific. MAIN CONCLUSIONS The arrival of the 2.3.4.4b clade in Uruguay may have been mediated by birds that acquired the virus from Argentine and Chilean waterfowl migrating in the Pacific Flyway.
Collapse
Affiliation(s)
- Ana Marandino
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; (A.M.); (G.T.); (Y.P.)
| | - Gonzalo Tomás
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; (A.M.); (G.T.); (Y.P.)
| | - Yanina Panzera
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; (A.M.); (G.T.); (Y.P.)
| | - Carmen Leizagoyen
- Dirección Nacional de Biodiversidad y Servicios Ecosistémicos (DINABISE), Ministerio de Ambiente, Juncal 1385, Montevideo 11100, Uruguay;
| | - Ramiro Pérez
- Departamento de Virología, División de Laboratorios Veterinarios “Miguel C. Rubino”, Dirección General de Servicios Ganaderos, Ministerio de Ganadería, Agricultura y Pesca, Ruta 8 “Brigadier Gral. Juan A. Lavalleja” Km 17,000, Montevideo 12100, Uruguay; (R.P.); (L.B.); (R.N.)
| | - Lucía Bassetti
- Departamento de Virología, División de Laboratorios Veterinarios “Miguel C. Rubino”, Dirección General de Servicios Ganaderos, Ministerio de Ganadería, Agricultura y Pesca, Ruta 8 “Brigadier Gral. Juan A. Lavalleja” Km 17,000, Montevideo 12100, Uruguay; (R.P.); (L.B.); (R.N.)
| | - Raúl Negro
- Departamento de Virología, División de Laboratorios Veterinarios “Miguel C. Rubino”, Dirección General de Servicios Ganaderos, Ministerio de Ganadería, Agricultura y Pesca, Ruta 8 “Brigadier Gral. Juan A. Lavalleja” Km 17,000, Montevideo 12100, Uruguay; (R.P.); (L.B.); (R.N.)
| | - Sirley Rodríguez
- Departamento de Virología, División de Laboratorios Veterinarios “Miguel C. Rubino”, Dirección General de Servicios Ganaderos, Ministerio de Ganadería, Agricultura y Pesca, Ruta 8 “Brigadier Gral. Juan A. Lavalleja” Km 17,000, Montevideo 12100, Uruguay; (R.P.); (L.B.); (R.N.)
| | - Ruben Pérez
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; (A.M.); (G.T.); (Y.P.)
| |
Collapse
|
10
|
Szaluś-Jordanow O, Golke A, Dzieciątkowski T, Chrobak-Chmiel D, Rzewuska M, Czopowicz M, Sapierzyński R, Kardas M, Biernacka K, Mickiewicz M, Moroz-Fik A, Łobaczewski A, Stefańska I, Kwiecień E, Markowska-Daniel I, Frymus T. A Fatal A/H5N1 Avian Influenza Virus Infection in a Cat in Poland. Microorganisms 2023; 11:2263. [PMID: 37764107 PMCID: PMC10538095 DOI: 10.3390/microorganisms11092263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/27/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
A European Shorthair male cat, neutered, approximately 6 years of age, was presented to the veterinary clinic due to apathy and anorexia. The cat lived mostly outdoors and was fed raw chicken meat. After 3 days of diagnostic procedures and symptomatic treatment, respiratory distress and neurological signs developed and progressed into epileptic seizures, followed by respiratory and cardiac arrest within the next 3 days. Post-mortem examination revealed necrotic lesions in the liver, lungs, and intestines. Notably, the brain displayed perivascular infiltration of lymphocytes and histiocytes. Few foci of neuronal necrosis in the brain were also confirmed. Microscopic examination of the remaining internal organs was unremarkable. The A/H5N1 virus infection was confirmed using a one-step real-time reverse transcription polymerase chain reaction (RT-qPCR). The disease caused severe neurological and respiratory signs, evidence of consolidations and the presence of numerous B lines, which were detected on lung ultrasound examination; the postmortem findings and detection of A/H5N1 viral RNA in multiple tissues indicated a generalized A/H5N1 virus infection. Moreover, a multidrug-resistant strain of Enterococcus faecium was isolated in pure culture from several internal organs. The source of infection could be exposure to infected birds or their excrements, as well as contaminated raw poultry meat but, in this case, the source of infection could not be identified.
Collapse
Affiliation(s)
- Olga Szaluś-Jordanow
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Anna Golke
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Tomasz Dzieciątkowski
- Chair and Department of Medical Microbiology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
| | - Dorota Chrobak-Chmiel
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Magdalena Rzewuska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Michał Czopowicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Rafał Sapierzyński
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Michał Kardas
- Veterinary Clinic Auxilium, Arkadiusz Olkowski, Królewska Str. 64, 05-822 Milanówek, Poland
| | - Kinga Biernacka
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Marcin Mickiewicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Agata Moroz-Fik
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Andrzej Łobaczewski
- Veterinary Clinic Auxilium, Arkadiusz Olkowski, Królewska Str. 64, 05-822 Milanówek, Poland
| | - Ilona Stefańska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Ewelina Kwiecień
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Iwona Markowska-Daniel
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Tadeusz Frymus
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| |
Collapse
|
11
|
Huang P, Sun L, Li J, Wu Q, Rezaei N, Jiang S, Pan C. Potential cross-species transmission of highly pathogenic avian influenza H5 subtype (HPAI H5) viruses to humans calls for the development of H5-specific and universal influenza vaccines. Cell Discov 2023; 9:58. [PMID: 37328456 DOI: 10.1038/s41421-023-00571-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/25/2023] [Indexed: 06/18/2023] Open
Abstract
In recent years, highly pathogenic avian influenza H5 subtype (HPAI H5) viruses have been prevalent around the world in both avian and mammalian species, causing serious economic losses to farmers. HPAI H5 infections of zoonotic origin also pose a threat to human health. Upon evaluating the global distribution of HPAI H5 viruses from 2019 to 2022, we found that the dominant strain of HPAI H5 rapidly changed from H5N8 to H5N1. A comparison of HA sequences from human- and avian-derived HPAI H5 viruses indicated high homology within the same subtype of viruses. Moreover, amino acid residues 137A, 192I, and 193R in the receptor-binding domain of HA1 were the key mutation sites for human infection in the current HPAI H5 subtype viruses. The recent rapid transmission of H5N1 HPAI in minks may result in the further evolution of the virus in mammals, thereby causing cross-species transmission to humans in the near future. This potential cross-species transmission calls for the development of an H5-specific influenza vaccine, as well as a universal influenza vaccine able to provide protection against a broad range of influenza strains.
Collapse
Affiliation(s)
- Pan Huang
- Laboratory of Molecular Virology & Immunology, Technology Innovation Center, Haid Research Institute, Guangdong Haid Group Co., Ltd., Guangzhou, Guangdong, China
| | - Lujia Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jinhao Li
- Laboratory of Molecular Virology & Immunology, Technology Innovation Center, Haid Research Institute, Guangdong Haid Group Co., Ltd., Guangzhou, Guangdong, China
| | - Qingyi Wu
- Laboratory of Molecular Virology & Immunology, Technology Innovation Center, Haid Research Institute, Guangdong Haid Group Co., Ltd., Guangzhou, Guangdong, China
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Chungen Pan
- Laboratory of Molecular Virology & Immunology, Technology Innovation Center, Haid Research Institute, Guangdong Haid Group Co., Ltd., Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Slomka MJ, Reid SM, Byrne AMP, Coward VJ, Seekings J, Cooper JL, Peers-Dent J, Agyeman-Dua E, de Silva D, Hansen RDE, Banyard AC, Brown IH. Efficient and Informative Laboratory Testing for Rapid Confirmation of H5N1 (Clade 2.3.4.4) High-Pathogenicity Avian Influenza Outbreaks in the United Kingdom. Viruses 2023; 15:1344. [PMID: 37376643 PMCID: PMC10304448 DOI: 10.3390/v15061344] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
During the early stages of the UK 2021-2022 H5N1 high-pathogenicity avian influenza virus (HPAIV) epizootic in commercial poultry, 12 infected premises (IPs) were confirmed by four real-time reverse-transcription-polymerase chain reaction (RRT)-PCRs, which identified the viral subtype and pathotype. An assessment was undertaken to evaluate whether a large sample throughput would challenge laboratory capacity during an exceptionally large epizootic; hence, assay performance across our test portfolio was investigated. Statistical analysis of RRT-PCR swab testing supported it to be focused on a three-test approach, featuring the matrix (M)-gene, H5 HPAIV-specific (H5-HP) and N1 RRT-PCRs, which was successfully assessed at 29 subsequent commercial IPs. The absence of nucleotide mismatches in the primer/probe binding regions for the M-gene and limited mismatches for the H5-HP RRT-PCR underlined their high sensitivity. Although less sensitive, the N1 RRT-PCR remained effective at flock level. The analyses also guided successful surveillance testing of apparently healthy commercial ducks from at-risk premises, with pools of five oropharyngeal swabs tested by the H5-HP RRT-PCR to exclude evidence of infection. Serological testing at anseriform H5N1 HPAIV outbreaks, together with quantitative comparisons of oropharyngeal and cloacal shedding, provided epidemiological information concerning the chronology of initial H5N1 HPAIV incursion and onward spread within an IP.
Collapse
Affiliation(s)
- Marek J. Slomka
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone KT15 3NB, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gass JD, Hill NJ, Damodaran L, Naumova EN, Nutter FB, Runstadler JA. Ecogeographic Drivers of the Spatial Spread of Highly Pathogenic Avian Influenza Outbreaks in Europe and the United States, 2016-Early 2022. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6030. [PMID: 37297634 PMCID: PMC10252585 DOI: 10.3390/ijerph20116030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
H5Nx highly pathogenic avian influenza (HPAI) viruses of clade 2.3.4.4 have caused outbreaks in Europe among wild and domestic birds since 2016 and were introduced to North America via wild migratory birds in December 2021. We examined the spatiotemporal extent of HPAI viruses across continents and characterized ecological and environmental predictors of virus spread between geographic regions by constructing a Bayesian phylodynamic generalized linear model (phylodynamic-GLM). The findings demonstrate localized epidemics of H5Nx throughout Europe in the first several years of the epizootic, followed by a singular branching point where H5N1 viruses were introduced to North America, likely via stopover locations throughout the North Atlantic. Once in the United States (US), H5Nx viruses spread at a greater rate between US-based regions as compared to prior spread in Europe. We established that geographic proximity is a predictor of virus spread between regions, implying that intercontinental transport across the Atlantic Ocean is relatively rare. An increase in mean ambient temperature over time was predictive of reduced H5Nx virus spread, which may reflect the effect of climate change on declines in host species abundance, decreased persistence of the virus in the environment, or changes in migratory patterns due to ecological alterations. Our data provide new knowledge about the spread and directionality of H5Nx virus dispersal in Europe and the US during an actively evolving intercontinental outbreak, including predictors of virus movement between regions, which will contribute to surveillance and mitigation strategies as the outbreak unfolds, and in future instances of uncontained avian spread of HPAI viruses.
Collapse
Affiliation(s)
- Jonathon D. Gass
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nichola J. Hill
- Department of Biology, University of Massachusetts, Boston, Boston, MA 02125, USA
| | | | - Elena N. Naumova
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02155, USA
| | - Felicia B. Nutter
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | - Jonathan A. Runstadler
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| |
Collapse
|
14
|
Criado MF, Kassa A, Bertran K, Kwon JH, Sá E Silva M, Killmaster L, Ross TM, Mebatsion T, Swayne DE. Efficacy of multivalent recombinant herpesvirus of turkey vaccines against high pathogenicity avian influenza, infectious bursal disease, and Newcastle disease viruses. Vaccine 2023; 41:2893-2904. [PMID: 37012117 DOI: 10.1016/j.vaccine.2023.03.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
Vaccines are an essential tool for the control of viral infections in domestic animals. We generated recombinant vector herpesvirus of turkeys (vHVT) vaccines expressing computationally optimized broadly reactive antigen (COBRA) H5 of avian influenza virus (AIV) alone (vHVT-AI) or in combination with virus protein 2 (VP2) of infectious bursal disease virus (IBDV) (vHVT-IBD-AI) or fusion (F) protein of Newcastle disease virus (NDV) (vHVT-ND-AI). In vaccinated chickens, all three vHVT vaccines provided 90-100% clinical protection against three divergent clades of high pathogenicity avian influenza viruses (HPAIVs), and significantly decreased number of birds and oral viral shedding titers at 2 days post-challenge compared to shams. Four weeks after vaccination, most vaccinated birds had H5 hemagglutination inhibition antibody titers, which significantly increased post-challenge. The vHVT-IBD-AI and vHVT-ND-AI vaccines provided 100% clinical protection against IBDVs and NDV, respectively. Our findings demonstrate that multivalent HVT vector vaccines were efficacious for simultaneous control of HPAIV and other viral infections.
Collapse
Affiliation(s)
- Miria F Criado
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center (USNPRC), Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Rd, Athens, GA 30605, USA; Department of Pathobiology, College of Veterinary Medicine, Auburn University, 166 Greene Hall, Auburn, AL 36849, USA.
| | - Aemro Kassa
- Boehringer Ingelheim Animal Health USA Inc., 1730 Olympic Drive, Athens, GA 30601, USA.
| | - Kateri Bertran
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA). Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia, Spain; IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA). Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia, Spain.
| | - Jung-Hoon Kwon
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center (USNPRC), Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Rd, Athens, GA 30605, USA; College of Veterinary Medicine, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea.
| | - Mariana Sá E Silva
- Boehringer Ingelheim Animal Health USA Inc., 1730 Olympic Drive, Athens, GA 30601, USA.
| | - Lindsay Killmaster
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center (USNPRC), Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Rd, Athens, GA 30605, USA.
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, 501 D.W. Brooks Dr, Athens, GA 30602, USA.
| | - Teshome Mebatsion
- Boehringer Ingelheim Animal Health USA Inc., 1730 Olympic Drive, Athens, GA 30601, USA.
| | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center (USNPRC), Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Rd, Athens, GA 30605, USA.
| |
Collapse
|
15
|
Gu M, Jiao J, Liu S, Zhao W, Ge Z, Cai K, Xu L, He D, Zhang X, Qi X, Jiang W, Zhang P, Wang X, Hu S, Liu X. Monoclonal antibody targeting a novel linear epitope on nucleoprotein confers pan-reactivity to influenza A virus. Appl Microbiol Biotechnol 2023; 107:2437-2450. [PMID: 36820898 PMCID: PMC9947902 DOI: 10.1007/s00253-023-12433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
Nucleoprotein (NP) functions crucially in the replicative cycle of influenza A virus (IAV) via forming the ribonucleoprotein complex together with PB2, PB1, and PA proteins. As its high conservation, NP ranks one of the hot targets for design of universal diagnostic reagents and antiviral drugs for IAV. Here, we report an anti-NP murine monoclonal antibody (mAb) 5F10 prepared from traditional lymphocyte hybridoma technique with the immunogen of a clade 2.3.4.4 H5N1 subtype avian influenza virus. The specificity of mAb 5F10 to NP protein was confirmed by immunofluorescence assay and western blotting, and the mAb 5F10 could be used in immunoprecipitation and immunohistochemistry assays. Importantly, mAb 5F10 possessed broad-spectrum reactivity against H1~H11 subtypes of avian influenza viruses, including various HA clades of H5Nx subtype. In addition, mAb 5F10 also showed good affinity with H1N1 and H3N2 subtype influenza viruses of swine and human origin. Furthermore, the recognized antigenic epitope of mAb 5F10 was identified to consist of the conserved amino acid motif 81EHPSA85 in the second flexible loop region of NP protein through screening the phage display peptide library. Collectively, the mAb 5F10 which recognizes the novel universal NP linear B-cell epitope of IAV with diverse origins and subtypes will be a powerful tool for NP protein-based structural, functional, and mechanistic studies, as well as the development of detection methods and universal vaccines for IAV. KEY POINTS: • A broad-spectrum mAb against various subtypes and sources of IAV was developed • The mAb possessed good reactivity in IFA, western blot, IP, and IHC assays • The mAb targeted a novel conserved linear B-cell epitope involving 81EHPSA85 on NP protein.
Collapse
Affiliation(s)
- Min Gu
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
- grid.268415.cJiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu China
- grid.268415.cJiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Jun Jiao
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
| | - Suhan Liu
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
| | - Wanchen Zhao
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
| | - Zhichuang Ge
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
| | - Kairui Cai
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
| | - Lijun Xu
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
| | - Dongchang He
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
| | - Xinyu Zhang
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
| | - Xian Qi
- grid.410734.50000 0004 1761 5845Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009 China
| | - Wenming Jiang
- grid.414245.20000 0004 6063 681XChina Animal Health and Epidemiology Center, Qingdao, 266032 China
| | - Pinghu Zhang
- grid.268415.cJiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu China
- grid.268415.cJiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Xiaoquan Wang
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
- grid.268415.cJiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu China
- grid.268415.cJiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Shunlin Hu
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
- grid.268415.cJiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu China
- grid.268415.cJiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Xiufan Liu
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
- grid.268415.cJiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu China
- grid.268415.cJiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, 225009 Jiangsu China
| |
Collapse
|
16
|
Ge P, Ross TM. Evaluation of Pre-Pandemic Trivalent COBRA HA Vaccine in Mice Pre-Immune to Historical H1N1 and H3N2 Influenza Viruses. Viruses 2023; 15:203. [PMID: 36680243 PMCID: PMC9861495 DOI: 10.3390/v15010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Initial exposure to influenza virus(es) during early childhood produces protective antibodies that may be recalled following future exposure to subsequent viral infections or vaccinations. Most influenza vaccine research studies use immunologically naïve animal models to assess vaccine effectiveness. However, most people have an extensive influenza immune history, with memory cells produced by viruses or vaccines representing multiple influenza viruses. In this study, we explored the effect influenza seasonal virus-induced immunity has on pre-pandemic influenza virus vaccination. The mice that were pre-immune to historical H1N1 and H3N2 seasonal influenza viruses were vaccinated with adjuvanted pre-pandemic (H2, H5, and H7) HA-based computationally optimized broadly reactive antigen (COBRA) vaccines, and were fully protected from lethal challenge, whereas the mock-vaccinated mice, with or without pre-immunity, were not protected from morbidity or mortality. Detectable antibody titers were present in the pre-immune mice vaccinated with a single dose of vaccine, but not in the immunologically naïve mice. The mice vaccinated twice with the trivalent COBRA HA vaccine had similar antibody titers regardless of their pre-immune status. Overall, seasonal pre-immunity did not interfere with the immune responses elicited by pre-pandemic COBRA HA vaccines or the protection against pre-pandemic viruses.
Collapse
Affiliation(s)
- Pan Ge
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Infection Biology, Lehner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
17
|
Mosaad Z, Elhusseiny MH, Zanaty A, Fathy MM, Hagag NM, Mady WH, Said D, Elsayed MM, Erfan AM, Rabie N, Samir A, Samy M, Arafa AS, Selim A, Abdelhakim AM, Lindahl JF, Eid S, Lundkvist Å, Shahein MA, Naguib MM. Emergence of Highly Pathogenic Avian Influenza A Virus (H5N1) of Clade 2.3.4.4b in Egypt, 2021-2022. Pathogens 2023; 12:90. [PMID: 36678438 PMCID: PMC9863303 DOI: 10.3390/pathogens12010090] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023] Open
Abstract
Wild migratory birds have the capability to spread avian influenza virus (AIV) over long distances as well as transmit the virus to domestic birds. In this study, swab and tissue samples were obtained from 190 migratory birds during close surveillance in Egypt in response to the recent outbreaks of the highly pathogenic avian influenza (HPAI) H5N1 virus. The collected samples were tested for a variety of AIV subtypes (H5N1, H9N2, H5N8, and H6N2) as well as other pathogens such as NDV, IBV, ILT, IBDV, and WNV. Among all of the tested samples, the HPAI H5N1 virus was found in six samples; the other samples were found to be negative for all of the tested pathogens. The Egyptian HPAI H5N1 strains shared genetic traits with the HPAI H5N1 strains that are currently being reported in Europe, North America, Asia, and Africa in 2021-2022. Whole genome sequencing revealed markers associated with mammalian adaption and virulence traits among different gene segments, similar to those found in HPAI H5N1 strains detected in Europe and Africa. The detection of the HPAI H5N1 strain of clade 2.3.4.4b in wild birds in Egypt underlines the risk of the introduction of this strain into the local poultry population. Hence, there is reason to be vigilant and continue epidemiological and molecular monitoring of the AIV in close proximity to the domestic-wild bird interface.
Collapse
Affiliation(s)
- Zienab Mosaad
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Mohamed H. Elhusseiny
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Ali Zanaty
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Mustafa M. Fathy
- Animal Health Research Institute-Mansour Branch, Agriculture Research Center (ARC), Dakahlia 35511, Egypt
| | - Naglaa M. Hagag
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Wesam H. Mady
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Dalia Said
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Moataz M. Elsayed
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Ahmed M. Erfan
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Neveen Rabie
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Abdelhafez Samir
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Mohamed Samy
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Abdel-Satar Arafa
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Abdullah Selim
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | | | - Johanna F. Lindahl
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 75121 Uppsala, Sweden
| | - Samah Eid
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 75121 Uppsala, Sweden
| | - Momtaz A. Shahein
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Mahmoud M. Naguib
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 75121 Uppsala, Sweden
| |
Collapse
|
18
|
Gass JD, Dusek RJ, Hall JS, Hallgrimsson GT, Halldórsson HP, Vignisson SR, Ragnarsdottir SB, Jónsson JE, Krauss S, Wong SS, Wan XF, Akter S, Sreevatsan S, Trovão NS, Nutter FB, Runstadler JA, Hill NJ. Global dissemination of influenza A virus is driven by wild bird migration through arctic and subarctic zones. Mol Ecol 2023; 32:198-213. [PMID: 36239465 PMCID: PMC9797457 DOI: 10.1111/mec.16738] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 12/31/2022]
Abstract
Influenza A viruses (IAV) circulate endemically among many wild aquatic bird populations that seasonally migrate between wintering grounds in southern latitudes to breeding ranges along the perimeter of the circumpolar arctic. Arctic and subarctic zones are hypothesized to serve as ecologic drivers of the intercontinental movement and reassortment of IAVs due to high densities of disparate populations of long distance migratory and native bird species present during breeding seasons. Iceland is a staging ground that connects the East Atlantic and North Atlantic American flyways, providing a unique study system for characterizing viral flow between eastern and western hemispheres. Using Bayesian phylodynamic analyses, we sought to evaluate the viral connectivity of Iceland to proximal regions and how inter-species transmission and reassortment dynamics in this region influence the geographic spread of low and highly pathogenic IAVs. Findings demonstrate that IAV movement in the arctic and subarctic reflects wild bird migration around the perimeter of the circumpolar north, favouring short-distance flights between proximal regions rather than long distance flights over the polar interior. Iceland connects virus movement between mainland Europe and North America, consistent with the westward migration of wild birds from mainland Europe to Northeastern Canada and Greenland. Though virus diffusion rates were similar among avian taxonomic groups in Iceland, gulls play an outsized role as sinks of IAVs from other avian hosts prior to onward migration. These data identify patterns of virus movement in northern latitudes and inform future surveillance strategies related to seasonal and emergent IAVs with potential public health concern.
Collapse
Affiliation(s)
- Jonathon D. Gass
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University
| | | | | | | | | | - Solvi Runar Vignisson
- University of Iceland’s Research Centre in Suðurnes
- Suðurnes Science and Learning Center
| | | | | | - Scott Krauss
- Department of Infectious Diseases, St. Jude Children’s Research Hospital
| | - Sook-San Wong
- Department of Infectious Diseases, St. Jude Children’s Research Hospital
| | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia
- Bond Life Sciences Center, University of Missouri, Columbia
- Department of Electronic Engineering and Computer Science, University of Missouri, Columbia
| | - Sadia Akter
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia
- Bond Life Sciences Center, University of Missouri, Columbia
- Department of Electronic Engineering and Computer Science, University of Missouri, Columbia
| | | | - Nídia S. Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health
| | - Felicia B. Nutter
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University
| | - Jonathan A. Runstadler
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University
| | - Nichola J. Hill
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University
- Department of Biology, University of Massachusetts, Boston
| |
Collapse
|
19
|
Yang Q, Xue X, Zhang Z, Wu MJ, Ji J, Wang W, Yin H, Li S, Dai H, Duan B, Liu Q, Song J. Clade 2.3.4.4b H5N8 Subtype Avian Influenza Viruses Were Identified from the Common Crane Wintering in Yunnan Province, China. Viruses 2022; 15:38. [PMID: 36680078 PMCID: PMC9863098 DOI: 10.3390/v15010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
The seasonal migration of wild aquatic birds plays a critical role in the maintenance, transmission, and incursion of the avian influenza virus (AIV). AIV surveillance was performed during 2020-2021 in two national nature reserves with abundant wild bird resources in Yunnan, China. Four H5N8 AIVs isolates from the common crane were identified by next-generation sequencing. Phylogenetic analysis demonstrated that all eight gene segments of these H5N8 AIVs belonged to clade 2.3.4.4b high-pathogenic AIV (HPAIV) and shared high nucleotide sequence similarity with the strains isolated in Hubei, China, and Siberia, Russia, in 2020-2021. The H5N8 HPAIVs from common cranes were characterized by both human and avian dual-receptor specificity in the hemagglutinin (HA) protein. Moreover, possessing the substitutions contributes to overcoming transmission barriers of mammalian hosts in polymerase basic 2 (PB2), polymerase basic protein 1 (PB1), and polymerase acid (PA), and exhibiting the long stalk in the neck region of the neuraminidase (NA) protein contributes to adaptation in wild birds. Monitoring AIVs in migratory birds, at stopover sites and in their primary habitats, i.e., breeding or wintering grounds, could provide insight into potential zoonosis caused by AIVs.
Collapse
Affiliation(s)
- Qinhong Yang
- College of Life Sciences, Southwest Forestry University, 300 Bailong Road, Kunming 650024, China
| | - Xiaoyan Xue
- College of Life Sciences, Southwest Forestry University, 300 Bailong Road, Kunming 650024, China
| | - Zhenxing Zhang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Academy of Animal Husbandry and Veterinary, 6 Qinglongshan, Kunming 650224, China
| | - Ming J. Wu
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Jia Ji
- College of Life Sciences, Southwest Forestry University, 300 Bailong Road, Kunming 650024, China
| | - Wei Wang
- College of Life Sciences, Southwest Forestry University, 300 Bailong Road, Kunming 650024, China
| | - Hongbin Yin
- Animal Disease Inspection and Supervision Institution of Yunnan Province, 118 Gulou Road, Kunming 650051, China
| | - Suhua Li
- College of Life Sciences, Southwest Forestry University, 300 Bailong Road, Kunming 650024, China
| | - Hongyang Dai
- The Management Bureau of Huize Black—Necked Crane National Nature Reserve, 744 Tongbao Road, Qujing 654200, China
| | - Bofang Duan
- Yunnan Center for Animal Disease Control and Prevention, 95 Jinhei Road, Kunming 650034, China
| | - Qiang Liu
- College of Life Sciences, Southwest Forestry University, 300 Bailong Road, Kunming 650024, China
| | - Jianling Song
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Academy of Animal Husbandry and Veterinary, 6 Qinglongshan, Kunming 650224, China
| |
Collapse
|
20
|
Antigua KJC, Baek YH, Choi WS, Jeong JH, Kim EH, Oh S, Yoon SW, Kim C, Kim EG, Choi SY, Hong SK, Choi YK, Song MS. Multiple HA substitutions in highly pathogenic avian influenza H5Nx viruses contributed to the change in the NA subtype preference. Virulence 2022; 13:990-1004. [PMID: 36560870 PMCID: PMC9176248 DOI: 10.1080/21505594.2022.2082672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Novel highly pathogenic avian influenza (HPAI) H5Nx viruses are predominantly circulating worldwide, with an increasing potential threat of an outbreak in humans. It remains largely unknown how the stably maintained HPAI H5N1 suddenly altered its neuraminidase (NA) to other NA subtypes, which resulted in the emergence and evolution of H5Nx viruses. Here, we found that a combination of four specific amino acid (AA) substitutions (S123P-T156A-D183N- S223 R) in the hemagglutinin (HA) protein consistently observed in the H5Nx markedly altered the NA preference of H5N1 viruses. These molecular changes in H5N1 impaired its fitness, particularly viral growth and the functional activities of the HA and NA proteins. Among the AA substitutions identified, the T156A substitution, which contributed to the NA shift, also dramatically altered the antigenicity of H5N1 viruses, suggesting an occurrence of antigenic drift triggered by selective pressure. Our study shows the importance of how HA and NA complement each other and that antigenic drift in HA can potentially cause a shift in the NA protein in influenza A virus evolution.
Collapse
Affiliation(s)
- Khristine Joy C. Antigua
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Yun Hee Baek
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Won-Suk Choi
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Ju Hwan Jeong
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Eun-Ha Kim
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Sol Oh
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Sun-Woo Yoon
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Changil Kim
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Eung-Gook Kim
- Department of Biochemistry, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - So-Young Choi
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, Republic of Korea
| | - Seung Kon Hong
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, Republic of Korea
| | - Young Ki Choi
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea,Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS)Center for Study of Emerging and Re-Emerging, Daejeon, Republic of Korea,Young Ki Choi
| | - Min Suk Song
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea,CONTACT Min Suk Song
| |
Collapse
|
21
|
Cui P, Shi J, Wang C, Zhang Y, Xing X, Kong H, Yan C, Zeng X, Liu L, Tian G, Li C, Deng G, Chen H. Global dissemination of H5N1 influenza viruses bearing the clade 2.3.4.4b HA gene and biologic analysis of the ones detected in China. Emerg Microbes Infect 2022; 11:1693-1704. [PMID: 35699072 PMCID: PMC9246030 DOI: 10.1080/22221751.2022.2088407] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
H5N1 avian influenza viruses bearing the clade 2.3.4.4b hemagglutinin gene have been widely circulating in wild birds and are responsible for the loss of over 70 million domestic poultry in Europe, Africa, Asia, and North America since October 2020. During our routine surveillance, 13 H5N1 viruses were isolated from 26,767 wild bird and poultry samples that were collected between September 2021 and March 2022 in China. To investigate the origin of these Chinese isolates and understand their genetic relationship with the globally circulating H5N1 viruses, we performed a detailed phylogenic analysis of 233 representative H5N1 strains that were isolated from 28 countries. We found that, after they emerged in the Netherlands, the H5N1 viruses encountered complicated gene exchange with different viruses circulating in wild birds and formed 16 genotypes. Genotype one (G1) was predominant, being detected in 22 countries, whereas all other genotypes were only detected in one or two continents. H5N1 viruses of four genotypes (G1, G7, G9, and G10) were detected in China; three of these genotypes have been previously reported in other countries. The H5N1 viruses detected in China replicated in mice, with pathogenicity varying among strains; the G1 virus was highly lethal in mice. Moreover, we found that these viruses were antigenically similar to and well matched with the H5-Re14 vaccine strain currently used in China. Our study reveals the overall picture of H5N1 virus evolution and provides insights for the control of these viruses.
Collapse
Affiliation(s)
- Pengfei Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Congcong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Yuancheng Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Xin Xing
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Huihui Kong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Cheng Yan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Liling Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Guobin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China.,National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| |
Collapse
|
22
|
Noisumdaeng P, Phadungsombat J, Weerated S, Wiriyarat W, Puthavathana P. Genetic evolution of hemagglutinin and neuraminidase genes of H5N1 highly pathogenic avian influenza viruses in Thailand. PeerJ 2022; 10:e14419. [PMID: 36518286 PMCID: PMC9744161 DOI: 10.7717/peerj.14419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/28/2022] [Indexed: 12/05/2022] Open
Abstract
Background Ongoing outbreaks of H5N1 highly pathogenic avian influenza (HPAI) viruses and the emergence of the genetic-related hemagglutinin (HA) gene of reassortant H5Nx viruses currently circulating in wild birds and poultries pose a great global public health concern. In this study, we comprehensively analyzed the genetic evolution of Thai H5N1 HA and neuraminidase (NA) genes between 2003 and 2010. The H5N1 Thailand virus clade 2.3.4 was also genetically compared to the currently circulating clade 2.3.4.4 of H5Nx viruses. Methods Full-length nucleotide sequences of 178 HA and 143 NA genes of H5N1 viruses circulating between 2003 and 2010 were phylogenetically analyzed using maximum likelihood (ML) phylogenetic construction. Bayesian phylogenetic trees were reconstructed using BEAST analysis with a Bayesian Markov chain Monte Carlo (MCMC) approach. The maximum clade credibility (MCC) tree was determined, and the time of the most recent common ancestor (tMRCA) was estimated. The H5N1 HA nucleotide sequences of clade 2.3.4 Thailand viruses were phylogenetically analyzed using ML phylogenetic tree construction and analyzed for nucleotide similarities with various subtypes of reassortant H5Nx HA clade 2.3.4.4. Results ML phylogenetic analysis revealed two distinct HA clades, clade 1 and clade 2.3.4, and two distinct NA groups within the corresponding H5 clade 1 viruses. Bayesian phylogenetic reconstruction for molecular clock suggested that the Thai H5N1 HA and NA emerged in 2001.87 (95% HPD: 2001.34-2002.49) and 2002.38 (95% HPD: 2001.99-2002.82), respectively, suggesting that the virus existed before it was first reported in 2004. The Thai H5N1 HA clade 2.3.4 was grouped into corresponding clades 2.3.4, 2.3.4.1, 2.3.4.2, and 2.3.4.3, and shared nucleotide similarities to reassortant H5Nx clade 2.3.4.4 ranged from 92.4-96.8%. Phylogenetic analysis revealed monophyletic H5Nx clade 2.3.4.4 evolved from H5N1 clade 2.3.4. Conclusion H5N1 viruses existed, and were presumably introduced and circulated in avian species in Thailand, before they were officially reported in 2004. HA and NA genes continuously evolved during circulation between 2004 and 2010. This study provides a better understanding of genetic evolution with respect to molecular epidemiology. Monitoring and surveillance of emerging variants/reassortants should be continued.
Collapse
Affiliation(s)
- Pirom Noisumdaeng
- Faculty of Public Health, Thammasat University, Khlong Luang, Pathum Thani, Thailand,Thammasat University Research Unit in Modern Microbiology and Public Health Genomics, Thammasat University, Khlong Luang, Pathum Thani, Thailand
| | - Juthamas Phadungsombat
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand,Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Sasrinakarn Weerated
- Faculty of Public Health, Thammasat University, Khlong Luang, Pathum Thani, Thailand
| | | | - Pilaipan Puthavathana
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
23
|
Zhang C, Cui H, Zhang C, Zhao K, Kong Y, Chen L, Dong S, Chen Z, Pu J, Zhang L, Guo Z, Liu J. Pathogenicity and Transmissibility of Clade 2.3.4.4h H5N6 Avian Influenza Viruses in Mammals. Animals (Basel) 2022; 12:ani12223079. [PMID: 36428307 PMCID: PMC9686590 DOI: 10.3390/ani12223079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022] Open
Abstract
Avian influenza viruses (AIVs) have the potential for cross-species transmission and pandemics. In recent years, clade 2.3.4.4 H5N6 AIVs are prevalent in domestic poultry, posing a threat to the domestic poultry industry and public health. In this study, two strains of H5N6 AIVs were isolated from chickens in Hebei, China, in 2019: A/chicken/Hebei/HB1907/2019(H5N6) and A/chicken/Hebei/HB1905/2019(H5N6). Phylogenetic analysis showed that both viral HA genes clustered in the 2.3.4.4h clade. Receptor binding analysis showed that the HB1905 strain preferentially binds to α-2,3-linked sialic acid (SA) receptors, while the HB1907 strain preferentially binds to α-2,3- and α-2,6-linked sialic acid (SA) receptors. During early infection, the HB1907 strain is highly replicable in MDCK cells, more so than the HB1905 strain. Pathogenicity assays in mice showed that both viruses could replicate in the lungs without prior adaptation, with HB1907 being more highly pathogenic in mice than the HB1905 strain. Significantly, both the HB1905 and HB1907 strains can be transmitted through direct contact among guinea pigs, but the transmission efficiency of the HB1907 strain through contact between guinea pigs is much greater than that of the HB1905 strain. These results strengthen the need for ongoing surveillance and early warning of H5N6 AIVs in poultry.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Huan Cui
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- College of Animal Medicine, Jilin University, Changchun 130062, China
| | - Chunmao Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Kui Zhao
- College of Animal Medicine, Jilin University, Changchun 130062, China
| | - Yunyi Kong
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Shishan Dong
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Zhaoliang Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Jie Pu
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Lei Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- Correspondence: (Z.G.); (J.L.)
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
- Correspondence: (Z.G.); (J.L.)
| |
Collapse
|
24
|
Gao F, Liu X, Dang Y, Duan P, Xu W, Zhang X, Wang S, Luo J, Li X. AddaVax-Adjuvanted H5N8 Inactivated Vaccine Induces Robust Humoral Immune Response against Different Clades of H5 Viruses. Vaccines (Basel) 2022; 10:vaccines10101683. [PMID: 36298548 PMCID: PMC9612011 DOI: 10.3390/vaccines10101683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 12/01/2022] Open
Abstract
Since some cases of human infections with H5N8 avian influenza virus have been reported and caused great concern in recent years, it is important to develop an effective vaccine for human use to prevent a potential H5N8 pandemic. In the present study, a vaccine candidate virus based on newly human-infected A/Astrakhan/3212/2020 H5N8 virus was constructed by reverse genetics (RG) technology. The immunogenicity of H5N8 whole virion inactivated vaccine was evaluated by various doses of vaccine antigen formulated with squalene-based adjuvant (AddaVax), aluminum hydroxide (Al(OH)3) or without adjuvant in mice. The results showed AddaVax-adjuvanted H5N8 inactivated vaccine could stimulate the mice to produce a stronger protective immune response with higher titers of IgG antibodies, hemagglutination inhibition (HI), neuraminidase inhibition (NI) and microneutralization (MN) antibodies than vaccine formulations with Al(OH)3 adjuvant or without adjuvant, and achieve a dose-sparing effect. Moreover, the AddaVax-adjuvanted formulation also exhibited potent cross-reactive response in HI antibodies against different clades of H5 viruses. A significant correlation and a curve fitting among HI, NI and MN were found by the correlation analysis to predict the protective effect of the vaccine. With these findings, our study demonstrates that AddaVax adjuvant can enhance the immunogenicity of H5N8 inactivated vaccine remarkably, and proposes an effective strategy for dealing with a potential H5N8 virus pandemic.
Collapse
|
25
|
Wild Bird Surveillance in the Gauteng Province of South Africa during the High-Risk Period for Highly Pathogenic Avian Influenza Virus Introduction. Viruses 2022; 14:v14092027. [PMID: 36146838 PMCID: PMC9504564 DOI: 10.3390/v14092027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Migratory birds carried clade 2.3.4.4B H5Nx highly pathogenic avian influenza (HPAI) viruses to South Africa in 2017, 2018 and 2021, where the Gauteng Province is a high-risk zone for virus introduction. Here, we combined environmental faecal sampling with sensitive rRT-PCR methods and direct Ion Torrent sequencing to survey wild populations between February and May 2022. An overall IAV incidence of 42.92% (100/231) in water bird faecal swab pools or swabs from moribund or dead European White Storks (Ciconia ciconia) was detected. In total, 7% of the IAV-positive pools tested H5-positive, with clade 2.3.4.4B H5N1 HPAI confirmed in the storks; 10% of the IAV-positive samples were identified as H9N2, and five complete H9N2 genomes were phylogenetically closely related to a local 2021 wild duck H9N2 virus, recent Eurasian LPAI viruses or those detected in commercial ostriches in the Western and Eastern Cape Provinces since 2018. H3N1, H4N2, H5N2 and H8Nx subtypes were also identified. Targeted surveillance of wild birds using environmental faecal sampling can thus be effectively applied under sub-Saharan African conditions, but region-specific studies should first be used to identify peak prevalence times which, in southern Africa, is linked to the peak rainfall period, when ducks are reproductively active.
Collapse
|
26
|
Gass JD, Kellogg HK, Hill NJ, Puryear WB, Nutter FB, Runstadler JA. Epidemiology and Ecology of Influenza A Viruses among Wildlife in the Arctic. Viruses 2022; 14:1531. [PMID: 35891510 PMCID: PMC9315492 DOI: 10.3390/v14071531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/10/2022] [Accepted: 07/10/2022] [Indexed: 02/01/2023] Open
Abstract
Arctic regions are ecologically significant for the environmental persistence and geographic dissemination of influenza A viruses (IAVs) by avian hosts and other wildlife species. Data describing the epidemiology and ecology of IAVs among wildlife in the arctic are less frequently published compared to southern temperate regions, where prevalence and subtype diversity are more routinely documented. Following PRISMA guidelines, this systematic review addresses this gap by describing the prevalence, spatiotemporal distribution, and ecological characteristics of IAVs detected among wildlife and the environment in this understudied region of the globe. The literature search was performed in PubMed and Google Scholar using a set of pre-defined search terms to identify publications reporting on IAVs in Arctic regions between 1978 and February 2022. A total of 2125 articles were initially screened, 267 were assessed for eligibility, and 71 articles met inclusion criteria. IAVs have been detected in multiple wildlife species in all Arctic regions, including seabirds, shorebirds, waterfowl, seals, sea lions, whales, and terrestrial mammals, and in the environment. Isolates from wild birds comprise the majority of documented viruses derived from wildlife; however, among all animals and environmental matrices, 26 unique low and highly pathogenic subtypes have been characterized in the scientific literature from Arctic regions. Pooled prevalence across studies indicates 4.23% for wild birds, 3.42% among tested environmental matrices, and seroprevalences of 9.29% and 1.69% among marine and terrestrial mammals, respectively. Surveillance data are geographically biased, with most data from the Alaskan Arctic and many fewer reports from the Russian, Canadian, North Atlantic, and Western European Arctic. We highlight multiple important aspects of wildlife host, pathogen, and environmental ecology of IAVs in Arctic regions, including the role of avian migration and breeding cycles for the global spread of IAVs, evidence of inter-species and inter-continental reassortment at high latitudes, and how climate change-driven ecosystem shifts, including changes in the seasonal availability and distribution of dietary resources, have the potential to alter host-pathogen-environment dynamics in Arctic regions. We conclude by identifying gaps in knowledge and propose priorities for future research.
Collapse
Affiliation(s)
- Jonathon D. Gass
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.K.K.); (W.B.P.); (F.B.N.); (J.A.R.)
| | - Hunter K. Kellogg
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.K.K.); (W.B.P.); (F.B.N.); (J.A.R.)
| | - Nichola J. Hill
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA;
| | - Wendy B. Puryear
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.K.K.); (W.B.P.); (F.B.N.); (J.A.R.)
| | - Felicia B. Nutter
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.K.K.); (W.B.P.); (F.B.N.); (J.A.R.)
| | - Jonathan A. Runstadler
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.K.K.); (W.B.P.); (F.B.N.); (J.A.R.)
| |
Collapse
|
27
|
Isolation of Genetically Diverse H5N8 Avian Influenza Viruses in Poultry in Egypt, 2019–2021. Viruses 2022; 14:v14071431. [PMID: 35891409 PMCID: PMC9320977 DOI: 10.3390/v14071431] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
The global spread of avian influenza virus (AIV) of clade 2.3.4.4b since 2016 has caused severe losses in wild birds and poultry and has posed a risk for the infection of mammals including humans. The vaccination of poultry has been used to limit the spread of the virus and mitigate its socioeconomic impact. Here, we describe H5N8 epidemics in chickens, turkeys and ducks from different localities in Egypt from 2019 to 2021. About 41.7% (n = 88/211) flocks were tested positive by RT-qPCR for H5N8 viruses with prevalence rates of 45.1% (n = 65/144) and 34.3% (n = 23/67) in vaccinated and non-vaccinated flocks, respectively. A sequence analysis of the hemagglutinin and neuraminidase genes indicated not only the multiple introduction events of H5N8 viruses in Egypt but also the establishment of endemic viruses in commercial poultry in 2020/2021. The recent H5N8 viruses in poultry in Egypt are genetically distinct from the majority of licensed vaccines used in the field. Together, our findings indicate that poultry in Egypt is an endemic center for clade 2.3.4.4b in the Middle East. The efficiency of current vaccines should be regularly evaluated and updated to fully protect poultry flocks in Egypt against H5N8 viruses.
Collapse
|
28
|
Yang F, Dong D, Wu D, Zhu L, Liu F, Yao H, Wu N, Ye C, Wu H. A multiplex real-time RT-PCR method for detecting H5, H7 and H9 subtype avian influenza viruses in field and clinical samples. Virus Res 2021; 309:198669. [PMID: 34954007 DOI: 10.1016/j.virusres.2021.198669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022]
Abstract
In recent years, H5 and H7 subtypes of highly pathogenic avian influenza viruses (HPAIVs) have been identified in poultry worldwide, resulting in large economic losses to poultry production. Furthermore, H9N2 low pathogenic AIVs are reported to provide internal genes for generating novel reassortant AIVs, leading to potential pandemic risks. To establish an accurate, sensitive and convenient diagnostic method for H5, H7 and H9 subtype AIVs in Eurasian lineage, four groups of specific primers and probes were designed based on the conserved fragments of M, H5, H7 and H9 genes, and a multiplex real-time RT-PCR (RRT-PCR) method was established. High sensitivity was achieved for the multiplex RRT-PCR approach, with a detection limit of 1-10 copies (plasmid DNA) per reaction. The specificity of the method was evaluated using diverse subtypes of AIVs and other avian respiratory viruses isolated in eastern China over the last 9 years. Compared with virus isolation, a higher consistency was achieved when assessing 135 field samples and 126 clinical samples. The results showed that the multiplex RRT-PCR method is a fast, convenient and practical method for AIV clinical detection and epidemiological analysis.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Dalu Dong
- Hangzhou Biotest Biotech Co.,Ltd., 17 Futai Road, Zhongtai Street, Yuhang District, Hangzhou 311121, Zhejiang, China
| | - Danna Wu
- Hangzhou Biotest Biotech Co.,Ltd., 17 Futai Road, Zhongtai Street, Yuhang District, Hangzhou 311121, Zhejiang, China
| | - Linwei Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chunsheng Ye
- Hangzhou Biotest Biotech Co.,Ltd., 17 Futai Road, Zhongtai Street, Yuhang District, Hangzhou 311121, Zhejiang, China.
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
29
|
Soda K, Yamane M, Hidaka C, Miura K, Ung TTH, Nguyen HLK, Ito H, LE MQ, Ito T. Prior infection with antigenically heterologous low pathogenic avian influenza viruses interferes with the lethality of the H5 highly pathogenic strain in domestic ducks. J Vet Med Sci 2021; 83:1899-1906. [PMID: 34732612 PMCID: PMC8762415 DOI: 10.1292/jvms.21-0515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Low and highly pathogenic avian influenza viruses (LPAIVs and HPAIVs, respectively) have been co-circulating in poultry populations in Asian, Middle Eastern, and African countries. In our avian-flu surveillance in Vietnamese domestic ducks, viral genes of LPAIV and HPAIV have been frequently detected in the same individual. To assess the influence of LPAIV on the pathogenicity of H5 HPAIV in domestic ducks, an experimental co-infection study was performed. One-week-old domestic ducks were inoculated intranasally and orally with PBS (control) or 106 EID50 of LPAIVs (A/duck/Vietnam/LBM678/2014 (H6N6) or A/Muscovy duck/Vietnam/LBM694/2014 (H9N2)). Seven days later, these ducks were inoculated with HPAIV (A/Muscovy duck/Vietnam/LBM808/2015 (H5N6)) in the same manner. The respective survival rates were 100% and 50% in ducks pre-infected with LBM694 or LBM678 strains and both higher than the survival of the control group (25%). The virus titers in oral/cloacal swabs of each LPAIV pre-inoculation group were significantly lower at 3-5 days post-HPAIV inoculation. Notably, almost no virus was detected in swabs from surviving individuals of the LBM678 pre-inoculation group. Antigenic cross-reactivity among the viruses was not observed in the neutralization test. These results suggest that pre-infection with LPAIV attenuates the pathogenicity of HPAIV in domestic ducks, which might be explained by innate and/or cell-mediated immunity induced by the initial infection with LPAIV.
Collapse
Affiliation(s)
- Kosuke Soda
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University
| | - Maya Yamane
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University
| | - Chiharu Hidaka
- The United Graduate School of Veterinary Science, Yamaguchi University
| | - Kozue Miura
- Vietnam Research Station, Nagasaki University, c/o National Institute of Hygiene and Epidemiology.,Present address: Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Trang T H Ung
- Department of Virology, National Institute of Hygiene and Epidemiology
| | - Hang L K Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology
| | - Hiroshi Ito
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University
| | - Mai Q LE
- Department of Virology, National Institute of Hygiene and Epidemiology
| | - Toshihiro Ito
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University
| |
Collapse
|
30
|
Soda K, Ozaki H, Ito H, Usui T, Okamatsu M, Matsuno K, Sakoda Y, Yamaguchi T, Ito T. Dynamics of invasion and dissemination of H5N6 highly pathogenic avian influenza viruses in 2016-2017 winter in Japan. J Vet Med Sci 2021; 83:1891-1898. [PMID: 34732610 PMCID: PMC8762421 DOI: 10.1292/jvms.21-0459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Large highly pathogenic avian influenza (HPAI) outbreaks caused by clade 2.3.4.4e H5N6
viruses occurred in Japan during the 2016–2017 winter. To date, several reports regarding
these outbreaks have been published, however a comprehensive study including geographical
and time course validations has not been performed. Herein, 58 Japanese HPAI virus (HPAIV)
isolates from the 2016–2017 season were added for phylogenetic analyses and the antigenic
relationships among the causal viruses were elucidated. The locations where HPAIVs were
found in the early phase of the outbreaks were clustered into three regions. Genotypes C1,
C5, and C6–8 HPAIVs were found in specific areas. Two strains had phylogenetically
distinct hemagglutinin (HA) and non-structural (NS) genes from other previously identified
strains, respectively. The estimated latest divergence date between the viral genotypes
suggests that genetic reassortment occurred in bird populations before their winter
migration to Japan. Antigenic differences in 2016–2017 HPAIVs were not observed,
suggesting that antibody pressure in the birds did not contribute to the selection of
HPAIV genotypes. In the late phase, the majority of HPAI cases in wild birds occurred
south of the lake freezing line. At the end of the outbreak, HPAI re-occurred in East
coast region, which may be due to the spring migration route of Anas bird
species. These trends were similar to those observed in the 2010–2011 outbreaks,
suggesting there is a typical pattern of seeding and dissemination of HPAIV in Japan.
Collapse
Affiliation(s)
- Kosuke Soda
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University
| | - Hiroichi Ozaki
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University
| | - Hiroshi Ito
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University
| | - Tatsufumi Usui
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University
| | - Keita Matsuno
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University.,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University.,One Health Research Center, Hokkaido University
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University.,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University
| | - Tsuyoshi Yamaguchi
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University
| | - Toshihiro Ito
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University
| |
Collapse
|
31
|
Xiang B, Song J, Chen L, Liang J, Li X, Yu D, Lin Q, Liao M, Ren T, Xu C. Duck-origin H5N6 avian influenza viruses induce different pathogenic and inflammatory effects in mice. Transbound Emerg Dis 2021; 68:3509-3518. [PMID: 33316151 DOI: 10.1111/tbed.13956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/19/2020] [Accepted: 12/09/2020] [Indexed: 12/28/2022]
Abstract
Since 2013, H5N6 highly pathogenic avian influenza viruses have caused considerable economic losses in the poultry industry and have caused 24 laboratory-confirmed human cases. In this study, we isolated nine (B1-B9) H5N6 viruses from healthy ducks in Guangdong Province, Southern China from December 2018 to April 2019. Phylogenetic analysis revealed that B1, B2, B3, B4, B5, B7, B8, and B9 clustered into the G1.1 genotype and shared high sequence similarity with human H5N6 isolates from Southern China in 2017 and 2018. Meanwhile, B6 clustered into the G1.1.9 genotype. The hemagglutinin (HA), neuraminidase (NA) and nonstructural protein (NS) gene segments of B6 were closely related to the human H5N6 isolates, while the other genomic segments were closely related to H5N6 viruses isolated from waterfowl in Southern China. Compared to B7, B6 had higher pathogenicity and induced stronger inflammatory responses in mice. B6 carried a full-length PB1-F2 protein (90 aa), while the rest carried an 11-amino acid C-terminal-truncated PB1-F2. The PB1-F2 protein may increase the virulence of B6 compared to that of B7. Our findings provide insight into the pathogenic mechanisms of H5N6 viruses in mammals and emphasize the need for continued surveillance of circulating H5N6 viruses in ducks.
Collapse
Affiliation(s)
- Bin Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jie Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Libin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jianpeng Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Xin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Deshui Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Qiuyan Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Chenggang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
32
|
Bui CHT, Kuok DIT, Yeung HW, Ng KC, Chu DKW, Webby RJ, Nicholls JM, Peiris JSM, Hui KPY, Chan MCW. Risk Assessment for Highly Pathogenic Avian Influenza A(H5N6/H5N8) Clade 2.3.4.4 Viruses. Emerg Infect Dis 2021; 27:2619-2627. [PMID: 34545790 PMCID: PMC8462306 DOI: 10.3201/eid2710.210297] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The numerous global outbreaks and continuous reassortments of highly pathogenic avian influenza (HPAI) A(H5N6/H5N8) clade 2.3.4.4 viruses in birds pose a major risk to the public health. We investigated the tropism and innate host responses of 5 recent HPAI A(H5N6/H5N8) avian isolates of clades 2.3.4.4b, e, and h in human airway organoids and primary human alveolar epithelial cells. The HPAI A(H5N6/H5N8) avian isolates replicated productively but with lower competence than the influenza A(H1N1)pdm09, HPAI A(H5N1), and HPAI A(H5N6) isolates from humans in both or either models. They showed differential cellular tropism in human airway organoids; some infected all 4 major epithelial cell types: ciliated cells, club cells, goblet cells, and basal cells. Our results suggest zoonotic potential but low transmissibility of the HPAI A(H5N6/H5N8) avian isolates among humans. These viruses induced low levels of proinflammatory cytokines/chemokines, which are unlikely to contribute to the pathogenesis of severe disease.
Collapse
|
33
|
Reassortant Highly Pathogenic H5N6 Avian Influenza Virus Containing Low Pathogenic Viral Genes in a Local Live Poultry Market, Vietnam. Curr Microbiol 2021; 78:3835-3842. [PMID: 34546415 PMCID: PMC8486720 DOI: 10.1007/s00284-021-02661-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/08/2021] [Indexed: 11/25/2022]
Abstract
Sites of live poultry trade and marketing are hot spots for avian influenza virus (AIV) transmission. We conducted active surveillance at a local live poultry market (LPM) in northern Vietnamese provinces in December 2016. Feces samples from the market were collected and tested for AIV. A new reassorted AIV strain was isolated from female chickens, named A/chicken/Vietnam/AI-1606/2016 (H5N6), and was found to belong to group C of clade 2.3.4.4 H5N6 highly pathogenic (HP) AIVs. The neuraminidase gene belongs to the reassortant B type. The viral genome also contained polymerase basic 2 and polymerase acidic, which were most closely related to domestic-duck-origin low pathogenic AIVs in Japan (H3N8) and Mongolia (H4N6). The other six genes were most closely related to poultry-origin H5N6 HP AIVs in Vietnam and had over 97% sequence identity with human AIV isolate A/Guangzhou/39715/2014 (H5N6). The new reassorted AIV isolate A/chicken/Vietnam/AI-1606/2016 (H5N6) identified in this study exemplifies AIVs reassortment and evolution through contact among wild birds, poultry farms, and LPMs. Therefore, active surveillance of AIVs is necessary to prevent potential threats to human and animal health.
Collapse
|
34
|
Pyankova OG, Susloparov IM, Moiseeva AA, Kolosova NP, Onkhonova GS, Danilenko AV, Vakalova EV, Shendo GL, Nekeshina NN, Noskova LN, Demina JV, Frolova NV, Gavrilova EV, Maksyutov RA, Ryzhikov AB. Isolation of clade 2.3.4.4b A(H5N8), a highly pathogenic avian influenza virus, from a worker during an outbreak on a poultry farm, Russia, December 2020. ACTA ACUST UNITED AC 2021; 26. [PMID: 34142650 PMCID: PMC8212591 DOI: 10.2807/1560-7917.es.2021.26.24.2100439] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study presents the isolation of influenza A(H5N8) virus clade 2.3.4.4b from a poultry worker during an outbreak of highly pathogenic avian influenza A(H5N8) among chickens at a poultry farm in Astrakhan, Russia in December 2020. Nasopharyngeal swabs collected from seven poultry workers were positive for influenza A(H5N8), as confirmed by RT-PCR and sequencing. The influenza A(H5N8) virus was isolated from one of the human specimens and characterised. Sporadic human influenza A(H5)2.3.4.4. infections represent a possible concern for public health.
Collapse
Affiliation(s)
- Olga G Pyankova
- State Research Centre of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, Russia
| | - Ivan M Susloparov
- State Research Centre of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, Russia
| | - Anastasia A Moiseeva
- State Research Centre of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, Russia
| | - Natalia P Kolosova
- State Research Centre of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, Russia
| | - Galina S Onkhonova
- State Research Centre of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, Russia
| | - Aleksey V Danilenko
- State Research Centre of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, Russia
| | - Elena V Vakalova
- Hygienic and Epidemiological Centre of Astrakhan Region, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor) Astrakhan, Russia
| | - Gennady L Shendo
- Hygienic and Epidemiological Centre of Astrakhan Region, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor) Astrakhan, Russia
| | - Natalia N Nekeshina
- Astrakhan Regional office of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor), Astrakhan, Russia
| | - Lyudmila N Noskova
- Astrakhan Regional office of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor), Astrakhan, Russia
| | - Julia V Demina
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor), Moscow, Russia
| | - Natalia V Frolova
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor), Moscow, Russia
| | - Elena V Gavrilova
- State Research Centre of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, Russia
| | - Rinat A Maksyutov
- State Research Centre of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, Russia
| | - Aleksandr B Ryzhikov
- State Research Centre of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, Russia
| |
Collapse
|
35
|
Briand FX, Niqueux E, Schmitz A, Martenot C, Cherbonnel M, Massin P, Kerbrat F, Chatel M, Guillemoto C, Guillou-Cloarec C, Ogor K, Le Prioux A, Allée C, Beven V, Hirchaud E, Blanchard Y, Scoizec A, Le Bouquin S, Eterradossi N, Grasland B. Highly Pathogenic Avian Influenza A(H5N8) Virus Spread by Short- and Long-Range Transmission, France, 2016-17. Emerg Infect Dis 2021; 27:508-516. [PMID: 33496244 PMCID: PMC7853534 DOI: 10.3201/eid2702.202920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We detected 3 genotypes of highly pathogenic avian influenza A(H5N8) virus in France during winter 2016–17. Genotype A viruses caused dramatic economic losses in the domestic duck farm industry in southwestern France. Our phylogenetic analysis suggests that genotype A viruses formed 5 distinct geographic clusters in southwestern France. In some clusters, local secondary transmission might have been started by a single introduction. The intensity of the viral spread seems to correspond to the density of duck holdings in each production area. To avoid the introduction of disease into an unaffected area, it is crucial that authorities limit the movements of potentially infected birds.
Collapse
|
36
|
Huang CW, Chen LH, Lee DH, Liu YP, Li WC, Lee MS, Chen YP, Lee F, Chiou CJ, Lin YJ. Evolutionary history of H5 highly pathogenic avian influenza viruses (clade 2.3.4.4c) circulating in Taiwan during 2015-2018. INFECTION GENETICS AND EVOLUTION 2021; 92:104885. [PMID: 33932612 DOI: 10.1016/j.meegid.2021.104885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/13/2022]
Abstract
The highly pathogenic avian influenza (HPAI) virus A/goose/Guangdong/1/96 H5N1 (Gs/GD) lineage has been transmitted globally and has caused deaths in wild birds, poultry, and humans. Clade 2.3.4.4c, one of the subclades of the Gs/GD lineage, spread through Taiwan in late 2014 and become an endemic virus. We analyzed 239 newly sequenced HPAI clade H5Nx isolates to explore the phylogenetic relationships, divergence times, and evolutionary history of Taiwan HPAI H5Nx viruses from 2015 to 2018. Overall, 15 reassortant genotypes were identified among H5N2, H5N3, and H5N8 viruses. Maximum likelihood and Bayesian phylogenies based on homologous hemagglutinin (HA) and matrix protein (MP) genes suggest that Taiwan HPAI H5Nx viruses share a most recent common ancestor that has diversified since October 2014 and is closely related to two HPAI H5N8 viruses identified from wild birds in Japan. Two waves of HPAI caused by multiple reassortants were identified, the first occurring in late 2014 and the second beginning in late 2016. The first wave consisted of seven H5Nx reassortants that spread through Taiwan. In the second wave, eight novel reassortants were detected which had newly introduced internal genes, mostly derived from the avian influenza virus gene pool maintained in wild birds in Asia. Phylodynamic reconstruction using the Bayesian Skygrid model revealed varied fluctuating patterns of relative genetic diversity among reassortants. The mean evolutionary rate also varied among reassortants and subtypes. The neuraminidase (NA) gene evolved faster than the HA gene in H5N2 viruses, while HA evolved faster than NA in H5N8 viruses. The HA mean evolutionary rate ranged from 6.10 × 10-3 to 7.73 × 10-3 and from 5.81 × 10-3 to 9.45 × 10-3 substitutions/site/year for H5N2 and H5N8 viruses, respectively. The continuous circulation of HPAI H5Nx variants and the emergence of novel reassortants in Taiwan highlight that the surveillance, biosecurity, and management systems of poultry farms need to be improved and carefully executed.
Collapse
Affiliation(s)
- Chih-Wei Huang
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan.
| | - Li-Hsuan Chen
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan.
| | - Dong-Hun Lee
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA.
| | - Yu-Pin Liu
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan.
| | - Wan-Chen Li
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan.
| | - Ming-Shiuh Lee
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan.
| | - Yen-Ping Chen
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan.
| | - Fan Lee
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan.
| | - Chwei-Jang Chiou
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan.
| | - Yu-Ju Lin
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan.
| |
Collapse
|
37
|
Moatasim Y, Kandeil A, Mostafa A, Kutkat O, Sayes ME, El Taweel AN, AlKhazindar M, AbdElSalam ET, El-Shesheny R, Kayali G, Ali MA. Impact of Individual Viral Gene Segments from Influenza A/H5N8 Virus on the Protective Efficacy of Inactivated Subtype-Specific Influenza Vaccine. Pathogens 2021; 10:pathogens10030368. [PMID: 33808583 PMCID: PMC8003407 DOI: 10.3390/pathogens10030368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/18/2023] Open
Abstract
Since its emergence in 2014, the highly pathogenic avian influenza H5N8 virus has continuously and rapidly spread worldwide in the poultry sector resulting in huge economic losses. A typical inactivated H5N8 vaccine is prepared using the six internal genes from A/PR8/1934 (H1N1) and the two major antigenic proteins (HA and NA) from the circulating H5N8 strain with the HA modified to a low pathogenic form (PR8HA/NA-H5N8). The contribution of the other internal proteins from H5N8, either individually or in combination, to the overall protective efficacy of PR8-based H5N8 vaccine has not been investigated. Using reverse genetics, a set of PR8-based vaccines expressing the individual proteins from an H5N8 strain were rescued and compared to the parent PR8 and low pathogenic H5N8 strains and the commonly used PR8HA/NA-H5N8. Except for the PR8-based vaccine strains expressing the HA of H5N8, none of the rescued combinations could efficiently elicit virus-neutralizing antibodies. Compared to PR8, the non-HA viral proteins provided some protection to infected chickens six days post infection. We assume that this late protection was related to cell-based immunity rather than antibody-mediated immunity. This may explain the slight advantage of using full low pathogenic H5N8 instead of PR8HA/NA-H5N8 to improve protection by both the innate and the humoral arms of the immune system.
Collapse
Affiliation(s)
- Yassmin Moatasim
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Mohamed El Sayes
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Ahmed N. El Taweel
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Maha AlKhazindar
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Gamaa Street, Giza 12613, Egypt; (M.A.); (E.T.A.)
| | - Elsayed T. AbdElSalam
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Gamaa Street, Giza 12613, Egypt; (M.A.); (E.T.A.)
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
- St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ghazi Kayali
- Human Link, Dubai, United Arab Emirates
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, TX 77030, USA
- Correspondence: (G.K.); (M.A.A.)
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
- Correspondence: (G.K.); (M.A.A.)
| |
Collapse
|
38
|
Bertran K, Kassa A, Criado MF, Nuñez IA, Lee DH, Killmaster L, Sá E Silva M, Ross TM, Mebatsion T, Pritchard N, Swayne DE. Efficacy of recombinant Marek's disease virus vectored vaccines with computationally optimized broadly reactive antigen (COBRA) hemagglutinin insert against genetically diverse H5 high pathogenicity avian influenza viruses. Vaccine 2021; 39:1933-1942. [PMID: 33715903 DOI: 10.1016/j.vaccine.2021.02.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 11/27/2022]
Abstract
The genetic and antigenic drift associated with the high pathogenicity avian influenza (HPAI) viruses of Goose/Guangdong (Gs/GD) lineage and the emergence of vaccine-resistant field viruses underscores the need for a broadly protective H5 influenza A vaccine. Here, we tested experimental vector herpesvirus of turkey (vHVT)-H5 vaccines containing either wild-type clade 2.3.4.4A-derived H5 inserts or computationally optimized broadly reactive antigen (COBRA) inserts with challenge by homologous and genetically divergent H5 HPAI Gs/GD lineage viruses in chickens. Direct assessment of protection was confirmed for all the tested constructs, which provided clinical protection against the homologous and heterologous H5 HPAI Gs/GD challenge viruses and significantly decreased oropharyngeal shedding titers compared to the sham vaccine. The cross reactivity was assessed by hemagglutinin inhibition (HI) and focus reduction assay against a panel of phylogenetically and antigenically diverse H5 strains. The COBRA-derived H5 inserts elicited antibody responses against antigenically diverse strains, while the wild-type-derived H5 vaccines elicited protection mostly against close antigenically related clades 2.3.4.4A and 2.3.4.4D viruses. In conclusion, the HVT vector, a widely used replicating vaccine platform in poultry, with H5 insert provides clinical protection and significant reduction of viral shedding against homologous and heterologous challenge. In addition, the COBRA-derived inserts have the potential to be used against antigenically distinct co-circulating viruses and future drift variants.
Collapse
Affiliation(s)
- Kateri Bertran
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934 College Station Rd, Athens, GA 30605, USA.
| | - Aemro Kassa
- Boehringer Ingelheim Animal Health USA Inc, 1730 Olympic Drive, Athens, GA 30601, USA.
| | - Miria F Criado
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934 College Station Rd, Athens, GA 30605, USA.
| | - Ivette A Nuñez
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA.
| | - Dong-Hun Lee
- Department of Pathobiology & Veterinary Science, University of Connecticut, Storrs, CT 06269, USA.
| | - Lindsay Killmaster
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934 College Station Rd, Athens, GA 30605, USA.
| | - Mariana Sá E Silva
- Boehringer Ingelheim Animal Health USA Inc, 1730 Olympic Drive, Athens, GA 30601, USA.
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| | - Teshome Mebatsion
- Boehringer Ingelheim Animal Health USA Inc, 1730 Olympic Drive, Athens, GA 30601, USA.
| | - Nikki Pritchard
- Boehringer Ingelheim Animal Health USA Inc, 1112 Airport Parkway, Gainesville, GA 30503, USA.
| | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934 College Station Rd, Athens, GA 30605, USA.
| |
Collapse
|
39
|
Shih PW, Chan TC, King CC. Risk mapping of highly pathogenic avian influenza H5 during 2012-2017 in Taiwan with spatial bayesian modelling: Implications for surveillance and control policies. Transbound Emerg Dis 2021; 69:385-395. [PMID: 33452860 DOI: 10.1111/tbed.13991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 11/30/2022]
Abstract
During 2012-2017, a total of 1,144 highly pathogenic avian influenza (HPAI) H5 outbreaks were reported in Taiwan. We conjectured the current 3-km radius of the post-outbreak containment policy could fail to effectively alleviate the current ongoing epidemics of HPAI H5 in Taiwan. The high intensity of localized transmission of HPAI H5 at certain focal hotspots was identified to follow the spatial distribution of poultry-raising locations through our hotspot analyses on the HPAI H5 outbreak locations from 2015 to 2017. We then applied 3-, 5- and 7-km circular buffer zones to 15,444 registered poultry-raising locations to inspect the characteristics of the poultry-raising neighbourhood. Three spatial regression models using Bayesian inference were established to infer the risks attributable to poultry-raising characteristics in the corresponding buffer areas. The different buffer radii were treated as a sensitivity analysis of the influential range of neighbouring farms on the HPAI H5 outbreak occurrence, so as to evaluate the effective radius for post-outbreak containment. Evidence showed that the risks of outbreak occurrence were associated with increasing numbers of poultry-raising locations in both 3-km (relative risk [RR] 1.005, 95% confidence interval [CI] 1.002-1.008) and 5-km buffer areas (RR 1.005, 95% CI 1.004-1.007), whereas in the 7-km buffer model, no association between densely populated locations and increasing risks of outbreaks was observed (RR 1.000, 95% CI 0.999-1.001). Therefore, an extension to a 7-km radius for the post-outbreak containment policy (rather than a 3-km radius as in the current policy) is recommended to effectively mitigate further spreading of HPAI H5 outbreaks among neighbouring farms. Overall, we demonstrated that the densely populated locations with multiple poultry species raised in proximity as defined with 3-, 5- and 7-km buffer areas facilitated H5 HPAI outbreak diffusion and shaped the scale of HPAI H5 epidemics in Taiwan.
Collapse
Affiliation(s)
- Pin-Wei Shih
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ta-Chien Chan
- Research Center for Humanities and Social Sciences, Academia Sinica, Taipei, Taiwan
| | - Chwan-Chuen King
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
40
|
Cheng YC, Chang SC. Development and biochemical characterization of the monoclonal antibodies for specific detection of the emerging H5N8 and H5Nx avian influenza virus hemagglutinins. Appl Microbiol Biotechnol 2020; 105:235-245. [PMID: 33245391 DOI: 10.1007/s00253-020-11035-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/14/2020] [Accepted: 11/23/2020] [Indexed: 01/19/2023]
Abstract
The highly pathogenic avian influenza (HPAI) H5N8 virus has been detected in wild birds and poultry worldwide. The threat caused by HPAI H5N8 virus still exists with concerns for human infection. The preparedness for epidemic prevention and decreasing the agricultural and economic lost is extremely important. Hemagglutinin (HA), a surface glycoprotein of influenza viruses, is considered as the major target for detection of the influenza virus subtype in the infected samples. In this study, the recombinant H5N8 HA1 and HA2 proteins were expressed in Escherichia coli, and were utilized to generate two monoclonal antibodies, named 7H6C and YC8. 7H6C can bind the HA proteins of H5N1 and H5N8, but cannot bind the HA proteins of H1N1, H3N2, and H7N9, indicating that it has H5-subtype specificity. In contrast, YC8 can bind the HA proteins of H1N1, H5N1, and H5N8, but cannot bind the HA proteins of H3N2 and H7N9, indicating that it has H1-subtype and H5-subtype specificity. The epitope sequences recognized by 7H6C are located in the head domain of H5N8 HA, and are highly conserved in H5 subtypes. The epitope sequences recognized by YC8 are located in the stalk domain of H5N8 HA, and are highly conserved among the H1 and H5 subtypes. 7H6C and YC8 can be applied for specific detection of the HA proteins of H5N8 and H5Nx avian influenza viruses. KEY POINTS: • The mAb 7H6C or YC8 was generated by using the HA1 or HA2 of the HPAI H5N8 virus as the immunogen. • 7H6C recognized the head domain of H5N8 HA, and YC8 recognized the stalk domain of H5N8 HA. • 7H6C and YC8 can detect the HA proteins of H5Nx subtypes specifically.
Collapse
Affiliation(s)
- Yu-Chen Cheng
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Shih-Chung Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan.
- Center of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
41
|
Zhang T, Fan K, Zhang X, Xu Y, Xu J, Xu B, Li R. Diversity of avian influenza A(H5N6) viruses in wild birds in southern China. J Gen Virol 2020; 101:902-909. [PMID: 32519938 PMCID: PMC7654745 DOI: 10.1099/jgv.0.001449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/22/2020] [Indexed: 11/18/2022] Open
Abstract
The predominance of H5N6 in ducks and continuous human cases have heightened its potential threat to public health in China. Therefore, the detection of emerging variants of H5N6 avian influenza viruses has become a priority for pandemic preparedness. Questions remain as to its origin and circulation within the wild bird reservoir and interactions at the wild-domestic interface. Samples were collected from migratory birds in Poyang Lake, Jiangxi Province, PR China during the routine bird ring survey in 2014-16. Phylogenetic and coalescent analyses were conducted to uncover the evolutionary relationship among viruses circulating in wild birds. Here, we report the potential origin and phylogenetic diversity of H5N6 viruses isolated from wild birds in Poyang Lake. Sequence analyses indicated that Jiangxi H5N6 viruses most likely evolved from Eurasian-derived H5Nx and H6N6 viruses through multiple reassortment events. Crucially, the diversity of the HA gene implies that these Jiangxi H5N6 viruses have diverged into two primary clades - clade 2.3.4.4 and clade 2.3.2.1 c. Phylogenetic analysis revealed two independent pathways of reassortment during 2014-16 that might have facilitated the generation of emerging variants within wild bird populations as well as inter-species infections. Our findings contribute to our understanding of the genetic diversification of H5N6 viruses in the wild bird population. These results highlight the necessity of large-scale surveillance of wild birds in the Poyang Lake area to address the threat of regional epizootic epidemics and attendant pandemics.
Collapse
Affiliation(s)
- Tao Zhang
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing, PR China
- Centre for Healthy Cities, Institute for China Sustainable Urbanization, Tsinghua University, Beijing, PR China
| | - Kai Fan
- College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Xue Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Yujuan Xu
- College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Jian Xu
- School of Geography and Environmental Science, Ministry of Education’s Key Laboratory of Poyang Lake Wetland and Watershed Research, Jiangxi Normal University, Nanchang, Jiangxi, PR China
| | - Bing Xu
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing, PR China
- Centre for Healthy Cities, Institute for China Sustainable Urbanization, Tsinghua University, Beijing, PR China
| | - Ruiyun Li
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
42
|
Bialy D, Shelton H. Functional neuraminidase inhibitor resistance motifs in avian influenza A(H5Nx) viruses. Antiviral Res 2020; 182:104886. [PMID: 32750468 PMCID: PMC7534037 DOI: 10.1016/j.antiviral.2020.104886] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
Neuraminidase inhibitors (NAIs) are antiviral agents recommended worldwide to treat or prevent influenza virus infections in humans. Past influenza virus pandemics seeded by zoonotic infection by avian influenza viruses (AIV) as well as the increasing number of human infections with AIV have shown the importance of having information about resistance to NAIs by avian NAs that could cross the species barrier. In this study we introduced four NAI resistance-associated mutations (N2 numbering) previously found in human infections into the NA of three current AIV subtypes of the H5Nx genotype that threaten the poultry industry and human health: highly pathogenic H5N8, H5N6 and H5N2. Using the established MUNANA assay we showed that a R292K substitution in H5N6 and H5N2 viruses significantly reduced susceptibility to three licenced NAIs: oseltamivir, zanamivir and peramivir. In contrast the mutations E119V, H274Y and N294S had more variable effects with NAI susceptibility being drug- and strain-specific. We measured the replicative fitness of NAI resistant H5N6 viruses and found that they replicated to comparable or significantly higher titres in primary chicken cells and in embryonated hens' eggs as compared to wild type - despite the NA activity of the viral neuraminidase proteins being reduced. The R292K and N294S drug resistant H5N6 viruses had single amino acid substitutions in their haemagglutinin (HA): Y98F and A189T, respectively (H3 numbering) which reduced receptor binding properties possibly balancing the reduced NA activity seen. Our results demonstrate that the H5Nx viruses can support drug resistance mutations that confer reduced susceptibility to licenced NAIs and that these H5N6 viruses did not show diminished replicative fitness in avian cell cultures. Our results support the requirement for on-going surveillance of these strains in bird populations to include motifs associated with human drug resistance.
Collapse
|
43
|
Characterization of highly pathogenic avian influenza H5Nx viruses in the ferret model. Sci Rep 2020; 10:12700. [PMID: 32728042 PMCID: PMC7391700 DOI: 10.1038/s41598-020-69535-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/08/2020] [Indexed: 01/06/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5 viruses, of the A/goose/Guangdong/1/1996 lineage, have exhibited substantial geographic spread worldwide since the first detection of H5N1 virus in 1996. Accumulation of mutations in the HA gene has resulted in several phylogenetic clades, while reassortment with other avian influenza viruses has led to the emergence of new virus subtypes (H5Nx), notably H5N2, H5N6, and H5N8. H5Nx viruses represent a threat to both the poultry industry and human health and can cause lethal human disease following virus exposure. Here, HPAI H5N6 and H5N2 viruses (isolated between 2014 and 2017) of the 2.3.4.4 clade were assessed for their capacity to replicate in human respiratory tract cells, and to cause disease and transmit in the ferret model. All H5N6 viruses possessed increased virulence in ferrets compared to the H5N2 virus; however, pathogenicity profiles varied among the H5N6 viruses tested, from mild infection with sporadic virus dissemination beyond the respiratory tract, to severe disease with fatal outcome. Limited transmission between co-housed ferrets was observed with the H5N6 viruses but not with the H5N2 virus. In vitro evaluation of H5Nx virus replication in Calu-3 cells and the identification of mammalian adaptation markers in key genes associated with pathogenesis supports these findings.
Collapse
|
44
|
Hassan KE, Saad N, Abozeid HH, Shany S, El-Kady MF, Arafa A, El-Sawah AAA, Pfaff F, Hafez HM, Beer M, Harder T. Genotyping and reassortment analysis of highly pathogenic avian influenza viruses H5N8 and H5N2 from Egypt reveals successive annual replacement of genotypes. INFECTION GENETICS AND EVOLUTION 2020; 84:104375. [PMID: 32454245 DOI: 10.1016/j.meegid.2020.104375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/03/2023]
Abstract
Highly pathogenic (HP) H5N1, clade 2.2.1, and low pathogenic avian influenza (LPAI) H9N2 viruses, G1-B lineage, are endemic in poultry in Egypt and have co-circulated for almost a decade. Surprisingly, no inter-subtypic reassortment events have been reported from the field during that time. After the introduction of HPAIV H5N8, clade 2.3.4.4b, in Egyptian poultry in 2016, suddenly HP H5N2 reassortants with H9N2 viruses emerged. The current analyses focussed on studying 32 duck flocks, 4 broiler chicken flocks, and 1 turkey flock, suffering from respiratory manifestations with moderate to high mortality reared in two Egyptian governorates during 2019. Real-time RT-PCR substantiated the presence of HP H5N8 in 21 of the 37 investigated flocks with mixed infection of H9N2 in two of them. HP H5N1 was not detected. Full hemagglutinin (HA) sequencing of 10 samples with full-genome sequencing of three of them revealed presence of a single genotype. Very few substituting mutations in the HA protein were detected versus previous Egyptian HA sequences of that clade. Interestingly, amino acid substitutions in the Matrix (M2) and the Neuraminidase (NA) proteins associated with conferring both Amantadine and Oseltamivir resistance were present. Systematic reassortment analysis of all publicly available Egyptian whole genome sequences of HP H5N8 (n = 23), reassortant HP H5N2 (n = 2) and LP H9N2 (n = 53) viruses revealed presence of at least seven different genotypes of HPAI H5Nx viruses of clade 2.3.4.4b in Egypt since 2016. For H9N2 viruses, at least three genotypes were distinguishable. Heat mapping and tanglegram analyses suggested that several internal gene segments in both HP H5Nx and H9N2 viruses originated from avian influenza viruses circulating in wild bird species in Egypt. Based on the limited set of whole genome sequences available, annual replacement patterns of HP H5Nx genotypes emerged and suggested selective advantages of certain genotypes since 2016.
Collapse
Affiliation(s)
- Kareem E Hassan
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald, Riems, Germany; Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Noha Saad
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, 12618, Dokki, Giza, Egypt
| | - Hassanein H Abozeid
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Salama Shany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Magdy F El-Kady
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Abdelsatar Arafa
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, 12618, Dokki, Giza, Egypt
| | - Azza A A El-Sawah
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald, Riems, Germany
| | - Hafez M Hafez
- Institute of Poultry Diseases, Free University Berlin, Berlin, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald, Riems, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald, Riems, Germany.
| |
Collapse
|
45
|
Sharshov K, Mine J, Sobolev I, Kurskaya O, Dubovitskiy N, Kabilov M, Alikina T, Nakayama M, Tsunekuni R, Derko A, Prokopyeva E, Alekseev A, Shchelkanov M, Druzyaka A, Gadzhiev A, Uchida Y, Shestopalov A, Saito T. Characterization and Phylodynamics of Reassortant H12Nx Viruses in Northern Eurasia. Microorganisms 2019; 7:microorganisms7120643. [PMID: 31816947 PMCID: PMC6956379 DOI: 10.3390/microorganisms7120643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/19/2019] [Accepted: 11/30/2019] [Indexed: 11/16/2022] Open
Abstract
Wild waterfowl birds are known to be the main reservoir for a variety of avian influenza viruses of different subtypes. Some subtypes, such as H2Nx, H8Nx, H12Nx, and H14Nx, occur relatively rarely in nature. During 10-year long-term surveillance, we isolated five rare H12N5 and one H12N2 viruses in three different distinct geographic regions of Northern Eurasia and studied their characteristics. H12N2 from the Far East region was a double reassortant containing hemagglutinin (HA), non-structural (NS) and nucleoprotein (NP) segments of the American lineage and others from the classical Eurasian avian-like lineage. H12N5 viruses contain Eurasian lineage segments. We suggest a phylogeographical scheme for reassortment events associated with geographical groups of aquatic birds and their migration flyways. The H12N2 virus is of particular interest as this subtype has been found in common teal in the Russian Far East region, and it has a strong relation to North American avian influenza virus lineages, clearly showing that viral exchange of segments between the two continents does occur. Our results emphasize the importance of Avian Influenza Virus (AIV) surveillance in Northern Eurasia for the annual screening of virus characteristics, including the genetic constellation of rare virus subtypes, to understand the evolutionary ecology of AIV.
Collapse
Affiliation(s)
- Kirill Sharshov
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (O.K.); (N.D.); (E.P.); (A.A.); (A.S.)
- Correspondence: ; Tel.: +7-960-794-2136; Fax: +7-383-333-6456
| | - Junki Mine
- Division of Transboundary Animal Disease, National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan; (J.M.); (M.N.); (R.T.); (Y.U.); (T.S.)
| | - Ivan Sobolev
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (O.K.); (N.D.); (E.P.); (A.A.); (A.S.)
| | - Olga Kurskaya
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (O.K.); (N.D.); (E.P.); (A.A.); (A.S.)
| | - Nikita Dubovitskiy
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (O.K.); (N.D.); (E.P.); (A.A.); (A.S.)
| | - Marsel Kabilov
- Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (M.K.); (T.A.)
| | - Tatiana Alikina
- Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (M.K.); (T.A.)
| | - Momoko Nakayama
- Division of Transboundary Animal Disease, National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan; (J.M.); (M.N.); (R.T.); (Y.U.); (T.S.)
| | - Ryota Tsunekuni
- Division of Transboundary Animal Disease, National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan; (J.M.); (M.N.); (R.T.); (Y.U.); (T.S.)
| | - Anastasiya Derko
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (O.K.); (N.D.); (E.P.); (A.A.); (A.S.)
| | - Elena Prokopyeva
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (O.K.); (N.D.); (E.P.); (A.A.); (A.S.)
| | - Alexander Alekseev
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (O.K.); (N.D.); (E.P.); (A.A.); (A.S.)
| | - Michael Shchelkanov
- School of Biomedicine, Far Eastern Federal University, 690091 Vladivostok, Russia;
- Laboratory of Virology, Federal Scientific Center of East Asia Terrestrial Biodiversity, 690022 Vladivostok, Russia
- Laboratory of marine microbiota, National Scientific Center o Marine Biology, 690041 Vladivostok, Russia
| | - Alexey Druzyaka
- Laboratory of behavioral ecology, Institute of Animal Systematics and Ecology, 630091 Novosibirsk, Russia;
| | - Alimurad Gadzhiev
- Department of Ecology, Dagestan State University, 367000 Makhachkala, Russia;
| | - Yuko Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan; (J.M.); (M.N.); (R.T.); (Y.U.); (T.S.)
| | - Alexander Shestopalov
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (O.K.); (N.D.); (E.P.); (A.A.); (A.S.)
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan; (J.M.); (M.N.); (R.T.); (Y.U.); (T.S.)
| |
Collapse
|
46
|
Diversity and distribution of type A influenza viruses: an updated panorama analysis based on protein sequences. Virol J 2019; 16:85. [PMID: 31242907 PMCID: PMC6595669 DOI: 10.1186/s12985-019-1188-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/31/2019] [Indexed: 01/09/2023] Open
Abstract
Background Type A influenza viruses (IAVs) cause significant infections in humans and multiple species of animals including pigs, horses, birds, dogs and some marine animals. They are of complicated phylogenetic diversity and distribution, and analysis of their phylogenetic diversity and distribution from a panorama view has not been updated for multiple years. Methods 139,872 protein sequences of IAVs from GenBank were selected, and they were aligned and phylogenetically analyzed using the software tool MEGA 7.0. Lineages and subordinate lineages were classified according to the topology of the phylogenetic trees and the host, temporal and spatial distribution of the viruses, and designated using a novel universal nomenclature system. Results Large phylogenetic trees of the two external viral genes (HA and NA) and six internal genes (PB2, PB1, PA, NP, MP and NS) were constructed, and the diversity and the host, temporal and spatial distribution of these genes were calculated and statistically analyzed. Various features regarding the diversity and distribution of IAVs were confirmed, revised or added through this study, as compared with previous reports. Lineages and subordinate lineages were classified and designated for each of the genes based on the updated panorama views. Conclusions The panorama views of phylogenetic diversity and distribution of IAVs and their nomenclature system were updated and assumed to be of significance for studies and communication of IAVs. Electronic supplementary material The online version of this article (10.1186/s12985-019-1188-7) contains supplementary material, which is available to authorized users.
Collapse
|