1
|
Gǎlbǎu CŞ, Irimie M, Neculau AE, Dima L, Pogačnik da Silva L, Vârciu M, Badea M. The Potential of Plant Extracts Used in Cosmetic Product Applications-Antioxidants Delivery and Mechanism of Actions. Antioxidants (Basel) 2024; 13:1425. [PMID: 39594566 PMCID: PMC11591253 DOI: 10.3390/antiox13111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Natural ingredients have been used in skincare products for thousands of years. The current focus is on novel natural bioactivities that shield the skin from UV rays and free radicals, among other damaging elements, while enhancing skin health. Free radicals significantly contribute to skin damage and hasten ageing by interfering with defence and restorative processes. Plants contain natural chemicals that can scavenge free radicals and have antioxidant capabilities. Plant materials are becoming increasingly popular as natural antioxidants related to the expanding interest in plant chemistry. This review focuses on the significance of medicinal plants in skin health and ageing and their potential as a source of antioxidant substances such as vitamins, polyphenols, stilbenes, flavonoids, and methylxanthines.
Collapse
Affiliation(s)
- Cristina-Ştefania Gǎlbǎu
- Faculty of Medicine, Transilvania University of Brasov, Romania, No. 56, Nicolae Bǎlcescu St., 500019 Braşov, Romania; (C.-Ş.G.); (M.I.); (A.E.N.); (L.D.); (M.V.)
| | - Marius Irimie
- Faculty of Medicine, Transilvania University of Brasov, Romania, No. 56, Nicolae Bǎlcescu St., 500019 Braşov, Romania; (C.-Ş.G.); (M.I.); (A.E.N.); (L.D.); (M.V.)
| | - Andrea Elena Neculau
- Faculty of Medicine, Transilvania University of Brasov, Romania, No. 56, Nicolae Bǎlcescu St., 500019 Braşov, Romania; (C.-Ş.G.); (M.I.); (A.E.N.); (L.D.); (M.V.)
| | - Lorena Dima
- Faculty of Medicine, Transilvania University of Brasov, Romania, No. 56, Nicolae Bǎlcescu St., 500019 Braşov, Romania; (C.-Ş.G.); (M.I.); (A.E.N.); (L.D.); (M.V.)
| | - Lea Pogačnik da Silva
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| | - Mihai Vârciu
- Faculty of Medicine, Transilvania University of Brasov, Romania, No. 56, Nicolae Bǎlcescu St., 500019 Braşov, Romania; (C.-Ş.G.); (M.I.); (A.E.N.); (L.D.); (M.V.)
| | - Mihaela Badea
- Faculty of Medicine, Transilvania University of Brasov, Romania, No. 56, Nicolae Bǎlcescu St., 500019 Braşov, Romania; (C.-Ş.G.); (M.I.); (A.E.N.); (L.D.); (M.V.)
| |
Collapse
|
2
|
Majed M, Galala AA, Amer MM, Selmar D, Abouzeid S. Oilseed Cakes: A Promising Source of Antioxidant, and Anti-Inflammatory Agents-Insights from Lactuca sativa. Int J Mol Sci 2024; 25:11077. [PMID: 39456857 PMCID: PMC11507441 DOI: 10.3390/ijms252011077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
This study evaluated the antioxidant and antibacterial properties of methanolic extracts derived from oilseed cakes of Lactuca sativa (lettuce), Nigella sativa (black seed), Eruca sativa (rocket), and Linum usitatissimum (linseed). Lettuce methanolic extract showed the highest potential, so it was selected for further investigation. High-performance liquid chromatography (HPLC-DAD) analysis and bioassay-guided fractionation of lettuce seed cake extract led to the isolation of five compounds: 1,3-propanediol-2-amino-1-(3',4'-methylenedioxyphenyl) (1), luteolin (2), luteolin-7-O-β-D-glucoside (3), apigenin-7-O-β-D-glucoside (4), and β-sitosterol 3-O-β-D-glucoside (5). Compound (1) was identified from Lactuca species for the first time, with high yield. The cytotoxic effects of the isolated compounds were tested on liver (HepG2) and breast (MCF-7) cancer cell lines, compared to normal cells (WI-38). Compounds (2), (3), and (4) exhibited strong activity in all assays, while compound (1) showed weak antioxidant, antimicrobial, and cytotoxic effects. The anti-inflammatory activity of lettuce seed cake extract and compound (1) was evaluated in vivo using a carrageenan-induced paw oedema model. Compound (1) and its combination with ibuprofen significantly reduced paw oedema, lowered inflammatory mediators (IL-1β, TNF-α, PGE2), and restored antioxidant enzyme activity. Additionally, compound (1) showed promising COX-1 and COX-2 inhibition in an in vitro enzymatic anti-inflammatory assay, with IC50 values of 17.31 ± 0.65 and 4.814 ± 0.24, respectively. Molecular docking revealed unique interactions of compound (1) with COX-1 and COX-2, suggesting the potential for targeted inhibition. These findings underscore the value of oilseed cakes as a source of bioactive compounds that merit further investigation.
Collapse
Affiliation(s)
- Mayye Majed
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.M.); (A.A.G.); (M.M.A.)
| | - Amal A. Galala
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.M.); (A.A.G.); (M.M.A.)
- Pharmacognosy Department, Faculty of Pharmacy, Horus University in Egypt (HUE), New Damietta 34517, Egypt
| | - Mohamed M. Amer
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.M.); (A.A.G.); (M.M.A.)
| | - Dirk Selmar
- Institute for Plant Biology, Technical University of Braunschweig, Mendelssohnsstr. 4, 38106 Braunschweig, Germany
| | - Sara Abouzeid
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.M.); (A.A.G.); (M.M.A.)
- Institute for Plant Biology, Technical University of Braunschweig, Mendelssohnsstr. 4, 38106 Braunschweig, Germany
| |
Collapse
|
3
|
Kubica P, Szopa A, Setkiewicz A, Ekiert H. Efficient Production of Some Bioactive Depsides and Simple Phenolic Acids by Microshoots of Aronia × Prunifolia (Purple Aronia) Agitated Cultures as the Result of Feeding Strategy with Four Different Biogenetic Precursors. Molecules 2024; 29:4622. [PMID: 39407553 PMCID: PMC11477478 DOI: 10.3390/molecules29194622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
A precursor feeding strategy was used for the first time in agitated microshoot cultures of Aronia × prunifolia. This strategy involved the addition of biogenetic precursors of simple phenolic acids (phenylalanine, cinnamic acid, and benzoic acid) and depsides (caffeic acid) into the culture media, with an assessment of its effect on the production of these bioactive compounds. The in vitro cultures were maintained in Murashige-Skoog medium (1 mg/L BAP and 1 mg/L NAA). Precursors at five concentrations (0.1, 0.5, 1.0, 5.0, and 10.0 mmol/L) were fed into the medium at the time of culture initiation (point "0") and independently on the 10th day of growth cycles. The contents of 23 compounds were determined in methanolic extracts of biomass collected after 20 days of growth cycles using an HPLC method. All extracts contained the same four depsides (chlorogenic, neochlorogenic, rosmarinic, and cryptochlorogenic acids) and the same four simple phenolic acids (protocatechuic, vanillic, caffeic, and syringic acids). Chlorogenic and neochlorogenic acids were the predominant compounds in all extracts (max. 388.39 and 263.54 mg/100 g d.w.). The maximal total contents of all compounds were confirmed after feeding with cinnamic acid (5 mmol/L, point "0") and caffeic acid (10 mmol/L, point "0"), which caused a 2.68-fold and 2.49-fold increase in the contents of the estimated compounds vs. control cultures (603.03 and 558.48 mg/100 g d.w., respectively). The obtained results documented the efficacy of the precursor feeding strategy in enhancing the production of bioactive compounds in agitated cultures of A. × prunifolia and suggest a potential practical application value.
Collapse
|
4
|
Al Jaafreh AM. Investigation of the phytochemical profiling and antioxidant, anti-diabetic, anti-inflammatory, and MDA-MB-231 cell line antiproliferative potentials of extracts from Ephedra alata Decne. Sci Rep 2024; 14:18240. [PMID: 39107351 PMCID: PMC11303798 DOI: 10.1038/s41598-024-65561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Ephedra is one of the many medicinal herbs that have been used as folk/traditional medicine in Jordan and other countries to cure various illnesses. Plants of this genus are well known for their antioxidant and antibacterial properties. In this study, three different solvents were used to obtain Ephedra extracts. When evaluated, the Ephedra alata Decne ethanolic extract reportedly had the greatest levels of total phenolic compounds (TPC) and total flavonoid compounds (TFC). The aqueous extracts displayed the highest antioxidant activity in the DPPH and ABTS assays, demonstrating their considerable capacity to neutralize free radicals. However, when evaluated using the FRAP method, the acetone extracts showed the strongest antioxidant activity, indicating their high reducing power. LC-MS/MS, a potent method of analysis that combines the liquid chromatographic separation properties with mass spectrometry detection and identification capabilities, was used in this study to detect and measure phytochemical content of a total of 24 phenolic compounds and 16 terpene compounds present in the extracts of Ephedra alata Decne. Various concentrations of these chemicals were found in these extracts. The extracts' inhibitory effects on albumin denaturation and alpha-amylase activity were also assessed; the findings demonstrated the potentials of these extracts as anti-inflammatory and anti-diabetic medicines, with the acetone extract having the lowest IC50 values in the concomitant tests (306.45 µg/ml and 851.23 µg/ml, respectively). Furthermore, the lowest IC50 value (of 364.59 ± 0.45 µg/ml) for the 80% ethanol extract demonstrated that it has the strongest antiproliferative impact regarding the MDA-MB-231 breast cancer cell line. This finding indicates that this particular extract can be potentially used to treat cancer.
Collapse
|
5
|
Gorantla JN, Choknud S, Suyanto E, Win HH, Hua Y, Santhi M, Wangngae S, Kamkaew A, Ketudat-Cairns M, Rojanathammanee L, Ketudat Cairns JR. Semi-synthesis of phenolic-amides and their cytotoxicity against THP-1, HeLa, HepG2 and MCF-7 cell lines. Nat Prod Res 2024; 38:2069-2077. [PMID: 37526601 DOI: 10.1080/14786419.2023.2241971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023]
Abstract
In the present study, we derivatized several hydroxycinnamic and hydroxybenzoic acids to phenolic amides (PAMs) via one step BOP mediated amide coupling reactions. Fifteen PAMs were synthesized in >40% yields and were screened for their cytotoxic activities against four cancer cell lines: THP-1 (leukaemia), HeLa (cervical), HepG2 (liver), and MCF-7 (breast), in comparison to 5-flurouracil (5-FU). Four amides showed IC50 ranging from 5 to 55 µM against all four cell lines. In contrast, tetradecyl-gallic-amide (13) affected only THP-1 leukaemia cells with IC50 of 3.08 µM. The activities of these compounds support the promise of phenolic amides as anticancer agents.
Collapse
Affiliation(s)
- Jaggaiah N Gorantla
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Sunaree Choknud
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Eko Suyanto
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Htun-Htun Win
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Yanling Hua
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Center for Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Maniganda Santhi
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Sirilak Wangngae
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Mariena Ketudat-Cairns
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Lalida Rojanathammanee
- School of Sports Science, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - James R Ketudat Cairns
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
6
|
Sabindo NH, Yatim RM, Kannan Thirumulu P. Phytochemical composition of Clinacanthus nutans based on factors of environment, genetics and postharvest processes: A review. Biomedicine (Taipei) 2024; 14:1-11. [PMID: 38939094 PMCID: PMC11204129 DOI: 10.37796/2211-8039.1451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/04/2023] [Accepted: 06/28/2023] [Indexed: 06/29/2024] Open
Abstract
Herpes simplex, varicella-zoster lesions, skin rashes, diabetes, snake bites and insect bites have all been treated by using Clinacanthus nutans (C. nutans). The pharmacological effects of C. nutans are influenced by the presence of terpenoids, flavonoids, alkaloids, phenolic acids, saponins, glycosides, steroids and tannins. This review focused on the phytochemical makeup, which varies geographically and is a subject of scarcely existing knowledge. C. nutans served as the primary search term, while the keywords "phytochemicals", "chemical component" and "phytochemistry" were used to search the literature in the Google Scholar, PubMed, Scopus and Web of Science databases. The articles pertinent to the subject were found and reviewed. The phytochemical composition of C. nutans varied depending on the region it was cultivated in, and was influenced by the environmental conditions, genetics, air temperature and postharvest practices.
Collapse
Affiliation(s)
- Nurul H. Sabindo
- School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan,
Malaysia
| | - Rusidah M. Yatim
- Division of Research and Innovation, Level 2, Chancellory II, Building E42, Universiti Sains Malaysia, USM, 11800 Pulau Pinang,
Malaysia
| | - P. Kannan Thirumulu
- School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan,
Malaysia
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan,
Malaysia
| |
Collapse
|
7
|
Chen C, Wang X, Chen W, Liu Q, Wang L. Encapsulation of phenolic acids within food-grade carriers systems: a systematic review. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38764436 DOI: 10.1080/10408398.2024.2350616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Phenolic acids are natural compounds with potential therapeutic effects against various diseases. However, their incorporation into food and pharmaceutical products is limited by challenges such as instability, low solubility, and reduced bioavailability. This systematic review summarizes recent advances in phenolic acid encapsulation using food-grade carrier systems, focusing on proteins, lipids, and polysaccharides. Encapsulation efficiency, release behavior, and bioavailability are examined, as well as the potential health benefits of encapsulated phenolic acids in food products. Strategies to address limitations of current encapsulation systems are also proposed. Encapsulation has emerged as a promising method to enhance the stability and bioavailability of phenolic acids in food products, and various encapsulation technologies have been developed for this purpose. The use of proteins, lipids, and carbohydrates as carriers in food-grade encapsulation systems remains a common approach, but it is associated with certain limitations. Future research on phenolic acid encapsulation should focus on developing environmentally friendly, organic solvent-free, low-energy, scalable, and stable encapsulation systems, as well as co-encapsulation methods that combine multiple phenolic acids or phenolic acids with other bioactive substances to produce synergistic effects.
Collapse
Affiliation(s)
- Chao Chen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Xiao Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenqi Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qin Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Geng H, Li R, Teng L, Yu C, Wang W, Gao K, Li A, Liu S, Xing R, Yu H, Li P. Exploring the Efficacy of Hydroxybenzoic Acid Derivatives in Mitigating Jellyfish Toxin-Induced Skin Damage: Insights into Protective and Reparative Mechanisms. Mar Drugs 2024; 22:205. [PMID: 38786596 PMCID: PMC11122885 DOI: 10.3390/md22050205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
The escalation of jellyfish stings has drawn attention to severe skin reactions, underscoring the necessity for novel treatments. This investigation assesses the potential of hydroxybenzoic acid derivatives, specifically protocatechuic acid (PCA) and gentisic acid (DHB), for alleviating Nemopilema nomurai Nematocyst Venom (NnNV)-induced injuries. By employing an in vivo mouse model, the study delves into the therapeutic efficacy of these compounds. Through a combination of ELISA and Western blot analyses, histological examinations, and molecular assays, the study scrutinizes the inflammatory response, assesses skin damage and repair mechanisms, and investigates the compounds' ability to counteract venom effects. Our findings indicate that PCA and DHB significantly mitigate inflammation by modulating critical cytokines and pathways, altering collagen ratios through topical application, and enhancing VEGF and bFGF levels. Furthermore, both compounds demonstrate potential in neutralizing NnNV toxicity by inhibiting metalloproteinases and phospholipase-A2, showcasing the viability of small-molecule compounds in managing toxin-induced injuries.
Collapse
Affiliation(s)
- Hao Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongfeng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Lichao Teng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlin Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Wenjie Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Aoyu Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
9
|
Wekwejt M, Małek M, Ronowska A, Michno A, Pałubicka A, Zasada L, Klimek A, Kaczmarek-Szczepańska B. Hyaluronic acid/tannic acid films for wound healing application. Int J Biol Macromol 2024; 254:128101. [PMID: 37972843 DOI: 10.1016/j.ijbiomac.2023.128101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
In this study, thin films based on hyaluronic acid (HA) with tannic acid (TA) were investigated in three different weight ratios (80HA/20TA, 50HA/50TA, 20HA/80TA) for their application as materials for wound healing. Surface free energy, as well as their roughness, mechanical properties, water vapor permeability rate, and antioxidant activity were determined. Moreover, their compatibility with blood and osteoblast cells was investigated. The irritation effect caused by hyaluronic acid/tannic acid films was also considered with the use of are constructed human epidermis model. The irritation effect for hyaluronic acid/tannic acid films by the in vitro method was also studied. The low surface free energy, surface roughness, and antioxidant activity presented by the obtained films were examined. All the tested compositions of hyaluronic acid/tannic acid films were hemocompatible, but only films based on 50HA/50TA were fully cytocompatible. Regarding the potential implantation, all the films except 80HA/20TA showed appropriate mechanical properties. The specimens did not exert the irritation effect during the studies involving reconstructed human epidermis.
Collapse
Affiliation(s)
- Marcin Wekwejt
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-229 Gdańsk, Poland
| | - Marcin Małek
- Faculty of Civil Engineering and Geodesy, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| | - Anna Michno
- Department of Laboratory Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| | - Anna Pałubicka
- Department of Laboratory Diagnostics and Microbiology with Blood Bank, Specialist Hospital in Kościerzyna, Alojzego Piechowskiego 36, 83-400 Kościerzyna, Poland
| | - Lidia Zasada
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Toruń, Poland
| | - Agnieszka Klimek
- Faculty of Mechanical Engineering, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| | - Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Toruń, Poland.
| |
Collapse
|
10
|
Mentese A, Demir S, Mungan SA, Alemdar NT, Demir EA, Aliyazicioglu Y. Gentisic acid ameliorates cisplatin-induced reprotoxicity through suppressing endoplasmic reticulum stress and upregulating Nrf2 pathway. Tissue Cell 2023; 85:102256. [PMID: 37918215 DOI: 10.1016/j.tice.2023.102256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Reproductive toxicity is a serious side effect of cisplatin (CP) chemotherapy. Gentisic acid (GTA) is a phenolic acid with strong antioxidant properties. Here, we aimed to determine therapeutic effect of GTA against CP-induced testicular toxicity in rats for the first time. Male Sprague-Dawley rats received a single dose of CP (5 mg/kg; intraperitoneal) and treated with GTA (1.5 and 3 mg/kg; intraperitoneal; 3 consecutive days). The levels of oxidative stress (OS), inflammation, endoplasmic reticulum stress (ERS) and apoptosis biomarkers were assessed in the testicular tissue of rats. In addition, how CP affects the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway and the effect of GTA on this situation were also addressed in the testicular tissue. CP administration induced histopathological changes in testicular tissue of rats with a significant increase in OS, inflammation, ERS and apoptosis biomarkers and a decrease in antioxidant capacity and Nrf2 expression levels. Administrations of GTA resulted in an amelioration of these altered parameters. These data suggest that GTA may be a potential therapeutic agent against CP-induced testicular toxicity. Activation of the Nrf2 pathway plays a key role of this therapeutic effect of GTA.
Collapse
Affiliation(s)
- Ahmet Mentese
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey.
| | - Sevdegul Aydin Mungan
- Department of Medical Pathology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Nihal Turkmen Alemdar
- Department of Medical Biochemistry, Graduate School of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey; Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Elif Ayazoglu Demir
- Department of Chemistry and Chemical Processing Technologies, Macka Vocational School, Karadeniz Technical University, 61750 Trabzon, Turkey
| | - Yuksel Aliyazicioglu
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| |
Collapse
|
11
|
Bouafia M, Colak N, Ayaz FA, Gourine N, Yousfi M. The chemical profile and seasonal variation of the composition of the phenolic acids in different plant parts of Centaurea sp. J Pharm Biomed Anal 2023; 236:115686. [PMID: 37690189 DOI: 10.1016/j.jpba.2023.115686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
This study investigated the seasonal variation (over seven months) of phenolic acid (PHA) components in different parts of Centaurea sp. The primary objective was to determine the pattern of variation, while the secondary objective was to identify which month or growth stage provides a greater total PHA content or percentage of bioactive components. Different patterns of seasonal variations were highlighted for the different PHA components and their classes (hydroxybenzoic and -cinnamic acids) in different parts of the plant. The leaves exclusively provided the highest PHA contents, with maximum values reached in April (1368.06 μg/g). The major hydroxybenzoic acid derivatives (HBAs) identified in the leaves were vanillic acid (VaA) "154.18-374.06 μg/g" and protocatechuic acid (PA) "9.37-595.61 μg/g", while the major hydroxycinnamic acid derivatives (HCAs) were p-coumaric acid (p-CoA) "109.35-261.77 μg/g", m-coumaric acid (m-CoA) "10.22-70.57 μg/g", and ferulic acid (FeA) "35.54-109.13 μg/g". The maximum percentage of PA was obtained in April "595.61 μg/g", while the maximum p-CoA content was obtained in January "261.77 μg/g". Therefore, the leaves can be recommended as the optimal source of PHAs. If there is a specific interest in certain PHA components, we recommend collection in either January or April. Multivariate statistical analysis (PCA & AHC) showed the existence of two main clusters. The first cluster comprised the leaves, distinguished by the highest VaA, PA, and p-CoA contents. The second cluster comprised roots and the root bark samples. This study provides information on the development of PHAs in different parts of Centaurea sp. and explores potential applications. It will be of considerable interest for determining the optimal harvesting time of shrub species used for their medicinal properties and bio-active phenolic contents.
Collapse
Affiliation(s)
- Mourad Bouafia
- Laboratoire des Sciences Fondamentales, University Amar Telidji of Laghouat, Po. Box. 37G, Road of Ghardaïa, 03000 Laghouat, Algeria
| | - Nesrin Colak
- Department of Biology, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Faik A Ayaz
- Department of Biology, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Nadhir Gourine
- Laboratoire des Sciences Fondamentales, University Amar Telidji of Laghouat, Po. Box. 37G, Road of Ghardaïa, 03000 Laghouat, Algeria.
| | - Mohamed Yousfi
- Laboratoire des Sciences Fondamentales, University Amar Telidji of Laghouat, Po. Box. 37G, Road of Ghardaïa, 03000 Laghouat, Algeria
| |
Collapse
|
12
|
Zhao S, Zhao Y, Yang X, Zhao T. Recent research advances on oral colon-specific delivery system of nature bioactive components: A review. Food Res Int 2023; 173:113403. [PMID: 37803751 DOI: 10.1016/j.foodres.2023.113403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
Oral colon-specific delivery system (OCDS) is a targeted approach that aims to directly deliver bioactive compounds directly to the colon following oral administration, thereby enhancing the colonic release of bioactive substances and minimizing adverse reactions. The effectiveness of bioactive substances in the colon hinges on the degree of release, which are affected by various factors including pH, mucosal barrier, delivery time and so on. Therefore, this review provides a comprehensive overview of the key factors affecting oral colon-specific release of bioactive components firstly. Considering the oral safety, this review then mainly focuses on the types of carriers with edible OCDS and preparation strategies for OCDS. Finally, several preparation strategies for loading typical natural bioactive ingredients into oral safe OCDS are reviewed, along with future development prospects.
Collapse
Affiliation(s)
- Shuang Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Tong Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
13
|
Luo Y, Li YC, Wang M, Zhou L, Meng FB, Jiang LS. Effects of grafting methods and raw materials on the physicochemical properties and biological activities of phenolic acids grafted oat β-glucan. Food Res Int 2023; 173:113250. [PMID: 37803562 DOI: 10.1016/j.foodres.2023.113250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 10/08/2023]
Abstract
Phenolic acids are commonly used as food biological preservatives. Grafting phenolic acids onto polysaccharides could effectively enhance their biological activities and environmental stability to varying degrees. However, grafting methods and raw materials could affect the physical properties and biological activities of the phenolic acid-grafted polysaccharides. In this study, caffeic acid (CA) and gallic acid (GA) were grafted onto oat β-glucan (OG) and hydrolyzed oat β-glucan (OGH) through N,N'-carbonyldiimidazole-mediated (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride coupling N-hydroxysuccinimide (EDC/NHS) methods. Graft modification decreased the crystallinity and thermal stability of the conjugates, but retained good bioactivities for the conjugates. The antioxidant and bacteriostatic activities of the conjugates prepared by the EDC method were better than those of the CDI method, and the OGH-conjugates showed better biological activities than OG-conjugates. EDC-GAOGH showed best DPPH (89.78%) and ABTS (92.32%) scavenging activities. The inhibitory effect of EDC-GAOGH on Escherichia coli was significantly better than that of EDC-CAOGH, but for Staphylococcus aureus, the results are opposite, which indicating that different phenolic acid grafting products have different inhibitory effects on pathogenic microbes. In general, grafting phenolic acids onto OGH using EDC method is an effective strategy for preparing food biological preservative.
Collapse
Affiliation(s)
- Yan Luo
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Yun-Cheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Meng Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Li Zhou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu 610106, PR China
| | - Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| | - Li-Shi Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
14
|
Pereira CG, Neng NR, Custódio L. From Threat to Opportunity: Harnessing the Invasive Carpobrotus edulis (L.) N.E.Br for Nutritional and Phytotherapeutic Valorization Amid Seasonal and Spatial Variability. Mar Drugs 2023; 21:436. [PMID: 37623717 PMCID: PMC10456270 DOI: 10.3390/md21080436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Carpobrotus edulis (L.) N.E.Br. (Hottentot-fig) is a problematic invasive species found in coastal areas worldwide. Mechanical removal is a common control method, leaving the removed biomass available as a possible source of natural phytochemicals with prospective commercial applications. While the Hottentot-fig's vegetative organs have been studied previously, this work establishes for the first time a seasonal and spatial comparative analysis of its nutritional, chemical, and bioactivity profiles (in three locations over four seasons). Proximate and mineral contents were assessed, along with its phenolic composition and in vitro antioxidant and anti-inflammatory properties. Hottentot-fig's biomass offered a good supply of nutrients, mainly carbohydrates, proteins, and minerals, with a tendency for higher concentrations of the most relevant minerals and proteins in autumn and winter, and in plants from sites A (Ria de Alvor lagoon) and B (Ancão beach). The extracts were rich in polyphenolics, with higher levels in spring and summer, especially for luteolin-7-O-glucoside and salicylic and coumaric acids. The extracts were also effective antioxidants, with stronger radical scavenging activities in spring and summer, along with anti-inflammatory properties. Our results suggest that the usually discarded plant material of this invasive halophyte could be valuable as a source of natural products with potential biotechnological applications in the food and nutraceutical industries.
Collapse
Affiliation(s)
- Catarina Guerreiro Pereira
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Ed. 7, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal;
| | - Nuno R. Neng
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz School of Health and Science, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| | - Luísa Custódio
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Ed. 7, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal;
| |
Collapse
|
15
|
Rathee P, Sehrawat R, Rathee P, Khatkar A, Akkol EK, Khatkar S, Redhu N, Türkcanoğlu G, Sobarzo-Sánchez E. Polyphenols: Natural Preservatives with Promising Applications in Food, Cosmetics and Pharma Industries; Problems and Toxicity Associated with Synthetic Preservatives; Impact of Misleading Advertisements; Recent Trends in Preservation and Legislation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4793. [PMID: 37445107 PMCID: PMC10343617 DOI: 10.3390/ma16134793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023]
Abstract
The global market of food, cosmetics, and pharmaceutical products requires continuous tracking of harmful ingredients and microbial contamination for the sake of the safety of both products and consumers as these products greatly dominate the consumer's health, directly or indirectly. The existence, survival, and growth of microorganisms in the product may lead to physicochemical degradation or spoilage and may infect the consumer at another end. It has become a challenge for industries to produce a product that is safe, self-stable, and has high nutritional value, as many factors such as physical, chemical, enzymatic, or microbial activities are responsible for causing spoilage to the product within the due course of time. Thus, preservatives are added to retain the virtue of the product to ensure its safety for the consumer. Nowadays, the use of synthetic/artificial preservatives has become common and has not been widely accepted by consumers as they are aware of the fact that exposure to preservatives can lead to adverse effects on health, which is a major area of concern for researchers. Naturally occurring phenolic compounds appear to be extensively used as bio-preservatives to prolong the shelf life of the finished product. Based on the convincing shreds of evidence reported in the literature, it is suggested that phenolic compounds and their derivatives have massive potential to be investigated for the development of new moieties and are proven to be promising drug molecules. The objective of this article is to provide an overview of the significant role of phenolic compounds and their derivatives in the preservation of perishable products from microbial attack due to their exclusive antioxidant and free radical scavenging properties and the problems associated with the use of synthetic preservatives in pharmaceutical products. This article also analyzes the recent trends in preservation along with technical norms that regulate the food, cosmetic, and pharmaceutical products in the developing countries.
Collapse
Affiliation(s)
- Priyanka Rathee
- Faculty of Pharmaceutical Sciences, Baba Mastnath University, Rohtak 124021, India;
| | - Renu Sehrawat
- School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram 122103, India;
| | - Pooja Rathee
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India;
| | - Anurag Khatkar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey;
| | - Sarita Khatkar
- Vaish Institute of Pharmaceutical Education and Research, Rohtak 124001, India;
| | - Neelam Redhu
- Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, India;
| | - Gizem Türkcanoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey;
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
16
|
Islam M, Khan A, Khan M, Halim SA, Ullah S, Hussain J, Al-Harrasi A, Shafiq Z, Tasleem M, El-Gokha A. Synthesis and biological evaluation of 2-nitrocinnamaldehyde derived thiosemicarbazones as urease inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
17
|
Chen X, Hu C, Shu Z, Wang X, Zhao Y, Song W, Chen X, Jin M, Xiu Y, Guo X, Kong X, Jiang Y, Guan J, Gongga L, Wang L, Wang B. Isovanillic acid protects mice against Staphylococcus aureus by targeting vWbp and Coa. Future Microbiol 2023; 18:735-749. [PMID: 37526178 DOI: 10.2217/fmb-2022-0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Abstract
Aim: Our primary objective was to investigate the protective effects and mechanisms of isovanillic acid in mice infected with Staphylococcus aureus Newman. Methods: In vitro coagulation assays were used to validate vWbp and Coa as inhibitory targets of isovanillic acid. The binding mechanism of isovanillic acid to vWbp and Coa was investigated using molecular docking and point mutagenesis. Importantly, a lethal pneumonia mouse model was used to assess the effect of isovanillic acid on survival and pathological injury in mice. Results & Conclusion: Isovanillic acid reduced the virulence of S. aureus by directly binding to inhibit the clotting activity of vWbp and Coa, thereby reducing lung histopathological damage and improving the survival rate in mice with pneumonia.
Collapse
Affiliation(s)
- Xiangqian Chen
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Chunjie Hu
- Changchun University of Chinese Medicine, Changchun, 130117, China
- Proctology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Zunhua Shu
- Changchun University of Chinese Medicine, Changchun, 130117, China
- The Third Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130118, China
| | - Xingye Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yicheng Zhao
- Changchun University of Chinese Medicine, Changchun, 130117, China
- Center for Pathogen Biology & Infectious Diseases, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun,130021, China
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiaoyu Chen
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Mengli Jin
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yang Xiu
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xuerui Guo
- School of Pharmacy, Jilin University, Changchun, 130021, China
| | - Xiangri Kong
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yijing Jiang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Lanzi Gongga
- Tibet University Medical College, Tibet, 850000, China
| | - Li Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| |
Collapse
|
18
|
Garg P, Awasthi S, Horne D, Salgia R, Singhal SS. The innate effects of plant secondary metabolites in preclusion of gynecologic cancers: Inflammatory response and therapeutic action. Biochim Biophys Acta Rev Cancer 2023; 1878:188929. [PMID: 37286146 DOI: 10.1016/j.bbcan.2023.188929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Gynecologic cancers can make up the bulk of cancers in both humans and animals. The stage of diagnosis and the type of tumor, its origin, and its spread are a few of the factors that influence how effectively a treatment modality works. Currently, radiotherapy, chemotherapy, and surgery are the major treatment options recommended for the eradication of malignancies. The use of several anti-carcinogenic drugs increases the chance of harmful side effects, and patients might not react to the treatments as expected. The significance of the relationship between inflammation and cancer has been underscored by recent research. As a result, it has been shown that a variety of phytochemicals with beneficial bioactive effects on inflammatory pathways have the potential to act as anti-carcinogenic medications for the treatment of gynecologic cancer. The current paper reviews the significance of inflammatory pathways in gynecologic malignancies and discusses the role of plants-derived secondary metabolites that are useful in the treatment of cancer.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Sanjay Awasthi
- Cayman Health, CTMH Doctors Hospital in Cayman Islands, George Town, Grand Cayman, USA
| | - David Horne
- Departments of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
19
|
Gan C, Langa E, Valenzuela A, Ballestero D, Pino-Otín MR. Synergistic Activity of Thymol with Commercial Antibiotics against Critical and High WHO Priority Pathogenic Bacteria. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091868. [PMID: 37176927 PMCID: PMC10180827 DOI: 10.3390/plants12091868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
The use of synergistic combinations between natural compounds and commercial antibiotics may be a good strategy to fight against microbial resistance, with fewer side effects on human, animal and environmental, health. The antimicrobial capacity of four compounds of plant origin (thymol and gallic, salicylic and gentisic acids) was analysed against 14 pathogenic bacteria. Thymol showed the best antimicrobial activity, with MICs ranging from 125 µg/mL (for Acinetobacter baumannii, Pasteurella aerogenes, and Salmonella typhimurium) to 250 µg/mL (for Bacillus subtilis, Klebsiella aerogenes, Klebsiella pneumoniae, Serratia marcescens, Staphylococcus aureus, and Streptococcus agalactiae). Combinations of thymol with eight widely used antibiotics were studied to identify combinations with synergistic effects. Thymol showed synergistic activity with chloramphenicol against A. baumannii (critical priority by the WHO), with streptomycin and gentamicin against Staphylococcus aureus (high priority by the WHO), and with streptomycin against Streptococcus agalactiae, decreasing the MICs of these antibiotics by 75% to 87.5%. The kinetics of these synergies indicated that thymol alone at the synergy concentration had almost no effect on the maximum achievable population density and very little effect on the growth rate. However, in combination with antibiotics at the same concentration, it completely inhibited growth, confirming its role in facilitating the action of the antibiotic. The time-kill curves indicated that all the combinations with synergistic effects were mainly bactericidal.
Collapse
Affiliation(s)
- Cristina Gan
- Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Elisa Langa
- Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Antonio Valenzuela
- Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Diego Ballestero
- Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - M Rosa Pino-Otín
- Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego, Zaragoza, Spain
| |
Collapse
|
20
|
Wagner W, Sobierajska K, Pułaski Ł, Stasiak A, Ciszewski WM. Whole grain metabolite 3,5-dihydroxybenzoic acid is a beneficial nutritional molecule with the feature of a double-edged sword in human health: a critical review and dietary considerations. Crit Rev Food Sci Nutr 2023; 64:8786-8804. [PMID: 37096487 DOI: 10.1080/10408398.2023.2203762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Nonprocessed foodstuffs of plant origin, especially whole-grain cereals, are considered to be health-promoting components of the human diet. While most of their well-studied effects derive from their high fiber content and low glycemic index, the presence of underrated phenolic phytonutrients has recently been brought to the attention of nutritionists. In this review, we report and discuss findings on the sources and bioactivities of 3,5-dihydroxybenzoic acid (3,5-DHBA), which is both a direct dietary component (found, e.g., in apples) and, more importantly, a crucial metabolite of whole-grain cereal-derived alkylresorcinols (ARs). 3,5-DHBA is a recently described exogenous agonist of the HCAR1/GPR81 receptor. We concentrate on the HCAR1-mediated effects of 3,5-DHBA in the nervous system, on the maintenance of cell stemness, regulation of carcinogenesis, and response to anticancer therapy. Unexpectedly, malignant tumors take advantage of HCAR1 expression to sense 3,5-DHBA to support their growth. Thus, there is an urgent need to fully identify the role of whole-grain-derived 3,5-DHBA during anticancer therapy and its contribution in the regulation of vital organs of the body via its specific HCAR1 receptor. We discuss here in detail the possible consequences of the modulatory capabilities of 3,5-DHBA in physiological and pathological conditions in humans.
Collapse
Affiliation(s)
- Waldemar Wagner
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | | | - Łukasz Pułaski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Anna Stasiak
- Department of Hormone Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Wojciech M Ciszewski
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
21
|
On JY, Kim SH, Kim JM, Park S, Kim KH, Lee CH, Kim SK. Effects of Fermented Artemisia annua L. and Salicornia herbacea L. on Inhibition of Obesity In Vitro and In Mice. Nutrients 2023; 15:2022. [PMID: 37432154 DOI: 10.3390/nu15092022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 07/12/2023] Open
Abstract
Plant extracts including secondary metabolites have anti-inflammatory and anti-obesity activities. This study was conducted to investigate the anti-obesity properties of fermented Artemisia annua (AW) and Salicornia herbacea (GW) in vitro and in mice. The metabolite profiling of AW and GW extracts was performed using UHPLC-LTQ-Orbitrap-MS/MS, and gene expression was analyzed using real-time PCR for adipocyte difference factors. The anti-obesity effects in mice were measured using serum AST, ALT, glucose, TG, and cholesterol levels. Metabolites of the plant extracts after fermentation showed distinct differences with increasing anti-obesity active substances. The efficacy of inhibitory differentiation adipogenesis of 3T3-L1 adipocytes was better for GW than AW in a concentration-dependent manner. RT-PCR showed that the GW extract significantly reduced the expression of genes involved in adipocyte differentiation and fat accumulation (C/EBPα, PPARγ, and Fas). In C57BL/6 mice fed the HFD, the group supplemented with AW and GW showed reduced liver weight, NAS value, and fatty liver by suppressing liver fat accumulation. The GW group significantly reduced ALT, blood glucose, TG, total cholesterol, and LDL-cholesterol. This study displayed significant metabolite changes through biotransformation in vitro and the increasing anti-obesity effects of GW and AW in mice. GW may be applicable as functional additives for the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Jeong-Yeon On
- Department of Animal Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Su-Hyun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong-Mee Kim
- Institute of Animal Resource Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Sungkwon Park
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Ki-Hyun Kim
- Animal Welfare Research Team, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Choong-Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
| | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- Institute of Animal Resource Center, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
22
|
Hu Z, Zhu Y, Chen J, Chen J, Li C, Gao Z, Li J, Liu L. Discovery of Novel Bactericides from Aspergillus alabamensis and Their Antibacterial Activity against Fish Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4298-4305. [PMID: 36857464 DOI: 10.1021/acs.jafc.2c09141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The emerging outbreak of bacterial diseases is a major challenge for the aquaculture industry. The development of new antibacterial agents from natural resources to curb fish bacterial diseases in aquaculture is becoming increasingly popular. In this study, eight new benzoic acid-containing alkaloids, asperalin A-F (1-6), asperalumazine A (7), and N-(3-acetamidopropyl)-3,4-dihydroxybenzamide (8), along with four known compounds (9-12) were isolated and identified from a seagrass-derived Aspergillus alabamensis. Their chemical structures were established on the basis of extensive spectroscopic analyses (including HRESIMS, 1D and 2D NMR spectroscopy), NMR computational methods, and electronic circular dichroism (ECD) calculations. Compounds 1-6 exhibited moderate or potent inhibitory activities against at least one fish pathogenic bacterium, among Edwardsiella ictalurid, Streptococcus iniae, and Streptococcus parauberis, and these compounds represent the first report of the coupling of dihydroquinolone alkaloids with benzoic acid derivatives. Compounds 3 and 4 showed strong activities against Staphylococcus aureus, S. iniae, and S. parauberis, with an MIC value of 10.1, 5.0, and 10.1 μM, respectively. Compound 5, an N-alkylated product of 4, exhibited the strongest inhibitory effects against S. iniae, with an MIC value of 2.2 μM. Notably, compound 6, as a new natural bactericide, showed moderate to potent inhibitory activity toward all strains tested, including one Gram-negative bacterium E. ictalurid (10.9 μM, MIC) and four Gram-positive bacteria S. iniae (43.6 μM, MIC), S. aureus (21.8 μM, MIC), S. parauberis (87.3 μM, MIC), and Bacillus subtilis (21.8 μM, MIC). Compound 7 represents the first example of a lumazine derivative directly coupled to a benzoic acid moiety by a hydroxymethyl group.
Collapse
Affiliation(s)
- Zhibo Hu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Yujiao Zhu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Junjie Chen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Jun Chen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Chunyuan Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Zhizeng Gao
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Jing Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, China, 519082
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, P. R. China
- Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China
| |
Collapse
|
23
|
Eloutify Y, El-Shiekh RA, Ibrahim KM, Elshimy R, Avula B, Katragunta K, Khan IA, Meselhy MR. Bioassay-Guided Isolation of Antimicrobial Components and LC/QToF Profile of Plumeria obtusa: Potential for the Treatment of Antimicrobial Resistance. ACS OMEGA 2023; 8:6476-6491. [PMID: 36844537 PMCID: PMC9947952 DOI: 10.1021/acsomega.2c06803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/23/2023] [Indexed: 05/31/2023]
Abstract
The methanolic fraction (M-F) of the total extract (TE) of Plumeria obtusa L. aerial parts showed promising antibacterial effects against the MDR (multidrug-resistant) gram-negative pathogens Klebsiella pneumoniae and Escherichia coli O157:H7 [Shiga toxin-producing E. coli (STEC)]. In addition, M-F had a synergistic effect (in combination with vancomycin) against the MDR gram-positive strains MRSA (methicillin-resistant Staphylococcus aureus) and Bacillus cereus. After treating the K. pneumoniae- and STEC-infected mice with M-F (25 mg/kg, i.p.), the level of IgM and TNF-α was decreased and the severity of pathological lesions were reduced better than that observed after administration of gentamycin (33 mg/kg, i.p.). Thirty-seven compounds including 10 plumeria-type iridoids and 18 phenolics, 7 quinoline derivatives, 1 amino acid, and 1 fatty acid were identified in TE using LC/ESI-QToF. Furthermore, five compounds; kaempferol 3-O-rutinoside (M1), quercetin 3-O-rutinoside (M2), glochiflavanoside B (M3), plumieride (M4), and 13-O-caffeoylplumieride (M5) were isolated from M-F. M5 was active against K. pneumoniae (MIC of 64 μg/mL) and STEC (MIC of 32 μg/mL). These findings suggested that M-F and M5 are promising antimicrobial natural products for combating MDR K. pneumoniae and STEC nosocomial infections.
Collapse
Affiliation(s)
- Yousra
Tarek Eloutify
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, Kasr el Aini St, Cairo 11562, Egypt
| | - Riham A. El-Shiekh
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, Kasr el Aini St, Cairo 11562, Egypt
| | - Khaled Meselhy Ibrahim
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, Kasr el Aini St, Cairo 11562, Egypt
| | - Rana Elshimy
- Department
of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza 3221405, Egypt
- Department
of Microbiology
and Immunology, Egyptian Drug Authority, Cairo 11553, Egypt
| | - Bharathi Avula
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Kumar Katragunta
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Ikhlas A. Khan
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
- Division
of Pharmacognosy, Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Meselhy R. Meselhy
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, Kasr el Aini St, Cairo 11562, Egypt
| |
Collapse
|
24
|
Castillo A, Celeiro M, Lores M, Grgić K, Banožić M, Jerković I, Jokić S. Bioprospecting of Targeted Phenolic Compounds of Dictyota dichotoma, Gongolaria barbata, Ericaria amentacea, Sargassum hornschuchii and Ellisolandia elongata from the Adriatic Sea Extracted by Two Green Methods. Mar Drugs 2023; 21:97. [PMID: 36827138 PMCID: PMC9962685 DOI: 10.3390/md21020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The content of bioactive compounds in four brown and one red algae from the Adriatic Sea (Dictyota dichotoma, Gongolaria barbata, Ericaria amentacea, Sargassum hornschuchii and Ellisolandia elongata) is explored. The efficiency of two different extraction methods viz. ultrasound-assisted extraction (UAE) and matrix solid-phase dispersion (MSPD) to obtain the extracts rich in phenolic compounds was compared. The effect of the extraction solvent to modulate the phenolic profile was assessed. In general, the mixture ethanol/water in an isovolumetric proportion showed the best results. The total phenolic content (TPC) and antioxidant activity (AA), as well as the individual polyphenolic profile, were evaluated for five target algae. TPC values ranged between 0.2 mg GAE/g (for E. elongata) and 38 mg GAE/g (for S. hornschuchii). Regarding the quantification of individual polyphenols by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, the presence of a high number of hydroxybenzoic acid derivatives (mainly of 3- and 4-hydroxybenzoic acids) in all species was noted. In G. barbata their concentrations reached up to 500 mg/kg. IC50 values (ABTS assay) ranged between 44 mg/L (for S. hornschuchii) and 11,040 mg/L (for E. elongata). This work contributes to the in-depth characterization of these little-explored algae, showing their potential as a natural source of phenolic compounds.
Collapse
Affiliation(s)
- Aly Castillo
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
- LIDSA, Departmesnt of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Maria Celeiro
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
- LIDSA, Departmesnt of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Marta Lores
- LIDSA, Departmesnt of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Kristina Grgić
- Department of Process Engineering, Faculty of Food Technology Osijek, University of Josip Juraj Strossmayer in Osijek, Franje Kuhača 18, 31000 Osijek, Croatia
| | - Marija Banožić
- Department of Process Engineering, Faculty of Food Technology Osijek, University of Josip Juraj Strossmayer in Osijek, Franje Kuhača 18, 31000 Osijek, Croatia
- Faculty of Agriculture and Food Technology, University of Mostar, Biskupa Čule bb, 88000 Mostar, Bosnia and Herzegovina
| | - Igor Jerković
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Stela Jokić
- Department of Process Engineering, Faculty of Food Technology Osijek, University of Josip Juraj Strossmayer in Osijek, Franje Kuhača 18, 31000 Osijek, Croatia
| |
Collapse
|
25
|
Han X, Li M, Sun L, Liu X, Yin Y, Hao J, Zhang W. p-Hydroxybenzoic Acid Ameliorates Colitis by Improving the Mucosal Barrier in a Gut Microbiota-Dependent Manner. Nutrients 2022; 14:nu14245383. [PMID: 36558542 PMCID: PMC9784546 DOI: 10.3390/nu14245383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory disease characterized by intestinal inflammatory cell infiltration and intestinal mucosal damage. The mechanism by which diet contributes to the pathogenesis of IBD remains largely unknown. In this study, we explored the therapeutic effect of p-hydroxybenzoic acid (HA), a phenolic acid mainly derived from dietary polyphenols in the gut, on DSS-induced colitis. HA intervention effectively relieved the dextran sulfate sodium salt (DSS)-induced colitis, reduced inflammation, and enhanced mucosal barrier function, as evidenced by an increment of goblet cell numbers and MUC2. These effects were largely dependent on the gut microbiota (GM), as antibiotics treatment substantially attenuated the improvement of colitis by HA. On the other hand, transplantation of GM from colitis mice treated with HA significantly reduced the colitis induced by DSS. Our study demonstrates that HA ameliorates DSS-induced colitis by improving the mucosal barrier in a GM-dependent manner. This study provides new dietary choices for the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Xue Han
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Miaomiao Li
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Lijun Sun
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
- Correspondence: (J.H.); (W.Z.)
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
- Correspondence: (J.H.); (W.Z.)
| |
Collapse
|
26
|
Snoussi M, Ahmad I, Aljohani AMA, Patel H, Abdulhakeem MA, Alhazmi YS, Tepe B, Adnan M, Siddiqui AJ, Sarikurkcu C, Riadh B, De Feo V, Alreshidi M, Noumi E. Phytochemical Analysis, Antioxidant, and Antimicrobial Activities of Ducrosia flabellifolia: A Combined Experimental and Computational Approaches. Antioxidants (Basel) 2022; 11:2174. [PMID: 36358545 PMCID: PMC9686979 DOI: 10.3390/antiox11112174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 09/02/2023] Open
Abstract
Ducrosia flabellifolia Boiss. is a rare desert plant known to be a promising source of bioactive compounds. In this paper, we report for the first time the phytochemical composition and biological activities of D. flabellifolia hydroalcoholic extract by using liquid chromatography-electrospray tandem mass spectrometry (ESI-MS/MS) technique. The results obtained showed the richness of the tested extract in phenols, tannins, and flavonoids. Twenty-three phytoconstituents were identified, represented mainly by chlorogenic acid, followed by ferulic acid, caffeic acid, and sinapic acid. The tested hydroalcoholic extract was able to inhibit the growth of all tested bacteria and yeast on agar Petri dishes at 3 mg/disc with mean growth inhibition zone ranging from 8.00 ± 0.00 mm for Enterococcus cloacae (E. cloacae) to 36.33 ± 0.58 mm for Staphylococcus epidermidis. Minimal inhibitory concentration ranged from 12.5 mg/mL to 200 mg/mL and the hydroalcoholic extract from D. flabellifolia exhibited a bacteriostatic and fungistatic character. In addition, D. flabellifolia hydroalcoholic extract possessed a good ability to scavenge different free radicals as compared to standard molecules. Molecular docking studies on the identified phyto-compounds in bacterial, fungal, and human peroxiredoxin 5 receptors were performed to corroborate the in vitro results, which revealed good binding profiles on the examined protein targets. A standard atomistic 100 ns dynamic simulation investigation was used to further evaluate the interaction stability of the promising phytocompounds, and the results showed conformational stability in the binding cavity. The obtained results highlighted the medicinal use of D. flabellifolia as source of bioactive compounds, as antioxidant, antibacterial, and antifungal agent.
Collapse
Affiliation(s)
- Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Ha’il 2440, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India
| | | | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India
| | | | - Yasser S. Alhazmi
- Department of Biology, College of Science, University of Hail, Ha’il 2440, Saudi Arabia
| | - Bektas Tepe
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, TR-79000 Kilis, Turkey
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Ha’il 2440, Saudi Arabia
| | - Arif J. Siddiqui
- Department of Biology, College of Science, University of Hail, Ha’il 2440, Saudi Arabia
| | - Cengiz Sarikurkcu
- Faculty of Pharmacy, Afyonkarahisar Health Sciences University, TR-03100 Afyonkarahisar, Turkey
| | - Badraoui Riadh
- Department of Biology, College of Science, University of Hail, Ha’il 2440, Saudi Arabia
- Section of Histology Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta 1007, Road Djebal Lakhdhar, Tunis 1007, Tunisia
- Department of HistoEmbryology and Cytogenetics, Medicine Faculty of Sfax, University of Sfax, Road of Majida Boulia, Sfax 3029, Tunisia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Ha’il 2440, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Ha’il 2440, Saudi Arabia
| | - Emira Noumi
- Department of Biology, College of Science, University of Hail, Ha’il 2440, Saudi Arabia
| |
Collapse
|
27
|
Souza JL, Nunes VV, Calazans CC, Silva-Mann R. Biotechnological potential of medicinal plant Erythrina velutina Willd: A systematic review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Olchowik-Grabarek E, Mies F, Sekowski S, Dubis AT, Laurent P, Zamaraeva M, Swiecicka I, Shlyonsky V. Enzymatic synthesis and characterization of aryl iodides of some phenolic acids with enhanced antibacterial properties. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184011. [PMID: 35872033 DOI: 10.1016/j.bbamem.2022.184011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Phenolic acids represent a class of drugs with mild antibacterial properties. We have synthesized iodinated gallic and ferulic acids and together with commercially available iodinated forms of salicylic acids studied their cytotoxicity, bacteriostatic and anti-virulence action. Out of these, iodogallic acid had lowest minimal inhibitory concentration (MIC) against Staphylococcus aureus (MIC = 0.4 mM/118.8 μg/ml). Yet, it had strong effect on erythrocyte membrane lipid ordering and on α-hemolysin secretion by the bacteria at lower non-bacteriostatic and non-cytotoxic concentrations (<0.1 mM). Iodogallic acid formed static complexes with α-hemolysin in solutions (logKb = 4.69 ± 0.07) and inhibited its nano-pore conduction in artificial lipid bilayers (IC50 = 37.9 ± 5.3 μM). These effects of iodogallic acid converged on prevention of hemolysis induced by α-hemolysin (IC50 = 41.5 ± 4.2 μM) and pointed to enhanced and diverse anti-virulence properties of some aryl iodides. The analysis of molecular surface electrostatic charge distribution, molecular hydrophilicity, electronegativity, and dipole moment of studied compounds suggested the importance of the number of hydroxyl groups and their proximity to iodine in anti-virulence activity manifestation. In iodogallic acid, charge redistribution resulted in higher hydrophilicity without concomitant change in overall molecular electronegativity and dipole moment compared to non-iodinated gallic acid. This study shows new directions for the development of antibacterial/antivirulence therapeutics.
Collapse
Affiliation(s)
- Ewa Olchowik-Grabarek
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, Poland
| | - Frédérique Mies
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université libre de Bruxelles, Belgium
| | - Szymon Sekowski
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, Poland
| | - Alina T Dubis
- Department of Organic Chemistry, Faculty of Chemistry, University of Bialystok, Poland
| | - Pascal Laurent
- Laboratory of Chemistry Instruction, Faculty of Medicine, Université libre de Bruxelles, Belgium
| | - Maria Zamaraeva
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, Poland
| | - Izabela Swiecicka
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, Poland
| | - Vadim Shlyonsky
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université libre de Bruxelles, Belgium.
| |
Collapse
|
29
|
Ben Brahim R, Ellouzi H, Fouzai K, Asses N, Neffati M, Sabatier JM, Bulet P, Regaya I. Optimized Chemical Extraction Methods of Antimicrobial Peptides from Roots and Leaves of Extremophilic Plants: Anthyllis sericea and Astragalus armatus Collected from the Tunisian Desert. Antibiotics (Basel) 2022; 11:antibiotics11101302. [PMID: 36289960 PMCID: PMC9599020 DOI: 10.3390/antibiotics11101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022] Open
Abstract
Extraction methods depend mainly on the chemical nature of the extracted molecule. For these reasons, the selection of the extraction medium is a vital part of obtaining these molecules. The extraction of antimicrobial peptides (AMPs) from extremophile plants is important because of its potential pharmaceutical applications. This work focused on the evaluation of several solvents for the extraction of AMPs from the following two extremophile plants: Astragalus armatus and Anthyllis sericea from southern Tunisia. In order to identify the most efficient solvents and extraction solutions, we used sulfuric acid, dichloromethane, phosphate buffer, acetic acid and sodium acetate, and we tested them on leaves and roots of both the studied plants. The extracts obtained using sulfuric acid, dichloromethane and phosphate buffer extraction did not show any antimicrobial activity, whereas the acetic acid and sodium acetate extracts led to growth inhibition of some of the tested bacterial strains. The extracts of leaves and roots of An. sericea and As. armatus obtained by acetic acid and sodium acetate were proven to be active against Gram-positive bacteria and Gram-negative bacteria. Therefore, the most appropriate solvents to use for antimicrobial peptide extraction from both plants are acetic acid and sodium acetate.
Collapse
Affiliation(s)
- Raoua Ben Brahim
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia
- Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia
- Correspondence: (R.B.B.); (I.R.); Tel.: +216-2854-7958 (R.B.B.); +216-9600-9080 (I.R.)
| | - Hasna Ellouzi
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia
| | - Khaoula Fouzai
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia
- Department of Biology, Faculty of Sciences of Bizerte, Carthage University, Bizerte 7021, Tunisia
| | - Nedra Asses
- Higher Institute of Sciences and Technologies of the Environment of Borj Cedria, University of Carthage, Amilcar 1054, Tunisia
| | - Mohammed Neffati
- Laboratory of Pastoral Ecosystems and Valorization of Spontaneous Plants, LR16IRA03, Institute of Arid Regions, University of Gabès, Médenine 4119, Tunisia
| | - Jean Marc Sabatier
- Institut de Neurophysiopathologie (INP), Faculté des Sciences Médicales et Paramédicales, Aix-Marseille Université, CNRS UMR 7051, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Philippe Bulet
- Plateform BioPark Archamps, 218 Avenue Marie Curie Archparc, 74160 Archamps, France
- CR University Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, 38700 Grenoble, France
| | - Imed Regaya
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia
- Higher Institute of Sciences and Technologies of the Environment of Borj Cedria, University of Carthage, Amilcar 1054, Tunisia
- Correspondence: (R.B.B.); (I.R.); Tel.: +216-2854-7958 (R.B.B.); +216-9600-9080 (I.R.)
| |
Collapse
|
30
|
Chaparro-Hernández I, Rodríguez-Ramírez J, Barriada-Bernal LG, Méndez-Lagunas L. Tree ferns (Cyatheaceae) as a source of phenolic compounds – A review. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Chitosan augments bioactive properties and drought resilience in drought-induced red kidney beans. Food Res Int 2022; 159:111597. [DOI: 10.1016/j.foodres.2022.111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/21/2022]
|
32
|
Mallek‐Ayadi S, Bahloul N, Baklouti S, Kechaou N. Bioactive compounds from Cucumis melo L. fruits as potential nutraceutical food ingredients and juice processing using membrane technology. Food Sci Nutr 2022; 10:2922-2934. [PMID: 36171790 PMCID: PMC9469856 DOI: 10.1002/fsn3.2888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/27/2021] [Accepted: 04/02/2022] [Indexed: 11/23/2022] Open
Abstract
The present study was designed to evaluate the nutritional composition of melon pulp Maazoun variety, in order to explore its potential attitude as a natural source of nutrients and bioactive molecules. The chemical characterization showed that the pulp was rich in moisture, carbohydrate, dietary fibers, and minerals, as well as carotenoids and phenolic compounds. The chromatographic analysis indicated that amentoflavone (16.14 mg/100 g) and gallic acid (13.56 mg/100 g) were the most abundant phenolic compounds. Melon flesh has an interesting volatile profile in which, mostly esters and alcohols are considered as the key odorants of this appreciated fruit. Melon juice was filtered through crossflow microfiltration that provides more translucent juice and accentuation of yellow color. During clarification process, the permeate flux was reduced by 50% in approximately 40 min. Results proved that the richness of melons in nutrients and bioactive phytochemicals makes them useful as a potential source of antioxidants and suitable as nutraceutical supplements.
Collapse
Affiliation(s)
- Sana Mallek‐Ayadi
- Research Group of Agri‐Food Processing EngineeringLaboratory of Applied Fluids Mechanics, Process Engineering and EnvironmentNational School of Engineers of SfaxUniversity of SfaxTunisia
| | - Neila Bahloul
- Research Group of Agri‐Food Processing EngineeringLaboratory of Applied Fluids Mechanics, Process Engineering and EnvironmentNational School of Engineers of SfaxUniversity of SfaxTunisia
| | - Semia Baklouti
- Laboratory of Materials Engineering and EnvironmentNational School of Engineers of SfaxUniversity of SfaxTunisia
| | - Nabil Kechaou
- Research Group of Agri‐Food Processing EngineeringLaboratory of Applied Fluids Mechanics, Process Engineering and EnvironmentNational School of Engineers of SfaxUniversity of SfaxTunisia
| |
Collapse
|
33
|
Hassane AMA, Hussien SM, Abouelela ME, Taha TM, Awad MF, Mohamed H, Hassan MM, Hassan MHA, Abo-Dahab NF, El-Shanawany ARA. In Vitro and In Silico Antioxidant Efficiency of Bio-Potent Secondary Metabolites From Different Taxa of Black Seed-Producing Plants and Their Derived Mycoendophytes. Front Bioeng Biotechnol 2022; 10:930161. [PMID: 35928959 PMCID: PMC9344008 DOI: 10.3389/fbioe.2022.930161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/06/2022] [Indexed: 01/17/2023] Open
Abstract
Oxidative stress is involved in the pathophysiology of multiple health complications, and it has become a major focus in targeted research fields. As known, black seeds are rich sources of bio-active compounds and widely used to promote human health due to their excellent medicinal and pharmaceutical properties. The present study investigated the antioxidant potency of various black seeds from plants and their derived mycoendophytes, and determined the total phenolic and flavonoid contents in different extracts, followed by characterization of major constituents by HPLC analysis. Finally, in silico docking determined their binding affinities to target myeloperoxidase enzymes. Ten dominant mycoendophytes were isolated from different black seed plants. Three isolates were then selected based on high antiradical potency and further identified by ITS ribosomal gene sequencing. Those isolated were Aspergillus niger TU 62, Chaetomium madrasense AUMC14830, and Rhizopus oryzae AUMC14823. Nigella sativa seeds and their corresponding endophyte A. niger had the highest content of phenolics in their n-butanol extracts (28.50 and 24.43 mg/g), flavonoids (15.02 and 11.45 mg/g), and antioxidant activities (90.48 and 81.48%), respectively, followed by Dodonaea viscosa and Portulaca oleracea along with their mycoendophytic R. oryzae and C. madrasense. Significant positive correlations were found between total phenolics, flavonoids, and the antioxidant activities of different tested extracts. The n-butanol extracts of both black seeds and their derived mycoendophytes showed reasonable IC50 values (0.81–1.44 mg/ml) compared to the control with significant correlations among their phytochemical contents. Overall, seventeen standard phenolics and flavonoids were used, and the compounds were detected in different degrees of existence and concentration in the examined extracts through HPLC analysis. Moreover, the investigation of the molecular simulation results of detected compounds against the myeloperoxidase enzyme revealed that, as a targeted antioxidant, rutin possessed a high affinity (−15.3184 kcal/mol) as an inhibitor. Taken together, the black seeds and their derived mycoendophytes are promising bio-prospects for the broad industrial sector of antioxidants with several valuable potential pharmaceutical and nutritional applications.
Collapse
Affiliation(s)
- Abdallah M. A. Hassane
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
- *Correspondence: Abdallah M. A. Hassane, ; Mohamed E. Abouelela,
| | - Saleh M. Hussien
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Assiut, Egypt
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
- *Correspondence: Abdallah M. A. Hassane, ; Mohamed E. Abouelela,
| | - Taher M. Taha
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
- Department of Biology, College of Science and Arts, Al Bahah University, Al-Mandaq, Saudi Arabia
| | - Mohamed F. Awad
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Hassan Mohamed
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Mohammad M. Hassan
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Menoufiya University, Sheben Al Kom, Egypt
| | - Mohammad H. A. Hassan
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Asyut, Egypt
| | - Nageh F. Abo-Dahab
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | | |
Collapse
|
34
|
Altarawneh RM, Al‐Jaafreh AM, Qaralleh H, Al‐Qaralleh OS. Chemical profiling of Punica granatum peels from Jordan using
LC–MS
/
MS
and study on their biological activities. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rakan M. Altarawneh
- Department of Chemistry Faculty of Science Mu'tah University Al‐Karak Jordan
| | - Ahmad M. Al‐Jaafreh
- Department of Medical Laboratory Sciences Faculty of Science Mu'tah University Al‐Karak Jordan
| | - Haitham Qaralleh
- Department of Medical Laboratory Sciences Faculty of Science Mu'tah University Al‐Karak Jordan
| | - Omar S. Al‐Qaralleh
- Department of Biological Sciences Faculty of Science Mu'tah University Al‐Karak Jordan
| |
Collapse
|
35
|
Zheng CW, Cheung TMY, Leung GPH. A review of the phytochemical and pharmacological properties of Amauroderma rugosum. Kaohsiung J Med Sci 2022; 38:509-516. [PMID: 35548873 DOI: 10.1002/kjm2.12554] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/08/2022] Open
Abstract
Amauroderma rugosum (AR) is a basidiomycete in the Ganodermataceae family that has been used traditionally to prevent epileptic attacks and constant crying in babies. However, AR has not been widely studied scientifically. In this review, we summarize the phytochemical components and pharmacological properties of AR that have been reported in the literature. Chemical analyses have revealed that the components of AR include sterols, flavonoids, fatty acids and esters, aromatic acids and esters, phenols, polysaccharides, and triterpenes. Pharmacological properties of AR include antioxidant, anti-inflammatory, neuroprotective, anti-cancer, anti-hyperlipidemic, anti-epileptic, and antibacterial effects. These findings suggest that AR and its bioactive ingredients have potential therapeutic applications, particularly for age-related diseases.
Collapse
Affiliation(s)
- Cheng-Wen Zheng
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
36
|
Yadav LR, Balagangadharan K, Lavanya K, Selvamurugan N. Orsellinic acid-loaded chitosan nanoparticles in gelatin/nanohydroxyapatite scaffolds for bone formation in vitro. Life Sci 2022; 299:120559. [PMID: 35447131 DOI: 10.1016/j.lfs.2022.120559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
AIM Orsellinic acid (2,4-Dimethoxy-6-methylbenzoic acid) (OA) is a hydrophobic polyphenolic compound with therapeutic potential, but its impact on actuating osteogenesis remains unknown. The bioavailability of OA is hampered by its hydrophobic nature. This study aimed to fabricate nano-drug delivery system-based scaffolds for OA and test its potential for osteogenesis in vitro. MATERIALS AND METHODS OA was loaded into chitosan nanoparticles (nCS + OA) using the ionic gelation technique at different concentrations. nCS + OA were incorporated onto the scaffolds containing gelatin (Gel) and nanohydroxyapatite (nHAp) by the lyophilization method. Biocomposite scaffolds were examined for their physicochemical and material characteristic properties. The effect of OA in the scaffolds for osteoblast differentiation was determined by alizarin red and von Kossa staining at the cellular level and by reverse transcriptase-qPCR and western blot analysis at the molecular level. KEY FINDINGS The scaffolds showed excellent physiochemical and material characteristics and remained cyto-friendly to mouse mesenchymal stem cells (mMSCs, C3H10T1/2). The release of OA from Gel/nHAp/nCS scaffolds enhanced the differentiation of mMSCs towards osteoblasts, as observed through cellular and molecular studies. Moreover, the osteogenic potential of OA was mediated by the activation of FAK and ERK signaling pathways through integrins. SIGNIFICANCE The inclusion of OA into Gel/nHAp/nCS biocomposite scaffolds at 80 μM concentration promoted osteoblast differentiation via cell adhesion mediated signaling, compared with that shown by Gel/nHAp/nCS alone. Overall, this study identified the potential therapeutic OA containing Gel/nHAp/nCS scaffolds, accelerating its potential for clinical application towards bone regeneration.
Collapse
Affiliation(s)
- L Roshini Yadav
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - K Balagangadharan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - K Lavanya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
37
|
Hazrati H, Kudsk P, Ding L, Uthe H, Fomsgaard IS. Integrated LC-MS and GC-MS-Based Metabolomics Reveal the Effects of Plant Competition on the Rye Metabolome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3056-3066. [PMID: 35227064 DOI: 10.1021/acs.jafc.1c06306] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plants compete with their neighbors about the limited resources available to them. Plants under induced stress resulting from competition may alter their metabolome to increase their resilience or enhance their defense mechanisms. In the present study, rye (Secale cereale) plants were cocultivated with different densities (3, 12, and 18 plants per pot) of Austrian pea (Pisum sativum subsp. arvense), hairy vetch (Vicia villosa), and Alexandrian clover (Trifolium alexandrinum L.) to elucidate the changes in the rye metabolome in response to the different levels of competition. Global metabolic profiling by liquid chromatography triple quadrupole tandem mass spectrometry (LC-QqQ-MS), liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS), and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) was performed on rye plants, and the acquired data were analyzed using uni- and multivariate statistics. Targeted analysis showed that a high level of competition reduced the concentration of aglycone benzoxazinoids (BXs) and increased glycoside BXs in rye roots. Untargeted metabolomics analysis indicated an increase in the rye root content of the allelopathic compounds 4-hydroxybenzoic acid and uracil in response to competition. Untargeted analysis of rye shoots revealed that the plant competition increased the d-pyroglutamic acid, which is an elicitor of reactive oxygen species (ROS). Our results have enhanced the knowledge of the biochemical response of plant species to cocultivation.
Collapse
Affiliation(s)
- Hossein Hazrati
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
| | - Per Kudsk
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Ling Ding
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Henriette Uthe
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Inge S Fomsgaard
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| |
Collapse
|
38
|
Vong CI, Rathinasabapathy T, Moncada M, Komarnytsky S. All Polyphenols Are Not Created Equal: Exploring the Diversity of Phenolic Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2077-2091. [PMID: 35147422 DOI: 10.1021/acs.jafc.1c07179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dietary intake of plant polyphenols is significant, and many of them enter a human body as a highly diverse pool of ring-fission phenolic metabolites arising from digestion and microbial catabolism of the parental structures. Difficulty in designing the uniform intervention studies and limited tools calibrated to detect and quantify the inherent complexity of phenolic metabolites hindered efforts to establish and validate protective health effects of these molecules. Here, we highlight the recent findings that describe novel complex downstream metabolite profiles with a particular focus on dihydrophenolic (phenylpropanoic) acids of microbial origin, ingested and phase II-transformed methylated phenolic metabolites (methylated sinks), and small phenolic metabolites derived from the breakdown of different classes of flavonoids, stilbenoids, and tannins. There is a critical need for precise identification of the individual phenolic metabolite signatures originating from different polyphenol groups to enable future translation of these findings into break-through nutritional interventions and dietary guidelines.
Collapse
Affiliation(s)
- Chi In Vong
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| | - Thirumurugan Rathinasabapathy
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| | - Marvin Moncada
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| | - Slavko Komarnytsky
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| |
Collapse
|
39
|
Wang Q, Sun Z, Li D, Ye K, Xie C, Zhang S, Jiang L, Zheng K, Pang Q. Determination of protonation state in molecular salt of minoxidil and 2,4-dihydroxybenzoic acid through a combined experimental and theoretical study: influence of proton transfer on biological activities. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Li R, Zhou Y, Zhang S, Li J, Zheng Y, Fan X. The natural (poly)phenols as modulators of microglia polarization via TLR4/NF-κB pathway exert anti-inflammatory activity in ischemic stroke. Eur J Pharmacol 2022; 914:174660. [PMID: 34863710 DOI: 10.1016/j.ejphar.2021.174660] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022]
Abstract
Increasing evidences suggest that inflammation plays a key role in the pathogenesis of stroke, a devastating disease second only to cardiac ischemia as a cause of death worldwide. Microglia are the first non-neuronal cells on the scene during the innate immune response to acute ischemic stroke. Microglia respond to acute brain injury by activating and developing classic M1-like (pro-inflammatory) or alternative M2-like (anti-inflammatory) phenotypes. M1 microglia produce pro-inflammatory cytokines to exacerbate neural death, astrocyte apoptosis, and blood brain barrier (BBB) disruption, while M2 microglia play the opposite role. NF-κB, a central regulator of the inflammatory response, was responsible for microglia M1 and M2 polarization. NF-κB p65 and p50 form a heterodimer to initiate a pro-inflammatory cytokine response, which enhances M1 activation and impair M2 response of microglia. TLR4, expressed on the surface of microglia, plays an important role in activating NF-κB, ultimately causing the M1 response of microglia. Therefore, modulation of microglial phenotypes via TLR4/NF-κB signaling pathway may be a promising therapeutic approach for ischemic stroke. Dietary (poly)phenols are present in various foods, which have shown promising protective effects on ischemic stroke. In vivo studies strongly suggest that many (poly)phenols have a pronounced impact on ischemic stroke, as demonstrated by lower neuroinflammation. Thus, this review focuses on the anti-inflammatory properties of dietary (poly)phenols and discusses their effects on the polarization of microglia through modulating TLR4/NF-κB signaling pathway in the ischemic stroke.
Collapse
Affiliation(s)
- Ruoqi Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yuan Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shanshan Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jieying Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yingyi Zheng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
41
|
Sułkowska-Ziaja K, Zengin G, Gunia-Krzyżak A, Popiół J, Szewczyk A, Jaszek M, Rogalski J, Muszyńska B. Bioactivity and Mycochemical Profile of Extracts from Mycelial Cultures of Ganoderma spp. Molecules 2022; 27:275. [PMID: 35011507 PMCID: PMC8746335 DOI: 10.3390/molecules27010275] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 11/17/2022] Open
Abstract
Fungal mycelium cultures are an alternative to natural sources in order to obtain valuable research materials. They also enable constant control and adaptation of the process, thereby leading to increased biomass growth and accumulation of bioactive metabolites. The present study aims to assess the biosynthetic potential of mycelial cultures of six Ganoderma species: G. adspersum, G. applanatum, G. carnosum, G. lucidum, G. pfeifferi, and G. resinaceum. The presence of phenolic acids, amino acids, indole compounds, sterols, and kojic acid in biomass extracts was determined by HPLC. The antioxidant and cytotoxic activities of the extracts and their effects on the inhibition of selected enzymes (tyrosinase and acetylcholinesterase) were also evaluated. The total content of phenolic acids in the extracts ranged from 5.8 (G. carnosum) to 114.07 mg/100 g dry weight (d.w.) (G. pfeifferi). The total content of indole compounds in the extracts ranged from 3.03 (G. carnosum) to 11.56 mg/100 g d.w. (G. lucidum) and that of ergosterol ranged from 28.15 (G. applanatum) to 74.78 mg/100 g d.w. (G. adspersum). Kojic acid was found in the extracts of G. applanatum and G. lucidum. The tested extracts showed significant antioxidant activity. The results suggest that the analyzed mycelial cultures are promising candidates for the development of new dietary supplements or pharmaceutical preparations.
Collapse
Affiliation(s)
- Katarzyna Sułkowska-Ziaja
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland; (A.S.); (B.M.)
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland;
| | - Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland;
| | - Agnieszka Szewczyk
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland; (A.S.); (B.M.)
| | - Magdalena Jaszek
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (M.J.); (J.R.)
| | - Jerzy Rogalski
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (M.J.); (J.R.)
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland; (A.S.); (B.M.)
| |
Collapse
|
42
|
Wani TA, Bhat IA, Guleria K, Fayaz M, Anju T, Haritha K, Kumar A, Kaloo ZA. Phytochemicals: Diversity, Sources and Their Roles. PHYTOCHEMICAL GENOMICS 2022:3-33. [DOI: 10.1007/978-981-19-5779-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
43
|
Andrabi Q, Ramalingam S. Role of Notch Signalling in Oxidative Stress and Stem Cell Self-Renewal During Colitis and Colon Cancer. HANDBOOK OF OXIDATIVE STRESS IN CANCER: THERAPEUTIC ASPECTS 2022:1623-1637. [DOI: 10.1007/978-981-16-5422-0_82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
44
|
Pandohee J, Kyereh E, Kulshrestha S, Xu B, Mahomoodally MF. Review of the recent developments in metabolomics-based phytochemical research. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34672234 DOI: 10.1080/10408398.2021.1993127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Phytochemicals are important bioactive components present in natural products. Although the health benefits of many food products are well-known and accepted as a common knowledge, the identity of the main bioactive molecules and the mechanism by which they interact in the body of human are often unknown. It was only in the last 30 years when the field of metabolomics had matured that the identification of such molecules with bioactivity has been made possible through the development of instruments to separate and computational techniques to characterize complex samples. This in turn has enabled in vitro studies to quantify the biological activity of the respective phytochemical either in mice models or in humans. In this review, the importance of key dietary phytochemicals such as phenolic acids, flavonoids, carotenoids, resveratrol, curcumin, and capsaicinoids are discussed together with their potential functions for human health. Untargeted metabolomics, in particular, liquid chromatography mass spectrometry, is the most used method to isolate, identify and profile bioactive compounds in the study of phytochemicals in foods. The application of metabolomics in drug discovery is a common practice nowadays and has boosted the drug and/or supplement manufacturing sector.HighlightsPhytochemicals are beneficial compounds for human healthPhytochemicals are plant-based bioactive and obtainable from natural productsUntargeted metabolomics has boosted the discovery of phytochemicals from foodTargeted metabolomics is key in the authentication and screening of phytochemicalsMetabolomics of phytochemicals is reshaping the road to drug and supplement manufacture.
Collapse
Affiliation(s)
- Jessica Pandohee
- Centre for Crop and Disease Management, Curtin University, Perth, Western Australia, Australia.,Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| | | | - Saurabh Kulshrestha
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China
| | | |
Collapse
|
45
|
Šućur J, Konstantinović B, Crnković M, Bursić V, Samardžić N, Malenčić Đ, Prvulović D, Popov M, Vuković G. Chemical Composition of Ambrosia trifida L. and Its Allelopathic Influence on Crops. PLANTS (BASEL, SWITZERLAND) 2021; 10:2222. [PMID: 34686031 PMCID: PMC8538424 DOI: 10.3390/plants10102222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/01/2022]
Abstract
Phytotoxic substances released by invasive plants have been reported to have anti-pathogen, anti-herbivore, and allelopathic activity. The aim of this study was to determine the allelopathic influence of the Ambrosia trifida L. on oxidative stress parameters (the lipid peroxidation process; reduced glutathione (GSH) content; and activity of antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), and peroxidase (PX)) and phenolic compounds (total phenolic and tannin content) in maize (Zea mays L.), soybean (Glycine max L.), and sunflower (Helianthus annuus L.) crops to explore the effect of released allelochemicals through A. trifida root on crops. An analysis by HPLC confirmed the presence of protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, and syringic acid as major components in the A. trifida. Based on the obtained results for oxidative stress parameters, it can be concluded that the sunflower was the most sensitive species to A. trifida allelochemicals among the tested crops. The other two crops tested showed a different sensitivity to A. trifida. The soybean did not show sensitivity, while the maize showed sensitivity only 10 days after the sowing.
Collapse
Affiliation(s)
- Jovana Šućur
- Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (J.Š.); (M.C.); (Đ.M.); (D.P.)
| | - Bojan Konstantinović
- Department of Plant and Environmental Protection, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (B.K.); (V.B.); (M.P.)
| | - Marina Crnković
- Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (J.Š.); (M.C.); (Đ.M.); (D.P.)
| | - Vojislava Bursić
- Department of Plant and Environmental Protection, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (B.K.); (V.B.); (M.P.)
| | - Nataša Samardžić
- Department of Plant and Environmental Protection, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (B.K.); (V.B.); (M.P.)
| | - Đorđe Malenčić
- Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (J.Š.); (M.C.); (Đ.M.); (D.P.)
| | - Dejan Prvulović
- Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (J.Š.); (M.C.); (Đ.M.); (D.P.)
| | - Milena Popov
- Department of Plant and Environmental Protection, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (B.K.); (V.B.); (M.P.)
| | - Gorica Vuković
- Department of Pesticides and Herbology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| |
Collapse
|
46
|
Sahlan M, Rizka Alia Hapsari N, Diah Pratami K, Cahya Khayrani A, Lischer K, Alhazmi A, Mohammedsaleh ZM, Shater AF, Saleh FM, Alsanie WF, Sayed S, Gaber A. Potential hepatoprotective effects of flavonoids contained in propolis from South Sulawesi against chemotherapy agents. Saudi J Biol Sci 2021; 28:5461-5468. [PMID: 34588856 PMCID: PMC8459154 DOI: 10.1016/j.sjbs.2021.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 02/01/2023] Open
Abstract
The use of doxorubicin and epirubicin as chemotherapy agent causes side effects such as liver damage due to oxidative stress by reactive oxygen species (ROS) that cause increased of ALT and AST level as liver parameter. One source of natural antioxidants as ROS neutralizer comes from flavonoid that contain in propolis. Most researchers claim that flavonoid can be used to protect the liver. The aim of this study was to test the hepatoprotective effect of flavonoid in propolis from South Sulawesi against doxorubicin and epirubicin. The experiment included male Sprague dawley rats divided into nine groups. The rats received the microcapsule propolis or the quercetin orally for 15 days. The hepatotoxicity was promoted by injection epirubicin and doxorubicin (i.v.) with a cumulative dose of 9 mg/kg. In this study, total polyphenol and flavonoid tests of propolis have been carried out, there were 1.1% polyphenols and 2.7% flavonoids, the antioxidant activity tests showed IC50 value of 9849 ppm and LCMS/MS tests supported the presence of phenolic compounds in propolis from South Sulawesi. Liver parameter was measured and the results showed that the propolis 200 mg/kg group produced the lowest ALT and had potential protective effect against doxorubicin and epirubicin-induced hepatotoxicity.
Collapse
Affiliation(s)
- Muhamad Sahlan
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, West Java, 16424, Depok, Indonesia.,Research Center for Biomedical Engineering, Faculty of Engineering, Universitas Indonesia, West Java, 16424, Depok, Indonesia
| | - Nur Rizka Alia Hapsari
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, West Java, 16424, Depok, Indonesia
| | | | - Apriliana Cahya Khayrani
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, West Java, 16424, Depok, Indonesia
| | - Kenny Lischer
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, West Java, 16424, Depok, Indonesia.,Research Center for Biomedical Engineering, Faculty of Engineering, Universitas Indonesia, West Java, 16424, Depok, Indonesia
| | - Alaa Alhazmi
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia.,SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abdullah F Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Fayez M Saleh
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Walaa F Alsanie
- Center of Biomedical Sciences Research (CBSR), Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.,Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Samy Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, B.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed Gaber
- Center of Biomedical Sciences Research (CBSR), Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.,Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
47
|
Floris B, Galloni P, Conte V, Sabuzi F. Tailored Functionalization of Natural Phenols to Improve Biological Activity. Biomolecules 2021; 11:1325. [PMID: 34572538 PMCID: PMC8467377 DOI: 10.3390/biom11091325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Phenols are widespread in nature, being the major components of several plants and essential oils. Natural phenols' anti-microbial, anti-bacterial, anti-oxidant, pharmacological and nutritional properties are, nowadays, well established. Hence, given their peculiar biological role, numerous studies are currently ongoing to overcome their limitations, as well as to enhance their activity. In this review, the functionalization of selected natural phenols is critically examined, mainly highlighting their improved bioactivity after the proper chemical transformations. In particular, functionalization of the most abundant naturally occurring monophenols, diphenols, lipidic phenols, phenolic acids, polyphenols and curcumin derivatives is explored.
Collapse
Affiliation(s)
- Barbara Floris
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Pierluca Galloni
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Valeria Conte
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Federica Sabuzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| |
Collapse
|
48
|
Kalinowska M, Gołębiewska E, Świderski G, Męczyńska-Wielgosz S, Lewandowska H, Pietryczuk A, Cudowski A, Astel A, Świsłocka R, Samsonowicz M, Złowodzka AB, Priebe W, Lewandowski W. Plant-Derived and Dietary Hydroxybenzoic Acids-A Comprehensive Study of Structural, Anti-/Pro-Oxidant, Lipophilic, Antimicrobial, and Cytotoxic Activity in MDA-MB-231 and MCF-7 Cell Lines. Nutrients 2021; 13:nu13093107. [PMID: 34578985 PMCID: PMC8466373 DOI: 10.3390/nu13093107] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022] Open
Abstract
Seven derivatives of plant-derived hydroxybenzoic acid (HBA)—including 2,3-dihydroxybenzoic (2,3-DHB, pyrocatechuic), 2,4-dihydroxybenzoic (2,4-DHB, β-resorcylic), 2,5-dihydroxybenzoic (2,5-DHB, gentisic), 2,6-dihydroxybenzoic (2,6-DHB, γ-resorcylic acid), 3,4-dihydroxybenzoic (3,4-DHB, protocatechuic), 3,5-dihydroxybenzoic (3,5-DHB, α-resorcylic), and 3,4,5-trihydroxybenzoic (3,4,5-THB, gallic) acids—were studied for their structural and biological properties. Anti-/pro-oxidant properties were evaluated by using DPPH• (2,2-diphenyl-1-picrylhydrazyl), ABTS•+ (2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), FRAP (ferric-reducing antioxidant power), CUPRAC (cupric-reducing antioxidant power), and Trolox oxidation assays. Lipophilicity was estimated by means of experimental (HPLC) and theoretical methods. The antimicrobial activity against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus), Bacillus subtilis (B. subtilis), Salmonella enteritidis (S. enteritidis), and Candida albicans (C. albicans) was studied. The cytotoxicity of HBAs in MCF-7 and MDA-MB-231 cell lines was estimated. Moreover, the structure of HBAs was studied by means of experimental (FTIR, 1H, and 13C NMR) and quantum chemical DFT methods (the NBO and CHelpG charges, electrostatic potential maps, and electronic parameters based on the energy of HOMO and LUMO orbitals). The aromaticity of HBA was studied based on the calculated geometric and magnetic aromaticity indices (HOMA, Aj, BAC, I6, NICS). The biological activity of hydroxybenzoic acids was discussed in relation to their geometry, the electronic charge distribution in their molecules, their lipophilicity, and their acidity. Principal component analysis (PCA) was used in the statistical analysis of the obtained data and the discussion of the dependency between the structure and activity (SAR: structure–activity relationship) of HBAs. This work provides valuable information on the potential application of hydroxybenzoic acids as bioactive components in dietary supplements, functional foods, or even drugs.
Collapse
Affiliation(s)
- Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (R.Ś.); (M.S.)
- Correspondence:
| | - Ewelina Gołębiewska
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (R.Ś.); (M.S.)
| | - Grzegorz Świderski
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (R.Ś.); (M.S.)
| | - Sylwia Męczyńska-Wielgosz
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street, 03-195 Warsaw, Poland; (S.M.-W.); (H.L.)
| | - Hanna Lewandowska
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street, 03-195 Warsaw, Poland; (S.M.-W.); (H.L.)
| | - Anna Pietryczuk
- Department of Water Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J Street, 15-245 Bialystok, Poland; (A.P.); (A.C.)
| | - Adam Cudowski
- Department of Water Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J Street, 15-245 Bialystok, Poland; (A.P.); (A.C.)
| | - Aleksander Astel
- Environmental Chemistry Research Unit, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewskiego 22a Street, 76-200 Słupsk, Poland;
| | - Renata Świsłocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (R.Ś.); (M.S.)
| | - Mariola Samsonowicz
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (R.Ś.); (M.S.)
| | - Anna Barbara Złowodzka
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warszawa, Poland;
| | - Waldemar Priebe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA;
| | - Włodzimierz Lewandowski
- Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland;
| |
Collapse
|
49
|
The Study of Physicochemical Properties and Blood Compatibility of Sodium Alginate-Based Materials via Tannic Acid Addition. MATERIALS 2021; 14:ma14174905. [PMID: 34500995 PMCID: PMC8432687 DOI: 10.3390/ma14174905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/29/2022]
Abstract
In this study, sodium alginate-based thin films were modified by the addition of tannic acid. Materials were obtained by solvent evaporation. They were characterized by the observation of its morphology and its surface by scanning electron microscope and atomic force microscope. The thermal properties were studied by differential scanning calorimetry. The concentration of tannic acid released from the material was determined by the Folin–Ciocalteu method. The material safety for biomedical application was determined by the hemolysis rate study in contact with sheep blood as well as platelet adhesion to the material surface. Based on the obtained results, we assume that proposed films based on sodium alginate/tannic acid are safe and may potentially find application in medicine.
Collapse
|
50
|
Warsito W, Murlistyarini S, Suratmo S, Azzahra VO, Sucahyo A. Molecular Docking Compounds of Cinnamaldehyde Derivatives as Anticancer Agents. Asian Pac J Cancer Prev 2021; 22:2409-2419. [PMID: 34452553 PMCID: PMC8629477 DOI: 10.31557/apjcp.2021.22.8.2409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 12/02/2022] Open
Abstract
Objective: Cinnamaldehyde (CM) has a molecular structure with the main reaction center of an aromatic ring which the bioactivity can be modified as an anticancer agent by substituting the groups in the ortho (o), meta (m), and para (p) position. The present study aimed to investigate the correlation of the cluster region that was substituted in CM on its activity for various anticancer receptors. Methods: The receptor types used in the test were 5FL6, 1HOV, 4GY7, 5EAM, 4XCU, 4EL9, and 4PQW. The suitability of the hydroxy (OH) and methoxy (OMe) groups, which were substituted, was studied based on the value of Ki, their interactions with metal cofactors, and the type of amino acid residues that function as cancer receptor inhibitors. The docking was conducted using AutoDock 4. Results: The study results showed that all derivative compounds (o, m, and p) –OH and –OMe CM commonly had better anticancer activities than CM. o-OH CM has the best activity against receptors 5FL6, 1HOV, 4GY7, 5EAM, and 4XCU, and m-OMe CM has better activity against the 4EL9 receptors when compared with other CM derivatives. Conclusion: Based on this study, the compound derived from CM, i.e. OHC, tends to show the best anticancer activity.
Collapse
Affiliation(s)
- Warsito Warsito
- Faculty of Mathematic and Natural Sciences, Essential Oil Institute, Brawijaya University, Malang, Indonesia
| | - Shinta Murlistyarini
- Laboratory of Biomedic, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Suratmo Suratmo
- Faculty of Mathematic and Natural Sciences, Essential Oil Institute, Brawijaya University, Malang, Indonesia
| | - Vina O Azzahra
- Faculty of Mathematic and Natural Sciences, Essential Oil Institute, Brawijaya University, Malang, Indonesia
| | - Andrian Sucahyo
- Faculty of Mathematic and Natural Sciences, Essential Oil Institute, Brawijaya University, Malang, Indonesia
| |
Collapse
|