1
|
Tirapelli CR, Padovan JC. Oxidative Stress in Cardiorenal System. Antioxidants (Basel) 2024; 13:1126. [PMID: 39334785 PMCID: PMC11428205 DOI: 10.3390/antiox13091126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Reactive oxygen species (ROS) is a general term that describes free radicals [e [...].
Collapse
Affiliation(s)
- Carlos R. Tirapelli
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Júlio C. Padovan
- Laboratory of Blood and Vascular Biology, The Rockefeller University, New York, NY 10065, USA;
| |
Collapse
|
2
|
Sun HJ, Lu QB, Zhu XX, Ni ZR, Su JB, Fu X, Chen G, Zheng GL, Nie XW, Bian JS. Pharmacology of Hydrogen Sulfide and Its Donors in Cardiometabolic Diseases. Pharmacol Rev 2024; 76:846-895. [PMID: 38866561 DOI: 10.1124/pharmrev.123.000928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/13/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
Cardiometabolic diseases (CMDs) are major contributors to global mortality, emphasizing the critical need for novel therapeutic interventions. Hydrogen sulfide (H2S) has garnered enormous attention as a significant gasotransmitter with various physiological, pathophysiological, and pharmacological impacts within mammalian cardiometabolic systems. In addition to its roles in attenuating oxidative stress and inflammatory response, burgeoning research emphasizes the significance of H2S in regulating proteins via persulfidation, a well known modification intricately associated with the pathogenesis of CMDs. This review seeks to investigate recent updates on the physiological actions of endogenous H2S and the pharmacological roles of various H2S donors in addressing diverse aspects of CMDs across cellular, animal, and clinical studies. Of note, advanced methodologies, including multiomics, intestinal microflora analysis, organoid, and single-cell sequencing techniques, are gaining traction due to their ability to offer comprehensive insights into biomedical research. These emerging approaches hold promise in characterizing the pharmacological roles of H2S in health and diseases. We will critically assess the current literature to clarify the roles of H2S in diseases while also delineating the opportunities and challenges they present in H2S-based pharmacotherapy for CMDs. SIGNIFICANCE STATEMENT: This comprehensive review covers recent developments in H2S biology and pharmacology in cardiometabolic diseases CMDs. Endogenous H2S and its donors show great promise for the management of CMDs by regulating numerous proteins and signaling pathways. The emergence of new technologies will considerably advance the pharmacological research and clinical translation of H2S.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Qing-Bo Lu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xue-Xue Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Zhang-Rong Ni
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Jia-Bao Su
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xiao Fu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Guo Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Guan-Li Zheng
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xiao-Wei Nie
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Jin-Song Bian
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| |
Collapse
|
3
|
Olsen T, Vinknes KJ, Barvíková K, Stolt E, Lee-Ødegård S, Troensegaard H, Johannessen H, Elshorbagy A, Sokolová J, Krijt J, Křížková M, Ditrói T, Nagy P, Øvrebø B, Refsum H, Thoresen M, Retterstøl K, Kožich V. Dietary sulfur amino acid restriction in humans with overweight and obesity: Evidence of an altered plasma and urine sulfurome, and a novel metabolic signature that correlates with loss of fat mass and adipose tissue gene expression. Redox Biol 2024; 73:103192. [PMID: 38776754 PMCID: PMC11163171 DOI: 10.1016/j.redox.2024.103192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/03/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND In animals, dietary sulfur amino acid restriction (SAAR) improves metabolic health, possibly mediated by altering sulfur amino acid metabolism and enhanced anti-obesogenic processes in adipose tissue. AIM To assess the effects of SAAR over time on the plasma and urine SAA-related metabolites (sulfurome) in humans with overweight and obesity, and explore whether such changes were associated with body weight, body fat and adipose tissue gene expression. METHODS Fifty-nine subjects were randomly allocated to SAAR (∼2 g SAA, n = 31) or a control diet (∼5.6 g SAA, n = 28) consisting of plant-based whole-foods and supplemented with capsules to titrate contents of SAA. Sulfurome metabolites in plasma and urine at baseline, 4 and 8 weeks were measured using HPLC and LC-MS/MS. mRNA-sequencing of subcutaneous white adipose tissue (scWAT) was performed to assess changes in gene expression. Data were analyzed with mixed model regression. Principal component analyses (PCA) were performed on the sulfurome data to identify potential signatures characterizing the response to SAAR. RESULTS SAAR led to marked decrease of the main urinary excretion product sulfate (p < 0.001) and plasma and/or 24-h urine concentrations of cystathionine, sulfite, thiosulfate, H2S, hypotaurine and taurine. PCA revealed a distinct metabolic signature related to decreased transsulfuration and H2S catabolism that predicted greater weight loss and android fat mass loss in SAAR vs. controls (all pinteraction < 0.05). This signature correlated positively with scWAT expression of genes in the tricarboxylic acid cycle, electron transport and β-oxidation (FDR = 0.02). CONCLUSION SAAR leads to distinct alterations of the plasma and urine sulfurome in humans, and predicted increased loss of weight and android fat mass, and adipose tissue lipolytic gene expression in scWAT. Our data suggest that SAA are linked to obesogenic processes and that SAAR may be useful for obesity and related disorders. TRIAL IDENTIFIER: https://clinicaltrials.gov/study/NCT04701346.
Collapse
Affiliation(s)
- Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine University of Oslo, Postboks 1046 Blindern, 0317 Oslo, Norway.
| | - Kathrine J Vinknes
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine University of Oslo, Postboks 1046 Blindern, 0317 Oslo, Norway
| | - Kristýna Barvíková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital, Ke Karlovu 2, 128 00 Prague, Czech Republic
| | - Emma Stolt
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine University of Oslo, Postboks 1046 Blindern, 0317 Oslo, Norway
| | - Sindre Lee-Ødegård
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Postboks 4959 Nydalen, OUS HF Aker sykehus, 0424 Oslo, Norway
| | - Hannibal Troensegaard
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine University of Oslo, Postboks 1046 Blindern, 0317 Oslo, Norway
| | - Hanna Johannessen
- Department of Pathology, Oslo University Hospital, Rikshospitalet, Postboks 45980 Nydalen, OUS HF Rikshospitalet, 0424 Oslo, Norway
| | - Amany Elshorbagy
- Department of Physiology, Faculty of Medicine, University of Alexandria, Chamblion street, Qesm Al Attarin, Alexandria 5372066, Egypt; Department of Pharmacology, University of Oxford, Mansfield Rd, Oxford OX1 3QT, UK
| | - Jitka Sokolová
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital, Ke Karlovu 2, 128 00 Prague, Czech Republic
| | - Jakub Krijt
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital, Ke Karlovu 2, 128 00 Prague, Czech Republic
| | - Michaela Křížková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital, Ke Karlovu 2, 128 00 Prague, Czech Republic
| | - Tamás Ditrói
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Ráth György u. 7-9, 1122 Budapest, Hungary
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Ráth György u. 7-9, 1122 Budapest, Hungary; Department of Anatomy and Histology, HUN-REN-UVMB Laboratory of Redox Biology Research Group, University of Veterinary Medicine, 1078 Budapest, Hungary; Chemistry Institute, University of Debrecen, 4012 Debrecen, Hungary
| | - Bente Øvrebø
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine University of Oslo, Postboks 1046 Blindern, 0317 Oslo, Norway; Department of Food Safety, Norwegian Institute of Public Health, Postboks 222 Skøyen, 0213 Oslo, Norway
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine University of Oslo, Postboks 1046 Blindern, 0317 Oslo, Norway; Department of Pharmacology, University of Oxford, Mansfield Rd, Oxford OX1 3QT, UK
| | - Magne Thoresen
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Postboks 1122 Blindern, 0317 Oslo, Norway
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine University of Oslo, Postboks 1046 Blindern, 0317 Oslo, Norway; The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Postboks 4959 Nydalen, OUS HF Aker sykehus, 0424 Oslo, Norway
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital, Ke Karlovu 2, 128 00 Prague, Czech Republic.
| |
Collapse
|
4
|
Andrés CMC, Pérez de la Lastra JM, Andrés Juan C, Plou FJ, Pérez-Lebeña E. Chemistry of Hydrogen Sulfide-Pathological and Physiological Functions in Mammalian Cells. Cells 2023; 12:2684. [PMID: 38067112 PMCID: PMC10705518 DOI: 10.3390/cells12232684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Hydrogen sulfide (H2S) was recognized as a gaseous signaling molecule, similar to nitric oxide (-NO) and carbon monoxide (CO). The aim of this review is to provide an overview of the formation of hydrogen sulfide (H2S) in the human body. H2S is synthesized by enzymatic processes involving cysteine and several enzymes, including cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE), cysteine aminotransferase (CAT), 3-mercaptopyruvate sulfurtransferase (3MST) and D-amino acid oxidase (DAO). The physiological and pathological effects of hydrogen sulfide (H2S) on various systems in the human body have led to extensive research efforts to develop appropriate methods to deliver H2S under conditions that mimic physiological settings and respond to various stimuli. These functions span a wide spectrum, ranging from effects on the endocrine system and cellular lifespan to protection of liver and kidney function. The exact physiological and hazardous thresholds of hydrogen sulfide (H2S) in the human body are currently not well understood and need to be researched in depth. This article provides an overview of the physiological significance of H2S in the human body. It highlights the various sources of H2S production in different situations and examines existing techniques for detecting this gas.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain;
| | - Francisco J. Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain;
| | | |
Collapse
|
5
|
de Oliveira PB, Zochio GP, Caetano ESP, da Silva MLS, Dias-Junior CA. Vasodilator Responses of Perivascular Adipose Tissue-Derived Hydrogen Sulfide Stimulated with L-Cysteine in Pregnancy Hypertension-Induced Endothelial Dysfunction in Rats. Antioxidants (Basel) 2023; 12:1919. [PMID: 38001772 PMCID: PMC10669374 DOI: 10.3390/antiox12111919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Endothelium-derived nitric oxide (NO)-induced vasodilation is impaired in pregnancy hypertension. However, the role of perivascular adipose tissue (PVAT)-derived hydrogen sulfide (H2S), as an alternative for counteracting vascular dysfunction, is incompletely clear in hypertensive disorders of pregnancy. Therefore, PVAT-derived H2S-induced vasodilation was investigated in pregnancy hypertension-induced endothelial dysfunction. Non-pregnant (Non-Preg) and pregnant (Preg) rats were submitted (or not) to the deoxycorticosterone (DOCA)-salt protocol and assigned as follows (n = 10/group): Non-Preg, Non-Preg+DOCA, Preg, and Preg+DOCA groups. Systolic blood pressure (SBP), angiogenesis-related factors, determinant levels of H2S (PbS), NO (NOx), and oxidative stress (MDA) were assessed. Vascular changes were recorded in thoracic aortas with PVAT and endothelium (intact and removed layers). Vasorelaxation responses to the substrate (L-cysteine) for the H2S-producing enzyme cystathionine-γ-lyase (CSE) were examined in the absence and presence of CSE-inhibitor DL-propargylglycine (PAG) in thoracic aorta rings pre-incubated with cofactor for CSE (pyridoxal-5 phosphate: PLP) and pre-contracted with phenylephrine. Hypertension was only found in the Preg+DOCA group. Preg+DOCA rats showed angiogenic imbalances and increased levels of MDA. PbS, but not NOx, showed increased levels in the Preg+DOCA group. Pre-incubation with PLP and L-cysteine elevated determinants of H2S in PVAT and placentas of Preg-DOCA rats, whereas no changes were found in the aortas without PVAT. Aortas of Preg-DOCA rats showed that PVAT-derived H2S-dependent vasodilation was greater compared to endothelium-derived H2S, whereas PAG blocked these responses. PVAT-derived H2S endogenously stimulated with the amino acid L-cysteine may be an alternative to induce vasorelaxation in endothelial dysfunction related to pregnancy hypertension.
Collapse
Affiliation(s)
- Priscilla Bianca de Oliveira
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (P.B.d.O.); (G.P.Z.); (E.S.P.C.); (M.L.S.d.S.)
- Laboratory of Pharmacology, Marília Medical School (FAMEMA), Marília 17519-030, SP, Brazil
| | - Gabriela Palma Zochio
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (P.B.d.O.); (G.P.Z.); (E.S.P.C.); (M.L.S.d.S.)
| | - Edileia Souza Paula Caetano
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (P.B.d.O.); (G.P.Z.); (E.S.P.C.); (M.L.S.d.S.)
| | - Maria Luiza Santos da Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (P.B.d.O.); (G.P.Z.); (E.S.P.C.); (M.L.S.d.S.)
| | - Carlos Alan Dias-Junior
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (P.B.d.O.); (G.P.Z.); (E.S.P.C.); (M.L.S.d.S.)
| |
Collapse
|
6
|
Bełtowski J, Kowalczyk-Bołtuć J. Hydrogen sulfide in the experimental models of arterial hypertension. Biochem Pharmacol 2023; 208:115381. [PMID: 36528069 DOI: 10.1016/j.bcp.2022.115381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Hydrogen sulfide (H2S) is the third member of gasotransmitter family together with nitric oxide and carbon monoxide. H2S is involved in the regulation of blood pressure by controlling vascular tone, sympathetic nervous system activity and renal sodium excretion. Moderate age-dependent hypertension and endothelial dysfunction develop in mice with knockout of cystathionine γ-lyase (CSE), the enzyme involved in H2S production in the cardiovascular system. Decreased H2S concentration as well as the expression and activities of H2S-producing enzymes have been observed in most commonly used animal models of hypertension such as spontaneously hypertensive rats, Dahl salt-sensitive rats, chronic administration of NO synthase inhibitors, angiotensin II infusion and two-kidney-one-clip hypertension, the model of renovascular hypertension. Administration of H2S donors decreases blood pressure in these models but has no major effects on blood pressure in normotensive animals. H2S donors not only reduce blood pressure but also end-organ injury such as vascular and myocardial hypertrophy and remodeling, hypertension-associated kidney injury or erectile dysfunction. H2S level and signaling are modulated by some antihypertensive medications as well as natural products with antihypertensive activity such as garlic polysulfides or plant-derived isothiocyanates as well as non-pharmacological interventions. Modifying H2S signaling is the potential novel therapeutic approach for the management of hypertension, however, more experimental clinical studies about the role of H2S in hypertension are required.
Collapse
Affiliation(s)
- Jerzy Bełtowski
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland.
| | - Jolanta Kowalczyk-Bołtuć
- Endocrinology and Metabolism Clinic, Internal Medicine Clinic with Hypertension Department, Medical Institute of Rural Health, Lublin, Poland.
| |
Collapse
|
7
|
Reactive sulfur species and their significance in health and disease. Biosci Rep 2022; 42:231692. [PMID: 36039860 PMCID: PMC9484011 DOI: 10.1042/bsr20221006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
Reactive sulfur species (RSS) have been recognized in the last two decades as very important molecules in redox regulation. They are involved in metabolic processes and, in this way, they are responsible for maintenance of health. This review summarizes current information about the essential biological RSS, including H2S, low molecular weight persulfides, protein persulfides as well as organic and inorganic polysulfides, their synthesis, catabolism and chemical reactivity. Moreover, the role of RSS disturbances in various pathologies including vascular diseases, chronic kidney diseases, diabetes mellitus Type 2, neurological diseases, obesity, chronic obstructive pulmonary disease and in the most current problem of COVID-19 is presented. The significance of RSS in aging is also mentioned. Finally, the possibilities of using the precursors of various forms of RSS for therapeutic purposes are discussed.
Collapse
|
8
|
Effect of Exogenous Hydrogen Sulfide and Polysulfide Donors on Insulin Sensitivity of the Adipose Tissue. Biomolecules 2022; 12:biom12050646. [PMID: 35625574 PMCID: PMC9138799 DOI: 10.3390/biom12050646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/29/2022] Open
Abstract
Hydrogen sulfide (H2S) and inorganic polysulfides are important signaling molecules; however, little is known about their role in adipose tissue. We examined the effect of H2S and polysulfides on insulin sensitivity of the adipose tissue in rats. Plasma glucose, insulin, non-esterified fatty acids, and glycerol were measured after administration of H2S and the polysulfide donors, Na2S and Na2S4, respectively. In addition, the effect of Na2S and Na2S4 on insulin-induced glucose uptake and inhibition of lipolysis was studied in adipose tissue explants ex vivo. Na2S and Na2S4 administered in vivo at a single dose of 100 μmol/kg had no effect on plasma glucose and insulin concentrations. In addition, Na2S and Na2S4 did not modify the effect of insulin on plasma glucose, fatty acids, and glycerol concentrations. Na2S and Na2S4had no effect on the antilipolytic effect of insulin in adipose tissue explants ex vivo. The effect of insulin on 2-deoxyglucose uptake by adipose tissue was impaired in obese rats which was accompanied by lower insulin-induced tyrosine phosphorylation of IRS-1 and Akt. Na2S4, but not Na2S, improved insulin signaling and increased insulin-stimulated 2-deoxyglucose uptake by adipose tissue of obese rats. The results suggest that polysulfides may normalize insulin sensitivity, at least in the adipose tissue, in obesity/metabolic syndrome.
Collapse
|
9
|
Role of Hydrogen Sulfide and Polysulfides in the Regulation of Lipolysis in the Adipose Tissue: Possible Implications for the Pathogenesis of Metabolic Syndrome. Int J Mol Sci 2022; 23:ijms23031346. [PMID: 35163277 PMCID: PMC8836184 DOI: 10.3390/ijms23031346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Hydrogen sulfide (H2S) and inorganic polysulfides are important signaling molecules; however, little is known about their role in the adipose tissue. We examined the effect of H2S and polysulfides on adipose tissue lipolysis. H2S and polysulfide production by mesenteric adipose tissue explants in rats was measured. The effect of Na2S and Na2S4, the H2S and polysulfide donors, respectively, on lipolysis markers, plasma non-esterified fatty acids (NEFA) and glycerol, was examined. Na2S but not Na2S4 increased plasma NEFA and glycerol in a time- and dose-dependent manner. Na2S increased cyclic AMP but not cyclic GMP concentration in the adipose tissue. The effect of Na2S on NEFA and glycerol was abolished by the specific inhibitor of protein kinase A, KT5720. The effect of Na2S on lipolysis was not abolished by propranolol, suggesting no involvement of β-adrenergic receptors. In addition, Na2S had no effect on phosphodiesterase activity in the adipose tissue. Obesity induced by feeding rats a highly palatable diet for 1 month was associated with increased plasma NEFA and glycerol concentrations, as well as greater H2S production in the adipose tissue. In conclusion, H2S stimulates lipolysis and may contribute to the enhanced lipolysis associated with obesity.
Collapse
|
10
|
Fan D, Huang H, Wang X, Liu J, Liu B, Yin F. Inverse association of plasma hydrogen sulfide levels with visceral fat area among Chinese young men: a cross-sectional study. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2021; 65:269-276. [PMID: 33740335 PMCID: PMC10065337 DOI: 10.20945/2359-3997000000339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective To investigate the association between plasma Hydrogen Sulfide (H2S) levels and visceral fat area (VFA) among Chinese young men. Methods This cross-sectional study involved 156 Chinese male subjects, aged 18-45 years, who visited the First Hospital of Qinhuangdao (Hebei, China) in 2014 for annual health check-up. Participants were categorized into: low (VFA < 75.57 cm2), medium (75.57 cm2 ≤ VFA<100.37 cm2), and high (VFA ≥ 100.37 cm2) (n = 52/group). We estimated VFA and plasma H2S levels by using bioelectrical impedance analysis and a fluorescence probe-based approach, respectively. The associations of H2S with VFA and obesity anthropometric measures were assessed. Results In the high VFA group, the body mass index (BMI, 30.4 ± 2.45 kg/m2), total body fat (TBF, 27.9 ± 3.23 kg), plasma H2S (3.5 µmol/L), free fatty acid (FFA, 0.6 ± 0.24 mmol/L), triglyceride (TG, 2.0 mmol/L), and total cholesterol (TC, 5.5 ± 1.02 mmol/L) levels were significantly higher than that of those of the low and medium VFA groups, respectively (P < 0.05). Plasma H2S levels were found to be inversely correlated with VFA, TBF, waist circumference, BMI, FFA, LnFINS, LnHOMA-IR, LnTG, TC, and LDL-C (P < 0.05). Multiple backward stepwise regression analysis revealed an inverse correlation of plasma H2S levels with FFA (β = -0.214, P = 0.005) and VFA (β = -0.429, P < 0.001), independent of adiposity measures and other confounding factors. Conclusion VFA was independently and inversely associated with plasma H2S levels among Chinese young men. Therefore, determining plasma H2S levels could aid in the assessment of abnormal VAT distribution.
Collapse
Affiliation(s)
- Dongmei Fan
- Department of Endocrinology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Huiyan Huang
- Department of Endocrinology, Dalian Hospital affiliated to Shengjing Hospital of China Medical University, Shenyang, China
| | - Xing Wang
- Department of Endocrinology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Junru Liu
- Department of Endocrinology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Bowei Liu
- Department of Endocrinology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Fuzai Yin
- Department of Endocrinology, The First Hospital of Qinhuangdao, Qinhuangdao, China,
| |
Collapse
|
11
|
Possomato-Vieira JS, Palei AC, Pinto-Souza CC, Cavalli R, Dias-Junior CA, Sandrim V. Circulating levels of hydrogen sulphide negatively correlate to nitrite levels in gestational hypertensive and preeclamptic pregnant women. Clin Exp Pharmacol Physiol 2021; 48:1224-1230. [PMID: 34080216 DOI: 10.1111/1440-1681.13534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/12/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022]
Abstract
Endothelial dysfunction is a hallmark of preeclampsia and the role of nitric oxide (NO) has been extensively studied in this pregnancy complication. In recent years, hydrogen sulphide (H2 S) has arisen as a new gasotransmitter with an impact on endothelial function. However, the involvement of H2 S in the pathophysiology of preeclampsia is not fully understood, and only a few studies with limited sample size have investigated circulating levels of H2 S in preeclamptic patients. Moreover, H2 S levels have not been previously evaluated in gestational hypertension. Furthermore, the relationship between H2 S and NO in these hypertensive disorders of pregnancy has yet to be determined. We measured H2 S levels in plasma of 120 healthy pregnant women, 88 gestational hypertensive and 62 preeclamptic women. We also measured plasma nitrite in a subset of patients and carried out correlation analysis between plasma H2 S and nitrite in these three groups. We found that plasma H2 S was elevated in preeclampsia and further increased in gestational hypertension compared to healthy pregnancy. Plasma nitrite was reduced in gestational hypertension and preeclampsia, and these levels were negatively correlated with H2 S in both gestational hypertension and preeclampsia, but not in healthy pregnancy. Our results indicate that increases in H2 S may represent a mechanism triggered as an attempt to compensate reduced NO in gestational hypertension and preeclampsia. Future studies are warranted to investigate the mechanisms underlying H2 S/NO interaction on mediating endothelial dysfunction in these hypertensive disorders of pregnancy.
Collapse
Affiliation(s)
| | - Ana Carolina Palei
- Department of Surgery, The University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Ricardo Cavalli
- Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Valeria Sandrim
- Institute of Biosciences, São Paulo State University - IBB/UNESP, Botucatu, Brazil
| |
Collapse
|
12
|
Tomasova L, Grman M, Ondrias K, Ufnal M. The impact of gut microbiota metabolites on cellular bioenergetics and cardiometabolic health. Nutr Metab (Lond) 2021; 18:72. [PMID: 34266472 PMCID: PMC8281717 DOI: 10.1186/s12986-021-00598-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022] Open
Abstract
Recent research demonstrates a reciprocal relationship between gut microbiota-derived metabolites and the host in controlling the energy homeostasis in mammals. On the one hand, to thrive, gut bacteria exploit nutrients digested by the host. On the other hand, the host utilizes numerous products of gut bacteria metabolism as a substrate for ATP production in the colon. Finally, bacterial metabolites seep from the gut into the bloodstream and interfere with the host’s cellular bioenergetics machinery. Notably, there is an association between alterations in microbiota composition and the development of metabolic diseases and their cardiovascular complications. Some metabolites, like short-chain fatty acids and trimethylamine, are considered markers of cardiometabolic health. Others, like hydrogen sulfide and nitrite, demonstrate antihypertensive properties. Scientific databases were searched for pre-clinical and clinical studies to summarize current knowledge on the role of gut microbiota metabolites in the regulation of mammalian bioenergetics and discuss their potential involvement in the development of cardiometabolic disorders. Overall, the available data demonstrates that gut bacteria products affect physiological and pathological processes controlling energy and vascular homeostasis. Thus, the modulation of microbiota-derived metabolites may represent a new approach for treating obesity, hypertension and type 2 diabetes.
Collapse
Affiliation(s)
- Lenka Tomasova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic.
| | - Marian Grman
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - Karol Ondrias
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-091, Warsaw, Poland.
| |
Collapse
|
13
|
Souza-Paula E, Polonio LCC, Zochio GP, da Silva KP, Kushima H, Dias-Junior CA. Anticontractile Effect of Perivascular Adipose Tissue But Not of Endothelium Is Enhanced by Hydrogen Sulfide Stimulation in Hypertensive Pregnant Rat Aortae. J Cardiovasc Pharmacol 2021; 76:715-729. [PMID: 32976209 DOI: 10.1097/fjc.0000000000000917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Perivascular adipose tissue (PVAT) modulates the vascular tone. Hydrogen sulfide (H2S) is synthetized by cystathionine gamma-lyase (CSE) in brown PVAT. Modulation of vascular contractility by H2S is, in part, adenosine triphosphate (ATP)-sensitive potassium channels dependent. However, the role of PVAT-derived H2S in hypertensive pregnancy (HTN-Preg) is unclear. Therefore, we aimed to examine the involvement of H2S in the anticontractile effect of PVAT in aortae from normotensive and hypertensive pregnant rats. To this end, phenylephrine-induced contractions in the presence and absence of PVAT and endothelium in aortae from normotensive pregnant (Norm-Preg) and HTN-Preg rats were investigated. Maternal blood pressure, fetal-placental parameters, angiogenesis-related biomarkers, and H2S levels were also assessed. We found that circulating H2S is elevated in hypertensive pregnancy associated with angiogenic imbalance, fetal and placental growth restrictions, which revealed that there is H2S pathway activation. Moreover, under stimulated H2S formation PVAT, but not endothelium, reduced phenylephrine-induced contractions in aortae from HTN-Preg rats. Also, H2S synthesis inhibitor abolished anticontractile effects of PVAT and endothelium. Furthermore, anticontractile effect of PVAT, but not of endothelium, was eliminated by ATP-sensitive potassium channels blocker. In accordance, increases in H2S levels in PVAT and placenta, but not in aortae without PVAT, were also observed. In conclusion, anticontractile effect of PVAT is lost, at least in part, in HTN-Preg aortae and PVAT effect is ATP-sensitive potassium channels dependent in normotensive and hypertensive pregnant rat aortae. PVAT but not endothelium is responsive to the H2S stimulation in hypertensive pregnant rat aortae, implying a key role for PVAT-derived H2S under endothelial dysfunction.
Collapse
Affiliation(s)
- Edileia Souza-Paula
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
14
|
Comas F, Moreno-Navarrete JM. The Impact of H 2S on Obesity-Associated Metabolic Disturbances. Antioxidants (Basel) 2021; 10:antiox10050633. [PMID: 33919190 PMCID: PMC8143163 DOI: 10.3390/antiox10050633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
Over the last several decades, hydrogen sulfide (H2S) has gained attention as a new signaling molecule, with extensive physiological and pathophysiological roles in human disorders affecting vascular biology, immune functions, cellular survival, metabolism, longevity, development, and stress resistance. Apart from its known functions in oxidative stress and inflammation, new evidence has emerged revealing that H2S carries out physiological functions by targeting proteins, enzymes, and transcription factors through a post-translational modification known as persulfidation. This review article provides a critical overview of the current state of the literature addressing the role of H2S in obesity-associated metabolic disturbances, with particular emphasis on its mechanisms of action in obesity, diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases.
Collapse
Affiliation(s)
- Ferran Comas
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain;
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain;
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Correspondence: ; Tel.: +(34)-872-98-70-87
| |
Collapse
|
15
|
McCarty MF. Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure. Int J Mol Sci 2021; 22:ijms22073321. [PMID: 33805039 PMCID: PMC8037104 DOI: 10.3390/ijms22073321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Although well documented drug therapies are available for the management of ventricular hypertrophy (VH) and heart failure (HF), most patients nonetheless experience a downhill course, and further therapeutic measures are needed. Nutraceutical, dietary, and lifestyle measures may have particular merit in this regard, as they are currently available, relatively safe and inexpensive, and can lend themselves to primary prevention as well. A consideration of the pathogenic mechanisms underlying the VH/HF syndrome suggests that measures which control oxidative and endoplasmic reticulum (ER) stress, that support effective nitric oxide and hydrogen sulfide bioactivity, that prevent a reduction in cardiomyocyte pH, and that boost the production of protective hormones, such as fibroblast growth factor 21 (FGF21), while suppressing fibroblast growth factor 23 (FGF23) and marinobufagenin, may have utility for preventing and controlling this syndrome. Agents considered in this essay include phycocyanobilin, N-acetylcysteine, lipoic acid, ferulic acid, zinc, selenium, ubiquinol, astaxanthin, melatonin, tauroursodeoxycholic acid, berberine, citrulline, high-dose folate, cocoa flavanols, hawthorn extract, dietary nitrate, high-dose biotin, soy isoflavones, taurine, carnitine, magnesium orotate, EPA-rich fish oil, glycine, and copper. The potential advantages of whole-food plant-based diets, moderation in salt intake, avoidance of phosphate additives, and regular exercise training and sauna sessions are also discussed. There should be considerable scope for the development of functional foods and supplements which make it more convenient and affordable for patients to consume complementary combinations of the agents discussed here. Research Strategy: Key word searching of PubMed was employed to locate the research papers whose findings are cited in this essay.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, 811 B Nahant Ct., San Diego, CA 92109, USA
| |
Collapse
|
16
|
LaPenna KB, Polhemus DJ, Doiron JE, Hidalgo HA, Li Z, Lefer DJ. Hydrogen Sulfide as a Potential Therapy for Heart Failure-Past, Present, and Future. Antioxidants (Basel) 2021; 10:485. [PMID: 33808673 PMCID: PMC8003444 DOI: 10.3390/antiox10030485] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous, gaseous signaling molecule that plays a critical role in cardiac and vascular biology. H2S regulates vascular tone and oxidant defenses and exerts cytoprotective effects in the heart and circulation. Recent studies indicate that H2S modulates various components of metabolic syndrome, including obesity and glucose metabolism. This review will discuss studies exhibiting H2S -derived cardioprotective signaling in heart failure with reduced ejection fraction (HFrEF). We will also discuss the role of H2S in metabolic syndrome and heart failure with preserved ejection fraction (HFpEF).
Collapse
Affiliation(s)
- Kyle B. LaPenna
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (K.B.L.); (D.J.P.); (J.E.D.); (H.A.H.); (Z.L.)
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - David J. Polhemus
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (K.B.L.); (D.J.P.); (J.E.D.); (H.A.H.); (Z.L.)
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jake E. Doiron
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (K.B.L.); (D.J.P.); (J.E.D.); (H.A.H.); (Z.L.)
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Hunter A. Hidalgo
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (K.B.L.); (D.J.P.); (J.E.D.); (H.A.H.); (Z.L.)
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Zhen Li
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (K.B.L.); (D.J.P.); (J.E.D.); (H.A.H.); (Z.L.)
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - David J. Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (K.B.L.); (D.J.P.); (J.E.D.); (H.A.H.); (Z.L.)
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
17
|
Randi EB, Casili G, Jacquemai S, Szabo C. Selenium-Binding Protein 1 (SELENBP1) Supports Hydrogen Sulfide Biosynthesis and Adipogenesis. Antioxidants (Basel) 2021; 10:antiox10030361. [PMID: 33673622 PMCID: PMC7997437 DOI: 10.3390/antiox10030361] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide (H2S), a mammalian gasotransmitter, is involved in the regulation of a variety of fundamental processes including intracellular signaling, cellular bioenergetics, cell proliferation, and cell differentiation. Cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3-MST) are currently considered the three principal mammalian H2S-generating enzymes. However, recently, a fourth H2S-producing enzyme, selenium-binding-protein 1 (SELENBP1), has also been identified. The cellular regulatory role(s) of SELENBP1 are incompletely understood. The current study investigated whether SELENBP1 plays a role in the regulation of adipocyte differentiation in vitro. 3T3-L1 preadipocytes with or without SELENBP1 knock-down were subjected to differentiation-inducing conditions, and H2S production, cellular lipid accumulation, cell proliferation, and mitochondrial activity were quantified. Adipocyte differentiation was associated with an upregulation of H2S biosynthesis. SELENBP1 silencing decreased cellular H2S levels, suppressed the expression of the three “classical” H2S-producing enzymes (CBS, CSE, and 3-MST) and significantly suppressed adipocyte differentiation. Treatment of SELENBP1 knock-down cells with the H2S donor GYY4137 partially restored lipid accumulation, increased cellular H2S levels, and exerted a bell-shaped effect on cellular bioenergetics (enhancement at 1 and 3 mM, and inhibition at 6 mM). We conclude that SELENBP1 in adipocytes (1) contributes to H2S biosynthesis and (2) acts as an endogenous stimulator of adipocyte differentiation.
Collapse
|
18
|
Cacanyiova S, Golas S, Zemancikova A, Majzunova M, Cebova M, Malinska H, Hüttl M, Markova I, Berenyiova A. The Vasoactive Role of Perivascular Adipose Tissue and the Sulfide Signaling Pathway in a Nonobese Model of Metabolic Syndrome. Biomolecules 2021; 11:108. [PMID: 33467512 PMCID: PMC7829844 DOI: 10.3390/biom11010108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/01/2021] [Accepted: 01/08/2021] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to evaluate the mutual relationship among perivascular adipose tissue (PVAT) and endogenous and exogenous H2S in vasoactive responses of isolated arteries from adult normotensive (Wistar) rats and hypertriglyceridemic (HTG) rats, which are a nonobese model of metabolic syndrome. In HTG rats, mild hypertension was associated with glucose intolerance, dyslipidemia, increased amount of retroperitoneal fat, increased arterial contractility, and endothelial dysfunction associated with arterial wall injury, which was accompanied by decreased nitric oxide (NO)-synthase activity, increased expression of H2S producing enzyme, and an altered oxidative state. In HTG, endogenous H2S participated in the inhibition of endothelium-dependent vasorelaxation regardless of PVAT presence; on the other hand, aortas with preserved PVAT revealed a stronger anticontractile effect mediated at least partially by H2S. Although we observed a higher vasorelaxation induced by exogenous H2S donor in HTG rats than in Wistar rats, intact PVAT subtilized this effect. We demonstrate that, in HTG rats, endogenous H2S could manifest a dual effect depending on the type of triggered signaling pathway. H2S within the arterial wall contributes to endothelial dysfunction. On the other hand, PVAT of HTG is endowed with compensatory vasoactive mechanisms, which include stronger anti-contractile action of H2S. Nevertheless, the possible negative impact of PVAT during hypertriglyceridemia on the activity of exogenous H2S donors needs to be taken into consideration.
Collapse
Affiliation(s)
- Sona Cacanyiova
- Center of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (S.G.); (A.Z.); (M.M.); (M.C.); (A.B.)
| | - Samuel Golas
- Center of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (S.G.); (A.Z.); (M.M.); (M.C.); (A.B.)
| | - Anna Zemancikova
- Center of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (S.G.); (A.Z.); (M.M.); (M.C.); (A.B.)
| | - Miroslava Majzunova
- Center of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (S.G.); (A.Z.); (M.M.); (M.C.); (A.B.)
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, 811 08 Bratislava, Slovakia
| | - Martina Cebova
- Center of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (S.G.); (A.Z.); (M.M.); (M.C.); (A.B.)
| | - Hana Malinska
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (H.M.); (M.H.); (I.M.)
| | - Martina Hüttl
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (H.M.); (M.H.); (I.M.)
| | - Irena Markova
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (H.M.); (M.H.); (I.M.)
| | - Andrea Berenyiova
- Center of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (S.G.); (A.Z.); (M.M.); (M.C.); (A.B.)
| |
Collapse
|
19
|
Sun HJ, Wu ZY, Nie XW, Bian JS. The Role of H 2S in the Metabolism of Glucose and Lipids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:51-66. [PMID: 34302688 DOI: 10.1007/978-981-16-0991-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glucose and lipids are essential elements for maintaining the body's homeostasis, and their dysfunction may participate in the pathologies of various diseases, particularly diabetes, obesity, metabolic syndrome, cardiovascular ailments, and cancers. Among numerous endogenous mediators, the gasotransmitter hydrogen sulfide (H2S) plays a central role in the maintenance of glucose and lipid homeostasis. Current evidence from both pharmacological studies and transgenic animal models suggest a complex relationship between H2S and metabolic dysregulation, especially in diabetes and obesity. This notion is achieved through tissue-specific expressions and actions of H2S on target metabolic and hormone organs including the pancreas, skeletal muscle, livers, and adipose. In this chapter, we will summarize the roles and mechanisms of H2S in several metabolic organs/tissues that are necessary for glucose and lipid metabolic homeostasis. In addition, future research directions and valuable therapeutic avenues around the pharmacological regulation of H2S in glycolipid metabolism disorder will be also discussed.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiao-Wei Nie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,National University of Singapore (Suzhou) Research Institute, Suzhou, China.
| |
Collapse
|
20
|
Piragine E, Flori L, Di Cesare Mannelli L, Ghelardini C, Pagnotta E, Matteo R, Lazzeri L, Martelli A, Miragliotta V, Pirone A, Testai L, Calderone V. Eruca sativa Mill. seed extract promotes anti-obesity and hypoglycemic effects in mice fed with a high-fat diet. Phytother Res 2020; 35:1983-1990. [PMID: 33141966 DOI: 10.1002/ptr.6941] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022]
Abstract
Obesity is currently considered a major source of morbidity, with dramatic complications on health status and life expectancy. Several studies demonstrated the positive effects of Brassicaceae vegetables on obesity and related diseases, partially attributing these beneficial properties to glucosinolates and their derivatives isothiocyanates. Recently, isothiocyanates have been described as a hydrogen sulfide (H2 S)-releasing moiety, suggesting that H2 S may be at least in part responsible for the beneficial effects of Brassicaceae. In this work, the metabolic effects of an extract obtained from Eruca sativa Mill. seeds (E.S., Brassicaceae), containing high levels of glucoerucin, were evaluated in an experimental model of obesity. Male balb/c mice were fed for 10 weeks with standard (Std) diet or high fat (HF) diet supplemented with E.S. E.S. significantly contained the body weight gain in this obesity model, improving also glucose homeostasis. Interestingly, lower values of white adipose tissue mass and a significant reduction of adipocytes size were also observed. Moreover, E.S. enhanced the adipocytes metabolism, improving the citrate synthase activity and reduced triglyceride levels in mice fed with HF diet. Taken together, these results suggest that E.S. is endowed with an interesting translational and nutraceutical value in the prevention of metabolic disorders, suggesting that H2 S could be a key player.
Collapse
Affiliation(s)
| | - Lorenzo Flori
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Eleonora Pagnotta
- CREA-Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Bologna, Italy
| | - Roberto Matteo
- CREA-Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Bologna, Italy
| | - Luca Lazzeri
- CREA-Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Bologna, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy
| | | | - Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
21
|
Piragine E, Calderone V. Pharmacological modulation of the hydrogen sulfide (H 2 S) system by dietary H 2 S-donors: A novel promising strategy in the prevention and treatment of type 2 diabetes mellitus. Phytother Res 2020; 35:1817-1846. [PMID: 33118671 DOI: 10.1002/ptr.6923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/15/2020] [Accepted: 10/06/2020] [Indexed: 12/25/2022]
Abstract
Type 2 diabetes mellitus (T2DM) represents the most common age-related metabolic disorder, and its management is becoming both a health and economic issue worldwide. Moreover, chronic hyperglycemia represents one of the main risk factors for cardiovascular complications. In the last years, the emerging evidence about the role of the endogenous gasotransmitter hydrogen sulfide (H2 S) in the pathogenesis and progression of T2DM led to increasing interest in the pharmacological modulation of endogenous "H2 S-system". Indeed, H2 S directly contributes to the homeostatic maintenance of blood glucose levels; moreover, it improves impaired angiogenesis and endothelial dysfunction under hyperglycemic conditions. Moreover, H2 S promotes significant antioxidant, anti-inflammatory, and antiapoptotic effects, thus preventing hyperglycemia-induced vascular damage, diabetic nephropathy, and cardiomyopathy. Therefore, H2 S-releasing molecules represent a promising strategy in both clinical management of T2DM and prevention of macro- and micro-vascular complications associated to hyperglycemia. Recently, growing attention has been focused on dietary organosulfur compounds. Among them, garlic polysulfides and isothiocyanates deriving from Brassicaceae have been recognized as H2 S-donors of great pharmacological and nutraceutical interest. Therefore, a better understanding of the therapeutic potential of naturally occurring H2 S-donors may pave the way to a more rational use of these nutraceuticals in the modulation of H2 S homeostasis in T2DM.
Collapse
Affiliation(s)
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
22
|
Cacanyiova S, Krskova K, Zorad S, Frimmel K, Drobna M, Valaskova Z, Misak A, Golas S, Breza J, Breza J, Berenyiova A. Arterial Hypertension and Plasma Glucose Modulate the Vasoactive Effects of Nitroso-Sulfide Coupled Signaling in Human Intrarenal Arteries. Molecules 2020; 25:E2886. [PMID: 32585916 PMCID: PMC7356001 DOI: 10.3390/molecules25122886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
We have investigated the vasoactive effects of the coupled nitro-sulfide signaling pathway in lobar arteries (LAs) isolated from the nephrectomized kidneys of cancer patients: normotensive patients (NT) and patients with arterial hypertension (AH). LAs of patients with AH revealed endothelial dysfunction, which was associated with an increased response to the exogenous NO donor, nitrosoglutathione (GSNO). The interaction of GSNO with the H2S donor triggered a specific vasoactive response. Unlike in normotensive patients, in patients with AH, the starting and returning of the vasorelaxation induced by the end-products of the H2S-GSNO interaction (S/GSNO) was significantly faster, however, without the potentiation of the maximum. Moreover, increasing glycemia shortened the time required to reach 50% of the maximum vasorelaxant response induced by S/GSNO products so modulating their final effect. Moreover, we found out that, unlike K+ channel activation, cGMP pathway and HNO as probable mediator could be involved in mechanisms of S/GSNO action. For the first time, we demonstrated the expression of genes coding H2S-producing enzymes in perivascular adipose tissue and we showed the localization of these enzymes in LAs of normotensive patients and in patients with AH. Our study confirmed that the heterogeneity of specific nitroso-sulfide vasoactive signaling exists depending on the occurrence of hypertension associated with increased plasma glucose level. Endogenous H2S and the end-products of the H2S-GSNO interaction could represent prospective pharmacological targets to modulate the vasoactive properties of human intrarenal arteries.
Collapse
Affiliation(s)
- Sona Cacanyiova
- Institute of Normal and Pathological Physiology, Center of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (M.D.); (Z.V.); (S.G.); (A.B.)
| | - Katarina Krskova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (K.K.); (S.Z.)
| | - Stefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (K.K.); (S.Z.)
| | - Karel Frimmel
- Institute for Heart Research, Center of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia;
| | - Magdalena Drobna
- Institute of Normal and Pathological Physiology, Center of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (M.D.); (Z.V.); (S.G.); (A.B.)
| | - Zuzana Valaskova
- Institute of Normal and Pathological Physiology, Center of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (M.D.); (Z.V.); (S.G.); (A.B.)
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Anton Misak
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia;
| | - Samuel Golas
- Institute of Normal and Pathological Physiology, Center of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (M.D.); (Z.V.); (S.G.); (A.B.)
| | - Jan Breza
- Department of Urology, Derer’s University Hospital, 833 05 Bratislava, Slovakia; (J.B.); (J.B.J.)
| | - Jan Breza
- Department of Urology, Derer’s University Hospital, 833 05 Bratislava, Slovakia; (J.B.); (J.B.J.)
| | - Andrea Berenyiova
- Institute of Normal and Pathological Physiology, Center of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (M.D.); (Z.V.); (S.G.); (A.B.)
| |
Collapse
|
23
|
Gheibi S, Samsonov AP, Gheibi S, Vazquez AB, Kashfi K. Regulation of carbohydrate metabolism by nitric oxide and hydrogen sulfide: Implications in diabetes. Biochem Pharmacol 2020; 176:113819. [PMID: 31972170 DOI: 10.1016/j.bcp.2020.113819] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/15/2020] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two gasotransmitters that are produced in the human body and have a key role in many of the physiological activities of the various organ systems. Decreased NO bioavailability and deficiency of H2S are involved in the pathophysiology of type 2 diabetes and its complications. Restoration of NO levels have favorable metabolic effects in diabetes. The role of H2S in pathophysiology of diabetes is however controversial; H2S production is decreased during development of obesity, diabetes, and its complications, suggesting the potential therapeutic effects of H2S. On the other hand, increased H2S levels disturb the pancreatic β-cell function and decrease insulin secretion. In addition, there appear to be important interactions between NO and H2S at the levels of both biosynthesis and signaling pathways, yet clear an insight into this relationship is lacking. H2S potentiates the effects of NO in the cardiovascular system as well as NO release from its storage pools. Likewise, NO increases the activity and the expression of H2S-generating enzymes. Inhibition of NO production leads to elimination/attenuation of the cardioprotective effects of H2S. Regarding the increasing interest in the therapeutic applications of NO or H2S-releasing molecules in a variety of diseases, particularly in the cardiovascular disorders, much is to be learned about their function in glucose/insulin metabolism, especially in diabetes. The aim of this review is to provide a better understanding of the individual and the interactive roles of NO and H2S in carbohydrate metabolism.
Collapse
Affiliation(s)
- Sevda Gheibi
- Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden.
| | - Alan P Samsonov
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Shahsanam Gheibi
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Alexandra B Vazquez
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, NY, USA.
| |
Collapse
|
24
|
Zhu L, Yang B, Ma D, Wang L, Duan W. Hydrogen Sulfide, Adipose Tissue and Diabetes Mellitus. Diabetes Metab Syndr Obes 2020; 13:1873-1886. [PMID: 32581562 PMCID: PMC7276333 DOI: 10.2147/dmso.s249605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/09/2020] [Indexed: 12/30/2022] Open
Abstract
Hydrogen sulfide (H2S) is now increasingly considered to be the third gasotransmitter alongside other gaseous signaling molecules, nitric oxide (NO) and carbon monoxide (CO). H2S is produced by a variety of endogenous enzymatic and non-enzymatic pathways and acts as a modulator of the physiological and pathological events of the body. Adipocytes express the cystathionine γ lyase (CSE)/H2S system, which modulates a variety of biological activities in adipose tissue (AT), including inflammation, apoptosis, insulin resistance, adipokine secretion and adipocyte differentiation. Abnormalities in the physiological functions of AT play an important role in the process of diabetes mellitus. Therefore, this review provides an overview of the general aspects of H2S biochemistry, the effect of H2S on AT function and diabetes mellitus and its molecular signalling mechanisms as well as the potential application of H2S in pharmacotherapy.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pediatrics, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan430030, People’s Republic of China
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, People’s Republic of China
| | - Dongxia Ma
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Lan Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan430030, People’s Republic of China
| | - Wu Duan
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan250012, People’s Republic of China
- Correspondence: Wu Duan Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan250012, People’s Republic of China Tel/Fax +86-531-8692-7544 Email
| |
Collapse
|
25
|
Murphy B, Bhattacharya R, Mukherjee P. Hydrogen sulfide signaling in mitochondria and disease. FASEB J 2019; 33:13098-13125. [PMID: 31648556 PMCID: PMC6894098 DOI: 10.1096/fj.201901304r] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide can signal through 3 distinct mechanisms: 1) reduction and/or direct binding of metalloprotein heme centers, 2) serving as a potent antioxidant through reactive oxygen species/reactive nitrogen species scavenging, or 3) post-translational modification of proteins by addition of a thiol (-SH) group onto reactive cysteine residues: a process known as persulfidation. Below toxic levels, hydrogen sulfide promotes mitochondrial biogenesis and function, thereby conferring protection against cellular stress. For these reasons, increases in hydrogen sulfide and hydrogen sulfide-producing enzymes have been implicated in several human disease states. This review will first summarize our current understanding of hydrogen sulfide production and metabolism, as well as its signaling mechanisms; second, this work will detail the known mechanisms of hydrogen sulfide in the mitochondria and the implications of its mitochondrial-specific impacts in several pathologic conditions.-Murphy, B., Bhattacharya, R., Mukherjee, P. Hydrogen sulfide signaling in mitochondria and disease.
Collapse
Affiliation(s)
- Brennah Murphy
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Priyabrata Mukherjee
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
26
|
Gomez CB, de la Cruz SH, Medina-Terol GJ, Beltran-Ornelas JH, Sánchez-López A, Silva-Velasco DL, Centurión D. Chronic administration of NaHS and L-Cysteine restores cardiovascular changes induced by high-fat diet in rats. Eur J Pharmacol 2019; 863:172707. [DOI: 10.1016/j.ejphar.2019.172707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022]
|
27
|
Endothelium-Dependent Hyperpolarization (EDH) in Diabetes: Mechanistic Insights and Therapeutic Implications. Int J Mol Sci 2019; 20:ijms20153737. [PMID: 31370156 PMCID: PMC6695796 DOI: 10.3390/ijms20153737] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus is one of the major risk factors for cardiovascular disease and is an important health issue worldwide. Long-term diabetes causes endothelial dysfunction, which in turn leads to diabetic vascular complications. Endothelium-derived nitric oxide is a major vasodilator in large-size vessels, and the hyperpolarization of vascular smooth muscle cells mediated by the endothelium plays a central role in agonist-mediated and flow-mediated vasodilation in resistance-size vessels. Although the mechanisms underlying diabetic vascular complications are multifactorial and complex, impairment of endothelium-dependent hyperpolarization (EDH) of vascular smooth muscle cells would contribute at least partly to the initiation and progression of microvascular complications of diabetes. In this review, we present the current knowledge about the pathophysiology and underlying mechanisms of impaired EDH in diabetes in animals and humans. We also discuss potential therapeutic approaches aimed at the prevention and restoration of EDH in diabetes.
Collapse
|
28
|
Li X, Cheng Y, Zhong X, Zhang B, Bao Z, Zhang Y, Wang Z. Nuclear factor erythroid 2-related factor 2 activation mediates hyperhomocysteinemia-associated lipolysis suppression in adipocytes. Exp Biol Med (Maywood) 2018; 243:926-933. [PMID: 30105954 PMCID: PMC6108053 DOI: 10.1177/1535370218788520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) is associated with suppressed lipolytic response in adipocytes/adipose tissue, however, the underlying mechanism remains to be extensively studied. Nuclear factor erythroid 2-related factor 2 (Nrf2), a master transcriptional factor regulating antioxidant generation, has been recently reported to mediate lipid metabolism. Employing both fully differentiated 3T3-L1 adipocytes and male C57BL/6 mice, in the present study, we investigated the potential involvement of Nrf2 activation in HHcy-mediated lipolytic suppression. Our results showed that homocysteine (Hcy) treatment resulted in suppressed lipolysis, evidenced by increased intracellular triglyceride (TG) accumulation, decreased glycerol and free fatty acid (FFA) in fully differentiated 3T3-L1 adipocytes. Interestingly, Hcy exposure was associated with Nrf2 activation in adipocytes. Further studies showed that Nrf2 knockdown via siRNA transfection ameliorated Hcy-induced glycerol release in adipocytes. On the contrary, Nrf2 activators, epigallocatechin gallate (EGCG) and tert-butylhydroquinone (t-BHQ), increased intracellular TG content and decreased glycerol release in adipocytes. Importantly, our in vitro observations were corroborated by our in vivo findings, in which Hcy feeding (0.1% wt/vol) for four weeks induced Nrf2 expression in adipose tissue and lowered circulating FFA and glycerol levels in mice. Furthermore, EGCG injection (5 mg/kg/d) decreased circulating glycerol levels in comparison to the control group in mice. In conclusion, these results indicated that Nrf2 activation in response to HHcy plays an important role in mediating Hcy-suppressed lipolysis in adipocytes.
Collapse
Affiliation(s)
- Xin Li
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing 163319, Heilongjiang, P. R. China
| | - Yuhong Cheng
- Daqing Medical College, Daqing 163312, Heilongjiang, P.R. China
| | - Xiuli Zhong
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing 163319, Heilongjiang, P. R. China
| | - Bing Zhang
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing 163319, Heilongjiang, P. R. China
| | - Zhiwei Bao
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing 163319, Heilongjiang, P. R. China
| | - Yi Zhang
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing 163319, Heilongjiang, P. R. China
| | - Zhigang Wang
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing 163319, Heilongjiang, P. R. China
| |
Collapse
|
29
|
Gheibi S, Jeddi S, Kashfi K, Ghasemi A. Regulation of vascular tone homeostasis by NO and H 2S: Implications in hypertension. Biochem Pharmacol 2018; 149:42-59. [PMID: 29330066 PMCID: PMC5866223 DOI: 10.1016/j.bcp.2018.01.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/05/2018] [Indexed: 02/09/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two gasotransmitters that are produced in the vasculature and contribute to the regulation of vascular tone. NO and H2S are synthesized in both vascular smooth muscle and endothelial cells; NO functions primarily through the sGC/cGMP pathway, and H2S mainly through activation of the ATP-dependent potassium channels; both leading to relaxation of vascular smooth muscle cells. A deficit in the NO/H2S homeostasis is involved in the pathogenesis of various cardiovascular diseases, especially hypertension. It is now becoming increasingly clear that there are important interactions between NO and H2S and that have a profound impact on vascular tone and this may provide insights into the new therapeutic interventions. The aim of this review is to provide a better understanding of individual and interactive roles of NO and H2S in vascular biology. Overall, available data indicate that both NO and H2S contribute to vascular (patho)physiology and in regulating blood pressure. In addition, boosting NO and H2S using various dietary sources or donors could be a hopeful therapeutic strategy in the management of hypertension.
Collapse
Affiliation(s)
- Sevda Gheibi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center and Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Hydrogen sulfide in the regulation of insulin secretion and insulin sensitivity: Implications for the pathogenesis and treatment of diabetes mellitus. Biochem Pharmacol 2018; 149:60-76. [DOI: 10.1016/j.bcp.2018.01.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/02/2018] [Indexed: 01/04/2023]
|
31
|
Atomic Sulfur: An Element for Adaptation to an Oxidative Environment. Molecules 2017; 22:molecules22111821. [PMID: 29072603 PMCID: PMC6150329 DOI: 10.3390/molecules22111821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 11/30/2022] Open
|
32
|
Katsouda A, Szabo C, Papapetropoulos A. Reduced adipose tissue H 2S in obesity. Pharmacol Res 2017; 128:190-199. [PMID: 28982640 DOI: 10.1016/j.phrs.2017.09.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022]
Abstract
Hydrogen sulfide (H2S) is an endogenously produced signaling molecule synthesized by cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). Given that H2S exerts significant effects on bioenergetics and metabolism, the goal of the current study was to determine the expression of H2S-producing enzymes in adipose tissues in models of obesity and metabolic disruption. Mice fed a western diet expressed lower mRNA levels of all three enzymes in epididymal fat (EWAT), while only CSE and 3-MST were reduced in brown adipose tissue (BAT). At the protein level 3-MST was reduced in all fat depots studied. Using db/db mice, a genetic model of obesity, we found that CSE, CBS and 3-MST mRNA were reduced in white fat, while only CSE was reduced in BAT. CBS and CSE protein levels were suppressed in all three fat depots. In a model of age-related weight gain, no reduction in the mRNA of any of the enzymes was noted. Smaller amounts of 3-MST protein were found in EWAT, while both CSE and 3-MST were reduced in BAT. Tissue levels of H2S were lower in WAT in HFD mice; both WAT and BAT contained lower H2S amounts in db/db animals. Taken together, our data suggest that obesity is associated with a decreased expression of H2S-synthesizing enzymes and reduced H2S levels in adipose tissues of mice. We propose that the reduction in H2S may contribute to the metabolic response associated with obesity. Further work is needed to determine whether restoring H2S levels may have a beneficial effect on obesity-associated metabolic alterations.
Collapse
Affiliation(s)
- Antonia Katsouda
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece; Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece; Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece.
| |
Collapse
|
33
|
Zhao H, Lu S, Chai J, Zhang Y, Ma X, Chen J, Guan Q, Wan M, Liu Y. Hydrogen sulfide improves diabetic wound healing in ob/ob mice via attenuating inflammation. J Diabetes Complications 2017; 31:1363-1369. [PMID: 28720320 DOI: 10.1016/j.jdiacomp.2017.06.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/18/2017] [Accepted: 06/23/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND The proposed mechanisms of impaired wound healing in diabetes involve sustained inflammation, excess oxidative stress and compromised agiogenesis. Hydrogen sulfide (H2S) has been reported to have multiple biological activities. We aim to investigate the role of H2S in impaired wound healing in ob/ob mice and explore the possible mechanisms involved. PROCEDURES Full-thickness skin dorsal wounds were created on ob/ob mice and C57BL/6 mice. Cystathionine-γ-lyase (CSE) expression and H2S production were determined in granulation tissues of the wounds. Effects of NaHS on wound healing were evaluated. Inflammation and angiogenesis in granulation tissues of the wounds were examined. RESULTS CSE expression, and H2S content were significantly reduced in granulation tissues of wounds in ob/ob mice compared with control mice. NaHS treatment significantly improved wound healing in ob/ob mice, which was associated with reduced neutrophil and macrophage infiltration, decreased production of tumor necrosis factor (TNF)-α, interleukin (IL)-6. NaHS treatment decreased metalloproteinase (MMP)-9, whereas increased collagen deposition and vascular-like structures in granulation tissues of wounds in ob/ob mice. CONCLUSION CSE down-regulation may play a role in the pathogenesis of diabetic impaired wound healing. Exogenous H2S could be a potential agent to improve diabetic impaired wound healing by attenuating inflammation and increasing angiogenesis.
Collapse
Affiliation(s)
- Huichen Zhao
- Department of Endocrinology, Qingdao Municipal Hospital, 5 Donghai Street, Qingdao 266071, Shandong, China
| | - Shengxia Lu
- Department of Cardiology, Shandong Electric Power Central Hospital, 117 Jingshi Street, Jinan, China
| | - Jiachao Chai
- Department of Pediatric Surgery, Women and Children's Hospital of Qingdao, 6 Tongfu Street, Qingdao 266011, Shandong, China
| | - Yuchao Zhang
- Department of Endocrinology, Qingdao Municipal Hospital, 5 Donghai Street, Qingdao 266071, Shandong, China
| | - Xiaoli Ma
- Department of Endocrinology, Qingdao Municipal Hospital, 5 Donghai Street, Qingdao 266071, Shandong, China
| | - Jicui Chen
- Department of Cell Biology, Shandong University School of Medicine, 44 Wenhua Rd. West, Jinan, 250012, Shandong, China
| | - Qingbo Guan
- Department of Endocrinology, Provincial Hospital affiliated to Shandong University, 250021, Shandong, China.
| | - Meiyan Wan
- Department of Nephrology, Qingdao Municipal Hospital, 5 Donghai Street, Qingdao 266071, Shandong, China.
| | - Yuantao Liu
- Department of Endocrinology, Qingdao Municipal Hospital, 5 Donghai Street, Qingdao 266071, Shandong, China.
| |
Collapse
|
34
|
Nikolic T, Zivkovic V, Srejovic I, Stojic I, Jeremic N, Jeremic J, Radonjic K, Stankovic S, Obrenovic R, Djuric D, Jakovljevic V. Effects of atorvastatin and simvastatin on oxidative stress in diet-induced hyperhomocysteinemia in Wistar albino rats: a comparative study. Mol Cell Biochem 2017. [PMID: 28620818 DOI: 10.1007/s11010-017-3099-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Considering the well-known antioxidant properties of statins, it seems important to assess their impact on major markers of oxidative stress (superoxide anion radical, nitric oxide, and index of lipid peroxidation) to compare the antioxidative potentials of atorvastatin and simvastatin during the different degrees of hyperhomocysteinemia (HHcy) in rats. This study was conducted on adult male Wistar albino rats (n = 90; 4 weeks old; 100 ± 15 g body mass) in which HHcy was achieved by dietary manipulation. For 4 weeks, the animals were fed with one of the following diets: standard rodent chow, diet enriched in methionine with no deficiency in B vitamins (folic acid, B6, and B12), or diet enriched in methionine and deficient in B vitamins (folic acid, B6, and B12). At the same time, animals were treated with atorvastatin at doses of 3 mg/kg/day i.p. or simvastatin at doses of 5 mg/kg/day i.p. Levels of superoxide anion radical and TBARS were significantly decreased by administration of simvastatin in normal and high-homocysteine (Hcy) groups (p < 0.05). At 4 weeks after feeding with purified diets, the concentrations of the GSH, CAT, and SOD antioxidants were significantly affected among all groups (p < 0.05). Our results indicated that statin therapy had variable effects on the redox status in hyperhomocysteinemic rats, and simvastatin demonstrated stronger antioxidant effects than did atorvastatin.
Collapse
Affiliation(s)
- T Nikolic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - V Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica str. 69, P.O. Box 124, 34 000, Kragujevac, Serbia
| | - I Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica str. 69, P.O. Box 124, 34 000, Kragujevac, Serbia
| | - I Stojic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - N Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - J Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - K Radonjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - S Stankovic
- Institute for Medical Biochemistry, Clinical Centre of Serbia, Belgrade, Serbia
| | - R Obrenovic
- Institute for Medical Biochemistry, Clinical Centre of Serbia, Belgrade, Serbia
| | - D Djuric
- Faculty of Medicine, Institute of Medical Physiology "Richard Burian", University of Belgrade, Belgrade, Serbia
| | - V Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica str. 69, P.O. Box 124, 34 000, Kragujevac, Serbia. .,Department of Human Pathology, University IM Sechenov, 1st Moscow State Medical, Moscow, Russia.
| |
Collapse
|
35
|
Sulphurous Mineral Waters: New Applications for Health. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:8034084. [PMID: 28484507 PMCID: PMC5397653 DOI: 10.1155/2017/8034084] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/17/2017] [Accepted: 03/28/2017] [Indexed: 12/12/2022]
Abstract
Sulphurous mineral waters have been traditionally used in medical hydrology as treatment for skin, respiratory, and musculoskeletal disorders. However, driven by recent intense research efforts, topical treatments are starting to show benefits for pulmonary hypertension, arterial hypertension, atherosclerosis, ischemia-reperfusion injury, heart failure, peptic ulcer, and acute and chronic inflammatory diseases. The beneficial effects of sulphurous mineral waters, sulphurous mud, or peloids made from sulphurous mineral water have been attributed to the presence of sulphur mainly in the form of hydrogen sulphide. This form is largely available in conditions of low pH when oxygen concentrations are also low. In the organism, small amounts of hydrogen sulphide are produced by some cells where they have numerous biological signalling functions. While high levels of hydrogen sulphide are extremely toxic, enzymes in the body are capable of detoxifying it by oxidation to harmless sulphate. Hence, low levels of hydrogen sulphide may be tolerated indefinitely. In this paper, we review the chemistry and actions of hydrogen sulphide in sulphurous mineral waters and its natural role in body physiology. This is followed by an update of available data on the impacts of exogenous hydrogen sulphide on the skin and internal cells and organs including new therapeutic possibilities of sulphurous mineral waters and their peloids.
Collapse
|