1
|
Cao X, Song Y, Fan X, Peng L, Meng N, Zeng J, Li Z, Xue C, Xu J. Low temperature, high salinity depuration enhances Pacific oyster (Crassostrea gigas) lipid nutrition during anhydrous living-preservation: Lipidomic insights based on RPLC-Q-TOF-MS/MS. Food Chem 2025; 479:143805. [PMID: 40073564 DOI: 10.1016/j.foodchem.2025.143805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/22/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Using UHPLC-HRMS-based lipidomics, this study investigated lipid nutrition in Pacific oysters (C. gigas) under two depuration conditions-normal temperature and salinity (N group) and low temperature with high salinity (S group)-during a five-day anhydrous living-preservation period. Quantitative analysis of 927 lipid molecular species across 13 classes revealed that oysters in the S group retained higher levels of glycerolipids, phospholipids, and functional fatty acids (DHA, EPA, and AA) after preservation. Lipid nutritional indices showed the S group had lower risks of atherosclerosis, thrombosis, and favorable cholesterol profiles. Moreover, combined with multivariate and bioinformatics analyses, the results suggested that mild stress during low-temperature, high-salinity depuration enables improved lipid retention in subsequent preservation. These findings provide insights for optimizing pre-transport depuration practices, ensuring consumers receive oysters with superior lipid nutrition, and offer a framework for leveraging stress conditions to enhance shellfish nutritional quality.
Collapse
Affiliation(s)
- Xinyu Cao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Xiaowei Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China
| | - Liang Peng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China
| | - Nan Meng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China
| | - Junpeng Zeng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China
| | - Zhaojie Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China; Qingdao Marine Science and Technology Center, Qingdao 266235, China.
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| |
Collapse
|
2
|
Morão IFC, Simões T, Casado RB, Vieira S, Ferreira-Airaud B, Caliani I, Di Noi A, Casini S, Fossi MC, Lemos MFL, Novais SC. Correlation between trace element concentrations in the blood of female hawksbill (Eretmochelys imbricata) and egg quality in nesting populations of São Tomé Island. ENVIRONMENTAL RESEARCH 2025; 279:121594. [PMID: 40252795 DOI: 10.1016/j.envres.2025.121594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/24/2025] [Accepted: 04/09/2025] [Indexed: 04/21/2025]
Abstract
Metals and metalloids can pose a significant threat to sea turtles, as these contaminants tend to accumulate in their bodies over time, due to their long lifespans and varied feeding habits. São Tomé and Príncipe's archipelago hosts the last remaining rookery for hawksbill sea turtles (Eretmochelys imbricata) in the region. The study aimed to determine the levels of metals and metalloids accumulated by this population and to investigate their possible genotoxicity in nesting females' blood as well as potential effects on their eggs in terms of morphometric characteristics and the quality of their lipidic reserves, essential for embryo development. Higher levels of Hg were found to be correlated with increased "lobed-shaped nuclei" in erythrocytic count, suggesting genotoxicity effects in this population. Higher levels of Se were correlated with thicker and heavier eggshells, while Pb levels were associated with the reduction of the egg's diameter. Metal contamination in females' blood significantly affected yolk polar fatty acids. Significant negative correlations were found between general metal contamination (PLI) and saturated fatty acids (SFA), while positive correlations were observed for essential omega-6 fatty acids (n6), mostly influenced by Cu, Fe, and Hg concentrations. This suggests that these omega-6 fatty acids are being synthesized from SFA, potentially indicating stress response by metal exposure. The present results point to some potential alterations in the normal embryonic development of these turtle eggs, influenced by metal contamination, which should raise some concerns about the future of this critically endangered species and call for additional conservation efforts in the region.
Collapse
Affiliation(s)
- Inês F C Morão
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Portugal; Faculdade de Ciências & CESAM, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Tiago Simões
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Portugal
| | - Roger B Casado
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Portugal
| | - Sara Vieira
- Associação Programa Tatô, Avenida Marginal 12 de Julho, Ilha de São Tomé, Cidade de São Tomé, Democratic Republic of Sao Tome and Principe; Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Betânia Ferreira-Airaud
- Associação Programa Tatô, Avenida Marginal 12 de Julho, Ilha de São Tomé, Cidade de São Tomé, Democratic Republic of Sao Tome and Principe; Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy
| | - Agata Di Noi
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy; Santa Chiara Lab, University of Siena, via Valdimontone, 1, 53100, Siena, Italy
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Maria C Fossi
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Portugal
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Portugal.
| |
Collapse
|
3
|
Weiss J, Mannweiler S, Salminen H. Precision Processing for Value-Added Fats and Oils. Annu Rev Food Sci Technol 2025; 16:39-61. [PMID: 39899844 DOI: 10.1146/annurev-food-111523-121237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Lipids are key compounds in foods and provide energy and nutrients to the body. They are carriers of aroma and flavor compounds and contribute to structure and texture. Nutritional research has shown that positive effects on human health are derived from the intake of specific lipids. Similarly, food science research has shown that food matrix design benefits from having tailored lipid fractions with specific functions such as melting profiles, crystal structures, and oil-binding capacities. Minor constituents such as polar lipids or waxes also have valuable functional properties such as the ability to stabilize interfaces, facilitate spreadability, provide barriers, or act as organogelators. Coupled with the emergence of new feedstocks such as new plants, microbes, or insects, this has fueled a renewed interest in designing efficient, effective, and environmentally friendly processes to extract and fractionate lipids from feedstocks. Such precision-processing approaches are intended to yield not just bulk oils and fats but also specialty lipids with tailored properties. In this review article, we discuss the extraction and fractionation approaches used to obtain lipid fractions from plants, animals, or microbial fermentation, discuss their properties and functionalities, and highlight process design approaches, with a focus on sustainable extraction technologies. Recent advances in the three main steps in obtaining food lipids are highlighted: (a) crude oil manufacture; (b) refinement; and (c) fractionization. Finally, two case studies of specialty ingredients derived from such precision-processing approaches are presented.
Collapse
Affiliation(s)
- Jochen Weiss
- Department of Food Material Science, University of Hohenheim, Stuttgart, Germany;
| | - Sebastian Mannweiler
- Department of Food Material Science, University of Hohenheim, Stuttgart, Germany;
| | - Hanna Salminen
- Department of Food Material Science, University of Hohenheim, Stuttgart, Germany;
| |
Collapse
|
4
|
Ni X, Zhang Z, Deng ZY, Duan S, Szeto IMY, He J, Li T, Li J. Global Levels and Variations of Cholesterol and Polar Lipids of Human Milk: A Systematic Review and Meta-analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7046-7064. [PMID: 40091209 DOI: 10.1021/acs.jafc.4c11942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Polar lipids and cholesterol are vital structural components of the milk fat globule membrane, playing a crucial role in infant growth and development; however, systematic global reports on their content in human milk are currently lacking. This study conducted a systematic literature search in Chinese and English databases, including 69,392 human milk samples from 96 studies. A random-effects model based on global data was used to assess the content of total lipids, cholesterol, gangliosides, and phospholipids in human milk and their variations with the lactation stage, geographical region, and sample year. The mean contents of total lipids, cholesterol, and total phospholipids were 2774.15 mg/100 g (95% CI: 2614.88, 2933.42 mg/100 g), 21.15 mg/100 g (18.35, 23.95 mg/100 g), and 70.72 mg/100 g (68.84, 72.60 mg/100 g), respectively, with gangliosides GM3 and GD3 at 0.63 mg/100 g (0.54, 0.72 mg/100 g) and 0.34 mg/100 g (0.32, 0.36 mg/100 g). The major phospholipids SM, PC, PE, PS, and PI averaged 24.19 mg/100 g (23.17 and 25.21 mg/100 g), 21.27 mg/100 g (19.92 and 22.62 mg/100 g), 18.28 mg/100 g (17.46 and 19.10 mg/100 g), 2.86 mg/100 g (2.32 and 3.40 mg/100 g), and 2.12 mg/100 g (1.75 and 2.49 mg/100 g). With the progression of lactation, total lipids, gangliosides, and most phospholipids (SM, PC, PS, PI) increased, while cholesterol and PE decreased. Over the years, total lipids, gangliosides, and PE showed an upward trend, whereas cholesterol and most phospholipids declined. Human milk from Europe had lower total lipid and cholesterol levels compared with other regions. While the total phospholipid content did not show significant regional differences (P > 0.05), variations in phospholipid composition were observed. These findings emphasize the importance of understanding spatiotemporal changes in human milk lipids to develop personalized nutrition strategies that support optimal infant growth and development.
Collapse
Affiliation(s)
- Xinggang Ni
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zhiyi Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Sufang Duan
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, Inner Mongolia 010110, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, Inner Mongolia 010110, China
- National Center for Technology Innovation of Dairy, Ltd., Hohhot, Inner Mongolia 010110, China
| | - Ignatius Man-Yau Szeto
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, Inner Mongolia 010110, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, Inner Mongolia 010110, China
- National Center for Technology Innovation of Dairy, Ltd., Hohhot, Inner Mongolia 010110, China
| | - Jian He
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, Inner Mongolia 010110, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, Inner Mongolia 010110, China
- National Center for Technology Innovation of Dairy, Ltd., Hohhot, Inner Mongolia 010110, China
| | - Ting Li
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, Inner Mongolia 010110, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, Inner Mongolia 010110, China
- National Center for Technology Innovation of Dairy, Ltd., Hohhot, Inner Mongolia 010110, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|
5
|
Qaderi K, Shahmoradi A, Thyagarajan A, Sahu RP. Impact of targeting the platelet-activating factor and its receptor in cancer treatment. Mil Med Res 2025; 12:10. [PMID: 40033370 PMCID: PMC11877967 DOI: 10.1186/s40779-025-00597-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/26/2025] [Indexed: 03/05/2025] Open
Abstract
The lipid mediator platelet-activating factor (PAF) and its receptor (PAFR) signaling play critical roles in a wide range of physiological and pathophysiological conditions, including cancer growth and metastasis. The ability of PAFR to interact with other oncogenic signaling cascades makes it a promising target for cancer treatment. Moreover, numerous natural and synthetic compounds, characterized by diverse pharmacological activities such as anti-inflammatory and anti-tumor effects, have been explored for their potential as PAF and PAFR antagonists. In this review, we provide comprehensive evidence regarding the PAF/PAFR signaling pathway, highlighting the effectiveness of various classes of PAF and PAFR inhibitors and antagonists across multiple cancer models. Notably, the synergistic effects of PAF and PAFR antagonists in enhancing the efficacy of chemotherapy and radiation therapy in several experimental cancer models are also discussed. Overall, the synthesis of literature review indicates that targeting the PAF/PAFR axis represents a promising approach for cancer treatment and also exerts synergy with chemotherapy and radiation therapy.
Collapse
Affiliation(s)
- Kimya Qaderi
- Department of Molecular and Cell Biology, College of Life Sciences, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Arvin Shahmoradi
- Department of Laboratory Medicine, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, 66177-13446, Kurdistan, Iran
| | - Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH, 45435, USA
| | - Ravi P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
6
|
Frydrych A, Kulita K, Jurowski K, Piekoszewski W. Lipids in Clinical Nutrition and Health: Narrative Review and Dietary Recommendations. Foods 2025; 14:473. [PMID: 39942064 PMCID: PMC11816940 DOI: 10.3390/foods14030473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Lipids are essential components of human health, serving as critical structural elements of cell membranes, energy sources, and precursors for bioactive molecules. This narrative review aims to examine the multifaceted roles of lipids in clinical nutrition and health, focusing on their impact on chronic disease prevention, management, and the potential of lipid-based therapies. A narrative review was conducted utilizing Scopus, Google Scholar, and Web of Science databases. Key terms such as lipids, dietary fats, and cholesterol were used to identify and analyze relevant studies. A total of 145 articles meeting inclusion criteria were reviewed for their insights into lipid metabolism, dietary sources, and clinical implications. The analysis highlighted the metabolic significance of various lipid classes-saturated, monounsaturated, and polyunsaturated fatty acids-along with evidence-based recommendations for their dietary intake. Lipids were shown to play a pivotal role in managing chronic diseases such as cardiovascular disease, obesity, and metabolic syndrome. Emerging therapies, including omega-3 fatty acids and medium-chain triglycerides, demonstrated potential benefits in clinical practice. By synthesizing current knowledge, this narrative review provides healthcare professionals with an updated understanding of the roles of lipids in clinical nutrition. The findings emphasize the importance of tailored dietary interventions and lipid-based therapies in optimizing health and managing chronic diseases effectively. Additionally, this review successfully presents practical dietary recommendations to guide clinical practice.
Collapse
Affiliation(s)
- Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyses, Faculty of Medicine, Medical College, University of Rzeszów, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland; (A.F.); (K.J.)
| | - Kamil Kulita
- Toxicological Science Club ‘Paracelsus’, Faculty of Medicine, Medical College, University of Rzeszów, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland;
| | - Kamil Jurowski
- Laboratory of Innovative Toxicological Research and Analyses, Faculty of Medicine, Medical College, University of Rzeszów, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland; (A.F.); (K.J.)
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
| | - Wojciech Piekoszewski
- Laboratory of High Resolution of Mass Spectrometry, Faculty of Chemistry, Jagiellonian University, R. Ingardena 3, 30-060 Krakow, Poland
| |
Collapse
|
7
|
Nikitashina V, Bartels B, Mansour JS, LeKieffre C, Decelle J, Hertweck C, Not F, Pohnert G. Metabolic interdependence and rewiring in radiolaria-microalgae photosymbioses. THE ISME JOURNAL 2025; 19:wraf047. [PMID: 40057976 PMCID: PMC11965087 DOI: 10.1093/ismejo/wraf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/24/2025] [Accepted: 03/05/2025] [Indexed: 04/04/2025]
Abstract
Marine planktonic Radiolaria harboring symbiotic microalgae are ubiquitous in the oceans and abundant in oligotrophic areas. In these low-nutrient environments, they are among the most important primary producers. Systematic studies of radiolarian biology are limited because radiolaria are non-culturable and prone to damage during sampling. To obtain insight into the mechanistic basis of radiolarian photosymbiosis, we address here the metabolic contributions of the partners to the performance of the holobiont. Therefore, we describe the metabolic inventory of two highly abundant photosymbiotic radiolaria-colony-forming Collodaria and single-celled Acantharia and compare their metabolomes to metabolomes of respective free-living algae. Most of the metabolites detected in the symbiosis are not present in the free-living algae, suggesting a significant transformation of symbionts' metabolites by the host. The metabolites identified in the holobiont and the free-living algae encompass molecules of primary metabolism and a number of osmolytes, including dimethylsulfoniopropionate. Mass spectrometry imaging revealed the presence of dimethylsulfoniopropionate in the symbionts and host cells, indicating that the algae provide osmolytic protection to the host. Furthermore, our findings suggest a possible dependence of Collodaria on symbiotic vitamin B3. Distinctive differences in phospholipid composition between free-living and symbiotic stages indicate that the algal cell membrane may undergo rearrangement in the symbiosis. Our results demonstrate a strong interdependence and rewiring of the algal metabolism underlying radiolaria-microalgae photosymbioses.
Collapse
Affiliation(s)
- Vera Nikitashina
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Benjamin Bartels
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Joost Samir Mansour
- Adaptation and Diversity in Marine Environment (AD2M) Laboratory, Ecology of Marine Plankton Team, Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144 AD2M, 29680 Roscoff, France
| | - Charlotte LeKieffre
- Cell and Plant Physiology Laboratory, CNRS, CEA, INRAe, IRIG-LPCV, Université Grenoble Alpes, 38054 Grenoble, France
| | - Johan Decelle
- Cell and Plant Physiology Laboratory, CNRS, CEA, INRAe, IRIG-LPCV, Université Grenoble Alpes, 38054 Grenoble, France
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Fabrice Not
- Adaptation and Diversity in Marine Environment (AD2M) Laboratory, Ecology of Marine Plankton Team, Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144 AD2M, 29680 Roscoff, France
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
8
|
Ahmad S, Singh A, Akram W, Upadhyay A, Abrol GS. Algal lipids: A review on current status and future prospects in food processing. J Food Sci 2025; 90:e17618. [PMID: 39786345 DOI: 10.1111/1750-3841.17618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
The consumer demand for functional foods derived from natural sources has been enhanced due to health-promoting effects. Algae are widely available globally as a sustainable source of proteins, lipids, and carbohydrates. Algal lipids are underexplored natural sources that exhibit several nutraceutical effects and applications in fortification, cosmetics, and pharmaceuticals. Both macro- and microalgae are composed of high-quality lipids. These latter involve polar lipids, nonpolar lipids, and essential fatty acids. Therefore, this review aimed to bring out knowledge on the chemistry of various lipids isolated and identified from micro- and macroalgae. Further, their extraction using traditional thermal (solid-liquid, and liquid-liquid) and advanced nonthermal (supercritical fluid, microwave-, ultrasound-, and enzyme-assisted) techniques has been explored. Along with this, bioactivities of algal lipids have been discussed. This study explored algal lipids in advancing sustainable food processing technologies that contribute positively to environmental sustainability and global health, in line with United Nations Sustainable Development GroupUnited Nations Sustainable Development Group UNSDGs.
Collapse
Affiliation(s)
- Sameer Ahmad
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Amit Singh
- Department of Postharvest Technology, Banda University of Agriculture & Technology, Banda, Uttar Pradesh, India
| | - Wasim Akram
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ashutosh Upadhyay
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management Kundli, Sonipat, Haryana, India
| | - Ghan Shyam Abrol
- Department of Post-Harvest Technology, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India
| |
Collapse
|
9
|
Zhang YX, Ding CC, Xu JY, Kong LF, Wang Y, Lin WH, Tie C. A simultaneous analysis strategy of glycerophospholipids and lipid mediators based on secondary extraction scheme. Anal Bioanal Chem 2025; 417:109-117. [PMID: 39516289 DOI: 10.1007/s00216-024-05629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Lipid peroxidation plays an important role in physiological and pathophysiological conditions; it occurs mainly in the vicinity of the membrane. Glycerophospholipids are indispensable for normal structure of membranes. Lipid mediators are final products of lipid peroxidation. Glycerophospholipids as a source of lipid mediators are closely related with lipid mediators in lipid peroxidation process. This study developed a strategy for simultaneous analysis of glycerophospholipids and lipid mediators in a sample based on a secondary extraction scheme. Due to differences in physicochemical properties of glycerophospholipids and lipid mediators, we used different solvents and methods to extract glycerophospholipids and lipid mediators based on a sample. In addition, we compared three methods of extracting glycerophospholipids to select the best extraction method. In this study, a UPLC-MRM absolute quantification strategy for three deuterated internal standards of lipid mediator was established. The calibration range of all standards is linear, and the correlation coefficients are greater than 0.999. Quantitative range, precision, and accuracy of all analytes-based analysis method meet requirements of method validation. And the accuracy and precision of this method for glycerophospholipids meet the requirements of method verification. It is satisfactory to apply this method in the analysis of the changes of enzymes in lipid peroxidation during the treatment of asthma with dexamethasone. The quantitative results of phospholipids and lipid mediators in mouse lung tissue were obtained by this method, indicating that dexamethasone may inhibit the activity of phospholipase As enzyme and thus slow down the lipid peroxidation process. This work may be of great significance for exploring the changes of enzymes in lipid peroxidation metabolism.
Collapse
Affiliation(s)
- Yi-Xuan Zhang
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, Ding11 Xueyuan Road, Beijing, 100083, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing, 100083, China
| | - Chen-Chen Ding
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, Ding11 Xueyuan Road, Beijing, 100083, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing, 100083, China
| | - Jing-Yi Xu
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, Ding11 Xueyuan Road, Beijing, 100083, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing, 100083, China
| | - Ling-Fei Kong
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, Ding11 Xueyuan Road, Beijing, 100083, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing, 100083, China
| | - Yi Wang
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, Ding11 Xueyuan Road, Beijing, 100083, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing, 100083, China
| | - Wei-Huang Lin
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, Ding11 Xueyuan Road, Beijing, 100083, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing, 100083, China
| | - Cai Tie
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, Ding11 Xueyuan Road, Beijing, 100083, China.
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing, 100083, China.
| |
Collapse
|
10
|
Hosomi R. Health Benefits of Dietary Docosahexaenoic Acid- and Eicosapentaenoic Acid-enriched Glycerophospholipids from Marine Sources. J Oleo Sci 2025; 74:1-11. [PMID: 39756987 DOI: 10.5650/jos.ess24253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Omega-3 long-chain polyunsaturated fatty acids (PUFA) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are widely used as supplements and pharmaceuticals because of their beneficial effects on human health. Triacylglycerols (TAG) and glycerophospholipids (GPL) comprise the primary chemical structures of DHA/EPA in marine sources. Furthermore, DHA/EPA-enriched glycerophospholipids (DHA/EPA-GPL) and lysoglycerophospholipids (DHA/EPA-LysoGPL) consumed through food and supplements are more effective than TAG in promoting health, which may be attributed to a specific underlying mechanism. However, the specific effects of DHA/EPA bound to GPL structure have been still unclear. The aim of this review is to clarify the significance of the binding of DHA/EPA to GPL in promoting the health benefits of DHA/EPA-GPL and DHA/EPA-LysoGPL. Additionally, the potential use of fishery by-products as sources of DHA/EPA-GPL and DHA/EPA-LysoGPL has been discussed.
Collapse
Affiliation(s)
- Ryota Hosomi
- Laboratory of Food and Nutritional Sciences, Faculty of Chemistry, Materials and Bioengineering, Kansai University
| |
Collapse
|
11
|
Carazo A, Hrubša M, Konečný L, Gunaseelan C, Fadraersada J, Skořepa P, Paclíková M, Musil F, Karlíčková J, Javorská L, Matoušová K, Kujovská Krčmová L, Šmahelová A, Blaha V, Mladenka P. Correlations among different platelet aggregation pathways in a group of healthy volunteers. Platelets 2024; 35:2336093. [PMID: 38602464 DOI: 10.1080/09537104.2024.2336093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024]
Abstract
Platelet aggregation is a complicated process mediated by different signaling pathways. As the process is highly complex and apparently redundant, the relationships between these pathways are not yet fully known. The aim of this project was to study the interconnections among seven different aggregation pathways in a group of 53 generally healthy volunteers aged 20 to 66 years. Platelet aggregation was induced with thrombin receptor activating peptide 6 (TRAP), arachidonic acid (AA), platelet activating factor 16 (PAF), ADP, collagen, thromboxane A2 analogue U46619 or ristocetin (platelet agglutination) ex vivo in fasting blood samples according to standardized timetable protocol. Additionally, some samples were pre-treated with known clinically used antiplatelet drugs (vorapaxar, ticagrelor or acetylsalicylic acid (ASA)). Significant correlations among all used inducers were detected (Pearson correlation coefficients (rP): 0.3 to 0.85). Of all the triggers, AA showed to be the best predictor of the response to other inducers with rP ranging from 0.66 to 0.85. Interestingly, the antiplatelet response to ticagrelor strongly predicted the response to unrelated drug vorapaxar (rP = 0.71). Our results indicate that a response to one inducer can predict the response for other triggers or even to an antiplatelet drug. These data are useful for future testing but should be also confirmed in patients.
Collapse
Affiliation(s)
- Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Marcel Hrubša
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lukáš Konečný
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Catherine Gunaseelan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Jaka Fadraersada
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Pavel Skořepa
- 3rd Department of Internal Medicine-Metabolic Care and Gerontology, University Hospital and Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
- Department of Military Internal Medicine and Military Hygiene, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
| | - Markéta Paclíková
- 3rd Department of Internal Medicine-Metabolic Care and Gerontology, University Hospital and Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - František Musil
- Department of Occupational Medicine, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Králové, Czech Republic
| | - Jana Karlíčková
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Alena Šmahelová
- 3rd Department of Internal Medicine-Metabolic Care and Gerontology, University Hospital and Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Vladimír Blaha
- 3rd Department of Internal Medicine-Metabolic Care and Gerontology, University Hospital and Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Přemysl Mladenka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
12
|
Pham TH, Thomas R, Schwab C, Martinez MM, Vidal NP. Unraveling the neutral and polar lipidome of Nordic brown macroalgae: A sustainable source of functional lipids. Food Chem 2024; 459:140415. [PMID: 39032363 DOI: 10.1016/j.foodchem.2024.140415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/02/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Brown macroalgae represent a sustainable and abundant source of lipids with acknowledged functional and health benefits. Nonetheless, macroalgae lipidome has been poorly unraveled due to lipids complex structural and chemical diversity. In this study, a comprehensive lipidomic analysis was performed in four macroalgae: Saccharina latissima, Fucus vesiculosus, Fucus serratus and the invasive Sargassum muticum, using HILIC-C30RP-HRMS. Neutral lipids (tri-, di-glycerides) comprised 72-82% of total lipids (TL) with a highly unsaturation profile (27-49% depending on species). The polar lipidome comprised glycolipids, phospholipids, betaine lipids and sphingolipids with varied content among macroalgae. S. latissima displayed the greatest level of glycolipids (23% of TL), by contrast with the dominance of long-chain polyunsaturated betaine lipids (10-18% of TL) in the other species, particularly in S. muticum. Phospholipids and sphingolipids were detected in low abundance (<1.7% of TL). This study elevated the potential of brown macroalgae as an emerging reservoir of bioactive lipids with nutritional relevance.
Collapse
Affiliation(s)
- Thu H Pham
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Raymond Thomas
- Biotron Experimental Climate Change Research Centre/Department of Biology, University of Western Ontario, London, ON, Canada
| | - Clarissa Schwab
- Functional Microbe Technology Group, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Mario M Martinez
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark.
| | - Natalia P Vidal
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, DK-8000, Aarhus, Denmark.
| |
Collapse
|
13
|
Chen L, He X, Han Y, Huang Y, Li J, Li J, Yu X, Yun X, Wu J, Sha R, Dong T, Borjigin G. Lipidomics analysis of adipose depots at differently aged Sunit sheep. Food Chem 2024; 467:142243. [PMID: 39632170 DOI: 10.1016/j.foodchem.2024.142243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/07/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
The objective of this study was to optimize the utilization of deposited fat in Sunit sheep, with a focus on dietary nutrition. This study also elucidated variations in lipid metabolism among subcutaneous fat (SF), perirenal fat (PF), and tail fat (TF) in sheep of different ages using non-targeted lipidomic techniques. In total, 173 different lipids were identified, of which triacylglycerol (TG) and phosphatidylcholine (PC) were prominent. The relative intensity of TG was highest at 6 months of age in three adipose depots. Glycerophospholipids (PLs) were expressed at peak levels in TF and SF at 18 months of age. Pathway analysis revealed that biosynthesis of unsaturated fatty acids, linoleic acid metabolism, glycerophospholipid metabolism, and fatty acid biosynthesis were the main pathways involved in the metabolism of adipose depots. These findings provide a comprehensive reference for the metabolic characteristics and pathways of adipose tissue in sheep and the utilization of its by-products.
Collapse
Affiliation(s)
- Lu Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xige He
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Yunfei Han
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Yajuan Huang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jin Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jin Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xueting Yu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xueyan Yun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jindi Wu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Rina Sha
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tungalag Dong
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Gerelt Borjigin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
14
|
Kim Y, Kokkinias K, Sabag-Daigle A, Leleiwi I, Borton M, Shaffer M, Baniasad M, Daly R, Ahmer BMM, Wrighton KC, Wysocki VH. Time-Resolved Multiomics Illustrates Host and Gut Microbe Interactions during Salmonella Infection. J Proteome Res 2024; 23:4864-4877. [PMID: 39374136 DOI: 10.1021/acs.jproteome.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Salmonella infection, also known as Salmonellosis, is one of the most common food-borne illnesses. Salmonella infection can trigger host defensive functions, including an inflammatory response. The provoked-host inflammatory response has a significant impact on the bacterial population in the gut. In addition, Salmonella competes with other gut microorganisms for survival and growth within the host. Compositional and functional alterations in gut bacteria occur because of the host immunological response and competition between Salmonella and the gut microbiome. Host variation and the inherent complexity of the gut microbial community make understanding commensal and pathogen interactions particularly difficult during a Salmonella infection. Here, we present metabolomics and lipidomics analyses along with the 16S rRNA sequence analysis, revealing a comprehensive view of the metabolic interactions between the host and gut microbiota during Salmonella infection in a CBA/J mouse model. We found that different metabolic pathways were altered over the four investigated time points of Salmonella infection (days -2, +2, +6, and +13). Furthermore, metatranscriptomics analysis integrated with metabolomics and lipidomics analysis facilitated an understanding of the heterogeneous response of mice, depending on the degree of dysbiosis.
Collapse
Affiliation(s)
- Yongseok Kim
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Katherine Kokkinias
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Anice Sabag-Daigle
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ikaia Leleiwi
- Department of Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Mikayla Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Michael Shaffer
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Maryam Baniasad
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Rebecca Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Brian M M Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
15
|
Tao X, Yin M, Lin L, Song R, Wang X, Tao N, Wang X. UPLC-ESI-MS/MS strategy to analyze fatty acids composition and lipid profiles of Pacific saury ( Cololabis saira). Food Chem X 2024; 23:101682. [PMID: 39229617 PMCID: PMC11369443 DOI: 10.1016/j.fochx.2024.101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/09/2024] [Accepted: 07/20/2024] [Indexed: 09/05/2024] Open
Abstract
The Pacific saury (Cololabis saira) is a highly nutritious deep-sea fish, rich in omega-3 polyunsaturated fatty acids (n-3 PUFAs). This study comprehensively investigated fatty acids composition and lipid profiles of different parts of Pacific saury based on an untargeted lipidomic strategy. Results suggested that the crude fat content of meat, head and viscera were 5.81%, 10.90%, and 19.46%, respectively. The contents of PUFAs were 41.08%, 34.96% and 33.14%, respectively. Among them, the n-3 PUFAs in the head (34.58%) were significantly higher than meat (29.40%) and viscera (27.95%). Moreover, 5752 lipid molecules were identified, where glycerophospholipids (GP) were the most numerous lipid type (45.58%), with phosphatidylcholine (PC) being main differential subclass. PC (20:3_22:6) was the most abundant molecule in the head (14.59%) and meat (19.60%). Head_vs_viscera group had higher characteristic PC abundance. This study will provide a theoretical basis for the physiological activity and lipid high-value utilization of Pacific saury.
Collapse
Affiliation(s)
- Xinyi Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mingyu Yin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Liu Lin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Rongzhen Song
- College of Food Science and Pharmaceutical Engineering Zaozhuang University, 277160, China
| | - Xiaodong Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Ningping Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
16
|
Liu YH, Liu TT, Niu JQ, Zhang XS, Xu WS, Song S, Wang Z. Characterization of phospholipidome in milk, yogurt and cream, and phospholipid differences related to various dairy processing methods. Food Chem 2024; 454:139733. [PMID: 38805923 DOI: 10.1016/j.foodchem.2024.139733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/27/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
Milk phospholipids have multiple health benefits, but the deficiency of detailed phospholipid profiles in dairy products brings obstacles to intake calculation and function evaluation of dairy phospholipids. In present study, 306 phospholipid molecular species were identified and quantified among 207 milk, yogurt and cream products using a HILIC-ESI-Q-TOF MS and a HILIC-ESI-QQQ MS. The phospholipid profiles of five mammals' milk show that camel milk contains the most abundant phosphatidylethanolamine, phosphatidylserine and sphingomyelin; cow, yak and goat milk have similar phospholipidomes, while buffalo milk contains abundant phosphatidylinositol. Fewer plasmalogens but more lyso-glycerolphospholipids were found in ultra-high-temperature (UHT) sterilized milk than in pasteurized milk, and higher proportions of lyso-glycerolphospholipid/total phospholipid were observed in both cream and skimmed/semi-skimmed milk than whole milk, indicating that UHT and skimming processes improve glycerolphospholipid degradation and phospholipid nutrition loss. Meanwhile, more diacyl-glycerolphospholipids and less of their degradation products make yogurt a better phospholipid resource than whole milk.
Collapse
Affiliation(s)
- Yue-Han Liu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Ting-Ting Liu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jing-Qi Niu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xue-Song Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Wei-Sheng Xu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Shuang Song
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China; Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, Beijing 100000, China.
| | - Zhu Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| |
Collapse
|
17
|
Chen J, Wang Y, Chen C, Song X, Shen X, Cao D, Zhao Z. Integrated network pharmacology and metabolomics reveal vascular protective effects of Ilex pubescens on thromboangiitis obliterans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155720. [PMID: 38763010 DOI: 10.1016/j.phymed.2024.155720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Ilex pubescens Hook. et Arn (IP), traditionally known for its properties of promoting blood circulation, swelling and pain relief, heat clearing, and detoxification, has been used in the treatment of thromboangiitis obliterans (TAO). Despite its traditional applications, the specific mechanisms by which IP exerts its therapeutic effects on TAO remain unclear. AIM OF THE STUDY This study aims to uncover the underlying mechanisms in the therapeutic effects of IP on TAO, employing network pharmacology and metabolomic approaches. METHODS In this study, a rat TAO model was established by injecting sodium laurate through the femoral artery, followed by the oral administration of IP for 7 days. Plasma coagulation parameters were measured to assess the therapeutic effects of IP. The potential influence on the femoral artery and gastrocnemius muscle was histopathologically evaluated. Network pharmacology was employed to predict relevant targets and model pathways for TAO. Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) was used for the metabolic profile analysis of rat plasma. Immunohistochemistry (IHC) was used to verify the mechanisms by which IP promotes blood circulation in TAO. RESULTS The study revealed that IP improved blood biochemical function in TAO and played a significant role in vascular protection and maintaining normal blood vessels and gastrocnemius morphologies. Network pharmacology showed that IP compounds play a therapeutic role in modulating lipids and atherosclerosis. Metabolomic analysis revealed that the pathways involved in sphingolipid metabolism and steroid biosynthesis were significantly disrupted. The joint analysis showed a strong correlation between lysophosphatidylcholine and IP components, including triterpenoid and iridoid components, which support the curative action of IP through the modulation of sphingolipid metabolism. Furthermore, decreased expression levels of SPHK1/S1PR1, TNF-α, IL-1β, and IL-6 were observed in the IP-treated group, suggesting that IP exerts a protective effect on the vasculature primarily by regulating of the SPHK1/S1PR1 signaling pathway. CONCLUSION In this study, we found that IP protects the vasculature against injury and treats TAO by regulating the steady-state disturbance of the sphingolipid pathway. These findings suggest that IP promotes vasculature by modulating sphingolipid metabolism and SPHK1/S1PR1 signaling pathway and reduce levels of inflammatory factors, offering new insights into its therapeutic potential.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuanyuan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Caixin Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xianshu Song
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiuting Shen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Di Cao
- Wannan Medical College, Wuhu 241002, China
| | - Zhongxiang Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
18
|
Fan W, Xu Y, He X, Luo P, Zhu J, Li J, Wang R, Yuan Q, Wu K, Hu W, Zhao Y, Xu S, Cheng X, Wang Y, Xu HE, Zhuang Y. Molecular basis for the activation of PAF receptor by PAF. Cell Rep 2024; 43:114422. [PMID: 38943642 DOI: 10.1016/j.celrep.2024.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/07/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024] Open
Abstract
Platelet-activating factor (PAF) is a potent phospholipid mediator crucial in multiple inflammatory and immune responses through binding and activating the PAF receptor (PAFR). However, drug development targeting the PAFR has been limited, partly due to an incomplete understanding of its activation mechanism. Here, we present a 2.9-Å structure of the PAF-bound PAFR-Gi complex. Structural and mutagenesis analyses unveil a specific binding mode of PAF, with the choline head forming cation-π interactions within PAFR hydrophobic pocket, while the alkyl tail penetrates deeply into an aromatic cleft between TM4 and TM5. Binding of PAF modulates conformational changes in key motifs of PAFR, triggering the outward movement of TM6, TM7, and helix 8 for G protein coupling. Molecular dynamics simulation suggests a membrane-side pathway for PAF entry into PAFR via the TM4-TM5 cavity. By providing molecular insights into PAFR signaling, this work contributes a foundation for developing therapeutic interventions targeting PAF signal axis.
Collapse
Affiliation(s)
- Wenjia Fan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China; The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Youwei Xu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinheng He
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Luo
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingpeng Zhu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Junrui Li
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ruolan Wang
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingning Yuan
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; The Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kai Wu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; The Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wen Hu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; The Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuxi Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China; The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shiqi Xu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xi Cheng
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Wang
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - H Eric Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China; The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Youwen Zhuang
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Medicinal Bioinformatics Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.
| |
Collapse
|
19
|
Kim SY, Park YL, Ji HE, Lee HS, Chang HJ, Bang GH, Lee JH. High-purity 1,2-dimyristoyl- sn-glycero-3-phosphocholine: synthesis and emulsifying performance evaluation. Front Nutr 2024; 11:1408937. [PMID: 39045285 PMCID: PMC11265155 DOI: 10.3389/fnut.2024.1408937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) is a promising emulsifier for bioactive delivery systems, but its industrial applications are limited by the lack of cost-effective and scalable synthetic routes. The purpose of this study was to economically produce high-purity DMPC by replacing commonly used column chromatography methods and to evaluate the emulsifying performance. Methods DMPC was synthesized from sn-glycero-3-phosphocholine using Steglich esterification followed by sequential recrystallization from ethyl acetate and acetone. The structure of DMPC was identified and its purity was confirmed using various spectroscopy and chromatography techniques. The emulsifying performance was evaluated by examining the effects of storage on the properties of o/w emulsions prepared using soybean oil with (i) soy PC, (ii) soy PC + DMPC (1:1, w/w), and (iii) DMPC as emulsifiers. Results The chemical impurities formed during the synthesis of DMPC was removed, and its final purity was 96%, and the melt transition temperature was 37.6°C. No visible difference between the three emulsions (soy PC, soy PC+DMPC, and DMPC) was observed during two-week storage, and the DMPC-based emulsion was more stable than soy PC emulsion, showing smaller particle size distribution during 6 months. Discussion The highly pure DMPC was synthesized by an economical method, and DMPC-based emulsions demonstrated physicochemical stable, highlighting its potential for food and pharmaceutical industry-related applications. Our findings suggest that DMPC holds promise as an emulsifier with broad applications in the food industry.
Collapse
Affiliation(s)
- Se-Young Kim
- Department of Food Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Ye-Lim Park
- Department of Food Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Ha-Eun Ji
- Department of Food Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Hae-Se Lee
- Department of Food Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyeon-Jun Chang
- Department of Food and Nutrition, Daegu University, Gyeongsan-Si, Republic of Korea
| | - Gyeong-Hee Bang
- Department of Food Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Jeung-Hee Lee
- Department of Food and Nutrition, Daegu University, Gyeongsan-Si, Republic of Korea
| |
Collapse
|
20
|
Luque-Uría Á, Calvo MV, Visioli F, Fontecha J. Milk fat globule membrane and its polar lipids: reviewing preclinical and clinical trials on cognition. Food Funct 2024; 15:6783-6797. [PMID: 38828877 DOI: 10.1039/d4fo00659c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
In most parts of the world, life expectancy is increasing thanks to improved healthcare, public health policies, nutrition, and treatment. This increase in lifespan is often not accompanied by an increase in health span, which severely affects people as they age. One notable consequence of this is the increasing prevalence of neurodegenerative diseases such as mild cognitive impairment, dementia, and Alzheimer's disease. Therefore, dietary and pharmaceutical measures must be taken to reduce the burden of such pathologies. Among the different types of nutrients found in the diet, lipids and especially polar lipids are very important for cognition due to their abundance in the brain. Amid the most studied sources of polar lipids, milk fat globule membrane (MFGM) stands out as it is abundant in industrial by-products such as buttermilk. In this narrative review, we discuss the latest, i.e. less than five years old, scientific evidence on the use of MFGM and its polar lipids in cognitive neurodevelopment in early life and their potential effect in preventing neurodegeneration in old age. We conclude that MFGM is an interesting, abundant and exploitable source of relatively inexpensive bioactive molecules that could be properly formulated and utilized in the areas of neurodevelopment and cognitive decline. Sufficiently large randomized controlled trials are required before health-related statements can be made. However, research in this area is progressing rapidly and the evidence gathered points to biological, health-promoting effects.
Collapse
Affiliation(s)
- Álvaro Luque-Uría
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid 28049, Spain.
| | - María V Calvo
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid 28049, Spain.
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy.
- IMDEA-Food, Madrid 28049, Spain
| | - Javier Fontecha
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid 28049, Spain.
| |
Collapse
|
21
|
Zhu ZG, Ma JW, Ji DD, Li QQ, Diao XY, Bao J. Mendelian randomization analysis identifies causal associations between serum lipidomic profile, amino acid biomarkers and sepsis. Heliyon 2024; 10:e32779. [PMID: 38975226 PMCID: PMC11226841 DOI: 10.1016/j.heliyon.2024.e32779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Background Sepsis is a life-threatening condition marked by a severe systemic response to infection, leading to widespread inflammation, cellular signaling disruption, and metabolic dysregulation. The role of lipid and amino acid metabolism in sepsis is not fully understood, but aberrations in this pathway could contribute to the disease's pathophysiology. Methods To explore the potential of lipid and amino acid compounds as biomarkers for the diagnosis and prognosis of sepsis, a two-sample Mendelian Randomization (MR) study was conducted, examining the relationship between sepsis and 249 serum lipid and amino acid-related markers. Key enzymes involved in synthesis of phosphatidylcholine, including choline/ethanolamine phosphotransferase 1 (CEPT1), choline phosphotransferase 1 (CPT1), and ethanolamine phosphotransferase 1 (EPT1), were also targeted for drug-target Mendelian randomization. Results The study found that phosphatidylcholines (OR IVW: 0.88, 95%CI: 0.80-0.96, p = 0.005) and phospholipids in medium HDL (OR IVW: 0.86, 95%CI: 0.77-0.96, p = 0.007) potentially exhibit a protective effect against sepsis nominally. However, the potential drug target of CEPT1, CPT1, and EPT1 was found to be unrelated to septic outcomes. Conclusion Our findings suggest that increasing levels of phosphatidylcholines and medium HDL phospholipids may reduce the incidence of sepsis. This highlights the potential of lipid-based biomarkers in the diagnosis and management of sepsis, opening avenues for new therapeutic strategies.
Collapse
Affiliation(s)
- Zi-gang Zhu
- Department of Critical Care Medicine, Jiangnan University Medical Center,Wuxi No.2 People's Hospital, Wuxi, 214002, China
| | - Jia-wei Ma
- Department of Critical Care Medicine, Jiangnan University Medical Center,Wuxi No.2 People's Hospital, Wuxi, 214002, China
- Department of Critical Care Medicine, Aheqi County People's Hospital, Xinjiang, 843599, China
| | - Dan-dan Ji
- Department of Critical Care Medicine, Jiangnan University Medical Center,Wuxi No.2 People's Hospital, Wuxi, 214002, China
| | - Qian-qian Li
- Department of Critical Care Medicine, Jiangnan University Medical Center,Wuxi No.2 People's Hospital, Wuxi, 214002, China
| | - Xin-yu Diao
- Emergency Department, Yixing Traditional Chinese Medicine Hospital, Yixing,214299,China
| | - Jie Bao
- Department of Critical Care Medicine, Jiangnan University Medical Center,Wuxi No.2 People's Hospital, Wuxi, 214002, China
| |
Collapse
|
22
|
Zeng Q, Gong Y, Zhu N, Shi Y, Zhang C, Qin L. Lipids and lipid metabolism in cellular senescence: Emerging targets for age-related diseases. Ageing Res Rev 2024; 97:102294. [PMID: 38583577 DOI: 10.1016/j.arr.2024.102294] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Cellular senescence is a kind of cellular state triggered by endogenous or exogenous stimuli, which is mainly characterized by stable cell cycle arrest and complex senescence-associated secretory phenotype (SASP). Once senescent cells accumulate in tissues, they may eventually accelerate the progression of age-related diseases, such as atherosclerosis, osteoarthritis, chronic lung diseases, cancers, etc. Recent studies have shown that the disorders of lipid metabolism are not only related to age-related diseases, but also regulate the cellular senescence process. Based on existing research evidences, the changes in lipid metabolism in senescent cells are mainly concentrated in the metabolic processes of phospholipids, fatty acids and cholesterol. Obviously, the changes in lipid-metabolizing enzymes and proteins involved in these pathways play a critical role in senescence. However, the link between cellular senescence, changes in lipid metabolism and age-related disease remains to be elucidated. Herein, we summarize the lipid metabolism changes in senescent cells, especially the senescent cells that promote age-related diseases, as well as focusing on the role of lipid-related enzymes or proteins in senescence. Finally, we explore the prospect of lipids in cellular senescence and their potential as drug targets for preventing and delaying age-related diseases.
Collapse
Affiliation(s)
- Qing Zeng
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Yongzhen Gong
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Neng Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410021, China
| | - Yaning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
23
|
Minami Y, B Gowda SG, Gowda D, Chiba H, Hui SP. Regio-specific lipid fingerprinting of edible sea cucumbers using LC/MS. Food Res Int 2024; 184:114253. [PMID: 38609231 DOI: 10.1016/j.foodres.2024.114253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024]
Abstract
Sea cucumbers are a rich source of bioactive compounds and are gaining popularity as nutrient-rich seafood. They are consumed as a whole organism in Pacific regions. However, limited data are available on the comparison of their lipid composition and nutritional value. In this study, untargeted liquid chromatography/mass spectrometry was applied to comprehensively profile lipids in the skin, meat, and intestinal contents of three color-distinct edible sea cucumbers. Multivariate principal component analysis revealed that the lipid composition of the intestinal contents of red, black, and blue sea cucumbers differs from that of skin, and meats. Polyunsaturated fatty acids (PUFAs) are abundant in the intestinal contents, followed by meats of sea cucumber. Lipid nutritional quality assessments based on fatty acid composition revealed a high P:S ratio, low index of atherogenicity, and high health promotion indices for the intestinal contents of red sea cucumber, suggesting its potential health benefits. In addition, hierarchical cluster analysis revealed that the intestinal contents of sea cucumbers were relatively high in PUFA-enriched phospholipids and lysophospholipids. Ceramides are abundant in black skin, blue meat, and red intestinal content samples. Overall, this study provides the first insights into a comprehensive regio-specific profile of the lipid content of sea cucumbers and their potential use as a source of lipid nutrients in food and nutraceuticals.
Collapse
Affiliation(s)
- Yusuke Minami
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Siddabasave Gowda B Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo 060-0809, Japan.
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma, Nishi-4-3-1-15, Higashi-ku, Sapporo 007-0894, Japan.
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
24
|
Li H, Cui Y, Wang J, Zhang W, Chen Y, Zhao J. Identification and validation of biomarkers related to lipid metabolism in osteoarthritis based on machine learning algorithms. Lipids Health Dis 2024; 23:111. [PMID: 38637751 PMCID: PMC11025229 DOI: 10.1186/s12944-024-02073-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/07/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Osteoarthritis and lipid metabolism are strongly associated, although the precise targets and regulatory mechanisms are unknown. METHODS Osteoarthritis gene expression profiles were acquired from the GEO database, while lipid metabolism-related genes (LMRGs) were sourced from the MigSB database. An intersection was conducted between these datasets to extract gene expression for subsequent differential analysis. Following this, functional analyses were performed on the differentially expressed genes (DEGs). Subsequently, machine learning was applied to identify hub genes associated with lipid metabolism in osteoarthritis. Immune-infiltration analysis was performed using CIBERSORT, and external datasets were employed to validate the expression of these hub genes. RESULTS Nine DEGs associated with lipid metabolism in osteoarthritis were identified. UGCG and ESYT1, which are hub genes involved in lipid metabolism in osteoarthritis, were identified through the utilization of three machine learning algorithms. Analysis of the validation dataset revealed downregulation of UGCG in the experimental group compared to the normal group and upregulation of ESYT1 in the experimental group compared to the normal group. CONCLUSIONS UGCG and ESYT1 were considered as hub LMRGs in the development of osteoarthritis, which were regarded as candidate diagnostic markers. The effects are worth expected in the early diagnosis and treatment of osteoarthritis.
Collapse
Affiliation(s)
- Hang Li
- Wuxi Medical Center, Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, Jiangsu, 214023, China
| | - Yubao Cui
- Clinical Research Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China
| | - Jian Wang
- Wuxi Medical Center, Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, Jiangsu, 214023, China
| | - Wei Zhang
- Wuxi Medical Center, Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, Jiangsu, 214023, China
| | - Yuhao Chen
- Wuxi Medical Center, Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, Jiangsu, 214023, China
| | - Jijun Zhao
- Department of Orthopedic, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, Jiangsu, 214023, China.
| |
Collapse
|
25
|
Neuber J, Lang C, Aurass P, Flieger A. Tools and mechanisms of vacuolar escape leading to host egress in Legionella pneumophila infection: Emphasis on bacterial phospholipases. Mol Microbiol 2024; 121:368-384. [PMID: 37891705 DOI: 10.1111/mmi.15183] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
The phenomenon of host cell escape exhibited by intracellular pathogens is a remarkably versatile occurrence, capable of unfolding through lytic or non-lytic pathways. Among these pathogens, the bacterium Legionella pneumophila stands out, having adopted a diverse spectrum of strategies to disengage from their host cells. A pivotal juncture that predates most of these host cell escape modalities is the initial escape from the intracellular compartment. This critical step is increasingly supported by evidence suggesting the involvement of several secreted pathogen effectors, including lytic proteins. In this intricate landscape, L. pneumophila emerges as a focal point for research, particularly concerning secreted phospholipases. While nestled within its replicative vacuole, the bacterium deftly employs both its type II (Lsp) and type IVB (Dot/Icm) secretion systems to convey phospholipases into either the phagosomal lumen or the host cell cytoplasm. Its repertoire encompasses numerous phospholipases A (PLA), including three enzymes-PlaA, PlaC, and PlaD-bearing the GDSL motif. Additionally, there are 11 patatin-like phospholipases A as well as PlaB. Furthermore, the bacterium harbors three extracellular phospholipases C (PLCs) and one phospholipase D. Within this comprehensive review, we undertake an exploration of the pivotal role played by phospholipases in the broader context of phagosomal and host cell egress. Moreover, we embark on a detailed journey to unravel the established and potential functions of the secreted phospholipases of L. pneumophila in orchestrating this indispensable process.
Collapse
Affiliation(s)
- Jonathan Neuber
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Christina Lang
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Philipp Aurass
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
26
|
English CJ, Jones M, Lohning AE, Mayr HL, MacLaughlin H, Reidlinger DP. Associations between healthy food groups and platelet-activating factor, lipoprotein-associated phospholipase A 2 and C-reactive protein: a cross-sectional study. Eur J Nutr 2024; 63:445-460. [PMID: 38063929 PMCID: PMC10899352 DOI: 10.1007/s00394-023-03277-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/02/2023] [Indexed: 02/28/2024]
Abstract
PURPOSE To investigate the association between pro-inflammatory markers platelet-activating factor (PAF), lipoprotein-associated phospholipase A2 (Lp-PLA2), hsCRP, and intake of core food groups including fruit, cruciferous and other vegetables, grains, meat and poultry, fish and seafood, nuts and legumes, and dairy. METHODS A cross-sectional study was conducted. 100 adults (49 ± 13 years, 31% male) with variable cardiovascular disease risk were recruited. Data were collected in 2021 and 2022. Fasting PAF, Lp-PLA2 activity, hsCRP and usual dietary intake (via a validated food frequency questionnaire) were measured. Intake of foods were converted into serves and classified into food groups. Correlations and multiple regressions were performed with adjustment for confounders. RESULTS A one-serve increase in cruciferous vegetables per day was associated with 20-24% lower PAF levels. An increase of one serve per day of nuts and legumes was associated with 40% lower hsCRP levels. There were small correlations with PAF and Lp-PLA2 and cheese, however, these were not significant at the Bonferroni-adjusted P < 0.005 level. CONCLUSION The lack of associations between PAF and Lp-PLA2 and other healthy foods may be due to confounding by COVID-19 infection and vaccination programs which prevents any firm conclusion on the relationship between PAF, Lp-PLA2 and food groups. Future research should aim to examine the relationship with these novel markers and healthy food groups in a non-pandemic setting.
Collapse
Affiliation(s)
- Carolyn J English
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - Mark Jones
- Faculty of Health Sciences and Medicine, Institute of Evidence-Based Healthcare, Bond University, Robina, QLD, Australia
| | - Anna E Lohning
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - Hannah L Mayr
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
- Department of Nutrition and Dietetics, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- Centre for Functioning and Health Research, Metro South Hospital and Health Service, Brisbane, QLD, Australia
| | - Helen MacLaughlin
- Faculty of Health, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
- Nutrition Research Collaborative, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Dianne P Reidlinger
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia.
| |
Collapse
|
27
|
Jang AY, Rod-in W, Shin IS, Park WJ. Immune Enhancement Effects of Neutral Lipids, Glycolipids, Phospholipids from Halocynthia aurantium Tunic on RAW264.7 Macrophages. J Microbiol Biotechnol 2024; 34:476-483. [PMID: 37942550 PMCID: PMC10940747 DOI: 10.4014/jmb.2307.07003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/05/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Fractionated lipids of Halocynthia aurantium (Pyuridae) have been demonstrated to possess anti-inflammatory properties. However, their modulatory properties have not been reported yet. Thus, the objective of this study was to determine immune enhancing effects of fractionated lipids from H. aurantium tunic on macrophage cells. The tunic of H. aurantium was used to isolate total lipids, which were then subsequently separated into neutral lipids, glycolipids, and phospholipids. RAW264.7 cells were stimulated with different concentrations (0.5, 1.0, 2.0, and 4.0%) of each fractionated lipid. Cytotoxicity, production of NO, expression levels of immune-associated genes, and signaling pathways were then determined. Neutral lipids and glycolipids significantly stimulated NO and PGE2 production and expression levels of IL-1β, IL-6, TNF-α, and COX-2 in a dose-dependent manner, while phospholipids ineffectively induced NO production and mRNA expression. Furthermore, it was found that both neutral lipids and glycolipids increased NF-κB p-65, p38, ERK1/2, and JNK phosphorylation, suggesting that these lipids might enhance immunity by activating NF-κB and MAPK signaling pathways. In addition, H. aurantium lipids-induced TNF-α expression was decreased by blocking MAPK or NF-κB signaling pathways. Phagocytic activity of RAW 264.7 cells was also significantly enhanced by neutral lipids and glycolipids. These results suggest that neutral lipids and glycolipids from H. aurantium tunic have potential as immune-enhancing materials.
Collapse
Affiliation(s)
- A-yeong Jang
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Weerawan Rod-in
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
- Department of Agricultural Science, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok 65000 Thailand
| | - Il-shik Shin
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Woo Jung Park
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| |
Collapse
|
28
|
Luna MA, Girardi VR, Sánchez-Cerviño MC, Rivero G, Falcone RD, Moyano F, Correa NM. PRODAN Photophysics as a Tool to Determine the Bilayer Properties of Different Unilamellar Vesicles Composed of Phospholipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:657-667. [PMID: 38100549 DOI: 10.1021/acs.langmuir.3c02845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Vesicles formed by phospholipids are promising candidates for drug delivery. It is known that the lipid composition affects properties such as the rigidity-fluidity of the membrane and that it influences the bilayer permeability, but sometimes sophisticated techniques are selected to monitor them. In this work, we study the bilayer of different unilamellar vesicles composed of different lipids (1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC, and lecithin) and diverse techniques such as extruder and electrospun templates and using 6-propionyl-2-(N,N-dimethyl) aminonaphthalene (PRODAN) and its photophysics. Moreover, we were able to monitor the influence of cholesterol on the bilayers. We demonstrate that the bilayer properties can be evaluated using the emission feature of the molecular probe PRODAN. This fluorescent probe gives relevant information on the polarity and fluidity of the microenvironment for unilamellar vesicles formed by two different methods. The PRODAN emission at 434 nm suggests that the bilayer properties significantly change if DOPC or lecithin is used in the vesicle preparation especially in their fluidity. Moreover, cholesterol induces alterations in the bilayer's structural and microenvironmental properties to a greater or lesser degree in both vesicles. Thus, we propose an easy and elegant way to evaluate physicochemical properties, which is fundamental for manufacturing vesicles as a drug delivery system, simply by monitoring the molecular probe emission band centered at 434 nm, which corresponds to the PRODAN species deep inside the bilayer.
Collapse
Affiliation(s)
- María A Luna
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS) (CONICET - UNRC), Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal #3 C.P. X5804BYARío Cuarto, Argentina
| | - Valeria R Girardi
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS) (CONICET - UNRC), Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal #3 C.P. X5804BYARío Cuarto, Argentina
| | - María C Sánchez-Cerviño
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA-CONICET), Av. Colón 10850, B7606BWVMar del Plata, Argentina
| | - Guadalupe Rivero
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA-CONICET), Av. Colón 10850, B7606BWVMar del Plata, Argentina
| | - R Dario Falcone
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS) (CONICET - UNRC), Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal #3 C.P. X5804BYARío Cuarto, Argentina
| | - Fernando Moyano
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS) (CONICET - UNRC), Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal #3 C.P. X5804BYARío Cuarto, Argentina
| | - N Mariano Correa
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS) (CONICET - UNRC), Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal #3 C.P. X5804BYARío Cuarto, Argentina
| |
Collapse
|
29
|
Heyen S, Schneider V, Hüppe L, Meyer B, Wilkes H. Variations of intact phospholipid compositions in the digestive system of Antarctic krill, Euphausia superba, between summer and autumn. PLoS One 2023; 18:e0295677. [PMID: 38157351 PMCID: PMC10756546 DOI: 10.1371/journal.pone.0295677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
The biochemical composition of Antarctic krill, Euphausia superba, is largely determined by their feeding behaviour. As they supply energy for animals of a higher trophic level and are also commercialized for human consumption, the interest in research on the species is high. Lipids, especially phospholipids, make up a high proportion of dry weight in krill. Seasonal changes are well documented in the fingerprint of free fatty acids analysed after hydrolysis of phospholipids, but the underlying intact polar lipids are rarely considered. In this study, we evaluated the compositions of intact phospholipids (IPLs) in the stomach, digestive gland and hind gut of Antarctic krill caught in summer and autumn at the Antarctic Peninsula region. Using high-resolution mass spectrometry, the fatty acid composition of 179 intact phospholipids could be resolved. Most IPLs were phosphatidylcholines, followed by phosphatidylethanolamines. Several very long chain polyunsaturated fatty acids up to 38:8, which have not been reported in krill before, were identified. The composition shifted to higher molecular weight IPLs with a higher degree of unsaturation for summer samples, especially for samples of the digestive gland. The data supplied in this paper provides new insights into lipid dynamics between summer and autumn usually described by free fatty acid biomarkers.
Collapse
Affiliation(s)
- Simone Heyen
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Vivien Schneider
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Lukas Hüppe
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Bettina Meyer
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Marine Functional Biodiversity (HIFMB), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Heinz Wilkes
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
30
|
Cai J, Cui J, Wang L. S-palmitoylation regulates innate immune signaling pathways: molecular mechanisms and targeted therapies. Eur J Immunol 2023; 53:e2350476. [PMID: 37369620 DOI: 10.1002/eji.202350476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/10/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
S-palmitoylation is a reversible posttranslational lipid modification that targets cysteine residues of proteins and plays critical roles in regulating the biological processes of substrate proteins. The innate immune system serves as the first line of defense against pathogenic invaders and participates in the maintenance of tissue homeostasis. Emerging studies have uncovered the functions of S-palmitoylation in modulating innate immune responses. In this review, we focus on the reversible palmitoylation of innate immune signaling proteins, with particular emphasis on its roles in the regulation of protein localization, protein stability, and protein-protein interactions. We also highlight the potential and challenge of developing therapies that target S-palmitoylation or de-palmitoylation for various diseases.
Collapse
Affiliation(s)
- Jing Cai
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liqiu Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Wee W, Téllez-Isaías G, Abdul Kari Z, Cheadoloh R, Kabir MA, Mat K, Mohamad Sukri SA, Rahman MM, Rusli ND, Wei LS. The roles of soybean lecithin in aquafeed: a crucial need and update. Front Vet Sci 2023; 10:1188659. [PMID: 37795018 PMCID: PMC10546944 DOI: 10.3389/fvets.2023.1188659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Soybean lecithin is extensively used as the dietary supplementation of phospholipids in animal production. Soybean lecithin plays significant roles in aquafeed as growth promoter, feed enhancer, immunity modulator and antioxidant activity stimulator for aquaculture species. Besides, soybean lecithin is also reported to help aquaculture species being resilient to physical and chemical stressors. In this review, common sources, chemical structure and mode of action of lecithin, with highlight on soybean lecithin application in aquaculture over four-decadal studies published between 1983 and 2023, were evaluated and summarized. By far, soybean lecithin is best-known for its beneficial effects, availability yet cost-effective for aquafeed formulation. Findings from this review also demonstrate that although nutritional profile of long-chain polyunsaturated fatty acids and phosphatidylcholine from egg yolk and marine sources are superior to those from plant sources such as soybean, it is rather costly for sustainable application in aquafeed formulation. Moreover, commercially available products that incorporate soybean lecithin with other feed additives are promising to boost aquaculture production. Overall, effects of soybean lecithin supplementation are well-recognized on larval and juvenile of aquaculture species which having limited ability to biosynthesis phospholipids de novo, and correspondingly attribute to phospholipid, a primary component of soybean lecithin, that is essential for rapid growth during early stages development. In addition, soybean lecithin supplementation plays a distinguish role in stimulating maturation of gonadal development in the adults, especially for crustaceans.
Collapse
Affiliation(s)
- Wendy Wee
- Center of Fundamental and Continuing Education, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | | | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
| | - Romalee Cheadoloh
- Faculty of Science Technology and Agriculture, Yala Rajabhat University, Yala, Thailand
| | | | - Khairiyah Mat
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
| | - Suniza Anis Mohamad Sukri
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
| | - Mohammad Mijanur Rahman
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
| | - Nor Dini Rusli
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
| | - Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
| |
Collapse
|
32
|
English CJ, Lohning AE, Mayr HL, Jones M, MacLaughlin H, Reidlinger DP. The association between dietary quality scores with C-reactive protein and novel biomarkers of inflammation platelet-activating factor and lipoprotein-associated phospholipase A2: a cross-sectional study. Nutr Metab (Lond) 2023; 20:38. [PMID: 37700354 PMCID: PMC10496320 DOI: 10.1186/s12986-023-00756-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
Healthy dietary patterns are associated with lower inflammation and cardiovascular disease (CVD) risk and adherence can be measured using diet quality scores. Inflammation is traditionally measured with C-reactive protein (hsCRP), however there is interest in novel pro-inflammatory markers platelet-activating factor (PAF) and lipoprotein-associated phospholipase A2 (Lp-PLA2) that are specifically involved in endothelial dysfunction and inflammation. This cross-sectional study investigated the association between PAF, Lp-PLA2, hsCRP, and six diet scores. One hundred adults (49 ± 13 years, 31% male) with variable CVD risk were recruited. Fasting PAF, Lp-PLA2 and hsCRP and usual dietary intake were measured. Adherence to Dietary Approaches to Stop Hypertension (DASH), Dairy-adjusted DASH, Vegetarian Lifestyle Index, Healthy Eating Index for Australians (HEIFA), Mediterranean Diet Adherence Screener (MEDAS) and PREDIMED-Plus (erMedDiet) scores were calculated. Correlations and multiple regressions were performed. hsCRP, but not PAF, independently correlated with several diet scores. Lp-PLA2 independently correlated with Vegetarian Lifestyle Index only in unadjusted models. A one-point increase in adherence to the DASH Index, the Dairy-adjusted DASH Index and the Vegetarian Lifestyle Index was associated with a 30%, 30%, and 33% reduction in hsCRP levels, respectively. Smaller effects were seen with the other diet scores with a one-point increase in adherence resulting in a 19%, 22% and 16% reduction in hsCRP with HEIFA, MEDAS, erMedDiet scores, respectively. The lack of stronger associations between the novel markers of inflammation and diet scores may be due to confounding by COVID-19 infection and vaccination programs, which prevents any firm conclusion on the relationship between PAF, Lp-PLA2 and healthy dietary patterns. Future research should aim to examine the relationship with these novel markers and healthy dietary patterns in a non-pandemic setting.
Collapse
Affiliation(s)
- Carolyn J English
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - Anna E Lohning
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - Hannah L Mayr
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
- Department of Nutrition and Dietetics, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- Centre for Functioning and Health Research, Metro South Hospital and Health Service, Brisbane, QLD, Australia
| | - Mark Jones
- Faculty of Health Sciences and Medicine, Institute of Evidence-Based Healthcare, Bond University, Robina, QLD, Australia
| | - Helen MacLaughlin
- Faculty of Health, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
- Nutrition Research Collaborative, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Dianne P Reidlinger
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia.
| |
Collapse
|
33
|
Mataramvura H, Bunders MJ, Duri K. Human immunodeficiency virus and antiretroviral therapy-mediated immune cell metabolic dysregulation in children born to HIV-infected women: potential clinical implications. Front Immunol 2023; 14:1182217. [PMID: 37350953 PMCID: PMC10282157 DOI: 10.3389/fimmu.2023.1182217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
Commencing lifelong antiretroviral therapy (ART) immediately following HIV diagnosis (Option B+) has dramatically improved the health of HIV-infected women and their children, with the majority being of HIV-exposed children born uninfected (HEU). This success has led to an increasing population of HIV-infected women receiving ART during pregnancy and children exposed to ART in utero. Nonetheless, a small proportion of children are still infected with HIV (HEI) each year. HEI children suffer from reduced immunocompetence and host-defence, due to CD4+ T lymphocyte depletion, but also dysregulation of other immune cells including CD8+ T lymphocytes, natural killer (NK) cells, macrophages including B lymphocytes. Furthermore, although HEU children are uninfected, altered immune responses are observed and associated with increased vulnerability to infections. The mechanisms underlying immune dysregulation in HEU children remain poorly described. Building on early studies, emerging data suggests that HIV/ART exposure early in life affects cell metabolic function of HEU children. Prenatal HIV/ART exposure has been associated with dysregulation of mitochondria, including impaired DNA polymerase activity. Furthermore, dysregulation of oxidative phosphorylation (OXPHOS) causes a decreased generation of adenosine triphosphate (ATP) and increased production of reactive oxygen species (ROS), resulting in oxidative stress. These altered metabolic processes can affect immune cell viability and immune responses. Recent studies have indicated that immune-metabolic dysregulation may contribute to HIV-associated pathogenesis and clinical observations associated with HIV and ART exposure in HEU/HEI children. Given the critical role metabolic processes in immune cell functioning, immune-metabolic dysregulation in HEU and HEI children may have implications in effective host-defence responses against pathogens, as well as efficacy of standard ART regimens and future novel HIV cure approaches in HEI children. At the same time, targeting metabolic pathways of immune cells may provide safer and novel approaches for HIV cure strategies. Here, we review the current literature investigating immune-metabolic dysregulation in paediatric HIV pathogenesis.
Collapse
Affiliation(s)
- Hope Mataramvura
- Immunology Unit, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| | - Madeleine J. Bunders
- III. Medical Department, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Kerina Duri
- Immunology Unit, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| |
Collapse
|
34
|
Pawar A, Zabetakis I, Gavankar T, Lordan R. Milk polar lipids: Untapped potential for pharmaceuticals and nutraceuticals. PHARMANUTRITION 2023. [DOI: 10.1016/j.phanu.2023.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
35
|
Chun CKY, Roth M, Welti R, Richards MP, Hsu WW, O'Quinn T, Chao MD. Exploring the potential effect of phospholipase A2 antibody to extend beef shelf-life in a beef liposome model system. Meat Sci 2023; 198:109091. [PMID: 36587462 DOI: 10.1016/j.meatsci.2022.109091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
The objective of this study was to elucidate the effect of phospholipase A2 (PLA2) and a PLA2 antibody (aPLA2) on phospholipid (PL) hydrolysis in beef and to understand how the altered PL composition may affect lipid oxidation and antioxidant capacity of beef in an in vitro system. Various combinations of PLA2 and aPLA2 were introduced to a beef liposome model system and exposed to a retail display. The PL and free fatty acid (FFA) profiles, antioxidant capacity and lipid oxidation were measured for the liposome system. Key PL classes were reduced and the release of polyunsaturated FFAs was increased with the inclusion of PLA2 in the treatments (P < 0.05). There was no inhibition of PL hydrolysis with the addition of aPLA2. PLA2 showed strong antioxidant capacity in the liposome system (P < 0.01), but lipid oxidation still increased in samples treated with PLA2 throughout the retail display (P < 0.01). Finally, aPLA2 treatments demonstrated potential to decrease lipid oxidation (P < 0.01).
Collapse
Affiliation(s)
- Colin K Y Chun
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, Kansas 66506, USA
| | - Mary Roth
- Kansas State University, Division of Biology, Manhattan, Kansas, 66506, USA
| | - Ruth Welti
- Kansas State University, Division of Biology, Manhattan, Kansas, 66506, USA
| | - Mark P Richards
- University of Wisconsin Madison, Animal and Dairy Sciences, Madison, WI 53706-1205, USA
| | - Wei-Wen Hsu
- University of Cincinnati, Environmental and Public Health Sciences, Cincinnati, OH 45267, USA
| | - Travis O'Quinn
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, Kansas 66506, USA
| | - Michael D Chao
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, Kansas 66506, USA.
| |
Collapse
|
36
|
Hassane Hamadou A, Zhang J, Chen C, Xu J, Xu B. Vitamin C and β-carotene co-loaded in marine and egg nanoliposomes. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Yin M, Chen M, Matsuoka R, Song X, Xi Y, Zhang L, Wang X. UHPLC-Q-Exactive Orbitrap MS/MS based untargeted lipidomics reveals fatty acids and lipids profiles in different parts of capelin (Mallotus villosus). J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.105096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Santos-Luna D, Sixto-López Y, Bravo-Alfaro D, Cano-Sarmiento C, García H, Correa-Basurto J. Design and simulation of a caprylic acid enzymatically modified phosphatidylcholine micelle using a coarse-grained molecular dynamics simulations approach. J Biomol Struct Dyn 2023; 41:13902-13913. [PMID: 36826442 DOI: 10.1080/07391102.2023.2180434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023]
Abstract
Computationally simulated micelle models provide useful structural information on the molecular and biological sciences. One strategy to study the self-aggregation process of surfactant molecules that make up a micelle is through molecular dynamics (MD) simulations. In this study, a theoretical approach with a coarse-grained MD simulation (CG-MD) was employed to evaluate the critical micellar concentration (CMC), the micellization process, building a tridimensional (3D) model system of a micelle using data from the experimentally enzymatically modified phospholipids (PL) by phospholipase A1 (PA1). This required enzymatic interesterification of soybean phosphatidylcholine (PC) with caprylic acid, along with purification and characterization by chromatographic techniques to measure the esterified fatty acids and the corresponding PL composition. The number of molecules used in the CG-MD simulation system was determined from the experimental CMC data which was 0.025%. The molecular composition of the system is: 1 C 18:2, 2 C 8:0/8:0, 3 C 8:0/18:3n-9, 4 C 8:0/18:0, 5 C8:0/18:2n-6, 6 C8:0/18:1n-9, and 7 C 8:0/16:0. According to our theoretical results, the micelle model is structurally stable with an average Rg of 3.64 ± 0.10 Å, and might have an elliptical form with a radius of 24.6 Å. Regarding CMC value there was a relationship between the experimental data of the modified PLs and the theoretical analysis by GC-MD, which suggest that the enzymatic modification of PLs does not affect their self-aggregation properties. Finally, the micellar system obtained in the current research can be used as a simple and useful model to design optimal biocompatible nanoemulsions as possible vehicles for bioactive small molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dalia Santos-Luna
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/IT de Veracruz, Veracruz, México
| | - Yudibeth Sixto-López
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, Granada, Spain
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation) SEPI-ESM, Instituto Politécnico Nacional, México, Mexico City, Mexico
| | - Diego Bravo-Alfaro
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/IT de Veracruz, Veracruz, México
| | - Cynthia Cano-Sarmiento
- CONACyT-Unidad de Investigación y Desarrollo de Alimentos, Tecnologico Nacional de México/IT de Veracruz, Veracruz, México
| | - Hugo García
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/IT de Veracruz, Veracruz, México
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation) SEPI-ESM, Instituto Politécnico Nacional, México, Mexico City, Mexico
| |
Collapse
|
39
|
Ferrer-Ledo N, Stegemüller L, Janssen M, Wijffels RH, Barbosa MJ. Growth and fatty acid distribution over lipid classes in Nannochloropsis oceanica acclimated to different temperatures. FRONTIERS IN PLANT SCIENCE 2023; 14:1078998. [PMID: 36844089 PMCID: PMC9950407 DOI: 10.3389/fpls.2023.1078998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
After light, temperature is the most relevant environmental parameter in outdoors cultivation of microalgae. Suboptimal and supraoptimal temperatures negatively impact growth and photosynthetic performance with a subsequent effect on lipid accumulation. It is generally recognised that lower temperatures trigger an increase in fatty acid desaturation while higher temperatures trigger the opposite reaction. The effect of temperature on lipid classes has been less studied in microalgae and in certain cases, the effect of light cannot be completely excluded. In this research, the effect of temperature on growth, photosynthesis, and lipid class accumulation in Nannochloropsis oceanica was studied at a fixed light gradient with a constant incident light intensity (670 μmol m-2 s-1). A turbidostat approach was used to achieve temperature acclimated cultures of Nannochloropsis oceanica. Optimal growth was found at 25-29°C, while growth was completely arrested at temperatures higher than 31°C and lower than 9°C. Acclimation to low temperatures triggered a decrease in absorption cross section and photosynthesis rates with a tipping point at 17°C. Reduced light absorption was correlated with a decrease in content of the plastid lipids monogalactosyldiacylglycerol and sulfoquinovosyldiacylglycerol. The increase of diacylglyceryltrimethylhomo-serine content at lower temperatures indicated a relevant role of this lipid class in temperature tolerance. Triacylglycerol content increased at 17°C and decreased at 9°C emphasising a metabolic switch in stress response. Total and polar eicosapentaenoic acid content remained constant at 3.5 and 2.4% w/w, despite the fluctuating lipid contents. Results show an extensive mobilisation of eicosapentaenoic acid between polar lipids classes at 9°C to ensure cell survival under critical conditions.
Collapse
Affiliation(s)
- Narcís Ferrer-Ledo
- Bioprocess Engineering, Wageningen University and Research, Wageningen, Netherlands
| | - Lars Stegemüller
- Bioprocess Engineering, Wageningen University and Research, Wageningen, Netherlands
| | - Marcel Janssen
- Bioprocess Engineering, Wageningen University and Research, Wageningen, Netherlands
| | - René H. Wijffels
- Bioprocess Engineering, Wageningen University and Research, Wageningen, Netherlands
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Maria J. Barbosa
- Bioprocess Engineering, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
40
|
Lordan R, Blesso CN. Editorial: Phospholipids and sphingolipids in nutrition, metabolism, and health. Front Nutr 2023; 10:1153138. [PMID: 36824179 PMCID: PMC9941691 DOI: 10.3389/fnut.2023.1153138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Affiliation(s)
- Ronan Lordan
- Perelman School of Medicine, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,*Correspondence: Ronan Lordan ✉
| | - Christopher N. Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
41
|
Ge L, Yang H, Lu W, Cui Y, Jian S, Song G, Xue J, He X, Wang Q, Shen Q. Identification and comparison of palmitoleic acid (C16:1 n-7)-derived lipids in marine fish by-products by UHPLC-Q-exactive orbitrap mass spectrometry. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Choi GS, Lim JH, Rod-In W, Jung SK, Park WJ. Anti-inflammatory properties of neutral lipids, glycolipids, and phospholipids isolated from Ammodytes personatus eggs in LPS-stimulated RAW264.7 cells. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1109-1117. [PMID: 36283595 DOI: 10.1016/j.fsi.2022.10.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
In the present study, total lipids were extracted from Ammodytes personatus eggs and separated into neutral lipids, glycolipids, and phospholipids. The anti-inflammatory activity of the neutral lipids, glycolipids, and phospholipids was investigated in macrophages, as well as the fatty acid profiles of the lipids. Palmitic acid, oleic acid, docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) were the primary fatty acids in the three fractionated lipids. Among the lipids, the phospholipids contained the highest concentration of polyunsaturated fatty acids (PUFAs), particularly DHA and EPA (31.89 and 16.93% of the total fatty acids, respectively). The anti-inflammatory effects of the three lipids isolated from A. personatus eggs were analyzed in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The three lipids significantly reduced nitric oxide (NO) production and the mRNA expression of immune-associated genes in a dose-dependent manner. All lipids down-regulated the protein expression of phosphorylated NF-κB-p65 and MAPK (p38, JNK, and ERK1/2) signaling pathways, suggesting that they could inhibit cell signaling pathways by activating NF-κB and MAPK. The expression of CD40 and CD86 in LPS-stimulated RAW264.7 cells was also significantly decreased by A. personatus lipids. Consequently, the neutral lipids, glycolipids, and phospholipids from A. personatus eggs could serve as anti-inflammatory agents.
Collapse
Affiliation(s)
- Gyoung Su Choi
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea
| | - Jun Hyeok Lim
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea
| | - Weerawan Rod-In
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea
| | - Seok Kyu Jung
- Department of Horticultural Science, Kongju National University, Yesan-gun, Chungcheonnam-do, 32439, South Korea
| | - Woo Jung Park
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea; Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea.
| |
Collapse
|
43
|
Pascual-Silva C, Alemán A, López-Caballero ME, Montero MP, Gómez-Guillén MDC. Physical and Oxidative Water-in-Oil Emulsion Stability by the Addition of Liposomes from Shrimp Waste Oil with Antioxidant and Anti-Inflammatory Properties. Antioxidants (Basel) 2022; 11:2236. [PMID: 36421422 PMCID: PMC9686809 DOI: 10.3390/antiox11112236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 08/05/2023] Open
Abstract
Liposomes made of partially purified phospholipids (PL) from Argentine red shrimp waste oil were loaded with two antioxidant lipid co-extracts (hexane-soluble, Hx and acetone-soluble, Ac) to provide a higher content of omega-3 fatty acids. The physical properties of the liposomes were characterized by Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS) and Differential Scanning Calorimetry (DSC). The antioxidant and anti-inflammatory activity of the lipid extracts and liposomal suspensions were evaluated in terms of Superoxide and ABTS radical scavenging capacities and TNF-α inhibition. Uni-lamellar spherical liposomes (z-average ≈ 145 nm) with strong negative ζ potential (≈ -67 mV) were obtained in all cases. The high content of neutral lipids in the Hx extract caused structural changes in the bilayer membrane and decreased entrapment efficiency regarding astaxanthin and EPA + DHA contents. The liposomes loaded with the Hx/Ac extracts showed higher antioxidant and anti-inflammatory activity compared with empty liposomes. The liposomal dispersions improved the physical and oxidative stability of water-in-oil emulsions as compared with the PL extract, inducing pronounced close packing of water droplets. The liposomes decreased hydroperoxide formation in freshly made emulsions and prevented thio-barbituric acid-reactive substances (TBARS) accumulation during chilled storage. Liposomes from shrimp waste could be valuable nanocarriers and stabilizers in functional food emulsions.
Collapse
|
44
|
Huang YJ, Tu WC, Urban PL. Rapid Acid/Base Switching in Flow Injection Analysis and Isocratic Elution Liquid Chromatography with Mass Spectrometric Detection for Improved Sensitivity. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1865-1873. [PMID: 36129040 DOI: 10.1021/jasms.2c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ion signals in electrospray ionization (ESI) mass spectrometry (MS) are affected by addition of acid or base. Acids or bases are typically added to samples to enhance detection of analytes in positive- or negative-ion mode, respectively. To carry out simultaneous monitoring of analytes with different ionogenic moieties by ESI-MS, a rapid acid/base switching system was developed. The system was further coupled with flow injection analysis (FIA) and liquid chromatography (LC) MS. The two variants enable detection of separated analytes immediately after alternating addition of acid and base. The methods were tested using a set of phospholipids (PLs) as analytes. The rapid acid/base switching enhanced signals of some of the PL analytes in both ion modes of MS. Both FIA-MS and LC-MS with acid/base switching show signal enhancements (∼1.3-23.2 times) of some analyte signals when compared with analysis conducted without acid/base switching. The proposed methods are suitable for simultaneous analysis of cationic and anionic analytes. The FIA-MS and LC-MS methods with acid/base switching were also applied in analysis of lipid extract from real samples (sausage and porcine liver). However, the FIA-MS results were affected by ionization competition and isobaric interference due to the complexity of the sample matrix and diversity of PL species. In contrast, the LC-MS mode provides adequate selectivity to observe signal enhancement for specific analyte ions. Overall, alternating addition of acid and base immediately before the ESI source can improve analytical performance without the need to carry out separate analyses targeting different types of analytes.
Collapse
Affiliation(s)
- Yu-Jie Huang
- Department of Chemistry, National Tsing Hua University 101, Section 2, Kuang-Fu Rd, Hsinchu 300044, Taiwan
| | - Wei-Chien Tu
- Department of Chemistry, National Tsing Hua University 101, Section 2, Kuang-Fu Rd, Hsinchu 300044, Taiwan
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University 101, Section 2, Kuang-Fu Rd, Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University 101, Section 2, Kuang-Fu Rd, Hsinchu 300044, Taiwan
| |
Collapse
|
45
|
Hong ES, Kim JH, So HJ, Park EA, Park YL, Lee JH, Shin JA, Lee KT. Compositional Study of Phospholipids from the Dried Big Head and Opossum Shrimp, Mussel, and Sea Cucumber Using 31P NMR Spectroscopy: Content and Fatty Acid Composition of Plasmalogen. Molecules 2022; 27:molecules27196250. [PMID: 36234786 PMCID: PMC9571261 DOI: 10.3390/molecules27196250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 12/03/2022] Open
Abstract
Herein, we present a qualitative and quantitative analysis of the compositions of plasmalogens and phospholipids (PLs) in dried big head shrimp (Solenocera melantho), opossum shrimp (Neomysis awatschensis), mussel (Mytilus galloprovincialis), and sea cucumber (Apostichopus japonicus). We also analyze the fatty acid composition of the extracted lipids, phosphatidyl choline (PtdCho), and plasmalogen choline (PlsCho) from each sample. In big head shrimp, opossum shrimp, and mussel, phosphatidyl choline (PtdCho) was the most abundant PL at 1677.9, 1603, and 1661.6 mg/100 g of dried sample, respectively, whereas the most abundant PL in sea cucumber was PlsCho (206.9 mg/100 g of dried sample). In all four samples, plasmalogen ethanolamine (PlsEtn) was higher than phosphatidyl ethanolamine (PtdEtn). The content (mg/100 g of dried sample) of PlsCho was highest in mussel (379.0), and it was higher in big head shrimp (262.3) and opossum shrimp (245.6) than sea cucumber (206.9). The contents (mg/100 g of dried sample) of PlsEtn were in the order of mussel (675.4) > big head shrimp (629.5) > opossum shrimp (217.9) > sea cucumber (51.5). For analyzing the fatty acids at the sn-2 position of PlsCho, the consecutive treatment with phospholipase A1, solid phase extraction, thin-layer chromatography (TLC), and GC-FID were applied. The most abundant fatty acid was eicosapentaenoic acid (EPA, C20:5, n-3) in big head shrimp and sea cucumber, palmitoleic acid (C16:1, n-7) in opossum shrimp, and docosadienoic acid (C22:2, n-6) in mussel.
Collapse
Affiliation(s)
- Eun-Sik Hong
- Department of Food Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Chungcheongnam-do, Korea
- Solus Biotech, 10 Suji-ro, Suji-gu, Yongin 16858, Gyeonggi-do, Korea
| | - Ji-Hyun Kim
- Department of Food Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Chungcheongnam-do, Korea
| | - Hee-Jin So
- Department of Food Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Chungcheongnam-do, Korea
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Eun-Ah Park
- Department of Food Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Chungcheongnam-do, Korea
| | - Ye-Lim Park
- Department of Food Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Chungcheongnam-do, Korea
| | - Jeung-Hee Lee
- Department of Food and Nutrition, Daegu University, 201 Daegudae-ro, Gyeonsan-si 38453, Gyeongsangbuk-do, Korea
| | - Jung-Ah Shin
- Department of Food Processing and Distribution, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung 25457, Gangwon-do, Korea
| | - Ki-Teak Lee
- Department of Food Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Chungcheongnam-do, Korea
- Correspondence: ; Tel.: +82-042-821-6729
| |
Collapse
|
46
|
Szczepańska P, Rychlicka M, Moroz P, Janek T, Gliszczyńska A, Lazar Z. Elevating Phospholipids Production Yarrowia lipolytica from Crude Glycerol. Int J Mol Sci 2022; 23:ijms231810737. [PMID: 36142650 PMCID: PMC9505966 DOI: 10.3390/ijms231810737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022] Open
Abstract
Phospholipids (PLs) are a class of lipids with many proven biological functions. They are commonly used in lipid replacement therapy to enrich cell membranes damaged in chronic neurodegenerative diseases, cancer, or aging processes. Due to their amphipathic nature, PLs have been widely used in food, cosmetic, and pharmaceutical products as natural emulsifiers and components of liposomes. In Yarrowia lipolytica, PLs are synthesized through a similar pathway like in higher eukaryotes. However, PL biosynthesis in this yeast is still poorly understood. The key intermediate in this pathway is phosphatidic acid, which in Y. lipolytica is mostly directed to the production of triacylglycerols and, in a lower amount, to PL. This study aimed to deliver a strain with improved PL production, with a particular emphasis on increased biosynthesis of phosphatidylcholine (PC). Several genetic modifications were performed: overexpression of genes from PL biosynthesis pathways as well as the deletion of genes responsible for PL degradation. The best performing strain (overexpressing CDP-diacylglycerol synthase (CDS) and phospholipid methyltransferase (OPI3)) reached 360% of PL improvement compared to the wild-type strain in glucose-based medium. With the substitution of glucose by glycerol, a preferred carbon source by Y. lipolytica, an almost 280% improvement of PL was obtained by transformant overexpressing CDS, OPI3, diacylglycerol kinase (DGK1), and glycerol kinase (GUT1) in comparison to the wild-type strain. To further increase the amount of PL, the optimization of culture conditions, followed by the upscaling to a 2 L bioreactor, were performed. Crude glycerol, being a cheap and renewable substrate, was used to reduce the costs of PL production. In this process 653.7 mg/L of PL, including 352.6 mg/L of PC, was obtained. This study proved that Y. lipolytica is an excellent potential producer of phospholipids, especially from waste substrates.
Collapse
Affiliation(s)
- Patrycja Szczepańska
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37, 51-630 Wroclaw, Poland
| | - Magdalena Rychlicka
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37, 51-630 Wroclaw, Poland
| | - Paweł Moroz
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37, 51-630 Wroclaw, Poland
| | - Tomasz Janek
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37, 51-630 Wroclaw, Poland
| | - Anna Gliszczyńska
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37, 51-630 Wroclaw, Poland
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37, 51-630 Wroclaw, Poland
- Correspondence:
| |
Collapse
|
47
|
Lu Z, Yao C, Tan B, Dong X, Yang Q, Liu H, Zhang S, Chi S. Effects of Lysophospholipid Supplementation in Feed with Low Protein or Lipid on Growth Performance, Lipid Metabolism, and Intestinal Flora of Largemouth Bass ( Micropterus salmoides). AQUACULTURE NUTRITION 2022; 2022:4347466. [PMID: 36860448 PMCID: PMC9973218 DOI: 10.1155/2022/4347466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/18/2022] [Accepted: 08/18/2022] [Indexed: 05/13/2023]
Abstract
The largemouth bass (Micropterus salmoides) were fed diets with three experimental feeds, a control diet (Control, crude protein (CP): 54.52%, crude lipid (CL): 11.45%), a low-protein diet with lysophospholipid (LP-Ly, CP: 52.46%, CL: 11.36%), and a low-lipid diet with lysophospholipid (LL-Ly, CP: 54.43%, CL: 10.19%), respectively. The LP-Ly and LL-Ly groups represented the addition of 1 g/kg of lysophospholipids in the low-protein and low-lipid groups, respectively. After a 64-day feeding trial, the experimental results showed that the growth performance, hepatosomatic index, and viscerosomatic index of largemouth bass in both the LP-Ly and LL-Ly groups were not significantly different compared to those in the Control group (P > 0.05). The condition factor and CP content of whole fish were significantly higher in the LP-Ly group than those in the Control group (P < 0.05). Compared with the Control group, the serum total cholesterol level and alanine aminotransferase enzyme activity were significantly lower in both the LP-Ly group and the LL-Ly group (P < 0.05). The protease and lipase activities in the liver and intestine of both group LL-Ly and group LP-Ly were significantly higher than those of the Control group (P < 0.05). Compared to both the LL-Ly group and the LP-Ly group, significantly lower liver enzyme activities and gene expression of fatty acid synthase, hormone-sensitive lipase, and carnitine palmitoyltransferase 1 were found in the Control group (P < 0.05). The addition of lysophospholipids increased the abundance of beneficial bacteria (Cetobacterium and Acinetobacter) and decreased the abundance of harmful bacteria (Mycoplasma) in the intestinal flora. In conclusion, the supplementation of lysophospholipids in low-protein or low-lipid diets had no negative effect on the growth performance of largemouth bass, but increased the activity of intestinal digestive enzymes, enhanced the hepatic lipid metabolism, promoted the protein deposition, and regulated the structure and diversity of the intestinal flora.
Collapse
Affiliation(s)
- Ziye Lu
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Chunfeng Yao
- Guangdong Yuehai Feed Group Co., Ltd., Zhanjiang, Guangdong, China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Xiaohui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Qihui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Shuang Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Shuyan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| |
Collapse
|
48
|
Gaspar L, Ricardo F, Melo T, Domingues P, Domingues MR, Calado R, Rey F. Lipidomics of common octopus' (Octopus vulgaris) tentacle muscle using untargeted high-resolution liquid chromatography-mass spectrometry. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Jalali-Jivan M, Rostamabadi H, Assadpour E, Tomas M, Capanoglu E, Alizadeh-Sani M, Kharazmi MS, Jafari SM. Recent progresses in the delivery of β-carotene: From nano/microencapsulation to bioaccessibility. Adv Colloid Interface Sci 2022; 307:102750. [PMID: 35987014 DOI: 10.1016/j.cis.2022.102750] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Beta-carotene (BC) as an efficient pro-vitamin is effective in improving vision, immune system and cognitive function as well as preventing coronary diseases and cancer. However, besides its poor chemical stability, the high lipophilic nature of BC reduces its dispersibility and consequently bioavailability which limits its application into food, pharmaceutical and nutraceuticals. Different carriers with vesicular or particulate structures have been studied and utilized for promoting BC solubility, dispersibility, and protection against diverse operational or environmental stresses and also controlling BC release and subsequent bioaccessibility. The current study, therefore reviews different micro/nanocarriers reported on BC encapsulation with special focusing on its bioavailability. Liposomal structures have been successfully used for enhancing BC stability and bioavailability. Besides, emulsion-based carriers including Pickering emulsions, nanoemulsions and microemulsions have been widely evaluated for BC encapsulation and protection. In addition, lipid-based nanoparticles and nanostructural carriers have also been applied successfully for this context. Moreover, gel structures including emulgels, hydrogels and oleogels are studied in some researches. Most of these delivery systems led to higher hydro-solubility and dispersibility of BC which consequently increased its bioavailability; thereupon could promote its application into food, cosmetic and nutraceutical products. However, for remarkable incorporation of BC and other bioactive compounds into edible products, the safety and toxicological aspects of these delivery system especially those designed in nano scale should be addressed in the further researches.
Collapse
Affiliation(s)
- Mehdi Jalali-Jivan
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Elham Assadpour
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - Merve Tomas
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, 34303, Halkali, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Mahmood Alizadeh-Sani
- Division of Food Safety and Hygiene, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
50
|
Zhao GH, Hu YY, Zeng X, Zhang M, Zhou Z, Qin L, Yin FW, Zhou DY, Shahidi F. sA direct and facile simultaneous quantification of non-polar and polar lipids in different species of marine samples using normal-phase HPLC–CAD. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|