1
|
Wu Y, Zhu BT. Role of protein disulfide isomerase in mediating sulfasalazine-induced ferroptosis in HT22 cells: The PDI-NOS-NO-ROS/lipid-ROS cascade. Arch Biochem Biophys 2025; 768:110366. [PMID: 40023379 DOI: 10.1016/j.abb.2025.110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Ferroptosis is a form of regulated cell death resulting from excessive lipid peroxidation. Sulfasalazine (SAS), an anti-inflammatory drug, can induce ferroptosis through inhibiting the system Xc- and triggering glutathione depletion. SAS has attracted considerable interest in recent years because of its potential for repurposing as an anticancer agent. Our recent studies have shown that protein disulfide isomerase (PDI) is an upstream mediator of chemically-induced ferroptosis through catalyzing the dimerization of nitric oxide synthase (NOS) and NO accumulation in cultured HT22 hippocampal neuronal cells. The present study aims to investigate SAS-induced ferroptotic cell death in HT22 cells with a focus on determining the role of PDI in mediating SAS-induced ferroptosis. We find that SAS induces ferroptotic cell death in HT22 cells, which is accompanied by a time-dependent sequential increase in the accumulation of cellular NO, ROS and lipid-ROS. We find that treatment of HT22 cells with SAS activates PDI-mediated iNOS activation (dimerization) and NO accumulation. In addition, SAS also strongly upregulates iNOS protein levels in HT22 cells. PDI knockdown or pharmacological inhibition of PDI's activity each suppresses SAS-induced iNOS dimerization, which is associated with abrogation of SAS-induced accumulation of NO, ROS and lipid-ROS, and a strong protection against ferroptotic cell death. On the other hand, PDI activation through the use of a TrxR1 inhibitor can strongly sensitize cells to SAS-induced ferroptosis. Together, these experimental observations demonstrate a crucial role of PDI in SAS-induced ferroptosis in a cell culture model through the activation of the PDI → NOS → NO → ROS/lipid-ROS pathway. Insights gained from this study also provide effective strategies to selectively sensitizing human cancer cells to SAS-induced ferroptosis, such as through the use of NO-releasing agents or TrxR1 inhibitors.
Collapse
Affiliation(s)
- Yufei Wu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China; Shenzhen Bay Laboratory, Shenzhen, 518172, China.
| |
Collapse
|
2
|
Gouda AR, El-Bassiouny NA, Salahuddin A, Hamouda EH, Kassem AB. Repurposing of high-dose N-acetylcysteine as anti-inflammatory, antioxidant and neuroprotective agent in moderate to severe traumatic brain injury patients: a randomized controlled trial. Inflammopharmacology 2025:10.1007/s10787-025-01706-0. [PMID: 40205270 DOI: 10.1007/s10787-025-01706-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 02/15/2025] [Indexed: 04/11/2025]
Abstract
INTRODUCTION Traumatic brain injury (TBI) refers to an impact of the brain within the skull resulting in an altered mental state. The study aim is to determine the effect of a high dose of N-acetylcysteine (NAC) on biochemical and inflammatory markers of neuronal damage and clinical outcomes in patients with moderate to severe TBI. METHODS A randomized open label-controlled trial was conducted on 40 patients with moderate to severe TBI patients presented to the emergency unit within < 24 h since the trauma occurred and randomized into NAC and control groups 20 patients each. Serum samples for evaluation of biomarkers: malondialdehyde (MDA), interleukin-6 (IL-6), neuron-specific enolase (NSE), and S100B were withdrawn at baseline and on day 7. The patients were followed for 7 days and evaluated clinically by the Glasgow Coma Scale (GCS). RESULTS There was a significant decrease in NSE and MDA levels on day 7 from baseline in NAC group (p < 0.001 and p < 0.001). Also, S100B and IL-6 decreased significantly in NAC group on day 7 from baseline (p = 0.003 and p < 0.001 consequently) compared to control group. Moreover, patients in NAC group showed a significantly shorter length of stay at intensive care unit (ICU) (p = 0.038). There was a significant increase in GCS in NAC group on day 7 from baseline (p = 0.001). CONCLUSION Adjunctive early use of high-dose NAC significantly reduced inflammatory and oxidative markers and had neuroprotective effect which may be a novel treatment option for moderate to severe TBI patients. TRIAL REGISTRATION Pactr.org identifier: (PACTR202209548995270) on 14 September 2022.
Collapse
Affiliation(s)
- Alaa Refaat Gouda
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Damanhour University, Damanhour, 22514, Egypt.
| | - Noha A El-Bassiouny
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Damanhour University, Damanhour, 22514, Egypt
| | - Ahmad Salahuddin
- Biochemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour, 22514, Egypt
- Department of Biochemistry, College of Pharmacy, Al-Ayen Iraqi University, Nasiriyah, Thi-Qar, 64001, Iraq
| | - Emad Hamdy Hamouda
- Critical Care Medicine Department, Faculty of Medicine, University of Alexandria, Alexandria, 21517, Egypt
| | - Amira B Kassem
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Damanhour University, Damanhour, 22514, Egypt.
| |
Collapse
|
3
|
Marchesi N, Allegri M, Bruno GM, Pascale A, Govoni S. Exploring the Potential of Dietary Supplements to Alleviate Pain Due to Long COVID. Nutrients 2025; 17:1287. [PMID: 40219044 PMCID: PMC11990457 DOI: 10.3390/nu17071287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
Long COVID, characterized by persistent symptoms following COVID-19 infection, significantly impacts individuals' health and daily functioning due to fatigue and pain. Focusing on pain, this review addresses nociplastic and chronic pain conditions. Interventions designed to reduce inflammation, oxidative stress, and enhance vagal activity may offer a promising approach to managing post-pandemic pain. This review presents individual components of food supplements with demonstrated efficacy in one or more pain conditions, focusing on their proposed mechanisms and clinical activity in pain, including their use in post-COVID-19 pain when available. Many of these substances have a long history of safe use and may offer an alternative to long-term analgesic drug treatment, which is often associated with potential side effects. This review also explores the potential for synergistic effects when combining these substances with each other or with conventional analgesics, considering the advantages for both patients and the healthcare system in using these substances as adjunctive or primary therapies for pain symptoms related to long COVID. While preclinical scientific literature provides a mechanistic basis for the action of several food supplements on pain control mechanisms and signaling pathways, clinical experience, particularly in the field of long COVID-associated pain, is still limited. However, the reviewed literature strongly suggests that the use of food supplements in long COVID-associated pain is an attainable goal, provided that rigorous clinical trials are conducted.
Collapse
Affiliation(s)
- Nicoletta Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (G.M.B.); (A.P.); (S.G.)
- RedyNeuheart s.r.l., Start-Up, Via Santa Marta 19, 20123 Milan, Italy
| | - Massimo Allegri
- Centre Lémanique de Neuromodulation et Thérapie de la Douleur, Hôpital de Morges, Ensemble Hospitalier de la Côte (EHC), 1110 Morges, Switzerland;
| | - Giacomo Matteo Bruno
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (G.M.B.); (A.P.); (S.G.)
- Center of Research, SAVE Studi—Health Economics and Outcomes Research, 20123 Milan, Italy
- CEFAT (Center of Pharmaceuticals Economics and Medical Technologies Evaluation), University of Pavia, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (G.M.B.); (A.P.); (S.G.)
| | - Stefano Govoni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (G.M.B.); (A.P.); (S.G.)
- CEFAT (Center of Pharmaceuticals Economics and Medical Technologies Evaluation), University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
4
|
Li Q, Yang X, Li T. Natural flavonoids from herbs and nutraceuticals as ferroptosis inhibitors in central nervous system diseases: current preclinical evidence and future perspectives. Front Pharmacol 2025; 16:1570069. [PMID: 40196367 PMCID: PMC11973303 DOI: 10.3389/fphar.2025.1570069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
Flavonoids are a class of important polyphenolic compounds, renowned for their antioxidant properties. However, recent studies have uncovered an additional function of these natural flavonoids: their ability to inhibit ferroptosis. Ferroptosis is a key mechanism driving cell death in central nervous system (CNS) diseases, including both acute injuries and chronic neurodegenerative disorders, characterized by iron overload-induced lipid peroxidation and dysfunction of the antioxidant defense system. This review discusses the therapeutic potential of natural flavonoids from herbs and nutraceuticals as ferroptosis inhibitors in CNS diseases, focusing on their molecular mechanisms, summarizing findings from preclinical animal models, and providing insights for clinical translation. We specifically highlight natural flavonoids such as Baicalin, Baicalein, Chrysin, Vitexin, Galangin, Quercetin, Isoquercetin, Eriodictyol, Proanthocyanidin, (-)-epigallocatechin-3-gallate, Dihydromyricetin, Soybean Isoflavones, Calycosin, Icariside II, and Safflower Yellow, which have shown promising results in animal models of acute CNS injuries, including ischemic stroke, cerebral ischemia-reperfusion injury, intracerebral hemorrhage, subarachnoid hemorrhage, traumatic brain injury, and spinal cord injury. Among these, Baicalin and its precursor Baicalein stand out due to extensive research and favorable outcomes in acute injury models. Mechanistically, these flavonoids not only regulate the Nrf2/ARE pathway and activate GPX4/GSH-related antioxidant pathways but also modulate iron metabolism proteins, thereby alleviating iron overload and inhibiting ferroptosis. While flavonoids show promise as ferroptosis inhibitors for CNS diseases, especially in acute injury settings, further studies are needed to evaluate their efficacy, safety, pharmacokinetics, and blood-brain barrier penetration for clinical application.
Collapse
Affiliation(s)
- Qiuhe Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaohang Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Tiegang Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Bai H, Chen H, Du S, Qiu D, Li S, Ma T, Gao R, Zhang Z. N-Acetylcysteine Mitigates Ketamine Neurotoxicity in Young Rats by Modulating ROS-Mediated Pyroptosis and Ferroptosis. Mol Neurobiol 2025:10.1007/s12035-025-04860-2. [PMID: 40111652 DOI: 10.1007/s12035-025-04860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Ketamine, an N-methyl-D-aspartate receptor antagonist with anesthetic and analgesic properties, is extensively utilized for the induction and maintenance of pediatric perioperative anesthesia. Increasing evidence suggests that prolonged exposure to ketamine may induce neurotoxicity in developing animals, adversely affecting their long-term cognitive function. N-acetylcysteine (NAC) is an organic sulfur compound in the Allium genus; however, the mechanisms through which it alleviates ketamine-induced neurotoxicity during developmental stages remain inadequately understood. Refine the investigation of the mechanisms by which Nac mitigates ketamine-induced neurotoxicity during development via ferroptosis and pyroptosis pathways. Postnatal day 7 in SD rats PC12 cells and HAPI cells were used in this study. The neuroprotective mechanism of Nac was elucidated through pathological, histological, and molecular biological methodologies to assess pyroptosis, ferroptosis, hippocampal tissue damage, and behavioral modifications in adulthood. The results suggest that prior administration of Nac reduced lipid peroxidation and mitochondrial injury, along with pyroptosis activated by the NLRP3/caspase-1 pathway, hippocampal damage, and cognitive deficits after exposure to ketamine. In summary, our findings from both in vivo and in vitro studies indicate that ROS plays a significant regulatory role in the neurotoxic effects of ketamine during development. Furthermore, Nac mitigates hippocampal damage and cognitive deficits associated with ketamine exposure by inhibiting ROS-mediated ferroptosis and pyroptosis.
Collapse
Affiliation(s)
- Hui Bai
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hui Chen
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Shan Du
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Di Qiu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Siyao Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianwen Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ruifeng Gao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China.
| | - Zhiheng Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China.
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
6
|
Baffour K, Koti N, Nyabayo T, Balerao S, Sutton C, Johnson D, Patel R, Santra S, Banerjee T. Modulation of α-Synuclein Fibrillation and Toxicity by 4-Phenylbutyric Acid. ACS Chem Neurosci 2025; 16:1066-1078. [PMID: 40020199 PMCID: PMC11926867 DOI: 10.1021/acschemneuro.4c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
The protein misfolding and aggregation of α-synuclein (α-Syn) into neurotoxic amyloids underlies the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD). Emerging evidence suggests that 4-phenylbutyrate (PBA) may play a role as a potential chemical chaperone for targeting α-Syn aggregation, but its molecular mechanism remains largely unknown. Using in vitro assays, we demonstrate that PBA treatment alters the pattern of α-Syn aggregation, as evidenced by reduced formation of oligomeric species and its increased susceptibility to proteolytic cleavage under the influence of PBA. Proteinase K (PK) assays, surface plasmon resonance (SPR), Nile red assays, and cytotoxicity assays indicate that PBA interacts with the extensive hydrophobic contacts of α-Syn oligomers and significantly reduces α-Syn-amyloid-induced toxicity. Furthermore, using thioflavin T-based assays, we elucidated the kinetics of PBA-mediated modulation of α-Syn aggregation, highlighting its role in accelerating the formation of α-Syn amyloid fibrils. Molecular dynamics (MD) simulations suggest PBA's role in the destabilization of the C-terminus in α-Syn oligomers through multiple residue interactions. Collectively, our findings provide compelling evidence for the neuroprotective potential of PBA in targeting protein misfolding and aggregation in PD and suggest an avenue for disease-modifying interventions in neurodegenerative disorders.
Collapse
Affiliation(s)
- Kristos Baffour
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| | - Neelima Koti
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| | - Tony Nyabayo
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| | - Sathvika Balerao
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| | - Carissa Sutton
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| | - David Johnson
- Molecular
Graphics and Modeling Laboratory, University
of Kansas, 2034 Becker Drive, Lawrence, Kansas 66018, United States of America
| | - Rishi Patel
- Jordan
Valley Innovation Center, Missouri State
University, 542 N. Boonville
Avenue, Springfield, Missouri 65806, United States
of America
| | - Santimukul Santra
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| | - Tuhina Banerjee
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| |
Collapse
|
7
|
Zhang Z, Yan Z, Yuan T, Zhao X, Wang M, Liu G, Gan L, Qin W. PD-1 inhibition disrupts collagen homeostasis and aggravates cardiac dysfunction through endothelial-fibroblast crosstalk and EndMT. Front Pharmacol 2025; 16:1549487. [PMID: 40166462 PMCID: PMC11955664 DOI: 10.3389/fphar.2025.1549487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction Cardiac immune-related adverse events (irAEs) from PD-1-targeting immune check-point inhibitors (ICIs) are an increasing concern due to their high mortality rate. Collagen plays a crucial role in maintaining cardiac structure, elasticity, and signal transduction; however, the effects and mechanisms of PD-1 inhibitor on cardiac collagen remodeling remain poorly understood. Methods C57BL/6 mice were injected with anti-mouse PD-1 antibody to create a PD-1 inhibitor-treated model. Cardiac function was measured by echocardiography, and collagen distribution was analyzed with Masson's trichrome staining and Sirius Red staining. Single-nucleus RNA sequencing was performed to examine the effects of PD-1 inhibition on gene expression in cardiac fibroblasts (CFs) and endothelial cells (ECs). EC-CF crosstalk was assessed using co-culture experiments and ELISA. ChIP assay was performed to analyze the regulation of TCF12 on TGF-β1 promoter. Western blot, qRT-PCR, and immunofluorescence staining were used to detect the expression of TCF12, TGF-β1, and endothelial-to-mesenchymal transition (EndMT) markers. Reactive oxygen species (ROS) levels were evaluated by DHE staining, MDA content, and SOD activity assays. Results We report a newly discovered cardiotoxic effect of PD-1 inhibitor, which causes aberrant collagen distribution in the heart, marked by a decrease in interstitial collagen and an increase in perivascular collagen deposition. Mechanistically, PD-1 inhibitor does not directly affect CFs but instead impact them through EC-CF crosstalk. PD-1 inhibitor reduces TGF-β1 secretion in ECs by downregulating TCF12, which we identify as a transcriptional promoter of TGF-β1. This subsequently decreases CF activity, leading to reduced interstitial collagen deposition. Additionally, PD-1 inhibitor induces EndMT, increasing perivascular collagen deposition. The endothelial dysfunction induced by PD-1 inhibitor results from ROS accumulation in ECs. Inhibiting ROS with N-acetylcysteine (NAC) preserves normal collagen distribution and cardiac function in PD-1 inhibitor-treated mice by reversing TCF12 downregulation and EndMT in ECs. Conclusion Our results suggest that PD-1 inhibitor causes ROS accumulation in cardiac ECs, leading to imbalanced collagen distribution (decrease in interstitial collagen and increase in perivascular collagen) in the heart by modulating TCF12/TGF-β1-mediated EC-CF crosstalk and EndMT. NAC supplementation could be an effective clinical strategy to mitigate PD-1 inhibitor-induced imbalanced collagen distribution and cardiac dysfunction.
Collapse
Affiliation(s)
- Zejin Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Zhenzhen Yan
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Shandong University of Traditional Chinese medicine, Jinan, Shandong, China
| | - Tao Yuan
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Shandong First Medical University, Jinan, Shandong, China
| | - Xiaona Zhao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China
| | - Minghui Wang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Shandong University of Traditional Chinese medicine, Jinan, Shandong, China
| | - Guoqing Liu
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Shandong University of Traditional Chinese medicine, Jinan, Shandong, China
| | - Lijun Gan
- Department of Cardiology (Shandong Provincial Key Laboratory for Cardiovascular Disease Diagnosis and Treatment), Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- Department of Cardiology (Shandong Provincial Key Laboratory for Cardiovascular Disease Diagnosis and Treatment), Affiliated Hospital of Jining Medical University, Jining, Shandong, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
8
|
Galicia-Moreno M, Monroy-Ramirez HC, Caloca-Camarena F, Arceo-Orozco S, Muriel P, Sandoval-Rodriguez A, García-Bañuelos J, García-González A, Navarro-Partida J, Armendariz-Borunda J. A new opportunity for N-acetylcysteine. An outline of its classic antioxidant effects and its pharmacological potential as an epigenetic modulator in liver diseases treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2365-2386. [PMID: 39436429 DOI: 10.1007/s00210-024-03539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
Liver diseases represent a worldwide health problem accountable for two million deaths per year. Oxidative stress is critical for the development of these diseases. N-acetyl cysteine (NAC) is effective in preventing liver damage, both in experimental and clinical studies, and evidence has shown that the pharmacodynamic mechanisms of NAC are related to its antioxidant nature and ability to modulate key signaling pathways. Here, we provide a comprehensive description of the beneficial effects of NAC in the treatment of liver diseases, addressing the first evidence of its role as a scavenger and precursor of reduced glutathione, along with studies showing its immunomodulatory action, as well as the ability of NAC to modulate epigenetic hallmarks. We searched the PubMed database using the following keywords: oxidative stress, liver disease, epigenetics, antioxidants, NAC, and antioxidant therapies. There was no time limit to gather all available information on the subject. NAC has shown efficacy in treating liver damage, exerting mechanisms of action different from those of free radical scavengers. Like different antioxidant therapies, its effectiveness and safety are related to the administered dose; therefore, designing new pharmacological formulations for this drug is imperative to achieve an adequate response. Finally, there is still much to explore regarding its effect on epigenetic marker characteristics of liver damage, turning it into a drug with broad therapeutic potential. According to the literature reviewed, NAC could be an appropriate option in clinical studies related to hepatic injury and, in the future, a repurposing alternative for treating liver diseases.
Collapse
Affiliation(s)
- Marina Galicia-Moreno
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Hugo Christian Monroy-Ramirez
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Fernando Caloca-Camarena
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
- Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Scarlet Arceo-Orozco
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Pablo Muriel
- Laboratorio de Hepatologia Experimental, Departamento de Farmacologia, Cinvestav-IPN, 07000, Mexico City, Mexico
| | - Ana Sandoval-Rodriguez
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Jesús García-Bañuelos
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | | | | | - Juan Armendariz-Borunda
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico.
- Tecnológico de Monterrey, EMCS, 45201, Zapopan, Jalisco, Mexico.
| |
Collapse
|
9
|
Awasthi A, Maparu K, Singh S. Ferroptosis role in complexity of cell death: unrevealing mechanisms in Parkinson's disease and therapeutic approaches. Inflammopharmacology 2025; 33:1271-1287. [PMID: 39998712 DOI: 10.1007/s10787-025-01672-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
Parkinson's disease (PD), a common neurodegenerative disorder, is characterized by progressive loss of dopaminergic neurons, and accumulation of α-synuclein in the substantial nigra. Emerging evidence identifies ferroptosis as a regulated iron-dependent cell death mechanism marked by excessive lipid peroxidation (LPO) as a key contributor to PD pathogenesis. Ferroptosis is intertwined with critical disease processes such as aggregation of α-synuclein protein, oxidative stress generation, mitochondrial alteration, iron homeostasis dysregulation, and neuroinflammation. This mechanism disrupts cellular homeostasis by impairing iron metabolism and antioxidant pathways like the xc-/glutathione/GPX4 axis and the CoQ10 pathway. This review consolidates current advancements in understanding ferroptosis in these mechanisms, increasing interest in contribution to PD pathology. In addition, it explores the latest developments in ferroptosis-targeting pharmacological agents, including their application in the preclinical and clinical study, and highlights their potential to revolutionize PD management. Unraveling the interplay between ferroptosis and PD offers a transformative perspective, paving the way for innovative therapies to combat this debilitating disease condition.
Collapse
Affiliation(s)
- Anupam Awasthi
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Kousik Maparu
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
10
|
Shen Y, Zhang G, Wei C, Zhao P, Wang Y, Li M, Sun L. Potential role and therapeutic implications of glutathione peroxidase 4 in the treatment of Alzheimer's disease. Neural Regen Res 2025; 20:613-631. [PMID: 38886929 PMCID: PMC11433915 DOI: 10.4103/nrr.nrr-d-23-01343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 06/20/2024] Open
Abstract
Alzheimer's disease is an age-related neurodegenerative disorder with a complex and incompletely understood pathogenesis. Despite extensive research, a cure for Alzheimer's disease has not yet been found. Oxidative stress mediates excessive oxidative responses, and its involvement in Alzheimer's disease pathogenesis as a primary or secondary pathological event is widely accepted. As a member of the selenium-containing antioxidant enzyme family, glutathione peroxidase 4 reduces esterified phospholipid hydroperoxides to maintain cellular redox homeostasis. With the discovery of ferroptosis, the central role of glutathione peroxidase 4 in anti-lipid peroxidation in several diseases, including Alzheimer's disease, has received widespread attention. Increasing evidence suggests that glutathione peroxidase 4 expression is inhibited in the Alzheimer's disease brain, resulting in oxidative stress, inflammation, ferroptosis, and apoptosis, which are closely associated with pathological damage in Alzheimer's disease. Several therapeutic approaches, such as small molecule drugs, natural plant products, and non-pharmacological treatments, ameliorate pathological damage and cognitive function in Alzheimer's disease by promoting glutathione peroxidase 4 expression and enhancing glutathione peroxidase 4 activity. Therefore, glutathione peroxidase 4 upregulation may be a promising strategy for the treatment of Alzheimer's disease. This review provides an overview of the gene structure, biological functions, and regulatory mechanisms of glutathione peroxidase 4, a discussion on the important role of glutathione peroxidase 4 in pathological events closely related to Alzheimer's disease, and a summary of the advances in small-molecule drugs, natural plant products, and non-pharmacological therapies targeting glutathione peroxidase 4 for the treatment of Alzheimer's disease. Most prior studies on this subject used animal models, and relevant clinical studies are lacking. Future clinical trials are required to validate the therapeutic effects of strategies targeting glutathione peroxidase 4 in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yanxin Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Chunxiao Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Panpan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yongchun Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Mingxi Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
11
|
Pangrazzi L, Cerilli E, Balasco L, Khurshid C, Tobia C, Dall'O' GM, Chelini G, Perini S, Filosi M, Barbieri A, Ravizza T, Vezzani A, Provenzano G, Pastore A, Weinberger B, Rubert J, Domenici E, Bozzi Y. The interplay between oxidative stress and inflammation supports autistic-related behaviors in Cntnap2 knockout mice. Brain Behav Immun 2025; 127:57-71. [PMID: 40023202 DOI: 10.1016/j.bbi.2025.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/22/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025] Open
Abstract
Autism Spectrum Disorder (ASD) is a highly prevalent neurodevelopmental condition characterized by social communication deficits and repetitive/restricted behaviors. Several studies showed that oxidative stress and inflammation may contribute to ASD. Indeed, increased levels of oxygen radicals and pro-inflammatory molecules were described in the brain and peripheral blood of persons with ASD and mouse models. Despite this, a potential direct connection between oxidative stress and inflammation within specific brain areas and ASD-related behaviors has not been investigated in detail yet. Here, we used RT-qPCR, RNA sequencing, metabolomics, immunohistochemistry, and flow cytometry to show that pro-inflammatory molecules were increased in the cerebellum and periphery of mice lacking Cntnap2, a robust model of ASD. In parallel, oxidative stress was present in the cerebellum of mutant animals. Systemic treatment with N-acetyl-cysteine (NAC) rescued cerebellar oxidative stress, inflammation, as well as motor and social impairments in Cntnap2-/- mice, concomitant with enhanced function of microglia cells in NAC-treated mutants. Intriguingly, social deficits, cerebellar inflammation, and microglia dysfunction were induced by NAC in Cntnap2+/+ animals. Our findings suggest that the interplay between oxidative stress and inflammation accompanied by genetic vulnerability may underlie ASD-related behaviors in Cntnap2 mutant mice.
Collapse
Affiliation(s)
- Luca Pangrazzi
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1 38068 Rovereto, Trento, Italy; Institute for Biomedical Aging Research, Universität Innsbruck, Rennweg 10 6020 Innsbruck, Austria.
| | - Enrica Cerilli
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1 38068 Rovereto, Trento, Italy
| | - Luigi Balasco
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1 38068 Rovereto, Trento, Italy; Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Chrow Khurshid
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands; College of Agriculture, University of Kirkuk, Kirkuk, Iraq
| | - Caterina Tobia
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1 38068 Rovereto, Trento, Italy
| | - Ginevra Matilde Dall'O'
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1 38068 Rovereto, Trento, Italy
| | - Gabriele Chelini
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1 38068 Rovereto, Trento, Italy; CNR Neuroscience Institute, 56124 Pisa, Italy
| | - Samuel Perini
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, via Sommarive 9 38123 Trento, Italy
| | - Michele Filosi
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, via Sommarive 9 38123 Trento, Italy
| | - Anna Barbieri
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, via Sommarive 9 38123 Trento, Italy
| | - Teresa Ravizza
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Giovanni Provenzano
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, via Sommarive 9 38123 Trento, Italy
| | - Anna Pastore
- Metabolomics and Proteomics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, Rennweg 10 6020 Innsbruck, Austria
| | - Josep Rubert
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | - Enrico Domenici
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, via Sommarive 9 38123 Trento, Italy; Fondazione The Microsoft Research - University of Trento Center for Computational and Systems Biology (COSBI), 38068 Rovereto, Trento, Italy
| | - Yuri Bozzi
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1 38068 Rovereto, Trento, Italy; CNR Neuroscience Institute, 56124 Pisa, Italy
| |
Collapse
|
12
|
Lomelí Martínez SM, Pacheco Moisés FP, Bitzer-Quintero OK, Ramírez-Jirano J, Delgado-Lara DLC, Cortés Trujillo I, Torres Jasso JH, Salazar-Flores J, Torres-Sánchez ED. Effect of N-Acetyl Cysteine as an Adjuvant Treatment in Alzheimer's Disease. Brain Sci 2025; 15:164. [PMID: 40002497 PMCID: PMC11852533 DOI: 10.3390/brainsci15020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Oxidative stress levels are exacerbated in Alzheimer's disease (AD). This phenomenon feeds back into the overactivation of oxidase enzymes, mitochondrial dysfunction, and the formation of advanced glycation end-products (AGEs), with the stimulation of their receptors (RAGE). These factors stimulate Aβ peptide aggregation and tau hyperphosphorylation through multiple pathways, which are addressed in this paper. The aim of this study was to evaluate the regulatory effect of N-acetyl cysteine (NAC) on oxidant/antioxidant balance as an adjuvant treatment in patients with AD. The results obtained showed that NAC supplementation produced improved cognitive performance, decreased levels of oxidative stress markers, lowered activities of oxidase enzymes, increased antioxidant responses, and attenuated inflammatory and apoptotic markers. Moreover, NAC reversed mitochondrial dysfunction, lowered AGEs-RAGE formation, attenuated Aβ peptide oligomerization, and reduced phosphorylation of tau, thereby halting the formation of neurofibrillary tangles and the progression of AD.
Collapse
Affiliation(s)
- Sarah Monserrat Lomelí Martínez
- Department of Medical and Life Sciences, Cienega University Center, University of Guadalajara, Ocotlan 47820, Jalisco, Mexico; (S.M.L.M.); (I.C.T.); (J.S.-F.)
- Periodontics Specialty Program, Department of Integrated Dentistry Clinics, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Institute of Research in Dentistry, Department of Integral Dental Clinics, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Public Health, Department of Wellbeing and Sustainable Development, Northern University Center, University of Guadalajara, Colotlán 46200, Jalisco, Mexico
| | - Fermín Paul Pacheco Moisés
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Jalisco, Mexico;
| | - Oscar Kurt Bitzer-Quintero
- Neurosciences Division, Western Biomedical Research Center, Mexican Social Security Institute, IMSS, Guadalajara 44340, Jalisco, Mexico; (O.K.B.-Q.); (J.R.-J.)
| | - Javier Ramírez-Jirano
- Neurosciences Division, Western Biomedical Research Center, Mexican Social Security Institute, IMSS, Guadalajara 44340, Jalisco, Mexico; (O.K.B.-Q.); (J.R.-J.)
| | - Daniela L. C. Delgado-Lara
- Departamento Académico de Formación Universitaria, Ciencias de la Salud, Universidad Autónoma de Guadalajara, Zapopan 45129, Jalisco, Mexico;
| | - Irán Cortés Trujillo
- Department of Medical and Life Sciences, Cienega University Center, University of Guadalajara, Ocotlan 47820, Jalisco, Mexico; (S.M.L.M.); (I.C.T.); (J.S.-F.)
| | - Juan Heriberto Torres Jasso
- Department of Biological Sciences, University Center of the Coast, University of Guadalajara, Puerto Vallarta 48280, Jalisco, Mexico;
| | - Joel Salazar-Flores
- Department of Medical and Life Sciences, Cienega University Center, University of Guadalajara, Ocotlan 47820, Jalisco, Mexico; (S.M.L.M.); (I.C.T.); (J.S.-F.)
| | - Erandis Dheni Torres-Sánchez
- Department of Medical and Life Sciences, Cienega University Center, University of Guadalajara, Ocotlan 47820, Jalisco, Mexico; (S.M.L.M.); (I.C.T.); (J.S.-F.)
| |
Collapse
|
13
|
Nayak U, Manikkath J, Arora D, Mudgal J. Impact of neuroinflammation on brain glutamate and dopamine signalling in schizophrenia: an update. Metab Brain Dis 2025; 40:119. [PMID: 39907868 PMCID: PMC11799129 DOI: 10.1007/s11011-025-01548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
Schizophrenia is one of the most severe and chronic psychiatric disorders. Over the years, numerous treatment options have been introduced for schizophrenia. Although they are relatively successful in managing the positive symptoms of schizophrenia, most of the current treatments have a negligible effect on the negative and cognitive symptoms. Thus, none of them could prevent the relapse of psychotic episodes. Among the numerous hypotheses explaining the development and progression of schizophrenia, the cytokine hypothesis explains the role of inflammatory markers as a significant culprit in the development of schizophrenia. Elevated cytokines are reported in animal models and schizophrenic patients. The cytokine hypothesis is based on how increased inflammatory markers can cause changes in the dopaminergic, glutamate, and tryptophan metabolism pathways, like that observed in schizophrenic patients. Reasons, such as autoimmune disease, maternal immune activation, infection, etc., can pave the way for the development of schizophrenia and are associated with the negative, positive and cognitive symptoms of schizophrenia. Thus, there is a need to focus on the significance of anti-inflammatory drugs against these symptoms. The development of new treatment strategies in the management of schizophrenia can provide better therapeutic outcomes in terms of the severity of symptoms and treatment of drug-resistant schizophrenia. This review attempts to explain the association between elevated inflammatory markers and various neurotransmitters, and the possible use of medications like nonsteroidal anti-inflammatory drugs, monoclonal antibodies, statins, and estrogens as adjuvant therapy. Over the years, these hypotheses have been the basis for drug discovery for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Usha Nayak
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Jyothsna Manikkath
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Devinder Arora
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
14
|
Pawar R, Pandey D, Naqvi S, Sharma A. Critical role of hydrogen sulfide in the management of neurodegenerative disease. Nitric Oxide 2025; 154:77-85. [PMID: 39577488 DOI: 10.1016/j.niox.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/11/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Hydrogen sulfide has been known to humans for about 300 years and the previous studies emphasize only on its toxic side effects. In the last two decennium, researchers have varied their perspectives and insights towards H2S biology based on experimental findings. It has been found that H2S is an endogenic gaseous signaling molecule in many organisms and plays a crucial role in many systems and diseases. Early reports suggest that H2S as a neuromodulator influences calcium levels within the brain cells which ultimately control memory, learning, and cognition. It has also been observed that some complications in the pathogenesis of neurodegenerative diseases are due to anomalies in the biosynthesis and metabolism of H2S. This review focuses on the role of H2S in the pathophysiology of major neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Vascular dementia. H2S was observed to have a protective role in the above-mentioned neurological conditions and the H2S donor therapy may help in disease management. The H2S gas displays a neuroprotective role and protects against cellular damage thereby declining the neurological conditions. Some studies have revealed that treatment with H2S donors has improved neuronal damage, restored memory and cognition in animal models. In this review, we have discussed the role of H2S donors as neuroprotective agents with examples of some of the natural and synthetic H2S donors, and also briefly enumerated the molecules used to detect H2S in neurodegenerative diseases.
Collapse
Affiliation(s)
- Rajashree Pawar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Dheeraj Pandey
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Saba Naqvi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Transit Campus, Lucknow, Uttar Pradesh, India
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India.
| |
Collapse
|
15
|
Zeng Y, Buonfiglio F, Li J, Pfeiffer N, Gericke A. Mechanisms Underlying Vascular Inflammaging: Current Insights and Potential Treatment Approaches. Aging Dis 2025:AD.2024.0922. [PMID: 39812546 DOI: 10.14336/ad.2024.0922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/18/2024] [Indexed: 01/16/2025] Open
Abstract
Inflammaging refers to chronic, low-grade inflammation that becomes more common with age and plays a central role in the pathophysiology of various vascular diseases. Key inflammatory mediators involved in inflammaging contribute to endothelial dysfunction and accelerate the progression of atherosclerosis. In addition, specific pathological mechanisms and the role of inflammasomes have emerged as critical drivers of immune responses within the vasculature. A comprehensive understanding of these processes may lead to innovative treatment strategies that could significantly improve the management of age-related vascular diseases. Emerging therapeutic approaches, including cytokine inhibitors, senolytics, and specialized pro-resolving mediators, aim to counteract inflammaging and restore vascular health. This review seeks to provide an in-depth exploration of the molecular pathways underlying vascular inflammaging and highlight potential therapeutic interventions.
Collapse
|
16
|
Sharma V, Singh TG. Hypoxia-inducible Factor-1α Pathway in Cerebral Ischemia: From Molecular Mechanisms to Therapeutic Targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:208-218. [PMID: 39428931 DOI: 10.2174/0118715273324551241008111827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Ischemic injury to the brain can result in a variety of life-threatening conditions, mortality, or varying degrees of disability. Hypoxia-inducible factor 1α (HIF 1α), an oxygen- sensitive transcription factor that controls the adaptive metabolic response to hypoxia, is a critical constituent of cerebral ischemia. It participates in numerous processes, such as metabolism, proliferation, and angiogenesis, and plays a major role in cerebral ischemia. METHODS Through the use of a number of different search engines like Scopus, PubMed, Bentham, and Elsevier databases, a literature review was carried out for investigating the pharmacological modulation of HIF-1α pathways for the treatment of cerebral ischemia. RESULTS Various signalling pathways, such as Mitogen-activated protein kinase (MAPK), Janus kinase/ signal transducers and activators (JAK/STAT), Phosphoinositide-3-kinase (PI3-K), and cAMPresponse element binding protein (CREB) play a vital role in modulation of HIF-1α pathway, which helps in preventing the pathogenesis of cerebral ischemia. CONCLUSION The pharmacological modulation of the HIF-1α pathway via various molecular signalling pathways, such as PI3-K, MAPK, CREB, and JAK/STAT activators, offer a promising prospect for future interventions and treatment for cerebral ischemia.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | |
Collapse
|
17
|
Üremiş N, Üremiş MM. Oxidative/Nitrosative Stress, Apoptosis, and Redox Signaling: Key Players in Neurodegenerative Diseases. J Biochem Mol Toxicol 2025; 39:e70133. [PMID: 39799559 PMCID: PMC11725306 DOI: 10.1002/jbt.70133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 01/15/2025]
Abstract
Neurodegenerative diseases are significant health concerns that have a profound impact on the quality and duration of life for millions of individuals. These diseases are characterized by pathological changes in various brain regions, specific genetic mutations associated with the disease, deposits of abnormal proteins, and the degeneration of neurological cells. As neurodegenerative disorders vary in their epidemiological characteristics and vulnerability of neurons, treatment of these diseases is usually aimed at slowing disease progression. The heterogeneity of genetic and environmental factors involved in the process of neurodegeneration makes current treatment methods inadequate. However, the existence of common molecular mechanisms in the pathogenesis of these diseases may allow the development of new targeted therapeutic strategies. Oxidative and nitrosative stress damages membrane components by accumulating ROS and RNS and disrupting redox balance. This process results in the induction of apoptosis, which is important in the pathogenesis of neurodegenerative diseases through oxidative stress. Studies conducted using postmortem human samples, animal models, and cell cultures have demonstrated that oxidative stress, nitrosative stress, and apoptosis are crucial factors in the development of diseases such as Alzheimer's, Parkinson's, Multiple Sclerosis, amyotrophic lateral sclerosis, and Huntington's disease. The excessive production of reactive oxygen and nitrogen species, elevated levels of free radicals, heightened mitochondrial stress, disturbances in energy metabolism, and the oxidation and nitrosylation of cellular macromolecules are recognized as triggers for neuronal cell death. Challenges in managing and treating neurodegenerative diseases require a better understanding of this field at the molecular level. Therefore, this review elaborates on the molecular mechanisms by which oxidative and nitrosative stress are involved in neuronal apoptosis.
Collapse
Affiliation(s)
- Nuray Üremiş
- Department of Medical BiochemistryFaculty of Medicine, Kahramanmaraş Sütçü İmam UniversityKahramanmaraşTurkey
| | - Muhammed Mehdi Üremiş
- Department of Medical BiochemistryFaculty of Medicine, Kahramanmaraş Sütçü İmam UniversityKahramanmaraşTurkey
| |
Collapse
|
18
|
Naghshbandieh A, Naghshbandieh A, Barfi E, Abkhooie L. Assessment of the level of apoptosis in differentiated pseudo-neuronal cells derived from neural stem cells under the influence of various inducers. AMERICAN JOURNAL OF STEM CELLS 2024; 13:250-270. [PMID: 39850017 PMCID: PMC11751472 DOI: 10.62347/bptg6174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/23/2024] [Indexed: 01/25/2025]
Abstract
Development and maintenance of the nervous system are governed by a scheduled cell death mechanism known as apoptosis. Very much how neurons survive and function depends on the degree of death in differentiating pseudo-neuronal cells produced from neural stem cells. Different inducers can affect the degree of death in these cells: hormones, medicines, growth factors, and others. Developing inventive therapies for neurodegenerative illnesses depends on a knowledge of how these inducers impact mortality in differentiated pseudo-neuronal cells. Using flow cytometry, Western blotting, and fluorescence microscopy among other techniques, the degree of death in many pseudo-neuronal cells is evaluated. Flow cytometry generates dead cell counts from measurements of cell size, granularity, and DNA content. Whereas fluorescence microscopy visualizes dead cells using fluorescent dyes or antibodies, Western blotting detects caspases and Bcl-2 family proteins. This review attempts to offer a thorough investigation of present studies on death in differentiated pseudo-neuronal cells produced from neural stem cells under the effect of different inducers. Through investigating how these inducers influence death, the review aims to provide information that might direct the next studies and support treatment plans for neurodegenerative diseases. With an eye toward inducers like retinoic acid, selegiline, cytokines, valproic acid, and small compounds, we examined research to evaluate death rates. The findings offer important new perspectives on the molecular processes guiding death in these cells. There is still a complete lack of understanding of how different factors affect the molecular processes that lead to death, so understanding these processes can contribute to new therapeutic approaches to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Adele Naghshbandieh
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares UniversityTehran, Iran
| | - Atefe Naghshbandieh
- Department of Pharmaceutical Biotechnology and Department of Pharmaceutical and Bimolecular Science, University of MilanMilan, Italy
| | - Elahe Barfi
- Razi Herbal Medicines Research Center, Lorestan University of Medical SciencesKhorramabad, Iran
| | - Leila Abkhooie
- Razi Herbal Medicines Research Center, Lorestan University of Medical SciencesKhorramabad, Iran
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical SciencesKhorramabad, Iran
| |
Collapse
|
19
|
Sabbaghziarani F, Soleimani P, Eynshikh FR, Zafari F, Aali E. Reduced ischemia-reperfusion oxidative stress injury by melatonin and N-acetylcysteine in the male rat brain. IBRO Neurosci Rep 2024; 17:131-137. [PMID: 39175643 PMCID: PMC11339246 DOI: 10.1016/j.ibneur.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/20/2024] [Indexed: 08/24/2024] Open
Abstract
Middle cerebral artery occlusion (MCAO) is a model for inducing ischemic stroke in rodents, leading to devastating brain damage. Oxidative stress (OS) plays a crucial role in the pathogenesis of ischemia. In this study, the effect of melatonin and N-acetylcysteine on ischemia-reperfusion-induced oxidative stress injury in the cerebral cortex of male rats was investigated. 30 male Wistar rats were divided into sham, ischemic, NAC, melatonin and NAC + melatonin groups. All groups, except the sham group, underwent MCAO on the left side, and the treatment groups received intraperitoneal injections of either 50 mg/kg N-acetylcysteine (NAC) or 5 mg/kg melatonin or a combination of both 24 and 48 hours later. At 24 and 72 hours after surgery, the animals were examined for sensory and motor activity. The cerebral cortex was dissected after sacrificing the rats, infarct volume estimated and the concentrations of glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and nuclear factor erythroid-2 related factor 2 (Nrf2) were analyzed by enzyme-linked immunosorbent assay (ELISA). The results indicate that the NAC + melatonin group exhibited elevated sensory-motor activity and a reduced infarct volume rate in comparison to the ischemic group (p≤ 0.05). Compared to the ischemic group, the NAC + melatonin group showed a significant increase in SOD concentration and a significant decrease in MDA (p≤ 0.05). It can therefore be concluded that the simultaneous administration of NAC and melatonin can reduce the cerebral infarction volume, and improve neurological functions by modulating SOD and MDA.
Collapse
Affiliation(s)
- Fatemeh Sabbaghziarani
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Anatomical sciences, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Pouria Soleimani
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Student Research Committee, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farideh Rajabian Eynshikh
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Anatomical sciences, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fariba Zafari
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Anatomical sciences, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ehsan Aali
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Pharmacology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
20
|
Meegaswatte H, Speer K, McKune AJ, Naumovski N. Functional Foods and Nutraceuticals for the Management of Cardiovascular Disease Risk in Postmenopausal Women. Rev Cardiovasc Med 2024; 25:460. [PMID: 39742223 PMCID: PMC11683719 DOI: 10.31083/j.rcm2512460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 01/03/2025] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of death in women and risk of development is greatly increased following menopause. Menopause occurs over several years and is associated with hormonal changes, including a reduction in estradiol and an increase in follicle-stimulating hormone. This hormonal shift may result in an increased risk of developing abdominal adiposity, insulin resistance, dyslipidemia, vascular dysfunction, hypertension, type 2 diabetes mellitus (T2DM), metabolic dysfunction-associated fatty liver disease (MAFLD), and metabolic syndrome (MetS). Furthermore, with the onset of menopause, there is an increase in oxidative stress that is associated with impaired vascular function, inflammation, and thrombosis, further increasing the risk of CVD development. Despite the harmful consequences of the menopause transition being well known, women in premenopausal, perimenopausal, and postmenopausal stages are unlikely to be enrolled in research studies. Therefore, investigations on the prevention and treatment of cardiovascular and metabolic disease in middle-aged women are still relatively limited. Whilst lifestyle interventions are associated with reduced CVD risk in this population sample, the evidence still remains inconclusive. Therefore, it is important to explore the effectiveness of early intervention and potential therapeutic approaches to maintain cellular redox balance, preserve endothelium, and reduce inflammation. Glycine, N-acetylcysteine, and L-theanine are amino acids with potential antioxidant and anti-inflammatory activity and are identified as therapeutic interventions in the management of age-related and metabolic diseases. The benefits of the intake of these amino acids for improving factors associated with cardiovascular health are discussed in this review. Future studies using these amino acids are warranted to investigate their effect on maintaining the vascular health and cardiovascular outcomes of postmenopausal women.
Collapse
Affiliation(s)
- Harshini Meegaswatte
- Faculty of Health, University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, 2617 Bruce, Canberra, ACT, Australia
| | - Kathryn Speer
- Faculty of Health, University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, 2617 Bruce, Canberra, ACT, Australia
| | - Andrew J. McKune
- Faculty of Health, University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Science, University of KwaZulu-Natal, 4041 Durban, Republic of South Africa
| | - Nenad Naumovski
- Faculty of Health, University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17676 Athens, Greece
| |
Collapse
|
21
|
Alrouji M, Anwar S, Venkatesan K, Shahwan M, Hassan MI, Islam A, Shamsi A. Iron homeostasis and neurodegeneration in the ageing brain: Insight into ferroptosis pathways. Ageing Res Rev 2024; 102:102575. [PMID: 39515619 DOI: 10.1016/j.arr.2024.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Ageing is a major risk factor for various chronic diseases and offers a potential target for developing novel and broadly effective preventatives or therapeutics for age-related conditions, including those affecting the brain. Mechanisms contributing to ageing have been summarized as the hallmarks of ageing, with iron imbalance being one of the major factors. Ferroptosis, an iron-mediated lipid peroxidation-induced programmed cell death, has recently been implicated in neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Addressing ferroptosis offers both opportunities and challenges for treating neurodegenerative diseases, though the specific mechanisms remain unclear. This research explores the key processes behind how ferroptosis contributes to brain ageing, with a focus on the complex signaling networks that are involved. The current article aims to uncover that how ferroptosis, a specific type of cell death, may drive age-related changes in the brain. Additionally, the article also unveils its role in neurodegenerative diseases, discussing how understanding these mechanisms could open up new therapeutic avenues.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Saleha Anwar
- Center for Global Health Research, Saveetha medical college, Saveetha institute of Medical and Technical Sciences, Chennai, India.
| | - Kumar Venkatesan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Center for Interdsicplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Asimul Islam
- Center for Interdsicplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Anas Shamsi
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates.
| |
Collapse
|
22
|
Wood JPM, Chidlow G, Wall GM, Casson RJ. N-acetylcysteine amide and di- N-acetylcysteine amide protect retinal cells in culture via an antioxidant action. Exp Eye Res 2024; 248:110074. [PMID: 39251120 DOI: 10.1016/j.exer.2024.110074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Reactive oxygen species (ROS) play a significant role in toxicity to the retina in a variety of diseases. N-acetylcysteine (NAC), N-acetylcysteine amide (NACA) and the dimeric di-N-acetylcysteine amide (diNACA) were evaluated in terms of protecting retinal cells, in vitro, in a variety of stress models. Three types of rat retinal cell cultures were utilized in the study: macroglial-only cell cultures, neuron-only retinal ganglion cell (RGC) cultures, and mixed cultures containing retinal glia and neurons. Ability of test agents to attenuate oxidative stress in all cultures was ascertained. In addition, capability of agents to protect against a variety of alternate clinically-relevant stressors, including excitotoxins and mitochondrial electron transport chain inhibitors, was also evaluated. Capacity of test agents to elevate cellular levels of reduced glutathione under normal and compromised conditions was also determined. NAC, NACA and diNACA demonstrated concentration-dependent cytoprotection against oxidative stress in all cultures. These three compounds, however, had differing effects against a variety of alternate insults to retinal cells. The most protective agent was NACA, which was most potent against the most stressors (including oxidative stress, mitochondrial impairment by antimycin A and azide, and glutamate-induced excitotoxicity). Similar to NAC, NACA increased glutathione levels in non-injured cells, although diNACA did not, suggesting a different, unknown mechanism of antioxidant activity for the latter. In support of this, diNACA was the only agent to attenuate rotenone-induced toxicity in mitochondria. NAC, NACA and diNACA exhibited varying degrees of antioxidant activity, i.e., protected cultured rat retinal cells from a variety of stressors which were designed to mimic aspects of the pathology of different retinal diseases. A general rank order of activity was observed: NACA ≥ diNACA > NAC. These results warrant further exploration of NACA and diNACA as antioxidant therapeutics for the treatment of retinal diseases, particularly those involving oxidative stress. Furthermore, we have defined the battery of tests carried out as the "Wood, Chidlow, Wall and Casson (WCWC) Retinal Antioxidant Indices"; we believe that these are of great value for screening molecules for potential to reduce retinal oxidative stress in a range of retinal diseases.
Collapse
Affiliation(s)
- John P M Wood
- Discipline of Ophthalmology & Visual Sciences, Level 7 Adelaide Health and Medical Sciences Building, University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia; South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Port Road, SA 5000, Australia.
| | - Glyn Chidlow
- Discipline of Ophthalmology & Visual Sciences, Level 7 Adelaide Health and Medical Sciences Building, University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia; South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Port Road, SA 5000, Australia
| | | | - Robert J Casson
- Discipline of Ophthalmology & Visual Sciences, Level 7 Adelaide Health and Medical Sciences Building, University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia; South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Port Road, SA 5000, Australia
| |
Collapse
|
23
|
Peng TR, Lin HH, Tseng TL, Huang YH, Tsai PY, Lin CY, Lee MC, Chen SM. Efficacy of N-acetylcysteine for patients with depression: An updated systematic review and meta-analysis. Gen Hosp Psychiatry 2024; 91:151-159. [PMID: 39504621 DOI: 10.1016/j.genhosppsych.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Results on whether N-acetylcysteine (NAC) ameliorates depression in patients with psychiatric problems, such as bipolar disorder and major depressive disorder, remain inconsistent, and several new studies have recently been published. Thus, we conducted an uptodated meta-analysis to evaluate the efficacy of NAC against depression. METHODS This systematic review and meta-analysis included randomized controlled trials where NAC was used to treat depression. The present study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. PubMed, Embase (Ovid), and Cochrane were searched for relevant articles. A random-effects model was used to evaluate the primary outcome-efficacy of NAC in ameliorating depression. RESULTS This review included 12 studies (904 patients with depression). The daily dose of NAC in the included studies ranged from 1000 to 3000 mg. The duration of NAC treatment ranged from 8 to 24 weeks. A significant difference was noted between NAC and placebo in terms of the change in mean depression score from baseline to treatment conclusion (standardized mean difference = -0.24; 95 % confidence interval (CI) = -0.44 to -0.05; I2 = 45 %; P = .02). CONCLUSION Our findings indicate that adjunctive NAC can ameliorate depressive symptoms in patients with psychiatric problems, particularly bipolar disorder. However, large-scale clinical trials were needed to substantiate our results due to the wide CI value.
Collapse
Affiliation(s)
- Tzu-Rong Peng
- Department of Pharmacy, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hung-Hong Lin
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Tzu-Ling Tseng
- CardioVascular Research Center, Buddhist Tzu Chi General Hospital, Hualien, Taiwan; Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Yun-Hui Huang
- Department of Pharmacy, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Pei-Yun Tsai
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chia-Yu Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Department of Pharmacy, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ming-Chia Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Department of Pharmacy, New Taipei City Hospital, New Taipei City, Taiwan.
| | - Shih-Ming Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
24
|
Wigenstam E, Bucht A, Thors L. Cellular responses following ex vivo lung exposure to the nerve agent VX - Potential for additional treatment targets? Chem Biol Interact 2024; 403:111225. [PMID: 39233266 DOI: 10.1016/j.cbi.2024.111225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
Following inhalation exposure to organophosphorus nerve agents, symptoms rapidly develop and severe respiratory symptoms, such as bronchorrhea and bronchoconstriction are the leading causes of lethality. Nerve agent-induced lung injury is little investigated and the standard treatment for symptomatic relief targets the enzyme acetylcholinesterase and muscarinic acetylcholine and GABAergic receptors. In the present study, cellular responses in lung tissue during the acute (40 min) and extended phase (24 h) following severe exposure to the nerve agent VX have been investigated using an ex vivo rat precision-cut lung slice model including electrostimulation to induce a cholinergic response. Changes in protein amount, cell viability, together with, inflammatory and oxidative stress markers have been determined in both the lung tissue and incubation medium. During the acute phase, VX caused significantly increased airway contraction and decreased airway relaxation. Five micromolar of VX did not affect the sample protein levels and cell viability in lung tissue. Among seven markers of cellular responses investigated in the lung tissue, increased levels of heme oxygenase-1 and matrix metalloproteinase-9 together with decreased levels of glutathione in the incubation medium were observed in the acute phase following VX-exposure compared to electrostimulation only. No difference in cellular response was observed following VX-exposure for 24 h compared to the air control. In comparison, LPS-exposure resulted in time-dependent changes in all markers of inflammation and oxidative response. In conclusion, the present study demonstrated VX-specific patterns of oxidative responses in the lung, as well as, signs of inflammatory response and remodelling of extracellular matrix. These potential mechanisms of tissue injury should be further investigated for their potential as additional therapeutic targets during the acute phase of intoxication.
Collapse
Affiliation(s)
| | - Anders Bucht
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Lina Thors
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden.
| |
Collapse
|
25
|
Morimura H, Ishigami K, Kanie S, Sato Y, Kikuchi Y. Antioxidant cysteine and methionine derivatives show trachea disruption in insects. PLoS One 2024; 19:e0310919. [PMID: 39471169 PMCID: PMC11521293 DOI: 10.1371/journal.pone.0310919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 09/09/2024] [Indexed: 11/01/2024] Open
Abstract
To prevent the deterioration of the global environment, the reduction of chemical pesticide use and the development of eco-friendly pest control technologies are urgent issues. Our recent study revealed that the production of reactive oxygen species (ROS) by dual oxidase (Duox) plays a pivotal role in stabilizing the tracheal network by intermediating the tyrosine cross-linking of proteins that constitute trachea. Notably, the formation of dityrosine bonds by ROS can be inhibited by the intake of an antioxidant cysteine derivative N-acetyl-L-cysteine (NAC), which can suppress insect respiration. In this study, we screened for the derivatives showing insecticidal activity and tracheal formation inhibition. As a result of investigating the soybean pest bug Riptortus pedestris, cysteine and methionine derivatives showed respiratory formation inhibition and high insecticidal activity. In particular, NAC had a slow-acting insecticidal effect, while L-cysteine methyl ester (L-CME) showed relatively fast-acting insecticidal activity. Furthermore, the insecticidal activity of these derivatives was also detected in Drosophila, mealworms, cockroaches, termites, and plant bugs. Our results suggest that some antioxidant compounds have specific tracheal inhibitory activity in different insect species and they may be used as novel pest control agents upon further characterization.
Collapse
Affiliation(s)
- Hiroyuki Morimura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, Japan
| | - Kota Ishigami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shusei Kanie
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, Japan
| | - Yuya Sato
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Center, Tsukuba, Japan
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
26
|
Li T, Bian B, Ji R, Zhu X, Wo X, Song Q, Li Z, Wang F, Jia Y. Polyethylene Terephthalate Microplastic Exposure Induced Reproductive Toxicity Through Oxidative Stress and p38 Signaling Pathway Activation in Male Mice. TOXICS 2024; 12:779. [PMID: 39590959 PMCID: PMC11598153 DOI: 10.3390/toxics12110779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024]
Abstract
Polyethylene terephthalate (PET) is a type of polymer plastic that is often used to make plastic bags, bottles, and clothes. However, the waste of such plastic products is decomposed into microplastics (MPs), which are plastic fragments smaller than 5 mm, by various external forces such as wind, UV radiation, mechanical wear, and biodegradation. PET MPs have been widely detected in the environment and human tissue samples; however, the toxicity and mechanism of PET MPs in mammals are still unclear. In this study, we investigated the male reproductive toxicity of PET MPs and their underlying mechanism. A total of 80 male mice were orally exposed to 0.01, 0.1, and 1 mg/d of PET MPs (with a diameter of 1 μm) for 42 days. The results showed that 1 μm PET MPs induced different degrees of pathological damage to testicular tissues, decreased sperm quality, and increased the apoptosis of spermatogenic cells via oxidative stress and p38 signaling pathway activation. To further illustrate and verify the mechanistic pathway, oxidative stress was antagonized using N-acetylcysteine (NAC), and the activation of the p38 signaling pathway was blocked using SB203580. The results revealed that the male reproductive injury effects after exposure to PET MPs were significantly ameliorated. Specifically, the testicular tissue lesions were relieved, the sperm quality improved, and the apoptosis of spermatogenic cells decreased. These results demonstrated that PET MP exposure induced male reproductive toxicity through oxidative stress and the p38 signaling pathway. This study provides new insights into the reproductive toxicity of MPs in males, as well as valuable references for public health protection strategies.
Collapse
Affiliation(s)
- Tianyang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (T.L.); (X.Z.); (Z.L.)
| | - Bohao Bian
- Hulunbuir Center for Disease Control and Prevention, Hulunbuir 021000, China; (B.B.); (X.W.); (Q.S.)
| | - Rihao Ji
- School of Public Health, Baotou Medical College, Baotou 014000, China;
| | - Xiuwen Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (T.L.); (X.Z.); (Z.L.)
| | - Xiaohui Wo
- Hulunbuir Center for Disease Control and Prevention, Hulunbuir 021000, China; (B.B.); (X.W.); (Q.S.)
| | - Qiankun Song
- Hulunbuir Center for Disease Control and Prevention, Hulunbuir 021000, China; (B.B.); (X.W.); (Q.S.)
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (T.L.); (X.Z.); (Z.L.)
| | - Feifei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (T.L.); (X.Z.); (Z.L.)
| | - Yuqiao Jia
- School of Public Health, Baotou Medical College, Baotou 014000, China;
| |
Collapse
|
27
|
Yahia Z, Yahia A, Abdelaziz T. N-acetylcysteine Clinical Applications. Cureus 2024; 16:e72252. [PMID: 39450216 PMCID: PMC11499967 DOI: 10.7759/cureus.72252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 10/26/2024] Open
Abstract
This study aims to evaluate the therapeutic application of N-acetylcysteine (NAC) as a treatment or adjunct therapy for various medical conditions. While its efficacy in treating acetaminophen overdose, cystic fibrosis, and chronic obstructive pulmonary disease is well-established, emerging evidence suggests that NAC may also benefit a broader spectrum of illnesses due to its safety, simplicity, and affordability. A comprehensive review was conducted by searching PubMed, relevant books, and conference proceedings for publications discussing NAC about the specified health conditions. The clinically relevant data were analysed using the American Family Physician Evidence-Based Medicine Toolkit, following a standard integrated review methodology. NAC shows potential as an adjunctive treatment for a wide range of medical conditions, particularly chronic diseases. It may be beneficial for polycystic ovary syndrome, endometriosis, male infertility, cataracts, glaucoma, dry eye syndrome, parkinsonism, multiple sclerosis, Alzheimer's disease, stroke outcomes, non-acetaminophen-induced acute liver failure, Crohn's disease, ulcerative colitis, schizophrenia, bipolar disorder, and obsessive-compulsive disorder. Although evidence for some conditions is less robust, NAC's therapeutic potential warrants further investigation. Given the aging population and the decline in glutathione levels, the use of NAC should be considered across a variety of medical conditions. This paper suggests that NAC supplementation could play a significant role in reducing morbidity and mortality associated with numerous chronic diseases.
Collapse
Affiliation(s)
- Zoubaida Yahia
- General Practice, Wrightington, Wigan and Leigh NHS Foundation Trust, Wigan, GBR
| | - Amer Yahia
- Medical Assessment Unit, Royal Derby Hospital, Derby, GBR
| | | |
Collapse
|
28
|
Yang EJ, Kim JC, Na DH. Neuroprotective effects of cerebroprotein hydrolysate and its combination with antioxidants against oxidative stress-induced HT22 cell death. Toxicol Res 2024; 40:541-550. [PMID: 39345752 PMCID: PMC11436692 DOI: 10.1007/s43188-024-00248-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 10/01/2024] Open
Abstract
This study aimed to investigate the neuroprotective effects of cerebroprotein hydrolysate (CPH) against oxidative stress-induced HT22 cell death. Additionally, the effect of antioxidants such as quercetin (QC) and N-acetyl-L-cysteine (NAC) on the neuroprotective activity of CPH was evaluated. The mouse-derived hippocampal neuronal cell line HT22 was pretreated with CPH or a mixture of CPH and QC or NAC. HT22 cell death was induced by either 10 mM glutamate, 2.5 μM amyloid-β (Aβ)25-35, and 300 μM cobalt chloride (CoCl2). As results, CPH effectively alleviated HT22 cell death induced by glutamate, Aβ25-35, and CoCl2. In addition, CPH combination with QC augmented cell viability in both glutamate- and Aβ25-35-stressed conditions but had no synergic effect on the CoCl2-stressed condition. The synergic effect of CPH and NAC combination was observed under all cell death conditions. The neuroprotective actions of CPH and its combinations with QC or NAC against various oxidative stress-induced HT22 cell deaths were demonstrated, providing a promising strategy for developing CPH preparations for the prevention and/or treatment of neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Eun-Ju Yang
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Jae Cheon Kim
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Dong Hee Na
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul, 06974 Republic of Korea
| |
Collapse
|
29
|
Li P, Zhou H, Yang Y, Wu M, Zhao D, Wang L, Yi D, Hou Y. Dietary supplementation with N-acetylcysteine confers a protective effect on muscle and liver in lipopolysaccharide-challenged piglets. Front Nutr 2024; 11:1458912. [PMID: 39351494 PMCID: PMC11439690 DOI: 10.3389/fnut.2024.1458912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
N-acetylcysteine (NAC) is a well-established antioxidant that offers exciting opportunities for intestinal health in weaned piglets, while the effects of NAC on muscle and liver has not been fully characterized. Therefore, the present study was performed to investigate the effects of dietary supplementation with NAC on muscle and liver in weaned piglets challenged with lipopolysaccharide (LPS). Twenty-four piglets (24-day-old) were randomly assigned to three treatment groups, the piglets in the control (CTR) and LPS- challenged (LPS) groups were fed the basal diet and those in the LPS+ NAC group was fed the basal diet supplemented with 500 mg/kg NAC. The animal trial lasted for 21 days. At the end of the trial, piglets in the LPS and LPS+ NAC groups were injected intraperitoneally with LPS (100 μg/kg body weight) and piglets in the CTR group were administrated with an equal volume of normal saline. 3 h later, the blood was collected and tissue samples were obtained after 6 h of LPS or normal saline treatment. The results showed that the level of IL-1β, and the mRNA levels of C-X-C motif chemokine receptor 3 (CXCR3) and interferon-γ (IFN-γ) in the liver were up-regulated, and the mRNA levels of insulin-like growth factor 1 (IGF-1), total glutathione (T-GSH), and the ratio of total protein to DNA in the liver were decreased under LPS challenge (P < 0.05). At the same time, LPS increased the level of H2O2 and decreased the content of T-GSH and DNA in the longissimus dorsi and gastrocnemius muscles (P < 0.05). In addition, the percentage of monocytes and the level of epidermal growth factor (EGF) were down-regulated in the LPS treatment (P < 0.05). Interestingly, dietary NAC supplementation reversed the above changes induced by LPS (P < 0.05). Furthermore, NAC might alleviate the muscle and liver injury in LPS-challenged piglets by regulating the expression of genes related to the type I interferon signaling pathway, as well as hypoxia inducible factor 1 (HIF1) and nuclear factor erythroid-2 related factor 2 (Nrf-2). Our findings suggested that dietary supplementation with NAC could benefit the health of muscle and liver in LPS-challenged weaned piglets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yongqing Hou
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| |
Collapse
|
30
|
Li G, Li M, Deng Q, Yan C, Lv H, Zhao G, Li Y, Feng Y, Sun F, Fu Y, Li Y, Zhao Z. Design, Synthesis and Preliminary Bioactivity Evaluation of N-Acetylcysteine Derivatives as Antioxidative and Anti-Inflammatory Agents. ChemMedChem 2024; 19:e202400110. [PMID: 38847101 DOI: 10.1002/cmdc.202400110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/25/2024] [Indexed: 07/24/2024]
Abstract
N-acetylcysteine (NAC) is a commonly used mucolytic agent and antidote for acetaminophen overdose. For pulmonary diseases, NAC exhibits antioxidative properties, regulates cytokine production, reduces apoptosis of lung epithelial cells, and facilitates the resolution of inflammation. However, the efficacy of NAC in clinical trials targeting different pathological conditions is constrained by its short half-life and low bioavailability. In the present study, a series of NAC derivatives were designed and synthesized to further enhance its pharmacological activity. Structure-activity relationship (SAR) studies were conducted to optimize the activating groups. In vitro evaluations revealed that compounds 4 r, 4 t, 4 w, and 4 x exhibited superior antioxidative and anti-inflammatory activities compared to the positive controls of NAC and fudosteine. The ADME prediction analysis indicated that these compounds exhibited a favorable pharmacological profile. In-vivo experiments with compound 4 r demonstrated that the high-dose group (80 mg/kg) exhibited improved therapeutic effects in reversing the HPY level in mice with pulmonary fibrosis compared to the NAC group (500 mg/kg), further proving its superior oral bioavailability and therapeutic effect compared to NAC.
Collapse
Affiliation(s)
- Genjv Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
| | - Muhan Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
| | - Qi Deng
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
| | - Chongzheng Yan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
| | - Huaiyou Lv
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
| | - Guozhi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
| | - Yuhan Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
| | - Yafei Feng
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
| | - Fengqin Sun
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
| | - Yaqing Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
| | - Yizhe Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
| | - Zhongxi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
| |
Collapse
|
31
|
Wilson PR, Bridges KH, Scofield M, Wilson SH. Perioperative N-acetylcysteine: evidence and indications. Pain Manag 2024; 14:385-396. [PMID: 39166871 PMCID: PMC11486111 DOI: 10.1080/17581869.2024.2388504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Nonopioid analgesics serve to improve analgesia and limit side effects and risks of perioperative opioids. N-acetylcysteine (NAC), the primary treatment of acetaminophen toxicity, may have perioperative indications, including analgesia. NAC impacts glutathione synthesis, oxidant scavenging, glutamate receptor modulation and neuroinflammation. Potential perioperative benefits include arrhythmia prevention after cardiac surgery, decreased contrast-induced nephropathy, improved post-transplant liver function and superior pulmonary outcomes with general anesthesia. NAC may improve perioperative analgesia, with some studies displaying a reduction in postoperative opioid use. NAC is generally well tolerated with an established safety profile. NAC administration may predispose to gastrointestinal effects, while parenteral administration may carry a risk of anaphylactoid reactions, including bronchospasm. Larger randomized trials may clarify the impact of NAC on perioperative analgesic outcomes.
Collapse
Affiliation(s)
- Phillip Ryan Wilson
- Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kathryn H Bridges
- Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Michael Scofield
- Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Sylvia H Wilson
- Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
32
|
Na J, Ryu HG, Park H, Park H, Lee E, Nam Y, Kim H, Jang SM, Kim DY, Kim S. FoxO1 Alleviates the Mitochondrial ROS Levels Induced by α-Synuclein Preformed Fibrils in BV-2 Microglial Cells. Inflammation 2024:10.1007/s10753-024-02119-x. [PMID: 39145787 DOI: 10.1007/s10753-024-02119-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder marked by the gradual deterioration of dopaminergic neurons, especially in the substantia nigra pars compacta (SNc). Dysregulation of the transcription factor FoxO1 is associated with various neurodegenerative conditions, including Alzheimer's disease and PD, though the specific mechanisms involved are not fully understood. This study explores the effects of α-Synuclein preformed fibrils (PFF) on BV-2 microglial cells, focusing on changes in molecular characteristics and their impact on neuronal degeneration. Our results demonstrate that PFF treatment significantly increases FoxO1 mRNA (p = 0.0443) and protein (p = 0.0216) levels, leading to its nuclear translocation (p = 0.0142) and enhanced expression of genes involved in the detoxification of reactive oxygen species (ROS), such as Catalase (Cat, p = 0.0249) and superoxide dismutase 2 (Sod2, p = 0.0313). Furthermore, we observed that PFF treatment elevates mitochondrial ROS levels. However, cells lacking FoxO1 or treated with FoxO1 inhibitors showed increased vulnerability to PFF-induced ROS, attributed to reduced expression of ROS detoxifying enzymes Cat and Sod2 (p < 0.0001). Besides enhancing ROS production, inhibiting FoxO1 also heightens neurotoxicity induced by PFF treatment in microglia-conditioned medium (p < 0.0001). Conversely, treatment with N-acetylcysteine or bacterial superoxide dismutase A mitigated the ROS increase induced by PFF (p < 0.0001). These findings suggest the essential role of FoxO1 in regulating ROS levels, which helps alleviate pathology in PFF-induced PD models. Our study provides insights into the genetic mechanisms of PD and suggests potential pathways for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Jiyeon Na
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Hye Guk Ryu
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Haeun Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Hyeonwoo Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Eunmin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Younwoo Nam
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Hyerynn Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sang-Min Jang
- Department of Biochemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41940, Republic of Korea.
| | - Sangjune Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
33
|
Tasci T, Orta-Yilmaz B, Aydin Y, Caliskan M. N-acetylcysteine attenuates sodium arsenite-induced oxidative stress and apoptosis in embryonic fibroblast cells. Toxicol Res (Camb) 2024; 13:tfae128. [PMID: 39139367 PMCID: PMC11319482 DOI: 10.1093/toxres/tfae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
In recent years, the increase in environmental pollutants has been one of the most important factors threatening human and environmental health. Arsenic, a naturally occurring element found in soil, water, and air, easily enters the human body and leads to many metabolic disorders. In this study, we focused on the possible protective effects of N-acetylcysteine (NAC) against sodium arsenite (As)-induced toxic effects on embryonic fibroblast cells. The effects of As and NAC treatment on cells were evaluated, including cytotoxicity, oxidative stress, and apoptosis. Embryonic fibroblast cells were exposed to As (ranging from 0.01 μM to 10 μM) and NAC (at a concentration of 2 mM) for 24 h. The assessment of cytotoxicity markers, such as cell viability and lactate dehydrogenase (LDH), showed that As significantly reduced cell viability and increased LDH levels. Furthermore, we observed that As increased the amount of reactive oxygen species (ROS) in the cell, decreased the activity of antioxidant enzymes, and triggered apoptosis in cells. Additionally, our research revealed that the administration of NAC mitigates the detrimental effects of As. The results showed that As exerted hazardous effects on embryonic fibroblast cells through the induction of oxidative stress and apoptosis. In this context, our study provides evidence that NAC may have a protective effect against the toxicity of As in embryonic fibroblast cells.
Collapse
Affiliation(s)
- Tunahan Tasci
- Department of Biology, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul 34126, Turkey
- Department of Medical Services and Techniques, Vocational School of Health Services, Istanbul Bilgi University, Istanbul 34387, Turkey
| | - Banu Orta-Yilmaz
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul 34126, Turkey
| | - Yasemin Aydin
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul 34126, Turkey
| | - Mahmut Caliskan
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul 34126, Turkey
| |
Collapse
|
34
|
Tsai MS, Liou GG, Liao JW, Lai PY, Yang DJ, Wu SH, Wang SH. N-acetyl Cysteine Overdose Induced Acute Toxicity and Hepatic Microvesicular Steatosis by Disrupting GSH and Interfering Lipid Metabolisms in Normal Mice. Antioxidants (Basel) 2024; 13:832. [PMID: 39061900 PMCID: PMC11273582 DOI: 10.3390/antiox13070832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
N-acetyl cysteine (NAC) is a versatile drug used in various conditions, but the limitations and toxicities are not clear. The acute toxicity and toxicological mechanisms of an intraperitoneal injection of NAC in normal mice were deciphered. The LD50 for male and female BALB/cByJNarl mice were 800 mg/kg and 933 mg/kg. The toxicological mechanisms of 800 mg/kg NAC (N800) were investigated. The serum biomarkers of hepatic and renal indices dramatically increased, followed by hepatic microvesicular steatosis, renal tubular injury and necrosis, and splenic red pulp atrophy and loss. Thus, N800 resulted in mouse mortality mainly due to acute liver, kidney, and spleen damages. The safe dose (275 mg/kg) of NAC (N275) increased hepatic antioxidant capacity by increasing glutathione levels and catalase activity. N275 elevated the hepatic gene expressions of lipid transporter, lipid synthesis, β-oxidation, and ketogenesis, suggesting a balance between lipid production and consumption, and finally, increased ATP production. In contrast, N800 increased hepatic oxidative stress by decreasing glutathione levels through suppressing Gclc, and reducing catalase activity. N800 decreased the hepatic gene expressions of lipid transporter, lipid synthesis, and interferred β-oxidation, leading to lipid accumulation and increasing Cyp2E1 expression, and finally, decreased ATP production. Therefore, NAC doses are limited for normal individuals, especially via intraperitoneal injection or similar means.
Collapse
Affiliation(s)
- Ming-Shiun Tsai
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Changhua 515006, Taiwan;
| | - Gunn-Guang Liou
- Office of Research and Development, College of Medicine, National Taiwan University, Taipei 106319, Taiwan;
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 402202, Taiwan;
| | - Pin-Yen Lai
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402201, Taiwan; (P.-Y.L.); (D.-J.Y.); (S.-H.W.)
| | - Di-Jie Yang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402201, Taiwan; (P.-Y.L.); (D.-J.Y.); (S.-H.W.)
| | - Szu-Hua Wu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402201, Taiwan; (P.-Y.L.); (D.-J.Y.); (S.-H.W.)
| | - Sue-Hong Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402201, Taiwan; (P.-Y.L.); (D.-J.Y.); (S.-H.W.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402201, Taiwan
| |
Collapse
|
35
|
Guo C, Peng J, Cheng P, Yang C, Gong S, Zhang L, Zhang T, Peng J. Mechanistic elucidation of ferroptosis and ferritinophagy: implications for advancing our understanding of arthritis. Front Physiol 2024; 15:1290234. [PMID: 39022306 PMCID: PMC11251907 DOI: 10.3389/fphys.2024.1290234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/23/2024] [Indexed: 07/20/2024] Open
Abstract
In recent years, the emerging phenomenon of ferroptosis has garnered significant attention as a distinctive mode of programmed cell death. Distinguished by its reliance on iron and dependence on reactive oxygen species (ROS), ferroptosis has emerged as a subject of extensive investigation. Mechanistically, this intricate process involves perturbations in iron homeostasis, dampening of system Xc-activity, morphological dynamics within mitochondria, and the onset of lipid peroxidation. Additionally, the concomitant phenomenon of ferritinophagy, the autophagic degradation of ferritin, assumes a pivotal role by facilitating the liberation of iron ions from ferritin, thereby advancing the progression of ferroptosis. This discussion thoroughly examines the detailed cell structures and basic processes behind ferroptosis and ferritinophagy. Moreover, it scrutinizes the intricate web of regulators that orchestrate these processes and examines their intricate interplay within the context of joint disorders. Against the backdrop of an annual increase in cases of osteoarthritis, rheumatoid arthritis, and gout, these narrative sheds light on the intriguing crossroads of pathophysiology by dissecting the intricate interrelationships between joint diseases, ferroptosis, and ferritinophagy. The newfound insights contribute fresh perspectives and promising therapeutic avenues, potentially revolutionizing the landscape of joint disease management.
Collapse
Affiliation(s)
- Caopei Guo
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
| | - Jiaze Peng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
| | - Piaotao Cheng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
| | - Chengbing Yang
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
| | - Shouhang Gong
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
| | - Lin Zhang
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiachen Peng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
- Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| |
Collapse
|
36
|
Kang H, Choi SW, Kim JY, Oh SJ, Kim SJ, Lee MS. ER-to-lysosome Ca 2+ refilling followed by K + efflux-coupled store-operated Ca 2+ entry in inflammasome activation and metabolic inflammation. eLife 2024; 12:RP87561. [PMID: 38953285 PMCID: PMC11219040 DOI: 10.7554/elife.87561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Abstract
We studied lysosomal Ca2+ in inflammasome. Lipopolysaccharide (LPS) + palmitic acid (PA) decreased lysosomal Ca2+ ([Ca2+]Lys) and increased [Ca2+]i through mitochondrial ROS, which was suppressed in Trpm2-KO macrophages. Inflammasome activation and metabolic inflammation in adipose tissue of high-fat diet (HFD)-fed mice were ameliorated by Trpm2 KO. ER→lysosome Ca2+ refilling occurred after lysosomal Ca2+ release whose blockade attenuated LPS + PA-induced inflammasome. Subsequently, store-operated Ca2+entry (SOCE) was activated whose inhibition suppressed inflammasome. SOCE was coupled with K+ efflux whose inhibition reduced ER Ca2+ content ([Ca2+]ER) and impaired [Ca2+]Lys recovery. LPS + PA activated KCa3.1 channel, a Ca2+-activated K+ channel. Inhibitors of KCa3.1 channel or Kcnn4 KO reduced [Ca2+]ER, attenuated increase of [Ca2+]i or inflammasome activation by LPS + PA, and ameliorated HFD-induced inflammasome or metabolic inflammation. Lysosomal Ca2+ release induced delayed JNK and ASC phosphorylation through CAMKII-ASK1. These results suggest a novel role of lysosomal Ca2+ release sustained by ER→lysosome Ca2+ refilling and K+ efflux through KCa3.1 channel in inflammasome activation and metabolic inflammation.
Collapse
Affiliation(s)
- Hyereen Kang
- Severance Biomedical Science Institute, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Seong Woo Choi
- Department of Physiology and Ion Channel Disease Research Center, Dongguk University College of MedicineGyeongjuRepublic of Korea
| | - Joo Young Kim
- Department of Pharmacology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Soo-Jin Oh
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of MedicineCheonanRepublic of Korea
| | - Sung Joon Kim
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Myung-Shik Lee
- Severance Biomedical Science Institute, Yonsei University College of MedicineSeoulRepublic of Korea
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of MedicineCheonanRepublic of Korea
| |
Collapse
|
37
|
Vargas-Barona A, Bernáldez-Sarabia J, Castro-Ceseña AB. Lipid-polymer hybrid nanoparticles loaded with N-acetylcysteine for the modulation of neuroinflammatory biomarkers in human iPSC-derived PSEN2 (N141I) astrocytes as a model of Alzheimer's disease. J Mater Chem B 2024; 12:5085-5097. [PMID: 38713059 DOI: 10.1039/d4tb00521j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive impairment associated with the accumulation of beta-amyloid protein (Aβ). Aβ activates glial cells in the brain, increasing the secretion of proinflammatory cytokines, which leads to neuroinflammation and neuronal death. Currently, there are no effective treatments that cure or stop its progression; therefore, AD is considered a global health priority. The main limitations are the low drug bioavailability and impermeability of the blood-brain barrier (BBB). Fortunately, nanomedicine has emerged as a promising field for the development of new nanosystems for the controlled and targeted delivery of drugs to the brain. Therefore, in this work, lipid-polymer hybrid nanoparticles (LPHNPs) conjugated with transferrin (Tf) to facilitate crossing the BBB and loaded with N-acetylcysteine (NAC) for its anti-inflammatory effect were synthesized, and their physicochemical characterization was carried out. Subsequently, an in vitro model involving human astrocytes derived from induced pluripotent stem cells (iPSC) from an AD-diagnosed patient was developed, which was brought to a reactive state by stimulation with lipopolysaccharides (LPSs). The cell culture was treated with either Tf-conjugated LPHNPs loaded with NAC (NAC-Tf-LPHNPs) at 0.25 mg mL-1, or free NAC at 5 mM. The results showed that NAC-Tf-LPHNPs favorably modulated the expression of proinflammatory genes such as interleukin-1β (IL-1β), amyloid precursor protein (APP) and glial fibrillary acidic protein (GFAP). In addition, they reduced the secretion of the proinflammatory cytokines interleukin 6 (IL-6), IL-1β and interferon-gamma (INF-γ). Results for both cases were compared to the group of cells that did not receive any treatment. In contrast, free NAC only had this effect on the expression of IL-1β and the secretion of the cytokines IL-6 and INF-γ. These results indicate the potential of NAC-Tf-LPHNPs for AD treatment.
Collapse
Affiliation(s)
- Alondra Vargas-Barona
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada- Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Johanna Bernáldez-Sarabia
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada- Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Ana B Castro-Ceseña
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada- Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
- CONAHCYT-Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico
| |
Collapse
|
38
|
Monou PK, Andriotis E, Tzetzis D, Tzimtzimis E, Panteris E, Andreadis D, Demiri E, Vizirianakis IS, Fatouros DG. Evaluation of 3D-Printed Solid Microneedles Coated with Electrosprayed Polymeric Nanoparticles for Simultaneous Delivery of Rivastigmine and N-Acetyl Cysteine. ACS APPLIED BIO MATERIALS 2024; 7:2710-2724. [PMID: 38591866 DOI: 10.1021/acsabm.3c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
In the current study, coated microneedle arrays were fabricated by means of digital light processing (DLP) printing. Three different shapes were designed, printed, and coated with PLGA particles containing two different actives. Rivastigmine (RIV) and N-acetyl-cysteine (NAC) were coformulated via electrohydrodynamic atomization (EHDA), and they were incorporated into the PLGA particles. The two actives are administered as a combined therapy for Alzheimer's disease. The printed arrays were evaluated regarding their ability to penetrate skin and their mechanical properties. Optical microscopy and scanning electron microscopy (SEM) were employed to further characterize the microneedle structure. Confocal laser microscopy studies were conducted to construct 3D imaging of the coating and to simulate the diffusion of the particles through artificial skin samples. Permeation studies were performed to investigate the transport of the drugs across human skin ex vivo. Subsequently, a series of tape strippings were performed in an attempt to examine the deposition of the APIs on and within the skin. Light microscopy and histological studies revealed no drastic effects on the membrane integrity of the stratum corneum. Finally, the cytocompatibility of the microneedles and their precursors was evaluated by measuring cell viability (MTT assay and live/dead staining) and membrane damages followed by LDH release.
Collapse
Affiliation(s)
- Paraskevi Kyriaki Monou
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Eleftherios Andriotis
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios Tzetzis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 57001 Thessaloniki, Greece
| | - Emmanouil Tzimtzimis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 57001 Thessaloniki, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios Andreadis
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Efterpi Demiri
- Clinic of Plastic and Reconstructive Surgery, Papageorgiou General Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis S Vizirianakis
- Department of Pharmacy, Laboratory of Pharmacology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios G Fatouros
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| |
Collapse
|
39
|
Zhou J, Zhou J, Liu R, Liu Y, Meng J, Wen Q, Luo Y, Liu S, Li H, Ba L, Du J. The oxidant-antioxidant imbalance was involved in the pathogenesis of chronic rhinosinusitis with nasal polyps. Front Immunol 2024; 15:1380846. [PMID: 38756779 PMCID: PMC11096511 DOI: 10.3389/fimmu.2024.1380846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Background Although oxidative stress is involved in the pathophysiological process of chronic rhinosinusitis with nasal polyps (CRSwNP), the specific underlying mechanism is still unclear. Whether antioxidant therapy can treat CRSwNP needs further investigation. Methods Immunohistochemistry, immunofluorescence, western blotting and quantitative polymerase chain reaction (qPCR) analyses were performed to detect the distribution and expression of oxidants and antioxidants in nasal polyp tissues. qPCR revealed correlations between oxidase, antioxidant enzymes and inflammatory cytokine levels in CRSwNP patients. Human nasal epithelial cells (HNEpCs) and primary macrophages were cultured to track the cellular origin of oxidative stress in nasal polyps(NPs) and to determine whether crocin can reduce cellular inflammation by increasing the cellular antioxidant capacity. Results The expression of NOS2, NOX1, HO-1 and SOD2 was increased in nasal epithelial cells and macrophages derived from nasal polyp tissue. Oxidase levels were positively correlated with those of inflammatory cytokines (IL-5 and IL-6). Conversely, the levels of antioxidant enzymes were negatively correlated with those of IL-13 and IFN-γ. Crocin inhibited M1 and M2 macrophage polarization as well as the expression of NOS2 and NOX1 and improved the antioxidant capacity of M2 macrophages. Moreover, crocin enhanced the ability of antioxidants to reduce inflammation via the KEAP1/NRF2/HO-1 pathway in HNEpCs treated with SEB or LPS. Additionally, we observed the antioxidant and anti-inflammatory effects of crocin in nasal explants. Conclusion Oxidative stress plays an important role in the development of CRSwNP by promoting various types of inflammation. The oxidative stress of nasal polyps comes from epithelial cells and macrophages. Antioxidant therapy may be a promising strategy for treating CRSwNP.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
- Upper Respiratory Tract Laboratory of Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Zhou
- Department of Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University, Chengdu, China
| | - Ruowu Liu
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
- Upper Respiratory Tract Laboratory of Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yafeng Liu
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
- Upper Respiratory Tract Laboratory of Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Meng
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
- Upper Respiratory Tract Laboratory of Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Wen
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
- Upper Respiratory Tract Laboratory of Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yirui Luo
- Department of Otolaryngology, People’s Hospital of Tibet Autonomous Region, Lhasa, China
| | - Shixi Liu
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
- Upper Respiratory Tract Laboratory of Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Huabin Li
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Luo Ba
- Department of Otolaryngology, People’s Hospital of Tibet Autonomous Region, Lhasa, China
| | - Jintao Du
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
- Upper Respiratory Tract Laboratory of Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
40
|
El-Habta R, Af Bjerkén S, Virel A. N-acetylcysteine increases dopamine release and prevents the deleterious effects of 6-OHDA on the expression of VMAT2, α-synuclein, and tyrosine hydroxylase. Neurol Res 2024; 46:406-415. [PMID: 38498979 DOI: 10.1080/01616412.2024.2325312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVES Current treatments for Parkinson's disease using pharmacological approaches alleviate motor symptoms but do not prevent neuronal loss or dysregulation of dopamine neurotransmission. In this article, we have explored the molecular mechanisms underlying the neuroprotective effect of the antioxidant N-acetylcysteine (NAC) on the damaged dopamine system. METHODS SH-SY5Y cells were differentiated towards a dopaminergic phenotype and exposed to 6-hydroxydopamine (6-OHDA) to establish an in vitro model of Parkinson's disease. We examined the potential of NAC to restore the pathological effects of 6-OHDA on cell survival, dopamine synthesis as well as on key proteins regulating dopamine metabolism. Specifically, we evaluated gene- and protein expression of tyrosine hydroxylase (TH), vesicle monoamine transporter 2 (VMAT2), and α-synuclein, by using qPCR and Western blot techniques. Moreover, we quantified the effect of NAC on total dopamine levels using a dopamine ELISA assay. RESULTS Our results indicate that NAC has a neuroprotective role in SH-SY5Y cells exposed to 6-OHDA by maintaining cell proliferation and decreasing apoptosis. Additionally, we demonstrated that NAC treatment increases dopamine release and protects SH-SY5Y cells against 6-OHDA dysregulations on the proteins TH, VMAT2, and α-synuclein. CONCLUSIONS Our findings contribute to the validation of compounds capable to restore dopamine homeostasis and shed light on the metabolic pathways that could be targeted to normalize dopamine turnover. Furthermore, our results highlight the effectiveness of the antioxidant NAC in the prevention of dopaminergic neurodegeneration in the present model. ABBREVIATIONS DAT, dopamine transporter; 6-OHDA, 6-hydroxydopamine; NAC, N-acetylcysteine; PARP, poly (ADP-ribose) polymerase; RA; retinoic acid; ROS, reactive oxygen species; TH, tyrosine hydroxylase; TPA, 12-O-tetradecanoyl-phorbol-13-acetate; VMAT2, vesicle monoamine transporter 2.
Collapse
Affiliation(s)
- Roine El-Habta
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Sara Af Bjerkén
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Neuroscience, Umeå University, Umeå, Sweden
| | - Ana Virel
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
41
|
Chaurembo AI, Xing N, Chanda F, Li Y, Zhang HJ, Fu LD, Huang JY, Xu YJ, Deng WH, Cui HD, Tong XY, Shu C, Lin HB, Lin KX. Mitofilin in cardiovascular diseases: Insights into the pathogenesis and potential pharmacological interventions. Pharmacol Res 2024; 203:107164. [PMID: 38569981 DOI: 10.1016/j.phrs.2024.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/09/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
The impact of mitochondrial dysfunction on the pathogenesis of cardiovascular disease is increasing. However, the precise underlying mechanism remains unclear. Mitochondria produce cellular energy through oxidative phosphorylation while regulating calcium homeostasis, cellular respiration, and the production of biosynthetic chemicals. Nevertheless, problems related to cardiac energy metabolism, defective mitochondrial proteins, mitophagy, and structural changes in mitochondrial membranes can cause cardiovascular diseases via mitochondrial dysfunction. Mitofilin is a critical inner mitochondrial membrane protein that maintains cristae structure and facilitates protein transport while linking the inner mitochondrial membrane, outer mitochondrial membrane, and mitochondrial DNA transcription. Researchers believe that mitofilin may be a therapeutic target for treating cardiovascular diseases, particularly cardiac mitochondrial dysfunctions. In this review, we highlight current findings regarding the role of mitofilin in the pathogenesis of cardiovascular diseases and potential therapeutic compounds targeting mitofilin.
Collapse
Affiliation(s)
- Abdallah Iddy Chaurembo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Na Xing
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China.
| | - Francis Chanda
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui-Juan Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Li-Dan Fu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian-Yuan Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Jing Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Hui Deng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao-Dong Cui
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Guizhou Medical University, Guiyang, Guizhou, China
| | - Xin-Yue Tong
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chi Shu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Food Science College, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Kai-Xuan Lin
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
42
|
Sun Y, Xiao Y, Tang Q, Chen W, Lin L. Genetic markers associated with ferroptosis in Alzheimer's disease. Front Aging Neurosci 2024; 16:1364605. [PMID: 38711596 PMCID: PMC11073811 DOI: 10.3389/fnagi.2024.1364605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Objective Ferroptosis is implicated in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and vascular dementia, implying that it may have a regulatory effect on the progression of these diseases. However, the specific role of ferroptosis-related genes (FRGs) in Alzheimer's disease (AD) is not yet fully understood. The aim of the study was to detect ferroptosis related genes with regulatory functions in the disease and explore potential mechanisms in AD. Methods Hub FRGs were obtained through multiple algorithms based on the GSE5281 dataset. The screening process was implemented by R packages including limma, WGCNA, glm and SVM-RFE. Gene Ontology classification and pathway enrichment analysis were performed based on FRGs. Biological processes involved with hub FRGs were investigated through GSVA and GSEA methods. Immune infiltration analysis was performed by the R package CIBERSORT. Receiver operating characteristic curve (ROC) was utilized to validate the accuracy of hub FRGs. The CeRNA network attempted to find non-coding RNA transcripts which may play a role in disease progression. Results DDIT4, MUC1, KLHL24, CD44, and RB1 were identified as hub FRGs. As later revealed by enrichment analysis, the hub FRGs had important effects on AD through involvement in diverse AD pathogenesis-related pathways such as autophagy and glutathione metabolism. The immune microenvironment in AD shows increased numbers of resting NK cells, macrophages, and mast cells, with decreased levels of CD8 T cells when compared to healthy samples. Regulatory T cells were positively correlated with MUC1, KLHL24, and DDIT4 expression, while RB1 showed negative correlations with eosinophils and CD8 T cells, suggesting potential roles in modulating the immune environment in AD. Conclusion Our research has identified five hub FRGs in AD. We concluded that ferroptosis may be involved in the disease.
Collapse
Affiliation(s)
- Yuting Sun
- Department of Clinical Laboratory, The Fourth People’s Hospital of Chengdu, Chengdu, China
- Department of Clinical Laboratory, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Xiao
- Psychosomatic Medicine Center, The Fourth People’s Hospital of Chengdu, Chengdu, China
- Psychosomatic Medicine Center, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Tang
- Department of Clinical Laboratory, The Fourth People’s Hospital of Chengdu, Chengdu, China
- Department of Clinical Laboratory, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Chen
- Department of Clinical Laboratory, The Fourth People’s Hospital of Chengdu, Chengdu, China
- Department of Clinical Laboratory, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Lin
- Department of Clinical Laboratory, The Fourth People’s Hospital of Chengdu, Chengdu, China
- Department of Clinical Laboratory, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
43
|
Li J, Yan K, Wang S, Wang P, Jiao J, Dong Y. Alteration of the intestinal microbiota and serum metabolites in a mouse model of Pon1 gene ablation. FASEB J 2024; 38:e23611. [PMID: 38597925 DOI: 10.1096/fj.202302344r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/15/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Mutations in the Paraoxonase 1 (Pon1) gene underlie aging, cardiovascular disease, and impairments of the nervous and gastrointestinal systems and are linked to the intestinal microbiome. The potential role of Pon1 in modulating the intestinal microbiota and serum metabolites is poorly understood. The present study demonstrated that mice with genomic excision of Pon1 by a multiplexed guide RNA CRISPR/Cas9 approach exhibited disrupted gut microbiota, such as significantly depressed alpha-diversity and distinctly separated beta diversity, accompanied by varied profiles of circulating metabolites. Furthermore, genomic knock in of Pon1 exerted a distinct effect on the intestinal microbiome and serum metabolome, including dramatically enriched Aerococcus, linoleic acid and depleted Bacillus, indolelactic acid. Specifically, a strong correlation was established between bacterial alterations and metabolites in Pon1 knockout mice. In addition, we identified metabolites related to gut bacteria in response to Pon1 knock in. Thus, the deletion of Pon1 affects the gut microbiome and functionally modifies serum metabolism, which can lead to dysbiosis, metabolic dysfunction, and infection risk. Together, these findings put forth a role for Pon1 in microbial alterations that contribute to metabolism variations. The function of Pon1 in diseases might at least partially depend on the microbiome.
Collapse
Affiliation(s)
- Jing Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Kaixin Yan
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Siyuan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Pan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jie Jiao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
44
|
Deng Y, Chu X, Li Q, Zhu G, Hu J, Sun J, Zeng H, Huang J, Ge G. Xanthohumol ameliorates drug-induced hepatic ferroptosis via activating Nrf2/xCT/GPX4 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155458. [PMID: 38394733 DOI: 10.1016/j.phymed.2024.155458] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND As a canonical iron-dependent form of regulated cell death (RCD), ferroptosis plays a crucial role in chemical-induced liver injuries. Previous studies have demonstrated that xanthohumol (Xh), a natural prenylflavonoid isolated from hops, exhibits anti-inflammatory, anti-antioxidative and hepatoprotective properties. However, the regulatory effects of Xh on hepatic ferroptosis and the underlying mechanism have not yet been fully elucidated. PURPOSE To investigate the hepatoprotective effects of Xh against drug-induced liver injury (DILI) and the regulatory effects of Xh on hepatic ferroptosis, as well as to reveal the underlying molecular mechanisms. METHODS/STUDY DESIGN The hepatoprotective benefits of Xh were investigated in APAP-induced liver injury (AILI) mice and HepaRG cells. Xh was administered intraperitoneally to assess its in vivo effects. Histological and biochemical studies were carried out to evaluate liver damage. A series of ferroptosis-related markers, including intracellular Fe2+ levels, ROS and GSH levels, the levels of MDA, LPO and 4-HNE, as well as the expression levels of ferroptosis-related proteins and modulators were quantified both in vivo and in vitro. The modified peptides of Keap1 by Xh were characterized utilizing nano LC-MS/MS. RESULTS Xh remarkably suppresses hepatic ferroptosis and ameliorates AILI both in vitro and in vivo, via suppressing Fe2+ accumulation, ROS formation, MDA generation and GSH depletion, these observations could be considerably mitigated by the ferroptosis inhibitor ferrostatin-1 (Fer-1). Mechanistically, Xh could significantly activate the Nrf2/xCT/GPX4 signaling pathway to counteract AILI-induced hepatocyte ferroptosis. Further investigations showed that Xh could covalently modify three functional cysteine residues (cys151, 273, 288) of Keap1, which in turn, reduced the ubiquitination rates of Nrf2 and prolonged its degradation half-life. CONCLUSIONS Xh evidently suppresses hepatic ferroptosis and ameliorates AILI via covalent modifying three key cysteines of Keap1 and activating Nrf2/xCT/GPX4 signaling pathway.
Collapse
Affiliation(s)
- Yanyan Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine. Shanghai 201203, China
| | - Xiayan Chu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine. Shanghai 201203, China
| | - Qian Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine. Shanghai 201203, China
| | - Guanghao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine. Shanghai 201203, China
| | - Jing Hu
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Jianming Sun
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Hairong Zeng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine. Shanghai 201203, China.
| | - Jian Huang
- Pharmacology and Toxicology Division, Shanghai Institute of Food and Drug Control, Shanghai 201203, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine. Shanghai 201203, China.
| |
Collapse
|
45
|
Naidu AS, Wang CK, Rao P, Mancini F, Clemens RA, Wirakartakusumah A, Chiu HF, Yen CH, Porretta S, Mathai I, Naidu SAG. Precision nutrition to reset virus-induced human metabolic reprogramming and dysregulation (HMRD) in long-COVID. NPJ Sci Food 2024; 8:19. [PMID: 38555403 PMCID: PMC10981760 DOI: 10.1038/s41538-024-00261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
SARS-CoV-2, the etiological agent of COVID-19, is devoid of any metabolic capacity; therefore, it is critical for the viral pathogen to hijack host cellular metabolic machinery for its replication and propagation. This single-stranded RNA virus with a 29.9 kb genome encodes 14 open reading frames (ORFs) and initiates a plethora of virus-host protein-protein interactions in the human body. These extensive viral protein interactions with host-specific cellular targets could trigger severe human metabolic reprogramming/dysregulation (HMRD), a rewiring of sugar-, amino acid-, lipid-, and nucleotide-metabolism(s), as well as altered or impaired bioenergetics, immune dysfunction, and redox imbalance in the body. In the infectious process, the viral pathogen hijacks two major human receptors, angiotensin-converting enzyme (ACE)-2 and/or neuropilin (NRP)-1, for initial adhesion to cell surface; then utilizes two major host proteases, TMPRSS2 and/or furin, to gain cellular entry; and finally employs an endosomal enzyme, cathepsin L (CTSL) for fusogenic release of its viral genome. The virus-induced HMRD results in 5 possible infectious outcomes: asymptomatic, mild, moderate, severe to fatal episodes; while the symptomatic acute COVID-19 condition could manifest into 3 clinical phases: (i) hypoxia and hypoxemia (Warburg effect), (ii) hyperferritinemia ('cytokine storm'), and (iii) thrombocytosis (coagulopathy). The mean incubation period for COVID-19 onset was estimated to be 5.1 days, and most cases develop symptoms after 14 days. The mean viral clearance times were 24, 30, and 39 days for acute, severe, and ICU-admitted COVID-19 patients, respectively. However, about 25-70% of virus-free COVID-19 survivors continue to sustain virus-induced HMRD and exhibit a wide range of symptoms that are persistent, exacerbated, or new 'onset' clinical incidents, collectively termed as post-acute sequelae of COVID-19 (PASC) or long COVID. PASC patients experience several debilitating clinical condition(s) with >200 different and overlapping symptoms that may last for weeks to months. Chronic PASC is a cumulative outcome of at least 10 different HMRD-related pathophysiological mechanisms involving both virus-derived virulence factors and a multitude of innate host responses. Based on HMRD and virus-free clinical impairments of different human organs/systems, PASC patients can be categorized into 4 different clusters or sub-phenotypes: sub-phenotype-1 (33.8%) with cardiac and renal manifestations; sub-phenotype-2 (32.8%) with respiratory, sleep and anxiety disorders; sub-phenotype-3 (23.4%) with skeleto-muscular and nervous disorders; and sub-phenotype-4 (10.1%) with digestive and pulmonary dysfunctions. This narrative review elucidates the effects of viral hijack on host cellular machinery during SARS-CoV-2 infection, ensuing detrimental effect(s) of virus-induced HMRD on human metabolism, consequential symptomatic clinical implications, and damage to multiple organ systems; as well as chronic pathophysiological sequelae in virus-free PASC patients. We have also provided a few evidence-based, human randomized controlled trial (RCT)-tested, precision nutrients to reset HMRD for health recovery of PASC patients.
Collapse
Affiliation(s)
- A Satyanarayan Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA.
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA.
| | - Chin-Kun Wang
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung, 40201, Taiwan
| | - Pingfan Rao
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- College of Food and Bioengineering, Fujian Polytechnic Normal University, No.1, Campus New Village, Longjiang Street, Fuqing City, Fujian, China
| | - Fabrizio Mancini
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President-Emeritus, Parker University, 2540 Walnut Hill Lane, Dallas, TX, 75229, USA
| | - Roger A Clemens
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- University of Southern California, Alfred E. Mann School of Pharmacy/D. K. Kim International Center for Regulatory & Quality Sciences, 1540 Alcazar St., CHP 140, Los Angeles, CA, 90089, USA
| | - Aman Wirakartakusumah
- International Union of Food Science and Technology (IUFoST), Guelph, ON, Canada
- IPMI International Business School Jakarta; South East Asian Food and Agriculture Science and Technology, IPB University, Bogor, Indonesia
| | - Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital, Ministry of Health & Well-being, Taichung, Taiwan
| | - Chi-Hua Yen
- Department of Family and Community Medicine, Chung Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sebastiano Porretta
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President, Italian Association of Food Technology (AITA), Milan, Italy
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121, Parma, Italy
| | - Issac Mathai
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- Soukya International Holistic Health Center, Whitefield, Bengaluru, India
| | - Sreus A G Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA
| |
Collapse
|
46
|
Wang L, Fang X, Ling B, Wang F, Xia Y, Zhang W, Zhong T, Wang X. Research progress on ferroptosis in the pathogenesis and treatment of neurodegenerative diseases. Front Cell Neurosci 2024; 18:1359453. [PMID: 38515787 PMCID: PMC10955106 DOI: 10.3389/fncel.2024.1359453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Globally, millions of individuals are impacted by neurodegenerative disorders including Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD). Although a great deal of energy and financial resources have been invested in disease-related research, breakthroughs in therapeutic approaches remain elusive. The breakdown of cells usually happens together with the onset of neurodegenerative diseases. However, the mechanism that triggers neuronal loss is unknown. Lipid peroxidation, which is iron-dependent, causes a specific type of cell death called ferroptosis, and there is evidence its involvement in the pathogenic cascade of neurodegenerative diseases. However, the specific mechanisms are still not well known. The present article highlights the basic processes that underlie ferroptosis and the corresponding signaling networks. Furthermore, it provides an overview and discussion of current research on the role of ferroptosis across a variety of neurodegenerative conditions.
Collapse
Affiliation(s)
- Lijuan Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiansong Fang
- Department of Blood Transfusion, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Baodian Ling
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fangsheng Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yu Xia
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Wenjuan Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoling Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
47
|
Aslanlar DA, Vişneci EF, Oz M, Nurullahoglu Atalik KE. N-acetylcysteine ameliorates chemotherapy-induced impaired anxiety and depression-like behaviors by regulating inflammation, oxidative and cholinergic status, and BDNF release. Behav Brain Res 2024; 458:114740. [PMID: 37926333 DOI: 10.1016/j.bbr.2023.114740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Mood disorders caused by chemotherapy have become more important as the survival of cancer patients increases, and new studies in this field will contribute to the prevention of this disorder. For this purpose, we used methotrexate, a chemotherapeutic agent frequently preferred in oncological cases. Mtx was administered as a single dose of 100 mg/kg intraperitoneally to male Wistar albino rats. Since oxidative stress plays an important role in chemotherapy-induced emotional impairment, n-acetylcysteine (NAC), a potent antioxidant, was administered at 500 mg/kg in two doses before Mtx administration. We evaluated anxiety and depression-like behaviors 24 h after Mtx administration, as well as some oxidative and inflammatory markers in blood serum and hippocampal tissue, acetylcholinesterase activity (AChE), and brain-derived neurotrophic factor (BDNF) release in hippocampal tissue. In rats, Mtx induced anxiety and depression-like behaviors as well as abnormalities in oxidative and inflammatory markers in blood serum and hippocampal tissue, increased AChE activity in hippocampal tissue, and decreased BDNF release. NAC treatment was found to ameliorate Mtx-induced anxiety and depression-like behaviors, increase antioxidant capacity, reduce oxidative stress and inflammatory response, and regulate AChE activity and BDNF release. In conclusion, the fact that NAC treatment of Mtx was effective is important for revising the treatment strategies for individuals suffering from this disorder, and this effect is thought to be related to the antioxidant and anti-inflammatory power of NAC.
Collapse
Affiliation(s)
- Durmuş Ali Aslanlar
- Necmettin Erbakan University, Faculty of Medicine, Department of Medical Pharmacology, Konya, Turkiye
| | - Emin Fatih Vişneci
- Health Ministry of Turkish Rebublic, Konya City Hospital, Department of Emergency Medicine, Konya, Turkiye
| | - Mehmet Oz
- Aksaray University, Faculty of Medicine, Department of Physiology, Aksaray, Turkiye.
| | | |
Collapse
|
48
|
Fu X, Song L, Chen L, Jin S, Duan Z, Zhang B, Xing Y, Wang Y. Mechanistic insights into aniline-induced liver injury: Role of the mmu_circ_26984/Myh9/NLRP3 axis and modulation by N-acetylcysteine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115826. [PMID: 38118330 DOI: 10.1016/j.ecoenv.2023.115826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/16/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
Aniline is a widely used chemical. Chronic or high-dose exposure to aniline can lead to hepatocellular damage. Although the hepatic pathogenicity of aniline has been established in previous studies, studies involving pathogenic genes during aniline-induced liver injury are limited. Our study first discovered and identified the role and mechanism underlying a new circRNA mmu_circ_26984 in aniline-induced chemical liver injury. Further, we discuss the protective effect of N-acetylcysteine (NAC) in this pathway. After constructing in vitro and in vivo models of aniline treatment, we screened the circRNA with significant differences in expression in AML12 cells from control and aniline-treated groups by circRNA microarray analysis. Next, using RNA pulldown, liquid chromatography-mass spectrometry (LC-MS), and RNA immunoprecipitation, we analyzed the relationship between mmu_circ_26984 and myosin heavy chain 9 (Myh9). Subsequently, we determined the specific mechanism of action of mmu_circ_26984 and Myh9 in aniline-induced liver injury and the protective effect of NAC against aniline-induced liver injury process using Cell Counting Kit-8, Western blot, RNA extraction, a reverse transcription quantitative polymerase chain reaction (RT-qPCR), fluorescence in situ hybridization, immunohistochemistry, and immunofluorescence. The expression of mmu_circ_26984 was significantly increased in liver tissues and AML12 cells of aniline-treated mice compared with the control group. This high expression of mmu_circ_26984 increased the expression of injury-related inflammatory factors, such as NLRP3, Caspase-1, IL-18, and IL-1β in vivo and ex vivo, which exacerbated the level of liver injury. The interaction of mmu_circ_26984 with Myh9 also affected the course of liver injury. Mmu_circ_26984 overexpression and reduced treatment affected the levels of Myh9 expression in AML12 cells, as well as downstream inflammatory factors associated with injury, such as NLRP3. In addition, NAC reduced the process of liver injury mediated by the mmu_circ_26984/Myh9/NLRP3 axis. In conclusion, mmu_circ_26984 is a potential molecular marker and therapeutic target in the process of aniline-induced liver injury that can mediate aniline-exposure-induced liver injury via modulation of the mmu_circ_26984/Myh9/NLRP3 axis, and NAC can effectively attenuate the effect of this liver injury.
Collapse
Affiliation(s)
- Xinyu Fu
- College of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150086, China
| | - Li Song
- Department of Occupational Poisoning, Occupational Disease Research Institute of Heilongjiang Province, Harbin 150010, China
| | - Lili Chen
- College of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150086, China
| | - Shuo Jin
- College of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150086, China
| | - Zhongliang Duan
- College of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150086, China
| | - Bo Zhang
- College of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150086, China
| | - Yuechen Xing
- College of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150086, China
| | - Yue Wang
- College of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150086, China.
| |
Collapse
|
49
|
Wasserthal S, Muthesius A, Hurlemann R, Ruhrmann S, Schmidt SJ, Hellmich M, Schultze-Lutter F, Klosterkötter J, Müller H, Meyer-Lindenberg A, Poeppl TB, Walter H, Hirjak D, Koutsouleris N, Fallgatter AJ, Bechdolf A, Brockhaus-Dumke A, Mulert C, Philipsen A, Kambeitz J. N-Acetylcysteine and a Specialized Preventive Intervention for Individuals at High Risk for Psychosis: A Randomized Double-Blind Multicenter Trial. SCHIZOPHRENIA BULLETIN OPEN 2024; 5:sgae005. [PMID: 39144108 PMCID: PMC11207905 DOI: 10.1093/schizbullopen/sgae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background and Hypothesis Clinical high risk for psychosis (CHR-P) offers a window of opportunity for early intervention and recent trials have shown promising results for the use of N-acetylcysteine (NAC) in schizophrenia. Moreover, integrated preventive psychological intervention (IPPI), applies social-cognitive remediation to aid in preventing the transition to the psychosis of CHR-P patients. Study Design In this double-blind, randomized, controlled multicenter trial, a 2 × 2 factorial design was applied to investigate the effects of NAC compared to placebo (PLC) and IPPI compared to psychological stress management (PSM). The primary endpoint was the transition to psychosis or deterioration of CHR-P symptoms after 18 months. Study Results While insufficient recruitment led to early trial termination, a total of 48 participants were included in the study. Patients receiving NAC showed numerically higher estimates of event-free survival probability (IPPI + NAC: 72.7 ± 13.4%, PSM + NAC: 72.7 ± 13.4%) as compared to patients receiving PLC (IPPI + PLC: 56.1 ± 15.3%, PSM + PLC: 39.0 ± 17.4%). However, a log-rank chi-square test in Kaplan-Meier analysis revealed no significant difference of survival probability for NAC vs control (point hazard ratio: 0.879, 95% CI 0.281-2.756) or IPPI vs control (point hazard ratio: 0.827, 95% CI 0.295-2.314). The number of adverse events (AE) did not differ significantly between the four groups. Conclusions The superiority of NAC or IPPI in preventing psychosis in patients with CHR-P compared to controls could not be statistically validated in this trial. However, results indicate a consistent pattern that warrants further testing of NAC as a promising and well-tolerated intervention for CHR patients in future trials with adequate statistical power.
Collapse
Affiliation(s)
- Sven Wasserthal
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital of Bonn, Bonn, Germany
| | - Ana Muthesius
- Department of Psychiatry and Psychotherapy, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - René Hurlemann
- Department of Psychiatry, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Stefanie J Schmidt
- Division of Clinical Child and Adolescent Psychology, University of Bern, Bern, Switzerland
| | - Martin Hellmich
- Faculty of Medicine and University Hospital Cologne, Institute of Medical Statistics and Computational Biology, University of Cologne, Cologne, Germany
| | - Frauke Schultze-Lutter
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Department of Psychology, Faculty of Psychology, Airlangga University, Surabaya, Indonesia
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Joachim Klosterkötter
- Department of Psychiatry and Psychotherapy, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Hendrik Müller
- Department of Psychiatry and Psychotherapy, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Timm B Poeppl
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Partner Site Tübingen, Tübingen, Germany
| | - Andreas Bechdolf
- Department of Psychiatry and Psychotherapy CCM, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine with Early Intervention and Recognition Center (FRITZ), Vivantes Klinikum Am Urban, Berlin, Germany
| | | | - Christoph Mulert
- Center of Psychiatry, Justus-Liebig University, Giessen, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital of Bonn, Bonn, Germany
| | - Joseph Kambeitz
- Department of Psychiatry and Psychotherapy, University of Cologne and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
50
|
Uma Maheswari G, Yamini B, Dhandapani V, Almutairi BO, Arokiyaraj S, Karuppiah KM. Methylenetetrahydrofolate reductase polymorphisms in dental caries-induced pulp inflammation and regeneration of dentine-pulp complex: Future perspectives. Saudi Dent J 2023; 35:1029-1038. [PMID: 38170041 PMCID: PMC10759554 DOI: 10.1016/j.sdentj.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 01/05/2024] Open
Abstract
Dental caries (DC)-induced pulp infections usually undergo the common endodontic treatment, root canal therapy (RCT). Endodontically treated teeth are devitalized, become brittle and susceptible for re-infection which eventually results in dental loss. These complications arise because the devitalized pulp losses its ability for innate homeostasis, repair and regeneration. Therefore, restoring the vitality, structure and function of the inflamed pulp and compromised dentin have become the focal points in regenerative endodontics. There are very few evidences, so far, that connect methylenetetrahydrofolate reductase single nucleotide polymorphisms (MTHFR-SNPs) and dental disorders. However, the primary consequences of MTHFR-SNPs, in terms of excessive homocysteine and folate deficiency, are well-known contributors to dental diseases. This article identifies the possible mechanisms by which MTHFR-SNP-carriers are susceptible for DC-induced pulp inflammation (PI); and discusses a cell-homing based strategy for in vivo transplantation in an orthotopic model to regenerate the functional dentine-pulp complex which includes dentinogenesis, neurogenesis and vasculogenesis, in the SNP-carriers.
Collapse
Affiliation(s)
- G. Uma Maheswari
- Department of Cardiology, SRM Medical College Hospital and Research Center, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - B. Yamini
- Department of Cardiology, SRM Medical College Hospital and Research Center, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - V.E. Dhandapani
- Department of Cardiology, SRM Medical College Hospital and Research Center, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Bader O. Almutairi
- Department of Zoology, College of Science, King Saud University, P.O.Box 2455, 11451 Riyadh, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Korea
| | - Kanchana M. Karuppiah
- Department of Medical Research, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| |
Collapse
|