1
|
Kamalesh R, Saravanan A, Yaashikaa PR, Vijayasri K. Innovative approaches to harnessing natural pigments from food waste and by-products for eco-friendly food coloring. Food Chem 2025; 463:141519. [PMID: 39368203 DOI: 10.1016/j.foodchem.2024.141519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
With unprecedented growth in the world population, the demand for food has risen drastically leading to increased agricultural production. One promising avenue is recovery of value-added pigments from food waste which has been gaining global attention. This review focuses on sustainable strategies for extracting pigments, examining the factors that influence extraction, their applications, and consumer acceptability. The significant findings of the study state the efficiency of pigment extraction through innovative extraction techniques rather than following conventional methods that are time-consuming, and unsustainable. In addition to their vibrant colors, these pigments provide functional benefits such as antioxidant properties, extended shelf life and improved food quality. Societal acceptance of pigments derived from food waste is positively driven by environmental awareness and sustainability. The study concludes by highlighting the stability challenges associated with various natural pigments, emphasizing the need for tailored stabilization methods to ensure long-term stability and effective utilization in food matrices.
Collapse
Affiliation(s)
- R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India.
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India
| | - K Vijayasri
- Department of Biotechnology, Center for Food Technology, Anna University, Chennai 600025, India
| |
Collapse
|
2
|
Chauca-Cerrutti A, Inga M, Pasquel-Reátegui JL, Betalleluz-Pallardel I, Puma-Isuiza G. Optimization of extraction in supercritical fluids in obtaining Pouteria lucuma seed oil by response surface methodology and artificial neuronal network coupled with a genetic algorithm. Front Chem 2024; 12:1491479. [PMID: 39720553 PMCID: PMC11666378 DOI: 10.3389/fchem.2024.1491479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/21/2024] [Indexed: 12/26/2024] Open
Abstract
When processing lucuma (Pouteria lucuma), waste such as shells and seeds is generated, which is a source of bioactive compounds. Recently, lucuma seed (LS), especially its oily fraction, has been studied for containing phytosterols and tocopherols, powerful antioxidants with health benefits. This study proposes lucuma seed oil (LSO) extraction using supercritical fluid (SCF) to improve the quality of the extract and minimize the environmental impact. LS was previously characterized, and the extraction parameters were optimized using a Box-Behnken design, considering temperature (40-60°C), pressure (100-300 bar), and CO2 flow rate (3-7 mL/min), applying the response surface methodology (RSM) and neural networks with genetic algorithm (ANN+GA). The optimal parameters were 45°C, 300 bar, and 6 mL/min, obtaining 97.35% of the total oil content. The RSM and ANN+GA models showed R2 values of 0.9891 and 0.9999 respectively, indicating that both models exhibited a good fit to the experimental data. However, ANN+GA provided a greater proportion of the total variability, which facilitates the identification of the optimal parameters for the extraction of oil from lucuma seeds. Compared to the Soxhlet method, the LSO obtained by SCF presented better acidity (4.127 mg KOH/g), iodine (100.294 g I2/100 g), and refraction indices (1.4710), as well as to a higher content of mono- and polyunsaturated fatty acids. Supercritical CO2 extraction is presented as a sustainable green alternative to Soxhlet extraction for extracting oil from lucuma seed due to its high extraction efficiency and similar fatty acid profile.
Collapse
Affiliation(s)
- Alex Chauca-Cerrutti
- Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru
| | - Marianela Inga
- Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru
| | - José Luis Pasquel-Reátegui
- Grupo de Investigación en Ingeniería y Tecnología Agroindustrial, Facultad de Ingeniería Agroindustrial, Universidad Nacional de San Martín (UNSM), Tarapoto, San Martin, Peru
| | | | - Gustavo Puma-Isuiza
- Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru
| |
Collapse
|
3
|
Sharma S, Dedha A, Gupta MM, Singh N, Gautam A, Kumari A. Green and sustainable technologies for extraction of carotenoids from natural sources: a comprehensive review. Prep Biochem Biotechnol 2024:1-33. [PMID: 39427252 DOI: 10.1080/10826068.2024.2402905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
In recent years, driven by increasing consumer demand for natural and healthy convenient foods, the food industry has been shifting from synthetic to natural products. This shift is also reflected in the growing popularity of non-conventional extraction methods for pigments, which are favored for sustainability and environment-friendliness compared to conventional processes. This review aims to investigate the extraction of carotenoids from a variety of natural sources, including marine sources like fungus, microalgae, and crustaceans, as well as widely studied plants like tomatoes and carrots. Additionally, it delves into the recovery of valuable carotenoids from waste products like pomace and peels, highlighting the nutritional and environmental benefits. The review also emphasizes the role of green solvents such limonene, vegetable oils, ionic liquids, supercritical fluids, and natural deep eutectic solvents in effective and ecologically friendly carotenoid extraction. These technologies support the ideas of a circular and sustainable economy in addition to having a smaller negative impact on the environment. Overall, the present study highlights the crucial importance of green extraction technologies in achieving the dual goals of sustainability and public safety.
Collapse
Affiliation(s)
- Surbhi Sharma
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Anshika Dedha
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Manju M Gupta
- Sri Aurobindo College, Delhi University, Delhi, India
| | - Nahar Singh
- Council of Scientific and Industrial Research-National Physical Laboratory (CSIR-NPL), Delhi, India
| | - Arvind Gautam
- Council of Scientific and Industrial Research-National Physical Laboratory (CSIR-NPL), Delhi, India
| | - Abha Kumari
- Amity Institute of Biotechnology, Amity University, Noida, India
| |
Collapse
|
4
|
Ambrico A, Larocca V, Trupo M, Martino M, Magarelli RA, Spagnoletta A, Balducchi R. A New Method for Selective Extraction of Torularhodin from Red Yeast Using CO 2-SFE Technique. Appl Biochem Biotechnol 2024; 196:6473-6491. [PMID: 38386146 PMCID: PMC11604813 DOI: 10.1007/s12010-024-04884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
Torularhodin is a dark pink colored carotenoid belonging to the xanthophylls group that can be biologically synthesized by red yeasts, especially by Rhodotorula and Sporobolomyces genera. The growing interest in this molecule is due to its biological activities such as antioxidant, anticholesterolemic, anti-inflammatory, antimicrobial, and anticancer. To satisfy potential commercial markets, numerous methods have been proposed to develop a cost-effective and environmentally friendly downstream process for the purification of torularhodin. However, obtaining high purity products without resorting to the use of toxic solvents, which can leave residues in the final preparations, remains a major challenge. In this context, the present study aimed to develop a new efficient method for the isolation of torularhodin from the red yeast Rhodotorula strain ELP2022 by applying the extraction technique with supercritical CO2 (CO2-SFE) in two sequential steps. In particular, in the first step, the dried lysed biomass of yeast was subjected to the action of CO2 in supercritical conditions (CO2SC) as sole solvent for extraction of apolar carotenoids. In the second step, the residual biomass was subjected to the action of CO2SC using ethanol as a polar co-solvent for the extraction of torularhodin. Both steps were carried out at different operating parameters of temperature (40 and 60 °C) and pressure (from 300 to 500 bar) with a constant CO2 flow of 6 L min-1. Regardless of the operating conditions used, this method allowed to obtain an orange-colored oily extract and a red-colored extract after the first and second step, respectively. In all trials, torularhodin represented no less than 95.2% ± 0.70 of the total carotenoids in the red extracts obtained from the second step. In particular, the best results were obtained by performing both steps at 40 °C and 300 bar, and the maximum percentage of torularhodin achieved was 97.9% ± 0.88. Since there are no data on the selective recovery of torularhodin from red yeast using the SFE technique, this study may be a good starting point to optimize and support the development of industrial production of torularhodin by microbial synthesis. This new method can significantly reduce the environmental impact of torularhodin recovery and can be considered an innovation for which an Italian patent application has been filed. In a circular bioeconomy approach, this method will be validated up to a pilot scale, culturing the strain Rhodotorula spp. ELP2022 on low-cost media derived from agri-food wastes.
Collapse
Affiliation(s)
- Alfredo Ambrico
- Department for Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Center, 75026, Rotondella, Italy
| | - Vincenzo Larocca
- Department for Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Center, 75026, Rotondella, Italy
| | - Mario Trupo
- Department for Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Center, 75026, Rotondella, Italy.
| | - Maria Martino
- Department for Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Center, 75026, Rotondella, Italy
| | - Rosaria Alessandra Magarelli
- Department for Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Center, 75026, Rotondella, Italy
| | - Anna Spagnoletta
- Department for Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Center, 75026, Rotondella, Italy
| | - Roberto Balducchi
- Department for Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Center, 75026, Rotondella, Italy
| |
Collapse
|
5
|
Ahmadi N, Mosleh N, Yeganeh M, Ahmadi N, Malakouti S, Shahsavari S, Shahraki R, Katebi S, Agapoor M, Sadeghi S, Bagheri K. Procedures to evaluate potential of plants as natural food preservatives: Phytochemical characterization, novel extraction technology, and safety evaluation-A comprehensive review. Food Sci Nutr 2024; 12:6142-6156. [PMID: 39554363 PMCID: PMC11561796 DOI: 10.1002/fsn3.4303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 11/19/2024] Open
Abstract
There is increasing demand for natural food preservative in food manufacturing industry as it is the key to meet consumers' preferences toward healthier food choice. Plant is listed among the most important resources of bioactive components to be utilized as the green and natural food preservatives. There are more than 10,000 kinds of bioactive components in plants that possess antioxidant and antimicrobial properties. Artemisia with potential antimicrobial and antioxidant attributes, as well as functional and medicinal properties, is one of the most important plant species. The manuscript presents a comprehensive review of the potential of the Artemisia species as natural food preservatives. The current challenges and ways forward in using Artemisia EOs and extracts as food preservatives are also discussed. This topic is timely and important considering the natural preservatives used to replace chemical ingredients, sustaining quality, healthy properties, and shelf life of food products as well as efficient and novel extraction techniques.
Collapse
Affiliation(s)
- Negin Ahmadi
- Department of Food Science and TechnologyIslamic Azad University, Science and Research BranchTehranIran
| | - Nazanin Mosleh
- Department of Food Science and TechnologyIslamic Azad University, Science and Research BranchTehranIran
| | - Mahta Yeganeh
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Nadia Ahmadi
- Department of Food Science and TechnologyIslamic Azad University, Science and Research BranchTehranIran
| | - Sara Malakouti
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Saleh Shahsavari
- School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Reza Shahraki
- General Bureau of Standard Sistan and Baluchestan ProvinceIran National Standards OrganizationZahedanIran
| | - Somaye Katebi
- Department of Horticultural Science, Faculty of AgricultureUrmia UniversityUrmiaIran
| | - Mina Agapoor
- Department of Horticultural Science, Faculty of AgricultureUrmia UniversityUrmiaIran
| | - Sonia Sadeghi
- Department of Horticultural Science, Faculty of AgricultureUrmia UniversityUrmiaIran
| | - Karim Bagheri
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
6
|
Gavril Rațu RN, Stoica F, Lipșa FD, Constantin OE, Stănciuc N, Aprodu I, Râpeanu G. Pumpkin and Pumpkin By-Products: A Comprehensive Overview of Phytochemicals, Extraction, Health Benefits, and Food Applications. Foods 2024; 13:2694. [PMID: 39272458 PMCID: PMC11395535 DOI: 10.3390/foods13172694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
A versatile and popular Cucurbitaceous vegetable, pumpkin has recently gained much attention because of its variety of phytochemicals and health advantages. Pumpkins are a type of winter squash, traditionally with large, spherical, orange fruits and a highly nutrient food. Pumpkin by-products comprise various parts, such as seeds, peels, and pulp residues, with their bioactive composition and many potential benefits poorly explored by the food industry. Pumpkin and their by-products contain a wide range of phytochemicals, including carotenoids, polyphenols, tocopherols, vitamins, minerals, and dietary fibers. These compounds in pumpkin by-products exhibit antioxidant, anticancer, anti-inflammatory, anti-diabetic, and antimicrobial properties and could reduce the risk of chronic diseases. This comprehensive review aims to provide a detailed overview of the phytochemicals found in pumpkin and its by-products, along with their extraction methods, health benefits, and diverse food and industrial applications. This information can offer valuable insights for food scientists seeking to reevaluate pumpkin's potential as a functional ingredient. Reusing these by-products would support integrating a circular economy approach by boosting the market presence of valuable and sustainable products that improve health while lowering food waste.
Collapse
Affiliation(s)
- Roxana Nicoleta Gavril Rațu
- Department of Food Technologies, Faculty of Agriculture, "Ion Ionescu de la Brad" Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
| | - Florina Stoica
- Department of Pedotechnics, Faculty of Agriculture, Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Florin Daniel Lipșa
- Department of Food Technologies, Faculty of Agriculture, "Ion Ionescu de la Brad" Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Oana Emilia Constantin
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
| | - Nicoleta Stănciuc
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
| | - Iuliana Aprodu
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
| | - Gabriela Râpeanu
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
| |
Collapse
|
7
|
Câmara JS, Perestrelo R, Ferreira R, Berenguer CV, Pereira JAM, Castilho PC. Plant-Derived Terpenoids: A Plethora of Bioactive Compounds with Several Health Functions and Industrial Applications-A Comprehensive Overview. Molecules 2024; 29:3861. [PMID: 39202940 PMCID: PMC11357518 DOI: 10.3390/molecules29163861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Terpenoids are a large class of natural secondary plant metabolites which are highly diverse in structure, formed from isoprene units (C-5), associated with a wide range of biological properties, including antioxidant, antimicrobial, anti-inflammatory, antiallergic, anticancer, antimetastatic, antiangiogenesis, and apoptosis induction, and are considered for potential application in the food, cosmetics, pharmaceutical, and medical industries. In plants, terpenoids exert a variety of basic functions in growth and development. This review gives an overview, highlighting the current knowledge of terpenoids and recent advances in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways and addressing the most important functions of volatile and non-volatile specialized terpenoid metabolites in plants. A comprehensive description of different aspects of plant-derived terpenoids as a sustainable source of bioactive compounds, their biosynthetic pathway, the several biological properties attributed to these secondary metabolites associated with health-promoting effects, and their potential industrial applications in several fields will be provided, and emerging and green extraction methods will also be discussed. In addition, future research perspectives within this framework will be highlighted. Literature selection was carried out using the National Library of Medicine, PubMed, and international reference data for the period from 2010 to 2024 using the keyword "terpenoids". A total of 177,633 published papers were found, of which 196 original and review papers were included in this review according to the criteria of their scientific reliability, their completeness, and their relevance to the theme considered.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Rui Ferreira
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Cristina V. Berenguer
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Paula C. Castilho
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
8
|
Kumar R, Oruna-Concha MJ, Niranjan K, Vimaleswaran KS. A review on vitamin A deficiency and depleted immunity in South Asia: From deficiency to resilience. Nutrition 2024; 124:112452. [PMID: 38669831 DOI: 10.1016/j.nut.2024.112452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
In the developing world, the twin challenges of depleted health and growing issue of food waste management loom large, demanding simultaneous attention and innovative solutions. This review explores how these issues can be effectively mitigated while shedding light on the transformative impact of food waste valorization on health management. A spotlight is cast on vitamin A deficiency (VAD), an acute public health concern, especially prevalent in South Asia, driven by economic constraints, sociocultural factors, inadequate diets, and poor nutrient absorption. VAD's devastating effects are exacerbated by limited education, lack of sanitation, ineffective food regulations, and fragile monitoring systems, disproportionately affecting children and women of childbearing age. Recent studies in South Asian countries have revealed rising rates of illness and death, notably among children and women of childbearing age, due to VAD. To address inadequate dietary intake in children utilizing vegetable waste, particularly from carrots and beetroot, which are rich in β-carotene, and betalains, respectively, offers a sustainable solution. Extracting these compounds from vegetable waste for supplementation, fortification, and dietary diversification could significantly improve public health, addressing both food waste and health disparities economically. This approach presents a compelling avenue for exploration and implementation. In summary, this review presents an integrated approach to tackle health and food waste challenges in the developing world. By tapping into the nutritional treasure troves within vegetable waste, we can enhance health outcomes while addressing food waste, forging a brighter and healthier future for communities in need.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | | | - Keshavan Niranjan
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Karani S Vimaleswaran
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK; Institute for Food, Nutrition and Health (IFNH), University of Reading, Reading, UK.
| |
Collapse
|
9
|
Jiang H, Wang F, Ma R, Yang T, Liu C, Shen W, Jin W, Tian Y. Advances in valorization of sweet potato peels: A comprehensive review on the nutritional compositions, phytochemical profiles, nutraceutical properties, and potential industrial applications. Compr Rev Food Sci Food Saf 2024; 23:e13400. [PMID: 39030813 DOI: 10.1111/1541-4337.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/23/2024] [Accepted: 06/14/2024] [Indexed: 07/22/2024]
Abstract
During food production, food processing, and supply chain, large amounts of food byproducts are generated and thrown away as waste, which to a great extent brings about adverse consequences on the environment and economic development. The sweet potato (Ipomoea batatas L.) is cultivated and consumed in many countries. Sweet potato peels (SPPs) are the main byproducts generated by the tuber processing. These residues contain abundant nutrition elements, bioactive compounds, and other high value-added substances; therefore, the reutilization of SPP holds significance in improving their overall added value. SPPs contain abundant phenolic compounds and carotenoids, which might contribute significantly to their nutraceutical properties, including antioxidant, antimicrobial, anticancer, prebiotic, anti-inflammatory, wound-healing, and lipid-lowering effects. It has been demonstrated that SPP could be promisingly revalorized into food industry, including: (1) applications in diverse food products; (2) applications in food packaging; and (3) applications in the recovery of pectin and cellulose nanocrystals. Furthermore, SPP could be used as promising feedstocks for the bioconversion of diverse value-added bioproducts through biological processing.
Collapse
Affiliation(s)
- Haitao Jiang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Fan Wang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Rongrong Ma
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Tianyi Yang
- Analysis and Testing Center, Jiangnan University, Wuxi, P. R. China
| | - Chang Liu
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Wangyang Shen
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, P. R. China
| | - Weiping Jin
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, P. R. China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Analysis and Testing Center, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
10
|
Elferjane MR, Milutinović V, Jovanović Krivokuća M, Taherzadeh MJ, Pietrzak W, Marinković A, Jovanović AA. Vaccinium myrtillus L. Leaf Waste as a Source of Biologically Potent Compounds: Optimization of Polyphenol Extractions, Chemical Profile, and Biological Properties of the Extracts. Pharmaceutics 2024; 16:740. [PMID: 38931863 PMCID: PMC11206553 DOI: 10.3390/pharmaceutics16060740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
The aims of the present research include (1) optimization of extraction from Vaccinium myrtillus leaf waste via investigation of plant material:medium ratio, extraction medium, and extraction period, employing extractions at room and high temperatures, or using ultrasound and microwaves (M, HAE, UAE, and MAE, respectively), (2) physicochemical characterization, and (3) investigation of extract biological potential. The statistical analysis revealed that optimal levels of parameters for the greatest polyphenolic yield were a proportion of 1:30 g/mL, ethyl alcohol 50% (v/v) during 2 min of microwave irradiation. By LC-MS analysis, 29 phenolic components were detected; HAE showed the highest richness of almost all determined polyphenols, while chlorogenic acid and quercetin 3-O-glucuronide were dominant. All extracts showed a high inhibition of Staphylococcus aureus growth. The effect of different parameters on extracts' antioxidant capacity depended on the used tests. The extracts also showed a stimulative influence on keratinocyte viability and anti-inflammatory activity (proven in cell-based ELISA and erythrocyte stabilization assays). The extraction procedure significantly affected the extraction yield (MAE ≥ maceration ≥ UAE ≥ HAE), whereas conductivity, density, surface tension, and viscosity varied in a narrow range. The presented research provides evidence on the optimal extraction conditions and technique, chemical composition, and antioxidant, antimicrobial, anti-inflammatory, and keratinocyte viability properties of bilberry extracts for potential applications in pharmacy and cosmetics.
Collapse
Affiliation(s)
- Muna Rajab Elferjane
- Faculty of Nursing and Health Sciences, University of Misurata, Alshowahda Park, 3rd Ring Road, Misurata 2478, Libya;
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Violeta Milutinović
- Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia;
| | - Milica Jovanović Krivokuća
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia;
| | - Mohammad J. Taherzadeh
- Swedish Centre for Resource Recovery, University of Borås, Allégatan 61, 503 37 Borås, Sweden;
| | - Witold Pietrzak
- Department of Fermentation and Cereals Technology, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Aleksandar Marinković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Aleksandra A. Jovanović
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia;
| |
Collapse
|
11
|
Sheibani S, Jafarzadeh S, Qazanfarzadeh Z, Osadee Wijekoon MMJ, Mohd Rozalli NH, Mohammadi Nafchi A. Sustainable strategies for using natural extracts in smart food packaging. Int J Biol Macromol 2024; 267:131537. [PMID: 38608975 DOI: 10.1016/j.ijbiomac.2024.131537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
The growing demand for sustainable and eco-friendly food packaging has prompted research on innovative solutions to environmental and consumer health issues. To enhance the properties of smart packaging, the incorporation of bioactive compounds derived from various natural sources has attracted considerable interest because of their functional properties, including antioxidant and antimicrobial effects. However, extracting these compounds from natural sources poses challenges because of their complex chemical structures and low concentrations. Traditional extraction methods are often environmentally harmful, expensive and time-consuming. Thus, green extraction techniques have emerged as promising alternatives, offering sustainable and eco-friendly approaches that minimise the use of hazardous solvents and reduce environmental impact. This review explores cutting-edge research on the green extraction of bioactive compounds and their incorporation into smart packaging systems in the last 10 years. Then, an overview of bioactive compounds, green extraction techniques, integrated techniques, green extraction solvents and their application in smart packaging was provided, and the impact of bioactive compounds incorporated in smart packaging on the shelf lives of food products was explored. Furthermore, it highlights the challenges and opportunities within this field and presents recommendations for future research, aiming to contribute to the advancement of sustainable and efficient smart packaging solutions.
Collapse
Affiliation(s)
- Samira Sheibani
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Shima Jafarzadeh
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3216, Australia.
| | - Zeinab Qazanfarzadeh
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - M M Jeevani Osadee Wijekoon
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia; Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
12
|
Leite MDMR, Bobrowski Rodrigues D, Brison R, Nepomuceno F, Bento ML, de Oliveira LDL. A Scoping Review on Carotenoid Profiling in Passiflora spp.: A Vast Avenue for Expanding the Knowledge on the Species. Molecules 2024; 29:1585. [PMID: 38611864 PMCID: PMC11013783 DOI: 10.3390/molecules29071585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/14/2024] Open
Abstract
The Passiflora genus is recognised for its ethnopharmacological, sensorial, and nutritional significance. Yet, the screening of its dietary and bioactive molecules has mainly targeted hydrophilic metabolites. Following the PRISMA-P protocol, this review assessed the current knowledge on carotenoid composition and analysis within Passiflora, examining 968 records from seven databases and including 17 studies focusing on carotenoid separation and identification in plant parts. Those publications originated in America and Asia. P. edulis was the most frequently examined species of a total of ten, while pulp was the most studied plant part (16 studies). Carotenoid analysis involved primarily high-performance liquid chromatography separation on C18 columns and detection using diode array detectors (64.71%). Most studies identified the provitamin A β-carotene and xanthophylls lutein and zeaxanthin, with their geometric configuration often neglected. Only one study described carotenoid esters. Besides the methodology's insufficient description, the lack of use of more accurate techniques and practices led to a high risk of bias in the carotenoid assignment in 17.65% of the articles. This review highlights the opportunity to broaden carotenoid studies to other species and parts within the diverse Passiflora genus, especially to wild, locally available fruits, which may have a strategic role in enhancing food diversity and security amidst climatic changes. Additionally, it urges the use of more accurate and efficient analytical methods based on green chemistry to better identify Passiflora carotenoids.
Collapse
Affiliation(s)
- Marina de Macedo Rodrigues Leite
- Department of Nutrition, University of Brasília (UnB), Campus Darcy Ribeiro, Brasilia 70910-900, DF, Brazil; (M.d.M.R.L.); (R.B.); (F.N.); (L.d.L.d.O.)
| | - Daniele Bobrowski Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Raquel Brison
- Department of Nutrition, University of Brasília (UnB), Campus Darcy Ribeiro, Brasilia 70910-900, DF, Brazil; (M.d.M.R.L.); (R.B.); (F.N.); (L.d.L.d.O.)
| | - Fernanda Nepomuceno
- Department of Nutrition, University of Brasília (UnB), Campus Darcy Ribeiro, Brasilia 70910-900, DF, Brazil; (M.d.M.R.L.); (R.B.); (F.N.); (L.d.L.d.O.)
| | - Maria Lua Bento
- Department of Pharmacy, University of Brasília (UnB), Campus de Ceilândia, Brasilia 72220-275, DF, Brazil;
| | - Lívia de Lacerda de Oliveira
- Department of Nutrition, University of Brasília (UnB), Campus Darcy Ribeiro, Brasilia 70910-900, DF, Brazil; (M.d.M.R.L.); (R.B.); (F.N.); (L.d.L.d.O.)
| |
Collapse
|
13
|
Tzanova MT, Yaneva Z, Ivanova D, Toneva M, Grozeva N, Memdueva N. Green Solvents for Extraction of Natural Food Colorants from Plants: Selectivity and Stability Issues. Foods 2024; 13:605. [PMID: 38397582 PMCID: PMC10887973 DOI: 10.3390/foods13040605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Consumers associate the color of food with its freshness and quality. More and more attention is being paid to natural colorants that bring additional health benefits to humans. Such natural substances are the carotenoids (yellow to orange), the anthocyanins (red to blue), and the betalains (red and yellow), which are very sensitive to exposure to light, air, high temperatures, and chemicals. Stability and diversity in terms of color can be optimized by using environmentally friendly and selective extraction processes that provide a balance between efficacy, safety, and stability of the resulting extracts. Green solvents like water, supercritical fluids, natural deep eutectic solvents, and ionic liquids are the most proper green solvents when combined with different extraction techniques like maceration, supercritical extraction, and ultrasound-assisted or microwave-assisted extraction. The choice of the right extracting agent is crucial for the selectivity of the extraction method and the stability of the prepared colorant. The present work reviews the green solvents used for the extraction of natural food colorants from plants and focuses on the issues related to the selectivity and stability of the products extracted.
Collapse
Affiliation(s)
- Milena Tankova Tzanova
- Faculty of Agriculture, Department of Biological Sciences, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (N.M.)
| | - Zvezdelina Yaneva
- Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.Y.); (D.I.); (M.T.)
| | - Donika Ivanova
- Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.Y.); (D.I.); (M.T.)
- Medical Faculty, Department of Medicinal Chemistry and Biochemistry, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Monika Toneva
- Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.Y.); (D.I.); (M.T.)
| | - Neli Grozeva
- Faculty of Agriculture, Department of Biological Sciences, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (N.M.)
| | - Neli Memdueva
- Faculty of Agriculture, Department of Biological Sciences, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (N.M.)
| |
Collapse
|
14
|
Rodriguez-Amaya DB, Esquivel P, Meléndez-Martínez AJ. Comprehensive Update on Carotenoid Colorants from Plants and Microalgae: Challenges and Advances from Research Laboratories to Industry. Foods 2023; 12:4080. [PMID: 38002140 PMCID: PMC10670565 DOI: 10.3390/foods12224080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The substitution of synthetic food dyes with natural colorants continues to be assiduously pursued. The current list of natural carotenoid colorants consists of plant-derived annatto (bixin and norbixin), paprika (capsanthin and capsorubin), saffron (crocin), tomato and gac fruit lycopene, marigold lutein, and red palm oil (α- and β-carotene), along with microalgal Dunaliella β-carotene and Haematococcus astaxanthin and fungal Blakeslea trispora β-carotene and lycopene. Potential microalgal sources are being sought, especially in relation to lutein, for which commercial plant sources are lacking. Research efforts, manifested in numerous reviews and research papers published in the last decade, have been directed to green extraction, microencapsulation/nanoencapsulation, and valorization of processing by-products. Extraction is shifting from conventional extraction with organic solvents to supercritical CO2 extraction and different types of assisted extraction. Initially intended for the stabilization of the highly degradable carotenoids, additional benefits of encapsulation have been demonstrated, especially the improvement of carotenoid solubility and bioavailability. Instead of searching for new higher plant sources, enormous effort has been directed to the utilization of by-products of the fruit and vegetable processing industry, with the application of biorefinery and circular economy concepts. Amidst enormous research activities, however, the gap between research and industrial implementation remains wide.
Collapse
Affiliation(s)
- Delia B. Rodriguez-Amaya
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Patricia Esquivel
- Centro Nacional de Ciencia y Tecnología (CITA), Universidad de Costa Rica, San José 11501, Costa Rica;
- Escuela de Tecnología de Alimentos, Universidad de Costa Rica, San José 11501, Costa Rica
| | | |
Collapse
|
15
|
Zhang J, Zhang M, Ju R, Chen K, Bhandari B, Wang H. Advances in efficient extraction of essential oils from spices and its application in food industry: A critical review. Crit Rev Food Sci Nutr 2023; 63:11482-11503. [PMID: 35766478 DOI: 10.1080/10408398.2022.2092834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the increase of people's awareness of food safety, it is crucial to find natural and green antimicrobial agents to replace traditional antimicrobial agents. Essential oils of spices (SEOs) are low toxicity or nontoxic, which exhibited antioxidants and antimicrobial activity according to many in vitro and in situ experiments. Spices are widely available and low cost as a plant raw material for the extraction of SEOs. This review summarized highly efficient extraction techniques for SEOs, such as physical field assisted extraction technology, supercritical fluid extraction, and biological-based techniques. Furthermore, purification of SEOs and components were also recapitulated. Purification techniques of SEOs improve their utilization value due to the increased content of bioactive components. Finally, the review concentrated on the applications of SEOs in food industry, including food preservation, food active packaging by means of films or coatings, antioxidant properties. In addition, addressing the problem of unstability of SEOs and its role to inhibit the pathogenic bacteria, the encapsulation of SEOs for use in the food industrial sectors reduces the safety risk to human health.
Collapse
Affiliation(s)
- Jiong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Ronghua Ju
- Agricultural and Forestry Products Deep Processing Technology and Equipment Engineering Center of Jiangsu Province, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Kai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Haixiang Wang
- Yechun Food Production and Distribution Co., Ltd., Yangzhou, Jiangsu, China
| |
Collapse
|
16
|
Afraz MT, Xu X, Adil M, Manzoor MF, Zeng XA, Han Z, Aadil RM. Subcritical and Supercritical Fluids to Valorize Industrial Fruit and Vegetable Waste. Foods 2023; 12:2417. [PMID: 37372628 DOI: 10.3390/foods12122417] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
The valorization of industrial fruit and vegetable waste has gained significant attention due to the environmental concerns and economic opportunities associated with its effective utilization. This review article comprehensively discusses the application of subcritical and supercritical fluid technologies in the valorization process, highlighting the potential benefits of these advanced extraction techniques for the recovery of bioactive compounds and unconventional oils from waste materials. Novel pressurized fluid extraction techniques offer significant advantages over conventional methods, enabling effective and sustainable processes that contribute to greener production in the global manufacturing sector. Recovered bio-extract compounds can be used to uplift the nutritional profile of other food products and determine their application in the food, pharmaceutical, and nutraceutical industries. Valorization processes also play an important role in coping with the increasing demand for bioactive compounds and natural substitutes. Moreover, the integration of spent material in biorefinery and biorefining processes is also explored in terms of energy generation, such as biofuels or electricity, thus showcasing the potential for a circular economy approach in the management of waste streams. An economic evaluation is presented, detailing the cost analysis and potential barriers in the implementation of these valorization strategies. The article emphasizes the importance of fostering collaboration between academia, industry, and policymakers to enable the widespread adoption of these promising technologies. This, in turn, will contribute to a more sustainable and circular economy, maximizing the potential of fruit and vegetable waste as a source of valuable products.
Collapse
Affiliation(s)
- Muhammad Talha Afraz
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Yangjiang Research Institute, South China University of Technology, Yangjiang 529500, China
| | - Xindong Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Yangjiang Research Institute, South China University of Technology, Yangjiang 529500, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Muhammad Adil
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Muhammad Faisal Manzoor
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
- School of Food Science and Engineering, Foshan University, Foshan 528225, China
| | - Xin-An Zeng
- Yangjiang Research Institute, South China University of Technology, Yangjiang 529500, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
17
|
Liu HM, Tang W, Lei SN, Zhang Y, Cheng MY, Liu QL, Wang W. Extraction Optimization, Characterization and Biological Activities of Polysaccharide Extracts from Nymphaea hybrid. Int J Mol Sci 2023; 24:ijms24108974. [PMID: 37240320 DOI: 10.3390/ijms24108974] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
In this study, polysaccharide-rich Nymphaea hybrid extracts (NHE) were obtained using the ultrasound-assisted cellulase extraction (UCE) method optimized by response surface methodology (RSM). The structural properties and thermal stability of NHE were characterized by Fourier-transform infrared (FT-IR), high-performance liquid chromatography (HPLC) and thermogravimetry-derivative thermogravimetry (TG-DTG) analysis, respectively. Moreover, the bioactivities of NHE, including the antioxidant, anti-inflammatory, whitening and scratch healing activities were evaluated by different in vitro assays. NHE conveyed a good ability to scavenge against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals and inhibit the hyaluronidase activity. NHE can effectively protect the HaCaT cells against oxidative damage by inhibiting the intracellular reactive oxygen species (ROS) production in the H2O2 stimulation assays and promoting the proliferation and migration in the scratch assays. In addition, NHE was proven to inhibit melanin production in B16 cells. Collectively, the above results seem to be the evidence needed to promote the potential of NHE to be regarded as a new functional raw material in the cosmetics or food industries.
Collapse
Affiliation(s)
- Hui-Min Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
| | - Wei Tang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Sheng-Nan Lei
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yun Zhang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Ming-Yan Cheng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qing-Lei Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
| | - Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
| |
Collapse
|
18
|
Di Salvo E, Lo Vecchio G, De Pasquale R, De Maria L, Tardugno R, Vadalà R, Cicero N. Natural Pigments Production and Their Application in Food, Health and Other Industries. Nutrients 2023; 15:nu15081923. [PMID: 37111142 PMCID: PMC10144550 DOI: 10.3390/nu15081923] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
In addition to fulfilling their function of giving color, many natural pigments are known as interesting bioactive compounds with potential health benefits. These compounds have various applications. In recent times, in the food industry, there has been a spread of natural pigment application in many fields, such as pharmacology and toxicology, in the textile and printing industry and in the dairy and fish industry, with almost all major natural pigment classes being used in at least one sector of the food industry. In this scenario, the cost-effective benefits for the industry will be welcome, but they will be obscured by the benefits for people. Obtaining easily usable, non-toxic, eco-sustainable, cheap and biodegradable pigments represents the future in which researchers should invest.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Giovanna Lo Vecchio
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Rita De Pasquale
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Laura De Maria
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Roberta Tardugno
- Department of Pharmacy-Drug Sciences, University of Bari, 70121 Bari, Italy
| | - Rossella Vadalà
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Nicola Cicero
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
- Science4life srl, University of Messina, 98168 Messina, Italy
| |
Collapse
|
19
|
‘Aqilah NMN, Rovina K, Felicia WXL, Vonnie JM. A Review on the Potential Bioactive Components in Fruits and Vegetable Wastes as Value-Added Products in the Food Industry. Molecules 2023; 28:molecules28062631. [PMID: 36985603 PMCID: PMC10052168 DOI: 10.3390/molecules28062631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
The food production industry is a significant contributor to the generation of millions of tonnes of waste every day. With the increasing public concern about waste production, utilizing the waste generated from popular fruits and vegetables, which are rich in high-added-value compounds, has become a focal point. By efficiently utilizing food waste, such as waste from the fruit and vegetable industries, we can adopt a sustainable consumption and production pattern that aligns with the Sustainable Development Goals (SDGs). This paper provides an overview of the high-added-value compounds derived from fruit and vegetable waste and their sources. The inclusion of bioactive compounds with antioxidant, antimicrobial, and antibrowning properties can enhance the quality of materials due to the high phenolic content present in them. Waste materials such as peels, seeds, kernels, and pomace are also actively employed as adsorbents, natural colorants, indicators, and enzymes in the food industry. Therefore, this article compiles all consumer-applicable uses of fruit and vegetable waste into a single document.
Collapse
Affiliation(s)
| | - Kobun Rovina
- Correspondence: ; Tel.: +006-088-320000 (ext. 8713); Fax: +006-088-320993
| | | | | |
Collapse
|
20
|
Pinho LS, Patel BK, Campanella OH, Rodrigues CEDC, Favaro-Trindade CS. Microencapsulation of Carotenoid-Rich Extract from Guaraná Peels and Study of Microparticle Functionality through Incorporation into an Oatmeal Paste. Foods 2023; 12:foods12061170. [PMID: 36981097 PMCID: PMC10048682 DOI: 10.3390/foods12061170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
The peels of guaraná (Paullinia cupana) fruit contain abundant carotenoid content, which has demonstrated health benefits. However, these compounds are unstable in certain conditions, and their application into food products can be changed considering the processing parameters. This study aimed to encapsulate the carotenoid-rich extract from guaraná peels by spray drying (SD), characterize the microparticles, investigate their influence on the pasting properties of oatmeal paste, and evaluate the effects of temperature and shear on carotenoid stability during the preparation of this product. A rheometer with a pasting cell was used to simulate the extrusion conditions. Temperatures of 70, 80, and 90 °C and shear rates of 50 and 100 1/s were the parameters evaluated. Microparticles with a total carotenoid content between 40 and 96 µg/g were obtained. Over the storage period, carotenoid stability, particle size, color, moisture, and water activity varied according to the core:carrier material proportion used. Afterward, the formulation SD1:2 was selected to be incorporated in oatmeal, and the paste viscosity was influenced by the addition of this powder. β-carotene retention was higher than that of lutein following the treatment. The less severe treatment involving a temperature of 70 °C and a shear rate of 50 1/s exhibited better retention of total carotenoids, regardless of whether the carotenoid-rich extract was encapsulated or non-encapsulated. In the other treatments, the thermomechanical stress significantly influenced the stability of the total carotenoid. These results suggest that the addition of encapsulated carotenoids to foods prepared at higher temperatures has the potential for the development of functional and stable products.
Collapse
Affiliation(s)
- Lorena Silva Pinho
- Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil; (L.S.P.)
- Department of Food Science and Technology, College of Food, Agricultural, and Environmental Sciences, Ohio State University (OSU), Columbus, OH 43210, USA
| | - Bhavesh K. Patel
- Department of Food Science and Technology, College of Food, Agricultural, and Environmental Sciences, Ohio State University (OSU), Columbus, OH 43210, USA
| | - Osvaldo H. Campanella
- Department of Food Science and Technology, College of Food, Agricultural, and Environmental Sciences, Ohio State University (OSU), Columbus, OH 43210, USA
| | - Christianne Elisabete da Costa Rodrigues
- Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil; (L.S.P.)
| | - Carmen Sílvia Favaro-Trindade
- Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil; (L.S.P.)
- Correspondence:
| |
Collapse
|
21
|
Green Solvents: Emerging Alternatives for Carotenoid Extraction from Fruit and Vegetable By-Products. Foods 2023; 12:foods12040863. [PMID: 36832938 PMCID: PMC9956085 DOI: 10.3390/foods12040863] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Carotenoids have important implications for human health and the food industry due to their antioxidant and functional properties. Their extraction is a crucial step for being able to concentrate them and potentially include them in food products. Traditionally, the extraction of carotenoids is performed using organic solvents that have toxicological effects. Developing greener solvents and techniques for extracting high-value compounds is one of the principles of green chemistry and a challenge for the food industry. This review will analyze the use of green solvents, namely, vegetable oils, supercritical fluids, deep eutectic solvents, ionic liquids, and limonene, combined with nonconventional techniques (ultrasound-assisted extraction and microwave), for carotenoid extraction from fruit and vegetable by-products as upcoming alternatives to organic solvents. Recent developments in the isolation of carotenoids from green solvents and their inclusion in food products will also be discussed. The use of green solvents offers significant advantages in extracting carotenoids, both by decreasing the downstream process of solvent elimination, and the fact that the carotenoids can be included directly in food products without posing a risk to human health.
Collapse
|
22
|
Ray A, Dubey KK, Marathe SJ, Singhal R. Supercritical fluid extraction of bioactives from fruit waste and its therapeutic potential. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Diaconeasa Z, Iuhas CI, Ayvaz H, Mortas M, Farcaş A, Mihai M, Danciu C, Stanilă A. Anthocyanins from Agro-Industrial Food Waste: Geographical Approach and Methods of Recovery-A Review. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010074. [PMID: 36616202 PMCID: PMC9823320 DOI: 10.3390/plants12010074] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 05/13/2023]
Abstract
Drastic growth in the amount of global food waste produced is observed every year, not only due to incessant population growth but also economic growth, lifestyle, and diet changes. As a result of their increasing health awareness, people are focusing more on healthy diets rich in fruits and vegetables. Thus, following worldwide fruit and vegetable consumption and their processing in various industries (juice, jams, wines, preserves), significant quantities of agro-industrial waste are produced (pomace, peels, seeds) that still contain high concentrations of bioactive compounds. Among bioactive compounds, anthocyanins have an important place, with their multiple beneficial effects on health; therefore, their extraction and recovery from food waste have become a topic of interest in recent years. Accordingly, this review aims to summarize the primary sources of anthocyanins from food waste and the novel eco-friendly extraction methods, such as pulsed electric field extraction, enzyme-assisted extraction, supercritical fluid extraction, pressurized liquid extraction, microwave-assisted extraction, and ultrasonic-assisted extraction. The advantages and disadvantages of these techniques will also be covered to encourage future studies and opportunities focusing on improving these extraction techniques.
Collapse
Affiliation(s)
- Zoriţa Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănă¸stur, 400372 Cluj-Napoca, Romania
- BioTech Technology Transfer Center, 400372 Cluj-Napoca, Romania
| | - Cristian I. Iuhas
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400372 Cluj-Napoca, Romania
| | - Huseyin Ayvaz
- Department of Food Engineering, Faculty of Engineering, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Mustafa Mortas
- Food Engineering Department, Faculty of Engineering, Ondokuz Mayıs University, Samsun 55139, Turkey
| | - Anca Farcaş
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănă¸stur, 400372 Cluj-Napoca, Romania
- BioTech Technology Transfer Center, 400372 Cluj-Napoca, Romania
| | - Mihaela Mihai
- BioTech Technology Transfer Center, 400372 Cluj-Napoca, Romania
- Department of Transversal Competencies, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănă¸stur, 400372 Cluj-Napoca, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Andreea Stanilă
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănă¸stur, 400372 Cluj-Napoca, Romania
- BioTech Technology Transfer Center, 400372 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-748-650-764
| |
Collapse
|
24
|
Skwarek P, Karwowska M. Fatty Acids Profile and Antioxidant Properties of Raw Fermented Sausages with the Addition of Tomato Pomace. Biomolecules 2022; 12:1695. [PMID: 36421709 PMCID: PMC9688078 DOI: 10.3390/biom12111695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/12/2022] [Indexed: 06/26/2024] Open
Abstract
The aim of the study was to evaluate the effect of tomato pomace (TP) on physicochemical parameters and fatty acid profile as well as antioxidant properties of dry fermented sausages with a reduced content of nitrites. Four different sausage formulations were prepared: control sample, and samples with 0.5%, 1% and 1.5% addition of freeze-dried TP. The sausages were analyzed for: chemical composition, pH and water activity, fatty acid profile, color parameters, biogenic content, and number of lactic acid bacteria and Enterobacteriacea. The antioxidant properties were also assessed depending on the amount of TP used. The products were characterized by similar water activity and pH in the range of 0.877-0.895 and 4.55-4.81, respectively. The effect of the addition of freeze-dried TP on an increase in antioxidant activity along with an increase in the concentration of the additive was observed. This phenomenon was most likely due to the strong antioxidant properties of tomato as well as the high content of lycopene. The antimicrobial properties of TP in raw fermented sausages were also noted as the product with the highest concentration of pomace had the lowest number of Enterobacteriaceae. In addition, sausages with reduced levels of nitrites to which TP was added were characterized by a higher redness, which will probably have a positive impact on the assessment consumers make of them. The most promising results were obtained for the dry fermented sausage with 1.5% addition of TP.
Collapse
Affiliation(s)
| | - Małgorzata Karwowska
- Department of Animal Food Technology, Sub-Department of Meat Technology and Food Quality, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| |
Collapse
|
25
|
|
26
|
Jing Y, Wang Y, Zhou D, Wang J, Li J, Sun J, Feng Y, Xin F, Zhang W. Advances in the synthesis of three typical tetraterpenoids including β-carotene, lycopene and astaxanthin. Biotechnol Adv 2022; 61:108033. [PMID: 36096404 DOI: 10.1016/j.biotechadv.2022.108033] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022]
Abstract
Carotenoids are natural pigments that widely exist in nature. Due to their excellent antioxidant, anticancer and anti-inflammatory properties, carotenoids are commonly used in food, medicine, cosmetic and other fields. At present, natural carotenoids are mainly extracted from plants, algae and microorganisms. With the rapid development of metabolic engineering and molecular biology as well as the continuous in-depth study of carotenoids synthesis pathways, industrial microorganisms have showed promising applications in the synthesis of carotenoids. In this review, we introduced the properties of several carotenoids and their biosynthetic metabolism process. Then, the microorganisms synthesizing carotenoids through the natural and non-natural pathways and the extraction methods of carotenoids were summarized and compared. Meanwhile, the influence of substrates on the carotenoids production was also listed. The methods and strategies for achieving high carotenoid production are categorized to help with future research.
Collapse
Affiliation(s)
- Yiwen Jing
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yanxia Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, PR China
| | - Dawei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jingnan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jiawen Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jingxiang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yifan Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| |
Collapse
|
27
|
Reconnoitring the Usage of Agroindustrial Waste in Carotenoid Production for Food Fortification: a Sustainable Approach to Tackle Vitamin A Deficiency. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Corrêa-Filho LC, Santos DI, Brito L, Moldão-Martins M, Alves VD. Storage Stability and In Vitro Bioaccessibility of Microencapsulated Tomato (Solanum Lycopersicum L.) Pomace Extract. Bioengineering (Basel) 2022; 9:bioengineering9070311. [PMID: 35877362 PMCID: PMC9312032 DOI: 10.3390/bioengineering9070311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
Tomato pomace is rich in carotenoids (mainly lycopene), which are related to important bioactive properties. In general, carotenoids are known to react easily under environmental conditions, which may create a barrier in producing stable functional components for food. This work intended to evaluate the storage stability and in vitro release of lycopene from encapsulated tomato pomace extract, and its bioaccessibility when encapsulates were incorporated in yogurt. Microencapsulation assays were carried out with tomato pomace extract as the core material and arabic gum or inulin (10 and 20 wt%) as wall materials by spray drying (160 and 200 °C). The storage stability results indicate that lycopene degradation was highly influenced by the presence of oxygen and light, even when encapsulated. In vitro release studies revealed that 63% of encapsulated lycopene was released from the arabic gum particles in simulated gastric fluid, whereas for the inulin particles, the release was only around 13%. The feed composition with 20% inulin showed the best protective ability and the one that enabled releasing the bioactives preferentially in the intestine. The bioaccessibility of the microencapsulated lycopene added to yogurt increased during simulated gastrointestinal digestion as compared to the microencapsulated lycopene alone. We anticipate a high potential for the inulin microparticles containing lycopene to be used in functional food formulations.
Collapse
|
29
|
Carrillo C, Nieto G, Martínez-Zamora L, Ros G, Kamiloglu S, Munekata PES, Pateiro M, Lorenzo JM, Fernández-López J, Viuda-Martos M, Pérez-Álvarez JÁ, Barba FJ. Novel Approaches for the Recovery of Natural Pigments with Potential Health Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6864-6883. [PMID: 35040324 PMCID: PMC9204822 DOI: 10.1021/acs.jafc.1c07208] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 05/27/2023]
Abstract
The current increased industrial food production has led to a significant rise in the amount of food waste generated. These food wastes, especially fruit and vegetable byproducts, are good sources of natural pigments, such as anthocyanins, betalains, carotenoids, and chlorophylls, with both coloring and health-related properties. Therefore, recovery of natural pigments from food wastes is important for both economic and environmental reasons. Conventional methods that are used to extract natural pigments from food wastes are time-consuming, expensive, and unsustainable. In addition, natural pigments are sensitive to high temperatures and prolonged processing times that are applied during conventional treatments. In this sense, the present review provides an elucidation of the latest research on the extraction of pigments from the agri-food industry and how their consumption may improve human health.
Collapse
Affiliation(s)
- Celia Carrillo
- Nutrición
y Bromatología, Facultad de Ciencias, Universidad de Burgos, E-09001 Burgos, Spain
| | - Gema Nieto
- Department
of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain
| | - Lorena Martínez-Zamora
- Department
of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain
| | - Gaspar Ros
- Department
of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain
| | - Senem Kamiloglu
- Department
of Food Engineering, Faculty of Agriculture, Bursa Uludag University, 16059 Gorukle, Bursa, Turkey
- Science
and Technology Application and Research Center (BITUAM), Bursa Uludag University, 16059 Gorukle, Bursa, Turkey
| | - Paulo E. S. Munekata
- Centro
Tecnológico de la Carne de Galicia, Avenida Galicia No. 4, Parque Tecnológico
de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| | - Mirian Pateiro
- Centro
Tecnológico de la Carne de Galicia, Avenida Galicia No. 4, Parque Tecnológico
de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| | - José M. Lorenzo
- Centro
Tecnológico de la Carne de Galicia, Avenida Galicia No. 4, Parque Tecnológico
de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
- Área
de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Juana Fernández-López
- IPOA
Research Group, Agro-Food Technology Department, Centro de Investigación
e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Alicante, Spain
| | - Manuel Viuda-Martos
- IPOA
Research Group, Agro-Food Technology Department, Centro de Investigación
e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Alicante, Spain
| | - José Ángel Pérez-Álvarez
- IPOA
Research Group, Agro-Food Technology Department, Centro de Investigación
e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Alicante, Spain
| | - Francisco J. Barba
- Nutrition
and Food Science Area, Preventive Medicine and Public Health, Food
Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| |
Collapse
|
30
|
Mendonça JDS, Guimarães RDCA, Zorgetto-Pinheiro VA, Fernandes CDP, Marcelino G, Bogo D, Freitas KDC, Hiane PA, de Pádua Melo ES, Vilela MLB, do Nascimento VA. Natural Antioxidant Evaluation: A Review of Detection Methods. Molecules 2022; 27:3563. [PMID: 35684500 PMCID: PMC9182375 DOI: 10.3390/molecules27113563] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 02/04/2023] Open
Abstract
Antioxidants have drawn the attention of the scientific community due to being related to the prevention of various degenerative diseases. The antioxidant capacity has been extensively studied in vitro, and different methods have been used to assess its activity. However, the main issues related to studying natural antioxidants are evaluating whether these antioxidants demonstrate a key role in the biological system and assessing their bioavailability in the organism. The majority of outcomes in the literature are controversial due to a lack of method standardization and their proper application. Therefore, this study aims to compile the main issues concerning the natural antioxidant field of study, comparing the most common in vitro methods to evaluate the antioxidant activity of natural compounds, demonstrating the antioxidant activity in biological systems and the role of the main antioxidant enzymes of redox cellular signaling and explaining how the bioavailability of bioactive compounds is evaluated in animal models and human clinical trials.
Collapse
Affiliation(s)
- Jenifer da Silva Mendonça
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Verônica Assalin Zorgetto-Pinheiro
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Carolina Di Pietro Fernandes
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Gabriela Marcelino
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Danielle Bogo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Karine de Cássia Freitas
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Elaine Silva de Pádua Melo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
- School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | | | - Valter Aragão do Nascimento
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
- School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| |
Collapse
|
31
|
Insight into the Progress on Natural Dyes: Sources, Structural Features, Health Effects, Challenges, and Potential. Molecules 2022; 27:molecules27103291. [PMID: 35630767 PMCID: PMC9144664 DOI: 10.3390/molecules27103291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Dyes play an important role in food, medicine, textile, and other industries, which make human life more colorful. With the increasing demand for food safety, the development of natural dyes becomes more and more attractive. (2) Methods: The literature was searched using the electronic databases PubMed, Web of Science, and SciFinder and this scoping review was carried out following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). (3) Results: 248 articles were included in this review. This review summarizes the research progress on natural dyes in the last ten years. According to structural features, natural dyes mainly include carotenoids, polyphenols, porphyrins, and alkaloids, and some of the newest dyes are summarized. Some pharmacological activities of carotenoids, anthocyanin, curcumin, and betalains in the last 10 years are summarized, and the biological effects of dyes regarding illumination conditions. The disadvantages of natural dyes, including sources, cost, stability, and poor bioavailability, limit their application. Here, some feasible strategies (potential resources, biotechnology, new extraction and separation strategies, strategies for improving stability) are described, which will contribute to the development and utilization of natural dyes. (4) Conclusion: Natural dyes show health benefits and potential in food additives. However, it is necessary for natural dyes to pass toxicity tests and quality tests and receive many regulatory approvals before their final entry into the market as food colorants or as drugs.
Collapse
|
32
|
Evaluation of a novel oleaginous filamentous green alga, Barranca yajiagengensis (Chlorophyta, Chaetophorales) for biomass, lipids and pigments production. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Yu J, Liu X, Zhang L, Shao P, Wu W, Chen Z, Li J, Renard CM. An overview of carotenoid extractions using green solvents assisted by Z-isomerization. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Saini RK, Prasad P, Lokesh V, Shang X, Shin J, Keum YS, Lee JH. Carotenoids: Dietary Sources, Extraction, Encapsulation, Bioavailability, and Health Benefits-A Review of Recent Advancements. Antioxidants (Basel) 2022; 11:795. [PMID: 35453480 PMCID: PMC9025559 DOI: 10.3390/antiox11040795] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/08/2023] Open
Abstract
Natural carotenoids (CARs), viz. β-carotene, lutein, astaxanthin, bixin, norbixin, capsanthin, lycopene, canthaxanthin, β-Apo-8-carotenal, zeaxanthin, and β-apo-8-carotenal-ester, are being studied as potential candidates in fields such as food, feed, nutraceuticals, and cosmeceuticals. CAR research is advancing in the following three major fields: (1) CAR production from natural sources and optimization of its downstream processing; (2) encapsulation for enhanced physical and chemical properties; and (3) preclinical, clinical, and epidemiological studies of CARs' health benefits. This review critically discusses the recent developments in studies of the chemistry and antioxidant activity, marketing trends, dietary sources, extraction, bioaccessibility and bioavailability, encapsulation methods, dietary intake, and health benefits of CARs. Preclinical, clinical, and epidemiological studies on cancer, obesity, type 2 diabetes (T2D), cardiovascular diseases (CVD), osteoporosis, neurodegenerative disease, mental health, eye, and skin health are also discussed.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (R.K.S.); (Y.-S.K.)
| | - Parchuri Prasad
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA;
| | - Veeresh Lokesh
- Biocontrol Laboratory, University of Horticultural Sciences, Bagalkote 587104, India;
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China;
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (R.K.S.); (Y.-S.K.)
| | - Ji-Ho Lee
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (R.K.S.); (Y.-S.K.)
| |
Collapse
|
35
|
High-Pressure Technologies for the Recovery of Bioactive Molecules from Agro-Industrial Waste. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Large amounts of food waste are produced each year. These residues require appropriate management to reduce their environmental impact and, at the same time, economic loss. However, this waste is still rich in compounds (e.g., colorants, antioxidants, polyphenols, fatty acids, vitamins, and proteins) that can find potential applications in food, pharmaceutical, and cosmetic industries. Conventional extraction techniques suffer some drawbacks when applied to the exploitation of food residues, including large amounts of polluting solvents, increased time of extraction, possible degradation of the active molecules during extraction, low yields, and reduced extraction selectivity. For these reasons, advanced extraction techniques have emerged in order to obtain efficient residue exploitation using more sustainable processes. In particular, performing extraction under high-pressure conditions, such as supercritical fluids and pressurized liquid extraction, offers several advantages for the extraction of bioactive molecules. These include the reduced use of toxic solvents, reduced extraction time, high selectivity, and the possibility of being applied in combination in a cascade of progressive extractions. In this review, an overview of high-pressure extraction techniques related to the recovery of high added value compounds from waste generated in food industries is presented and a critical discussion of the advantages and disadvantages of each process is reported. Furthermore, the possibility of combined multi-stage extractions, as well as economic and environmental aspects, are discussed in order to provide a complete overview of the topic.
Collapse
|
36
|
Torres TMS, Mendiola JA, Álvarez-Rivera G, Mazzutti S, Ibáñez E, Cifuentes A, Ferreira SRS. Protein valorization from ora-pro-nobis leaves by compressed fluids biorefinery extractions. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Uquiche E, Millao S, del Valle JM. Extrusion affects supercritical CO2 extraction of red pepper (Capsicum annuum L.) oleoresin. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Kultys E, Kurek MA. Green Extraction of Carotenoids from Fruit and Vegetable Byproducts: A Review. Molecules 2022; 27:molecules27020518. [PMID: 35056830 PMCID: PMC8779810 DOI: 10.3390/molecules27020518] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
Carotenoids are characterized by a wide range of health-promoting properties. For example, they support the immune system and wound healing process and protect against UV radiation’s harmful effects. Therefore, they are used in the food industry and cosmetics, animal feed, and pharmaceuticals. The main sources of carotenoids are the edible and non-edible parts of fruit and vegetables. Therefore, the extraction of bioactive substances from the by-products of vegetable and fruit processing can greatly reduce food waste. This article describes the latest methods for the extraction of carotenoids from fruit and vegetable byproducts, such as solvent-free extraction—which avoids the costs and risks associated with the use of petrochemical solvents, reduces the impact on the external environment, and additionally increases the purity of the extract—or green extraction using ultrasound and microwaves, which enables a significant improvement in process efficiency and reduction in extraction time. Another method is supercritical extraction with CO2, an ideal supercritical fluid that is non-toxic, inexpensive, readily available, and easily removable from the product, with a high penetration capacity.
Collapse
|
39
|
Kaur B, Panesar PS, Anal AK, Ky SC. Recent Trends in the Management of Mango By-products. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2021935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Brahmeet Kaur
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, India
| | - Parmjit S. Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, India
| | - Anil K. Anal
- Department of Food, Agriculture, and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Son C. Ky
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
40
|
Klettenhammer S, Ferrentino G, Zendehbad HS, Morozova K, Scampicchio M. Microencapsulation of linseed oil enriched with carrot pomace extracts using Particles from Gas Saturated Solutions (PGSS) process. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
41
|
Cano-Lamadrid M, Artés-Hernández F. By-Products Revalorization with Non-Thermal Treatments to Enhance Phytochemical Compounds of Fruit and Vegetables Derived Products: A Review. Foods 2021; 11:59. [PMID: 35010186 PMCID: PMC8750753 DOI: 10.3390/foods11010059] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to provide comprehensive information about non-thermal technologies applied in fruit and vegetables (F&V) by-products to enhance their phytochemicals and to obtain pectin. Moreover, the potential use of such compounds for food supplementation will also be of particular interest as a relevant and sustainable strategy to increase functional properties. The thermal instability of bioactive compounds, which induces a reduction of the content, has led to research and development during recent decades of non-thermal innovative technologies to preserve such nutraceuticals. Therefore, ultrasounds, light stresses, enzyme assisted treatment, fermentation, electro-technologies and high pressure, among others, have been developed and improved. Scientific evidence of F&V by-products application in food, pharmacologic and cosmetic products, and packaging materials were also found. Among food applications, it could be mentioned as enriched minimally processed fruits, beverages and purees fortification, healthier and "clean label" bakery and confectionary products, intelligent food packaging, and edible coatings. Future investigations should be focused on the optimization of 'green' non-thermal and sustainable-technologies on the F&V by-products' key compounds for the full-utilization of raw material in the food industry.
Collapse
Affiliation(s)
- Marina Cano-Lamadrid
- Food Quality and Safety Group, Department of Agrofood Technology, Universidad Miguel Hernández, Ctra. Beniel, Km 3.2, Orihuela, 03312 Alicante, Spain
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, 30203 Murcia, Spain;
| |
Collapse
|
42
|
Value-Added Metabolites from Agricultural Waste and Application of Green Extraction Techniques. SUSTAINABILITY 2021. [DOI: 10.3390/su132011432] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The agricultural sector generates approximately 1300 million tonnes of waste annually, where up to 50% comprising of raw material are discarded without treatment. Economic development and rising living standards have increased the quantity and complexity of waste generated resulting in environmental, health and economic issues. This calls for a greener waste management system such as valorization or recovery of waste into products. For successful implementation, social acceptance is an essential component with involvement of all local stakeholders including community to learn and understand the process and objective of the implementation. The agricultural waste product manufacturing industry is expected to increase with the growing demand for organic food. Thus, proper livestock and crop waste management is vital for environmental protection. It will be essential to successfully convert waste into a sustainable product that is reusable and circulated in the system in line with the green concept of circular economy. This review identifies the commercially produced crops by-product that have been considered for valorization and implemented green extraction for recovery. We highlight the importance of social acceptance and the economic value to agricultural waste recycling. Successful implementation of these technologies will overcome current waste management problems, reduce environmental impacts of landfills, and sustainability issue for farm owners.
Collapse
|
43
|
|
44
|
Supercritical CO 2 Extraction of Bioactive Compounds from Mango ( Mangifera indica L.) Peel and Pulp. Foods 2021; 10:foods10092201. [PMID: 34574311 PMCID: PMC8464866 DOI: 10.3390/foods10092201] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
The potential of supercritical CO2 (SC-CO2) for the extraction of bioactive compounds from mango by-products was assessed. Carotenoid extraction was optimized using a design of experiments based on temperature (35, 55 and 70 °C), pressure (10 and 35 MPa) and co-solvent addition (0%, 10% and 20% of ethanol or acetone). Moreover, the co-extraction of phenolic acids, flavonoids and xanthonoids was evaluated in a subset of parameters. Finally, a comparison was made between SC-CO2 and a two-step organic solvent extraction of the bioactive compounds from the pulp and peel fractions of two Ecuadorian varieties. The optimal extraction temperature was found to be dependent on the bioactive type, with phenolics requiring higher temperature than carotenoids. The optimal overall conditions, focused on maximal carotenoids recovery, were found to be 55 °C, 35 MPa and 20% of ethanol. The main carotenoid was β-carotene, while phenolics differed among the varieties. The bioactive content of the peel was up to 4.1-fold higher than in the pulp fraction. Higher antioxidant activity was found in the extracts obtained with organic solvents. SC-CO2 is a promising technology for the isolation of valuable compounds from mango by-products.
Collapse
|
45
|
Awad AM, Kumar P, Ismail-Fitry MR, Jusoh S, Ab Aziz MF, Sazili AQ. Green Extraction of Bioactive Compounds from Plant Biomass and Their Application in Meat as Natural Antioxidant. Antioxidants (Basel) 2021; 10:1465. [PMID: 34573097 PMCID: PMC8466011 DOI: 10.3390/antiox10091465] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022] Open
Abstract
Plant extracts are rich in various bioactive compounds exerting antioxidants effects, such as phenolics, catechins, flavonoids, quercetin, anthocyanin, tocopherol, rutin, chlorogenic acid, lycopene, caffeic acid, ferulic acid, p-coumaric acid, vitamin C, protocatechuic acid, vitamin E, carotenoids, β-carotene, myricetin, kaempferol, carnosine, zeaxanthin, sesamol, rosmarinic acid, carnosic acid, and carnosol. The extraction processing protocols such as solvent, time, temperature, and plant powder should be optimized to obtain the optimum yield with the maximum concentration of active ingredients. The application of novel green extraction technologies has improved extraction yields with a high concentration of active compounds, heat-labile compounds at a lower environmental cost, in a short duration, and with efficient utilization of the solvent. The application of various combinations of extraction technologies has proved to exert a synergistic effect or to act as an adjunct. There is a need for proper identification, segregation, and purification of the active ingredients in plant extracts for their efficient utilization in the meat industry, as natural antioxidants. The present review has critically analyzed the conventional and green extraction technologies in extracting bioactive compounds from plant biomass and their utilization in meat as natural antioxidants.
Collapse
Affiliation(s)
- Alzaidi Mohammed Awad
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia; (A.M.A.); (P.K.)
| | - Pavan Kumar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia; (A.M.A.); (P.K.)
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Mohammad Rashedi Ismail-Fitry
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia;
| | - Shokri Jusoh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia; (S.J.); (M.F.A.A.)
| | - Muhamad Faris Ab Aziz
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia; (S.J.); (M.F.A.A.)
| | - Awis Qurni Sazili
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia; (A.M.A.); (P.K.)
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia; (S.J.); (M.F.A.A.)
| |
Collapse
|
46
|
Trombino S, Cassano R, Procopio D, Di Gioia ML, Barone E. Valorization of Tomato Waste as a Source of Carotenoids. Molecules 2021; 26:molecules26165062. [PMID: 34443647 PMCID: PMC8398759 DOI: 10.3390/molecules26165062] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Fast-accumulating scientific evidence from many studies has revealed that fruits and vegetables are the main source of bioactive compounds; in most cases, wastes and byproducts generated by the food processing industry present similar or a higher content of antioxidant compounds. In recent years, the ever-growing amount of agricultural and food wastes has raised serious concerns from an environmental point of view. Therefore, there is an increasing interest in finding new ways for their processing toward safely upgrading these wastes for recovering high-value-added products with a sustainable approach. Among food waste, the abundance of bioactive compounds in byproducts derived from tomato suggests possibility of utilizing them as a low-cost source of antioxidants as functional ingredients. This contribution gives an overview of latest studies on the extraction methods of carotenoids from tomato waste, along with an evaluation of their antioxidant activity, as well as their industrial applications.
Collapse
Affiliation(s)
- Sonia Trombino
- Department of Pharmacy and Health and Nutrition Sciences, Department of Excellence L. 232/2016, Edificio Polifunzionale, Università della Calabria, 87036 Rende, Italy; (S.T.); (R.C.); (D.P.)
| | - Roberta Cassano
- Department of Pharmacy and Health and Nutrition Sciences, Department of Excellence L. 232/2016, Edificio Polifunzionale, Università della Calabria, 87036 Rende, Italy; (S.T.); (R.C.); (D.P.)
| | - Debora Procopio
- Department of Pharmacy and Health and Nutrition Sciences, Department of Excellence L. 232/2016, Edificio Polifunzionale, Università della Calabria, 87036 Rende, Italy; (S.T.); (R.C.); (D.P.)
| | - Maria Luisa Di Gioia
- Department of Pharmacy and Health and Nutrition Sciences, Department of Excellence L. 232/2016, Edificio Polifunzionale, Università della Calabria, 87036 Rende, Italy; (S.T.); (R.C.); (D.P.)
- Correspondence: (M.L.D.G.); (E.B.); Tel.: +39-0984493095 (M.L.D.G.); +39-06-49910935 (E.B.)
| | - Eugenio Barone
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro, 00185 Rome, Italy
- Correspondence: (M.L.D.G.); (E.B.); Tel.: +39-0984493095 (M.L.D.G.); +39-06-49910935 (E.B.)
| |
Collapse
|
47
|
Wani FA, Rashid R, Jabeen A, Brochier B, Yadav S, Aijaz T, Makroo HA, Dar BN. Valorisation of food wastes to produce natural pigments using non‐thermal novel extraction methods: a review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Faiqa A. Wani
- Department of Food Technology IUST Awantipora Kashmir 192122 India
| | - Rukhsana Rashid
- Department of Food Technology IUST Awantipora Kashmir 192122 India
| | - Abida Jabeen
- Division of Food Science and Technology SKUAST Srinagar Kashmir 190 025 India
| | - Bethania Brochier
- Escola Politécnica UNISINOS Avenida Unisinos, 950 São Leopoldo RS 93022‐750 Brazil
| | | | - Thameed Aijaz
- Department of Food Technology IUST Awantipora Kashmir 192122 India
| | - H. A. Makroo
- Department of Food Technology IUST Awantipora Kashmir 192122 India
| | - B. N. Dar
- Department of Food Technology IUST Awantipora Kashmir 192122 India
| |
Collapse
|
48
|
Portillo-López R, Morales-Contreras BE, Lozano-Guzmán E, Basilio-Heredia J, Muy-Rangel MD, Ochoa-Martínez LA, Rosas-Flores W, Morales-Castro J. Vegetable oils as green solvents for carotenoid extraction from pumpkin (Cucurbita argyrosperma Huber) byproducts: Optimization of extraction parameters. J Food Sci 2021; 86:3122-3136. [PMID: 34160063 DOI: 10.1111/1750-3841.15815] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/08/2021] [Accepted: 05/26/2021] [Indexed: 12/01/2022]
Abstract
Pumpkin pulp is the main waste generated by pumpkin seed growers. This agro-industrial waste is a valuable source of bioactive compounds, especially carotenoids (β-carotene, α-carotene, and lutein), which exhibit a broad spectrum of health-promoting effects. In this study, vegetable oils (canola, corn, and soybean oil) were used as green solvent alternatives to conventional organic solvents for carotenoid extraction from dried pumpkin pulp (DPP) waste. The highest carotenoid extraction yield (CEY) was obtained with canola oil, at a 1:10 DPP/oil ratio. Response surface methodology (RSM) was used to optimize the extraction process parameters (temperature, time, and stirring rate) through a Box-Behnken design (BBD) maximizing CEY in canola oil. The extraction temperature and stirring rate were found to have a significant linear and quadratic effect, respectively, on CEY. Optimum conditions were achieved at 21.8 min, 250 rpm, and 60°C. Under these optimized conditions, the estimated value for CEY was 378.1 µg β-carotene equivalents/g of DPP, corresponding to 61.6% of the total carotenoid content present in the DPP. In contrast, the observed experimental value was 373.2 µg β-carotene equivalents/g of DPP (61.2%). The experimental value was very close to the estimated value, which verifies the model's adequacy and fit. This study shows an alternative method to extract carotenoids from DPP with canola oil, obtaining an oil naturally enriched with carotenoids that could be used as a potential functional ingredient in the development of food, cosmetics, and medicinal products. PRACTICAL APPLICATION: Pumpkin by-products are a potential carotenoid source. Vegetable oil can be used as an alternative solvent for carotenoid extraction from pumpkin residues to obtain an enriched carotenoid oil that can be used to formulate food products.
Collapse
Affiliation(s)
- Rubén Portillo-López
- TECNOLOGICO NACIONAL DE MEXICO/Instituto Tecnológico de Durango. Departamento de Ingeniería Química y Bioquímica, Blvd. Felipe Pescador 1830 Ote., Durango, 34000, Mexico
| | - Blanca E Morales-Contreras
- TECNOLOGICO NACIONAL DE MEXICO/Instituto Tecnológico de Durango. Departamento de Ingeniería Química y Bioquímica, Blvd. Felipe Pescador 1830 Ote., Durango, 34000, Mexico.,Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Coahuila, Mexico
| | - Eduardo Lozano-Guzmán
- Universidad Juárez del Estado de Durango. Laboratorio de Farmacognosia, Facultad de Ciencias Químicas. Av. Veterinaria s/n., Circuito Universitario, Col. Valle del Sur, Durango, Mexico
| | - José Basilio-Heredia
- Centro de Investigación en Alimentación y Desarrollo, A.C. Functional Foods and Nutraceuticals Laboratory, Col. Campo el Diez, Culiacán, México
| | - María D Muy-Rangel
- Centro de Investigación en Alimentación y Desarrollo, A.C. Functional Foods and Nutraceuticals Laboratory, Col. Campo el Diez, Culiacán, México
| | - Luz A Ochoa-Martínez
- TECNOLOGICO NACIONAL DE MEXICO/Instituto Tecnológico de Durango. Departamento de Ingeniería Química y Bioquímica, Blvd. Felipe Pescador 1830 Ote., Durango, 34000, Mexico
| | - Walfred Rosas-Flores
- TECNOLOGICO NACIONAL DE MEXICO/Instituto Tecnológico de Durango. Departamento de Ingeniería Química y Bioquímica, Blvd. Felipe Pescador 1830 Ote., Durango, 34000, Mexico
| | - Juliana Morales-Castro
- TECNOLOGICO NACIONAL DE MEXICO/Instituto Tecnológico de Durango. Departamento de Ingeniería Química y Bioquímica, Blvd. Felipe Pescador 1830 Ote., Durango, 34000, Mexico
| |
Collapse
|
49
|
Supercritical Carbon Dioxide Extraction of Phenolic Compounds from Potato (Solanum tuberosum) Peels. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083410] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the last three decades, greener technologies have been used, aiming at extracting phenolic compounds from vegetable matrices due to the inherent advantages compared to organic solvent-based methodologies. In this work, supercritical CO2 was investigated for recovering phenolic acids from potato peels. Following screening runs for assessing the significant extraction parameters, a Central Composite Design of Experiments was carried out aiming at process optimization, with methanol concentration (MeOH, %) and CO2 flow rate (qCO2, g/min) as independent variables. Both parameters were deemed to impart a significant effect on the final response. Although the major phenolic acid in potato peels is chlorogenic acid (CGA), the main compound extracted was caffeic acid (CFA), present at a concentration of 0.75 mg/g dry peel in the extracts. The optimum extraction conditions were 80 °C, 350 bar, MeOH 20%, and flow rate of 18.0 g/min, which enabled a total phenolic recovery of 37% and a CFA recovery of 82%. The antioxidant activity of the supercritical fluid extraction (SFE) extracts was also measured, with the highest scavenging capacity reaching 73%. The need for using mixtures of water and organic solvents as co-solvents in SFE to enable CGA recovery seems necessary, possibly due to its better dissolution in aqueous solutions than in pure solvents.
Collapse
|
50
|
Sharma M, Usmani Z, Gupta VK, Bhat R. Valorization of fruits and vegetable wastes and by-products to produce natural pigments. Crit Rev Biotechnol 2021; 41:535-563. [PMID: 33634717 DOI: 10.1080/07388551.2021.1873240] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synthetic pigments from petrochemicals have been extensively used in a wide range of food products. However, these pigments have adverse effects on human health that has rendered it obligatory to the scientific community in order to explore for much safer, natural, and eco-friendly pigments. In this regard, exploiting the potential of agri-food wastes presumes importance, extracted mainly by employing green processing and extraction technologies. Of late, pigments market size is growing rapidly owing to their extensive uses. Hence, there is a need for sustainable production of pigments from renewable bioresources. Valorization of vegetal wastes (fruits and vegetables) and their by-products (e.g. peels, seeds or pomace) can meet the demands of natural pigment production at the industrial levels for potential food, pharmaceuticals, and cosmeceuticals applications. These wastes/by-products are a rich source of natural pigments such as: anthocyanins, betalains, carotenoids, and chlorophylls. It is envisaged that these natural pigments can contribute significantly to the development of functional foods as well as impart rich biotherapeutic potential. With a sustainability approach, we have critically reviewed vital research information and developments made on natural pigments from vegetal wastes, greener extraction and processing technologies, encapsulation techniques and potential bioactivities. Designed with an eco-friendly approach, it is expected that this review will benefit not only the concerned industries but also be of use to health-conscious consumers.
Collapse
Affiliation(s)
- Minaxi Sharma
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Tartu, Estonia
| | - Zeba Usmani
- Department of Chemistry and Biotechnology, Tallinn University of Technology (TalTech), Tallinn, Estonia
| | - Vijai Kumar Gupta
- Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, UK.,Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, UK
| | - Rajeev Bhat
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|