1
|
Jomova K, Alomar SY, Valko R, Liska J, Nepovimova E, Kuca K, Valko M. Flavonoids and their role in oxidative stress, inflammation, and human diseases. Chem Biol Interact 2025; 413:111489. [PMID: 40147618 DOI: 10.1016/j.cbi.2025.111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 02/23/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Oxidative stress and chronic inflammation are important drivers in the pathogenesis and progression of many chronic diseases, such as cancers of the breast, kidney, lung, and others, autoimmune diseases (rheumatoid arthritis), cardiovascular diseases (hypertension, atherosclerosis, arrhythmia), neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease), mental disorders (depression, schizophrenia, bipolar disorder), gastrointestinal disorders (inflammatory bowel disease, colorectal cancer), and other disorders. With the increasing demand for less toxic and more tolerable therapies, flavonoids have the potential to effectively modulate the responsiveness to conventional therapy and radiotherapy. Flavonoids are polyphenolic compounds found in fruits, vegetables, grains, and plant-derived beverages. Six of the twelve structurally different flavonoid subgroups are of dietary significance and include anthocyanidins (e.g. pelargonidin, cyanidin), flavan-3-ols (e.g. epicatechin, epigallocatechin), flavonols (e.g. quercetin, kaempferol), flavones (e.g. luteolin, baicalein), flavanones (e.g. hesperetin, naringenin), and isoflavones (daidzein, genistein). The health benefits of flavonoids are related to their structural characteristics, such as the number and position of hydroxyl groups and the presence of C2C3 double bonds, which predetermine their ability to chelate metal ions, terminate ROS (e.g. hydroxyl radicals formed by the Fenton reaction), and interact with biological targets to trigger a biological response. Based on these structural characteristics, flavonoids can exert both antioxidant or prooxidant properties, modulate the activity of ROS-scavenging enzymes and the expression and activation of proinflammatory cytokines (e.g., interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α)), induce apoptosis and autophagy, and target key signaling pathways, such as the nuclear factor erythroid 2-related factor 2 (Nrf2) and Bcl-2 family of proteins. This review aims to briefly discuss the mutually interconnected aspects of oxidative and inflammatory mechanisms, such as lipid peroxidation, protein oxidation, DNA damage, and the mechanism and resolution of inflammation. The major part of this article discusses the role of flavonoids in alleviating oxidative stress and inflammation, two common components of many human diseases. The results of epidemiological studies on flavonoids are also presented.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Richard Valko
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Jan Liska
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, 811 08, Bratislava, Slovakia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic; Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, 708 00, Czech Republic
| | - Kamil Kuca
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, 708 00, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, 5005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia.
| |
Collapse
|
2
|
Štekláč M, Malček M, Gajdoš P, Vevericová S, Čertík M, Valko M, Brezová V, Malček Šimunková M. Antioxidant effect, DNA-binding, and transport of the flavonoid acacetin influenced by the presence of redox-active Cu(II) ion: Spectroscopic and in silico study. J Inorg Biochem 2025; 264:112802. [PMID: 39671744 DOI: 10.1016/j.jinorgbio.2024.112802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/13/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Acacetin (AC) is a natural polyphenol from the group of flavonoids. It is well established that the behavior of flavonoids depends on the presence of redox-active substances; therefore, we aim to investigate their biological activity following the interaction with Cu(II) ion. Our study demonstrates that AC can effectively bind Cu(II) ions, as confirmed by UV-Vis and EPR spectroscopy as well as DFT calculations. AC appears as a potent scavenger against the model ABTS radical cation by itself, but this ability is significantly limited upon Cu(II) coordination. The possible mild synergistic effect of AC in the presence of vitamin C and glutathione was also shown by the ABTS•+ test. In contrast, an inhibitory effect was observed in the presence of Cu(II) ions. The equimolar addition of AC to the model Fenton-like system containing Cu(II) did not have a noticeable effect on the concentration of hydroxyl radicals produced, but in its excess the formation of •OH decreased, as proved by EPR spin trapping. Absorption titrations and gel electrophoresis revealed effective binding to calf thymus (CT)-DNA with a stronger interaction for the Cu(II)-AC complex. The detailed mode of binding to biomolecules was described using molecular docking and molecular dynamics. Obtained results indicate that the double helix of DNA unwinds after interaction with the Cu(II)-AC complex. Fluorescence spectroscopy, employing human serum albumin (HSA), suggested a potential transport capacity for both AC and its Cu(II) complex.
Collapse
Affiliation(s)
- Marek Štekláč
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic; Computing Center, Centre of Operations of the Slovak Academy of Sciences, Dúbravská cesta č. 9, SK-845 35 Bratislava, Slovakia, Slovak Republic
| | - Michal Malček
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
| | - Peter Gajdoš
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
| | - Simona Vevericová
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
| | - Milan Čertík
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
| | - Marián Valko
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
| | - Vlasta Brezová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
| | - Miriama Malček Šimunková
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic.
| |
Collapse
|
3
|
Vlašić I, Krstačić-Galić A, Horvat A, Oršolić N, Sadžak A, Mandić L, Šegota S, Jazvinšćak Jembrek M. Neurotoxic Effect of Myricitrin in Copper-Induced Oxidative Stress Is Mediated by Increased Intracellular Ca 2+ Levels and ROS/p53/p38 Axis. Antioxidants (Basel) 2025; 14:46. [PMID: 39857380 PMCID: PMC11763042 DOI: 10.3390/antiox14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Although commonly appreciated for their anti-oxidative and neuroprotective properties, flavonoids can also exhibit pro-oxidative activity, potentially reducing cell survival, particularly in the presence of metal ions. Disrupted copper homeostasis is a known contributor to neuronal dysfunction through oxidative stress induction. This study investigated the effects of myricitrin (1-20 μg/mL) on copper-induced toxicity (0.5 mM CuSO4) in the neuroblastoma SH-SY5Y cell line. At non-toxic concentrations, myricitrin exacerbated copper's toxic effects. The myricitrin-induced decrease in survival was accompanied with increased reactive oxygen species (ROS) production, reduced superoxide dismutase activity, and a lower GSH/GSSG ratio. In combination with copper, myricitrin also activated caspase-3/7, promoted nuclear chromatin changes, and compromised membrane integrity. At the protein level, myricitrin upregulated p53 and PUMA expression. The toxic effects of myricitrin were alleviated by the p38 inhibitor SB203580, the intracellular calcium chelator BAPTA-AM, and the NMDA receptor blocker MK-801, highlighting the significant role of the ROS/p53/p38 axis in cell death and the critical involvement of calcium ions in apoptosis induction. The atomic force microscopy was used to assess the surface morphology and nanomechanical properties of SH-SY5Y cells, revealing changes following myricitrin treatment. This research highlights the toxic potential of myricitrin and emphasizes the need for caution when considering flavonoid supplementation in conditions with elevated copper levels.
Collapse
Affiliation(s)
- Ignacija Vlašić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.V.); (A.H.)
| | - Antonio Krstačić-Galić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia (N.O.)
| | - Anđela Horvat
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.V.); (A.H.)
| | - Nada Oršolić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia (N.O.)
| | - Anja Sadžak
- Division of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (A.S.); (L.M.)
| | - Lucija Mandić
- Division of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (A.S.); (L.M.)
| | - Suzana Šegota
- Division of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (A.S.); (L.M.)
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.V.); (A.H.)
- Department of Psychology, Catholic University of Croatia, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Mansour MS, Mahmoud AA, Sayah MA, Mohamed ZN, Hussein MA, ALsherif DA. RES-CMCNPs Enhance Antioxidant, Proinflammatory, and Sensitivity of Tumor Solids to γ-irradiation in EAC-Bearing Mice. Pharm Nanotechnol 2025; 13:254-269. [PMID: 38676484 DOI: 10.2174/0122117385290497240324190453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 04/29/2024]
Abstract
OBJECTIVES Resveratrol (Res) is a bifunctional compound found in numerous plants, including grapes and mulberries. Nanotechnology has promising applications in medicine. The ability of various nanomaterials to serve as radiosensitizers against tumor cells were reported in several manuscripts. The present investigation aimed to assess the antitumor and radiosensitizing effects of Res-CMCNPs on EAC-bearing mice. METHODS Res-CMCNPs have been developed using the CMC emulsification cross-linking technique. Entrapment efficiency (%), particle size, Polydispersity index and ZETA potential, UV, FTIR spectra, and drug release were evaluated and described for RES-CMCNPs. The radiosensitizing properties of RES-CMCNPs were also evaluated in vitro and in vivo against EAC-carrying rodents. The LD50 of Res-CMCNPs was estimated and its 1/20 LD50 was prepared for treating EAC transplanted mice. RESULTS The results revealed that the Res-CMCNPs exhibited a high entrapment efficiency (85.46%) and a size of approximately 184.60 ±17.36 nm with zeta potential value equals -51.866 mv. Also, the UV spectra of Res and Res-CMCNPs have strong absorption at 225 and 290 nm. The percentage of resveratrol release at pHs 5.8 and 7.4 was found to be 56.73% and 51.60%, respectively, after 24 h at 100 rpm. Also, the FTIR analysis confirmed the chemical stability of resveratrol in Res-CMCNPs cross-linking. The IC50 values of Res-CMCNPs against EAC cells viability were 32.99, 25.46, and 22.21 μg after 24-, 48- and 72 h incubation, respectively, whereas those of Res- CMCNPs in combination with γ-irradiation after 6-, 10 and 12-mins exposure were 24.07, 16.06 and 7.48 μg, respectively. Also, the LD50 of Res-CMCNPs was 2180 mg/kg.b.w. The treatment of EAC-bearing mice with Res-CMCNPs plus γ-irradiation improved plasma levels of NO, caspase-3, P53 and NF-kB levels as well as liver MDA, GSH, SOD, CAT, LT-B4, aromatase, Bax, Bcl2 and TGF-β levels and exhibited more significant anticancer activity than administration of Res- CMCNPs and/or exposure to γ-irradiation individually. On the other hand, administration of Res- CMCNPs in combination with γ-irradiation attenuated liver mRNAs (21, 29b, 181a, and 451) gene expression. CONCLUSION Grafting resveratrol onto carboxymethyl chitosan appears to be a promising strategy for cancer therapy as a radiosensitizer, potentiating tumor cells' sensitivity to radiation by improving levels of proinflammatory features and antioxidant biomarkers.
Collapse
Affiliation(s)
- Mohamed S Mansour
- Biomedical Equipment Department, Faculty of Applied Health Sciences, October 6 University, October 6 City, 28125, Giza, Egypt
| | - Amira A Mahmoud
- Department of Radiology and Medical Imaging, Badr Academy, Cairo, Egypt
| | - Mohannad A Sayah
- Department of Radiography, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, 71111, P.O. Box 20 Ma'an, Jordan
| | - Zahraa N Mohamed
- Medical Laboratory Department, Faculty of Applied Health Sciences, October 6 University, 6th of October City, 28125, Giza, Egypt
| | - Mohammed A Hussein
- Biotechnology Department, Faculty of Applied Health Sciences, October 6 University, Sixth of October City, Egypt
| | - Diana A ALsherif
- Technology of Radiology and Medical Imaging Department, Faculty of Applied Health Science Technology, October 6 University, October 6th City, Egypt
| |
Collapse
|
5
|
Kundrapu DB, Rao PA, Malla RR. Enhanced efficacy of quercetin and taxifolin encapsulated with pH-responsive injectable BSA hydrogel for targeting triple-negative breast cancer cells. Int J Biol Macromol 2025; 287:138477. [PMID: 39667444 DOI: 10.1016/j.ijbiomac.2024.138477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Quercetin (QUE) and Taxifolin (TAX) are natural flavonoids with diverse biological activities, holding promise for cancer treatment. However, their clinical application is limited by their poor solubility and bioavailability. Self-assembled bovine serum albumin (BSA) hydrogels have demonstrated biocompatibility and proteolytic stability, making them suitable platforms for drug delivery. The present study validated the anticancer efficacy of QUE, TAX, and DOX encapsulated in BSA hydrogel (QUE@ BSA hydrogel, TAX@ BSA hydrogel, and DOX@ BSA hydrogel), which exhibited 93.5, 90 and 91.2 %% entrapment efficiency, respectively, and controlled release profiles with 90.8,95.8 and 90.8 % drug release, respectively, at lower pH using MDA-MB 231 and MDA-MB 468 TNBC cell lines. Characterization by SEM, XRD, FT-IR and DLS revealed distinctive features of QUE@ BSA hydrogel, TAX@ BSA hydrogel, and DOX@BSA hydrogels, suggesting potential for targeted drug delivery. Further, investigations showed that separate treatment with QUE@BSA hydrogel, TAX@BSA hydrogel, and DOX@BSA hydrogel disrupted cell membrane integrity, akin to inducing cytotoxicity with IC50 of 12.90, 15.52 and 6.9 μM, respectively, in MDA-MB 231 cells and 16.67, 19.16 and 5.2 μM, respectively, in MDA-MB 468 cells. Moreover, they reduced mammosphere formation and cell migration. Additionally, they induced cell cycle arrest, reduced cell proliferation, and induced apoptosis in TNBC cells. They also induced ROS generation and ER stress, highlighting their potential to suppress TNBC progression. Overall, this study underscores the promise of QUE@ BSA hydrogel and TAX@BSA hydrogel as effective anticancer agents against TNBC cell lines in line with DOX@BSA hydrogel, offering controlled drug release and enhanced therapeutic outcomes.
Collapse
Affiliation(s)
- Durga Bhavani Kundrapu
- Cancer Biology Laboratory, Dept of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Podilapu Atchutha Rao
- Dept of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Rama Rao Malla
- Cancer Biology Laboratory, Dept of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India.
| |
Collapse
|
6
|
Tang Y, Wang Y, Guo X, Xu Y, Wang Z, Wu J. Recent Advances of Coumarin-Type Compounds in Discovery of Pesticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26057-26073. [PMID: 39557543 DOI: 10.1021/acs.jafc.4c06538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Coumarin, a naturally occurring active ingredient with various biological activities in pesticides, is commonly found in plants belonging to the Rutaceae and Apiaceae families. Thanks to its unique structural properties and natural benefits, coumarin and its derivatives exhibit a wide range of physiological activities, including insecticidal, antifungal, antibacterial, herbicidal, and antiviral properties. These compounds have attracted considerable interest in the field of pesticide development, although there is a lack of comprehensive reviews on their use in pesticides. This Review aims to provide a detailed overview of the applications of coumarin and its derivatives in pesticides, covering biological activities, structure-activity relationship analyses, and mechanisms of action. It is hoped that this Review will offer new insights into the discovery and mechanisms of these compounds in pesticide development.
Collapse
Affiliation(s)
- Yao Tang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Ya Wang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Xiaoqiu Guo
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Ying Xu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Zhenchao Wang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Jian Wu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Gumisiriza H, Olet EA, Mwikali L, Akatuhebwa R, Omara T, Lejju JB, Sesaazi DC. Antibacterial and Antioxidant Activities of Flavonoids, Phenolic and Flavonoid Glycosides from Gouania longispicata Leaves. MICROBIOLOGY RESEARCH 2024; 15:2085-2101. [DOI: 10.3390/microbiolres15040140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
The leaves of Gouania longispicata Engl. (GLE) have been traditionally used to treat more than forty ailments in Uganda, including stomachache, lung and skin cancers, syphilis, toothache, and allergies. In this study, pure compounds were isolated from the methanolic extract of GLE leaves and their structures elucidated using ultraviolet visible spectroscopy, liquid chromatography–tandem mass spectrometry, high performance liquid chromatography, and 1D and 2D NMR techniques. The antibacterial and antioxidant activities of the compounds were assessed using the broth dilution and DPPH assays, respectively. Two known flavonoid glycosides (kaempferol-3-O-α-rhamnopyranoside and rutin), a phenolic glycoside (4,6-dihydroxy-3-methylacetophenone-2-O-β-D-glucopyranoside), and flavonoids (kaempferol and quercetin) were characterized. This is the first time that the kaempferol derivative, the acetophenone as well as free forms of quercetin, kaempferol, and rutin, are being reported in GLE and the Gouania genus. The compounds exhibited antibacterial activity against Streptococcus pneumoniae and Escherichia coli with minimum inhibitory concentrations between 16 µg/mL and 125 µg/mL. The radical scavenging activities recorded half-minimum inhibitory concentrations (IC50) ranging from 18.6 ± 1.30 µg/mL to 28.1 ± 0.09 µg/mL. The IC50 of kaempferol and quercetin were not significantly different from that of ascorbic acid (p > 0.05), highlighting their potential as natural antioxidant agents. These results lend credence to the use of GLE leaves in herbal treatment of microbial infections and oxidative stress-mediated ailments.
Collapse
Affiliation(s)
- Hannington Gumisiriza
- Department of Chemistry, Faculty of Science, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda
| | - Eunice Apio Olet
- Department of Biology, Faculty of Science, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda
| | - Lydia Mwikali
- Department of Chemistry, Faculty of Science, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda
| | - Racheal Akatuhebwa
- Department of Agriculture, Agribusiness, and Environment, Bishop Stuart University, Mbarara P.O. Box 09, Uganda
| | - Timothy Omara
- Department of Chemistry, College of Natural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Julius Bunny Lejju
- Department of Biology, Faculty of Science, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda
| | - Duncan Crispin Sesaazi
- Department of Pharmaceutical Sciences, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda
| |
Collapse
|
8
|
Edo GI, Nwachukwu SC, Ali AB, Yousif E, Jikah AN, Zainulabdeen K, Ekokotu HA, Isoje EF, Igbuku UA, Opiti RA, Akpoghelie PO, Owheruo JO, Essaghah AEA. A review on the composition, extraction and applications of phenolic compounds. ECOLOGICAL FRONTIERS 2024. [DOI: 10.1016/j.ecofro.2024.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Barakat K, Ragheb MA, Soliman MH, Abdelmoniem AM, Abdelhamid IA. Novel thiazole-based cyanoacrylamide derivatives: DNA cleavage, DNA/BSA binding properties and their anticancer behaviour against colon and breast cancer cells. BMC Chem 2024; 18:183. [PMID: 39304938 DOI: 10.1186/s13065-024-01284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
A novel series of 2-cyano-3-(pyrazol-4-yl)-N-(thiazol-2-yl)acrylamide derivatives (3a-f) were synthesized using Knoevenagel condensation and characterized using various spectral tools. The weak nuclease activity of compounds (3a-f) against pBR322 plasmid DNA was greatly enhanced by irradiation at 365 nm. Compounds 3b and 3c, incorporating thienyl and pyridyl moieties, respectively, exhibited the utmost nuclease activity in degrading pBR322 plasmid DNA through singlet oxygen and superoxide free radicals' species. Furthermore, compounds 3b and 3c affinities towards calf thymus DNA (CT-DNA) and bovine serum albumin (BSA) were investigated using UV-Vis and fluorescence spectroscopic analysis. They revealed good binding characteristics towards CT-DNA with Kb values of 6.68 × 104 M-1 and 1.19 × 104 M-1 for 3b and 3c, respectively. In addition, compounds 3b and 3c ability to release free radicals on radiation were targeted to be used as cytotoxic compounds in vitro for colon (HCT116) and breast cancer (MDA-MB-231) cells. A significant reduction in the cell viability on illumination at 365 nm was observed, with IC50 values of 23 and 25 µM against HCT116 cells, and 30 and 9 µM against MDA-MB-231 cells for compounds 3b and 3c, respectively. In conclusion, compounds 3b and 3c exhibited remarkable DNA cleavage and cytotoxic activity on illumination at 365 nm which might be associated with free radicals' production in addition to having a good affinity for interacting with CT-DNA and BSA.
Collapse
Affiliation(s)
- Karim Barakat
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed A Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Marwa H Soliman
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Amr M Abdelmoniem
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ismail A Abdelhamid
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
10
|
Benković V, Vuković D, Đelatić I, Popović V, Jurica K, Knežević F, Brčić Karačonji I, Lucić Vrdoljak A, Kopjar N. Effects of Strawberry Tree Water Leaf Extract and Arbutin on Biochemical Markers and DNA Integrity in Brain Cells of Lewis Rats. TOXICS 2024; 12:595. [PMID: 39195697 PMCID: PMC11359480 DOI: 10.3390/toxics12080595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
There is growing evidence that arbutin and plant extracts rich in arbutin, such as extracts of the strawberry tree (Arbutus unedo L.), exert a range of beneficial effects, including cyto- and genoprotective properties. This study evaluated the effects of strawberry tree water leaf extract (STE) and arbutin in the brain tissue of Lewis rats. STE or arbutin were administered per os to male and female rats at a dose of 200 mg/kg body weight/day for 14 or 28 days. Treatment outcomes were evaluated using biochemical markers (lipid peroxidation and the activities of the antioxidative enzymes catalase and superoxide dismutase). The effects of the tested substances on DNA integrity in brain cells were evaluated using the alkaline comet assay. The results suggest a high biocompatibility of both tested substances with rat brain tissue. No significant harmful disturbances were observed in the oxidative/antioxidative status or impairments of DNA integrity in the rat brain cells. Nearly all post-treatment values were within tolerable limits as compared to the matched control rats. Such encouraging findings support further research using other subtle biomarkers to clarify the safety aspects of arbutin and STE prior to the development of specific nutraceutical products.
Collapse
Affiliation(s)
- Vesna Benković
- Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Dora Vuković
- Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Iva Đelatić
- Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Vanja Popović
- Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Karlo Jurica
- Special Security Operations Directorate, Ministry of the Interior, 10000 Zagreb, Croatia;
| | - Fabijan Knežević
- School of Medicine, Catholic University of Croatia, 10000 Zagreb, Croatia;
| | - Irena Brčić Karačonji
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; (I.B.K.); (A.L.V.); (N.K.)
- Faculty of Health Studies, University of Rijeka, 51000 Rijeka, Croatia
| | - Ana Lucić Vrdoljak
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; (I.B.K.); (A.L.V.); (N.K.)
| | - Nevenka Kopjar
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; (I.B.K.); (A.L.V.); (N.K.)
| |
Collapse
|
11
|
Akyazı O, Korkmaz D, Cevher SC. Experimental Parkinson models and green chemistry approach. Behav Brain Res 2024; 471:115092. [PMID: 38844056 DOI: 10.1016/j.bbr.2024.115092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Parkinson's is the most common neurodegenerative disease after Alzheimer's. Motor findings in Parkinson's occur as a result of the degeneration of dopaminergic neurons starting in the substantia nigra pars compacta and ending in the putamen and caudate nucleus. Loss of neurons and the formation of inclusions called Lewy bodies in existing neurons are characteristic histopathological findings of Parkinson's. The disease primarily impairs the functional capacity of the person with cardinal findings such as tremor, bradykinesia, etc., as a result of the loss of dopaminergic neurons in the substantia nigra. Experimental animal models of Parkinson's have been used extensively in recent years to investigate the pathology of this disease. These models are generally based on systemic or local(intracerebral) administration of neurotoxins, which can replicate many features of Parkinson's mammals. The development of transgenic models in recent years has allowed us to learn more about the modeling of Parkinson's. Applying animal modeling, which shows the most human-like effects in studies, is extremely important. It has been demonstrated that oxidative stress increases in many neurodegenerative diseases such as Parkinson's and various age-related degenerative diseases in humans and that neurons are sensitive to it. In cases where oxidative stress increases and antioxidant systems are inadequate, natural molecules such as flavonoids and polyphenols can be used as a new antioxidant treatment to reduce neuronal reactive oxygen species and improve the neurodegenerative process. Therefore, in this article, we examined experimental animal modeling in Parkinson's disease and the effect of green chemistry approaches on Parkinson's disease.
Collapse
Affiliation(s)
- Ozge Akyazı
- Gazi University, Institute of Science, Department of Biology, Ankara 06500, Turkey.
| | - Dılara Korkmaz
- Gazi University, Institute of Science, Department of Biology, Ankara 06500, Turkey
| | - Sule Coskun Cevher
- Gazi University, Faculty of Science, Department of Biology, Ankara 06500, Turkey
| |
Collapse
|
12
|
Samodien S, de Kock M, Joubert E, de Beer D, Kriel J, Gelderblom WCA, Lilly M. Autophagy-induced cell death by aqueous and polyphenol-enriched extracts of honeybush ( Cyclopia spp.) in liver and colon cancer cells. Food Sci Nutr 2024; 12:5647-5662. [PMID: 39139978 PMCID: PMC11317699 DOI: 10.1002/fsn3.4214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 08/15/2024] Open
Abstract
The anti-cancer potential of Cyclopia species (honeybush) has been demonstrated in several models. The present study investigated the effects of aqueous and polyphenol-enriched (PE) extracts of C. subternata and C. genistoides, as well as mangiferin and hesperidin, on different cell growth parameters in human liver (HepG2) and colon (HT-29) cancer cells. Mangiferin and hesperidin were most abundant in C. genistoides and C. subternata, respectively. Cyclopia subternata extracts had the highest ferric-reducing antioxidant capacity. Following exposure of the cells to the extracts and compounds, cell viability, proliferation, and death (apoptosis and autophagy) were determined. Cyclopia subternata extracts reduced cell viability and inhibited cell proliferation the most, associated with depletion of ATP. In HepG2 cells, the PE extracts were less effective than the aqueous extracts in reducing cell viability but more effective in inhibiting cell proliferation. Despite disrupting cell growth, none of the extracts induced apoptosis. The aqueous extracts affected autophagy in both cancer cells. Disruption of mitochondrial membrane integrity by the different extracts, presumably via polyphenol/iron interactions, is postulated to be involved; however, mangiferin and hesperidin had no effect, suggesting that other polyphenols and/or complex interactions between compounds are likely responsible for the differential cytotoxic and/or cytoprotective effects of the extracts.
Collapse
Affiliation(s)
- Sedicka Samodien
- Applied Microbial and Health Biotechnology InstituteCape Peninsula University of TechnologyBellvilleSouth Africa
| | - Maryna de Kock
- Department of Medical Bioscience ProgramUniversity of Western CapeBellvilleSouth Africa
| | - Elizabeth Joubert
- Plant Bioactives Group, Post‐Harvest & Agro‐Processing TechnologiesAgricultural Research Council, Infruitec‐NietvoorbijStellenboschSouth Africa
- Department of Food ScienceStellenbosch UniversityStellenboschSouth Africa
| | - Dalene de Beer
- Plant Bioactives Group, Post‐Harvest & Agro‐Processing TechnologiesAgricultural Research Council, Infruitec‐NietvoorbijStellenboschSouth Africa
- Department of Food ScienceStellenbosch UniversityStellenboschSouth Africa
| | - Jurgen Kriel
- Central Analytical Facilities, Electron Microscopy UnitStellenbosch UniversityStellenboschSouth Africa
| | | | - Mariska Lilly
- Applied Microbial and Health Biotechnology InstituteCape Peninsula University of TechnologyBellvilleSouth Africa
| |
Collapse
|
13
|
Kaur C, Sahu SK, Bansal K, DeLiberto LK, Zhang J, Tewari D, Bishayee A. Targeting Peroxisome Proliferator-Activated Receptor-β/δ, Reactive Oxygen Species and Redox Signaling with Phytocompounds for Cancer Therapy. Antioxid Redox Signal 2024; 41:342-395. [PMID: 38299535 DOI: 10.1089/ars.2023.0442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Significance: Peroxisome proliferator-activated receptors (PPARs) have a moderately preserved amino-terminal domain, an extremely preserved DNA-binding domain, an integral hinge region, and a distinct ligand-binding domain that are frequently encountered with the other nuclear receptors. PPAR-β/δ is among the three nuclear receptor superfamily members in the PPAR group. Recent Advances: Emerging studies provide an insight on natural compounds that have gained increasing attention as potential anticancer agents due to their ability to target multiple pathways involved in cancer development and progression. Critical Issues: Modulation of PPAR-β/δ activity has been suggested as a potential therapeutic strategy for cancer management. This review focuses on the ability of bioactive phytocompounds to impact reactive oxygen species (ROS) and redox signaling by targeting PPAR-β/δ for cancer therapy. The rise of ROS in cancer cells may play an important part in the initiation and progression of cancer. However, excessive levels of ROS stress can also be toxic to the cells and cancer cells with increased oxidative stress are likely to be more vulnerable to damage by further ROS insults induced by exogenous agents, such as phytocompounds and therapeutic agents. Therefore, redox modulation is a way to selectively kill cancer cells without causing significant toxicity to normal cells. However, use of antioxidants together with cancer drugs may risk the effect of treatment as both act through opposite mechanisms. Future Directions: It is advisable to employ more thorough and detailed methodologies to undertake mechanistic explorations of numerous phytocompounds. Moreover, conducting additional clinical studies is recommended to establish optimal dosages, efficacy, and the impact of different phytochemicals on PPAR-β/δ.
Collapse
Affiliation(s)
- Charanjit Kaur
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Sanjeev Kumar Sahu
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Keshav Bansal
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Lindsay K DeLiberto
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
14
|
Tanvir R, Ijaz S, Sajid I, Hasnain S. Multifunctional in vitro, in silico and DFT analyses on antimicrobial BagremycinA biosynthesized by Micromonospora chokoriensis CR3 from Hieracium canadense. Sci Rep 2024; 14:10976. [PMID: 38745055 PMCID: PMC11093986 DOI: 10.1038/s41598-024-61490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Among the actinomycetes in the rare genera, Micromonospora is of great interest since it has been shown to produce novel therapeutic compounds. Particular emphasis is now on its isolation from plants since its population from soil has been extensively explored. The strain CR3 was isolated as an endophyte from the roots of Hieracium canadense, and it was identified as Micromonospora chokoriensis through 16S gene sequencing and phylogenetic analysis. The in-vitro analysis of its extract revealed it to be active against the clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and Candida tropicalis (15 mm). No bioactivity was observed against Gram-negative bacteria, Escherichia coli ATCC 25922, and Klebsiella pneumoniae ATCC 706003. The Micromonospora chokoriensis CR3 extract was also analyzed through the HPLC-DAD-UV-VIS resident database, and it gave a maximum match factor of 997.334 with the specialized metabolite BagremycinA (BagA). The in-silico analysis indicated that BagA strongly interacted with the active site residues of the sterol 14-α demethylase and thymidylate kinase enzymes, with the lowest binding energies of - 9.7 and - 8.3 kcal/mol, respectively. Furthermore, the normal mode analysis indicated that the interaction between these proteins and BagA was stable. The DFT quantum chemical properties depicted BagA to be reasonably reactive with a HOMO-LUMO gap of (ΔE) of 4.390 eV. BagA also passed the drug-likeness test with a synthetic accessibility score of 2.06, whereas Protox-II classified it as a class V toxicity compound with high LD50 of 2644 mg/kg. The current study reports an endophytic actinomycete, M. chokoriensis, associated with H. canadense producing the bioactive metabolite BagA with promising antimicrobial activity, which can be further modified and developed into a safe antimicrobial drug.
Collapse
Affiliation(s)
- Rabia Tanvir
- Institute of Microbiology (IOM), University of Veterinary and Animal Sciences (UVAS), Lahore, 54000, Punjab, Pakistan.
| | - Saadia Ijaz
- Department of Microbiology and Molecular Genetics, The Women University, Multan, 66000, Punjab, Pakistan
| | - Imran Sajid
- Institute of Microbiology and Molecular Genetics (IMMG), University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Punjab, Pakistan
| | - Shahida Hasnain
- Institute of Microbiology and Molecular Genetics (IMMG), University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Punjab, Pakistan
| |
Collapse
|
15
|
Farhan M. Cytotoxic Activity of the Red Grape Polyphenol Resveratrol against Human Prostate Cancer Cells: A Molecular Mechanism Mediated by Mobilization of Nuclear Copper and Generation of Reactive Oxygen Species. Life (Basel) 2024; 14:611. [PMID: 38792632 PMCID: PMC11122162 DOI: 10.3390/life14050611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Resveratrol, a polyphenolic compound found primarily in red grapes and pomegranates is known as an antioxidant but can act as a pro-oxidant when copper ions are present. Here, resveratrol is demonstrated to reduce cell growth (as evaluated by MTT assay) and promote apoptosis-like cell death (as measured by Histone/DNA ELISA) in prostate cancer cell lines PC3 and C42B. This effect is effectively inhibited by a copper chelator (neocuproine) and reactive oxygen species (ROS) scavengers (thiourea for hydroxyl radical, superoxide dismutase for superoxide anion, and catalase for hydrogen peroxide). These inhibitory effects provide evidence that intracellular copper reacts with resveratrol within cancer cells, resulting in DNA damage via the generation of reactive oxygen species. Additionally, it has been demonstrated that non-tumorigenic epithelial cell lines (MCF-10A) grown in media supplemented with copper are more susceptible to growth inhibition by resveratrol, as confirmed by the observed reduction in cell proliferation. Copper supplementation induces enhanced expression of the copper transporter CTR1 in MCF-10A cells, which is reduced by the addition of resveratrol to the media. The selective cell death of cancer cells generated by copper-mediated and ROS mechanisms may help to explain the anticancer properties of resveratrol.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
16
|
Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol 2024; 98:1323-1367. [PMID: 38483584 PMCID: PMC11303474 DOI: 10.1007/s00204-024-03696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 01/31/2024] [Indexed: 03/27/2024]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are well recognized for playing a dual role, since they can be either deleterious or beneficial to biological systems. An imbalance between ROS production and elimination is termed oxidative stress, a critical factor and common denominator of many chronic diseases such as cancer, cardiovascular diseases, metabolic diseases, neurological disorders (Alzheimer's and Parkinson's diseases), and other disorders. To counteract the harmful effects of ROS, organisms have evolved a complex, three-line antioxidant defense system. The first-line defense mechanism is the most efficient and involves antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). This line of defense plays an irreplaceable role in the dismutation of superoxide radicals (O2•-) and hydrogen peroxide (H2O2). The removal of superoxide radicals by SOD prevents the formation of the much more damaging peroxynitrite ONOO- (O2•- + NO• → ONOO-) and maintains the physiologically relevant level of nitric oxide (NO•), an important molecule in neurotransmission, inflammation, and vasodilation. The second-line antioxidant defense pathway involves exogenous diet-derived small-molecule antioxidants. The third-line antioxidant defense is ensured by the repair or removal of oxidized proteins and other biomolecules by a variety of enzyme systems. This review briefly discusses the endogenous (mitochondria, NADPH, xanthine oxidase (XO), Fenton reaction) and exogenous (e.g., smoking, radiation, drugs, pollution) sources of ROS (superoxide radical, hydrogen peroxide, hydroxyl radical, peroxyl radical, hypochlorous acid, peroxynitrite). Attention has been given to the first-line antioxidant defense system provided by SOD, CAT, and GPx. The chemical and molecular mechanisms of antioxidant enzymes, enzyme-related diseases (cancer, cardiovascular, lung, metabolic, and neurological diseases), and the role of enzymes (e.g., GPx4) in cellular processes such as ferroptosis are discussed. Potential therapeutic applications of enzyme mimics and recent progress in metal-based (copper, iron, cobalt, molybdenum, cerium) and nonmetal (carbon)-based nanomaterials with enzyme-like activities (nanozymes) are also discussed. Moreover, attention has been given to the mechanisms of action of low-molecular-weight antioxidants (vitamin C (ascorbate), vitamin E (alpha-tocopherol), carotenoids (e.g., β-carotene, lycopene, lutein), flavonoids (e.g., quercetin, anthocyanins, epicatechin), and glutathione (GSH)), the activation of transcription factors such as Nrf2, and the protection against chronic diseases. Given that there is a discrepancy between preclinical and clinical studies, approaches that may result in greater pharmacological and clinical success of low-molecular-weight antioxidant therapies are also subject to discussion.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Suliman Y Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia.
| |
Collapse
|
17
|
Guo L, Zhao Y, Kong Z, Liu R, Liu P. Protective effects of myricetin and morin on neurological damage in Aβ 1-42/Al 3+ -induced Alzheimer's disease model of rats. J Chem Neuroanat 2024; 137:102404. [PMID: 38423257 DOI: 10.1016/j.jchemneu.2024.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/03/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Alzheimer's disease (AD) is a degenerative neurological disorder with unclear pathogenesis. Single-target drugs have very limited efficacy in treating AD, but synthetic multi-target drugs have poor efficacy and safety. Therefore, finding suitable natural multi-target drugs against AD is of great interest for research studies. We chose two flavonols, myricetin and morin, for the relevant study. In this study, we used microinjection of Aβ1-42 oligomers into the CA1 region of rat hippocampus, combined with gavage of Aluminum chloride hexahydrate (AlCl3·6H2O) solution to establish AD rat models, and myricetin and morin were selected as intervening drugs to explore the protective effects against neurological impairment. Experimental results showed that myricetin or morin could reduce the production of Aβ, Tubulin-associated unit (Tau), and Phosphorylated tubulin-associated unit (p-Tau), down-regulate the expression of relevant inflammatory factors, reduce hippocampal cell apoptosis in rats. There was a significant increase in the activity of adenosine triphosphatase, catalase, total superoxide dismutase, and the content of glutathione in the brain tissue. However, the content of malondialdehyde, inducible nitric oxide synthase, and the activity of acetylcholinesterase were decreased in the brain tissue. These two flavonols can regulate the imbalance of monoamine and amino acid neurotransmitter levels. In conclusion, Myricetin or morin can effectively improve learning and memory dysfunction in AD rats induced by Aβ1-42/Al3+ through anti-oxidative stress and anti-apoptotic features.
Collapse
Affiliation(s)
- Linli Guo
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanan Zhao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhengqiao Kong
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Ruihua Liu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ping Liu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
18
|
Deriabina A, Prutskij T, Morales Ochoa HD, Gonzalez Jimenez E, Deriabin S. Comparative Analysis of Fluorescence Emission in Myricetin, Kaempferol, and Quercetin Powders and Solutions. Int J Mol Sci 2024; 25:2558. [PMID: 38473805 DOI: 10.3390/ijms25052558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024] Open
Abstract
Myricetin is a flavonol with high antioxidant properties. In this research, the fluorescence emission of myricetin powder and its solutions in different solvents were measured and analyzed by comparing with the results of calculations. Comparison of the calculated and measured characteristic wavelengths allowed the identification of all the spectral features in the fluorescence spectra of myricetin powder and solutions with different concentrations. The computation was based on modeling the process of the excited state intermolecular proton transfer, which predicts the formation of tautomeric forms of the flavonol molecule. Characteristic emission wavelengths were obtained using TDDFT/M06-2X/6-31++G(d,p). To understand the influence of the hydroxyl groups in the B-ring of the flavonol molecule on the emission spectrum, we also compared the fluorescence spectra of myricetin with those of kaempferol and quercetin. Moreover, based on the analysis of the changes in the shape of the FL spectra with the concentration of the solution, a criterion for the complete dissolution of the flavonol powders was established, which is important for bioavailability of flavonoids.
Collapse
Affiliation(s)
- Alexandra Deriabina
- Faculty of Physical and Mathematical Sciences, Autonomous University of Puebla (BUAP), Puebla 72570, Mexico
| | - Tatiana Prutskij
- Sciences Institute, Autonomous University of Puebla (BUAP), Puebla 72570, Mexico
| | | | - Eduardo Gonzalez Jimenez
- Faculty of Physical and Mathematical Sciences, Autonomous University of Puebla (BUAP), Puebla 72570, Mexico
| | - Sergei Deriabin
- Institute for Biological Instrumentation, Pushchino 142290, Russia
| |
Collapse
|
19
|
Javid H, Ul Qadir R, Magray JA, Wani BA, Nawchoo IA, Gulzar S. Variability in morphology, phytochemicals and antioxidant activity in Bistorta amplexicaulis (D. Don) Greene populations under variable habitats and altitudes. Nat Prod Res 2024; 38:563-580. [PMID: 38285923 DOI: 10.1080/14786419.2023.2181802] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
Phytochemicals have become significantly important for scientific research since these possess incredibly remarkable health benefits, especially antioxidant potential to scavenge free radicals and combat the harmful effects of oxidative stress caused by adverse environmental factors. The efficacy and quantity of these phytochemicals relies upon numerous factors including the extraction method, solvent polarity and the habitat features in which the plant is growing. In this study we emphasized on phytochemical analysis and antioxidant activity of Bistorta amplexicaulis, an important medicinal plant species from Kashmir Himalaya. We evaluated antioxidant activity using different assays from all the selected sites to enumerate the impact of habitat. The sites were selected based on varying habitat features and altitude. Our results revealed that Ethyl acetate is the potent solvent for the extraction of phytochemicals. Below ground parts exhibited better scavenging activity than the above ground parts. Amongst the sites, we found the maximum antioxidant potential at Site I. A positive correlation was found between antioxidant activity and altitude while soil attributes (OC, OM, N, P, and K) and most of the morphological traits showed a negative correlation. Overall, our study identified the elite populations that could be utilized for mass propagation and harness the ultimate antioxidant potential of B. amplexicaulis.
Collapse
Affiliation(s)
- Hanan Javid
- Pant Reproductive Biology, Genetic Diversity, and Phytochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Roof Ul Qadir
- Pant Reproductive Biology, Genetic Diversity, and Phytochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Junaid A Magray
- Pant Reproductive Biology, Genetic Diversity, and Phytochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Bilal A Wani
- Pant Reproductive Biology, Genetic Diversity, and Phytochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Irshad A Nawchoo
- Pant Reproductive Biology, Genetic Diversity, and Phytochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Shabana Gulzar
- Government College for Womens, Cluster University Srinagar, Srinagar, Jammu & Kashmir, India
| |
Collapse
|
20
|
Ramata-Stunda A, Boroduskis M, Pastare L, Berga M, Kienkas L, Patetko L, Skudrins G, Reihmane D, Nakurte I. In Vitro Safety and Efficacy Evaluation of a Juniperus communis Callus Culture Extract and Matricaria recutita Processing Waste Extract Combination as a Cosmetic Ingredient. PLANTS (BASEL, SWITZERLAND) 2024; 13:287. [PMID: 38256840 PMCID: PMC10818699 DOI: 10.3390/plants13020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
For skin health promotion and cosmetic applications, combinations of plant cell extracts are extensively utilized. As most natural ingredient suppliers offer crude extracts from individual plants or specific isolated compounds, the potential interactions between them are assessed in the development phase of cosmetic products. The industry seeks extract combinations that have undergone optimization and scrutiny for their bioactivities. This study presents a combination of two sustainably produced botanical ingredients and outlines their chemical composition, in vitro safety, and bioactivity for skin health enhancement. The amalgamation comprises the extract of Matricaria recutita processing waste and the extract from Juniperus communis callus culture. Chemical analysis revealed distinct compounds within the extracts, and their combination led to a broader array of potentially synergistic compounds. In vitro assessments on skin cells demonstrated that the combination possesses robust antioxidant properties and the ability to stimulate keratinocyte proliferation, along with regulating collagen type I and matrix metalloproteinase 1 (MMP-1) production by dermal fibroblasts. The identified traits of this combination render it an appealing cosmetic component. To the best of our knowledge, this represents the first case when the extracts derived from medicinal plant processing waste and biotechnological plant cell cultivation processes have been combined and evaluated for their bioactivity.
Collapse
Affiliation(s)
- Anna Ramata-Stunda
- Alternative Plants, Ltd., 2 Podraga Str., LV-1007 Riga, Latvia; (M.B.); (D.R.)
| | - Martins Boroduskis
- Alternative Plants, Ltd., 2 Podraga Str., LV-1007 Riga, Latvia; (M.B.); (D.R.)
| | - Laura Pastare
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia; (L.P.); (M.B.); (G.S.); (I.N.)
| | - Marta Berga
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia; (L.P.); (M.B.); (G.S.); (I.N.)
| | - Liene Kienkas
- Field and Forest, Ltd., 2 Izstades Str., Priekuli Parish, LV-4126 Cesis, Latvia;
| | - Liene Patetko
- Faculty of Biology, University of Lavia, 1 Jelgavas Str., LV-1004 Riga, Latvia;
| | - Gundars Skudrins
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia; (L.P.); (M.B.); (G.S.); (I.N.)
| | - Dace Reihmane
- Alternative Plants, Ltd., 2 Podraga Str., LV-1007 Riga, Latvia; (M.B.); (D.R.)
| | - Ilva Nakurte
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia; (L.P.); (M.B.); (G.S.); (I.N.)
| |
Collapse
|
21
|
Ginovyan M, Javrushyan H, Karapetyan H, Koss-Mikołajczyk I, Kusznierewicz B, Grigoryan A, Maloyan A, Bartoszek A, Avtandilyan N. Hypericum alpestre extract exhibits in vitro and in vivo anticancer properties by regulating the cellular antioxidant system and metabolic pathway of L-arginine. Cell Biochem Funct 2024; 42:e3914. [PMID: 38269521 DOI: 10.1002/cbf.3914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 01/26/2024]
Abstract
Conventional treatment methods are not effective enough to fight the rapid increase in cancer cases. The interest is increasing in the investigation of herbal sources for the development of new anticancer therapeutics. This study aims to investigate the antitumor capacity of Hypericum alpestre (H. alpestre) extract in vitro and in vivo, either alone or in combination with the inhibitors of the l-arginine/polyamine/nitric oxide (NO) pathway, and to characterize its active phytochemicals using advanced chromatographic techniques. Our previous reports suggest beneficial effects of the arginase inhibitor NG-hydroxy-nor- l-arginine and NO inhibitor NG-nitro-Larginine methyl ester in the treatment of breast cancer via downregulation of polyamine and NO synthesis. Here, the antitumor properties of H. alpestre and its combinations were explored in vivo, in a rat model of mammary gland carcinogenesis induced by subcutaneous injection of 7,12-dimethylbenz[a]anthracene. The study revealed strong antiradical activity of H. alpestre aerial part extract in chemical (DPPH/ABTS) tests. In the in vitro antioxidant activity test, the H. alpestre extract demonstrated pro-oxidant characteristics in human colorectal (HT29) cells, which were contingent upon the hemostatic condition of the cells. The H. alpestre extract expressed a cytotoxic effect on HT29 and breast cancer (MCF-7) cells measured by the MTT test. According to comet assay results, H. alpestre extract did not exhibit genotoxic activity nor possessed antigenotoxic properties in HT29 cells. Overall, 233 substances have been identified and annotated in H. alpestre extract using the LC-Q-Orbitrap HRMS system. In vivo experiments using rat breast cancer models revealed that the H. alpestre extract activated the antioxidant enzymes in the liver, brain, and tumors. H. alpestre combined with chemotherapeutic agents attenuated cancer-like histological alterations and showed significant reductions in tumor blood vessel area. Thus, either alone or in combination with Nω -OH-nor- l-arginine and Nω -nitro- l-arginine methyl ester, H. alpestre extract exhibits pro- and antioxidant, antiangiogenic, and cytotoxic effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Grigoryan
- Department of Human and Animal Physiology, YSU, Yerevan, Armenia
| | - Alina Maloyan
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, USA
| | | | | |
Collapse
|
22
|
Kang K, Schenkeveld WDC, Weber G, Kraemer SM. Stability of Coumarins and Determination of the Net Iron Oxidation State of Iron-Coumarin Complexes: Implications for Examining Plant Iron Acquisition Mechanisms. ACS EARTH & SPACE CHEMISTRY 2023; 7:2339-2352. [PMID: 38148994 PMCID: PMC10749481 DOI: 10.1021/acsearthspacechem.3c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 12/28/2023]
Abstract
Coumarins are exuded into the soil environment by plant roots in response to iron (Fe) deficiency. Previous studies have shown that coumarins can increase the Fe solubility upon interaction with sparsely soluble Fe(III) (hydr)oxide. However, the chemical mechanisms of Fe(III) (hydr)oxide dissolution by coumarins remain unclear. The high redox instability of dissolved coumarins and the interference of coumarins in determining the Fe redox state hinder the quantitative and mechanistic investigation of coumarin-induced Fe mobilization. In this study, we investigated the oxidative stability of three coumarins that have been found in root exudates, esculetin, scopoletin, and fraxetin, over a broad pH range under oxic and anoxic conditions. Our results show that the oxidation of coumarins is irreversible under oxic conditions and that oxidative degradation rates increased with increasing pH under both oxic and anoxic conditions. However, the complexation of Fe protects coumarins from degradation in the circumneutral pH range even under oxic conditions. Furthermore, we observed that Ferrozine, which is commonly used for establishing Fe redox speciation, can facilitate the reduction of Fe(III) complexed by coumarins, even at circumneutral pH. Reduction rates increased with decreasing pH and were larger for fraxetin than for scopoletin and esculetin. Based on these observations, we optimized the Ferrozine method for determining the redox state of Fe complexed by coumarins. Understanding the stability of dissolved coumarins and using a precise analytical method to determine the redox state of Fe in the presence of coumarins are critical for investigating the mechanisms by which coumarins enhance the availability of Fe in the rhizosphere.
Collapse
Affiliation(s)
- Kyounglim Kang
- Environmental
Geochemistry, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Vienna, Austria
| | - Walter D. C. Schenkeveld
- Soil
Chemistry and Chemical Soil Quality, Environmental Sciences, Wageningen University, 6708 PB, Wageningen 6700 AA, The Netherlands
| | - Guenther Weber
- Leibniz-Institut
für Analytische Wissenschaften − ISAS, 44227 Dortmund, Germany
| | - Stephan M. Kraemer
- Environmental
Geochemistry, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
23
|
Doagooyan M, Alavizadeh SH, Sahebkar A, Houshangi K, Khoddamipour Z, Gheybi F. Anti-tumor activity of silymarin nanoliposomes in combination with iron: In vitro and in vivo study. Int J Pharm X 2023; 6:100214. [PMID: 38024450 PMCID: PMC10660084 DOI: 10.1016/j.ijpx.2023.100214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
Combination therapy represents a promising strategy in cancer management by reducing chemotherapy resistance and associated side effects. Silymarin (SLM) has been extensively investigated due to its potent antioxidant properties and demonstrated efficacy against cancer cells. Under certain conditions however, polyphenolic compounds may also exhibit prooxidant activity by elevating intracellular reactive oxygen species (ROS), which can harm the target cells. In this study, we hypothesized that the simultaneous administration of iron (Fe) could alter the antioxidant characteristic of SLM nanoliposomes (SLM Lip) to a prooxidant state. Hence, we first developed a SLM Lip preparation using lipid film method, and then investigated the anti-oxidant properties as well as the cytotoxicity of the liposomal preparation. We also explored the efficacy of concomitant administration of iron sucrose and SML Lip on the tumor growth and survival of mice bearing tumors. We observed that exposing cells to iron, and consecutive treatment with SLM Lip (Fe + SLM Lip) could induce greater toxicity to 4 T1 breast cancer cells compared to SLM Lip. Further, Fe + SLM Lip combination demonstrated a time-dependent effect on reducing the catalase activity compared to SLM Lip, while iron treatment did not alter cell toxicity and catalase activity. In a mouse breast cancer model, the therapeutic efficacy of Fe + SLM Lip was superior compared to SLM Lip, and the treated animals survived longer. The histopathological findings did not reveal a significant damage to the major organs, whereas the most significant tumor necrosis was evident with Fe + SLM Lip treatment. The outcomes of the present investigation unequivocally underscored the prospective use of Fe + SLM combination in the context of cancer therapy, which warrants further scrutiny.
Collapse
Affiliation(s)
- Maham Doagooyan
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kebria Houshangi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoddamipour
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Gheybi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Falev DI, Voronov IS, Onuchina AA, Faleva AV, Ul’yanovskii NV, Kosyakov DS. Analysis of Softwood Lignans by Comprehensive Two-Dimensional Liquid Chromatography. Molecules 2023; 28:8114. [PMID: 38138599 PMCID: PMC10745517 DOI: 10.3390/molecules28248114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Lignans constitute a large group of phenolic plant secondary metabolites possessing high bioactivity. Their accurate determination in plant extracts with a complex chemical composition is challenging and requires advanced separation techniques. In the present study, a new approach to the determination of lignans in coniferous knotwood extracts as the promising industrial-scale source of such compounds based on comprehensive two-dimensional liquid chromatography separation and UV spectrophotometric detection is proposed. First and second-dimension column screening showed that the best results can be obtained using a combination of non-polar and polar hydroxy group embedded octadecyl stationary phases with moderate (~40%) "orthogonality". The optimization of LC × LC separation conditions allowed for the development of a new method for the quantification of the five lignans (secoisolariciresinol, matairesinol, pinoresinol, 7-hydroxymatairesinol, and nortrachelogenin) in knotwood extracts with limits of quantification in the range of 0.27-0.95 mg L-1 and a linear concentration range covering at least two orders of magnitude. Testing the developed method on coniferous (larch, fir, spruce, and pine) knotwood extracts demonstrated the high selectivity of the analysis and the advantages of LC × LC in the separation and accurate quantification of the compounds co-eluting in one-dimensional HPLC.
Collapse
Affiliation(s)
- Danil I. Falev
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center “Arktika”, M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia; (I.S.V.); (A.A.O.); (A.V.F.); (D.S.K.)
| | | | | | | | - Nikolay V. Ul’yanovskii
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center “Arktika”, M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia; (I.S.V.); (A.A.O.); (A.V.F.); (D.S.K.)
| | | |
Collapse
|
25
|
Wang L, Xie Y, Myrzagali S, Pu W, Liu E. Metal ions as effectual tools for cancer with traditional Chinese medicine. ACUPUNCTURE AND HERBAL MEDICINE 2023; 3:296-308. [DOI: 10.1097/hm9.0000000000000083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Malignant tumor has become a major threat affecting human health, and is one of the main causes of human death. Recent studies have shown that many traditional Chinese medicines (TCM) have good anti-tumor activity, which may improve the therapeutic effect of routine treatment and quality of life with lower toxicity. However, the efficacy of TCM alone for the treatment of tumors is limited. Metal ions are essential substances for maintaining normal physiological activities. This article summarized the multiple mechanisms in which metal ions are involved in the prevention and treatment of tumors in TCM.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingqiu Xie
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Sandugash Myrzagali
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Weiling Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Erwei Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
26
|
Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol 2023; 97:2499-2574. [PMID: 37597078 PMCID: PMC10475008 DOI: 10.1007/s00204-023-03562-9] [Citation(s) in RCA: 428] [Impact Index Per Article: 214.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
A physiological level of oxygen/nitrogen free radicals and non-radical reactive species (collectively known as ROS/RNS) is termed oxidative eustress or "good stress" and is characterized by low to mild levels of oxidants involved in the regulation of various biochemical transformations such as carboxylation, hydroxylation, peroxidation, or modulation of signal transduction pathways such as Nuclear factor-κB (NF-κB), Mitogen-activated protein kinase (MAPK) cascade, phosphoinositide-3-kinase, nuclear factor erythroid 2-related factor 2 (Nrf2) and other processes. Increased levels of ROS/RNS, generated from both endogenous (mitochondria, NADPH oxidases) and/or exogenous sources (radiation, certain drugs, foods, cigarette smoking, pollution) result in a harmful condition termed oxidative stress ("bad stress"). Although it is widely accepted, that many chronic diseases are multifactorial in origin, they share oxidative stress as a common denominator. Here we review the importance of oxidative stress and the mechanisms through which oxidative stress contributes to the pathological states of an organism. Attention is focused on the chemistry of ROS and RNS (e.g. superoxide radical, hydrogen peroxide, hydroxyl radicals, peroxyl radicals, nitric oxide, peroxynitrite), and their role in oxidative damage of DNA, proteins, and membrane lipids. Quantitative and qualitative assessment of oxidative stress biomarkers is also discussed. Oxidative stress contributes to the pathology of cancer, cardiovascular diseases, diabetes, neurological disorders (Alzheimer's and Parkinson's diseases, Down syndrome), psychiatric diseases (depression, schizophrenia, bipolar disorder), renal disease, lung disease (chronic pulmonary obstruction, lung cancer), and aging. The concerted action of antioxidants to ameliorate the harmful effect of oxidative stress is achieved by antioxidant enzymes (Superoxide dismutases-SODs, catalase, glutathione peroxidase-GPx), and small molecular weight antioxidants (vitamins C and E, flavonoids, carotenoids, melatonin, ergothioneine, and others). Perhaps one of the most effective low molecular weight antioxidants is vitamin E, the first line of defense against the peroxidation of lipids. A promising approach appears to be the use of certain antioxidants (e.g. flavonoids), showing weak prooxidant properties that may boost cellular antioxidant systems and thus act as preventive anticancer agents. Redox metal-based enzyme mimetic compounds as potential pharmaceutical interventions and sirtuins as promising therapeutic targets for age-related diseases and anti-aging strategies are discussed.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Renata Raptova
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia.
| |
Collapse
|
27
|
Zagoskina NV, Zubova MY, Nechaeva TL, Kazantseva VV, Goncharuk EA, Katanskaya VM, Baranova EN, Aksenova MA. Polyphenols in Plants: Structure, Biosynthesis, Abiotic Stress Regulation, and Practical Applications (Review). Int J Mol Sci 2023; 24:13874. [PMID: 37762177 PMCID: PMC10531498 DOI: 10.3390/ijms241813874] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Phenolic compounds or polyphenols are among the most common compounds of secondary metabolism in plants. Their biosynthesis is characteristic of all plant cells and is carried out with the participation of the shikimate and acetate-malonate pathways. In this case, polyphenols of various structures are formed, such as phenylpropanoids, flavonoids, and various oligomeric and polymeric compounds of phenolic nature. Their number already exceeds 10,000. The diversity of phenolics affects their biological activity and functional role. Most of their representatives are characterized by interaction with reactive oxygen species, which manifests itself not only in plants but also in the human body, where they enter through food chains. Having a high biological activity, phenolic compounds are successfully used as medicines and nutritional supplements for the health of the population. The accumulation and biosynthesis of polyphenols in plants depend on many factors, including physiological-biochemical, molecular-genetic, and environmental factors. In the review, we present the latest literature data on the structure of various classes of phenolic compounds, their antioxidant activity, and their biosynthesis, including their molecular genetic aspects (genes and transfactors). Since plants grow with significant environmental changes on the planet, their response to the action of abiotic factors (light, UV radiation, temperature, and heavy metals) at the level of accumulation and composition of these secondary metabolites, as well as their metabolic regulation, is considered. Information is given about plant polyphenols as important and necessary components of functional nutrition and pharmaceutically valuable substances for the health of the population. Proposals on promising areas of research and development in the field of plant polyphenols are presented.
Collapse
Affiliation(s)
- Natalia V. Zagoskina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| | - Maria Y. Zubova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| | - Tatiana L. Nechaeva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| | - Varvara V. Kazantseva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| | - Evgenia A. Goncharuk
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| | - Vera M. Katanskaya
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| | - Ekaterina N. Baranova
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, 127276 Moscow, Russia;
- All Russia Research Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, 127550 Moscow, Russia
| | - Maria A. Aksenova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| |
Collapse
|
28
|
Gibadullina E, Neganova M, Aleksandrova Y, Nguyen HBT, Voloshina A, Khrizanforov M, Nguyen TT, Vinyukova E, Volcho K, Tsypyshev D, Lyubina A, Amerhanova S, Strelnik A, Voronina J, Islamov D, Zhapparbergenov R, Appazov N, Chabuka B, Christopher K, Burilov A, Salakhutdinov N, Sinyashin O, Alabugin I. Hybrids of Sterically Hindered Phenols and Diaryl Ureas: Synthesis, Switch from Antioxidant Activity to ROS Generation and Induction of Apoptosis. Int J Mol Sci 2023; 24:12637. [PMID: 37628818 PMCID: PMC10454409 DOI: 10.3390/ijms241612637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The utility of sterically hindered phenols (SHPs) in drug design is based on their chameleonic ability to switch from an antioxidant that can protect healthy tissues to highly cytotoxic species that can target tumor cells. This work explores the biological activity of a family of 45 new hybrid molecules that combine SHPs equipped with an activating phosphonate moiety at the benzylic position with additional urea/thiourea fragments. The target compounds were synthesized by reaction of iso(thio)cyanates with C-arylphosphorylated phenols containing pendant 2,6-diaminopyridine and 1,3-diaminobenzene moieties. The SHP/urea hybrids display cytotoxic activity against a number of tumor lines. Mechanistic studies confirm the paradoxical nature of these substances which combine pronounced antioxidant properties in radical trapping assays with increased reactive oxygen species generation in tumor cells. Moreover, the most cytotoxic compounds inhibited the process of glycolysis in SH-SY5Y cells and caused pronounced dissipation of the mitochondrial membrane of isolated rat liver mitochondria. Molecular docking of the most active compounds identified the activator allosteric center of pyruvate kinase M2 as one of the possible targets. For the most promising compounds, 11b and 17b, this combination of properties results in the ability to induce apoptosis in HuTu 80 cells along the intrinsic mitochondrial pathway. Cyclic voltammetry studies reveal complex redox behavior which can be simplified by addition of a large excess of acid that can protect some of the oxidizable groups by protonations. Interestingly, the re-reduction behavior of the oxidized species shows considerable variations, indicating different degrees of reversibility. Such reversibility (or quasi-reversibility) suggests that the shift of the phenol-quinone equilibrium toward the original phenol at the lower pH may be associated with lower cytotoxicity.
Collapse
Affiliation(s)
- Elmira Gibadullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
| | - Margarita Neganova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, Chernogolovka 142432, Russia;
| | - Yulia Aleksandrova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, Chernogolovka 142432, Russia;
| | - Hoang Bao Tran Nguyen
- The Department of General Organic and Petrochemical Synthesis Technology, The Kazan National Research Technological University, Karl Marx St. 68, Kazan 420015, Russia; (H.B.T.N.); (T.T.N.)
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
| | - Mikhail Khrizanforov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
| | - Thi Thu Nguyen
- The Department of General Organic and Petrochemical Synthesis Technology, The Kazan National Research Technological University, Karl Marx St. 68, Kazan 420015, Russia; (H.B.T.N.); (T.T.N.)
| | - Ekaterina Vinyukova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, Chernogolovka 142432, Russia;
| | - Konstantin Volcho
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry, Lavrentiev Av. 9, Novosibirsk 630090, Russia (D.T.); (N.S.)
| | - Dmitry Tsypyshev
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry, Lavrentiev Av. 9, Novosibirsk 630090, Russia (D.T.); (N.S.)
| | - Anna Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
| | - Syumbelya Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
| | - Anna Strelnik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
| | - Julia Voronina
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninskii Prospekt, 31, Moscow 119071, Russia;
| | - Daut Islamov
- Laboratory for Structural Analysis of Biomacromolecules, Kazan Scientific Center of Russian Academy of Science, 31, Kremlevskaya, Kazan 420008, Russia;
| | - Rakhmetulla Zhapparbergenov
- Laboratory of Engineering Profile, Department of Engineering Technology, Korkyt Ata Kyzylorda University, 29A, Aiteke Bi Street, Kyzylorda 120014, Kazakhstan;
| | - Nurbol Appazov
- Laboratory of Engineering Profile, Department of Engineering Technology, Korkyt Ata Kyzylorda University, 29A, Aiteke Bi Street, Kyzylorda 120014, Kazakhstan;
| | - Beauty Chabuka
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-3290, USA; (B.C.)
| | - Kimberley Christopher
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-3290, USA; (B.C.)
| | - Alexander Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
| | - Nariman Salakhutdinov
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry, Lavrentiev Av. 9, Novosibirsk 630090, Russia (D.T.); (N.S.)
| | - Oleg Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
| | - Igor Alabugin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-3290, USA; (B.C.)
| |
Collapse
|
29
|
Jomova K, Cvik M, Lauro P, Valko M, Cizmar E, Alomar SY, Alwasel SH, Oleksak P, Chrienova Z, Nepovimova E, Kuca K, Rhodes CJ. The role of redox active copper(II) on antioxidant properties of the flavonoid baicalein: DNA protection under Cu(II)-Fenton reaction and Cu(II)-ascorbate system conditions. J Inorg Biochem 2023; 245:112244. [PMID: 37178556 DOI: 10.1016/j.jinorgbio.2023.112244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
The antioxidant properties of flavonoids are mediated by their functional hydroxyl groups, which are capable of both chelating redox active metals such as iron, copper and scavenging free radicals. In this paper, the antioxidant vs. prooxidant and DNA protecting properties of baicalein and Cu(II)-baicalein complexes were studied under the conditions of the Copper-Fenton reaction and of the Copper-Ascorbate system. From the relevant EPR spectra, the interaction of baicalein with Cu(II) ions was confirmed, while UV-vis spectroscopy demonstrated a greater stability over time of Cu(II)-baicalein complexes in DMSO than in methanol and PBS and Phosphate buffers. An ABTS study confirmed a moderate ROS scavenging efficiency, at around 37%, for both free baicalein and Cu(II)-baicalein complexes (in the ratios 1:1 and 1:2). The results from absorption titrations are in agreement with those from viscometric studies and confirmed that the binding mode between DNA and both free baicalein and Cu-baicalein complexes, involves hydrogen bonds and van der Waals interactions. The DNA protective effect of baicalein has been investigated by means of gel electrophoresis under the conditions of the Cu-catalyzed Fenton reaction and of the Cu-Ascorbate system. In both cases, it was found that, at sufficiently high concentrations, baicalein offers some protection to cells from DNA damage caused by ROS (singlet oxygen, hydroxyl radicals and superoxide radical anions). Accordingly, baicalein may be useful as a therapeutic agent in diseases with a disturbed metabolism of redox metals such as copper, for example Alzheimer's disease, Wilson's disease and various cancers. While therapeutically sufficient concentrations of baicalein may protect neuronal cells from Cu-Fenton-induced DNA damage in regard to neurological conditions, conversely, in the case of cancers, low concentrations of baicalein do not inhibit the pro-oxidant effect of copper ions and ascorbate, which can, in turn, deliver an effective damage to DNA in tumour cells.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, Nitra 949 74, Slovakia.
| | - Marcel Cvik
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, Nitra 949 74, Slovakia
| | - Peter Lauro
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, Nitra 949 74, Slovakia
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava 812 37, Slovakia; King Saud University, Zoology Department, College of Science, Riyadh 11451, Saudi Arabia
| | - Erik Cizmar
- Department of Condensed Matter Physics, Faculty of Science, University of P. J. Safarik, Park Angelinum 9, Kosice 040 01, Slovakia
| | - Suliman Y Alomar
- King Saud University, Zoology Department, College of Science, Riyadh 11451, Saudi Arabia
| | - Saleh H Alwasel
- King Saud University, Zoology Department, College of Science, Riyadh 11451, Saudi Arabia
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| | - Zofia Chrienova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005 Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital in Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | | |
Collapse
|
30
|
Sayed DF, Mohamed MA, Nada AS, Temraz A, Ahmed AH. Hepatoprotective role of myricitrin isolated from Mimusops elengi Linn. leaves extract on γ-radiation-induced liver damage in rats: Phyto-biochemical investigations. Cell Biochem Funct 2023; 41:642-657. [PMID: 37342005 DOI: 10.1002/cbf.3820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/22/2023]
Abstract
The hepatoprotective effects of methanol extract of Mimusops elengi Linn. (M. elengi L.) leaves and isolated pure myricitrin (3-, 4-, 5-, 5, 7-five hydroxyflavone-3-O-α-l-rhamnoside) (Myr) were evaluated in male rats exposed to γ-irradiation. The extraction of M. elengi L. leaves was performed using ethyl acetate (EtOAC). Seven groups of rats were used: control group, irradiated (IRR) group (6 Gy of γ-rays in a single dose), vehicle group (oral administration of 0.5% carboxymethyl cellulose for 10 days), EtOAC extract group (100 mg/kg body weight of extract, orally for 10 days), EtOAC + IRR group (administration of extract and exposure to γ-rays on Day 7), Myr group (50 mg/kg body weight Myr, orally for 10 days), and Myr + IRR group (administration of Myr and exposure to γ-rays on Day 7). High-performance liquid chromatography and 1H-nuclear magnetic resonance were used to isolate and characterize the compounds from M. elengi L. leaves. Enzyme-linked immunosorbent assay was used for biochemical analyses. Identified compounds were Myr, myricetin 3-O-galactoside, myricetin 3-O-rahmnopyranoside (1 → 6) glucopyranoside, quercetin, quercitol, gallic acid, α-,β-amyrin, ursolic acid, and lupeol. Serum aspartate transaminase and alanine transaminase activities were significantly increased, while serum protein and albumin levels were significantly decreased after irradiation. Hepatic levels of tumor necrosis factor-α, prostaglandin 2, inducible nitric oxide synthase, interleukin-6 (IL-6), and IL-12 were increased following irradiation. Improvements were observed in most serological parameters after treatment with extract or pure Myr, with histological analyses confirming decreased liver injury in treated rats. Our study demonstrates that pure Myr has a greater hepatoprotective effect than M. elengi leaf extracts against irradiation-induced hepatic inflammation.
Collapse
Affiliation(s)
- Dina F Sayed
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (AEA), Cairo, Egypt
| | - Marwa A Mohamed
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (AEA), Cairo, Egypt
| | - Ahmed S Nada
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (AEA), Cairo, Egypt
| | - Abeer Temraz
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, Egypt
| | - Amal H Ahmed
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, Egypt
| |
Collapse
|
31
|
Hasan AA, Kalinina E, Nuzhina J, Volodina Y, Shtil A, Tatarskiy V. Potentiation of Cisplatin Cytotoxicity in Resistant Ovarian Cancer SKOV3/Cisplatin Cells by Quercetin Pre-Treatment. Int J Mol Sci 2023; 24:10960. [PMID: 37446140 DOI: 10.3390/ijms241310960] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Previously, we demonstrated that the overexpression of antioxidant enzymes (SOD-1, SOD-2, Gpx-1, CAT, and HO-1), transcription factor NFE2L2, and the signaling pathway (PI3K/Akt/mTOR) contribute to the cisplatin resistance of SKOV-3/CDDP ovarian cells, and treatment with quercetin (QU) alone has been shown to inhibit the expression of these genes. The aim of this study was to expand the previous data by examining the efficiency of reversing cisplatin resistance and investigating the underlying mechanism of pre-treatment with QU followed by cisplatin in the same ovarian cancer cells. The pre-incubation of SKOV-3/CDDP cells with quercetin at an optimum dose prior to treatment with cisplatin exhibited a significant cytotoxic effect. Furthermore, a long incubation with only QU for 48 h caused cell cycle arrest at the G1/S phase, while a QU pre-treatment induced sub-G1 phase cell accumulation (apoptosis) in a time-dependent manner. An in-depth study of the mechanism of the actions revealed that QU pre-treatment acted as a pro-oxidant that induced ROS production by inhibiting the thioredoxin antioxidant system Trx/TrxR. Moreover, QU pre-treatment showed activation of the mitochondrial apoptotic pathway (cleaved caspases 9, 7, and 3 and cleaved PARP) through downregulation of the signaling pathway (mTOR/STAT3) in SKOV-3/CDDP cells. This study provides further new data for the mechanism by which the QU pre-treatment re-sensitizes SKOV-3/CDDP cells to cisplatin.
Collapse
Affiliation(s)
- Aseel Ali Hasan
- T.T. Berezov Department of Biochemistry, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Elena Kalinina
- T.T. Berezov Department of Biochemistry, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Julia Nuzhina
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Science, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Yulia Volodina
- Laboratory of Tumor Cell Death, Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, 115478 Moscow, Russia
| | - Alexander Shtil
- Laboratory of Tumor Cell Death, Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, 115478 Moscow, Russia
| | - Victor Tatarskiy
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Science, 34/5 Vavilov Street, 119334 Moscow, Russia
| |
Collapse
|
32
|
Ansari S, Zia MK, Fatima S, Ahsan H, Khan FH. Probing the binding of morin with alpha-2-macroglobulin using multi-spectroscopic and molecular docking approach : Interaction of morin with α 2M. J Biol Phys 2023; 49:235-255. [PMID: 36913165 PMCID: PMC10160284 DOI: 10.1007/s10867-023-09629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/11/2023] [Indexed: 03/14/2023] Open
Abstract
Alpha-2-macroglobulin (α2M) is an essential antiproteinase that is widely distributed in human plasma. The present study was aimed at investigating the binding of a potential therapeutic dietary flavonol, morin, with human α2M using a multi-spectroscopic and molecular docking approach. Recently, flavonoid-protein interaction has gained significant attention, because a majority of dietary bioactive components interact with proteins, thereby altering their structure and function. The results of the activity assay exhibited a 48% reduction in the antiproteolytic potential of α2M upon interaction with morin. Fluorescence quenching tests unequivocally confirmed quenching in the fluorescence of α2M in the presence of morin, conforming complex formation and demonstrating that the binding mechanism involves a dynamic mode of interaction. Synchronous fluorescence spectra of α2M with morin showed perturbation in the microenvironment around tryptophan residues. Furthermore, structural changes were observed through CD and FT-IR, showing alterations in the secondary structure of α2M induced by morin. FRET further supports the results of the dynamic mode of quenching. Moderate interaction is shown by binding constant values using Stern-Volmer's fluorescence spectroscopy. Morin binds to α2M at 298 K with a binding constant of 2.7 × 104 M-1, indicating the strength of the association. The α2M-morin system was found to have negative ΔG values, which suggests that the binding process was spontaneous. Molecular docking also reveals the different amino acid residues involved in this binding process, revealing that the binding energy is -8.1 kcal/mol.
Collapse
Affiliation(s)
- Sana Ansari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohammad Khalid Zia
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Shamila Fatima
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Fahim H Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
33
|
Mahmud AR, Ema TI, Siddiquee MFR, Shahriar A, Ahmed H, Mosfeq-Ul-Hasan M, Rahman N, Islam R, Uddin MR, Mizan MFR. Natural flavonols: actions, mechanisms, and potential therapeutic utility for various diseases. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023; 12:47. [PMID: 37216013 PMCID: PMC10183303 DOI: 10.1186/s43088-023-00387-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Background Flavonols are phytoconstituents of biological and medicinal importance. In addition to functioning as antioxidants, flavonols may play a role in antagonizing diabetes, cancer, cardiovascular disease, and viral and bacterial diseases. Quercetin, myricetin, kaempferol, and fisetin are the major dietary flavonols. Quercetin is a potent scavenger of free radicals, providing protection from free radical damage and oxidation-associated diseases. Main body of the abstract An extensive literature review of specific databases (e.g., Pubmed, google scholar, science direct) were conducted using the keywords "flavonol," "quercetin," "antidiabetic," "antiviral," "anticancer," and "myricetin." Some studies concluded that quercetin is a promising antioxidant agent while kaempferol could be effective against human gastric cancer. In addition, kaempferol prevents apoptosis of pancreatic beta-cells via boosting the function and survival rate of the beta-cells, leading to increased insulin secretion. Flavonols also show potential as alternatives to conventional antibiotics, restricting viral infection by antagonizing the envelope proteins to block viral entry. Short conclusion There is substantial scientific evidence that high consumption of flavonols is associated with reduced risk of cancer and coronary diseases, free radical damage alleviation, tumor growth prevention, and insulin secretion improvement, among other diverse health benefits. Nevertheless, more studies are required to determine the appropriate dietary concentration, dose, and type of flavonol for a particular condition to prevent any adverse side effects.
Collapse
Affiliation(s)
- Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902 Bangladesh
| | - Tanzila Ismail Ema
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229 Bangladesh
| | | | - Asif Shahriar
- Department of Microbiology, Stamford University Bangladesh, 51 Siddeswari Road, Dhaka, 1217 Bangladesh
| | - Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, University of Development Alternative (UODA), Dhaka, 1208 Bangladesh
| | - Md. Mosfeq-Ul-Hasan
- Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200 Bangladesh
| | - Nova Rahman
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342 Bangladesh
| | - Rahatul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | | | |
Collapse
|
34
|
Ullah S, Sirajuddin M, Ullah Z, Mushtaq A, Naz S, Zubair M, Haider A, Ali S, Kubicki M, Wani TA, Zargar S, Rehman MU. Synthesis, Structural Elucidation and Pharmacological Applications of Cu(II) Heteroleptic Carboxylates. Pharmaceuticals (Basel) 2023; 16:ph16050693. [PMID: 37242476 DOI: 10.3390/ph16050693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Six heteroleptic Cu(II) carboxylates (1-6) were prepared by reacting 2-chlorophenyl acetic acid (L1), 3-chlorophenyl acetic acid (L2), and substituted pyridine (2-cyanopyridine and 2-chlorocyanopyridine). The solid-state behavior of the complexes was described via vibrational spectroscopy (FT-IR), which revealed that the carboxylate moieties adopted different coordination modes around the Cu(II) center. A paddlewheel dinuclear structure with distorted square pyramidal geometry was elucidated from the crystal data for complexes 2 and 5 with substituted pyridine moieties at the axial positions. The presence of irreversible metal-centered oxidation reduction peaks confirms the electroactive nature of the complexes. A relatively higher binding affinity was observed for the interaction of SS-DNA with complexes 2-6 compared to L1 and L2. The findings of the DNA interaction study indicate an intercalative mode of interaction. The maximum inhibition against acetylcholinesterase enzyme was caused for complex 2 (IC50 = 2 µg/mL) compared to the standard drug Glutamine (IC50 = 2.10 µg/mL) while the maximum inhibition was found for butyrylcholinesterase enzyme by complex 4 (IC50 = 3 µg/mL) compared to the standard drug Glutamine (IC50 = 3.40 µg/mL). The findings of the enzymatic activity suggest that the under study compounds have potential for curing of Alzheimer's disease. Similarly, complexes 2 and 4 possess the maximum inhibition as revealed from the free radical scavenging activity performed against DPPH and H2O2.
Collapse
Affiliation(s)
- Shaker Ullah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Sirajuddin
- Department of Chemistry, University of Science and Technology Bannu, Bannu 28100, Pakistan
| | - Zafran Ullah
- Department of Chemistry, University of Science and Technology Bannu, Bannu 28100, Pakistan
| | - Afifa Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Saba Naz
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Zubair
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ali Haider
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Saqib Ali
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maciej Kubicki
- Department of Chemistry, Adam Mickiewicz University in Poznan, 61-712 Poznan, Poland
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
35
|
Abilev SK, Igonina EV, Sviridova DA, Smirnova SV. Bacterial Lux Biosensors in Genotoxicological Studies. BIOSENSORS 2023; 13:bios13050511. [PMID: 37232872 DOI: 10.3390/bios13050511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
The aim of this study was to assess the applicability of the bacterial lux biosensors for genotoxicological studies. Biosensors are the strains of E. coli MG1655 carrying a recombinant plasmid with the lux operon of the luminescent bacterium P. luminescens fused with the promoters of inducible genes: recA, colD, alkA, soxS, and katG. The genotoxicity of forty-seven chemical compounds was tested on a set of three biosensors pSoxS-lux, pKatG-lux and pColD-lux, which allowed us to estimate the oxidative and DNA-damaging activity of the analyzed drugs. The comparison of the results with the data on the mutagenic activity of these drugs from the Ames test showed a complete coincidence of the results for the 42 substances. First, using lux biosensors, we have described the enhancing effect of the heavy non-radioactive isotope of hydrogen deuterium (D2O) on the genotoxicity of chemical compounds as possible mechanisms of this effect. The study of the modifying effect of 29 antioxidants and radioprotectors on the genotoxic effects of chemical agents showed the applicability of a pair of biosensors pSoxS-lux and pKatG-lux for the primary assessment of the potential antioxidant and radioprotective activity of chemical compounds. Thus, the results obtained showed that lux biosensors can be successfully used to identify potential genotoxicants, radioprotectors, antioxidants, and comutagens among chemical compounds, as well as to study the probable mechanism of genotoxic action of test substance.
Collapse
Affiliation(s)
- Serikbai K Abilev
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 117971, Russia
| | - Elena V Igonina
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 117971, Russia
| | - Darya A Sviridova
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 117971, Russia
| | - Svetlana V Smirnova
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 117971, Russia
| |
Collapse
|
36
|
Brudzynski K. Unexpected Value of Honey Color for Prediction of a Non-Enzymatic H 2O 2 Production and Honey Antibacterial Activity: A Perspective. Metabolites 2023; 13:metabo13040526. [PMID: 37110183 PMCID: PMC10141347 DOI: 10.3390/metabo13040526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Hydrogen peroxide is the principal antibacterial compound of honey and its concentration determines honey bacteriostatic (MIC) and bactericidal (MBC) potencies. Levels of H2O2 produced are highly relevant to honey therapeutic potential, but they vary extensively among honey with reasons not immediately apparent. According to a traditional view, H2O2 is produced as a by-product of glucose oxidation by the honey bee enzyme, glucose oxidase; however, significant levels of H2O2 could be produced in a non-enzymatic way via polyphenol autooxidation. The aim of this study was to evaluate the potential for such an alternative pathway by re-examining evidence from many experimental and correlative studies in order to identify factors and compounds required for pro-oxidant activity. Unexpectedly, the color intensity was found to be the main indicator separating honey varieties based on the quantitative differences in the polyphenolic content, antioxidant activity and the content of transition metals, Fe, Cu and Mn, the main factors required for pro-oxidant effects. The color-impeding polyphenolics and their oxidation products (semiquinones and quinones) further contributed to color development through multiple chemical conjugations with proteins, phenolic oxidative polymerization, chelation or the reduction of metal ions. Moreover, quinones, as an intrinsic part of polyphenol redox activity, play an active role in the formation of higher-order structures, melanoidins and colloids in honey. The latter structures are also known to chelate metal ions, potentially contributing to H2O2 production. Thus, the color intensity appears as a major parameter that integrates polyphenol-dependent pro-oxidant reactions resulting in H2O2 generation.
Collapse
Affiliation(s)
- Katrina Brudzynski
- Department of Drug Discovery, Bee-Biomedicals Inc., St. Catharines, ON L2T 3T4, Canada
- Department of Biological Sciences, Formerly, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
37
|
Insights into Feruloylated Oligosaccharide Impact on Gel Properties of Oxidized Myofibrillar Proteins Based on the Changes in Their Spatial Structure. Foods 2023; 12:foods12061222. [PMID: 36981149 PMCID: PMC10048018 DOI: 10.3390/foods12061222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
Polyphenolic compounds can protect against myofibrillar protein (MP) oxidation in meat products. In this study, the inhibitory effect of feruloyl oligosaccharides (FOs) on MP oxidation was investigated, and the gel properties of MPs were further studied. The results showed that 50–100 μmol/g protein of FOs could effectively inhibit damage to amino acid side chains by reducing carbonyl contents by 60.5% and increasing sulfhydryl and free amine contents by 89.5% and 66%, which may protect the secondary and tertiary structures of MPs. Additionally, FOs at 50 μmol/g protein had better effects on the crosslinking of MPs, leading to effective improvements in the gel properties, which can be seen in the rheology properties, scanning electron microscope (SEM) photographs, and the distribution of water in the MP gel. On the contrary, 150–200 μmol/g protein of FOs showed peroxidative effects on oxidatively stressed MPs, which were detrimental to MPs and contributed to their denaturation in the electrophoresis analysis and irregular aggregation in the SEM analysis. The concentration-dependent effects of FOs depended on MP-FOs interactions, indicating that an appropriate concentration of FOs has the potential to protect MPs from oxidation and enhance the gelation ability of pork meat during processing.
Collapse
|
38
|
Cibotaru S, Sandu AI, Nicolescu A, Marin L. Antitumor Activity of PEGylated and TEGylated Phenothiazine Derivatives: Structure–Activity Relationship. Int J Mol Sci 2023; 24:ijms24065449. [PMID: 36982524 PMCID: PMC10049495 DOI: 10.3390/ijms24065449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/16/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
The paper aims to investigate the antitumor activity of a series of phenothiazine derivatives in order to establish a structure–antitumor activity relationship. To this end, PEGylated and TEGylated phenothiazine have been functionalized with formyl units and further with sulfonamide units via dynamic imine bonds. Their antitumor activity was monitored in vitro against seven human tumors cell lines and a mouse one compared to a human normal cell line by MTS assay. In order to find the potential influence of different building blocks on antitumor activity, the antioxidant activity, the ability to inhibit farnesyltransferase and the capacity to bind amino acids relevant for tumor cell growth were investigated as well. It was established that different building blocks conferred different functionalities, inducing specific antitumor activity against the tumor cells.
Collapse
|
39
|
Shrivastava AK, Sahu PK, Cecchi T, Shrestha L, Shah SK, Gupta A, Palikhey A, Joshi B, Gupta PP, Upadhyaya J, Paudel M, Koirala N. An emerging natural antioxidant therapy for COVID‐19 infection patients: Current and future directions. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Amit Kumar Shrivastava
- Department of Pharmacology Universal College of Medical Sciences Bhairahawa Rupandehi Nepal
| | - Prafulla Kumar Sahu
- School of Pharmacy Centurion University of Technology and Management Bhubaneswar Odisha India
| | | | - Laxmi Shrestha
- Department of Pharmacology Universal College of Medical Sciences Bhairahawa Rupandehi Nepal
| | - Sanjay Kumar Shah
- Department of Reproductive MedicineJoint Inter‐national Research Laboratory of Reproduction and DevelopmentChongquing Medical University ChongqingPeople's Republic of China
| | - Anamika Gupta
- Sharjah Institute for Medical Sciences University of Sharjah Sharjah United Arab Emirates
| | - Anjan Palikhey
- Department of Pharmacology Universal College of Medical Sciences Bhairahawa Rupandehi Nepal
| | - Bishal Joshi
- Department of Physiology, Universal College of Medical Sciences Bhairahawa Rupandehi Nepal
| | - Pramodkumar P. Gupta
- School of Biotechnology and Bioinformatics D. Y. Patil Deemed to be University, CBD Belapur Navi Mumbai India
| | - Jitendra Upadhyaya
- Institute of Agriculture and Animal Science Tribhuvan University Chitwan Nepal
| | - Mahendra Paudel
- Department of Agri‐Botany and Ecology Institute of Agriculture and Animal Science Tribhuvan University Mahendranagar Nepal
| | - Niranjan Koirala
- Natural Products Research FacilityGandaki Province Academy of Science and Technology Pokhara, Gandaki Province Nepal
| |
Collapse
|
40
|
Biosensors Based on Phenol Oxidases (Laccase, Tyrosinase, and Their Mixture) for Estimating the Total Phenolic Index in Food-Related Samples. Life (Basel) 2023; 13:life13020291. [PMID: 36836650 PMCID: PMC9964280 DOI: 10.3390/life13020291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Plant phenolic compounds demonstrate bioactive properties in vitro and/or in vivo, which creates demand for their precise determination in life sciences and industry. Measuring the concentration of individual phenolic compounds is a complex task, since approximately 9000 plant phenolic substances have been identified so far. The determination of the total phenolic content (TPC) is less laborious and is used for the qualimetric evaluation of complex multicomponent samples in routine analyses. Biosensors based on phenol oxidases (POs) have been proposed as alternative analytical devices for detecting phenolic compounds; however, their effectiveness in the analysis of food and vegetal matrices has not been addressed in detail. This review describes catalytic properties of laccase and tyrosinase and reports on the enzymatic and bienzymatic sensors based on laccase and tyrosinase for estimating the total phenolic index (TPI) in food-related samples (FRSs). The review presents the classification of biosensors, POs immobilization, the functions of nanomaterials, the biosensing catalytic cycle, interference, validation, and some other aspects related to TPI assessment. Nanomaterials are involved in the processes of immobilization, electron transfer, signal formation, and amplification, and they improve the performance of PO-based biosensors. Possible strategies for reducing interference in PO-based biosensors are discussed, namely the removal of ascorbic acid and the use of highly purified enzymes.
Collapse
|
41
|
Havryliuk O, Hovorukha V, Bida I, Gladka G, Tymoshenko A, Kyrylov S, Mariychuk R, Tashyrev O. Anaerobic Degradation of the Invasive Weed Solidago canadensis L. ( goldenrod) and Copper Immobilization by a Community of Sulfate-Reducing and Methane-Producing Bacteria. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12010198. [PMID: 36616327 PMCID: PMC9824853 DOI: 10.3390/plants12010198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 06/01/2023]
Abstract
The weed Solidago canadensis L. poses a global threat to the environment as it spreads uncontrollably on roadsides, in forests, fields, meadows, and farmland. Goldenrod emits toxic substances that suppress other plants on the site, displacing wild ones. Thus, goldenrod conquers huge areas very quickly. The use of herbicides and mechanical methods does not solve the problem of the spontaneous spread of goldenrod. On the other hand, many scientists consider goldenrod as a valuable source of biologically active substances: flavonoids, phenolic compounds, vitamins, etc. In this study, we consider Solidago plants as a promising, free (cheap), and renewable substrate for the production of methane gas. The goal of the study was to identify the main patterns of degradation of the Solidago canadensis L. plant by methane-producing and sulfate-reducing bacteria with methane gas production and simultaneous detoxification of toxic copper. The composition of the gas phase was monitored by gas chromatography. The pH and redox potential parameters were determined potentiometrically; metal concentrations were measured by photometry. The concentration of flavonoids, sugars and phenolic compounds in plant biomass was determined according to well-known protocols. As a result of the study, high efficiencies of methane degradation in the Solidago plant and copper detoxification were obtained. Methane yield has reached the value of 68.2 L kg-1 TS of Solidago canadensis L. biomass. The degradation coefficient (Kd) was also high at 21.4. The Cu(II) was effectively immobilized by methanogens and sulfate reducers during the goldenrod degradation at the initial concentrations of 500 mg L-1. Thus, a new method of beneficial application of invasive plants was presented. The result confirms the possibility of using methanogenic microorganisms to produce methane gas from invasive weeds and detoxification of toxic metals.
Collapse
Affiliation(s)
- Olesia Havryliuk
- Department of Extremophilic Microorganisms Biology, Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Vira Hovorukha
- Department of Extremophilic Microorganisms Biology, Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Iryna Bida
- Department of Extremophilic Microorganisms Biology, Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Galyna Gladka
- Department of Extremophilic Microorganisms Biology, Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Artem Tymoshenko
- Department of Biotechnology, Faculty of Environmental Safety, Engineering and Technologies, National Aviation University, 03058 Kyiv, Ukraine
| | - Semen Kyrylov
- Department of Biotechnology, Faculty of Environmental Safety, Engineering and Technologies, National Aviation University, 03058 Kyiv, Ukraine
| | - Ruslan Mariychuk
- Department of Ecology, Faculty of Humanities and Natural Sciences, Presov Universityin Presov, 08116 Presov, Slovakia
| | - Oleksandr Tashyrev
- Department of Extremophilic Microorganisms Biology, Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| |
Collapse
|
42
|
Wang H, Su M, Shi X, Li X, Zhang X, Yang A, Shen R. Design, Synthesis, Calculation and Biological Activity Studies Based on Privileged Coumarin Derivatives as Multifunctional Anti-AD Lead Compound. Chem Biodivers 2023; 20:e202200867. [PMID: 36461922 DOI: 10.1002/cbdv.202200867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Coumarins and their derivatives possessed a variety of biological activities and some of coumarin-based drugs have been approved by the US Food and Drug Administration. Alzheimer's disease (AD) has caused great losses to human society. However, due to its complex pathogenesis, the ideal therapeutic approach has not been found yet. Free radical scavenging activity which is one of the main activities of coumarin core structure is closely related to other anti-AD activities. Therefore, in this work coumarins were chosen as privileged lead compounds for the development of anti-AD drugs based on strategy of multi-target directed ligands (MTDLs). Derivatives 1-3 which could modulate multiple targets simultaneously, including ROS, cholinesterase, βamyloid (Aβ) aggregation, and metal dyshomeostasis were designed and for the first time synthesized. Their anti-AD activities were studied both in vitro and in silico. Results showed that 1-3 possessed potent antioxidant activities and 7-OH group did change the electron distribution of the molecule and enhance the antioxidant activities. They also have good inhibition activities on acetylcholinesterase (AChE) and Aβ aggregation and compound 1 had the strongest AChE inhibitory effect among the three compounds (AChE IC50 =11.15 μM). Compound 1-3 could also selectively chelate with Cu2+ and Al3+ to regulate the metal homeostasis. In silico simulations, including molecular docking and prediction of ADMET performance, indicated that 1-3 could interact with target proteins and cross the blood brain barrier. In conclusion, 1-3 could be promising MTDLs applied as anti-AD candidate drugs.
Collapse
Affiliation(s)
- Huiyan Wang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Mengyang Su
- School of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Xuli Shi
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Xiangyu Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Xinyu Zhang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Aihong Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Rui Shen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| |
Collapse
|
43
|
Yang R, Yang X, Zhang F. New Perspectives of Taxifolin in Neurodegenerative Diseases. Curr Neuropharmacol 2023; 21:2097-2109. [PMID: 36740800 PMCID: PMC10556370 DOI: 10.2174/1570159x21666230203101107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), cerebral amyloid angiopathy (CAA), and Huntington's disease (HD) are characterized by cognitive and motor dysfunctions and neurodegeneration. These diseases have become more severe over time and cannot be cured currently. Until now, most treatments for these diseases are only used to relieve the symptoms. Taxifolin (TAX), 3,5,7,3,4-pentahydroxy flavanone, also named dihydroquercetin, is a compound derived primarily from Douglas fir and Larix gemelini. TAX has been confirmed to exhibit various pharmacological activities, including anti-inflammation, anti-cancer, anti-virus, and regulation of oxidative stress effects. In the central nervous system, TAX has been demonstrated to inhibit Aβ fibril formation, protect neurons and improve cerebral blood flow, cognitive ability, and dyskinesia. At present, TAX is only applied as a health additive in clinical practice. This review aimed to summarize the application of TAX in neurodegenerative diseases and the underlying neuroprotective mechanisms, such as suppressing inflammation, attenuating oxidative stress, preventing Aβ protein formation, maintaining dopamine levels, and thus reducing neuronal loss.
Collapse
Affiliation(s)
- Rong Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xinxing Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
44
|
Saylor JL, Basile ON, Li H, Hunter LM, Weaver A, Shellenberger BM, Ann Tom L, Ma H, Seeram NP, Henry GE. Phenolic furanochromene hydrazone derivatives: Synthesis, antioxidant activity, ferroptosis inhibition, DNA cleavage and DNA molecular docking studies. Bioorg Med Chem 2022; 75:117088. [PMID: 36372027 DOI: 10.1016/j.bmc.2022.117088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
Abstract
Twenty-four phenolic furanochromene hydrazone derivatives were designed and synthesized in order to evaluate structure-activity relationships in a series of antioxidant-related assays. The derivatives have varying substitution patterns on the phenol ring, with some compounds having one, two or three hydroxy groups, and others containing one hydroxy group in combination with methoxy, methyl, bromo, iodo and/or nitro groups. Antioxidant activity was determined using the DPPH free radical scavenging and CUPRAC assays. Compounds containing ortho-dihydroxy and para-dihydroxy patterns had the highest free radical scavenging activity, with IC50 values ranging from 5.0 to 28 μM. Similarly, derivatives with ortho-dihydroxy and para-dihydroxy patterns, together with a 4-hydroxy-3,5‑dimethoxy pattern, displayed strong copper (II) ion reducing capacity, using Trolox as a standard. Trolox equivalent antioxidant capacity (TEAC) coefficients for these derivatives ranged from 1.75 to 3.97. As further evidence of antioxidant potential, greater than half of the derivatives reversed erastin-induced ferroptosis in HaCaT cells. In addition, twenty-three of the derivatives were effective at cleaving supercoiled plasmid DNA in the presence of copper (II) ions at 1 mM, with the 3,4‑dihydroxy derivative showing cleavage to both the linear and open circular forms at 3.9 uM. The interaction of the phenolic furanochromene derivatives with DNA was confirmed by molecular docking studies, which revealed that all the derivatives bind favorably in the minor groove of DNA.
Collapse
Affiliation(s)
- Jessica L Saylor
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Olivia N Basile
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Huifang Li
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Lindsey M Hunter
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Ashton Weaver
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Blake M Shellenberger
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Lou Ann Tom
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Navindra P Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Geneive E Henry
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA.
| |
Collapse
|
45
|
Vieira DF, Borges ID, Aguiar AS, Duarte VS, d'Oliveira GD, Vaz WF, Costa RF, Perez CN, Napolitano HB. A comparative structural analysis of arylsulfonamide chalcones with potential as a biofuel additive. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
46
|
Borges ID, Faria ECM, Custódio JFM, Duarte VS, Fernandes FS, Alonso CG, Sanches-Neto FO, Carvalho-Silva VH, Oliveira GR, Napolitano HB. Insights into chalcone analogues with potential as antioxidant additives in diesel-biodiesel blends. RSC Adv 2022; 12:34746-34759. [PMID: 36545583 PMCID: PMC9720506 DOI: 10.1039/d2ra07300e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 12/11/2022] Open
Abstract
Biodiesel production is one of the promising strategies to reduce diesel consumption and an important contribution to climate change. However, biodiesel stability remains a challenging problem in biofuel use in the global energy matrix. In this context, organic additives have been investigated to minimize these problems and reduce harmful emissions to comply with fuel requirement standards. In this study, we discuss a comprehensive structural description, a behavior of B15 [85% volume of diesel and 15% volume of biodiesel (B100)] stability in the presence of antioxidants (chalcone analogues), and a theoretical calculation to pave the way for clarifying and expanding the potential of title compounds as an antioxidant additive for diesel-biodiesel blends. Finally, a systematic description of the oxidation stability was undertaken using a specialized machine learning computational pySIRC platform.
Collapse
Affiliation(s)
- Igor D Borges
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás Anápolis GO Brazil +55 (62) 3328-1156
- Centro de Pesquisa e Eficiência Energética, CAOA Montadora de Veículos LTDA Anápolis GO Brazil
| | - Eduardo C M Faria
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás Anápolis GO Brazil +55 (62) 3328-1156
- Centro de Pesquisa e Eficiência Energética, CAOA Montadora de Veículos LTDA Anápolis GO Brazil
| | - Jean F M Custódio
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás Anápolis GO Brazil +55 (62) 3328-1156
| | - Vitor S Duarte
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás Anápolis GO Brazil +55 (62) 3328-1156
- Centro de Pesquisa e Eficiência Energética, CAOA Montadora de Veículos LTDA Anápolis GO Brazil
| | | | | | - Flávio O Sanches-Neto
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás Anápolis GO Brazil +55 (62) 3328-1156
- Instituto de Química, Universidade de Brasília Brasília DF Brazil
| | - Valter H Carvalho-Silva
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás Anápolis GO Brazil +55 (62) 3328-1156
| | | | - Hamilton B Napolitano
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás Anápolis GO Brazil +55 (62) 3328-1156
| |
Collapse
|
47
|
Physical, Nutritional, and Bioactive Properties of Mandacaru Cladode Flour ( Cereus jamacaru DC.): An Unconventional Food Plant from the Semi-Arid Brazilian Northeast. Foods 2022; 11:foods11233814. [PMID: 36496622 PMCID: PMC9739843 DOI: 10.3390/foods11233814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
In this study, we evaluated the physical, nutritional, and bioactive properties of mandacaru cladode flour (Cereus jamacaru DC.). The granulometric profile revealed particles with non-uniform geometry, flakiness, a rectangular tendency, and a non-homogeneous surface, with particle sizes ranging from 20 to 60 µm. The flour presented low water activity (0.423), a moisture content of 8.24 g/100 g, high ash (2.82 g/100 g), protein (5.18 g/100 g), and total carbohydrate contents (74.48 g/100 g), and low lipid contents (1.88 g/100 g). Mandacaru flour is an excellent source of insoluble dietary fiber (48.08 g/100 g), calcium (76.33%), magnesium (15.21%), and potassium (5.94%). Notably, 1H NMR analysis revealed the presence of N-methyltyramine. Using HPLC chromatography, glucose was identified as the predominant sugar (1.33 g/100 g), followed by four organic acids, especially malic acid (9.41 g/100 g) and citric acid (3.96 g/100 g). Eighteen phenolic compounds were detected, with relevant amounts of kaempferol (99.40 mg/100 g), myricetin (72.30 mg/100 g), and resveratrol (17.84 mg/100 g). The total phenolic compounds and flavonoids were 1285.47 mg GAE/100 g and 15.19 mg CE/100 g, respectively. The mean in vitro antioxidant activity values were higher using the FRAP method (249.45 µmol Trolox TEAC/100 g) compared to the ABTS•+ method (0.39 µmol Trolox TEAC/g). Finally, the ascorbic acid had a content of 35.22 mg/100 g. The results demonstrate the value of mandacaru as a little-explored species and an excellent matrix for the development of flours presenting good nutritional value and bioactive constituents with excellent antioxidant potential.
Collapse
|
48
|
Bożek J, Tomala J, Wójcik S, Kamińska B, Brand I, Pocheć E, Szostak E. Effects of Piptoporus betulinus Ethanolic Extract on the Proliferation and Viability of Melanoma Cells and Models of Their Cell Membranes. Int J Mol Sci 2022; 23:13907. [PMID: 36430391 PMCID: PMC9692381 DOI: 10.3390/ijms232213907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Piptoporus betulinus is a fungus known for its medicinal properties. It possesses antimicrobial, anti-inflammatory, and anti-cancer activity. In this study, several tests were performed to evaluate the cytotoxic effect of the ethanolic extract of Piptoporus betulinus on two melanoma human cell lines, WM115 primary and A375 metastatic cell lines, as well as Hs27 human skin fibroblasts. The extract proved to affect cancer cells in a dose-dependent manner, and at the same time showed a low cytotoxicity towards the normal cells. The total phenolic content (TPC) was determined spectrophotometrically by the Folin-Ciocalteu method (F-C), and the potential antioxidant activity was measured by ferric-reducing antioxidant power (FRAP) assay. One of the active compounds in the extract is betulin. It was isolated and then its cytotoxic activity was compared to the results obtained from the Piptoporus betulinus extract. To further understand the mechanism of action of the extract's anticancer activity, tests on model cell membranes were conducted. A model membrane of a melanoma cell was designed and consisted of 1,2-dimyristoyl-sn-glycero-3-phosphocholine, disialoganglioside-GD1a and cholesterol: DMPC:GD1a:chol (5:2:3 mole ratio). Changes in a Langmuir monolayer were observed and described based on Π-Amol isotherm and compressibility modulus changes. LB lipid bilayers were deposited on a hydrophilic gold substrate and analyzed by IR and X-ray photoelectron spectroscopy. Our study provides new data on the effect of Piptoporus betulinus extract on melanoma cells and its impact on the model of melanoma plasma membranes.
Collapse
Affiliation(s)
- Justyna Bożek
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
| | - Joanna Tomala
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
| | - Sylwia Wójcik
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
| | - Beata Kamińska
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
| | - Izabella Brand
- Department of Chemistry, Carl von Ossietzky University of Oldenburg, 26 111 Oldenburg, Germany
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Elżbieta Szostak
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
49
|
Liu K, Zeng N, Pan J, Gong D, Zhang G. Synthesis, characterization, toxicity evaluation and inhibitory effect of hesperitin-copper (Ⅱ) complex on xanthine oxidase. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Arnold AM, Kennedy ZC, Hutchison JR. A simple, cost-effective colorimetric assay for aluminum ions via complexation with the flavonoid rutin. PEERJ ANALYTICAL CHEMISTRY 2022. [DOI: 10.7717/peerj-achem.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aluminum has been linked to deleterious health effects with high concentration, chronic exposure, creating a need for innovative detection techniques. Colorimetric assays are an ideal approach since they are simple, cost-effective, and field adaptable. Yet, commercially available colorimetric assays for aluminum are limited since it forms few colored chelation complexes. Flavonoids, a class of polyphenolic compounds, are one of the few examples that create colored aluminum complexes. Aluminum ions (Al3+) are the main constituent in colorimetric assays for flavonoid detection in food or plant samples. Our assay design was based on colorimetric flavonoid assays, where the assay reported herein was optimized. Specifically, the flavonoid rutin concentration and sample-to-rutin volume ratio (295:5 µL) were optimized to detect Al3+ at low µM concentrations in samples. The assay performed comparably, and in some instances better, than those requiring advanced instrumentation and previously reported colorimetric assays, with a linear range (1–8 µM), sensitivity (7.6 nM), limit of detection (79.8 nM), and limit of quantification (266 nM) for Al3+. The colorimetric assay was accurate (99 ≤ 108 ± 4 ≤ 6% Al3+ recovery), precise (low intra- and inter-assay coefficient of variation (CV) of 3.1 ≤ 5.9% and 4.4%, respectively), and selective for Al3+ ions compared to solutions containing a variety of other mono-, di-, and tri-cations at much higher concentrations (10- to 100-fold higher). Lastly, the colorimetric assay was applicable to complex analysis. It was used to generate a chelation curve depicting the Al3+ chelation capacity of sodium alginate, a biologically derived polymer used as a bioink for 3D bioprinting.
Collapse
Affiliation(s)
- Anne M. Arnold
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Zachary C. Kennedy
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Janine R. Hutchison
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
| |
Collapse
|