1
|
Rafieepour A, Azari MR, Alimohammadi I, Farshad AA. The potential of Gol-e-Gohar iron ore mine airborne dust to induce toxicity in human lung A549 cells. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2024:1-13. [PMID: 39388719 DOI: 10.1080/15459624.2024.2406235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Airborne particulates in iron ore mining are a risk factor for adverse human lung effects. In this study, fine particulates deposited on surfaces of about 1.5 m above the ground and 6 meters from a milling unit of the Gol-e-Gohar iron ore mine were collected through wipe sampling. Dust particles less than 5 µm in diameter were separated with an electronic sieve. Aliquots were prepared from the sieved iron ore dust estimated to be equivalent to respiratory exposure in the iron ore mill in the concentrations of 1, 5, 10, 50, 100, and 250 µg/mL, which were intended to represent equivalent inhaled doses from working one month to a working life (25 years) in the mine. The airborne concentration of respirable particles was about five times the threshold limit value given (TLV®) for iron oxide published by the American Conference of Governmental Industrial Hygienists. The in vitro toxicity range was estimated to be equivalent to an accumulated dose associated with working from one month to a working life in the mine. Treatment of the A549 cells resulted in decreased dehydrogenase activity and cell glutathione content and increased reactive oxygen species (ROS) generation, mitochondrial membrane permeability, and cell apoptosis-necrosis rates. The results of this study revealed the possibility of lung damage at cell doses for respirable airborne iron oxide particles estimated to be equivalent to accumulated lifetime exposures among Gol-e-Gohar miners. Further studies are recommended to investigate the effect of actual contaminants in the workplace on the occurrence of health effects on workers.
Collapse
Affiliation(s)
- Athena Rafieepour
- Occupational Health Research Center, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mansour R Azari
- School of Public Health, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Iraj Alimohammadi
- Occupational Health Research Center, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Farshad
- Occupational Health Research Center, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Moen A, Johnsen H, Hristozov D, Zabeo A, Pizzol L, Ibarrola O, Hannon G, Holmes S, Debebe Zegeye F, Vogel U, Prina Mello A, Zienolddiny-Narui S, Wallin H. Inflammation related to inhalation of nano and micron sized iron oxides: a systematic review. Nanotoxicology 2024:1-16. [PMID: 39275857 DOI: 10.1080/17435390.2024.2399039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/19/2024] [Accepted: 08/24/2024] [Indexed: 09/16/2024]
Abstract
Inhalation exposure to iron oxide occurs in many workplaces and respirable aerosols occur during thermal processes (e.g. welding, casting) or during abrasion of iron and steel products (e.g. cutting, grinding, machining, polishing, sanding) or during handling of iron oxide pigments. There is limited evidence of adverse effects in humans specifically linked to inhalation of iron oxides. This contrasts to oxides of other metals used to alloy or for coating of steel and iron of which several have been classified as being hazardous by international and national agencies. Such metal oxides are often present in the air at workplaces. In general, iron oxides might therefore be regarded as low-toxicity, low-solubility (LTLS) particles, and are often considered to be nontoxic even if very high and prolonged inhalation exposures might result in diseases. In animal studies, such exposures lead to cancer, fibrosis and other diseases. Our hypothesis was that pulmonary-workplace exposure during manufacture and handling of SPION preparations might be harmful. We therefore conducted a systematic review of the relevant literature to understand how iron oxides deposited in the lung are related to acute and subchronic pulmonary inflammation. We included one human and several in vivo animal studies published up to February 2023. We found 25 relevant studies that were useful for deriving occupational exposure limits (OEL) for iron oxides based on an inflammatory reaction. Our review of the scientific literature indicates that lowering of health-based occupational exposure limits might be considered.
Collapse
Affiliation(s)
- Aurora Moen
- National Institute of Occupational Health, Oslo, Norway
| | - Helge Johnsen
- National Institute of Occupational Health, Oslo, Norway
| | | | - Alex Zabeo
- Ca' Foscari University of Venice, Venizia, Italy
| | | | | | - Gary Hannon
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College of Dublin, Dublin, Ireland
| | - Sarah Holmes
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College of Dublin, Dublin, Ireland
| | | | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Adriele Prina Mello
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College of Dublin, Dublin, Ireland
| | | | - Håkan Wallin
- National Institute of Occupational Health, Oslo, Norway
| |
Collapse
|
3
|
Keshavarz Shahbaz S, Koushki K, Izadi O, Penson PE, Sukhorukov VN, Kesharwani P, Sahebkar A. Advancements in curcumin-loaded PLGA nanoparticle delivery systems: progressive strategies in cancer therapy. J Drug Target 2024:1-26. [PMID: 39106154 DOI: 10.1080/1061186x.2024.2389892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Cancer is a leading cause of death worldwide, and imposes a substantial socioeconomic burden with little impact especially on aggressive types of cancer. Conventional therapies have many serious side effects including generalised systemic toxicity which limits their long-term use. Tumour resistance and recurrence is another main problem associated with conventional therapy. Purified or extracted natural products have been investigated as cost-effective cancer chemoprotective agents with the potential to reverse or delaying carcinogenesis. Curcumin (CUR) as a natural polyphenolic component, exhibits many pharmacological activities such as anti-cancer, anti-inflammatory, anti-microbial, activity against neurodegenerative diseases including Alzheimer, antidiabetic activities (type II diabetes), anticoagulant properties, wound healing effects in both preclinical and clinical studies. Despite these effective protective properties, CUR has several limitations, including poor aqueous solubility, low bioavailability, chemical instability, rapid metabolism and a short half-life time. To overcome the pharmaceutical problems associated with free CUR, novel nanomedicine strategies (including polymeric nanoparticles (NPs) such as poly (lactic-co-glycolic acid) (PLGA) NPs have been developed. These formulations have the potential to improve the therapeutic efficacy of curcuminoids. In this review, we comprehensively summarise and discuss recent in vitro and in vivo studies to explore the pharmaceutical significance and clinical benefits of PLGA-NPs delivery system to improve the efficacy of CUR in the treatment of cancer.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Khadijeh Koushki
- Department of Neurosurgery, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Omid Izadi
- Department of Industrial Engineering, ACECR Institute of Higher Education Kermanshah, Kermanshah, Iran
| | - Peter E Penson
- Clinical Pharmacy and Therapeutics Research Group, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Antoniou M, Melagraki G, Lynch I, Afantitis A. In Vitro Toxicological Insights from the Biomedical Applications of Iron Carbide Nanoparticles in Tumor Theranostics: A Systematic Review and Meta-Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:734. [PMID: 38727328 PMCID: PMC11085367 DOI: 10.3390/nano14090734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 05/12/2024]
Abstract
(1) Background: Despite the encouraging indications regarding the suitability (biocompatibility) of iron carbide nanoparticles (ICNPs) in various biomedical applications, the published evidence of their biosafety is dispersed and relatively sparse. The present review synthesizes the existing nanotoxicological data from in vitro studies relevant to the diagnosis and treatment of cancer. (2) Methods: A systematic review was performed in electronic databases (PubMed, Scopus, and Wiley Online Library) on December 2023, searching for toxicity assessments of ICNPs of different sizes, coatings, and surface modifications investigated in immortalized human and murine cell lines. The risk of bias in the studies was assessed using the ToxRTool for in vitro studies. (3) Results: Among the selected studies (n = 22), cell viability emerged as the most frequently assessed cellular-level toxicity endpoint. The results of the meta-analysis showed that cell models treated with ICNPs had a reduced cell viability (SMD = -2.531; 95% CI: -2.959 to -2.109) compared to untreated samples. A subgroup analysis was performed due to the high magnitude of heterogeneity (I2 = 77.1%), revealing that ICNP concentration and conjugated ligands are the factors that largely influence toxicity (p < 0.001). (4) Conclusions: A dose-dependent cytotoxicity of ICNP exposure was observed, regardless of the health status of the cell, tested organism, and NP size. Inconsistent reporting of ICNP physicochemical properties was noted, which hinders comparability among the studies. A comprehensive exploration of the available in vivo studies is required in future research to assess the safety of ICNPs' use in bioimaging and cancer treatment.
Collapse
Affiliation(s)
- Maria Antoniou
- Department of Nanoinformatics, NovaMechanics Ltd., Nicosia 1046, Cyprus;
- Entelos Institute, Larnaca 6059, Cyprus;
- The Cyprus Institute, Nicosia 2121, Cyprus
| | - Georgia Melagraki
- Division of Physical Sciences & Applications, Hellenic Military Academy, 16672 Vari, Greece;
| | - Iseult Lynch
- Entelos Institute, Larnaca 6059, Cyprus;
- School of Geography, Earth and Environmental Sciences, University of Birmingham Edgbaston, Birmingham B15 2TT, UK
| | - Antreas Afantitis
- Department of Nanoinformatics, NovaMechanics Ltd., Nicosia 1046, Cyprus;
- Entelos Institute, Larnaca 6059, Cyprus;
| |
Collapse
|
5
|
Gomte SS, Jadhav PV, Jothi Prasath V R N, Agnihotri TG, Jain A. From lab to ecosystem: Understanding the ecological footprints of engineered nanoparticles. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:33-73. [PMID: 38063467 DOI: 10.1080/26896583.2023.2289767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Nanotechnology has attained significant attention from researchers in past decades due to its numerous advantages, such as biocompatibility, biodegradability, and improved stability over conventional drug delivery systems. The fabrication of engineered nanoparticles (ENPs), including carbon nanotubes (CNTs), fullerenes, metallic and metal oxide-based NPs, has been steadily increasing day due to their wide range of applications from household to industrial applications. Fabricated ENPs can release different materials into the environment during their fabrication process. The effect of such materials on the environment is the primary concern with due diligence on the safety and efficacy of prepared NPs. In addition, an understanding of chemistry, reactivity, fabrication process, and viable mechanism of NPs involved in the interaction with the environment is very important. To date, only a limited number of techniques are available to assess ENPs in the natural environment which makes it difficult to ascertain the impact of ENPs in natural settings. This review extensively examines the environmental effects of ENPs and briefly discusses useful tools for determining NP size, surface charge, surface area, and external appearance. In conclusion, the review highlights the potential risks associated with ENPs and suggests possible solutions.
Collapse
Affiliation(s)
- Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| | - Pratiksha Vasant Jadhav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| | - Naga Jothi Prasath V R
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| |
Collapse
|
6
|
Desmedt B, Verleysen E, Demaegdt H, van Campenhout P, van Miert E, Deconinck E. The use of nitrous oxide whippets as a recreational drug: Hidden health risks. Drug Test Anal 2024; 16:99-104. [PMID: 37173289 DOI: 10.1002/dta.3518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Whipped cream canisters, also known as nitrous oxide whippets, are traditionally used in the culinary arts to prepare food foams. In recent years, however, these gas canisters have been cracked open and inhaled to produce a "legal" high. Users of these whippets have reported the presence of an oily residue containing metallic particles. This contamination was investigated using liquid chromatography-, gas chromatography- and inductively coupled plasma-mass spectrometry (ICP-MS) and optical emission spectrometry (ICP-OES). The particulate matter was also analyzed by scanning transmission electron microscopy (STEM) combined with energy-dispersive X-ray spectroscopy (EDX). The presence of cyclohexyl isothiocyanate was confirmed at a maximum concentration of 67 μg per whippet. ICP-MS and ICP-OES analysis revealed the presence of mainly iron and zinc, but also, traces of aluminum, chromium, cobalt, nickel, and lead were found. STEM-EDX analysis confirmed the presence of nano-sized particles containing iron and zinc. When simulating inhalation, using the multiple path particle dosimetry model, it was confirmed that these nano-sized particles can reach the deeper parts of the lungs. Most users assume that inhaling a food-grade nitrous oxide whippet for a "legal" high poses no risks. However, this research shows that users are exposed to cyclohexyl isothiocyanate, a substance classified as a respiratory sensitizer. The presence of zinc in the particulate matter could potentially be linked to lung lesions.
Collapse
Affiliation(s)
- Bart Desmedt
- Medicines and Health Products, Scientific Direction Physical and Chemical Health Risks, Sciensano, Brussels, Belgium
| | - Eveline Verleysen
- EM-Unit, Service Trace Elements and Nanomaterials, Scientific Direction Physical and Chemical Health Risks, Sciensano, Uccle, Belgium
| | - Heidi Demaegdt
- Trace Elements Unit, Service Trace Elements and Nanomaterials, Scientific Direction Physical and Chemical Health Risks, Sciensano, Tervuren, Belgium
| | - Peter van Campenhout
- Medicines and Health Products, Scientific Direction Physical and Chemical Health Risks, Sciensano, Brussels, Belgium
| | - Erik van Miert
- Risk Assessment Unit, Risk and Health Impact Assessment Service, Scientific Direction Physical and Chemical Health Risks, Sciensano, Brussels, Belgium
| | - Eric Deconinck
- Medicines and Health Products, Scientific Direction Physical and Chemical Health Risks, Sciensano, Brussels, Belgium
| |
Collapse
|
7
|
Murgia I, Morandini P. Plant Iron Research in African Countries: Current "Hot Spots", Approaches, and Potentialities. PLANTS (BASEL, SWITZERLAND) 2023; 13:14. [PMID: 38202322 PMCID: PMC10780554 DOI: 10.3390/plants13010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024]
Abstract
Plant iron (Fe) nutrition and metabolism is a fascinating and challenging research topic; understanding the role of Fe in the life cycle of plants requires knowledge of Fe chemistry and biochemistry and their impact during development. Plant Fe nutritional status is dependent on several factors, including the surrounding biotic and abiotic environments, and influences crop yield and the nutritional quality of edible parts. The relevance of plant Fe research will further increase globally, particularly for Africa, which is expected to reach 2.5 billion people by 2050. The aim of this review is to provide an updated picture of plant Fe research conducted in African countries to favor its dissemination within the scientific community. Three main research hotspots have emerged, and all of them are related to the production of plants of superior quality, i.e., development of Fe-dense crops, development of varieties resilient to Fe toxicity, and alleviation of Fe deficiency, by means of Fe nanoparticles for sustainable agriculture. An intensification of research collaborations between the African research groups and plant Fe groups worldwide would be beneficial for the progression of the identified research topics.
Collapse
Affiliation(s)
- Irene Murgia
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy;
| | | |
Collapse
|
8
|
Nandomah S, Tetteh IK. Potential ecological risk assessment of heavy metals associated with abattoir liquid waste: A narrative and systematic review. Heliyon 2023; 9:e17359. [PMID: 37636457 PMCID: PMC10447939 DOI: 10.1016/j.heliyon.2023.e17359] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 08/29/2023] Open
Abstract
The article presents a narrative and systematic review of the potential ecological risk assessment of heavy metals associated with abattoir liquid waste for knowledge advancement. The narrative review primarily focused on (i) An overview of abattoir operations; (ii) Characteristics of abattoir liquid waste; (iii) Heavy metals in the liquid waste and their health effects; (iv) Environmental impacts of abattoir liquid waste; and (v) Potential ecological risk index (RI) methodology. These provided essential literature for the systematic review. Using exclusive/inclusive criteria, 15 abattoirs that satisfied the eligibility criteria, all located in Nigeria, were used for the systematic review with meta-analysis/meta-regression. Comparative multiple linear meta-regression analyses were used to quantify the heterogeneity variances between the abattoirs based on standardized RIs (SRIs; effect sizes) using eight tau (τ ) estimators in R metafor. The effects of three standardized moderators─ number of metals, metal concentrations, and relative distances between the abattoirs and a pristine environment, Gashaka-Gumti National Park (GNP), were also analyzed. The Sidik-Jonkman (SJ) estimator yielded a realistic output, and the current research findings were based on this estimator. The Cochran statistic (QE) suggested an absence of heterogeneity(p>0.99). Between-study heterogeneities, quantified by H2 (1.05), I2 (4.76%), and τ 2 (0.0032 ± 0.0032 (SE)) statistics were very low, practically suggesting complete homogeneity. The moderators accounted for R * 2 of 95.73% of the total explanatory capacity of the model. The beta coefficients of the moderators and intercept were significant (p-values: 0.009-0.0004). While the first two moderators showed in-phase relations with the SRIs, the third indicated an out-of-phase relation. Such links suggest the existence of abattoir-environment interactive processes. Although the abattoirs are spatially distinct and independent, their operations showed evidence-based homogeneity and posed high ecological risks. Hence, environmental legislation should be strictly enforced while ensuring human settlements are sited reasonably from abattoirs.
Collapse
Affiliation(s)
- Solomon Nandomah
- Department of Environmental Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Isaac Kow Tetteh
- Department of Environmental Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
9
|
Caruso G, Scalisi EM, Pecoraro R, Cardaci V, Privitera A, Truglio E, Capparucci F, Jarosova R, Salvaggio A, Caraci F, Brundo MV. Effects of carnosine on the embryonic development and TiO 2 nanoparticles-induced oxidative stress on Zebrafish. Front Vet Sci 2023; 10:1148766. [PMID: 37035814 PMCID: PMC10078361 DOI: 10.3389/fvets.2023.1148766] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Oxidative stress is due to an unbalance between pro-oxidants, such as reactive oxygen (ROS) and nitrogen (RNS) species, and antioxidants/antioxidant system. Under physiological conditions these species are involved in different cellular processes such as cellular homeostasis and immune response, while an excessive production of ROS/RNS has been linked to the development of various diseases such as cancer, diabetes, and Alzheimer's disease. In this context, the naturally occurring dipeptide carnosine has shown the ability to scavenge ROS, counteract lipid peroxidation, and inhibit proteins oxidation. Titanium dioxide nanoparticles (TiO2-NPs) have been widely used to produce cosmetics, in wastewater treatment, in food industry, and in healthcare product. As consequence, these NPs are often released into aquatic environments. The Danio rerio (commonly called zebrafish) embryos exposure to TiO2-NPs did not affect the hatching rate, but induced oxidative stress. According to this scenario, in the present study, we first investigated the effects of carnosine exposure and of a sub-toxic administration of TiO2-NPs on the development and survival of zebrafish embryos/larvae measured through the acute embryo toxicity test (FET-Test). Zebrafish larvae represent a useful model to study oxidative stress-linked disorders and to test antioxidant molecules, while carnosine was selected based on its well-known multimodal mechanism of action that includes a strong antioxidant activity. Once the basal effects of carnosine were assessed, we then evaluated its effects on TiO2-NPs-induced oxidative stress in zebrafish larvae, measured in terms of total ROS production (measured with 2,7-dichlorodihydrofluorescein diacetate probe) and protein expression by immunohistochemistry of two cellular stress markers, 70 kDa-heat shock protein (Hsp70) and metallothioneins (MTs). We demonstrated that carnosine did not alter the phenotypes of both embryos and larvae of zebrafish at different hours post fertilization. Carnosine was instead able to significantly decrease the enhancement of ROS levels in zebrafish larvae exposed to TiO2-NPs and its antioxidant effect was paralleled by the rescue of the protein expression levels of Hsp70 and MTs. Our results suggest a therapeutic potential of carnosine as a new pharmacological tool in the context of pathologies characterized by oxidative stress such as neurodegenerative disorders.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Elena Maria Scalisi
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Roberta Pecoraro
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Vincenzo Cardaci
- Vita-Salute San Raffaele University, Milan, Italy
- Scuola Superiore di Catania, University of Catania, Catania, Italy
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Emanuela Truglio
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Romana Jarosova
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, United States
| | | | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| |
Collapse
|
10
|
Lyu Y, Zhang Q, Liu Y, Zhang WP, Tian FJ, Zhang HF, Hu BH, Feng J, Qian Y, Jiang Y, Zhang PH, Ma N, Tang SC, Zheng JP, Qiu YL. Nano-Calcium Carbonate Affect the Respiratory and Function Through Inducing Oxidative Stress: A Cross-sectional Study Among Occupational Exposure of Workers and a Further Research for Underlying Mechanisms. J Occup Environ Med 2023; 65:184-191. [PMID: 36165499 DOI: 10.1097/jom.0000000000002713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of the study is to investigate whether nano-calcium carbonate (nano-CaCO 3 ) occupational exposure could induce adverse health effects in workers. METHODS A cross-sectional study was conducted in a nano-CaCO 3 manufacturing plant in China. Then, we have studied the dynamic distribution of nano-CaCO 3 in nude mice and examined the oxidative damage biomarkers of subchronic administrated nano-CaCO 3 on Sprague-Dawley rats. RESULTS The forced vital capacity (%) and the ratio of FEV1 to FVC is the rate of one second of workers were significantly decreased than unexposed individuals. Dynamic imaging in mice of fluorescence labeled nano-CaCO 3 showed relatively high uptake and slow washout in lung. Similar to population data, the decline in serum glutathione level and elevation in serum MDA were observed in nano-CaCO 3 -infected Sprague-Dawley rats. CONCLUSIONS We found that nano-CaCO 3 exposure may result in the poor pulmonary function in workers and lead to the changes of oxidative stress indexes.
Collapse
Affiliation(s)
- Yi Lyu
- From the Department of Health Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China (Ms Lyu, Ms Zhang, Ms Liu, Dr Zhang, Ms Tian, Ms Zhang, Mr Hu, Ms Feng, Ms Qian, Mr Jiang, Ms Zhang, Ms Ma, Dr Zheng, Dr Qiu); Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Shanxi Medical University, Taiyuan, China (Ms Lyu); Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, China (Dr Zheng); and Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, China (Dr Tang)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Biologic Impact of Green Synthetized Magnetic Iron Oxide Nanoparticles on Two Different Lung Tumorigenic Monolayers and a 3D Normal Bronchial Model-EpiAirway TM Microtissue. Pharmaceutics 2022; 15:pharmaceutics15010002. [PMID: 36678632 PMCID: PMC9866254 DOI: 10.3390/pharmaceutics15010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The present study reports the successful synthesis of biocompatible magnetic iron oxide nanoparticles (MNPs) by an ecofriendly single step method, using two ethanolic extracts based on leaves of Camellia sinensis L. and Ocimum basilicum L. The effect of both green raw materials as reducing and capping agents was taken into account for the development of MNPs, as well as the reaction synthesis temperature (25 °C and 80 °C). The biological effect of the MNPs obtained from Camellia sinensis L. ethanolic extract (Cs 25, Cs 80) was compared with that of the MNPs obtained from Ocimum basilicum L. ethanolic extract (Ob 25, Ob 80), by using two morphologically different lung cancer cell lines (A549 and NCI-H460); the results showed that the higher cell viability impairment was manifested by A549 cells after exposure to MNPs obtained from Ocimum basilicum L. ethanolic extract (Ob 25, Ob 80). Regarding the biosafety profile of the MNPs, it was shown that the EpiAirwayTM models did not elicit important viability decrease or significant histopathological changes after treatment with none of the MNPs (Cs 25, Cs 80 and Ob 25, Ob 80), at concentrations up to 500 µg/mL.
Collapse
|
12
|
Verma GS, Nirmal NK, John PJ. Iron oxide nanoparticles reversibly affect sperm quality in Wistar rats. Andrologia 2022; 54:e14631. [DOI: 10.1111/and.14631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Gajraj Singh Verma
- Department of Zoology, Center for Advanced Studies University of Rajasthan Jaipur India
| | - Naresh Kumar Nirmal
- Department of Zoology, Center for Advanced Studies University of Rajasthan Jaipur India
| | - Placheril J. John
- Department of Zoology, Center for Advanced Studies University of Rajasthan Jaipur India
| |
Collapse
|
13
|
Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Scale-up polymeric-based nanoparticles drug delivery systems: Development and challenges. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Geochemical and Morphological Evaluations of Organic and Mineral Aerosols in Coal Mining Areas: A Case Study of Santa Catarina, Brazil. SUSTAINABILITY 2022. [DOI: 10.3390/su14073847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Numerous researchers have described the correlation between the short-term contact of nano-particulate (NP) matter in diverse coal phases and amplified death or hospitalizations for breathing disorders in humans. However, few reports have examined the short-term consequences of source-specific nanoparticles (NPs) on coal mining areas. Advanced microscopic techniques can detect the ultra-fine particles (UFPs) and nanoparticles that contain potential hazardous elements (PHEs) generated in coal mining areas. Secondary aerosols that cause multiple and complex groups of particulate matter (PM10, PM2.5, PM1) can be collected on dry deposition. In this study, scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) were employed to detect and define the magnitude of particulate matters on restaurants walls at coal mines due to weathering interactions. The low cost self-made passive sampler (SMPS) documented several minerals and amorphous phases. The results showed that most of the detected coal minerals exist in combined form as numerous complexes comprising significant elements (e.g., Al, C, Fe, K, Mg, S, and Ti), whereas others exist as amorphous or organic compounds. Based on the analytical approach, the study findings present a comprehensive understanding of existing potential hazardous elements in the nanoparticles and ultrafine particles from coal mining areas in Brazil.
Collapse
|
15
|
Fernández-Bertólez N, Costa C, Brandão F, Teixeira JP, Pásaro E, Valdiglesias V, Laffon B. Toxicological Aspects of Iron Oxide Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:303-350. [DOI: 10.1007/978-3-030-88071-2_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Tada Y, Hojo M, Yuzawa K, Nagasawa A, Suzuki J, Inomata A, Moriyasu T, Nakae D. Iron oxide nanoparticles exert inhibitory effects on N-Bis(2-hydroxypropyl)nitrosamine (DHPN)-induced lung tumorigenesis in rats. Regul Toxicol Pharmacol 2021; 128:105072. [PMID: 34742869 DOI: 10.1016/j.yrtph.2021.105072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
Iron oxide nanoparticles (magnetite) have been widely used in industry and medicine. However, the safety assessment of magnetite has not been fully completed. The present study was conducted to assess effects of magnetite on carcinogenic activity, using a medium-term bioassay protocol. A total of 100 male Fischer 344 rats, 6 weeks old, were randomly divided into 5 groups of 20 animals each, and given a basal diet and drinking water containing 0 or 0.1% of N-bis(2-hydroxypropyl)nitrosamine (DHPN) for 2 weeks. Two weeks later, the rats were intratracheally instilled magnetite 7 times at an interval of 4 weeks, at the doses of 0, 1.0 or 5.0 mg/kg body weight, and sacrificed at the end of the experimental period of 30 weeks. The multiplicities of macroscopic lung nodules and histopathologically diagnosed bronchiolo-alveolar hyperplasia, induced by DHPN, were both significantly decreased by the high dose of magnetite. The expression of minichromosome maintenance (MCM) protein 7 in non-tumoral alveolar epithelial cells, and the number of CD163-positive macrophages in tumor nodules were both significantly reduced by magnetite. It is suggested that magnetite exerts inhibitory effects against DHPN-induced lung tumorigenesis, by the reduction of alveolar epithelial proliferation and the M2 polarization of tumor-associated macrophages.
Collapse
Affiliation(s)
- Yukie Tada
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shin'juku, Tokyo, 169-0073, Japan.
| | - Motoki Hojo
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shin'juku, Tokyo, 169-0073, Japan
| | - Katsuhiro Yuzawa
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shin'juku, Tokyo, 169-0073, Japan
| | - Akemichi Nagasawa
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shin'juku, Tokyo, 169-0073, Japan
| | - Jin Suzuki
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shin'juku, Tokyo, 169-0073, Japan
| | - Akiko Inomata
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shin'juku, Tokyo, 169-0073, Japan
| | - Takako Moriyasu
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shin'juku, Tokyo, 169-0073, Japan
| | - Dai Nakae
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan.
| |
Collapse
|
17
|
Poon K, Lu Z, De Deene Y, Ramaswamy Y, Zreiqat H, Singh G. Tuneable manganese oxide nanoparticle based theranostic agents for potential diagnosis and drug delivery. NANOSCALE ADVANCES 2021; 3:4052-4061. [PMID: 36132835 PMCID: PMC9419237 DOI: 10.1039/d0na00991a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/04/2021] [Indexed: 06/16/2023]
Abstract
Among various magnetic nanoparticles, manganese oxide nanoparticles are considered as established T 1 magnetic resonance imaging (MRI) contrast agents for preclinical research. The implications of their degradation properties and use as therapeutic carriers in drug delivery systems have not been explored. In addition, how the chemical composition and size of manganese oxide nanoparticles, as well as the surrounding environment, influence their degradation and MRI contrast properties (T 1 vs. T 2) have not been studied in great detail. A fundamental understanding of their characteristic properties, such as degradation, is highly desirable for developing simultaneous diagnosis and therapeutic solutions. Here, we demonstrate how the precursor type and reaction environment affect the size and chemical composition of manganese oxide nanoparticles and evaluate their influence on the nanoparticle degradability and release of the drug l-3,4-dihydroxyphenylalanine (l-dopa). The results show that the degradation rate (and the associated release of drug l-dopa molecules) of manganese oxide nanoparticles depends on their size, composition and the surrounding environment (aqueous or biometric fluid). The dependence of MRI relaxivities of manganese oxide nanoparticles on the size, chemical composition and nanoparticle degradation in water is also established. A preliminary cell viability study reveals the cytocompatible properties of l-dopa functionalized manganese oxide nanoparticles. Overall, this work provides new insights into smartly designed manganese oxide nanoparticles with multitasking capabilities to target bioimaging and therapeutic applications.
Collapse
Affiliation(s)
- Kingsley Poon
- ARC Centre for Innovative BioEngineering, Tissue Engineering and Biomaterials Research Unit, Sydney Nano Institute, School of Biomedical Engineering, The University of Sydney NSW 2008 Australia
| | - Zufu Lu
- ARC Centre for Innovative BioEngineering, Tissue Engineering and Biomaterials Research Unit, Sydney Nano Institute, School of Biomedical Engineering, The University of Sydney NSW 2008 Australia
| | - Yves De Deene
- Department of Engineering, The Biomedical Engineering Laboratory, Macquarie University Sydney 2109 Australia
| | - Yogambha Ramaswamy
- ARC Centre for Innovative BioEngineering, Tissue Engineering and Biomaterials Research Unit, Sydney Nano Institute, School of Biomedical Engineering, The University of Sydney NSW 2008 Australia
| | - Hala Zreiqat
- ARC Centre for Innovative BioEngineering, Tissue Engineering and Biomaterials Research Unit, Sydney Nano Institute, School of Biomedical Engineering, The University of Sydney NSW 2008 Australia
| | - Gurvinder Singh
- ARC Centre for Innovative BioEngineering, Tissue Engineering and Biomaterials Research Unit, Sydney Nano Institute, School of Biomedical Engineering, The University of Sydney NSW 2008 Australia
| |
Collapse
|
18
|
Rafieepour A, Azari MR, Khodagholi F, Jaktaji JP, Mehrabi Y, Peirovi H. Interactive toxicity effect of combined exposure to hematite and amorphous silicon dioxide nanoparticles in human A 549 cell line. Toxicol Ind Health 2021; 37:289-302. [PMID: 34078188 DOI: 10.1177/07482337211002373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The study on the health effects of combined exposure to various contaminants has been recommended by many authors. The objective of the present study was to examine the effects of the co-exposure to hematite and amorphous silicon dioxide (A-SiO2) nanoparticles on the human lung A549 cell line. The A549 cell line was exposed to 10, 50, 100, and 250 µg/ml concentrations of hematite and A-SiO2 nanoparticles both independently and in combination. Their toxicity in both circumstances was investigated by MTT, intracellular reactive oxygen species, cell glutathione content, and mitochondrial membrane potential tests, and the type of interaction was investigated by statistical analysis using Statistical Package for Social Sciences (SPSS, v. 21). Results showed that the independent exposure to either hematite or A-SiO2 compared with the control group produced more toxic effects on the A549 cell line. The toxicity of combined exposure of the nanoparticles was lower compared with independent exposure, and antagonistic interactive effects were detected. The findings of this study could be useful in clarifying the present debate on the health effects of combined exposure of hematite and A-SiO2 nanoparticles. Because of the complexities of combined exposures, further studies of this kind are recommended.
Collapse
Affiliation(s)
- Athena Rafieepour
- School of Public Health and Safety, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mansour Rezazadeh Azari
- Safety Promotion and Injury Prevention Research Center, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Yadollah Mehrabi
- School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habibollah Peirovi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Chen Z, Han S, Zhang J, Zheng P, Liu X, Zhang Y, Jia G. Metabolomics screening of serum biomarkers for occupational exposure of titanium dioxide nanoparticles. Nanotoxicology 2021; 15:832-849. [PMID: 33961536 DOI: 10.1080/17435390.2021.1921872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although nanotoxicology studies have shown that respiratory exposure of titanium dioxide nanoparticles (TiO2 NPs) could induce adverse health effects, limited biomarkers associated with occupational exposure of TiO2 NPs were reported. The purpose of this study is to screen serum biomarkers among workers occupationally exposed to TiO2 NPs using metabolomics. Compared with the control group, a total of 296 serum metabolites were differentially expressed in the TiO2 NPs-exposed group, of which the relative expression of 265 metabolites increased, and the remaining 31 decreased. Three machine learning methods including random forest (RF), support vector machines (SVM), and boruta screened eight potential biomarkers and simultaneously selected a metabolite, Liquoric acid. Through multiple linear regression analysis to adjust the influence of confounding factors such as gender, age, BMI, smoking and drinking, occupational exposure to TiO2 NPs was significantly related to the relative expression of the eight potential biomarkers. Meanwhile, the receiver operating characteristic curves (ROCs) of these potential biomarkers had good sensitivity and specificity. These potential biomarkers were related to lipid peroxidation, and had biological basis for occupational exposure to TiO2 NPs. Therefore, it was demonstrated that the serum metabolites represented by Liquoric acid were good biomarkers of occupational exposure to TiO2 NPs.
Collapse
Affiliation(s)
- Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Shuo Han
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Jiahe Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Pai Zheng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xiaodong Liu
- Beijing Institute of Occupational Disease Prevention and Treatment, Beijing, China
| | - Yuanyuan Zhang
- Beijing Institute of Occupational Disease Prevention and Treatment, Beijing, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
20
|
Wang YL, Zheng CM, Lee YH, Cheng YY, Lin YF, Chiu HW. Micro- and Nanosized Substances Cause Different Autophagy-Related Responses. Int J Mol Sci 2021; 22:4787. [PMID: 33946416 PMCID: PMC8124422 DOI: 10.3390/ijms22094787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
With rapid industrialization, humans produce an increasing number of products. The composition of these products is usually decomposed. However, some substances are not easily broken down and gradually become environmental pollutants. In addition, these substances may cause bioaccumulation, since the substances can be fragmented into micro- and nanoparticles. These particles or their interactions with other toxic matter circulate in humans via the food chain or air. Whether these micro- and nanoparticles interfere with extracellular vesicles (EVs) due to their similar sizes is unclear. Micro- and nanoparticles (MSs and NSs) induce several cell responses and are engulfed by cells depending on their size, for example, particulate matter with a diameter ≤2.5 μm (PM2.5). Autophagy is a mechanism by which pathogens are destroyed in cells. Some artificial materials are not easily decomposed in organisms. How do these cells or tissues respond? In addition, autophagy operates through two pathways (increasing cell death or cell survival) in tumorigenesis. Many MSs and NSs have been found that induce autophagy in various cells and tissues. As a result, this review focuses on how these particles interfere with cells and tissues. Here, we review MSs, NSs, and PM2.5, which result in different autophagy-related responses in various tissues or cells.
Collapse
Affiliation(s)
- Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-L.W.); (Y.-F.L.)
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung 406040, Taiwan;
| | - Ya-Yun Cheng
- Department of Environmental Health, Harvard University T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-L.W.); (Y.-F.L.)
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-L.W.); (Y.-F.L.)
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| |
Collapse
|
21
|
Environmentally Relevant Iron Oxide Nanoparticles Produce Limited Acute Pulmonary Effects in Rats at Realistic Exposure Levels. Int J Mol Sci 2021; 22:ijms22020556. [PMID: 33429876 PMCID: PMC7827273 DOI: 10.3390/ijms22020556] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022] Open
Abstract
Iron is typically the dominant metal in the ultrafine fraction of airborne particulate matter. Various studies have investigated the toxicity of inhaled nano-sized iron oxide particles (FeOxNPs) but their results have been contradictory, with some indicating no or minor effects and others finding effects including oxidative stress and inflammation. Most studies, however, did not use materials reflecting the characteristics of FeOxNPs present in the environment. We, therefore, analysed the potential toxicity of FeOxNPs of different forms (Fe3O4, α-Fe2O3 and γ-Fe2O3) reflecting the characteristics of high iron content nano-sized particles sampled from the environment, both individually and in a mixture (FeOx-mix). A preliminary in vitro study indicated Fe3O4 and FeOx-mix were more cytotoxic than either form of Fe2O3 in human bronchial epithelial cells (BEAS-2B). Follow-up in vitro (0.003, 0.03, 0.3 µg/mL, 24 h) and in vivo (Sprague–Dawley rats, nose-only exposure, 50 µg/m3 and 500 µg/m3, 3 h/d × 3 d) studies therefore focused on these materials. Experiments in vitro explored responses at the molecular level via multi-omics analyses at concentrations below those at which significant cytotoxicity was evident to avoid detection of responses secondary to toxicity. Inhalation experiments used aerosol concentrations chosen to produce similar levels of particle deposition on the airway surface as were delivered in vitro. These were markedly higher than environmental concentrations. No clinical signs of toxicity were seen nor effects on BALF cell counts or LDH levels. There were also no significant changes in transcriptomic or metabolomic responses in lung or BEAS-2B cells to suggest adverse effects.
Collapse
|
22
|
Rath K, Ranganathan P, Vasappa RK, Balasundaram ST. Superparamagnetic hematite nanoparticle: Cytogenetic impact on onion roots and seed germination response of major crop plants. IET Nanobiotechnol 2021; 14:133-141. [PMID: 32433030 DOI: 10.1049/iet-nbt.2019.0189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Augmented escape of nanostructures to the ecosystem has necessitated the comprehensive study of their impact, especially on plants. In the current study, hematite nanoparticles were prepared by employing garlic extract and checked for their cytogenetic effect on onion roots and germination characteristics of five agricultural crops (Vigna radiata, Triticum aestivum, Trigonella foenum-graecum, Cicer arietinum and Vicia faba) in the concentration range of 20-100 mg/L. Onion roots exhibited an increased mitotic index till 60 mg/L dosage, beyond which trend decreased marginally. Percentage of aberrant chromosomes reported for 100 mg/L exposure was very low (3.358 ± 0.13%) and included common defects such as clumped/sticky metaphase, ring chromosomes, laggards, spindle abnormality, chromosome bridges etc. Moreover, comet assay, DNA laddering experiment and electron micrograph study confirmed negligible damage to onion roots. Seed germination study indicated a positive response in different agronomic traits (germination index, root length, fold change in weight and vigour index) up to 60 mg/L, beyond which either negative or neutral effect was observed. However, none of the samples showed 50% inhibition in germination index; highest being 33.33% inhibition for V. faba, compared to the control. In brief, biogenic hematite nanoparticles caused insignificant phytotoxicity and were likely assimilated as iron source at lower dosage.
Collapse
Affiliation(s)
- Kalyani Rath
- Department of Biotechnology, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India
| | - Parameswari Ranganathan
- Department of Biotechnology, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India
| | - Rashmi Kanugodu Vasappa
- Department of Biotechnology, Sir M. Visvesvaraya Institute of Technology, Bangalore-562157, Karnataka, India
| | | |
Collapse
|
23
|
Begay J, Sanchez B, Wheeler A, Baldwin F, Lucas S, Herbert G, Ordonez Y, Shuey C, Klaver Z, Harkema JR, Wagner JG, Morishita M, Bleske B, Zychowski KE, Campen MJ. Assessment of particulate matter toxicity and physicochemistry at the Claim 28 uranium mine site in Blue Gap, AZ. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:31-48. [PMID: 33050837 PMCID: PMC7726040 DOI: 10.1080/15287394.2020.1830210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Thousands of abandoned uranium mines (AUMs) exist in the western United States. Due to improper remediation, windblown dusts generated from AUMs are of significant community concern. A mobile inhalation lab was sited near an AUM of high community concern ("Claim 28") with three primary objectives: to (1) determine the composition of the regional ambient particulate matter (PM), (2) assess meteorological characteristics (wind speed and direction), and (3) assess immunological and physiological responses of mice after exposures to concentrated ambient PM (or CAPs). C57BL/6 and apolipoprotein E-null (ApoE-/-) mice were exposed to CAPs in AirCARE1 located approximately 1 km to the SW of Claim 28, for 1 or 28 days for 4 hr/day at approximately 80 µg/m3 CAPs. Bronchoalveolar lavage fluid (BALF) analysis revealed a significant influx of neutrophils after a single-day exposure in C57BL/6 mice (average PM2.5 concentration = 68 µg/m3). Lungs from mice exposed for 1 day exhibited modest increases in Tnfa and Tgfb mRNA levels in the CAPs exposure group compared to filtered air (FA). Lungs from mice exposed for 28 days exhibited reduced Tgfb (C57BL/6) and Tnfa (ApoE-/-) mRNA levels. Wind direction was typically moving from SW to NE (away from the community) and, while detectable in all samples, uranium concentrations in the PM2.5 fraction were not markedly different from published-reported values. Overall, exposure to CAPs in the region of the Blue GAP Tachee's Claim-28 uranium mine demonstrated little evidence of overt pulmonary injury or inflammation or ambient air contamination attributed to uranium or vanadium.
Collapse
Affiliation(s)
- Jessica Begay
- University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Bethany Sanchez
- University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Abigail Wheeler
- University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | | | - Selita Lucas
- University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Guy Herbert
- University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Yoselin Ordonez
- University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Chris Shuey
- Southwest Research and Information Center, Albuquerque, NM, USA
| | | | | | | | | | - Barry Bleske
- University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | | | | |
Collapse
|
24
|
Use of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) via Multiple Imaging Modalities and Modifications to Reduce Cytotoxicity: An Educational Review. JOURNAL OF NANOTHERANOSTICS 2020. [DOI: 10.3390/jnt1010008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The aim of the present educational review on superparamagnetic iron oxide nanoparticles (SPIONs) is to inform and guide young scientists and students about the potential use and challenges associated with SPIONs. The present review discusses the basic concepts of magnetic resonance imaging (MRI), basic construct of SPIONs, cytotoxic challenges associated with SPIONs, shape and sizes of SPIONs, site-specific accumulation of SPIONs, various methodologies applied to reduce cytotoxicity including coatings with various materials, and application of SPIONs in targeted delivery of chemotherapeutics (Doxorubicin), biotherapeutics (DNA, siRNA), and positron emission tomography (PET) imaging applications.
Collapse
|
25
|
Chrishtop VV, Mironov VA, Prilepskii AY, Nikonorova VG, Vinogradov VV. Organ-specific toxicity of magnetic iron oxide-based nanoparticles. Nanotoxicology 2020; 15:167-204. [PMID: 33216662 DOI: 10.1080/17435390.2020.1842934] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The unique properties of magnetic iron oxide nanoparticles determined their widespread use in medical applications, the food industry, textile industry, which in turn led to environmental pollution. These factors determine the long-term nature of the effect of iron oxide nanoparticles on the body. However, studies in the field of chronic nanotoxicology of magnetic iron particles are insufficient and scattered. Studies show that toxicity may be increased depending on oral and inhalation routes of administration rather than injection. The sensory nerve pathway can produce a number of specific effects not seen with other routes of administration. Organ systems showing potential toxic effects when injected with iron oxide nanoparticles include the nervous system, heart and lungs, the thyroid gland, and organs of the mononuclear phagocytic system (MPS). A special place is occupied by the reproductive system and the effect of nanoparticles on the health of the first and second generations of individuals exposed to the toxic effects of iron oxide nanoparticles. This knowledge should be taken into account for subsequent studies of the toxicity of iron oxide nanoparticles. Particular attention should be paid to tests conducted on animals with pathologies representing human chronic socially significant diseases. This part of preclinical studies is almost in its infancy but of great importance for further medical translation on nanomaterials to practice.
Collapse
Affiliation(s)
| | | | | | - Varvara G Nikonorova
- Ivanovo State Agricultural Academy named after D.K. Belyaev, Peterburg, Russian Federation
| | | |
Collapse
|
26
|
Cao X, Coyle JP, Xiong R, Wang Y, Heflich RH, Ren B, Gwinn WM, Hayden P, Rojanasakul L. Invited review: human air-liquid-interface organotypic airway tissue models derived from primary tracheobronchial epithelial cells-overview and perspectives. In Vitro Cell Dev Biol Anim 2020; 57:104-132. [PMID: 33175307 PMCID: PMC7657088 DOI: 10.1007/s11626-020-00517-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
The lung is an organ that is directly exposed to the external environment. Given the large surface area and extensive ventilation of the lung, it is prone to exposure to airborne substances, such as pathogens, allergens, chemicals, and particulate matter. Highly elaborate and effective mechanisms have evolved to protect and maintain homeostasis in the lung. Despite these sophisticated defense mechanisms, the respiratory system remains highly susceptible to environmental challenges. Because of the impact of respiratory exposure on human health and disease, there has been considerable interest in developing reliable and predictive in vitro model systems for respiratory toxicology and basic research. Human air-liquid-interface (ALI) organotypic airway tissue models derived from primary tracheobronchial epithelial cells have in vivo–like structure and functions when they are fully differentiated. The presence of the air-facing surface allows conducting in vitro exposures that mimic human respiratory exposures. Exposures can be conducted using particulates, aerosols, gases, vapors generated from volatile and semi-volatile substances, and respiratory pathogens. Toxicity data have been generated using nanomaterials, cigarette smoke, e-cigarette vapors, environmental airborne chemicals, drugs given by inhalation, and respiratory viruses and bacteria. Although toxicity evaluations using human airway ALI models require further standardization and validation, this approach shows promise in supplementing or replacing in vivo animal models for conducting research on respiratory toxicants and pathogens.
Collapse
Affiliation(s)
- Xuefei Cao
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA.
| | - Jayme P Coyle
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Rui Xiong
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - Yiying Wang
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - Baiping Ren
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - William M Gwinn
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, USA
| | | | - Liying Rojanasakul
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| |
Collapse
|
27
|
Mulder HA, Stewart JB, Blue IP, Krakowiak RI, Patterson JL, Karin KN, Royals JM, DuPont AC, Forsythe KE, Poklis JL, Poklis A, Butler SN, Turner JBM, Peace MR. Characterization of E-cigarette coil temperature and toxic metal analysis by infrared temperature sensing and scanning electron microscopy - energy-dispersive X-ray. Inhal Toxicol 2020; 32:447-455. [PMID: 33140978 DOI: 10.1080/08958378.2020.1840678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Electronic cigarettes (e-cigarettes) have rapidly evolved since their introduction to the U.S. market. The rebuildable atomizer (RBA) offers user-driven modification to the heating element (coil) and wicking systems. Different coil materials can be chosen based on user needs and preferences. However, the heating element of an e-cigarette is believed to be one-source for toxic metal exposure. METHODS E-cigarette coils from Kanthal and nichrome wires were constructed in a contact and non-contact configuration and heated at four voltages. The maximum temperatures of the coils were measured by infrared temperature sensing when dry and when saturated with 100% vegetable glycerin or 100% propylene glycol. The metal composition of each coil was analyzed with Scanning Electron Microscopy-Energy-Dispersive X-Ray (SEM-EDX) when new, and subsequently after 1, 50, and 150 heat cycles when dry. RESULTS The coils reached temperatures above 1000 °C when dry, but were below 300 °C in both liquid-saturated mediums. Metal analysis showed a decrease of 9-19% chromium and 39-58% iron in Kanthal wire and a decrease of 12-14% iron and 39-43% nickel in nichrome wire after 150 heat cycles. Significant metal loss was observed after one heat cycle for both coil alloys and configurations. CONCLUSIONS The loss of metals from these heat cycles further suggests that the metals from the coils are potentially entering the aerosol of the e-cigarette, which can be inhaled by the user.
Collapse
Affiliation(s)
- Haley A Mulder
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, USA
| | - James B Stewart
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Ivy P Blue
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Rose I Krakowiak
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Jesse L Patterson
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Kimberly N Karin
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Jasmynne M Royals
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Alexandra C DuPont
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Kaitlin E Forsythe
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Alphonse Poklis
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, USA.,Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.,Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - Shelle N Butler
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Michelle R Peace
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
28
|
Damasco JA, Ravi S, Perez JD, Hagaman DE, Melancon MP. Understanding Nanoparticle Toxicity to Direct a Safe-by-Design Approach in Cancer Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2186. [PMID: 33147800 PMCID: PMC7692849 DOI: 10.3390/nano10112186] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
Nanomedicine is a rapidly growing field that uses nanomaterials for the diagnosis, treatment and prevention of various diseases, including cancer. Various biocompatible nanoplatforms with diversified capabilities for tumor targeting, imaging, and therapy have materialized to yield individualized therapy. However, due to their unique properties brought about by their small size, safety concerns have emerged as their physicochemical properties can lead to altered pharmacokinetics, with the potential to cross biological barriers. In addition, the intrinsic toxicity of some of the inorganic materials (i.e., heavy metals) and their ability to accumulate and persist in the human body has been a challenge to their translation. Successful clinical translation of these nanoparticles is heavily dependent on their stability, circulation time, access and bioavailability to disease sites, and their safety profile. This review covers preclinical and clinical inorganic-nanoparticle based nanomaterial utilized for cancer imaging and therapeutics. A special emphasis is put on the rational design to develop non-toxic/safe inorganic nanoparticle constructs to increase their viability as translatable nanomedicine for cancer therapies.
Collapse
Affiliation(s)
- Jossana A. Damasco
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
| | - Saisree Ravi
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Joy D. Perez
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
| | - Daniel E. Hagaman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
- UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
29
|
Janik-Olchawa N, Drozdz A, Ryszawy D, Pudełek M, Planeta K, Setkowicz Z, Śniegocki M, Żądło A, Ostachowicz B, Chwiej J. Comparison of ultrasmall IONPs and Fe salts biocompatibility and activity in multi-cellular in vitro models. Sci Rep 2020; 10:15447. [PMID: 32963318 PMCID: PMC7508949 DOI: 10.1038/s41598-020-72414-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/31/2020] [Indexed: 11/09/2022] Open
Abstract
In the paper, the results of the first regular studies of ultra-small iron oxide nanoparticles (IONPs) toxicity in vitro were presented. The influence of PEG-coated NPs with 5 nm magnetite core on six different cell lines was examined. These were: human bronchial fibroblasts, human embryonic kidney cells (HEK293T), two glioblastoma multiforme (GBM) cell lines as well as GBM cells isolated from a brain tumor of patient. Additionally, mouse macrophages were included in the study. The influence of IONPs in three different doses (1, 5 and 25 µg Fe/ml) on the viability, proliferation and migration activity of cells was assessed. Moreover, quantifying the intracellular ROS production, we determined the level of oxidative stress in cells exposed to IONPs. In the paper, for the first time, the effect of Fe in the form of IONPs was compared with the analogical data obtained for iron salts solutions containing the same amount of Fe, on the similar oxidation state. Our results clearly showed that the influence of iron on the living cells strongly depends not only on the used cell line, dose and exposure time but also on the form in which this element was administered to the culture. Notably, nanoparticles can stimulate the proliferation of some cell lines, including glioblastoma multiforme. Compared to Fe salts, they have a stronger negative impact on the viability of the cells tested. Ultra-small NPs, also, more often positively affect cell motility which seem to differ them from the NPs with larger core diameters.
Collapse
Affiliation(s)
- Natalia Janik-Olchawa
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland
| | - Agnieszka Drozdz
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland
| | - Damian Ryszawy
- Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Maciej Pudełek
- Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Karolina Planeta
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland
| | - Zuzanna Setkowicz
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | | | - Andrzej Żądło
- Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Beata Ostachowicz
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland
| | - Joanna Chwiej
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland.
| |
Collapse
|
30
|
Iancu SD, Albu C, Chiriac L, Moldovan R, Stefancu A, Moisoiu V, Coman V, Szabo L, Leopold N, Bálint Z. Assessment of Gold-Coated Iron Oxide Nanoparticles as Negative T2 Contrast Agent in Small Animal MRI Studies. Int J Nanomedicine 2020; 15:4811-4824. [PMID: 32753867 PMCID: PMC7355080 DOI: 10.2147/ijn.s253184] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/28/2020] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Magnetic resonance imaging (MRI) contrast agents are pharmaceuticals that enable a better visualization of internal body structures. In this study, we present the synthesis, MRI signal enhancement capabilities, in vitro as well as in vivo cytotoxicity results of gold-coated iron oxide nanoparticles (Fe3O4@AuNPs) as potential contrast agents. METHODS Fe3O4@AuNPs were obtained by synthesizing iron oxide nanoparticles and gradually coating them with gold. The obtained Fe3O4@AuNPs were characterized by spectroscopies, transmission electron microscopy (TEM) and energy dispersive X-ray diffraction. The effect of the nanoparticles on the MRI signal was tested using a 7T Bruker PharmaScan system. Cytotoxicity tests were made in vitro on Fe3O4@AuNP-treated retinal pigment epithelium cells by WST-1 tests and in vivo by following histopathological changes in rats after injection of Fe3O4@AuNPs. RESULTS Stable Fe3O4@AuNPs were successfully prepared following a simple and fast protocol (<1h worktime) and identified using TEM. The cytotoxicity tests on cells have shown biocompatibility of Fe3O4@AuNPs at small concentrations of Fe (<1.95×10-8 mg/cell). Whereas, at higher Fe concentrations (eg 7.5×10-8 mg/cell), cell viability decreased to 80.88±5.03%, showing a mild cytotoxic effect. MRI tests on rats showed an optimal Fe3O4@AuNPs concentration of 6mg/100g body weight to obtain high-quality images. The histopathological studies revealed significant transient inflammatory responses in the time range from 2 hours to 14 days after injection and focal cellular alterations in several organs, with the lung being the most affected organ. These results were confirmed by hyperspectral microscopic imaging of the same, but unstained tissues. In most organs, the inflammatory responses and sublethal cellular damage appeared to be transitory, except for the kidneys, where the glomerular damage indicated progression towards glomerular sclerosis. CONCLUSION The obtained stable, gold covered, iron oxide nanoparticles with reduced cytotoxicity, gave a negative T2 signal in the MRI, which makes them suitable for candidates as contrast agent in small animal MRI applications.
Collapse
Affiliation(s)
- Stefania D Iancu
- IMOGEN Medical Research Institute, County Clinical Emergency Hospital, Cluj-Napoca400012, Romania
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca400084, Romania
| | - Camelia Albu
- IMOGEN Medical Research Institute, County Clinical Emergency Hospital, Cluj-Napoca400012, Romania
- Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca400349, Romania
| | - Liviu Chiriac
- IMOGEN Medical Research Institute, County Clinical Emergency Hospital, Cluj-Napoca400012, Romania
- Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca400349, Romania
- National Magnetic Resonance Center, Babeș-Bolyai University, Cluj-Napoca400084, Romania
| | - Remus Moldovan
- IMOGEN Medical Research Institute, County Clinical Emergency Hospital, Cluj-Napoca400012, Romania
- Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca400349, Romania
| | - Andrei Stefancu
- IMOGEN Medical Research Institute, County Clinical Emergency Hospital, Cluj-Napoca400012, Romania
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca400084, Romania
| | - Vlad Moisoiu
- IMOGEN Medical Research Institute, County Clinical Emergency Hospital, Cluj-Napoca400012, Romania
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca400084, Romania
- Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca400349, Romania
| | - Vasile Coman
- IMOGEN Medical Research Institute, County Clinical Emergency Hospital, Cluj-Napoca400012, Romania
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca400372, Romania
| | - Laszlo Szabo
- IMOGEN Medical Research Institute, County Clinical Emergency Hospital, Cluj-Napoca400012, Romania
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca400084, Romania
| | - Nicolae Leopold
- IMOGEN Medical Research Institute, County Clinical Emergency Hospital, Cluj-Napoca400012, Romania
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca400084, Romania
| | - Zoltán Bálint
- IMOGEN Medical Research Institute, County Clinical Emergency Hospital, Cluj-Napoca400012, Romania
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca400084, Romania
| |
Collapse
|
31
|
Pearce KM, Okon I, Watson-Wright C. Induction of Oxidative DNA Damage and Epithelial Mesenchymal Transitions in Small Airway Epithelial Cells Exposed to Cosmetic Aerosols. Toxicol Sci 2020; 177:248-262. [DOI: 10.1093/toxsci/kfaa089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Engineered metal nanoparticles (ENPs) are frequently incorporated into aerosolized consumer products, known as nano-enabled products (NEPs). Concern for consumer pulmonary exposures grows as NEPs produce high concentrations of chemically modified ENPs. A significant knowledge gap still exists surrounding NEP aerosol respiratory effects as previous research focuses on pristine/unmodified ENPs. Our research evaluated metal-containing aerosols emitted from nano-enabled cosmetics and their induction of oxidative stress and DNA damage, which may contribute to epithelial mesenchymal transitions (EMT) within primary human small airway epithelial cells. We utilized an automated NEP generation system to monitor and gravimetrically collect aerosols from two aerosolized cosmetic lines. Aerosol monitoring data were inputted into modeling software to determine potential inhaled dose and in vitro concentrations. Toxicological profiles of aerosols and comparable pristine ENPs (TiO2 and Fe2O3) were used to assess reactive oxygen species and oxidative stress by fluorescent-based assays. Single-stranded DNA (ssDNA) damage and 8-oxoguanine were detected using the CometChip assay after 24-h exposure. Western blots were conducted after 21-day exposure to evaluate modulation of EMT markers. Results indicated aerosols possessed primarily ultrafine particles largely depositing in tracheobronchial lung regions. Significant increases in oxidative stress, ssDNA damage, and 8-oxoguanine were detected post-exposure to aerosols versus pristine ENPs. Western blots revealed statistically significant decreases in E-cadherin and increases in vimentin, fascin, and CD44 for two aerosols, indicating EMT. This work suggests certain prolonged NEP inhalation exposures cause oxidative DNA damage, which may play a role in cellular changes associated with reduced respiratory function and should be of concern.
Collapse
Affiliation(s)
| | - Imoh Okon
- Center for Molecular & Translational Medicine, Georgia State University, Atlanta, Georgia 30302
| | | |
Collapse
|
32
|
Silva LHA, Silva MC, Vieira JB, Lima ECD, Silva RC, Weiss DJ, Morales MM, Cruz FF, Rocco PRM. Magnetic targeting increases mesenchymal stromal cell retention in lungs and enhances beneficial effects on pulmonary damage in experimental silicosis. Stem Cells Transl Med 2020; 9:1244-1256. [PMID: 32538526 PMCID: PMC7519769 DOI: 10.1002/sctm.20-0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Silicosis is a pneumoconiosis caused by inhaled crystalline silica microparticles, which trigger inflammatory responses and granuloma formation in pulmonary parenchyma, thus affecting lung function. Although systemic administration of mesenchymal stromal cells (MSCs) ameliorates lung inflammation and attenuates fibrosis in experimental silicosis, it does not reverse collagen deposition and granuloma formation. In an attempt to improve the beneficial effects of MSCs, magnetic targeting (MT) has arisen as a potential means of prolonging MSC retention in the lungs. In this study, MSCs were incubated with magnetic nanoparticles and magnets were used for in vitro guidance of these magnetized MSCs and to enhance their retention in the lungs in vivo. In vitro assays indicated that MT improved MSC transmigration and expression of chemokine receptors. In vivo, animals implanted with magnets for 48 hours had significantly more magnetized MSCs in the lungs, suggesting improved MSC retention. Seven days after magnet removal, silicotic animals treated with magnetized MSCs and magnets showed significant reductions in static lung elastance, resistive pressure, and granuloma area. In conclusion, MT is a viable technique to prolong MSC retention in the lungs, enhancing their beneficial effects on experimentally induced silicosis. MT may be a promising strategy for enhancing MSC therapies for chronic lung diseases.
Collapse
Affiliation(s)
- Luisa H A Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAÚDE/FAPERJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana C Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana B Vieira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emilia C D Lima
- Institute of Chemistry, Federal University of Goias, Goiânia, Goiás, Brazil
| | - Renata C Silva
- National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, Rio de Janeiro, Brazil
| | - Daniel J Weiss
- Department of Medicine, University of Vermont, College of Medicine, Burlington, Vermont, USA
| | - Marcelo M Morales
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAÚDE/FAPERJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAÚDE/FAPERJ, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Yu M, Zhou X, Ju L, Yu M, Gao X, Zhang M, Tang S. Characteristics of iron status, oxidation response, and DNA methylation profile in response to occupational iron oxide nanoparticles exposure. Toxicol Ind Health 2020; 36:170-180. [DOI: 10.1177/0748233720918683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the growing development and application of iron oxide nanoparticles (IONPs) may pose exposure risk and adverse health outcomes, biological changes due to occupational exposure remain unexplored. This cross-sectional study recruited 23 workers at a plant that manufactures IONPs and 23 age- and sex-matched controls without metal-rich occupational hazards exposure. Exposure metrics at worksites were monitored, and iron status, oxidation markers, and methylation profiles of genomic DNA in peripheral blood were measured using corresponding enzyme-linked immunosorbent assays and methylation-specific polymerase chain reaction (PCR), respectively. The mass concentration, number counting, and surface area concentration of airborne particles at the worksite significantly increased during the work process of manufacturing/handling IONPs. Overall, compared to controls, workers exhibited increased 5-hydroxymethylcytosine (5hmC) levels without changes in 5-methylcytosine (5mC), hepcidin methylation, iron, soluble transferrin receptor (sTfR), ferritin, hepcidin, 8-hydroxydeoxyguanosine, and glutathione. A positive correlation was found between 5hmC and IONP exposure year with adjustment for age, sex, and cotinine using partial correlation analyses ( r = 0.521, p < 0.001). After stratification of INOPs exposure and 5hmC levels, the univariate general linear model with adjustment for age, sex, and cotinine found that the estimated mean levels of 5mC and sTfR in subjects with low and high 5hmC levels among controls were 11% and 14.4% ( p ≤ 0.01) and 80.9 nM and 70.3 nM ( p < 0.05), respectively. The estimated mean levels of sTfR in workers and controls with low 5hmC levels were 88.3 nM and 68.7 nM ( p ≤ 0.01). Multivariate linear regression analyses suggested an association between sTfR and 5hmC (standardized β = −0.420, p = 0.014) and female sex (standardized β = 0.672, p < 0.001) for subjects with low 5hmC levels. These findings suggest that increased 5hmC could be differentially employed to monitor an epigenetic signature with steady iron homeostasis for occupational IONP-exposed individuals who are likely to experience early but specific decreased sTfR, especially for females concurrent with the onset of increment in 5hmC at low level.
Collapse
Affiliation(s)
- Min Yu
- Department of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, People’s Republic of China
| | - Xingfan Zhou
- Beijing Municipal Institute of Labor Protection, Beijing, People’s Republic of China
| | - Li Ju
- Department of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, People’s Republic of China
| | - Man Yu
- Department of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiangjing Gao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, People’s Republic of China
| | - Meibian Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, People’s Republic of China
| | - Shichuan Tang
- Beijing Municipal Institute of Labor Protection, Beijing, People’s Republic of China
| |
Collapse
|
34
|
Sayadi MH, Mansouri B, Shahri E, Tyler CR, Shekari H, Kharkan J. Exposure effects of iron oxide nanoparticles and iron salts in blackfish (Capoeta fusca): Acute toxicity, bioaccumulation, depuration, and tissue histopathology. CHEMOSPHERE 2020; 247:125900. [PMID: 31951957 DOI: 10.1016/j.chemosphere.2020.125900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/04/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
We assessed the toxicity of iron oxide nanoparticles compared with iron salts in the blackfish (Capoeta fusca). After an acute toxicity assessment, we conducted a chronic exposure to a sub-lethal concentration of Fe3O4 NPs, and iron salts (ferric nitrate (Fe(NO3)3), ferric chloride (FeCl3), ferrous sulfate (FeSO4)) to measure iron uptake over a period of 28 days and then subsequent clearance of the iron uptake in the exposed fish that were transferred to clean water for 28 days. Fe(NO3)3 was the most acutely toxic compound followed by FeCl3, FeSO4, and Fe3O4 NPs. Exposure to Fe3O4 NPs and iron salts induced histopathology anomalies in both gills and intestine that included aneurism, hyperplasia, oedema, fusion of lamellae, lamellar synechiae, and clear signs of necrosis (in the gills) and increases in the number of goblet cells, blood cell counts, and higher numbers of lymphocyte (in the intestine). Fe3O4 NPs showed a higher level of uptake in the body tissues compared with iron salts (p < 0.05) with levels of Fe in the gill > intestine > liver > kidney. Fe was shown to be eliminated most efficiently from the gills, followed by the kidney, then liver and finally the intestine. The highest tissue bioconcentration factors (BCF) occurred in the liver for FeCl3, Fe3O4 NPs, and FeSO4 and in the gills for Fe(NO3)3. We thus show differences in the patterns of tissue accumulation, clearance and toxicological responses for exposures to Fe3O4 NPs and iron salts in blackfish with implications for different susceptibilities for biological effects.
Collapse
Affiliation(s)
- Mohammad Hossein Sayadi
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran.
| | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Elham Shahri
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran.
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, Devon, EX4 4QD, United Kingdom.
| | - Hossein Shekari
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran.
| | - Javad Kharkan
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran.
| |
Collapse
|
35
|
Morgan J, Bell R, Jones AL. Endogenous doesn't always mean innocuous: a scoping review of iron toxicity by inhalation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:107-136. [PMID: 32106786 DOI: 10.1080/10937404.2020.1731896] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ambient air pollution is a leading risk factor for the global burden of disease. One possible pathway of particulate matter (PM)-induced toxicity is through iron (Fe), the most abundant metal in the atmosphere. The aim of the review was to consider the complexity of Fe-mediated toxicity following inhalation exposure focusing on the chemical and surface reactivity of Fe as a transition metal and possible pathways of toxicity via reactive oxygen species (ROS) generation as well as considerations of size, morphology, and source of PM. A broad term search of 4 databases identified 2189 journal articles and reports examining exposure to Fe via inhalation in the past 10 years. These were sequentially analyzed by title, abstract and full-text to identify 87 articles publishing results on the toxicity of Fe-containing PM by inhalation or instillation to the respiratory system. The remaining 87 papers were examined to summarize research dealing with in vitro, in vivo and epidemiological studies involving PM containing Fe or iron oxide following inhalation or instillation. The major findings from these investigations are summarized and tabulated. Epidemiological studies showed that exposure to Fe oxide is correlated with an increased incidence of cancer, cardiovascular diseases, and several respiratory diseases. Iron PM was found to induce inflammatory effects in vitro and in vivo and to translocate to remote locations including the brain following inhalation. A potential pathway for the PM-containing Fe-mediated toxicity by inhalation is via the generation of ROS which leads to lipid peroxidation and DNA and protein oxidation. Our recommendations include an expansion of epidemiological, in vivo and in vitro studies, integrating research improvements outlined in this review, such as the method of particle preparation, cell line type, and animal model, to enhance our understanding of the complex biological interactions of these particles.
Collapse
Affiliation(s)
- Jody Morgan
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Robin Bell
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
| | - Alison L Jones
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| |
Collapse
|
36
|
Zhang S, Wu S, Shen Y, Xiao Y, Gao L, Shi S. Cytotoxicity studies of Fe 3O 4 nanoparticles in chicken macrophage cells. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191561. [PMID: 32431865 PMCID: PMC7211854 DOI: 10.1098/rsos.191561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/06/2020] [Indexed: 05/06/2023]
Abstract
Magnetic Fe3O4 nanoparticles (Fe3O4-NPs) have been widely investigated for their biomedical applications. The main purpose of this study was to evaluate the cytotoxic effects of different sizes of Fe3O4-NPs in chicken macrophage cells (HD11). Experimental groups based on three sizes of Fe3O4-NPs (60, 120 and 250 nm) were created, and the Fe3O4-NPs were added to the cells at different doses according to the experimental group. The cell activity, oxidative index (malondialdehyde (MDA), superoxide dismutase (SOD) and reactive oxygen species (ROS)), apoptosis and pro-inflammatory cytokine secretion level were detected to analyse the cytotoxic effects of Fe3O4-NPs of different sizes in HD11 cells. The results revealed that the cell viability of the 60 nm Fe3O4-NPs group was lower than those of the 120 and 250 nm groups when the same concentration of Fe3O4-NPs was added. No significant difference in MDA was observed among the three Fe3O4-NP groups. The SOD level and ROS production of the 60 nm group were significantly greater than those of the 120 and 250 nm groups. Furthermore, the highest levels of apoptosis and pro-inflammatory cytokine secretion were caused by the 60 nm Fe3O4-NPs. In conclusion, the smaller Fe3O4-NPs produced stronger cytotoxicity in chicken macrophage cells, and the cytotoxic effects may be related to the oxidative stress and apoptosis induced by increased ROS production as well as the increased expression of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Shan Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, People's Republic of China
| | - Shu Wu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, People's Republic of China
| | - Yiru Shen
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, People's Republic of China
| | - Yunqi Xiao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, People's Republic of China
| | - Lizeng Gao
- Institute of Biophysics, Chinese Academy of Science, CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, CAS, Beijing 100101, China
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, People's Republic of China
- Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225000, People's Republic of China
- Author for correspondence: Shourong Shi e-mail:
| |
Collapse
|
37
|
De Simone U, Spinillo A, Caloni F, Gribaldo L, Coccini T. Neuron-Like Cells Generated from Human Umbilical Cord Lining-Derived Mesenchymal Stem Cells as a New In Vitro Model for Neuronal Toxicity Screening: Using Magnetite Nanoparticles as an Example. Int J Mol Sci 2019; 21:E271. [PMID: 31906090 PMCID: PMC6982086 DOI: 10.3390/ijms21010271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/29/2019] [Indexed: 12/15/2022] Open
Abstract
The wide employment of iron nanoparticles in environmental and occupational settings underlines their potential to enter the brain. Human cell-based systems are recommended as relevant models to reduce uncertainty and to improve prediction of human toxicity. This study aimed at demonstrating the in vitro differentiation of the human umbilical cord lining-derived-mesenchymal stem cells (hCL-MSCs) into neuron-like cells (hNLCs) and the benefit of using them as an ideal primary cell source of human origin for the neuronal toxicity of Fe3O4NPs (magnetite-nanoparticles). Neuron-like phenotype was confirmed by: live morphology; Nissl body staining; protein expression of different neuronal-specific markers (immunofluorescent staining), at different maturation stages (i.e., day-3-early and day-8-full differentiated), namely β-tubulin III, MAP-2, enolase (NSE), glial protein, and almost no nestin and SOX-2 expression. Synaptic makers (SYN, GAP43, and PSD95) were also expressed. Fe3O4NPs determined a concentration- and time-dependent reduction of hNLCs viability (by ATP and the Trypan Blue test). Cell density decreased (20-50%) and apoptotic effects were detected at ≥10 μg/mL in both types of differentiated hNLCs. Three-day-differentiated hNLCs were more susceptible (toxicity appeared early and lasted for up to 48 h) than 8-day-differentiated cells (delayed effects). The study demonstrated that (i) hCL-MSCs easily differentiated into neuronal-like cells; (ii) the hNCLs susceptibility to Fe3O4NPs; and (iii) human primary cultures of neurons are new in vitro model for NP evaluation.
Collapse
Affiliation(s)
- Uliana De Simone
- Laboratory of Clinical & Experimental Toxicology, Toxicology Unit, ICS Maugeri SpA-Benefit Corporation, IRCCS Pavia, Via Maugeri 10, 27100 Pavia, Italy;
| | - Arsenio Spinillo
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100 Pavia, Italy;
| | - Francesca Caloni
- Dipartimento di Medicina Veterinaria (DIMEVET), Università degli Studi di Milano, 20133 Milano, Italy;
| | - Laura Gribaldo
- Chemical Safety and Alternative Methods Unit, Directorate F—Health, Consumers and Reference Materials, Directorate General Joint Research Centre, European Commission, 21027 Ispra, Italy;
| | - Teresa Coccini
- Laboratory of Clinical & Experimental Toxicology, Toxicology Unit, ICS Maugeri SpA-Benefit Corporation, IRCCS Pavia, Via Maugeri 10, 27100 Pavia, Italy;
| |
Collapse
|
38
|
Ferrihydrite nanoparticles interaction with model lipid membranes. Chem Phys Lipids 2019; 226:104851. [PMID: 31836519 DOI: 10.1016/j.chemphyslip.2019.104851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/25/2019] [Accepted: 12/04/2019] [Indexed: 11/24/2022]
Abstract
In recent years was observed an increased interest towards the use of metal nanoparticles for various biomedical applications, such as therapeutics, delivery systems or imaging. As biological membranes are the first structures with which the nanoparticles interact, it is necessary to understand better the mechanisms governing these interactions. In the present paper we aim to characterize the effect of three different ferrihydrite nanoparticles (simple or doped with cooper or cobalt) on the fluidity of model lipid membranes. First we evaluated the physicochemical properties of the nanoparticles: size and composition. Secondly, their effect on lipid membranes was also evaluated using Laurdan, TMA-DPH and DPH fluorescence. Our results can help better understand the mechanisms involved in nanoparticles and membrane interactions.
Collapse
|
39
|
Askri D, Cunin V, Ouni S, Béal D, Rachidi W, Sakly M, Amara S, Lehmann SG, Sève M. Effects of Iron Oxide Nanoparticles (γ-Fe 2O 3) on Liver, Lung and Brain Proteomes following Sub-Acute Intranasal Exposure: A New Toxicological Assessment in Rat Model Using iTRAQ-Based Quantitative Proteomics. Int J Mol Sci 2019; 20:E5186. [PMID: 31635106 PMCID: PMC6829235 DOI: 10.3390/ijms20205186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022] Open
Abstract
Iron Oxide Nanoparticles (IONPs) present unique properties making them one of the most used NPs in the biomedical field. Nevertheless, for many years, growing production and use of IONPs are associated with risks that can affect human and the environment. Thus, it is essential to study the effects of these nanoparticles to better understand their mechanism of action and the molecular perturbations induced in the organism. In the present study, we investigated the toxicological effects of IONPs (γ-Fe2O3) on liver, lung and brain proteomes in Wistar rats. Exposed rats received IONP solution during 7 consecutive days by intranasal instillation at a dose of 10 mg/kg body weight. An iTRAQ-based quantitative proteomics was used to study proteomic variations at the level of the three organs. Using this proteomic approach, we identified 1565; 1135 and 1161 proteins respectively in the brain, liver and lung. Amon them, we quantified 1541; 1125 and 1128 proteins respectively in the brain, liver and lung. Several proteins were dysregulated comparing treated samples to controls, particularly, proteins involved in cytoskeleton remodeling, cellular metabolism, immune system stimulation, inflammation process, response to oxidative stress, angiogenesis, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Dalel Askri
- University Grenoble Alpes, PROMETHEE Proteomic Platform, BEeSy, 38000 Grenoble, France.
- LBFA Inserm U1055, PROMETHEE Proteomic Platform, 38000 Grenoble, France.
- Institut de Biologie et Pathologie, PROMETHEE Proteomic Platform, CHU Grenoble Alpes, 38000, Grenoble, France.
- Carthage University, College of Sciences of Bizerte, Unit of Research in Integrated Physiology, 7021, Bizerte, Tunisia.
| | - Valérie Cunin
- University Grenoble Alpes, PROMETHEE Proteomic Platform, BEeSy, 38000 Grenoble, France.
- LBFA Inserm U1055, PROMETHEE Proteomic Platform, 38000 Grenoble, France.
- Institut de Biologie et Pathologie, PROMETHEE Proteomic Platform, CHU Grenoble Alpes, 38000, Grenoble, France.
| | - Souhir Ouni
- Carthage University, College of Sciences of Bizerte, Unit of Research in Integrated Physiology, 7021, Bizerte, Tunisia.
| | - David Béal
- University Grenoble Alpes, SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, INAC/CEA-Grenoble LAN, 38000 Grenoble, France.
| | - Walid Rachidi
- University Grenoble Alpes, SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, INAC/CEA-Grenoble LAN, 38000 Grenoble, France.
| | - Mohsen Sakly
- Carthage University, College of Sciences of Bizerte, Unit of Research in Integrated Physiology, 7021, Bizerte, Tunisia.
| | - Salem Amara
- Carthage University, College of Sciences of Bizerte, Unit of Research in Integrated Physiology, 7021, Bizerte, Tunisia.
- Shaqra University, Faculty of Sciences and Humanities, Department of Natural and Applied Sciences in Afif, 11921 Afif, Saudi Arabia.
| | - Sylvia G Lehmann
- University Grenoble Alpes, PROMETHEE Proteomic Platform, BEeSy, 38000 Grenoble, France.
- LBFA Inserm U1055, PROMETHEE Proteomic Platform, 38000 Grenoble, France.
- Institut de Biologie et Pathologie, PROMETHEE Proteomic Platform, CHU Grenoble Alpes, 38000, Grenoble, France.
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France.
| | - Michel Sève
- University Grenoble Alpes, PROMETHEE Proteomic Platform, BEeSy, 38000 Grenoble, France.
- LBFA Inserm U1055, PROMETHEE Proteomic Platform, 38000 Grenoble, France.
- Institut de Biologie et Pathologie, PROMETHEE Proteomic Platform, CHU Grenoble Alpes, 38000, Grenoble, France.
| |
Collapse
|
40
|
Keyter M, Van Der Merwe A, Franken A. Particle size and metal composition of gouging and lancing fumes. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2019; 16:643-655. [PMID: 31361583 DOI: 10.1080/15459624.2019.1639719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal gouging and lancing liberate particles of an unknown size and composition. Fumes are formed when vaporized materials condense in air, creating fine and ultrafine particles which can agglomerate. Particle sizes may be <1 µm in diameter. Inhalation of this mixture of metal fumes can lead to adverse health effects. This study characterized fumes by particle size fractions and metal composition. As particles may be in the submicron range, the nano-size fraction was included. Randomized, side-by-side area samples of fumes liberated during gouging and lancing were collected. Samplers included the conductive plastic Institute of Occupational Medicine (IOM) samplers (inhalable fraction), GK2.69 stainless steel thoracic cyclones (thoracic fraction), aluminum respirable cyclones (respirable fraction), Nanoparticle Respiratory Deposition (NRD) samplers (nano-size fraction), and open-face filter cassettes (particle size distribution-PSD). Samplers were mounted at a height of between 1.3 m and 1.7 m, in the worst-case scenario area (down-wind). Forty-six samples were collected during gouging and 26 during lancing. Mass concentrations per fraction ranges (excluding nano-size) were found to be 1.27-17.27 mg/m3 (inhalable), 1.83-13.96 mg/m3 (thoracic) and 0.88-15.82 mg/m3 (respirable) for gouging; and 2.34-5.60 mg/m3 (inhalable), 2.82-4.01 mg/m3 (thoracic), and 1.89-3.24 mg/m3 (respirable) for lancing. PSD analysis confirmed the presence of nano-size particles with a mean size of 171.76 (±56.27) nm during gouging and 32.33 (±7.17) nm during lancing. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis of samples indicated the presence of chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), and tin (Sn) in the respective particle size fractions (including nano-size) of both processes. Negative health effects associated with metal inhalation are well known, while nanoparticles' unique properties enable them to cause further detrimental health effects. The nano-size fraction should be included in personal exposure assessments and control measures.
Collapse
Affiliation(s)
| | - Alicia Van Der Merwe
- Occupational Hygiene and Health Research Initiative (OHHRI), Faculty of Health Sciences, North-West University , Potchefstroom , South Africa
| | - Anja Franken
- Occupational Hygiene and Health Research Initiative (OHHRI), Faculty of Health Sciences, North-West University , Potchefstroom , South Africa
| |
Collapse
|
41
|
De Simone U, Spinillo A, Caloni F, Avanzini MA, Coccini T. In vitro evaluation of magnetite nanoparticles in human mesenchymal stem cells: comparison of different cytotoxicity assays. Toxicol Mech Methods 2019; 30:48-59. [PMID: 31364912 DOI: 10.1080/15376516.2019.1650151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This work was aimed at defining the suitable test for evaluating Fe3O4 NPs cytotoxicity after short-term exposure in human mesenchymal stem cells (hMSCs) using different viability tests, namely NRU, MTT and TB assays, paralleled by cell morphology analyses for cross checking. MTT and NRU data (culture medium with/without hMSCs plus Fe3O4NPs) indicated artificial/false increments in cell viability after Fe3O4NPs. These observations did not fit with the morphological analyses showing reduced cell density, loss of monolayer features, and morphological alterations at Fe3O4NPs ≥50 μg/ml. Fe3O4NPs alone induced a substantial increased absorbance at the wavelength required for MTT and NRU. A significant death (25%) of hMSC at Fe3O4NPs ≥10 μg/ml, with a maximum effect (45%) at 300 μg/ml after 24 h, exacerbated after 48 h, was observed when applying TB test. These results paralleled the effects on cell morphology. The optical properties and stability of Fe3O4NP suspension (tendency to agglomerate in a specific culture medium) represent factors that limit in vitro result interpretation. These findings suggest the non applicability of the spectrophotometric assays for hMSC culture conditions, while TB is an accurate method for determining cell viability after Fe3O4NP exposure in this model. In relation to NPs safety assessment: cell-based assays must be considered on case-by-case basis; selection of relevant cell models is also important for predictive toxicological studies; application of a testing strategy is fundamental for understanding the toxicity pathways driving cellular responses.
Collapse
Affiliation(s)
- Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, Toxicology Unit, ICS Maugeri SpA-SB, IRCCS, Pavia, Italy
| | - Arsenio Spinillo
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Francesca Caloni
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Milano, Italy
| | - Maria Antonietta Avanzini
- Laboratory of Transplant Immunology/Cell Factory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, Toxicology Unit, ICS Maugeri SpA-SB, IRCCS, Pavia, Italy
| |
Collapse
|
42
|
Fardanesh A, Zibaie S, Shariati B, Attar F, Rouhollah F, Akhtari K, Shahpasand K, Saboury AA, Falahati M. Amorphous aggregation of tau in the presence of titanium dioxide nanoparticles: biophysical, computational, and cellular studies. Int J Nanomedicine 2019; 14:901-911. [PMID: 30774341 PMCID: PMC6362919 DOI: 10.2147/ijn.s194658] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Nanoparticles (NPs) when injected into the body can reach target tissues like nervous system and interact with tau proteins and neurons. This can trigger conformational changes of tau and may affect NP toxicity. Methods In this study, we used several biophysical techniques (extrinsic and intrinsic fluorescence spectroscopy, circular dichroism (CD) spectroscopy, ultraviolet (UV)-visible spectroscopy), transmission electron microscopy (TEM) investigations, molecular docking and molecular dynamics studies, and cellular assays [3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) and flow cytometry) to reveal how structural changes of tau protein can change the cytotoxicity of titanium dioxide (TiO2) NPs against neuron-like cells (SH-SY5Y) cells. Results It was shown that TiO2 NPs result in hydrophilic interactions, secondary and tertiary structural changes, and the formation of amorphous tau aggregates. Conformational changes of tau increased the induced cytotoxicity by TiO2 NPs. These data revealed that the denatured adsorbed protein on the NP surface may enhance NP cytotoxicity. Conclusion Therefore, this study provides useful insights on the NP-protein interactions and discusses how the protein corona can increase cytotoxicity to determine the efficacy of targeted delivery of nanosystems.
Collapse
Affiliation(s)
- Aida Fardanesh
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sedigheh Zibaie
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behdad Shariati
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry and Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Fatemeh Rouhollah
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | - Koroosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran,
| |
Collapse
|
43
|
Graham UM, Oberdörster G, Case B, Dozier A. A case study of the translocation, bioprocessing and tissue interactions of EMP following inhalation exposure. Toxicol Appl Pharmacol 2018; 361:81-88. [DOI: 10.1016/j.taap.2018.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/20/2018] [Accepted: 07/02/2018] [Indexed: 01/06/2023]
|
44
|
Falcone LM, Erdely A, Kodali V, Salmen R, Battelli LA, Dodd T, McKinney W, Stone S, Donlin M, Leonard HD, Cumpston JL, Cumpston JB, Andrews RN, Kashon ML, Antonini JM, Zeidler-Erdely PC. Inhalation of iron-abundant gas metal arc welding-mild steel fume promotes lung tumors in mice. Toxicology 2018; 409:24-32. [PMID: 30055299 PMCID: PMC6390845 DOI: 10.1016/j.tox.2018.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 12/31/2022]
Abstract
Welding fumes were reclassified as a Group 1 carcinogen by the International Agency for Research on Cancer in 2017. Gas metal arc welding (GMAW) is a process widely used in industry. Fume generated from GMAW-mild steel (MS) is abundant in iron with some manganese, while GMAW-stainless steel (SS) fume also contains significant amounts of chromium and nickel, known carcinogenic metals. It has been shown that exposure to GMAW-SS fume in A/J mice promotes lung tumors. The objective was to determine if GMAW-MS fume, which lacks known carcinogenic metals, also promotes lung tumors in mice. Male A/J mice received a single intraperitoneal injection of corn oil or the initiator 3-methylcholanthrene (MCA; 10 μg/g) and, one week later, were exposed by whole-body inhalation to GMAW-MS aerosols for 4 hours/day x 4 days/week x 8 weeks at a mean concentration of 34.5 mg/m3. Lung nodules were enumerated by gross examination at 30 weeks post-initiation. GMAW-MS fume significantly increased lung tumor multiplicity in mice initiated with MCA (21.86 ± 1.50) compared to MCA/air-exposed mice (8.34 ± 0.59). Histopathological analysis confirmed these findings and also revealed an absence of inflammation. Bronchoalveolar lavage analysis also indicated a lack of lung inflammation and toxicity after short-term inhalation exposure to GMAW-MS fume. In conclusion, this study demonstrates that inhalation of GMAW-MS fume promotes lung tumors in vivo and aligns with epidemiologic evidence that shows MS welders, despite less exposure to carcinogenic metals, are at an increased risk for lung cancer.
Collapse
Affiliation(s)
- L M Falcone
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States; West Virginia University, School of Medicine, Morgantown, WV, United States
| | - A Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States; West Virginia University, School of Medicine, Morgantown, WV, United States
| | - V Kodali
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - R Salmen
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - L A Battelli
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - T Dodd
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - W McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - S Stone
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - M Donlin
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - H D Leonard
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - J L Cumpston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - J B Cumpston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - R N Andrews
- Division of Applied Research and Technology, National Institute for Occupational Safety and Health, Cincinnati, OH, United States
| | - M L Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - J M Antonini
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - P C Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States; West Virginia University, School of Medicine, Morgantown, WV, United States.
| |
Collapse
|
45
|
Chen S, Chen S, Zeng Y, Lin L, Wu C, Ke Y, Liu G. Size-dependent superparamagnetic iron oxide nanoparticles dictate interleukin-1β release from mouse bone marrow-derived macrophages. J Appl Toxicol 2018; 38:978-986. [DOI: 10.1002/jat.3606] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Shuzhen Chen
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Microbiology and Immunology; Xiamen Medical College; Xiamen 361023 China
| | - Suyun Chen
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Microbiology and Immunology; Xiamen Medical College; Xiamen 361023 China
| | - Yun Zeng
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Microbiology and Immunology; Xiamen Medical College; Xiamen 361023 China
| | - Lin Lin
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Microbiology and Immunology; Xiamen Medical College; Xiamen 361023 China
| | - Chuang Wu
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Microbiology and Immunology; Xiamen Medical College; Xiamen 361023 China
| | - Yanyan Ke
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Microbiology and Immunology; Xiamen Medical College; Xiamen 361023 China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health; Xiamen University; Xiamen 361102 China
| |
Collapse
|
46
|
Poupot R, Bergozza D, Fruchon S. Nanoparticle-Based Strategies to Treat Neuro-Inflammation. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E270. [PMID: 29425146 PMCID: PMC5848967 DOI: 10.3390/ma11020270] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 12/31/2022]
Abstract
Neuro-inflammation is a pivotal physio-pathological feature of brain disorders, including neurodegenerative diseases. As such, it is a relevant therapeutic target against which drugs have to be proposed. Targeting neuro-inflammation implies crossing the Blood-Brain Barrier (BBB) to reach the Central Nervous System (CNS). Engineered nanoparticles (ENPs) are promising candidates to carry and deliver drugs to the CNS by crossing the BBB. There are several strategies to design ENPs intended for crossing through the BBB. Herein, we first put nanotechnologies back in their historical context and introduce neuro-inflammation and its consequences in terms of public health. In a second part, we explain how ENPs can get access to the brain and review this area by highlighting recent papers in the field. Finally, after pointing out potential guidelines for preclinical studies involving ENPs, we conclude by opening the debate on the questions of nanosafety and toxicity of these ENPs and in particular on ecotoxicity related to regulatory issues and public concerns.
Collapse
Affiliation(s)
- Rémy Poupot
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse-Purpan, F-31300 Toulouse, France.
| | - Dylan Bergozza
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse-Purpan, F-31300 Toulouse, France.
| | - Séverine Fruchon
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse-Purpan, F-31300 Toulouse, France.
| |
Collapse
|