1
|
Dessau H, Harris T, de Graaf RA, Montrazi ET, Allouche-Arnon H, Bar-Shir A. In vivo 2H-MR spectroscopy and imaging of hepatic metabolic formation of trimethylamine-N-oxide. Magn Reson Med 2025. [PMID: 40228097 DOI: 10.1002/mrm.30531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/25/2025] [Accepted: 03/26/2025] [Indexed: 04/16/2025]
Abstract
PURPOSE Despite growing evidence of the link between elevated levels of trimethylamine-N-oxide (TMAO) and multiple diseases, there is no method with which to spatially monitor its hepatic formation from the interstitially produced trimethylamine (TMA). This study aimed to develop a deuterium metabolic spectroscopy (DMS) and imaging (DMI) approach to detect the TMA-to-TMAO metabolism in vivo. METHODS The metabolism of 2H9-TMA (TMA-d9) to 2H9-TMAO (TMAO-d9) in cells overexpressing the hepatic enzyme flavin-dependent monooxygenase 3 (FMO3) was monitored in vitro with 2H-NMR. Using an ultrahigh-field (15.2T) MRI scanner, the hepatic metabolism of the orally administered TMA-d9 to TMAO-d9 was studied in mice with DMS and DMI. RESULTS The spectrally resolved 2H-NMR peaks of intracellularly produced TMAO-d9 (3.1 ppm) from that of supplemental TMA-d9 (2.7 ppm) could be detected only in cells that overexpressed FMO3. In vivo, DMS and DMI experiments performed after oral administration of TMA-d9 revealed the conversion to high TMAO-d9 levels in the liver of females, which express high levels of FMO3. In contrast, there was no indication of TMAO-d9 production in the liver of males, in agreement with reports of the role of testosterone in downregulating the expression of FMO3. CONCLUSION This work shows the ability to use 2H-MR-based methodologies to spatially monitor the TMA-to-TMAO metabolic pathway in vivo, and thus should be explored further to investigate the role of TMAO in diverse pathologies.
Collapse
Affiliation(s)
- Hadar Dessau
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Talia Harris
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Robin A de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Elton T Montrazi
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Hyla Allouche-Arnon
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Amnon Bar-Shir
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
2
|
O’Neill L, Vasiloglou MF, Salesse F, Bailey R, Nogueira-de-Almeida CA, Al Dhaheri A, Cheikh Ismail L, Hwalla N, Mak TN. Impact of Fortified Whole Grain Infant Cereal on the Nutrient Density of the Diet in Brazil, the UAE, and the USA: A Dietary Modeling Study. CHILDREN (BASEL, SWITZERLAND) 2025; 12:384. [PMID: 40150666 PMCID: PMC11941295 DOI: 10.3390/children12030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND/OBJECTIVES Complementary feeding (CF) influences future health outcomes. The aim of this study was to evaluate the impact of fortified whole grain infant cereal (WGIC), a complementary food, among 6- to 12-month-old infants on the nutrient density of the diet in three diverse settings: Brazil, the United Arab Emirates (UAE), and the US. METHODS Data from the Feeding Infants and Toddler Study (FITS), a collection of dietary intake studies based on 24-h-dietary recalls, from said countries was utilized. Nutrient intakes were calculated for infant cereal (IC) consumers and non-consumers. Diet modeling was applied to IC consumers to substitute their regular fortified IC with WGIC with improved fortifications. The study estimated the average nutrient density, mean adequacy ratio (MAR), and percentage inadequacy of the diet in both IC consumers and non-consumers. RESULTS The analyses indicated that infants who consumed IC had higher intakes of calcium, zinc, magnesium, iron, and vitamin D in the three countries. Reduced micronutrient inadequacies were observed among IC consumers, particularly in Brazil and the U.S. Diet modeling with WGIC revealed a significantly higher density of choline, magnesium, zinc, iron, fiber, and protein, as well as reduced inadequacies. The MAR was significantly improved in the three countries. CONCLUSIONS This study underscores the potential of fortified WGIC in increasing the nutrient density of the complementary diet. The intrinsic nutrients in whole grain infant cereals (WGICs) significantly enhance the nutrient density of the complementary diet. Given that whole grains play a role in preventing childhood obesity, their inclusion during CF may be crucial.
Collapse
Affiliation(s)
- Lynda O’Neill
- Nutrition Sciences, Nestlé Institute of Health Science, Nestlé Research, 1000 Lausanne, Switzerland;
| | - Maria F. Vasiloglou
- Nutrition Sciences, Nestlé Institute of Health Science, Nestlé Research, 1000 Lausanne, Switzerland;
| | - Fanny Salesse
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Regan Bailey
- Institute for Advancing Health through Agriculture, Texas A&M University, College Station, TX 77840, USA;
| | | | - Ayesha Al Dhaheri
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| | - Leila Cheikh Ismail
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford OX1 2JD, UK
| | - Nahla Hwalla
- Department of Nutrition and Applied Sciences, American University of Beirut, Beirut P.O. Box 11-10236, Lebanon;
| | - Tsz Ning Mak
- Nestlé Institute of Health Science, 21 Biopolis Road, Singapore 618802, Singapore;
| |
Collapse
|
3
|
Bragg MG, Rando J, Carroll KN, Eick SM, Karagas MR, Lin PI, Schmidt RJ, Lyall K. The Association of Prenatal Dietary Factors with Child Autism Diagnosis and Autism-Related Traits Using a Mixtures Approach: Results from the Environmental influences on Child Health Outcomes Cohort. J Nutr 2025:S0022-3166(25)00165-8. [PMID: 40107454 DOI: 10.1016/j.tjnut.2025.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Previous research on the role of maternal diet in relation to autism has focused on examining individual nutrient associations. Few studies have examined associations with multiple nutrients using mixtures approaches, which may better reflect true exposure scenarios. OBJECTIVES This study aims to examine associations of nutrient mixtures with children's autism diagnosis and trait scores within a large, diverse population. METHODS Participants were drawn from the United States Environmental influences on Child Health Outcomes (ECHO) consortium. Maternal prenatal diet was reported via validated food frequency questionnaires. Children's autism-related traits were measured using the Social Responsiveness Scale (SRS) and autism diagnoses were from parent reports of physician diagnosis. Bayesian kernel machine regression was used to examine the overall mixture effect and interactions between a set of 5 primary nutrients (folate, vitamin D, omega 3 and omega 6 fatty acids, and iron), adjusted for potential confounders, in relationship to child outcomes. Secondary analyses were conducted in a subset of cohorts with an expanded set of 14 nutrients. Traditional linear and logistic regression models were also analyzed for comparison of results to mixture models. RESULTS A total of 2614 participants drawn from 7 ECHO cohorts were included in primary analysis. Mixture analyses suggested that increasing the overall 5-nutrient mixture was associated with lower SRS scores. Individual U-shaped associations and bivariate interactions between folate and omega 3 fatty acids were suggested. In the subset included in the secondary analyses of the 14-nutrient mixture, a modest inverse trend remained, but individual nutrient associations were altered, with vitamin D demonstrating higher relative importance than other nutrients. Strong associations with autism diagnosis were not observed. CONCLUSIONS In this large sample, we found evidence for combined nutrient effects with broader autism-related traits. Because results for individual nutrients were sensitive to mixture components, replication of combined associations between nutrients and autism-related outcomes is needed.
Collapse
Affiliation(s)
- Megan G Bragg
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, United States.
| | - Juliette Rando
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, United States
| | - Kecia N Carroll
- The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stephanie M Eick
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Margaret R Karagas
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Pi-I Lin
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, United States
| | - Rebecca J Schmidt
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, United States
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
4
|
Wang C, Li Q, Qi X, Wang H, Wu Y, Ma K, Song J, Liu Z, Ma Y. Integrated multi-omics to elucidate the interplay between rumen microorganisms and host metabolism in Hu sheep supplemented with herbal preparations. mSphere 2025:e0002425. [PMID: 40079596 DOI: 10.1128/msphere.00024-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 01/23/2025] [Indexed: 03/15/2025] Open
Abstract
The aim of this experiment was to study the effects of herbal preparations on serum metabolites, rumen microorganisms, and their metabolites, and the relationship between them. Hu sheep ram lambs with an average initial weight of (19.57 ± 1.56 kg) at 3 months of age were selected and randomly divided into three groups of six lambs each. The groups were as follows: the control group (Con), which was fed the basic diet; Test I, which was fed a diet with 0.5% herbal preparations added to the concentrate; and Test II, which was fed a diet with 1% herbal preparations added to the concentrate. Also, the main component of herbal medicine is polysaccharide. The pre-experimental period was 10 days and the experimental period was 90 days. The results of the study showed that the addition of herbal preparations resulted in differences in species, abundance, and metabolic functions of rumen microorganisms. The abundance of rumen-dominant bacteria, such as Firmicutes and Proteobacteria, increased after the addition of herbal preparation, which was more conducive to rumen development. In addition, after the addition of 0.5% herbal preparation, there was an increase in the abundance of fermenting carbohydrate (CHO) and fiber-degrading bacteria (e.g., Ruminococcus and Prevotella). Herbal preparations significantly altered rumen microorganisms and serum metabolite compositions. Metabolites such as bile acids, L-glutamine, cytosine, and choline, which contribute to the antiviral and anti-inflammatory effects, nutrient metabolism, and immune responses, and increased rumen microbial activity, were increased in the rumen of the experimental group with the addition of the herbal preparations. The increase in serum metabolites, such as L-tryptophan, and the pathways of tryptophan metabolism and glutathione metabolism in animals were also significantly higher than those in Con. Prevotella and Ruminococcus were significantly positively correlated with histamine and L-arginine. The uncultured_rumen_bacterium was significantly negatively correlated with serum metabolites testosterone and guanine, but Prevotella and Ruminococcus were significantly positively correlated with both metabolite testosterone and guanine. IMPORTANCE In this study, we investigated the changes in rumen microbes after supplementation with herbal preparations. We used 16S sequencing and metabolomics approaches to explore changes in rumen contents and serum metabolites and their interrelationships. Our findings revealed marked changes in rumen microbial profiles, including changes in species composition, abundance levels, and metabolic activities induced by herbal supplementation. The increased abundance of beneficial bacteria (e.g., fixative and proteobacteria) in the rumen was more favorable for their survival and colonization of the rumen. In addition, a surge in the abundance of fermenting carbohydrate and fiber-degrading bacteria was observed. It was also found that the addition of herbal preparations enhanced antiviral and anti-inflammatory responses, nutrient metabolism, immune function, and stimulation of rumen microbial activity as well as facilitated the acceleration of body metabolism in Hu sheep.
Collapse
Affiliation(s)
- Chunhui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Qiao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Xingcai Qi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Huihui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Yi Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Keyan Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Juanjuan Song
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Zilong Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
5
|
Gould JF, Hines S, Best KP, Grzeskowiak LE, Jansen O, Green TJ. Choline During Pregnancy and Child Neurodevelopment: A Systematic Review of Randomized Controlled Trials and Observational Studies. Nutrients 2025; 17:886. [PMID: 40077755 PMCID: PMC11901549 DOI: 10.3390/nu17050886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Most pregnant women have choline intakes below recommendations. Animal studies suggest that choline supplementation during pregnancy improves cognitive outcomes in the offspring. This review aims to determine whether higher choline levels during pregnancy are associated with improved child brain development. METHODS We systematically reviewed the evidence for the role of choline in pregnancy for human neurodevelopment in clinical trials and observational studies. RESULTS We identified four randomized trials of choline supplementation in pregnancy and five observational studies of prenatal choline. Neurodevelopmental assessments of these studies were reported across 20 eligible publications. Within both the trials and observational studies, most neurodevelopmental outcomes assessed did not support the hypothesis that higher prenatal choline benefits neurodevelopment. Among identified clinical trials, there were some instances where children whose mothers received choline supplementation had a better score on a neurodevelopmental measure. Still, each trial included multiple outcomes, and most were null. Observational studies were mixed as to whether an association between prenatal choline and an aspect of child neurodevelopment was identified. Critical limitations were present across clinical trials and observational studies, preventing confidence in the results and evidence base. CONCLUSIONS Current evidence is insufficient to support or refute the hypothesis that increasing choline intake in pregnancy improves the neurodevelopmental outcomes of the child.
Collapse
Affiliation(s)
- Jacqueline F. Gould
- Women and Kids Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5006, Australia; (J.F.G.); (K.P.B.); (L.E.G.); (O.J.)
- School of Psychology, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Sonia Hines
- Flinders University Rural and Remote Health SA, Flinders University, Alice Springs, NT 0870, Australia;
- Mparntwe Centre for Evidence in Health, Flinders University: A JBI Centre of Excellence, Alice Springs, NT 0870, Australia
| | - Karen P. Best
- Women and Kids Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5006, Australia; (J.F.G.); (K.P.B.); (L.E.G.); (O.J.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Luke E. Grzeskowiak
- Women and Kids Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5006, Australia; (J.F.G.); (K.P.B.); (L.E.G.); (O.J.)
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Olivia Jansen
- Women and Kids Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5006, Australia; (J.F.G.); (K.P.B.); (L.E.G.); (O.J.)
- College of Nursing and Health Sciences, Flinders University, Adelaide, SA 5042, Australia
| | - Tim J. Green
- Women and Kids Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5006, Australia; (J.F.G.); (K.P.B.); (L.E.G.); (O.J.)
- College of Nursing and Health Sciences, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
6
|
Che X, Zhao Y, Xu Z, Hu Y, Ren A, Wu C, Yang J. Unlocking the Potential of l-α-Glycerylphosphorylcholine: From Metabolic Pathways to Therapeutic Applications. Nutr Rev 2025:nuaf008. [PMID: 40036805 DOI: 10.1093/nutrit/nuaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
l-α-Glycerylphosphorylcholine (GPC), also known as choline alphoscerate or α-glycerophosphorylcholine, serves as both a pharmaceutical product and a dietary supplement. Through its metabolic pathways, GPC acts as the precursor not only of choline and acetylcholine but also of various phospholipids. Extensive preclinical and clinical evidence demonstrates that GPC effectively alleviates cognitive impairment associated with Alzheimer's disease, vascular dementia, cerebral ischemia, stress, and epilepsy, among other conditions. Additionally, GPC has beneficial effects on such conditions and measures as ischemic/hypoxic conditions, ionizing radiation-induced damage, exercise performance, growth hormone release, and liver damage. As well as facilitating cholinergic neurotransmission, evidence also indicates GPC, among other activities, also can promote γ-aminobutyric acid release, enhance protein kinase C activity, facilitate hippocampal neurogenesis, upregulate neurotrophic factors, and inhibit inflammation. In preclinical studies, results indicate that GPC is not genotoxic in vitro or in vivo. Extensive human studies indicate GPC causes no severe adverse effects. Possible risks of atherosclerosis and stroke await necessary validation. In this review, the GPC-related metabolic pathways, pharmacological effects, mechanisms of action, and safety evaluation are discussed with the aim of providing a comprehensive understanding of GPC.
Collapse
Affiliation(s)
- Xiaohang Che
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Zhao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhongtian Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yue Hu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Aoxin Ren
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
7
|
Nguyen HT, Oktayani PPI, Lee SD, Huang LC. Choline in pregnant women: a systematic review and meta-analysis. Nutr Rev 2025; 83:e273-e289. [PMID: 38607338 DOI: 10.1093/nutrit/nuae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Context: Choline is a critical nutrient. Inadequate choline intake during pregnancy increases the risk of adverse maternal and offspring health. OBJECTIVE A systematic review and meta-analysis were conducted to examine the current recommendations for choline intake by pregnant women, estimate the overall prevalence of pregnant women with adequate choline intake, and explore associations between maternal choline level and adverse pregnancy outcomes (APOs). METHODS Choline recommendations for pregnant women were assessed from eight nutrient guidelines of the United States, United Kingdom, Canada, Australia, Asia, International Federation of Gynecology and Obstetrics, and World Health Organization. Data on the prevalence of pregnant women with adequate choline intake and the association between maternal choline level and APOs were collected from 5 databases up to May 2023. Meta-analyses with random effects and subgroup analyses were performed for the pooled estimate of prevalence and association. RESULTS Five recent nutrition guidelines from the United States (United States Department of Agriculture), United States (Food and Drug Administration), Canada, Australia, and the International Federation of Gynecology and Obstetrics have emphasized the importance of adequate choline intake for pregnant women. Of 27 publications, 19 articles explored the prevalence and 8 articles explored the association. Meta-analysis of 12 prevalence studies revealed a concerning 11.24% (95% confidence interval, 6.34-17.26) prevalence of pregnant women with adequate choline intake recommendations. A meta-analysis of 6 studies indicated a significant association between high maternal choline levels and a reduced risk of developing APOs, with an odds ratio of 0.51 (95% confidence interval, 0.40-0.65). CONCLUSION The existing guidelines highlight the importance of choline in supporting maternal health and fetal development during pregnancy. Furthermore, a high maternal choline level was likely to be associated with a lower risk of APOs. However, 88.76% of pregnant women do not achieve the optimal choline intake. Therefore, specific policies and actions may be necessary to improve choline intake in pregnant women's care and support the well-being of pregnant women. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CDR42023410561.
Collapse
Affiliation(s)
- Hoan Thi Nguyen
- College of Health Care Science, China Medical University, Taichung, Taiwan
- Nursing and Medical Technology, University of Medicine and Pharmacy, Ho Chi Minh City, VietNam
| | | | - Shin-Da Lee
- College of Health Care Science, China Medical University, Taichung, Taiwan
- Department of Physical Therapy, China Medical University, Taichung, Taiwan
| | - Li-Chi Huang
- College of Health Care Science, China Medical University, Taichung, Taiwan
- School of Nursing, China Medical University, Taichung, Taiwan
- Department of Nursing, China Medical University Children Hospital, Taichung, Taiwan
| |
Collapse
|
8
|
Li C, Li J, Diao Z, Chen L, Yu S, Yu L, Zhu Q, Dong X, Liu Y, Liu T, Liu D. Associations of dietary choline intake and kidney function with hyperuricemia in Chinese children and adolescents: a cross-sectional study. EClinicalMedicine 2025; 79:103012. [PMID: 39802309 PMCID: PMC11720878 DOI: 10.1016/j.eclinm.2024.103012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/17/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
Background Limited studies have suggested an effect of dietary choline intake on uric acid levels. We aim to investigate the associations between choline intake and hyperuricemia (HUA), as well as the mediating role of kidney function in this relationship, among the Chinese population aged 6-17 years. Methods Participants were divided into quartiles according to residual energy-adjusted dietary choline intake in our cross-sectional study. Dietary choline intake was assessed using the 24-h dietary recalls method over three consecutive days, including two weekdays and one weekend day. The primary outcome was the HUA prevalence. Based on recommendation in Clinical Paediatric Nephrology (3rd ed), HUA is defined based on fasting serum uric acid levels, with cutoffs varying by age and sex. The associations between choline intake and HUA were analysed using weighted logistic regression models, restricted cubic spline models, and linear regression models. The mediated proportions of estimated glomerular filtration rate (eGFR) in the associations were estimated with mediation effect models. The data for this study were collected from the China National Nutrition and Health Surveillance of Children and Lactating Mothers (2016-2017) conducted between October 2016 and December 2018. Eligible participants were identified through a database search conducted from October to December 2023. Findings Among the 10749 participants, 3398 (31.6%) individuals were found to have HUA. A negative dose-dependent relationship was found between dietary choline intake and HUA. Compared to participants in the lowest intake quartile of total choline, phosphatidylcholine, and betaine, those in the 4th quartile had lower odds of HUA, with odds ratio (OR) of 0.75 (95% confidence interval [95% CI], 0.63-0.90), 0.75 (95% CI, 0.64-0.89), and 0.75 (95% CI, 0.59-0.94), respectively. The eGFR mediated 10.60%-14.58% of the associations. Participants in the 4th quartile of lipid-soluble dietary choline exhibited 24.00% reduced odds of HUA compared to those in the lowest intake quartile, with an OR of 0.76 (95% CI, 0.64-0.90). Interpretation Moderate to high intake of dietary choline (181.20-357.92 mg/d), particularly phosphatidylcholine (120.22-207.58 mg/d), and betaine (189.24-282.37 mg/d), may reduce the odds of HUA by improving glomerular filtration function. Further interventional studies are needed to establish causal relationships. Funding This work was supported by the National Natural Science Foundation of China (82003443, 42375180), the Natural Science Foundation of Guangdong Province of China (2024A1515012088), and the Construction of High-level University of Guangdong (G624330422).
Collapse
Affiliation(s)
- Chengping Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Jing Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Zhiquan Diao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Lianhong Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Siwen Yu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Lianlong Yu
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Qianrang Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Xiaomei Dong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Yiya Liu
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Dan Liu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Kenny TC, Scharenberg S, Abu-Remaileh M, Birsoy K. Cellular and organismal function of choline metabolism. Nat Metab 2025; 7:35-52. [PMID: 39779890 PMCID: PMC11990872 DOI: 10.1038/s42255-024-01203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Choline is an essential micronutrient critical for cellular and organismal homeostasis. As a core component of phospholipids and sphingolipids, it is indispensable for membrane architecture and function. Additionally, choline is a precursor for acetylcholine, a key neurotransmitter, and betaine, a methyl donor important for epigenetic regulation. Consistent with its pleiotropic role in cellular physiology, choline metabolism contributes to numerous developmental and physiological processes in the brain, liver, kidney, lung and immune system, and both choline deficiency and excess are implicated in human disease. Mutations in the genes encoding choline metabolism proteins lead to inborn errors of metabolism, which manifest in diverse clinical pathologies. While the identities of many enzymes involved in choline metabolism were identified decades ago, only recently has the field begun to understand the diverse mechanisms by which choline availability is regulated and fuelled via metabolite transport/recycling and nutrient acquisition. This review provides a comprehensive overview of choline metabolism, emphasizing emerging concepts and their implications for human health and disease.
Collapse
Affiliation(s)
- Timothy C Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Samantha Scharenberg
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University, Stanford, CA, USA
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, USA.
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
10
|
Tian J, Ke X, Zhang Y, Qu J, Fu S, Xia Y, Yang W, Zeng Y, Fan J, Li Y, Fan B. Safety evaluation of alpha-glycerylphosphorylcholine as a novel food. Food Chem Toxicol 2025; 195:115123. [PMID: 39577616 DOI: 10.1016/j.fct.2024.115123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
To evaluate the safety of alpha-glycerylphosphorylcholine (α-GPC) as a novel food, the study of acute oral toxicity, subchronic toxicity, teratogenic toxicity and genotoxicity were conducted. In acute oral toxicity, no toxic effects were observed in rats of both genders administrated 10.0 g/kg BW α-GPC. In 90-day oral toxicity, female high-dose group (2,000 mg/kg) had lower body weight, body weight gain, empty stomach body weight, total protein (TP), albumin (ALB), and higher alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) in contrast to control group. In teratogenic toxicity, the body weights of pregnant rats on the 9th day (d9), the 12th day (d12), the 15th day (d15), and the 20th day (d20), body weight gains, and net body weight gains in high-dose group (2,000 mg/kg) decreased, the other parameters had no difference compared to control group. In genotoxicity tests (Mammalian erythrocyte micronucleus, Chromosome aberration and Ames test), all dose groups didn't display significant change compared with negative control group. Based on above results, α-GPC is actually low hazard novel food, has a NOAEL of 1,000 mg/kg BW for female rats and 2,000 mg/kg BW for male rats following 13-week oral exposure, has a NOAEL of 1,000 mg/kg BW for pregnant rats and 2,000 mg/kg BW for fetal rats in teratogenic toxicity, has no genotoxicity in vitro or in vivo.
Collapse
Affiliation(s)
- Jie Tian
- Hubei Provincial Center for Disease Control and Prevention & NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Wuhan, 430079, China
| | - Xianghong Ke
- Hubei Provincial Center for Disease Control and Prevention & NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Wuhan, 430079, China
| | - Yinjing Zhang
- Hubei Provincial Center for Disease Control and Prevention & NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Wuhan, 430079, China
| | - Jingjing Qu
- Hubei Provincial Center for Disease Control and Prevention & NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Wuhan, 430079, China
| | - Shaohua Fu
- Hubei Provincial Center for Disease Control and Prevention & NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Wuhan, 430079, China
| | - Ying Xia
- Hubei Provincial Center for Disease Control and Prevention & NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Wuhan, 430079, China
| | - Wenxiang Yang
- Hubei Provincial Center for Disease Control and Prevention & NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Wuhan, 430079, China
| | - Yanhua Zeng
- Hubei Provincial Center for Disease Control and Prevention & NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Wuhan, 430079, China
| | - Jun Fan
- Hubei Provincial Center for Disease Control and Prevention & NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Wuhan, 430079, China
| | - Yanmei Li
- Hubei Provincial Center for Disease Control and Prevention & NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Wuhan, 430079, China.
| | - Bolin Fan
- Hubei Provincial Center for Disease Control and Prevention & NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Wuhan, 430079, China.
| |
Collapse
|
11
|
Davis E, Dunbar SB, Higgins MK, Wood K, Ferranti E, Morris AA, Butts B. Western Diet and Inflammatory Mechanisms in African American Adults With Heart Failure. Nurs Res 2025; 74:20-26. [PMID: 39666467 PMCID: PMC11643355 DOI: 10.1097/nnr.0000000000000782] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
BACKGROUND Black adults have a higher risk for heart failure (HF) than others, which may be related to higher cardiovascular risk factors and also inflammatory dietary patterns. The Western diet is associated with inflammation and contributes to HF. Trimethylamine N-oxide is a diet-linked metabolite that contributes to inflammation and is associated with higher tumor necrosis factor-alpha (TNF-α) levels, especially in HF populations. The dietary inflammatory index score measures a diet's inflammatory potential and food's inflammatory effects. OBJECTIVE The purpose of this pilot study was to explore associations between the Western diet, dietary inflammatory index, trimethylamine N-oxide, relevant covariates and variables, and TNF-α in Black persons with HF. METHODS Thirty-one Black participants (mean age = 55 years, 68% women) with HF were enrolled. Trimethylamine N-oxide and TNF-α levels were analyzed using immunoassays. A food frequency questionnaire was completed, and dietary inflammatory index scores and food groups were calculated. Analyses included correlations and I-test statistics. RESULTS Mean dietary inflammatory index score was -0.38, noting an anti-inflammatory diet with slightly higher inflammatory diet scores in men compared to women. The dietary inflammatory index score showed a negative association with dietary choline but not with trimethylamine N-oxide or TNF-α. Trimethylamine N-oxide and age were positively correlated, along with the correlation for TNF-α with a moderate effect size. No relationship was found among dietary inflammatory index, TNF-α, and trimethylamine N-oxide variables. DISCUSSION A greater understanding of intake of inflammatory foods and relationships with immune factors is warranted to inform intervention development. In Black adults with HF, it is important to consider the intake of inflammatory foods as increased age may affect the retention of dietary metabolites. Metabolites may also increase the levels of inflammation. Knowledge about these relationships could lead to tailored dietary interventions based on diet, age, and culture patterns.
Collapse
|
12
|
Hussein HM, Abdel Kawy MA, Eltanany BM, Pont L, Benavente F, Fayez AM, Alnajjar R, Al-Karmalawy AA, Abdelmonem AR, Mohsen E. Cognitive-enhancing effect of Cordia dichotoma fruit on scopolamine-induced cognitive impairment in rats: metabolite profiling, in vivo, and in silico investigations. RSC Adv 2024; 14:40267-40286. [PMID: 39717818 PMCID: PMC11664333 DOI: 10.1039/d4ra06991a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/05/2024] [Indexed: 12/25/2024] Open
Abstract
Many plants are reported to enhance cognition in amnesic-animal models. The metabolite profile of Cordia dichotoma fruit methanolic extract (CDFME) was characterized by LC-QTOF-MS/MS, and its total phenolics content (TPC) and total flavonoids content (TFC) were determined. In parallel, its cognitive-enhancing effect on scopolamine (SCOP)-induced AD in rats was evaluated. The TPC and TFC were 44.75 ± 1.84 mg gallic acid equiv. g-1 sample and 5.66 ± 0.67 mg rutin equiv. g-1 sample, respectively. In total, 81 metabolites were identified, including phenolic acids, lignans, coumarins, amino acids, fatty acids, and their derivatives, fatty acid amides, polar lipids, terpenoids, and others. The most abundant metabolites identified were quinic acid, caffeoyl-4'-hydroxyphenyllactate, rosmarinic acid, and oleamide. CDFME (200 mg kg-1) was found to significantly enhance recognition memory in the novel object recognition test. Furthermore, it nearly corrected acetylcholinesterase (AChE), acetylcholine, noradrenaline, and dopamine hippocampal levels, which changed due to SCOP. Further in silico validation of the in vivo results was conducted, focusing on the most abundant metabolites. Molecular docking showed that rosmarinic acid, caffeoyl-4'-hydroxyphenyllactate, sebestenoid C, and sagerinic acid exhibited the greatest affinity for receptor binding against AChE. However, molecular dynamics and mechanics calculations clarified that the complex of caffeoyl-4'-hydroxyphenyllactate with AChE was the most stable one. This study represents the first comprehensive metabolite profiling of CDFME to assess its cognition-enhancing effect both in vivo and in silico. These results demonstrate that CDFME protects against SCOP-induced cognitive impairment. Thus, additional preclinical and clinical studies on CDFME may provide an attractive approach in pharmacotherapy and AD prophylaxis.
Collapse
Affiliation(s)
- Hagar M Hussein
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Mostafa A Abdel Kawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Basma M Eltanany
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA-UB), University of Barcelona Barcelona 08028 Spain
- Serra Húnter Program, Generalitat de Catalunya Barcelona 08007 Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA-UB), University of Barcelona Barcelona 08028 Spain
| | - Ahmed M Fayez
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation New Administrative Capital Cairo 11835 Egypt
| | - Radwan Alnajjar
- Computer-Aided Drug Design (CADD) Unit, Faculty of Pharmacy, Libyan International Medical University Benghazi Libya
- Department of Chemistry, Faculty of Science, University of Benghazi Benghazi Libya
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq Baghdad 10023 Iraq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt New Damietta 34518 Egypt
| | - Azza R Abdelmonem
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Engy Mohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| |
Collapse
|
13
|
Chen AY, Matich EK, Laryea J, Hsu PC, Su LJ. A Case-Control Study of Dietary Choline Intake and Risk of Colorectal Cancer Modified by Dietary B-Vitamin Intake. Nutrients 2024; 16:4200. [PMID: 39683593 DOI: 10.3390/nu16234200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES The incidence of colorectal cancer (CRC) is rising, and Western diets high in red and processed meats may be contributing. It is important to identify dietary nutrients that increase CRC risk and perhaps interventions that may modulate such risk. The relationship between dietary choline intake and CRC is still unclear. We hypothesize that high dietary choline intake is associated with greater CRC risk, and B vitamin supplementation may modify this risk. METHODS In this case-control study, we collected demographic and dietary data using the validated National Cancer Institute CRC Risk Assessment Tool and Dietary Health Questionnaire III and analyzed colonoscopy outcomes. Logistic regression and stratified analyses were performed to calculate adjusted odds ratios and evaluate for effect modification. RESULTS Of 52 total patients, 21 had a normal colonoscopy result, and 31 were found to either have benign polyps or CRC. The average dietary choline intake was 207 mg/day in the normal group and 297 mg/day in the abnormal outcome group. A doubling in dietary choline intake was significantly associated with increased odds of polyps or CRC (OR 25.32, 95% CI 1.95-327.94). When stratified by vitamin B levels, the effect modification was difficult to confidently quantify due to the limited sample size. CONCLUSIONS Our findings suggest that higher dietary choline intake may be associated with an increased risk of CRC and its precursors, such as polyps. Although the potential modifying role of B vitamins was inconclusive, this study underscores the need for larger-scale research to further explore these associations and to assess the potential of dietary interventions in reducing CRC risk.
Collapse
Affiliation(s)
- Alyssa Y Chen
- School of Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- School of Public Health, The University of Texas Houston Health Science Center at Houston, Houston, TX 77030, USA
| | - Eryn K Matich
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jonathan Laryea
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ping-Ching Hsu
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Lihchyun Joseph Su
- Peter O'Donnell School of Public Health, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
14
|
Ma Q, Liu L, Jiao Y, Qiao X, Han R, Li X, Wang C, Zhang X, Kouame KJEP. Insights into flavor quality and metabolites profiles of fresh cheese with different probiotics by SPME-GC-MS and untargeted metabolomics. Food Res Int 2024; 197:115154. [PMID: 39593366 DOI: 10.1016/j.foodres.2024.115154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 11/28/2024]
Abstract
In this study, fresh cheeses produced with four novel probiotics (Lactobacillus casei PB-LC39, Lactobacillus rhamnosus PB-LR76, Lactobacillus helveticus HH-LH17, and Lactobacillus plantarum HH-LP56) were named as LC, LR, LH, and LP, respectively. SPME-GC-MS and untargeted metabolomics were used to compare and analyze the flavor quality, metabolites and metabolic pathways of LC, LR, LH and LP, and the potential function of differential metabolites was emphasized. The results demonstrated that the incorporation of probiotics resulted in a significant increase in the number of volatile flavor compounds and varying flavor profiles within the cheese. Especially LC, exhibited aromas reminiscent of wine, fruit and rose, and displayed the most favorable flavor qualities among all probiotic cheeses. The results of differential metabolite screening and metabolic pathway demonstrated that probiotic cheese could result in the production of 146-192 differential metabolites, mainly carbohydrates, proteins and acids. Arginine biosynthesis was a key differential metabolite pathway made by probiotics. The LC, LR, LH, and LP groups contained 22, 27, 23, and 24 functional metabolites, including L-carnitine, naringenin, and turanose et al., which might confer anti-inflammatory and improve lipid metabolism functions. These findings provide a theoretical basis for the further functional evaluation and development of probiotic cheese.
Collapse
Affiliation(s)
- Qian Ma
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Lu Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Yang Jiao
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Xiangyu Qiao
- National Center of Technology Innovation for Dairy, China; Inner Mongolia Yili Industrial Group Co., Ltd, China
| | - Renjiao Han
- National Center of Technology Innovation for Dairy, China; Inner Mongolia Yili Industrial Group Co., Ltd, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China.
| | - Caiyun Wang
- National Center of Technology Innovation for Dairy, China; Inner Mongolia Yili Industrial Group Co., Ltd, China.
| | - Xiuxiu Zhang
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Kouadio Jean Eric-Parfait Kouame
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| |
Collapse
|
15
|
Tallino S, Etebari R, McDonough I, Leon H, Sepulveda I, Winslow W, Bartholomew SK, Perez SE, Mufson EJ, Velazquez R. Assessing the Benefit of Dietary Choline Supplementation Throughout Adulthood in the Ts65Dn Mouse Model of Down Syndrome. Nutrients 2024; 16:4167. [PMID: 39683562 DOI: 10.3390/nu16234167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Down syndrome (DS) is the most common cause of early-onset Alzheimer's disease (AD). Dietary choline has been proposed as a modifiable factor to improve the cognitive and pathological outcomes of AD and DS, especially as many do not reach adequate daily intake levels of choline. While lower circulating choline levels correlate with worse pathological measures in AD patients, choline status and intake in DS is widely understudied. Perinatal choline supplementation (Ch+) in the Ts65Dn mouse model of DS protects offspring against AD-relevant pathology and improves cognition. Further, dietary Ch+ in adult AD models also ameliorates pathology and improves cognition. However, dietary Ch+ in adult Ts65Dn mice has not yet been explored; thus, this study aimed to supply Ch+ throughout adulthood to determine the effects on cognition and DS co-morbidities. METHODS We fed trisomic Ts65Dn mice and disomic littermate controls either a choline normal (ChN; 1.1 g/kg) or a Ch+ (5 g/kg) diet from 4.5 to 14 months of age. RESULTS We found that Ch+ in adulthood failed to improve genotype-specific deficits in spatial learning. However, in both genotypes of female mice, Ch+ significantly improved cognitive flexibility in a reverse place preference task in the IntelliCage behavioral phenotyping system. Further, Ch+ significantly reduced weight gain and peripheral inflammation in female mice of both genotypes, and significantly improved glucose metabolism in male mice of both genotypes. CONCLUSIONS Our findings suggest that adulthood choline supplementation benefits behavioral and biological factors important for general well-being in DS and related to AD risk.
Collapse
Affiliation(s)
- Savannah Tallino
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Rachel Etebari
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Ian McDonough
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Hector Leon
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Isabella Sepulveda
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Wendy Winslow
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Samantha K Bartholomew
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Sylvia E Perez
- Barrow Neurological Institute, Phoenix, AZ 85013, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ 85014, USA
| | - Elliott J Mufson
- Barrow Neurological Institute, Phoenix, AZ 85013, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ 85014, USA
| | - Ramon Velazquez
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ 85014, USA
| |
Collapse
|
16
|
Jia X, Su C, Zhang J, Huang F, Bai J, Guan F, Wei Y, Li L, Liu Y, Ji J, Du W, Ouyang Y, Zhang X, Zhang B, Wang H. Age and Gender Disparities in the Association of Long-Term Dietary Choline and Choline Compound Intakes with Incident Cognitive Decline in Middle-Aged and Older Chinese Adults: A Prospective Cohort Study. Nutrients 2024; 16:4121. [PMID: 39683516 DOI: 10.3390/nu16234121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: The neuroprotective role of dietary choline during adulthood has not yet been conclusively proven. This study aims to investigate the influence of long-term choline and its constituent intakes on cognitive decline in the Chinese population. Methods: A total of 4502 subjects (≥55 years) with at least two waves of completed data and without cognitive decline at baseline were selected from the China Health and Nutrition Survey 1997-2018. Three consecutive 24 h dietary recalls were performed to collect dietary intake information for choline, phosphatidylcholine (PC), and glycerophosphocholine (GPC) measures. Several items from the Telephone Interview for Cognitive Status (Modified) were employed to perform a cognitive assessment. Cox frailty models were used to estimate hazard ratios (HRs) and 95% CIs. Results: A total of 783 participants developed cognitive decline during 26,080 person-years of follow-up. Cumulative average intakes of choline, PC, and GPC were 188.0, 126.7, and 17.1 mg/d, respectively. In the total population, after full adjustment, subjects in the lower (Q2), medium (Q3), higher (Q4), and highest (Q5) quintiles of dietary choline showed 27.8% (95% CI: 0.584, 0.894), 33.9% (95% CI: 0.522, 0.836), 23.0% (95% CI: 0.599, 0.990), and 29.3% (95% CI: 0.526, 0.949) decreases in the risk of cognitive decline compared to the lowest (Q1), respectively. Similar results were observed in PC but not GPC measures. Both higher choline and PC intakes induced a lower risk of cognitive decline for subjects ≥ 65 years at baseline (Q3 and Q4) and females (Q2-Q5). A marginally significant association of GPC was found for subjects ≥ 65 years (Q5) and males (Q4). Conclusions: These findings identify age and gender disparities relating to the protective associations of dietary choline, PC, and GPC with incident cognitive decline in middle-aged and older Chinese populations.
Collapse
Affiliation(s)
- Xiaofang Jia
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Chang Su
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Jiguo Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Feifei Huang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Jing Bai
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Fangxu Guan
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Yanli Wei
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Li Li
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Yibing Liu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jingang Ji
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Wenwen Du
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Yifei Ouyang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Xiaofan Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Bing Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Huijun Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| |
Collapse
|
17
|
Gong H, Jiang J, Choi S, Huang S. Sex differences in the association between dietary choline intake and total bone mineral density among adolescents aged 12-19 in the United States. Front Nutr 2024; 11:1459117. [PMID: 39634554 PMCID: PMC11614608 DOI: 10.3389/fnut.2024.1459117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Background While prior research has established a correlation between dietary choline intake and bone density in the elderly, the relationship in adolescents remains ambiguous. This study seeks to examine the association between dietary choline intake and bone density in American adolescents. Methods Data from the National Health and Nutrition Examination Survey (NHANES) for 2005 to 2018 were used in this study, encompassing participants aged 12-19 years. The relationship between dietary choline intake and bone density was assessed using multivariate linear regression models and restricted cubic spline (RCS) models. Subgroup analyses were also performed to investigate differences across various subgroups. Results 3,800 participants with an average age of 15 years were included in this study. After adjusting for relevant confounding factors, a positive correlation was observed between dietary choline intake and total bone density in adolescents (95% CI: 0.03-0.17, p = 0.010). Gender-specific analysis indicated a significant positive correlation between dietary choline intake and total bone density in males (95% CI: 0.07-0.23, p < 0.001), while no significant correlation was found in females (95% CI: -0.19 to 0.09, p = 0.500). The stratified analysis revealed that the positive association was more pronounced in males and non-Hispanic whites (interaction p < 0.05). The restricted cubic spline model demonstrated a linear positive correlation between dietary choline intake and total bone density. Conclusion This study demonstrates that dietary choline intake levels are positively correlated with bone density in adolescents, with this association being specific to males.
Collapse
Affiliation(s)
- Hongyang Gong
- Department of Oncology Surgery, Fuzhou Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Jiecheng Jiang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Seok Choi
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Shaoqun Huang
- Department of Oncology Surgery, Fuzhou Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
18
|
Rahmanian S, Shapouri M, Mohammadian MK, Mahmoudi Z, Saeedirad Z, Mobarakeh KA, Parhiz A, Shekari S, Harsini AR, Valisoltani N, Khoshdooz S, Doaei S, Kooshki A, Gholamalizadeh M. Does choline have an effect on Transient Global Amnesia (TGA)? BMC Neurosci 2024; 25:72. [PMID: 39558271 PMCID: PMC11575108 DOI: 10.1186/s12868-024-00898-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/17/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Choline was frequently reported to have some beneficial effects on memory function. However, the association of dietary choline with different types of amnesia is not well understood. The objective of this study was to examine the association between dietary intake of choline and transient global amnesia (TGA). METHODS This case-control study was carried out on 258 patients with TGA and 520 participants without amnesia. Data on dietary choline intake was collected using a validated food frequency questionnaire (FFQ). All participants were examined for amnesia by a neurologist according to the Kaplan and Hodges criteria. RESULTS There was an inverse association between TGA and dietary choline intake after adjustment for age and gender (OR: 0.98, CI 95% 0.96-0.98, P = 0.03). The association remained significant after additional adjusting for physical activity, body mass index (BMI), occupation, marital status, smoking, and drinking alcohol (OR: 0.98, CI 95% 0.96-0.99, P = 0.04) and after further adjustment for calorie and food groups intake (OR: 0.98, CI 95% 0.96-0.99, P = 0.03). CONCLUSION The results of this study indicated that choline may have beneficial effects against TGA. Further longitudinal studies are warranted.
Collapse
Grants
- 74865 Sabzevar University of Medical Sciences,Iran
- 74865 Sabzevar University of Medical Sciences,Iran
- 74865 Sabzevar University of Medical Sciences,Iran
- 74865 Sabzevar University of Medical Sciences,Iran
- 74865 Sabzevar University of Medical Sciences,Iran
- 74865 Sabzevar University of Medical Sciences,Iran
- 74865 Sabzevar University of Medical Sciences,Iran
- 74865 Sabzevar University of Medical Sciences,Iran
- 74865 Sabzevar University of Medical Sciences,Iran
- 74865 Sabzevar University of Medical Sciences,Iran
- 74865 Sabzevar University of Medical Sciences,Iran
- 74865 Sabzevar University of Medical Sciences,Iran
- 74865 Sabzevar University of Medical Sciences,Iran
Collapse
Affiliation(s)
- Sasan Rahmanian
- Nursing Faculty, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Shapouri
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zahra Mahmoudi
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Saeedirad
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khadijeh Abbasi Mobarakeh
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Soheila Shekari
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Asma Rajabi Harsini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Valisoltani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Khoshdooz
- Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeid Doaei
- Department of Community Nutrition, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, School of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Akram Kooshki
- Non-Communicable Diseases Research Center, Department of Nutrition and Biochemistry, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Atwa EM, Xu S, Rashwan AK, Abdelshafy AM, ElMasry G, Al-Rejaie S, Xu H, Lin H, Pan J. Advances in Emerging Non-Destructive Technologies for Detecting Raw Egg Freshness: A Comprehensive Review. Foods 2024; 13:3563. [PMID: 39593980 PMCID: PMC11593067 DOI: 10.3390/foods13223563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Eggs are a rich food source of proteins, fats, vitamins, minerals, and other nutrients. However, the egg industry faces some challenges such as microbial invasion due to environmental factors, leading to damage and reduced usability. Therefore, detecting the freshness of raw eggs using various technologies, including traditional and non-destructive methods, can overcome these challenges. As the traditional methods of assessing egg freshness are often subjective and time-consuming, modern non-destructive technologies, including near-infrared (NIR) spectroscopy, Raman spectroscopy, fluorescence spectroscopy, computer vision (color imaging), hyperspectral imaging, electronic noses, and nuclear magnetic resonance, have offered objective and rapid results to address these limitations. The current review summarizes and discusses the recent advances and developments in applying non-destructive technologies for detecting raw egg freshness. Some of these technologies such as NIR spectroscopy, computer vision, and hyperspectral imaging have achieved an accuracy of more than 96% in detecting egg freshness. Therefore, this review provides an overview of the current trends in the state-of-the-art non-destructive technologies recently utilized in detecting the freshness of raw eggs. This review can contribute significantly to the field of emerging technologies in this research track and pique the interests of both food scientists and industry professionals.
Collapse
Affiliation(s)
- Elsayed M. Atwa
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (E.M.A.)
- National Key Laboratory of Agricultural Equipment Technology, Zhejiang University, Hangzhou 310058, China
- Agricultural Engineering Research Institute, Agricultural Research Center, Giza 12618, Egypt
| | - Shaomin Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (E.M.A.)
| | - Ahmed K. Rashwan
- Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena 83523, Egypt
| | - Asem M. Abdelshafy
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University—Assiut Branch, Assiut 71524, Egypt
| | - Gamal ElMasry
- Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Salim Al-Rejaie
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haixiang Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (E.M.A.)
| | - Hongjian Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (E.M.A.)
| | - Jinming Pan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (E.M.A.)
- National Key Laboratory of Agricultural Equipment Technology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
20
|
Guan F, Jia X, Huang F, Zhang J, Wei Y, Li L, Bai J, Wang H. Vertical Association Between Dietary Total Choline and L-alpha-glycerylphosphorylcholine and the Cognitive Function in Chinese Adults Aged over 55, Result from China Health and Nutrition Survey 1997-2018. Nutrients 2024; 16:3713. [PMID: 39519545 PMCID: PMC11547823 DOI: 10.3390/nu16213713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND With the aging process in China showing an accelerated trend, cognitive decline and impairment have become a major issue in older people. Dietary choline supplement may be a changeable lifestyle to improve this situation. METHOD We analyzed 7659 adults aged over 55 in the China Health and Nutrition Survey (CHNS), evaluated cognitive function by the global cognition score, and found the association between cognitive function and dietary intake of total choline or L-alpha-glycerylphosphorylcholine (GPC). Linear and logistic mixed models with three levels were applied to analyze the association between dietary total choline/GPC intake and global cognition score, and the risk of poor cognition. RESULTS The average dietary intake at baseline was 178.8 mg/d for total choline, and 16.3 mg/d for GPC. After an average follow up of 6.8 years, we found that higher intake of total choline (β = 0.083, 95%CI: 0.046,0.119, p < 0.001) and GPC (β = 0.073, 95%CI: 0.034-0.111, p < 0.001) had positively associated with global cognitive scores. Additionally, higher intake of total choline had a better effect on improving the cognitive function of women (β = 0.092, 95%CI: 0.042-0.142, p < 0.01) and individuals between 55-65 years old (β = 0.089, 95%CI: 0.046-0.132, p < 0.01). However, higher GPC intake had a better effect on the cognitive function of men (β = 0.080, 95%CI: 0.020-0.141, p < 0.05). Higher total choline intake had a protective factor against poor cognition (OR = 0.762, 95%CI: 0.676,0.860, p < 0.001); the protective effect was more pronounced for women (OR = 0.750, 95%CI: 0.639,0.879, p < 0.001) and individuals aged 55-65 (OR = 0.734, 95%CI: 0.636-0.848, p < 0.001). CONCLUSIONS higher dietary choline and GPC intake were beneficial for cognitive function, although we found that higher dietary choline was more effective in improving global cognitive scores at older ages; dietary choline should be supplemented as early as possible in old age to prevent poor cognition.
Collapse
Affiliation(s)
- Fangxu Guan
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, Beijing 100050, China
| | - Xiaofang Jia
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, Beijing 100050, China
| | - Feifei Huang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, Beijing 100050, China
| | - Jiguo Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, Beijing 100050, China
| | - Yanli Wei
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, Beijing 100050, China
| | - Li Li
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, Beijing 100050, China
| | - Jing Bai
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, Beijing 100050, China
| | - Huijun Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, Beijing 100050, China
| |
Collapse
|
21
|
Eslami M, Alibabaei F, Babaeizad A, Banihashemian SZ, Mazandarani M, Hoseini A, Ramezankhah M, Oksenych V, Yousefi B. The Importance of Gut Microbiota on Choline Metabolism in Neurodegenerative Diseases. Biomolecules 2024; 14:1345. [PMID: 39595522 PMCID: PMC11591558 DOI: 10.3390/biom14111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
The gut microbiota is a complex ecosystem that influences digestion, immune response, metabolism, and has been linked to health and well-being. Choline is essential for neurotransmitters, lipid transport, cell-membrane signaling, methyl-group metabolism and is believed to have neuroprotective properties. It is found in two forms, water-soluble and lipid-soluble, and its metabolism is different. Long-term choline deficiency is associated with many diseases, and supplements are prescribed for improved health. Choline supplements can improve cognitive function in adults but not significantly. Choline is a precursor of phospholipids and an acetylcholine neurotransmitter precursor and can be generated de novo from phosphatidylcholine via phosphatidylethanolamine-N-methyltransferase and choline oxidase. Choline supplementation has been found to have a beneficial effect on patients with neurodegenerative diseases, such as Alzheimer's disease (AD), by increasing amyloid-β, thioflavin S, and tau hyper-phosphorylation. Choline supplementation has been shown to reduce amyloid-plaque load and develop spatial memory in an APP/PS1 mice model of AD. Choline is necessary for normative and improved function of brain pathways and can reduce amyloid-β deposition and microgliosis. Clinical research suggests that early neurodegenerative diseases (NDs) can benefit from a combination of choline supplements and the drugs currently used to treat NDs in order to improve memory performance and synaptic functioning.
Collapse
Affiliation(s)
- Majid Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan 35134, Iran;
| | - Farnaz Alibabaei
- Student Research Committee, School of Medicine, Semnan University of Medical Sciences, Semnan 35134, Iran;
| | - Ali Babaeizad
- School of Medicine, Semnan University of Medical Sciences, Semnan 35134, Iran; (A.B.); (S.Z.B.)
| | | | - Mahdi Mazandarani
- Endocrinology and Metabolism Research Center, Faculty of Medicine, Tehran University of Medical Sciences, Tehran 11369, Iran;
| | - Aref Hoseini
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari 49414, Iran;
| | - Mohammad Ramezankhah
- Student Research Committee, Faculty of Medicine, Babol University of Medical Sciences, Babol 47134, Iran;
| | - Valentyn Oksenych
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Bahman Yousefi
- Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 35134, Iran
| |
Collapse
|
22
|
Gao Y, Mao K, Yang C, Wang X, Liu S, Ma Z, Zhai Q, Shi L, Wu Q, Zhang T. The Causal Relationship Between Choline Metabolites and Acute Acalculous Cholecystitis: Identifying ABCG8 as Colocalized Gene. Nutrients 2024; 16:3588. [PMID: 39519421 PMCID: PMC11547454 DOI: 10.3390/nu16213588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Acute acalculous cholecystitis (AAC) is a type of cholecystitis with high mortality rate while its pathogenesis remains complex. Choline is one of the essential nutrients and is related to several diseases. This study aimed to explore the causal relationship between choline metabolites and AAC and its potential mechanisms. METHODS This research utilized the two-sample Mendelian randomization method to investigate the causal relationship between choline metabolites and AAC. Additionally, multivariable Mendelian randomization and mediated Mendelian randomization were used to explore potential confounding effects from low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TGs), and coronary artery disease (CAD). Linkage disequilibrium score regression (LDSC), co-localization analysis, and enrichment analysis were used to investigate relevant molecular mechanisms. RESULTS There is a negative causal relationship between total choline (OR [95%CI] = 0.9982 [0.9974, 0.9990], p = 0.0023), phosphatidylcholine (OR [95%CI] = 0.9983 [0.9976-0.9991], p = 0.0040), sphingomyelin (OR [95%CI] = 0.9980 [0.9971-0.9988], p = 0.0001), and AAC. The mediating effects of LDL were -0.0006 for total choline, -0.0006 for phosphatidylcholine, and -0.0008 for sphingomyelin, indicating a protective effect of total choline, phosphatidylcholine, and sphingomyelin on AAC. Colocalized SNP rs75331444, which is mapped to gene ABCG8, was identified for total choline (PPH4 = 0.8778) and sphingomyelin (PPH4 = 0.9344). CONCLUSIONS There is a causal relationship between choline metabolites and cholecystitis, mediated through the protective action of LDL. Our results suggest that ABCG8 may play a role in the development of non-calculous cholecystitis.
Collapse
Affiliation(s)
- Yuntong Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.G.); (K.M.); (C.Y.); (X.W.); (S.L.); (Z.M.); (Q.Z.); (L.S.)
| | - Kun Mao
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.G.); (K.M.); (C.Y.); (X.W.); (S.L.); (Z.M.); (Q.Z.); (L.S.)
| | - Congying Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.G.); (K.M.); (C.Y.); (X.W.); (S.L.); (Z.M.); (Q.Z.); (L.S.)
| | - Xisu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.G.); (K.M.); (C.Y.); (X.W.); (S.L.); (Z.M.); (Q.Z.); (L.S.)
| | - Shixuan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.G.); (K.M.); (C.Y.); (X.W.); (S.L.); (Z.M.); (Q.Z.); (L.S.)
| | - Zimeng Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.G.); (K.M.); (C.Y.); (X.W.); (S.L.); (Z.M.); (Q.Z.); (L.S.)
| | - Qi Zhai
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.G.); (K.M.); (C.Y.); (X.W.); (S.L.); (Z.M.); (Q.Z.); (L.S.)
| | - Liang Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.G.); (K.M.); (C.Y.); (X.W.); (S.L.); (Z.M.); (Q.Z.); (L.S.)
| | - Qian Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.G.); (K.M.); (C.Y.); (X.W.); (S.L.); (Z.M.); (Q.Z.); (L.S.)
| | - Tianxiao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.G.); (K.M.); (C.Y.); (X.W.); (S.L.); (Z.M.); (Q.Z.); (L.S.)
- National Anti-Drug Laboratory, Shaanxi Regional Center, Xi’an 712000, China
| |
Collapse
|
23
|
Coskun A, Ertaylan G, Pusparum M, Van Hoof R, Kaya ZZ, Khosravi A, Zarrabi A. Advancing personalized medicine: Integrating statistical algorithms with omics and nano-omics for enhanced diagnostic accuracy and treatment efficacy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167339. [PMID: 38986819 DOI: 10.1016/j.bbadis.2024.167339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Medical laboratory services enable precise measurement of thousands of biomolecules and have become an inseparable part of high-quality healthcare services, exerting a profound influence on global health outcomes. The integration of omics technologies into laboratory medicine has transformed healthcare, enabling personalized treatments and interventions based on individuals' distinct genetic and metabolic profiles. Interpreting laboratory data relies on reliable reference values. Presently, population-derived references are used for individuals, risking misinterpretation due to population heterogeneity, and leading to medical errors. Thus, personalized references are crucial for precise interpretation of individual laboratory results, and the interpretation of omics data should be based on individualized reference values. We reviewed recent advancements in personalized laboratory medicine, focusing on personalized omics, and discussed strategies for implementing personalized statistical approaches in omics technologies to improve global health and concluded that personalized statistical algorithms for interpretation of omics data have great potential to enhance global health. Finally, we demonstrated that the convergence of nanotechnology and omics sciences is transforming personalized laboratory medicine by providing unparalleled diagnostic precision and innovative therapeutic strategies.
Collapse
Affiliation(s)
- Abdurrahman Coskun
- Acibadem University, School of Medicine, Department of Medical Biochemistry, Istanbul, Turkey.
| | - Gökhan Ertaylan
- Unit Health, Environmental Intelligence, Flemish Institute for Technological Research (VITO), Mol 2400, Belgium
| | - Murih Pusparum
- Unit Health, Environmental Intelligence, Flemish Institute for Technological Research (VITO), Mol 2400, Belgium; I-Biostat, Data Science Institute, Hasselt University, Hasselt 3500, Belgium
| | - Rebekka Van Hoof
- Unit Health, Environmental Intelligence, Flemish Institute for Technological Research (VITO), Mol 2400, Belgium
| | - Zelal Zuhal Kaya
- Nisantasi University, School of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey; Graduate School of Biotehnology and Bioengeneering, Yuan Ze University, Taoyuan 320315, Taiwan; Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| |
Collapse
|
24
|
Sharifi-Zahabi E, Soltani S, Asiaei S, Dehesh P, Mohsenpour MA, Shidfar F. Higher dietary choline intake is associated with increased risk of all-cause and cause-specific mortality: A systematic review and dose-response meta-analysis of cohort studies. Nutr Res 2024; 130:48-66. [PMID: 39341000 DOI: 10.1016/j.nutres.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024]
Abstract
Evidence indicates that choline and betaine intakes are associated with mortality. Based on the available evidence, we hypothesized that dietary choline and betaine do not increase mortality risk. This meta-analysis was conducted to investigate the association of dietary choline and betaine with mortality from all causes, cardiovascular diseases, and stroke. Online databases including PubMed, Scopus, Web of Science, Embase, and Google Scholar were searched up to 9 March 2024. Six cohort studies comprising 482,778 total participants, 57,235 all-cause, 9351 cardiovascular disease, and 4,400 stroke deaths were included in this study. The linear dose-response analysis showed that each 100 mg/day increase in choline intake was significantly associated with 6% and 11% increases in risk of all-cause (RR = 1.06, 95% CI: 1.03, 1.10, I2 =83.7%, P < .001) and cardiovascular diseases mortality (RR = 1.11, 95% CI: 1.06, 1.16, I2 = 54.3%, P = .02) respectively. However, dietary betaine, was not associated with the risk of mortality. Furthermore, the result of the nonlinear dose-response analysis showed a significant relationship between betaine intake and stroke mortality at the dosages of 50 to 250 mg/day (Pnon-linearity= .0017). This study showed that each 100 mg/day increment in choline consumption was significantly associated with a 6% and 11% higher risk of all-cause and cardiovascular disease mortality respectively. In addition, a significant positive relationship between betaine intake and stroke mortality at doses of 50 to 250 mg/day was observed. Due to the small number of the included studies and heterogeneity among them more well-designed prospective observational studies considering potential confounding variables are required.
Collapse
Affiliation(s)
| | - Sepideh Soltani
- Yazd Cardiovascular Research Center, Noncommunicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sahar Asiaei
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Paria Dehesh
- Social Determinants of Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran; Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Ali Mohsenpour
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Iannotti L, Rueda García AM, Palma G, Fontaine F, Scherf B, Neufeld LM, Zimmerman R, Fracassi P. Terrestrial Animal Source Foods and Health Outcomes for Those with Special Nutrient Needs in the Life Course. Nutrients 2024; 16:3231. [PMID: 39408199 PMCID: PMC11478082 DOI: 10.3390/nu16193231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024] Open
Abstract
Background. Animal source foods are under scrutiny for their role in human health, yet some nutritionally vulnerable populations are largely absent from consideration. Methods. Applying a Population Intervention/Exposure Comparator Outcome (PICO/PECO) framework and prioritizing systematic review and meta-analyses, we reviewed the literature on terrestrial animal source foods (TASFs) and human health, by life course phase. Results. There were consistent findings for milk and dairy products on positive health outcomes during pregnancy and lactation, childhood, and among older adults. Eggs were found to promote early childhood growth, depending on context. Unprocessed meat consumption was associated with a reduced risk for anemia during pregnancy, improved cognition among school-age children, and muscle health in older adults. Milk and eggs represent a risk for food sensitivities/allergies, though prevalence is low, and individuals tend to outgrow the allergies. TASFs affect the human microbiome and associated metabolites with both positive and negative health repercussions, varying by type and quantity. Conclusions. There were substantial gaps in the evidence base for studies limiting our review, specifically for studies in populations outside high-income countries and for several TASF types (pig, poultry, less common livestock species, wild animals, and insects). Nonetheless, sufficient evidence supports an important role for TASFs in health during certain periods of the life course.
Collapse
Affiliation(s)
- Lora Iannotti
- E3 Nutrition Lab, Brown School, Washington University, St. Louis, MO 63130, USA;
| | - Ana María Rueda García
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy; (A.M.R.G.); (G.P.); (F.F.); (B.S.); (L.M.N.); (P.F.)
| | - Giulia Palma
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy; (A.M.R.G.); (G.P.); (F.F.); (B.S.); (L.M.N.); (P.F.)
| | - Fanette Fontaine
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy; (A.M.R.G.); (G.P.); (F.F.); (B.S.); (L.M.N.); (P.F.)
| | - Beate Scherf
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy; (A.M.R.G.); (G.P.); (F.F.); (B.S.); (L.M.N.); (P.F.)
| | - Lynnette M. Neufeld
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy; (A.M.R.G.); (G.P.); (F.F.); (B.S.); (L.M.N.); (P.F.)
| | - Rachel Zimmerman
- E3 Nutrition Lab, Brown School, Washington University, St. Louis, MO 63130, USA;
| | - Patrizia Fracassi
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy; (A.M.R.G.); (G.P.); (F.F.); (B.S.); (L.M.N.); (P.F.)
| |
Collapse
|
26
|
Ding Q, Hao T, Gao Y, Jiang S, Huang Y, Liang Y. Association between dietary choline intake and asthma and pulmonary inflammation and lung function: NHANES analysis 2009-2018. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:143. [PMID: 39252146 PMCID: PMC11386084 DOI: 10.1186/s41043-024-00635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Asthma is a chronic inflammatory condition, and choline may alleviate airway inflammation and oxidative stress but studies on the association between dietary choline and asthma remain limited. The purpose of this study is to investigate the associations between dietary choline intake and asthma, as well as pulmonary inflammation and lung function in children and adults. METHODS In our research, we employed the data of the National Health and Nutrition Examination Survey (NHANES) from 2009 to 2018, including 7,104 children and 16,580 adults. We used fractional exhaled nitric oxide (FENO) to assess pulmonary inflammation and forced expiratory volume in one second (FEV1), forced vital capacity (FVC), the FEV1/FVC ratio, peak expiratory flow rate (PEF), predicted FEV1% and predicted FVC% to assess lung function. Binary logistic regression, linear regression, and the restricted cubic splines were used to analyze the associations between dietary choline intake and asthma and pulmonary inflammation and lung function. RESULTS In children, we observed the positive associations between the natural logarithmic transformation of choline (ln-choline) and ln-FEV1 [ β:0.011; 95%CI: (0.004,0.018)] and ln-FVC [ β:0.009; 95%CI: (0.002,0.016)]. In adult males, the ln-choline was positively associated with ln-FEV1[ β:0.018; 95%CI: (0.011,0.024)], ln-FVC [ β:0.020; 95%CI: (0.014,0.026)], ln-PEF [ β:0.014; 95%CI: (0.007,0.022)], ln-predicted FEV1% [ β: 0.007; 95%CI: (0.001, 0.013)] and ln-predicted FVC%[ β: 0.010; 95%CI: (0.005, 0.015)] and negatively associated with FENO [ β: -0.029; 95%CI: (-0.049, -0.009)]. In unadjusted and partially adjusted models, adult females with ln-choline in the highest quartile had 25.2% (95%CI:9.4-38.3%) and 23.8% (95%CI:7.6-37.1%) decreased odds of asthma compared to those with the lowest quartile group. In the dose-response relationships of dietary choline and pulmonary inflammation and lung function indicators in adults, there existed threshold and saturation effects. CONCLUSION The associations between dietary choline and lung function indicators such as FEV1 and FVC are positive in children and adults. The association between dietary choline and pulmonary inflammation is negative only in adults.
Collapse
Affiliation(s)
- Qi Ding
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Yijiang District, Wuhu, Anhui, China
| | - Tingting Hao
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Yijiang District, Wuhu, Anhui, China
| | - Yuan Gao
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Yijiang District, Wuhu, Anhui, China
| | - Shanjiamei Jiang
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Yijiang District, Wuhu, Anhui, China
| | - Yue'e Huang
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Yijiang District, Wuhu, Anhui, China.
| | - Yali Liang
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Yijiang District, Wuhu, Anhui, China.
| |
Collapse
|
27
|
Huang F, Guan F, Jia X, Zhang J, Su C, Du W, Ouyang Y, Li L, Bai J, Zhang X, Wei Y, Zhang B, He Y, Wang H. Dietary Choline Intake Is Beneficial for Cognitive Function and Delays Cognitive Decline: A 22-Year Large-Scale Prospective Cohort Study from China Health and Nutrition Survey. Nutrients 2024; 16:2845. [PMID: 39275163 PMCID: PMC11397368 DOI: 10.3390/nu16172845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Pre-clinical studies have discovered the neuroprotective function and the benefit for cognitive function of choline. However, it remains unclear whether these benefits observed in animal studies also work in humans. The aims of this study are to examine the effects of dietary choline intake on cognitive function and cognitive decline during ageing in middle-aged and elderly Chinese. We included 1887 subjects aged 55~79 years with 6696 observations from the China Health and Nutrition Survey cohort study. The subjects were followed up for 6 to 21 years, with an average of 12.2 years. A dietary survey was conducted over 3 consecutive days with a 24 h recall, using household weight-recording methods. Based on the China Food Composition, data from USDA, and published literature, the dietary choline intake was calculated as the sum of free choline, phosphocholine, phosphatidylcholine, sphingomyelin, and glycerophosphocholine. Cognitive function was assessed using a subset of the Telephone Interview for Cognitive Status-modified (TICS-m) items. In order to eliminate the different weight of scores in each domain, the scores were converted by dividing by the maximum score in each domain, which ranged from 0 to 3 points. Higher cognitive scores represented better cognition. We used two-level mixed effect models to estimate the effects of dietary choline intake on cognitive score and cognitive decline rate in males and females, respectively. The average dietary choline intake was 161.1 mg/d for the baseline. After adjusting for confounders, the dietary choline intake was significantly associated with higher cognitive score in both males and females. The cognitive score in the highest quartile group of dietary choline was 0.085 for males and 0.077 for females-higher than those in the lowest quartile group (p < 0.01 for males, p < 0.05 for females). For every 10-year increase in age, the cognitive score decreased by 0.266 for males and 0.283 for females. The cognitive score decline rate of the third quartile group of dietary choline was 0.125/10 years lower than that of the lowest quartile group in females (p < 0.05). Dietary choline intake not only improves cognitive function, but also postpones cognitive decline during the aging process. The findings of this study highlight the neuroprotective benefit of choline in the middle-aged and elderly Chinese population, especially among females.
Collapse
Affiliation(s)
- Feifei Huang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Fangxu Guan
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Xiaofang Jia
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Jiguo Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Chang Su
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Wenwen Du
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Yifei Ouyang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Li Li
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Jing Bai
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Xiaofan Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Yanli Wei
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Bing Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Yuna He
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Huijun Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| |
Collapse
|
28
|
Maekawa M, Iwahori A, Kumondai M, Sato Y, Sato T, Mano N. Determination of Choline-Containing Compounds in Rice Bran Fermented with Aspergillus oryzae Using Liquid Chromatography/Tandem Mass Spectrometry. Mass Spectrom (Tokyo) 2024; 13:A0151. [PMID: 39161737 PMCID: PMC11331278 DOI: 10.5702/massspectrometry.a0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/19/2024] [Indexed: 08/21/2024] Open
Abstract
Choline-containing compounds are essential nutrients for human activity, as they are involved in many biological processes, including cell membrane organization, methyl group donation, neurotransmission, signal transduction, lipid transport, and metabolism. These compounds are normally obtained from food. Fermented brown rice and rice bran with Aspergillus oryzae (FBRA) is a fermented food product derived from rice and rice ingredients. FBRA exhibits a multitude of functional properties with respect to the health sciences. This study has a particular focus on choline-containing compounds. We first developed a simultaneous liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis method for seven choline-containing compounds. The method was subsequently applied to FBRA and its ingredients. Hydrophilic interaction chromatography (HILIC) and selected reaction monitoring were employed for the simultaneous analysis of seven choline-containing compounds. MS ion source conditions were optimized in positive ion mode, and the product ions derived from the choline group were obtained through MS/MS optimization. Under optimized HILIC conditions, the peaks exhibited good shape without peak tailing. Calibration curves demonstrated high linearity across a 300- to 10,000-fold concentration range. The application of the method to FBRA and other ingredients revealed significant differences between food with and without fermentation. In particular, betaine and α-glycerophosphocholine were found to be highest in FBRA and brown rice malt, respectively. The results indicated that the fermentation processing of rice ingredients results in alterations to the choline-containing compounds present in foods. The developed HILIC/MS/MS method proved to be a valuable tool for elucidating the composition of choline-containing compounds in foods.
Collapse
Affiliation(s)
- Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1–1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan
- Faculty of Pharmaceutical Sciences, Tohoku University, 1–1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan
| | - Anna Iwahori
- Faculty of Pharmaceutical Sciences, Tohoku University, 1–1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1–1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1–1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1–1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1–1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan
- Faculty of Pharmaceutical Sciences, Tohoku University, 1–1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan
| |
Collapse
|
29
|
He L, Li M, Zhang Y, Li Q, Fang S, Chen G, Xu X. Neuroinflammation Plays a Potential Role in the Medulla Oblongata After Moderate Traumatic Brain Injury in Mice as Revealed by Nontargeted Metabonomics Analysis. J Neurotrauma 2024; 41:e2026-e2038. [PMID: 38695184 DOI: 10.1089/neu.2023.0536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Moderate traumatic brain injury (mTBI) involves a series of complex pathophysiological processes in not only the area in direct contact with mechanical violence but also in other brain regions far from the injury site, which may be important factors influencing subsequent neurological dysfunction or death. The medulla oblongata (MO) is a key area for the maintenance of basic respiratory and circulatory functions, whereas the pathophysiological processes after mTBI have rarely drawn the attention of researchers. In this study, we established a closed-head cortical contusion injury model, identified 6 different time points that covered the acute, subacute, and chronic phases, and then used nontargeted metabolomics to identify and analyze the changes in differential metabolites (DMs) and metabolic pathways in the MO region. Our results showed that the metabolic profile of the MO region underwent specific changes over time: harmaline, riboflavin, and dephospho-coenzyme A were identified as the key DMs and play important roles in reducing inflammation, enhancing antioxidation, and maintaining homeostasis. Choline and glycerophospholipid metabolism was identified as the key pathway related to the changes in MO metabolism at different phases. In addition, we confirmed increases in the levels of inflammatory factors and the activation of astrocytes and microglia by Western blot and immunofluorescence staining, and these findings were consistent with the nontargeted metabolomic results. These findings suggest that neuroinflammation plays a central role in MO neuropathology after mTBI and provide new insights into the complex pathophysiologic mechanisms involved after mTBI.
Collapse
Affiliation(s)
- Liangchao He
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Mingming Li
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Yonghao Zhang
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Qianqian Li
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Shiyong Fang
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Guang Chen
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Xiang Xu
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| |
Collapse
|
30
|
Filipović D, Inderhees J, Korda A, Tadić P, Schwaninger M, Inta D, Borgwardt S. Serum Metabolites as Potential Markers and Predictors of Depression-like Behavior and Effective Fluoxetine Treatment in Chronically Socially Isolated Rats. Metabolites 2024; 14:405. [PMID: 39195501 DOI: 10.3390/metabo14080405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Metabolic perturbation has been associated with depression. An untargeted metabolomics approach using liquid chromatography-high resolution mass spectrometry was employed to detect and measure the rat serum metabolic changes following chronic social isolation (CSIS), an animal model of depression, and effective antidepressant fluoxetine (Flx) treatment. Univariate and multivariate statistics were used for metabolic data analysis and differentially expressed metabolites (DEMs) determination. Potential markers and predictive metabolites of CSIS-induced depressive-like behavior and Flx efficacy in CSIS were evaluated by the receiver operating characteristic (ROC) curve, and machine learning (ML) algorithms, such as support vector machine with linear kernel (SVM-LK) and random forest (RF). Upregulated choline following CSIS may represent a potential marker of depressive-like behavior. Succinate, stachydrine, guanidinoacetate, kynurenic acid, and 7-methylguanine were revealed as potential markers of effective Flx treatment in CSIS rats. RF yielded better accuracy than SVM-LK (98.50% vs. 85.70%, respectively) in predicting Flx efficacy in CSIS vs. CSIS, however, it performed almost identically in classifying CSIS vs. control (75.83% and 75%, respectively). Obtained DEMs combined with ROC curve and ML algorithms provide a research strategy for assessing potential markers or predictive metabolites for the designation or classification of stress-induced depressive phenotype and mode of drug action.
Collapse
Affiliation(s)
- Dragana Filipović
- Department of Molecular Biology and Endocrinology, "VINČA", Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Julica Inderhees
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Bioanalytic Core Facility, Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Alexandra Korda
- Department of Psychiatry and Psychotherapy, Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Predrag Tadić
- School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Bioanalytic Core Facility, Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Dragoš Inta
- Department for Community Health, Faculty of Natural Sciences, Medicine, University of Fribourg, 1700 Fribourg, Switzerland
- Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy, Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
31
|
Fan Y, Hu C, Xie X, Weng Y, Chen C, Wang Z, He X, Jiang D, Huang S, Hu Z, Liu F. Effects of diets on risks of cancer and the mediating role of metabolites. Nat Commun 2024; 15:5903. [PMID: 39003294 PMCID: PMC11246454 DOI: 10.1038/s41467-024-50258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
Research on the association between dietary adherence and cancer risk is limited, particularly concerning overall cancer risk and its underlying mechanisms. Using the UK Biobank data, we prospectively investigate the associations between adherence to a Mediterranean diet (MedDiet) or a Mediterranean-Dietary Approaches to Stop Hypertension Diet Intervention for Neurodegenerative Delay diet (MINDDiet) and the risk of overall and 22 specific cancers, as well as the mediating effects of metabolites. Here we show significant negative associations of MedDiet and MINDDiet adherence with overall cancer risk. These associations remain robust across 14 and 13 specific cancers, respectively. Then, a sequential analysis, incorporating Cox regression, elastic net and gradient boost models, identify 10 metabolites associated with overall cancer risk. Mediation results indicate that these metabolites play a crucial role in the association between adherence to a MedDiet or a MINDDiet and cancer risk, independently and cumulatively. These findings deepen our understanding of the intricate connections between diet, metabolites, and cancer development.
Collapse
Affiliation(s)
- Yi Fan
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Chanchan Hu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xiaoxu Xie
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yanfeng Weng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Chen Chen
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Zhaokun Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xueqiong He
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Dongxia Jiang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Shaodan Huang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China.
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, School of Public Health, Peking University, Beijing, China.
| | - Zhijian Hu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.
| | - Fengqiong Liu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
32
|
Zuk E, Nikrandt G, Chmurzynska A. Dietary choline intake in European and non-european populations: current status and future trends-a narrative review. Nutr J 2024; 23:68. [PMID: 38943150 PMCID: PMC11212380 DOI: 10.1186/s12937-024-00970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Choline is a nutrient necessary for the proper functioning of the body with a multidimensional impact on human health. However, comprehensive studies evaluating the dietary intake of choline are limited. The aim of this narrative review is to analyze current trends in choline intake in European and non-European populations. The secondary aim was to discuss possible future choline trends. METHODS The search strategy involved a systematic approach to identifying relevant literature that met specific inclusion criteria. Observational studies and randomized clinical trials were searched for in PubMed and Scopus databases from January 2016 to April 2024. This review includes the characteristics of study groups, sample sizes, methods used to assess choline intake and time period, databases used to determine intake, choline intakes, and the main sources of choline in the diet. The review considered all population groups for which information on choline intake was collected. RESULTS In most studies performed in Europe after 2015 choline intake did not exceed 80% of the AI standard value. The mean choline intake for adults in different European countries were 310 mg/day, while the highest value was reported for Polish men at 519 mg/day. In non-European countries, mean choline intakes were 293 mg/day and above. The main reported sources of choline in the diet are products of animal origin, mainly eggs and meat. The available data describing the potential intake of these products in the EU in the future predict an increase in egg intake by another 8% compared to 2008-2019 and a decrease in meat intake by about 2 kg per capita from 2018 to 2030. CONCLUSIONS In the last decade, choline intake among adults has been insufficient, both in Europe and outside it. In each population group, including pregnant women, choline intake has been lower than recommended. Future choline intake may depend on trends in meat and egg consumption, but also on the rapidly growing market of plant-based products. However, the possible changes in the intake of the main sources of choline may lead to either no change or a slight increase in overall choline intake.
Collapse
Affiliation(s)
- Ewelina Zuk
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Wojska Polskiego 31, Poznań, 60-624, Poland
| | - Grzegorz Nikrandt
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Wojska Polskiego 31, Poznań, 60-624, Poland
| | - Agata Chmurzynska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Wojska Polskiego 31, Poznań, 60-624, Poland.
| |
Collapse
|
33
|
Li Z, Zhou SJ, Green TJ, Moumin NA. Usual Choline Intake of Australian Children 6-24 Months: Findings from the Australian Feeding Infants and Toddlers Study (OzFITS 2021). Nutrients 2024; 16:1927. [PMID: 38931281 PMCID: PMC11206734 DOI: 10.3390/nu16121927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: Despite the important role choline plays in child development, there are no data on dietary choline intake in early childhood in Australia. (2) Aim: In this cross-sectional study, we estimated the usual total choline intake and the proportion exceeding the Adequate Intake (AI) and determined the main dietary sources of choline in infants 6-12 months (n = 286) and toddlers 12-24 months (n = 475) of age. (3) Methods: A single 24-h food record with repeats collected during the 2021 Australian Feeding Infants and Toddlers Study (OzFITS 2021) was used to estimate dietary choline intake. (4) Results: The mean choline intake was 142 ± 1.9 mg/day in infants and 181 ± 1.2 mg/day in toddlers. Only 35% of infants and 23% of toddlers exceeded the AI for choline based on Nutrient Reference Values (NRVs) for Australia and New Zealand. Breastmilk was the leading source of choline, contributing 42% and 14% of total choline intake in infants and toddlers, respectively; however, egg consumers had the highest adjusted choline intakes and probability of exceeding the AI. (5) Conclusions: Findings suggest that choline intake may be suboptimal in Australian infants and toddlers. Further research to examine the impact of low choline intake on child development is warranted.
Collapse
Affiliation(s)
- Zhixiao Li
- School of Agriculture, Food & Wine, The University of Adelaide, Adelaide, SA 5000, Australia; (Z.L.); (S.J.Z.)
- Women and Kids Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia;
| | - Shao J. Zhou
- School of Agriculture, Food & Wine, The University of Adelaide, Adelaide, SA 5000, Australia; (Z.L.); (S.J.Z.)
- Robinson Research Institute, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Tim J. Green
- Women and Kids Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia;
- College of Nursing and Health Sciences, Flinders University, Adelaide, SA 5000, Australia
| | - Najma A. Moumin
- Women and Kids Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia;
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
34
|
Ma R, Shi G, Li Y, Shi H. Trimethylamine N-oxide, choline and its metabolites are associated with the risk of non-alcoholic fatty liver disease. Br J Nutr 2024; 131:1915-1923. [PMID: 38443197 DOI: 10.1017/s0007114524000631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
It is inconclusive whether trimethylamine N-oxide (TMAO) and choline and related metabolites, namely trimethylamine (TMA), l-carnitine, betaine and dimethylglycine (DMG), are associated with non-alcoholic fatty liver disease (NAFLD). Our objective was to investigate these potential associations. Additionally, we sought to determine the mediating role of TMAO. In this 1:1 age- and sex-matched case-control study, a total of 150 pairs comprising NAFLD cases and healthy controls were identified. According to the fully adjusted model, after the highest tertile was compared with the lowest tertile, the plasma TMAO concentration (OR = 2·02 (95 % CI 1·04, 3·92); P trend = 0·003), l-carnitine concentration (OR = 1·79 (1·01, 3·17); P trend = 0·020) and DMG concentration (OR = 1·81 (1·00, 3·28); P trend = 0·014) were significantly positively associated with NAFLD incidence. However, a significantly negative association was found for plasma betaine (OR = 0. 50 (0·28, 0·88); P trend = 0·001). The restricted cubic splines model consistently indicated positive dose-response relationships between exposure to TMAO, l-carnitine, and DMG and NAFLD risk, with a negative association being observed for betaine. The corresponding AUC increased significantly from 0·685 (0·626, 0·745) in the traditional risk factor model to 0·769 (0·716, 0·822) when TMAO and its precursors were included (l-carnitine, betaine and choline) (P = 0·032). Mediation analyses revealed that 14·7 and 18·6 % of the excess NAFLD risk associated with l-carnitine and DMG, respectively, was mediated by TMAO (the P values for the mediating effects were 0·021 and 0·036, respectively). These results suggest that a higher concentration of TMAO is associated with increased NAFLD risk among Chinese adults and provide evidence of the possible mediating role of TMAO.
Collapse
Affiliation(s)
- Rong Ma
- Department of Infectious Diseases, the First Affiliated Hospital of Chengdu Medical College, Chengdu610500, People's Republic of China
| | - Guangying Shi
- Department of Hepatology, Xinjiang Corps Hospital, Xinjiang832104, People's Republic of China
| | - Yanfang Li
- Department of Infectious Diseases, the First Affiliated Hospital of Chengdu Medical College, Chengdu610500, People's Republic of China
| | - Han Shi
- Department of Infectious Diseases, the First Affiliated Hospital of Chengdu Medical College, Chengdu610500, People's Republic of China
| |
Collapse
|
35
|
Dymek A, Oleksy Ł, Stolarczyk A, Bartosiewicz A. Choline-An Underappreciated Component of a Mother-to-Be's Diet. Nutrients 2024; 16:1767. [PMID: 38892700 PMCID: PMC11174651 DOI: 10.3390/nu16111767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/27/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
The nutritional status of the mother-to-be has a key impact on the proper development of the fetus. Although all nutrients are important for the developing baby, recent research indicates the importance of adequate choline intake during the periconceptional period, pregnancy, and lactation. Choline plays a key role in the biosynthesis of cell membranes, supporting liver function, neurotransmission, brain development, and DNA and histone methylation. Choline participates in the formation of a child's nervous system, supports its cognitive development, and reduces the risk of neural tube defects. The human body is incapable of producing sufficient choline to meet its needs; therefore, it must be obtained from the diet. Current data indicate that most women in their reproductive years do not achieve the recommended daily intake of choline. The presented narrative review indicates the importance of educating mothers-to-be and thereby increasing their awareness of the effects of choline on maternal and child health, which can lead to a more aware and healthy pregnancy and proper child development.
Collapse
Affiliation(s)
- Agnieszka Dymek
- Students Scientific Club of Dietetics, Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Łukasz Oleksy
- Department of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Kraków, Poland
| | - Artur Stolarczyk
- Department of Orthopedics and Rehabilitation, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Bartosiewicz
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| |
Collapse
|
36
|
Shi J, Lin Y, Jiang Y, Qiu G, Jian F, Lin W, Zhang S. Dietary choline intake and its association with asthma: A study based on the National Health and Nutrition Examination Survey database. Clin Transl Allergy 2024; 14:e12359. [PMID: 38860615 PMCID: PMC11165556 DOI: 10.1002/clt2.12359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/11/2024] [Accepted: 04/25/2024] [Indexed: 06/12/2024] Open
Abstract
OBJECTIVE This work endeavored to examine the correlation between dietary choline intake and the odds of asthma, utilizing data from the National Health and Nutrition Examination Survey (NHANES). METHODS Aggregated data from seven cycles (2005-2018) in the NHANES database were utilized. The independent variable was dietary choline intake, and the dependent variable was asthma. The weighted logistic regression method was used to construct a model reflecting the relationship between these two factors. This work employed stratified analysis without adjusting for confounding factors and subgroup analysis with adjusted confounding factors to mine the association between dietary choline intake and asthma. Additionally, restricted cubic spline analysis examined nonlinear associations of the two in age subgroups. RESULTS Forty five thousand and seven hundreds ninety seven samples were included here. The model indicating the relationship between dietary choline intake and asthma was constructed (OR: 0.86, 95% CI: 0.79-0.93, p < 0.001). Stratified analysis indicated that the interaction terms of age (p < 0.001) and body mass index (BMI) (p = 0.002) with dietary choline intake significantly influenced the relationship model. In the adjusted models, accounting for demographic characteristics, poverty impact ratio, BMI, exposure to environmental tobacco smoke, and total energy intake, an increase in dietary choline intake significantly reduced the odds of asthma (OR: 0.79, 95% CI: 0.72-0.88, p < 0.001). Subgroup analyses based on age and BMI revealed a significant negative correlation between dietary choline intake and the odds of asthma in the adult population (OR: 0.76, 95% CI: 0.67-0.86, p < 0.001), as well as in individuals with a BMI between 25 and 30 kg/m2 (OR: 0.79, 95% CI: 0.63-0.99, p = 0.042), and those with a BMI >30 kg/m2 (OR: 0.73, 95% CI: 0.60-0.89, p = 0.002). CONCLUSION Dietary choline intake was significantly inversely correlated with asthma prevalence, especially in adults and overweight/obese individuals, suggesting that increasing choline intake may reduce asthma risk. Further research is needed to explore this relationship and provide tailored dietary recommendations for different age and BMI groups to enhance asthma prevention and management.
Collapse
Affiliation(s)
- Jiaqiang Shi
- Department of PediatricsLongyan First Hospital of Fujian Medical UniversityLongyanFujian ProvinceChina
| | - Yuming Lin
- Department of PediatricsLongyan First Hospital of Fujian Medical UniversityLongyanFujian ProvinceChina
| | - Yingxiu Jiang
- Minxi Vocational College (Fujian)LongyanFujian ProvinceChina
| | - Guoguo Qiu
- Department of PediatricsLongyan First Hospital of Fujian Medical UniversityLongyanFujian ProvinceChina
| | - Fanghua Jian
- Department of PediatricsLongyan First Hospital of Fujian Medical UniversityLongyanFujian ProvinceChina
| | - Wei Lin
- Department of PediatricsLongyan First Hospital of Fujian Medical UniversityLongyanFujian ProvinceChina
| | - Shihao Zhang
- Department of Respiratory and Critical Care MedicineGanzhou People's HospitalZhangzhouJiangxi ProvinceChina
| |
Collapse
|
37
|
Crosby-Galvan MM, Mendoza GD, Hernández-García PA, Martínez-García JA, Vázquez-Valladolid A, Cifuentes-López RO, Lee-Rangel HA. Influence of supplemental choline on milk yield, fatty acid profile, and weight changes in postpartum ewes and their offspring. Vet World 2024; 17:1265-1270. [PMID: 39077444 PMCID: PMC11283600 DOI: 10.14202/vetworld.2024.1265-1270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/13/2024] [Indexed: 07/31/2024] Open
Abstract
Background and Aim The most intensive nutritional requirements occur during milk production's peak. Ewe milk contains more protein and fat than cow milk. The nutritional factors significantly determine the composition. The liver undergoes high stress during lactation but is relieved by essential nutrients. Choline acts metabolically as a lipotrope. This compound functions in cell structure construction, maintenance, and acetylcholine synthesis. The animal nutrition industry provides choline from various sources, such as synthetic and natural kinds. This study evaluated the influence of two distinct choline sources on dairy ewes' peripartum and postpartum milk production, composition, and offspring growth. Materials and Methods Twenty-four Rambouillet ewes, each weighing around 63.7 ± 1.7 kg, aged three with two previous births, spent 30-day pre-partum and post-partum in individual pens (2 × 2 m). They were given different experimental treatments 30 days before and after birth according to a randomized design; no choline (a), 4 g/day rumen-protected choline (RPC) (b), or 4 g/day thiocholine (c). Milk samples for milk composition and long-chain fatty acid (FA) analysis were taken every 30 days during milk collection. Results Significant differences (p < 0.05) in ewe body weight, lamb birth weight, and 30-day-old lamb body weight were observed at lambing and on day 30 of lactation due to choline treatment. Milk yield was significantly higher (1.57 kg/day) compared to the control (1.02 kg/day) and RPC (1.39 kg/day), due to the herbal choline source. There was no significant difference in the milk's protein, lactose, fat, non-fat solids, and total milk solids content between the treatments. Herbal choline lowers (p < 0.05) the concentrations of caproic, caprylic, capric, lauric, and myristic acids while boosting (p < 0.05) those of oleic and cis-11-eicosenoic acid, the changes influencing long-chain FA levels (p < 0.05). Conclusion Providing choline from both sources to ewes enhanced milk production and body weight at lambing and on 30-day post-lambing. The herbal choline supplement altered short-chain milk FAs, while representative concentration pathways affected medium-chain ones.
Collapse
Affiliation(s)
| | - German D. Mendoza
- Agriculture and Animal Science Department, Xochimilco Campus, Metropolitan Autonomous University, Mexico City, México
| | | | - José Antonio Martínez-García
- Agriculture and Animal Science Department, Xochimilco Campus, Metropolitan Autonomous University, Mexico City, México
| | | | | | - Héctor A. Lee-Rangel
- Agronomy and Veterinary Faculty, Bioscience Centre, San Luis Potosí Autonomous University, México
| |
Collapse
|
38
|
Vallianou NG, Kounatidis D, Psallida S, Panagopoulos F, Stratigou T, Geladari E, Karampela I, Tsilingiris D, Dalamaga M. The Interplay Between Dietary Choline and Cardiometabolic Disorders: A Review of Current Evidence. Curr Nutr Rep 2024; 13:152-165. [PMID: 38427291 PMCID: PMC11133147 DOI: 10.1007/s13668-024-00521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE OF REVIEW Choline is an essential nutrient for human health and cellular homeostasis as it is necessary for the synthesis of lipid cell membranes, lipoproteins, and the synthesis of the neurotransmitter acetylcholine. The aim of this review is to analyze the beneficial effects of choline and its significance in cellular metabolism and various inflammatory pathways, such as the inflammasome. We will discuss the significance of dietary choline in cardiometabolic disorders, such as non-alcoholic fatty liver disease (NAFLD), cardiovascular disease (CVD), and chronic kidney disease (CKD) as well as in cognitive function and associated neuropsychiatric disorders. RECENT FINDINGS Choline deficiency has been related to the development of NAFLD and cognitive disability in the offspring as well as in adulthood. In sharp contrast, excess dietary intake of choline mediated via the increased production of trimethylamine by the gut microbiota and increased trimethylamine-N-oxide (TMAO) levels has been related to atherosclerosis in most studies. In this context, CVD and CKD through the accumulation of TMAO, p-Cresyl-sulfate (pCS), and indoxyl-sulfate (IS) in serum may be the result of the interplay between excess dietary choline, the increased production of TMAO by the gut microbiota, and the resulting activation of inflammatory responses and fibrosis. A balanced diet, with no excess nor any deficiency in dietary choline, is of outmost importance regarding the prevention of cardiometabolic disorders as well as cognitive function. Large-scale studies with the use of next-generation probiotics, especially Akkermansia muciniphila and Faecalibacterium prausnitzii, should further examine their therapeutic potential in this context.
Collapse
Affiliation(s)
- Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece.
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, Athens, Greece.
| | - Dimitris Kounatidis
- Department of Internal Medicine, Hippokration General Hospital, 114 Vassilissis Sofias str, Athens, Greece
| | - Sotiria Psallida
- Department of Microbiology, KAT General Hospital of Attica, 2 Nikis str, Athens, Greece
| | - Fotis Panagopoulos
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece
| | - Theodora Stratigou
- Department of Endocrinology and Metabolism, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece
| | - Eleni Geladari
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini str, Athens, Greece
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100, Alexandroupoli, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, Athens, Greece.
| |
Collapse
|
39
|
Rusnak T, Azarcoya-Barrera J, Makarowski A, Jacobs RL, Richard C. Plant- and Animal-Derived Dietary Sources of Phosphatidylcholine Have Differential Effects on Immune Function in The Context of A High-Fat Diet in Male Wistar Rats. J Nutr 2024; 154:1936-1944. [PMID: 38582387 PMCID: PMC11217025 DOI: 10.1016/j.tjnut.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Phosphatidylcholine (PC) derived from eggs has been shown to beneficially modulate T cell response and intestinal permeability under the context of a high-fat diet. OBJECTIVES The objective of this study was to determine whether there is a differential effect of plant and animal-derived sources of PC on immune function. METHODS Four-week-old male Wistar rats were randomly assigned to consume 1 of 4 diets (n = 10/group) for 12 wk, all containing 1.5 g of total choline/kg of diet but differing in choline forms: 1-Control Low-Fat [CLF, 20% fat, 100% free choline (FC)]; 2-Control High-Fat (CHF, 50% fat, 100% FC); 3-High-Fat Egg-derived PC (EPC, 50% fat, 100% Egg-PC); 4-High-Fat Soy-derived PC (SPC, 50% fat, 100% Soy-PC). Immune cell functions and phenotypes were measured in splenocytes by ex vivo cytokine production after mitogen stimulation and flow cytometry, respectively. RESULTS The SPC diet increased splenocyte IL-2 production after PMA+I stimulation compared with the CHF diet. However, the SPC group had a lower proportion of splenocytes expressing the IL-2 receptor (CD25+, P < 0.05). After PMA+I stimulation, feeding EPC normalized splenocyte production of IL-10 relative to the CLF diet, whereas SPC did not (P < 0.05). In mesenteric lymph node lymphocytes, the SPC diet group produced more IL-2 and TNF-α after PMA+I stimulation than the CHF diet, whereas the EPC diet group did not. CONCLUSIONS Our results suggest that both egg- and soy-derived PC may attenuate high-fat diet-induced T cell dysfunction. However, egg-PC enhances, to a greater extent, IL-10, a cytokine involved in promoting the resolution phase of inflammation, whereas soy-PC appears to elicit a greater effect on gut-associated immune responses.
Collapse
Affiliation(s)
- Tianna Rusnak
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jessy Azarcoya-Barrera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Alexander Makarowski
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - René L Jacobs
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Richard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
40
|
Lin H, Zhong Z, Zhang C, Jin X, Qi X, Lian J. An inverse association of dietary choline with atherosclerotic cardiovascular disease among US adults: a cross-sectional NHANES analysis. BMC Public Health 2024; 24:1460. [PMID: 38822299 PMCID: PMC11141004 DOI: 10.1186/s12889-024-18837-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND The role of diet choline in atherosclerotic cardiovascular disease (ASCVD) is uncertain. Findings from animal experiments are contradictory while there is a lack of clinical investigations. This study aimed to investigate the association between choline intake and ASCVD based on individuals from the National Health and Nutrition Examination Survey (NHANES) database. METHODS This cross-sectional study was conducted in 5525 individuals from the NHANES between 2011 and 2018. Participants were categorized into the ASCVD (n = 5015) and non-ASCVD (n = 510) groups. Univariable and multivariable-adjusted regression analyses were employed to investigate the relationship between diet choline and pertinent covariates. Logistic regression analysis and restricted cubic spline analysis were used to evaluate the association between choline intake and ASCVD. RESULTS ASCVD participants had higher choline intake compared to those without ASCVD. In the higher tertiles of choline intake, there was a greater proportion of males, married individuals, highly educated individuals, and those with increased physical activity, but a lower proportion of smokers and drinkers. In the higher tertiles of choline intake, a lower proportion of individuals had a history of congestive heart failure and stroke. After adjusting for age, gender, race, ethnicity, and physical activity, an inverse association between choline intake and heart disease, stroke, and ASCVD was found. A restricted cubic spline analysis showed a mirrored J-shaped relationship between choline and ASCVD, stroke and congestive heart failure in males. There was no association between dietary choline and metabolic syndrome. CONCLUSION An inverse association was observed between choline intake and ASVCD among U.S. adults. Further large longitudinal studies are needed to test the causal relationship of choline and ASVCD.
Collapse
Affiliation(s)
- Hui Lin
- Department of Cardiology, The Affiliated Lihuili Hospital of Ningbo University Health Science Center, Ningbo, Zhejiang, 315211, China
| | - Zuoquan Zhong
- Department of Respiratory Medicine, Shaoxing People's Hospital, Shaoxing, China
| | - Chuanjin Zhang
- Department of Cardiology, The Affiliated Lihuili Hospital of Ningbo University Health Science Center, Ningbo, Zhejiang, 315211, China
| | - Xiaojun Jin
- Department of Cardiology, The Affiliated Lihuili Hospital of Ningbo University Health Science Center, Ningbo, Zhejiang, 315211, China
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, China.
| | - Jiangfang Lian
- Department of Cardiology, The Affiliated Lihuili Hospital of Ningbo University Health Science Center, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
41
|
Jieru P, Zhang S, Cai L, Long W, Wang Y, Zhang L, Dong Y, Zhang W, Liao J, Yang C. Dietary choline intake and health outcomes in U.S. adults: exploring the impact on cardiovascular disease, cancer prevalence, and all-cause mortality. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:59. [PMID: 38711145 DOI: 10.1186/s41043-024-00528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/16/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Choline, an indispensable nutrient, plays a pivotal role in various physiological processes. The available evidence regarding the nexus between dietary choline intake and health outcomes, encompassing cardiovascular disease (CVD), cancer, and all-cause mortality, is limited and inconclusive. This study aimed to comprehensively explore the relationship between dietary choline intake and the aforementioned health outcomes in adults aged > 20 years in the U.S. METHODS This study utilized data from the National Health and Nutrition Examination Survey between 2011 and 2018. Dietary choline intake was evaluated using two 24-h dietary recall interviews. CVD and cancer status were determined through a combination of standardized medical status questionnaires and self-reported physician diagnoses. Mortality data were gathered from publicly available longitudinal Medicare and mortality records. The study utilized survey-weighted logistic and Cox regression analyses to explore the associations between choline consumption and health outcomes. Restricted cubic spline (RCS) analysis was used for dose‒response estimation and for testing for nonlinear associations. RESULTS In our study of 14,289 participants (mean age 48.08 years, 47.71% male), compared with those in the lowest quintile (Q1), the adjusted odds ratios (ORs) of CVD risk in the fourth (Q4) and fifth (Q5) quintiles of choline intake were 0.70 (95% CI 0.52, 0.95) and 0.65 (95% CI 0.47, 0.90), respectively (p for trend = 0.017). Each 100 mg increase in choline intake was associated with a 9% reduced risk of CVD. RCS analysis revealed a linear correlation between choline intake and CVD risk. Moderate choline intake (Q3) was associated with a reduced risk of mortality, with an HR of 0.75 (95% CI 0.60-0.94) compared with Q1. RCS analysis demonstrated a significant nonlinear association between choline intake and all-cause mortality (P for nonlinearity = 0.025). The overall cancer prevalence association was nonsignificant, except for colon cancer, where each 100 mg increase in choline intake indicated a 23% reduced risk. CONCLUSION Elevated choline intake demonstrates an inverse association with CVD and colon cancer, while moderate consumption exhibits a correlated reduction in mortality. Additional comprehensive investigations are warranted to elucidate the broader health implications of choline.
Collapse
Affiliation(s)
- Peng Jieru
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Shanshan Zhang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lin Cai
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Non-communicable Diseases Research Center, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wencheng Long
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yueshan Wang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lu Zhang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yao Dong
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenqi Zhang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Juan Liao
- Department of Gastroenterology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Non-communicable Diseases Research Center, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Chunxia Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
42
|
Bogl LH, Strohmaier S, Hu FB, Willett WC, Eliassen AH, Hart JE, Sun Q, Chavarro JE, Field AE, Schernhammer ES. Maternal One-Carbon Nutrient Intake and Risk of Being Overweight or Obese in Their Offspring-A Transgenerational Prospective Cohort Study. Nutrients 2024; 16:1210. [PMID: 38674900 PMCID: PMC11054902 DOI: 10.3390/nu16081210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
We aimed to investigate the associations between maternal intake of folate, vitamin B12, B6, B2, methionine, choline, phosphatidylcholine and betaine during the period surrounding pregnancy and offspring weight outcomes from birth to early adulthood. These associations were examined among 2454 mother-child pairs from the Nurses' Health Study II and Growing Up Today Study. Maternal energy-adjusted nutrient intakes were derived from food frequency questionnaires. Birth weight, body size at age 5 and repeated BMI measurements were considered. Overweight/obesity was defined according to the International Obesity Task Force (<18 years) and World Health Organization guidelines (18+ years). Among other estimands, we report relative risks (RRs) for offspring ever being overweight with corresponding 95% confidence intervals across quintiles of dietary factors, with the lowest quintile as the reference. In multivariate-adjusted models, higher maternal intakes of phosphatidylcholine were associated with a higher risk of offspring ever being overweight (RRQ5vsQ1 = 1.16 [1.01-1.33] p-trend: 0.003). The association was stronger among offspring born to mothers with high red meat intake (high red meat RRQ5vsQ1 = 1.50 [1.14-1.98], p-trend: 0.001; low red meat RRQ5vsQ1 = 1.05 [0.87-1.27], p-trend: 0.46; p-interaction = 0.13). Future studies confirming the association between a higher maternal phosphatidylcholine intake during pregnancy and offspring risk of being overweight or obese are needed.
Collapse
Affiliation(s)
- Leonie H. Bogl
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, 1090 Wien, Austria; (L.H.B.); (S.S.)
- School of Health Professions, Bern University of Applied Sciences, 3012 Bern, Switzerland
| | - Susanne Strohmaier
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, 1090 Wien, Austria; (L.H.B.); (S.S.)
| | - Frank B. Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA (J.E.C.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Walter C. Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA (J.E.C.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - A. Heather Eliassen
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA (J.E.C.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Jaime E. Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA (J.E.C.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Jorge E. Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA (J.E.C.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Alison E. Field
- Department of Epidemiology, Brown University, Providence, RI 02903, USA
| | - Eva S. Schernhammer
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, 1090 Wien, Austria; (L.H.B.); (S.S.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| |
Collapse
|
43
|
Cao R, Su Y, Li J, Ao R, Xu X, Liang Y, Liu Z, Yu Q, Xie J. Exploring research hotspots and future directions in neural tube defects field by bibliometric and bioinformatics analysis. Front Neurosci 2024; 18:1293400. [PMID: 38650623 PMCID: PMC11033379 DOI: 10.3389/fnins.2024.1293400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/11/2024] [Indexed: 04/25/2024] Open
Abstract
Background Neural tube defects (NTDs) is the most common birth defect of the central nervous system (CNS) which causes the death of almost 88,000 people every year around the world. Much efforts have been made to investigate the reasons that contribute to NTD and explore new ways to for prevention. We trawl the past decade (2013-2022) published records in order to get a worldwide view about NTDs research field. Methods 7,437 records about NTDs were retrieved from the Web of Science (WOS) database. Tools such as shell scripts, VOSviewer, SCImago Graphica, CiteSpace and PubTator were used for data analysis and visualization. Results Over the past decade, the number of publications has maintained an upward trend, except for 2022. The United States is the country with the highest number of publications and also with the closest collaboration with other countries. Baylor College of Medicine has the closest collaboration with other institutions worldwide and also was the most prolific institution. In the field of NTDs, research focuses on molecular mechanisms such as genes and signaling pathways related to folate metabolism, neurogenic diseases caused by neural tube closure disorders such as myelomeningocele and spina bifida, and prevention and treatment such as folate supplementation and surgical procedures. Most NTDs related genes are related to development, cell projection parts, and molecular binding. These genes are mainly concentrated in cancer, Wnt, MAPK, PI3K-Akt and other signaling pathways. The distribution of NTDs related SNPs on chromosomes 1, 3, 5, 11, 14, and 17 are relatively concentrated, which may be associated with high-risk of NTDs. Conclusion Bibliometric analysis of the literature on NTDs field provided the current status, hotspots and future directions to some extant. Further bioinformatics analysis expanded our understanding of NTDs-related genes function and revealed some important SNP clusters and loci. This study provided some guidance for further studies. More extensive cooperation and further research are needed to overcome the ongoing challenge in pathogenesis, prevention and treatment of NTDs.
Collapse
Affiliation(s)
- Rui Cao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
- Translational Medicine Research Centre, Shanxi Medical University, Taiyuan, China
| | - Yanbing Su
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianting Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Ruifang Ao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Xiangchao Xu
- Sci-Tech Information and Strategic Research Center of Shanxi Province, Taiyuan, China
| | - Yuxiang Liang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Qi Yu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
44
|
Mphephu MM, Olaokun OO, Mavimbela C, Hofmeyer G, Mwale M, Mkolo NM. Metabolomics approach for predicting stomach and colon contents in dead Arctocephalus pusillus pusillus, Arctocephalus tropicalis, Lobodon carcinophaga and Ommatophoca rossii from sub-Antarctic region. PLoS One 2024; 19:e0300319. [PMID: 38557648 PMCID: PMC10984408 DOI: 10.1371/journal.pone.0300319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
The dietary habits of seals play a pivotal role in shaping management and administration policies, especially in regions with potential interactions with fisheries. Previous studies have utilized various methods, including traditional approaches, to predict seal diets by retrieving indigestible prey parts, such as calcified structures, from intestines, feces, and stomach contents. Additionally, methods evaluating nitrogen and stable isotopes of carbon have been employed. The metabolomics approach, capable of quantifying small-scale molecules in biofluids, holds promise for specifying dietary exposures and estimating disease risk. This study aimed to assess the diet composition of five seal species-Arctocephalus pusillus pusillus, Lobodon carcinophaga, Ommatophoca rossii, and Arctocephalus tropicalis 1 and 2-by analyzing stomach and colon contents collected from stranded dead seals at various locations. Metabolite concentrations in the seal stomach and colon contents were determined using Nuclear Magnetic Resonance Spectroscopy. Among the colon and stomach contents, 29 known and 8 unknown metabolites were identified. Four metabolites (alanine, fumarate, lactate, and proline) from stomach contents and one metabolite (alanine) from colon contents showed no significant differences between seal species (p>0.05). This suggests that traces of these metabolites in the stomach and colon contents may be produced by the seals' gut microbiome or derived from other animals, possibly indicating reliance on fish caught at sea. Despite this insight, the cause of death for stranded seals remains unclear. The study highlights the need for specific and reliable biomarkers to precisely indicate dietary exposures across seal populations. Additionally, there is a call for the development of relevant metabolite and disease interaction networks to explore disease-related metabolites in seals. Ultimately, the metabolomic method employed in this study reveals potential metabolites in the stomach and colon contents of these seal species.
Collapse
Affiliation(s)
- Mukhethwa Micheal Mphephu
- Department of Biology, School of Science and Technology, Sefako Makgatho Health Science University, Ga-Rankuwa, Pretoria, South Africa
| | - Oyinlola Oluwunmi Olaokun
- Department of Biology, School of Science and Technology, Sefako Makgatho Health Science University, Ga-Rankuwa, Pretoria, South Africa
| | - Caswell Mavimbela
- Department of Biology, School of Science and Technology, Sefako Makgatho Health Science University, Ga-Rankuwa, Pretoria, South Africa
| | - Greg Hofmeyer
- Port Elizabeth Museum at Bayworld, Humewood, Port Elizabeth, South Africa
| | - Monica Mwale
- South African National Biodiversity Institute (SANBI), National Zoological Garden, Pretoria, South Africa
| | - Nqobile Monate Mkolo
- Department of Biology, School of Science and Technology, Sefako Makgatho Health Science University, Ga-Rankuwa, Pretoria, South Africa
| |
Collapse
|
45
|
Xie H, Yang N, Yu C, Lu L. Uremic toxins mediate kidney diseases: the role of aryl hydrocarbon receptor. Cell Mol Biol Lett 2024; 29:38. [PMID: 38491448 PMCID: PMC10943832 DOI: 10.1186/s11658-024-00550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/19/2024] [Indexed: 03/18/2024] Open
Abstract
Aryl hydrocarbon receptor (AhR) was originally identified as an environmental sensor that responds to pollutants. Subsequent research has revealed that AhR recognizes multiple exogenous and endogenous molecules, including uremic toxins retained in the body due to the decline in renal function. Therefore, AhR is also considered to be a uremic toxin receptor. As a ligand-activated transcriptional factor, the activation of AhR is involved in cell differentiation and senescence, lipid metabolism and fibrogenesis. The accumulation of uremic toxins in the body is hazardous to all tissues and organs. The identification of the endogenous uremic toxin receptor opens the door to investigating the precise role and molecular mechanism of tissue and organ damage induced by uremic toxins. This review focuses on summarizing recent findings on the role of AhR activation induced by uremic toxins in chronic kidney disease, diabetic nephropathy and acute kidney injury. Furthermore, potential clinical approaches to mitigate the effects of uremic toxins are explored herein, such as enhancing uremic toxin clearance through dialysis, reducing uremic toxin production through dietary interventions or microbial manipulation, and manipulating metabolic pathways induced by uremic toxins through controlling AhR signaling. This information may also shed light on the mechanism of uremic toxin-induced injury to other organs, and provide insights into clinical approaches to manipulate the accumulated uremic toxins.
Collapse
Affiliation(s)
- Hongyan Xie
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Ninghao Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China.
| | - Limin Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China.
| |
Collapse
|
46
|
Tessier AJ, Wang F, Liang L, Wittenbecher C, Haslam DE, Eliassen AH, Tobias DK, Li J, Zeleznik OA, Ascherio A, Sun Q, Stampfer MJ, Grodstein F, Rexrode KM, Manson JE, Balasubramanian R, Clish CB, Martínez-González MA, Chavarro JE, Hu FB, Guasch-Ferré M. Plasma metabolites of a healthy lifestyle in relation to mortality and longevity: Four prospective US cohort studies. MED 2024; 5:224-238.e5. [PMID: 38366602 PMCID: PMC10940196 DOI: 10.1016/j.medj.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/09/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND A healthy lifestyle is associated with a lower premature mortality risk and with longer life expectancy. However, the metabolic pathways of a healthy lifestyle and how they relate to mortality and longevity are unclear. We aimed to identify and replicate a healthy lifestyle metabolomic signature and examine how it is related to total and cause-specific mortality risk and longevity. METHODS In four large cohorts with 13,056 individuals and 28-year follow-up, we assessed five healthy lifestyle factors, used liquid chromatography mass spectrometry to profile plasma metabolites, and ascertained deaths with death certificates. The unique healthy lifestyle metabolomic signature was identified using an elastic regression. Multivariable Cox regressions were used to assess associations of the signature with mortality and longevity. FINDINGS The identified healthy lifestyle metabolomic signature was reflective of lipid metabolism pathways. Shorter and more saturated triacylglycerol and diacylglycerol metabolite sets were inversely associated with the healthy lifestyle score, whereas cholesteryl ester and phosphatidylcholine plasmalogen sets were positively associated. Participants with a higher healthy lifestyle metabolomic signature had a 17% lower risk of all-cause mortality, 19% for cardiovascular disease mortality, and 17% for cancer mortality and were 25% more likely to reach longevity. The healthy lifestyle metabolomic signature explained 38% of the association between the self-reported healthy lifestyle score and total mortality risk and 49% of the association with longevity. CONCLUSIONS This study identifies a metabolomic signature that measures adherence to a healthy lifestyle and shows prediction of total and cause-specific mortality and longevity. FUNDING This work was funded by the NIH, CIHR, AHA, Novo Nordisk Foundation, and SciLifeLab.
Collapse
Affiliation(s)
- Anne-Julie Tessier
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Fenglei Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Danielle E Haslam
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - A Heather Eliassen
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Deirdre K Tobias
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jun Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Oana A Zeleznik
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alberto Ascherio
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Meir J Stampfer
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Francine Grodstein
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Kathryn M Rexrode
- Division of Women's Health, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - JoAnn E Manson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Raji Balasubramanian
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Miguel A Martínez-González
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
| | - Jorge E Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Marta Guasch-Ferré
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Public Health and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
47
|
Sheyn D, Momotaz H, Hijaz A, Zeleznik O, Minassian V, Penney KL. Effect of Dietary Choline Consumption on the Development of Urinary Urgency Incontinence in a Longitudinal Cohort of Women. Int Urogynecol J 2024; 35:667-676. [PMID: 38334759 DOI: 10.1007/s00192-024-05740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024]
Abstract
INTRODUCTION AND HYPOTHESIS The objective of this study was to determine whether differences in the cumulative dietary intake of choline, is associated with the risk of developing urge urinary incontinence (UUI). METHODS This was an analysis within the Nurses' Health Study (NHS) I and II. The main exposure was the cumulative daily intake for each choline-containing compound obtained from a detailed daily food frequency questionnaire. The primary outcome was UUI, defined as urine loss with a sudden feeling of bladder fullness or when a toilet is inaccessible, occurring >1/month. Cox proportional hazards regression models were used to calculate multivariate-adjusted relative risks and 95% confidence intervals (CIs) for the association between total choline and choline derivatives and risk of UUI. Fixed effects meta-analyses of results from NHSI and NHSII were performed for postmenopausal women only to obtain a pooled estimate of the impact of choline consumption on UUI. RESULTS There were 33,273 participants in NHSI and 38,732 in NHSII who met all the criteria for inclusion in the analysis. The incidence of UUI was 9.41% (n=3,139) in NHSI and 4.25% (n=1,646) in NHSII. After adjusting for confounders choline was not found to be associated with UUI in postmenopausal women. However, in premenopausal women, relative to the lowest quartile, the highest quartile of consumption of total choline (aRR = 0.79, 95% CI: 0.64-0.99), free choline (aRR = 0.74, 95% CI: 0.58-0.94), and phosphocholine (aRR = 0.77, 95% CI: 0.61-0.96) were associated with a reduced risk of UUI. CONCLUSIONS Increased dietary choline consumption was associated with a reduced risk of UUI among premenopausal women.
Collapse
Affiliation(s)
- David Sheyn
- Department of Urology, University Hospitals System, Cleveland, OH, 44104, USA.
- Case Western Reserve University, Cleveland, OH, USA.
| | | | - Adonis Hijaz
- Department of Urology, University Hospitals System, Cleveland, OH, 44104, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Oana Zeleznik
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Vatche Minassian
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kathryn L Penney
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
48
|
Kurth S, Li T, Hausker A, Evans WE, Dabre R, Müller E, Kervinen J. Separation of full and empty adeno-associated virus capsids by anion-exchange chromatography using choline-type salts. Anal Biochem 2024; 686:115421. [PMID: 38061416 DOI: 10.1016/j.ab.2023.115421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Development of clinically desirable adeno-associated virus (AAV) vectors with optimal genome design requires rapid and accurate analytical methods to assess AAV quality. Anion-exchange (AEX) chromatography provides a powerful analytical method for full/empty AAV capsid ratio determination. However, the current AEX methodology for separation of empty and full AAV capsids largely relies on the use of the highly toxic tetramethylammonium chloride (TMAC). Here, we describe a novel analytical AEX method for separation of empty and full AAV capsids that uses only non-toxic, choline-type compounds that contain structural similarity to the quaternary ammonium ligand present on the surface of AEX resin. Choline-Cl gradient, combined with sensitive fluorescence detection, allowed a safe and effective separation of empty and full AAV capsids with reproducible empty/full ratio determination. The choline-based assay was suitable for commonly used serotypes, AAV2, AAV5, AAV6, and AAV8. The limit of detection was ∼3.9 × 108 virus particles in the assay. A gradient-hold step-gradient elution with choline-Cl resulted in enhanced baseline separation of empty and full AAV8 capsids. In summary, the use of choline-Cl in the AEX assay is recommended for empty/full capsid ratio determination and other applications in AAV production, and it eliminates the necessity of using toxic TMAC.
Collapse
Affiliation(s)
- Sam Kurth
- Tosoh Bioscience LLC, 3604 Horizon Drive, King of Prussia, PA, 19406, USA
| | - Tianyu Li
- Tosoh Bioscience LLC, 3604 Horizon Drive, King of Prussia, PA, 19406, USA
| | - Alana Hausker
- Tosoh Bioscience LLC, 3604 Horizon Drive, King of Prussia, PA, 19406, USA
| | - William E Evans
- Tosoh Bioscience LLC, 3604 Horizon Drive, King of Prussia, PA, 19406, USA
| | - Romain Dabre
- Tosoh Bioscience GmbH, Im Leuschnerpark 4, 64347, Griesheim, Germany
| | - Egbert Müller
- Tosoh Bioscience GmbH, Im Leuschnerpark 4, 64347, Griesheim, Germany
| | - Jukka Kervinen
- Tosoh Bioscience LLC, 3604 Horizon Drive, King of Prussia, PA, 19406, USA.
| |
Collapse
|
49
|
Hou C, Chen Y, Hazeena SH, Tain Y, Hsieh C, Chen D, Liu R, Shih M. Cardiovascular risk of dietary trimethylamine oxide precursors and the therapeutic potential of resveratrol and its derivatives. FEBS Open Bio 2024; 14:358-379. [PMID: 38151750 PMCID: PMC10909991 DOI: 10.1002/2211-5463.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023] Open
Abstract
Overall diet, lifestyle choices, genetic predisposition, and other underlying health conditions may contribute to higher trimethylamine N-oxide (TMAO) levels and increased cardiovascular risk. This review explores the potential therapeutic ability of RSV to protect against cardiovascular diseases (CVD) and affect TMAO levels. This review considers recent studies on the association of TMAO with CVD. It also examines the sources, mechanisms, and metabolism of TMAO along with TMAO-induced cardiovascular events. Plant polyphenolic compounds, including resveratrol (RSV), and their cardioprotective mechanism of regulating TMAO levels and modifying gut microbiota are also discussed here. RSV's salient features and bioactive properties in reducing CVD have been evaluated. The close relationship between TMAO and CVD is clearly understood from currently available data, making it a potent biomarker for CVD. Precise investigation, including clinical trials, must be performed to understand RSV's mechanism, dose, effects, and derivatives as a cardioprotectant agent.
Collapse
Affiliation(s)
- Chih‐Yao Hou
- Department of Seafood Science, College of HydrosphereNational Kaohsiung University of Science and TechnologyTaiwan
| | - Yu‐Wei Chen
- Department of Food Science and BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
- Department of PediatricsKaohsiung Chang Gung Memorial HospitalTaiwan
| | - Sulfath Hakkim Hazeena
- Department of Seafood Science, College of HydrosphereNational Kaohsiung University of Science and TechnologyTaiwan
| | - You‐Lin Tain
- Department of PediatricsKaohsiung Chang Gung Memorial HospitalTaiwan
- Institute for Translational Research in BiomedicineKaohsiung Chang Gung Memorial HospitalTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Chang‐Wei Hsieh
- Department of Food Science and BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
- Department of Medical ResearchChina Medical University HospitalTaichungTaiwan
| | - De‐Quan Chen
- Department of Seafood Science, College of HydrosphereNational Kaohsiung University of Science and TechnologyTaiwan
| | - Rou‐Yun Liu
- Department of Seafood Science, College of HydrosphereNational Kaohsiung University of Science and TechnologyTaiwan
| | - Ming‐Kuei Shih
- Graduate Institute of Food Culture and InnovationNational Kaohsiung University of Hospitality and TourismTaiwan
| |
Collapse
|
50
|
Socha MW, Flis W, Wartęga M. Epigenetic Genome Modifications during Pregnancy: The Impact of Essential Nutritional Supplements on DNA Methylation. Nutrients 2024; 16:678. [PMID: 38474806 PMCID: PMC10934520 DOI: 10.3390/nu16050678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Pregnancy is an extremely stressful period in a pregnant woman's life. Currently, women's awareness of the proper course of pregnancy and its possible complications is constantly growing. Therefore, a significant percentage of women increasingly reach for various dietary supplements during gestation. Some of the most popular substances included in multi-ingredient supplements are folic acid and choline. Those substances are associated with positive effects on fetal intrauterine development and fewer possible pregnancy-associated complications. Recently, more and more attention has been paid to the impacts of specific environmental factors, such as diet, stress, physical activity, etc., on epigenetic modifications, understood as changes occurring in gene expression without the direct alteration of DNA sequences. Substances such as folic acid and choline may participate in epigenetic modifications by acting via a one-carbon cycle, leading to the methyl-group donor formation. Those nutrients may indirectly impact genome phenotype by influencing the process of DNA methylation. This review article presents the current state of knowledge on the use of folic acid and choline supplementation during pregnancy, taking into account their impacts on the maternal-fetal unit and possible pregnancy outcomes, and determining possible mechanisms of action, with particular emphasis on their possible impacts on epigenetic modifications.
Collapse
Affiliation(s)
- Maciej W. Socha
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland;
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Wojciech Flis
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland;
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Mateusz Wartęga
- Department of Pathophysiology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland;
| |
Collapse
|