1
|
López-Yerena A, de Santisteban Villaplana V, Badimon L, Vilahur G, Padro T. Probiotics: A Potential Strategy for Preventing and Managing Cardiovascular Disease. Nutrients 2024; 17:52. [PMID: 39796486 PMCID: PMC11722674 DOI: 10.3390/nu17010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Probiotics are gaining recognition as a viable strategy for mitigating cardiovascular risk factors. Specifically, recent studies highlight their potential benefits in managing cholesterol levels, blood pressure, and inflammation, which are critical components in the prevention of cardiovascular diseases (CVD). This comprehensive review aims to elucidate the impact of probiotic consumption on major cardiovascular risk factors, including individuals with hypertension, type II diabetes mellitus, metabolic syndrome, hypercholesterolemia, and in secondary prevention in coronary artery disease. Scientific evidence based on human studies suggests that probiotic consumption is associated with positive effects on anthropometric measures, inflammation markers, blood pressure, glucose metabolism markers, lipid profiles, and endothelial function. However, these findings should be interpreted pragmatically and acknowledge the significant variability in results. This variability may be attributed to factors such as probiotic composition (single strain or multiple strains), the characteristics of the delivery matrix (food, capsules, and sachets), the duration of the intervention, the dosage regimen, and baseline health profiles of the participants. Incorporating probiotics as part of a comprehensive and healthy lifestyle approach can be considered a feasible strategy for both the prevention and management of CVD. However, further research is needed on factors influencing the effect of probiotics, such as: (i) optimal probiotic strain(s), (ii) appropriate dosage, (iii) duration of treatment, (iv) optimal delivery vehicle, and (v) sex-specific differences.
Collapse
Affiliation(s)
- Anallely López-Yerena
- Institut Recerca Sant Pau, Sant Quinti 77-79, 08041 Barcelona, Spain; (A.L.-Y.); (V.d.S.V.); (L.B.); (G.V.)
| | - Victoria de Santisteban Villaplana
- Institut Recerca Sant Pau, Sant Quinti 77-79, 08041 Barcelona, Spain; (A.L.-Y.); (V.d.S.V.); (L.B.); (G.V.)
- School of Pharmacy and Food Sciences, University of Barcelona (UB), 08036 Barcelona, Spain
| | - Lina Badimon
- Institut Recerca Sant Pau, Sant Quinti 77-79, 08041 Barcelona, Spain; (A.L.-Y.); (V.d.S.V.); (L.B.); (G.V.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiovascular Research Foundation for Health Prevention and Innovation (FICSI), 08017 Barcelona, Spain
| | - Gemma Vilahur
- Institut Recerca Sant Pau, Sant Quinti 77-79, 08041 Barcelona, Spain; (A.L.-Y.); (V.d.S.V.); (L.B.); (G.V.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Teresa Padro
- Institut Recerca Sant Pau, Sant Quinti 77-79, 08041 Barcelona, Spain; (A.L.-Y.); (V.d.S.V.); (L.B.); (G.V.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Wu DN, Fajiculay E, Hsu CP, Hu CM, Lee LW, Tzou DLM. Investigation of pH-dependent 1H NMR urine metabolite profiles for diagnosis of obesity-related disordering. Int J Obes (Lond) 2024:10.1038/s41366-024-01695-0. [PMID: 39658677 DOI: 10.1038/s41366-024-01695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Human urine is highly favorable for 1H NMR metabolomics analyses of obesity-related diseases, such as non-alcoholic fatty liver, type 2 diabetes, and hyperlipidemia (HL), due to its non-invasiveness and ease of large-scale collection. However, the wide range of intrinsic urine pH (5.5-8.5) results in inevitably chemical shift and signal intensity modulations in the 1H NMR spectra. For patients where acidic urine pH is closely linked to obesity-related disease phenotypes, the pH-dependent modulations complicate the spectral analysis and deteriorate quantifications of urine metabolites. METHODS We characterized human urine metabolites by NMR at intrinsic urine pH, across urine pH 4.5 to 9.5, to account for pH-dependent modulations. A pH-dependent chemical shift database for quantifiable urine metabolites was generated and integrated into a "pH intelligence" program developed for quantifications of pH-dependent modulations at various pH. The 1H NMR spectra of urines collected from patients with Ob-HL and healthy controls were compared to uncover potential metabolic biomarkers of Ob-HL disease. RESULTS Three urine metabolites were unveiled by pH-dependent NMR approach, i.e., TMAO, glycine, and pyruvic acid, with VIP score >1.0 and significant q-value < 0.05, that represent as potential biomarkers for discriminating Ob-HL from healthy controls. Further ROC-AUC analyses revealed that TMAO alone achieved the highest diagnostic accuracy (AUC 0.902), surpassed to that obtained by neutralizing pH approach (AUC 0.549) and enabled better recovering potential urine metabolites from the Ob-HL disease phenotypes. CONCLUSIONS We concluded that 1H NMR-derived urine metabolite profile represents a snapshot that can reveal the physiological condition of humans in either a healthy or diseased state under intrinsic urine pH. We demonstrated a systematic analysis of pH-dependent modulations on the human urine metabolite signals and further developed software for quantification of urine metabolite profiles with high accuracy, enabling the uncovering of potential metabolite biomarkers in clinical diagnosis applications.
Collapse
Affiliation(s)
- Dan-Ni Wu
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- TIGP, Chemical Biology and Molecular Biophysics Program, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Li-Wen Lee
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, Taiwan.
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Der-Lii M Tzou
- TIGP, Chemical Biology and Molecular Biophysics Program, Academia Sinica, Taipei, Taiwan.
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan.
- Biomedical Translational Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
3
|
Li X, Wang Y, Xu J, Luo K, Dong T. Association between trimethylamine N-oxide and prognosis of patients with myocardial infarction: a meta-analysis. Front Cardiovasc Med 2024; 11:1334730. [PMID: 39720206 PMCID: PMC11666687 DOI: 10.3389/fcvm.2024.1334730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 11/04/2024] [Indexed: 12/26/2024] Open
Abstract
Background Trimethylamine N-oxide (TMAO) has been widely explored and considered as a biomarker for adverse cardiovascular events. However, the relationships between TMAO adverse cardiovascular events are inconsistent in patients. Therefore, this meta-analysis aimed to estimate association between TMAO levels and the prognosis of patients with myocardial infarction (MI). Methods We searched PubMed, EMBASE, the Cochrane Library, and Web of Science from inception to July 2, 2023, to retrieve all relevant clinical trials. Associations between TMAO levels, major adverse cardiovascular events (MACE), all-cause mortality, recurrent MI, stroke, etc., were systematically addressed. Outcomes included MACE, all-cause mortality, recurrent MI, rehospitalization caused by heart failure, stroke, revascularization, SYNTAX score, and multivessel disease. A fixed/random-effects model should be adopted to calculate the pooled estimates. Besides, funnel plot, Begg's test and Egger' test were used to test publication bias. Results A total of nine studies were included in our meta-analysis. Our results indicated that higher TMAO levels were associated with greater risk of MACE (RR = 1.94; 95% CI = 1.39 to 2.73), all-cause mortality (RR = 1.56; 95% CI = 1.00 to 2.44), and MI (RR = 1.21; 95% CI = 1.01 to 1.45). No significant association was found in stroke, SYNTAX, and multivessel disease. Besides, our results reported that the association between TMAO levels and MACE after MI was not affected by the geographic localization. Conclusion This study was the first meta-analysis that showed a significant positive association of TMAO levels with MACE, all-cause mortality, and recurrent MI in patients with MI. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=460400, PROSPERO (CRD42023460400).
Collapse
Affiliation(s)
- Xiuqing Li
- Department of Gastroenterology and Hepatology, The Third People’s Hospital of Zhenjiang, Zhenjiang, Jiangsu, China
| | - Yubao Wang
- Department of Cardiology, The Affiliated Lianyungang Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Jie Xu
- Department of Cardiology, The Affiliated Lianyungang Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Kaili Luo
- Department of Gastroenterology and Hepatology, The Third People’s Hospital of Zhenjiang, Zhenjiang, Jiangsu, China
| | - Tao Dong
- Department of Gastroenterology and Hepatology, The Third People’s Hospital of Zhenjiang, Zhenjiang, Jiangsu, China
| |
Collapse
|
4
|
Li Z, He X, Fang Q, Yin X. Gut Microbe-Generated Metabolite Trimethylamine-N-Oxide and Ischemic Stroke. Biomolecules 2024; 14:1463. [PMID: 39595639 PMCID: PMC11591650 DOI: 10.3390/biom14111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite, the production of which in vivo is mainly regulated by dietary choices, gut microbiota, and the hepatic enzyme flavin monooxygenase (FMO), while its elimination occurs via the kidneys. The TMAO level is positively correlated with the risk of developing cardiovascular diseases. Recent studies have found that TMAO plays an important role in the development of ischemic stroke. In this review, we describe the relationship between TMAO and ischemic stroke risk factors (hypertension, diabetes, atrial fibrillation, atherosclerosis, thrombosis, etc.), disease risk, severity, prognostic outcomes, and recurrence and discuss the possible mechanisms by which they interact. Importantly, TMAO induces atherosclerosis and thrombosis through lipid metabolism, foam cell formation, endothelial dysfunction (via inflammation, oxidative stress, and pyroptosis), enhanced platelet hyper-reactivity, and the upregulation and activation of vascular endothelial tissue factors. Although the pathogenic mechanisms underlying TMAO's aggravation of disease severity and its effects on post-stroke neurological recovery and recurrence risk remain unclear, they may involve inflammation, astrocyte function, and pro-inflammatory monocytes. In addition, this paper provides a summary and evaluation of relevant preclinical and clinical studies on interventions regarding the gut-microbiota-dependent TMAO level to provide evidence for the prevention and treatment of ischemic stroke through the gut microbe-TMAO pathway.
Collapse
Affiliation(s)
| | | | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215006, China; (Z.L.); (X.H.)
| | - Xulong Yin
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215006, China; (Z.L.); (X.H.)
| |
Collapse
|
5
|
Sprinkles JK, Lulla A, Hullings AG, Trujillo-Gonzalez I, Klatt KC, Jacobs DR, Shah RV, Murthy VL, Howard AG, Gordon-Larsen P, Meyer KA. Choline Metabolites and 15-Year Risk of Incident Diabetes in a Prospective Cohort of Adults: Coronary Artery Risk Development in Young Adults (CARDIA) Study. Diabetes Care 2024; 47:1985-1994. [PMID: 39259767 PMCID: PMC11502527 DOI: 10.2337/dc24-1033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE The potential for choline metabolism to influence the development of diabetes has received increased attention. Previous studies on circulating choline metabolites and incident diabetes have been conducted in samples of older adults, often with a high prevalence of risk factors. RESEARCH DESIGN AND METHODS Participants were from year 15 of follow-up (2000-2001) in the Coronary Artery Risk Development in Young Adults (CARDIA) Study (n = 3,133, aged 33-45 years) with plasma choline metabolite (choline, betaine, and trimethylamine N-oxide [TMAO]) data. We quantified associations between choline metabolites and 15-year risk of incident diabetes (n = 387) among participants free of diabetes at baseline using Cox proportional hazards regression models adjusted for sociodemographics, health behaviors, and clinical variables. RESULTS Betaine was inversely associated with 15-year risk of incident diabetes (hazard ratio 0.76 [95% CI 0.67, 0.88] per 1-SD unit betaine), and TMAO was positively associated with 15-year risk of incident diabetes (1.11 [1.01, 1.22] per 1-SD unit). Choline was not significantly associated with 15-year risk of incident diabetes (1.05 [0.94, 1.16] per 1-SD). CONCLUSIONS Our findings are consistent with other published literature supporting a role for choline metabolism in diabetes. Our study extends the current literature by analyzing a racially diverse population-based cohort of early middle-aged individuals in whom preventive activities may be most relevant.
Collapse
Affiliation(s)
- Jessica K. Sprinkles
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Anju Lulla
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC
| | - Autumn G. Hullings
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Isis Trujillo-Gonzalez
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kevin C. Klatt
- Department of Nutrition Sciences and Toxicology, University of California, Berkeley, Berkeley, CA
| | - David R. Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota-Twin Cities, Minneapolis, MN
| | - Ravi V. Shah
- Department of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Annie Green Howard
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Penny Gordon-Larsen
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Katie A. Meyer
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
6
|
Daniel N, Genua F, Jenab M, Mayén AL, Chrysovalantou Chatziioannou A, Keski-Rahkonen P, Hughes DJ. The role of the gut microbiome in the development of hepatobiliary cancers. Hepatology 2024; 80:1252-1269. [PMID: 37055022 PMCID: PMC11487028 DOI: 10.1097/hep.0000000000000406] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Hepatobiliary cancers, including hepatocellular carcinoma and cancers of the biliary tract, share high mortality and rising incidence rates. They may also share several risk factors related to unhealthy western-type dietary and lifestyle patterns as well as increasing body weights and rates of obesity. Recent data also suggest a role for the gut microbiome in the development of hepatobiliary cancer and other liver pathologies. The gut microbiome and the liver interact bidirectionally through the "gut-liver axis," which describes the interactive relationship between the gut, its microbiota, and the liver. Here, we review the gut-liver interactions within the context of hepatobiliary carcinogenesis by outlining the experimental and observational evidence for the roles of gut microbiome dysbiosis, reduced gut barrier function, and exposure to inflammatory compounds as well as metabolic dysfunction as contributors to hepatobiliary cancer development. We also outline the latest findings regarding the impact of dietary and lifestyle factors on liver pathologies as mediated by the gut microbiome. Finally, we highlight some emerging gut microbiome editing techniques currently being investigated in the context of hepatobiliary diseases. Although much work remains to be done in determining the relationships between the gut microbiome and hepatobiliary cancers, emerging mechanistic insights are informing treatments, such as potential microbiota manipulation strategies and guiding public health advice on dietary/lifestyle patterns for the prevention of these lethal tumors.
Collapse
Affiliation(s)
- Neil Daniel
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | - Flavia Genua
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Ana-Lucia Mayén
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | | | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - David J. Hughes
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Ho KJ, Muhammad LN, Khanh LN, Li XS, Carns M, Aren K, Kim SJ, Verma P, Hazen SL, Varga J. Elevated Circulating Levels of Gut Microbe-Derived Trimethylamine N-Oxide Are Associated with Systemic Sclerosis. J Clin Med 2024; 13:5984. [PMID: 39408044 PMCID: PMC11477889 DOI: 10.3390/jcm13195984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Alterations in fecal microbial communities in patients with systemic sclerosis (SSc) are common, but the clinical significance of this observation is poorly understood. Gut microbial production of trimethylamine (TMA), and its conversion by the host to trimethylamine N-oxide (TMAO), has clinical and mechanistic links to cardiovascular and renal diseases. Direct provision of TMAO has been shown to promote fibrosis and vascular injury, hallmarks of SSc. We sought to determine levels of TMAO and related metabolites in SSc patients and investigate associations between the metabolite levels with disease features. Methods: This is an observational case:control study. Adults with SSc (n = 200) and non-SSc controls (n = 400) were matched for age, sex, indices of renal function, diabetes mellitus, and cardiovascular disease. Serum TMAO, choline, betaine, carnitine, γ-butyrobetaine, and crotonobetaine were measured using stable isotope dilution liquid chromatography tandem mass spectrometry. Results: Median TMAO concentration was higher (p = 0.020) in SSc patients (3.31 [interquartile range 2.18, 5.23] µM) relative to controls (2.85 [IQR 1.88, 4.54] µM). TMAO was highest among obese and male SSc participants compared to all other groups. Following adjustment for sex, BMI, age, race, and eGFR in a quantile regression model, elevated TMAO levels remained associated with SSc at each quantile of TMAO. Conclusions: Patients with SSc have increased circulating levels of TMAO independent of comorbidities including age, sex, renal function, diabetes mellitus, and cardiovascular disease. As a potentially modifiable factor, further studies examining the link between TMAO and SSc disease severity and course are warranted.
Collapse
Affiliation(s)
- Karen J. Ho
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Lutfiyya N. Muhammad
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Linh Ngo Khanh
- Department of Cardiovascular Surgery, Houston Methodist Hospital, Houston, TX 77030, USA;
| | - Xinmin S. Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (X.S.L.); (S.L.H.)
| | - Mary Carns
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.C.); (K.A.)
| | - Kathleen Aren
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.C.); (K.A.)
| | - Seok-Jo Kim
- Institute of Basic Science, Sungkyunkwan University, Suwon 16419, Republic of Korea;
- Mondrian AI Co., Ltd., Incheon 21985, Republic of Korea
| | - Priyanka Verma
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Stanley L. Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (X.S.L.); (S.L.H.)
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - John Varga
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| |
Collapse
|
8
|
Zouridis S, Nasir AB, Aspichueta P, Syn WK. The Link between Metabolic Syndrome and the Brain. Digestion 2024:1-9. [PMID: 39369701 DOI: 10.1159/000541696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Metabolic syndrome (MetS) is a cluster of cardiometabolic conditions that has been linked to high risk for cardiovascular disease, liver complications, and several malignancies. More recently, MetS has been associated with cognitive dysfunction. SUMMARY Studies have shown an association with minimal cognitive impairment, progression to vascular dementia, and even Alzheimer's disease. MetS components have been individually explored, and glucose intolerance has the strongest association with impairment in several cognitive domains. Several hypotheses have been proposed regarding the pathophysiology underlying the MetS-cognitive dysfunction association, and even though insulin resistance plays a major role, more studies are needed to elucidate this topic. Moreover, several other factors contributing to this association have been identified. Liver disease and more specifically metabolic dysfunction-associated steatotic liver disease can on its own contribute to cognitive decline through systemic inflammation and higher ammonia levels. Gut dysbiosis that has also been identified in MetS can also lead to cognitive impairment through several mechanisms that result in neurotoxicity. Finally, there are several other factors that may modify the MetS-cognitive dysfunction relationship, such as lifestyle, diet, education status, and age. More recently, circadian syndrome was explored and was found to be even more strongly associated with cognitive impairment. KEY MESSAGE MetS is associated with cognitive decline. Certain cardiometabolic risk factors have a stronger association with cognitive impairment, and there are several factors that may modify this relationship. The aim of this review was to assess and summarize the existing body of evidence on the association between MetS and cognitive impairment and identify areas that necessitate further investigation.
Collapse
Affiliation(s)
- Spyridon Zouridis
- Division of Gastroenterology and Hepatology, Saint Louis University, St. Louis, Missouri, USA,
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, Leioa, Spain,
| | - Ahmad Basil Nasir
- Division of Gastroenterology and Hepatology, Saint Louis University, St. Louis, Missouri, USA
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, Leioa, Spain
| | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology, Saint Louis University, St. Louis, Missouri, USA
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, Leioa, Spain
| |
Collapse
|
9
|
Kirsoy F, Yalniz M, Bahçecioğlu İH, Artaş H, Türkoğlu S, Solmaz O, Tawheed A. The gut-pancreas axis: investigating the relationship between microbiota metabolites and pancreatic steatosis. Intern Emerg Med 2024; 19:1887-1896. [PMID: 38981984 DOI: 10.1007/s11739-024-03685-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
The prevalence of pancreatic steatosis has increased and it has been linked to the rising prevalence of metabolic syndrome. Metabolic syndrome is known to have a strong connection with changes in intestinal microbiota. The aim of this study was to explore the relationship between pancreatic steatosis and the levels of trimethylamine N-oxide (TMAO) and butyrate. In this study, 136 individuals were randomly selected from outpatient clinics at Firat University Hospital. The study evaluated their demographic characteristics, anthropometric measurements, and biochemical parameters. The presence of pancreatic steatosis was assessed using abdominal ultrasonography. Additionally, the levels of TMAO and butyrate were measured. The mean age of individuals in the study was 44.5 ± 14.6. 84 of the subjects were females. Using the waist circumference, 61 were considered obese and 34 overweight. The detection rate of pancreatic steatosis was found to be 70.6%. The study found that individuals with steatosis had higher average age, presence of hepatic steatosis, BMI, waist circumference measurements, and presence of metabolic syndrome than those without steatosis. A significantly higher butyrate level was detected in those without steatosis (p = 0.001). TMAO levels were slightly higher in patients without steatosis than in those with steatosis; however, this was insignificant. Pancreatic steatosis is highly associated with alterations in levels of microbiota metabolites, indicating a potential role of these metabolites in the pathogenesis of the disease and subsequent therapeutic targets. Several other factors, such as age, hepatic steatosis, diabetes, and waist circumference, have also been identified as potential predictors of pancreatic steatosis.
Collapse
Affiliation(s)
- Furkan Kirsoy
- Department of Internal Medicine, Fethi Sekin City Hospital, Elazig, Turkey
| | - Mehmet Yalniz
- Department of Gastroenterology, Faculty of Medicine, Firat University, Elazig, Turkey
| | | | - Hakan Artaş
- Department of Radiology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Semra Türkoğlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Firat University, Elazig, Turkey
| | - Onur Solmaz
- Department of Radiology, Batman Training and Research Hospital, Batman, Turkey
| | - Ahmed Tawheed
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Ain Helwan, Cairo, 11795, Egypt.
| |
Collapse
|
10
|
Kang JW, Vemuganti V, Kuehn JF, Ulland TK, Rey FE, Bendlin BB. Gut microbial metabolism in Alzheimer's disease and related dementias. Neurotherapeutics 2024; 21:e00470. [PMID: 39462700 PMCID: PMC11585892 DOI: 10.1016/j.neurot.2024.e00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024] Open
Abstract
Multiple studies over the last decade have established that Alzheimer's disease and related dementias (ADRD) are associated with changes in the gut microbiome. These alterations in organismal composition result in changes in the abundances of functions encoded by the microbial community, including metabolic capabilities, which likely impact host disease mechanisms. Gut microbes access dietary components and other molecules made by the host and produce metabolites that can enter circulation and cross the blood-brain barrier (BBB). In recent years, several microbial metabolites have been associated with or have been shown to influence host pathways relevant to ADRD pathology. These include short chain fatty acids, secondary bile acids, tryptophan derivatives (such as kynurenine, serotonin, tryptamine, and indoles), and trimethylamine/trimethylamine N-oxide. Notably, some of these metabolites cross the BBB and can have various effects on the brain, including modulating the release of neurotransmitters and neuronal function, inducing oxidative stress and inflammation, and impacting synaptic function. Microbial metabolites can also impact the central nervous system through immune, enteroendocrine, and enteric nervous system pathways, these perturbations in turn impact the gut barrier function and peripheral immune responses, as well as the BBB integrity, neuronal homeostasis and neurogenesis, and glial cell maturation and activation. This review examines the evidence supporting the notion that ADRD is influenced by gut microbiota and its metabolites. The potential therapeutic advantages of microbial metabolites for preventing and treating ADRD are also discussed, highlighting their potential role in developing new treatments.
Collapse
Affiliation(s)
- Jea Woo Kang
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Vaibhav Vemuganti
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessamine F Kuehn
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Tyler K Ulland
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
11
|
Yang B, Tang G, Wang M, Ni Y, Tong J, Hu C, Zhou M, Jiao K, Li Z. Trimethylamine N-oxide induces non-alcoholic fatty liver disease by activating the PERK. Toxicol Lett 2024; 400:93-103. [PMID: 39153559 DOI: 10.1016/j.toxlet.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/17/2024] [Accepted: 08/15/2024] [Indexed: 08/19/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a liver disease causing different progressive pathological changes. Trimethylamine N-oxide (TMAO), a product of gut microbiota metabolism, is a specific agonist of the protein kinase R-like endoplasmic reticulum kinase (PERK) pathway, one of the endoplasmic reticulum stress (ERS) pathways. TMAO has been associated with the occurrence and development of NAFLD based on the results of previous studies, but whether the simple consumption of TMAO can directly induce NAFLD and its underlying mechanism remain unclear. To investigate this question, we constructed an animal model in which adult male zebrafish were fed a controlled diet containing 1 % or 3 % TMAO for 20 weeks. Eventually, we observed that TMAO caused lipid accumulation, inflammatory infiltration, liver injury and liver fibrosis in zebrafish livers; meanwhile, the PERK signaling pathway was activated in the zebrafish livers. This finding was further confirmed in HepG2 cells and hepatic stellate cells models. In conclusion, this study found that TMAO directly induced different pathological states of NAFLD in zebrafish liver, and the activation of PERK pathway is an important mechanism, which may provide crucial strategies for the diagnosis and treatment of NAFLD.
Collapse
Affiliation(s)
- Bingmo Yang
- Suqian Center for Disease Control and Prevention, Suqian, Jiangsu 223800, China
| | - Guomin Tang
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mengting Wang
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yifan Ni
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jiali Tong
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunyan Hu
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ming Zhou
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Kailin Jiao
- Department of Nutrition, The Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China.
| | - Zhong Li
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
12
|
McBurney MI, Cho CE. Understanding the role of the human gut microbiome in overweight and obesity. Ann N Y Acad Sci 2024; 1540:61-88. [PMID: 39283061 DOI: 10.1111/nyas.15215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
The gut microbiome may be related to the prevalence of overweight and obesity, but high interindividual variability of the human microbiome complicates our understanding. Obesity often occurs concomitantly with micronutrient deficiencies that impair energy metabolism. Microbiota composition is affected by diet. Host-microbiota interactions are bidirectional. We propose three pathways whereby these interactions may modulate the gut microbiome and obesity: (1) ingested compounds or derivatives affecting small intestinal transit, endogenous secretions, digestion, absorption, microbiome balance, and gut barrier function directly affect host metabolism; (2) substrate availability affecting colonic microbial composition and contact with the gut barrier; and (3) microbial end products affecting host metabolism. The quantity/concentration, duration, and/or frequency (circadian rhythm) of changes in these pathways can alter the gut microbiome, disrupt the gut barrier, alter host immunity, and increase the risk of and progression to overweight and obesity. Host-specific characteristics (e.g., genetic variations) may further affect individual sensitivity and/or resilience to diet- and microbiome-associated perturbations in the colonic environment. In this narrative review, the effects of selected interventions, including fecal microbiota transplantation, dietary calorie restriction, dietary fibers and prebiotics, probiotics and synbiotics, vitamins, minerals, and fatty acids, on the gut microbiome, body weight, and/or adiposity are summarized to help identify mechanisms of action and research opportunities.
Collapse
Affiliation(s)
- Michael I McBurney
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- Division of Biochemical and Molecular Biology, Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, USA
| | - Clara E Cho
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
13
|
Lu S, Wang C, Ma J, Wang Y. Metabolic mediators: microbial-derived metabolites as key regulators of anti-tumor immunity, immunotherapy, and chemotherapy. Front Immunol 2024; 15:1456030. [PMID: 39351241 PMCID: PMC11439727 DOI: 10.3389/fimmu.2024.1456030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
The human microbiome has recently emerged as a focal point in cancer research, specifically in anti-tumor immunity, immunotherapy, and chemotherapy. This review explores microbial-derived metabolites, emphasizing their crucial roles in shaping fundamental aspects of cancer treatment. Metabolites such as short-chain fatty acids (SCFAs), Trimethylamine N-Oxide (TMAO), and Tryptophan Metabolites take the spotlight, underscoring their diverse origins and functions and their profound impact on the host immune system. The focus is on SCFAs' remarkable ability to modulate immune responses, reduce inflammation, and enhance anti-tumor immunity within the intricate tumor microenvironment (TME). The review critically evaluates TMAO, intricately tied to dietary choices and gut microbiota composition, assessing its implications for cancer susceptibility, progression, and immunosuppression. Additionally, the involvement of tryptophan and other amino acid metabolites in shaping immune responses is discussed, highlighting their influence on immune checkpoints, immunosuppression, and immunotherapy effectiveness. The examination extends to their dynamic interaction with chemotherapy, emphasizing the potential of microbial-derived metabolites to alter treatment protocols and optimize outcomes for cancer patients. A comprehensive understanding of their role in cancer therapy is attained by exploring their impacts on drug metabolism, therapeutic responses, and resistance development. In conclusion, this review underscores the pivotal contributions of microbial-derived metabolites in regulating anti-tumor immunity, immunotherapy responses, and chemotherapy outcomes. By illuminating the intricate interactions between these metabolites and cancer therapy, the article enhances our understanding of cancer biology, paving the way for the development of more effective treatment options in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Shan Lu
- Department of General Practice, The Second Hospital of Jilin University, Changchun, China
| | - Chunling Wang
- Medical Affairs Department, The Second Hospital of Jilin University, Changchun, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, China
| | - Yichao Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Bentley AR, Doumatey AP, Zhou J, Lei L, Meeks KAC, Heuston EF, Rotimi CN, Adeyemo AA. Lipidomics profiling and circulating triglyceride concentrations in sub-Saharan African individuals. Sci Rep 2024; 14:20834. [PMID: 39251667 PMCID: PMC11385232 DOI: 10.1038/s41598-024-71734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Elevated triglycerides (TG) are a risk factor for cardiometabolic disorders. There are limited data on lipidomics profiles associated with serum triglycerides concentrations, although these could advance our understanding of the mechanisms underlying these associations. We conducted a lipidomics study of 308 Nigerians with replication in 199 Kenyans. Regression models were used to assess the association of TG with 480 lipid metabolites. Association and mediation analyses were conducted to determine the relationship among TG, metabolites, and several cardiometabolic traits. Ninety-nine metabolites were significantly associated with TG, and 91% of these associations replicated. Overrepresentation analysis identified enrichment of diacylglycerols, monoacylglycerols, diacylglycerophosphoethanolamines, monoacylglycerophosphocholines, ceramide phosphocholines, and diacylglycerophosphocholines. TG-cardiometabolic trait associations were largely mediated by TG-associated metabolites. Associations with type 2 diabetes, waist circumference, body mass index, total cholesterol, and low-density lipoprotein cholesterol concentration were independently mediated by metabolites in multiple subpathways. This lipidomics study in sub-Saharan Africans demonstrated that TG is associated with several non-TG lipids classes, including phosphatidylethanolamines, phosphatidylcholines, lysophospholipids, and plasmalogens, some of which may mediate the effect of TG as a risk factor for cardiometabolic disorders. The study identifies metabolites that are more proximal to cardiometabolic traits, which may be useful for understanding the underlying biology as well as differences in TG-trait associations across ancestries.
Collapse
Affiliation(s)
- Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A Room 1025, Bethesda, MD, 20892-5635, USA.
| | - Ayo P Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A Room 1025, Bethesda, MD, 20892-5635, USA
| | - Jie Zhou
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A Room 1025, Bethesda, MD, 20892-5635, USA
| | - Lin Lei
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A Room 1025, Bethesda, MD, 20892-5635, USA
| | - Karlijn A C Meeks
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A Room 1025, Bethesda, MD, 20892-5635, USA
| | - Elisabeth F Heuston
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A Room 1025, Bethesda, MD, 20892-5635, USA
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A Room 1025, Bethesda, MD, 20892-5635, USA
| | - Adebowale A Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A Room 1025, Bethesda, MD, 20892-5635, USA.
| |
Collapse
|
15
|
Romaní-Pérez M, Líebana-García R, Flor-Duro A, Bonillo-Jiménez D, Bullich-Vilarrubias C, Olivares M, Sanz Y. Obesity and the gut microbiota: implications of neuroendocrine and immune signaling. FEBS J 2024. [PMID: 39159270 DOI: 10.1111/febs.17249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/29/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Obesity is a major health challenge due to its high prevalence and associated comorbidities. The excessive intake of a diet rich in fat and sugars leads to a persistent imbalance between energy intake and energy expenditure, which increases adiposity. Here, we provide an update on relevant diet-microbe-host interactions contributing to or protecting from obesity. In particular, we focus on how unhealthy diets shape the gut microbiota and thus impact crucial intestinal neuroendocrine and immune system functions. We describe how these interactions promote dysfunction in gut-to-brain neuroendocrine pathways involved in food intake control and postprandial metabolism and elevate the intestinal proinflammatory tone, promoting obesity and metabolic complications. In addition, we provide examples of how this knowledge may inspire microbiome-based interventions, such as fecal microbiota transplants, probiotics, and biotherapeutics, to effectively combat obesity-related disorders. We also discuss the current limitations and gaps in knowledge of gut microbiota research in obesity.
Collapse
Affiliation(s)
- Marina Romaní-Pérez
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Rebeca Líebana-García
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Alejandra Flor-Duro
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Daniel Bonillo-Jiménez
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Clara Bullich-Vilarrubias
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Marta Olivares
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
16
|
Cifuentes M, Vahid F, Devaux Y, Bohn T. Biomarkers of food intake and their relevance to metabolic syndrome. Food Funct 2024; 15:7271-7304. [PMID: 38904169 DOI: 10.1039/d4fo00721b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Metabolic syndrome (MetS) constitutes a prevalent risk factor associated with non communicable diseases such as cardiovascular disease and type 2 diabetes. A major factor impacting the etiology of MetS is diet. Dietary patterns and several individual food constituents have been related to the risk of developing MetS or have been proposed as adjuvant treatment. However, traditional methods of dietary assessment such as 24 h recalls rely greatly on intensive user-interaction and are subject to bias. Hence, more objective methods are required for unbiased dietary assessment and efficient prevention. While it is accepted that some dietary-derived constituents in blood plasma are indicators for certain dietary patterns, these may be too unstable (such as vitamin C as a marker for fruits/vegetables) or too broad (e.g. polyphenols for plant-based diets) or reflect too short-term intake only to allow for strong associations with prolonged intake of individual food groups. In the present manuscript, commonly employed biomarkers of intake including those related to specific food items (e.g. genistein for soybean or astaxanthin and EPA for fish intake) and novel emerging ones (e.g. stable isotopes for meat intake or microRNA for plant foods) are emphasized and their suitability as biomarker for food intake discussed. Promising alternatives to plasma measures (e.g. ethyl glucuronide in hair for ethanol intake) are also emphasized. As many biomarkers (i.e. secondary plant metabolites) are not limited to dietary assessment but are also capable of regulating e.g. anti-inflammatory and antioxidant pathways, special attention will be given to biomarkers presenting a double function to assess both dietary patterns and MetS risk.
Collapse
Affiliation(s)
- Miguel Cifuentes
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
- Doctoral School in Science and Engineering, University of Luxembourg, 2, Avenue de l'Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Farhad Vahid
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| | - Yvan Devaux
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| | - Torsten Bohn
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| |
Collapse
|
17
|
Zhang R, Yan Z, Zhong H, Luo R, Liu W, Xiong S, Liu Q, Liu M. Gut microbial metabolites in MASLD: Implications of mitochondrial dysfunction in the pathogenesis and treatment. Hepatol Commun 2024; 8:e0484. [PMID: 38967596 PMCID: PMC11227362 DOI: 10.1097/hc9.0000000000000484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/09/2024] [Indexed: 07/06/2024] Open
Abstract
With an increasing prevalence, metabolic dysfunction-associated steatotic liver disease (MASLD) has become a major global health problem. MASLD is well-known as a multifactorial disease. Mitochondrial dysfunction and alterations in the gut bacteria are 2 vital events in MASLD. Recent studies have highlighted the cross-talk between microbiota and mitochondria, and mitochondria are recognized as pivotal targets of the gut microbiota to modulate the host's physiological state. Mitochondrial dysfunction plays a vital role in MASLD and is associated with multiple pathological changes, including hepatocyte steatosis, oxidative stress, inflammation, and fibrosis. Metabolites are crucial mediators of the gut microbiota that influence extraintestinal organs. Additionally, regulation of the composition of gut bacteria may serve as a promising therapeutic strategy for MASLD. This study reviewed the potential roles of several common metabolites in MASLD, emphasizing their impact on mitochondrial function. Finally, we discuss the current treatments for MASLD, including probiotics, prebiotics, antibiotics, and fecal microbiota transplantation. These methods concentrate on restoring the gut microbiota to promote host health.
Collapse
Affiliation(s)
- Ruhan Zhang
- College of Acupuncture, Tuina, and Rehabilitation, Hunan University of Chinese Medicine, Hunan, China
| | - Zhaobo Yan
- College of Acupuncture, Tuina, and Rehabilitation, Hunan University of Chinese Medicine, Hunan, China
| | - Huan Zhong
- College of Acupuncture, Tuina, and Rehabilitation, Hunan University of Chinese Medicine, Hunan, China
| | - Rong Luo
- Department of Acupuncture and Massage Rehabilitation, The First Affiliated Hospital of Hunan University of Chinese Medicine, Hunan, China
| | - Weiai Liu
- Department of Acupuncture and Massage Rehabilitation, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Hunan, China
| | - Shulin Xiong
- Department of Preventive Center, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Hunan, China
| | - Qianyan Liu
- College of Acupuncture, Tuina, and Rehabilitation, Hunan University of Chinese Medicine, Hunan, China
| | - Mi Liu
- College of Acupuncture, Tuina, and Rehabilitation, Hunan University of Chinese Medicine, Hunan, China
| |
Collapse
|
18
|
Naghipour S, Cox AJ, Fisher JJ, Plan M, Stark T, West N, Peart JN, Headrick JP, Du Toit EF. Circulating TMAO, the gut microbiome and cardiometabolic disease risk: an exploration in key precursor disorders. Diabetol Metab Syndr 2024; 16:133. [PMID: 38886825 PMCID: PMC11181661 DOI: 10.1186/s13098-024-01368-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Elevations in the gut metabolite trimethylamine-N-oxide (TMAO) have been linked to cardiovascular and metabolic diseases. Whether elevated TMAO levels reflect early mechanistic involvement or a sequela of evolving disease awaits elucidation. The purpose of this study was to further explore these potential associations. METHODS We investigated relationships between circulating levels of TMAO and its pre-cursor substrates, dietary factors, gut microbiome profiles and disease risk in individuals with a Healthy BMI (18.5 < BMI < 25, n = 41) or key precursor states for cardiometabolic disease: Overweight (25 < BMI < 30 kg/m2, n = 33), Obese (BMI > 30, n = 27) and Metabolic Syndrome (MetS; ≥ 3 ATPIII report criteria, n = 39). RESULTS Unexpectedly, plasma [TMAO] did not vary substantially between groups (means of 3-4 µM; p > 0.05), although carnitine was elevated in participants with MetS. Gut microbial diversity and Firmicutes were also significantly reduced in the MetS group (p < 0.05). Exploratory analysis across diverse parameters reveals significant correlations between circulating [TMAO] and seafood intake (p = 0.007), gut microbial diversity (p = 0.017-0.048), and plasma [trimethylamine] (TMA; p = 0.001). No associations were evident with anthropometric parameters or cardiometabolic disease risk. Most variance in [TMAO] within and between groups remained unexplained. CONCLUSIONS Data indicate that circulating [TMAO] may be significantly linked to seafood intake, levels of TMA substrate and gut microbial diversity across healthy and early disease phenotypes. However, mean concentrations remain < 5 µM, with little evidence of links between TMAO and cardiometabolic disease risk. These observations suggest circulating TMAO may not participate mechanistically in cardiometabolic disease development, with later elevations likely a detrimental sequela of extant disease.
Collapse
Affiliation(s)
- Saba Naghipour
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD, 4215, Australia
| | - Amanda J Cox
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD, 4215, Australia
- Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, QLD, 4215, Australia
| | - Joshua J Fisher
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Manuel Plan
- Metabolomics Australia (Queensland Node), The University of Queensland, St. Lucia, QLD, 4072, Australia
- Metabolomics Facility, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD, 4006, Australia
| | - Terra Stark
- Metabolomics Australia (Queensland Node), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Nic West
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD, 4215, Australia
- Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, QLD, 4215, Australia
| | - Jason N Peart
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD, 4215, Australia
| | - John P Headrick
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD, 4215, Australia
| | - Eugene F Du Toit
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD, 4215, Australia.
| |
Collapse
|
19
|
Ma R, Shi G, Li Y, Shi H. Trimethylamine N-oxide, choline and its metabolites are associated with the risk of non-alcoholic fatty liver disease. Br J Nutr 2024; 131:1915-1923. [PMID: 38443197 DOI: 10.1017/s0007114524000631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
It is inconclusive whether trimethylamine N-oxide (TMAO) and choline and related metabolites, namely trimethylamine (TMA), l-carnitine, betaine and dimethylglycine (DMG), are associated with non-alcoholic fatty liver disease (NAFLD). Our objective was to investigate these potential associations. Additionally, we sought to determine the mediating role of TMAO. In this 1:1 age- and sex-matched case-control study, a total of 150 pairs comprising NAFLD cases and healthy controls were identified. According to the fully adjusted model, after the highest tertile was compared with the lowest tertile, the plasma TMAO concentration (OR = 2·02 (95 % CI 1·04, 3·92); P trend = 0·003), l-carnitine concentration (OR = 1·79 (1·01, 3·17); P trend = 0·020) and DMG concentration (OR = 1·81 (1·00, 3·28); P trend = 0·014) were significantly positively associated with NAFLD incidence. However, a significantly negative association was found for plasma betaine (OR = 0. 50 (0·28, 0·88); P trend = 0·001). The restricted cubic splines model consistently indicated positive dose-response relationships between exposure to TMAO, l-carnitine, and DMG and NAFLD risk, with a negative association being observed for betaine. The corresponding AUC increased significantly from 0·685 (0·626, 0·745) in the traditional risk factor model to 0·769 (0·716, 0·822) when TMAO and its precursors were included (l-carnitine, betaine and choline) (P = 0·032). Mediation analyses revealed that 14·7 and 18·6 % of the excess NAFLD risk associated with l-carnitine and DMG, respectively, was mediated by TMAO (the P values for the mediating effects were 0·021 and 0·036, respectively). These results suggest that a higher concentration of TMAO is associated with increased NAFLD risk among Chinese adults and provide evidence of the possible mediating role of TMAO.
Collapse
Affiliation(s)
- Rong Ma
- Department of Infectious Diseases, the First Affiliated Hospital of Chengdu Medical College, Chengdu610500, People's Republic of China
| | - Guangying Shi
- Department of Hepatology, Xinjiang Corps Hospital, Xinjiang832104, People's Republic of China
| | - Yanfang Li
- Department of Infectious Diseases, the First Affiliated Hospital of Chengdu Medical College, Chengdu610500, People's Republic of China
| | - Han Shi
- Department of Infectious Diseases, the First Affiliated Hospital of Chengdu Medical College, Chengdu610500, People's Republic of China
| |
Collapse
|
20
|
Vallianou NG, Kounatidis D, Psallida S, Panagopoulos F, Stratigou T, Geladari E, Karampela I, Tsilingiris D, Dalamaga M. The Interplay Between Dietary Choline and Cardiometabolic Disorders: A Review of Current Evidence. Curr Nutr Rep 2024; 13:152-165. [PMID: 38427291 PMCID: PMC11133147 DOI: 10.1007/s13668-024-00521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE OF REVIEW Choline is an essential nutrient for human health and cellular homeostasis as it is necessary for the synthesis of lipid cell membranes, lipoproteins, and the synthesis of the neurotransmitter acetylcholine. The aim of this review is to analyze the beneficial effects of choline and its significance in cellular metabolism and various inflammatory pathways, such as the inflammasome. We will discuss the significance of dietary choline in cardiometabolic disorders, such as non-alcoholic fatty liver disease (NAFLD), cardiovascular disease (CVD), and chronic kidney disease (CKD) as well as in cognitive function and associated neuropsychiatric disorders. RECENT FINDINGS Choline deficiency has been related to the development of NAFLD and cognitive disability in the offspring as well as in adulthood. In sharp contrast, excess dietary intake of choline mediated via the increased production of trimethylamine by the gut microbiota and increased trimethylamine-N-oxide (TMAO) levels has been related to atherosclerosis in most studies. In this context, CVD and CKD through the accumulation of TMAO, p-Cresyl-sulfate (pCS), and indoxyl-sulfate (IS) in serum may be the result of the interplay between excess dietary choline, the increased production of TMAO by the gut microbiota, and the resulting activation of inflammatory responses and fibrosis. A balanced diet, with no excess nor any deficiency in dietary choline, is of outmost importance regarding the prevention of cardiometabolic disorders as well as cognitive function. Large-scale studies with the use of next-generation probiotics, especially Akkermansia muciniphila and Faecalibacterium prausnitzii, should further examine their therapeutic potential in this context.
Collapse
Affiliation(s)
- Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece.
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, Athens, Greece.
| | - Dimitris Kounatidis
- Department of Internal Medicine, Hippokration General Hospital, 114 Vassilissis Sofias str, Athens, Greece
| | - Sotiria Psallida
- Department of Microbiology, KAT General Hospital of Attica, 2 Nikis str, Athens, Greece
| | - Fotis Panagopoulos
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece
| | - Theodora Stratigou
- Department of Endocrinology and Metabolism, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece
| | - Eleni Geladari
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini str, Athens, Greece
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100, Alexandroupoli, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, Athens, Greece.
| |
Collapse
|
21
|
Miyata M, Takeda K, Nagira S, Sugiura Y. Trimethylamine N-oxide ameliorates hepatic damage including reduction of hepatic bile acids and cholesterol in Fxr-null mice. Int J Food Sci Nutr 2024; 75:385-395. [PMID: 38690724 DOI: 10.1080/09637486.2024.2346765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
There are conflicting animal experiments on the effect of trimethylamine N-oxide (TMAO), the dietary metabolite, on non-alcoholic fatty liver disease (NAFLD). This study aims to determine the effect of TMAO on NAFLD. A diet containing 0.3% TMAO was fed to farnesoid X receptor (Fxr)-null mice, a model of NAFLD, for 13 weeks. Fxr-null mice fed TMAO showed significant reductions in liver damage markers but not wild-type mice. Hepatic bile acid and cholesterol levels were significantly decreased, and triacylglycerol levels tended to decrease in TMAO-fed Fxr-null mice. Changes in mRNA levels of hepatic bile acid and cholesterol transporters and synthetic enzymes were observed, which could explain the decreased hepatic bile acid and cholesterol levels in Fxr-null mice given the TMAO diet but not in the wild-type mice. These results suggest that TMAO intake ameliorates liver damage in Fxr-null mice, further altering bile acid/cholesterol metabolism in an FXR-independent manner.
Collapse
Affiliation(s)
- Masaaki Miyata
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Kento Takeda
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Sayuri Nagira
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Yoshimasa Sugiura
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| |
Collapse
|
22
|
Huang Y, Zhang J, Zhang Y, Wang W, Li M, Chen B, Zhang X, Zhang Z, Huang J, Jin Y, Wang H, Zhang X, Yin S, Yang W. Red meat intake, faecal microbiome, serum trimethylamine N-oxide and hepatic steatosis among Chinese adults. Liver Int 2024; 44:1142-1153. [PMID: 38314906 DOI: 10.1111/liv.15860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND AND AIMS Emerging evidence suggests a detrimental impact of high red meat intake on hepatic steatosis. We investigated the potential interplay between red meat intake and gut microbiome on circulating levels of trimethylamine N-oxide (TMAO) and hepatic steatosis risk. METHODS This cross-sectional study was conducted in a representative sample of 754 community-dwelling adults in Huoshan, China. Diet was collected using 4 quarterly 3 consecutive 24-h dietary (12-day) recalls. We profiled faecal microbiome using 16S ribosomal RNA sequencing and quantified serum TMAO and its precursors using LC-tandem MS (n = 333). We detected hepatic steatosis by FibroScan. The adjusted odds ratios (aORs) and 95% confidence intervals (CIs) were calculated using logistic regression. RESULTS TMAO levels but not its precursors were positively associated with the likelihood of hepatic steatosis (aOR per 1-SD increment 1.86, 95% CI 1.04-3.32). We identified 14 bacterial genera whose abundance was associated with TMAO concentration (pFDR < .05) belonging to the phyla Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria families. Per 10 g/day increase in red meat intake was positively associated with TMAO levels among participants who had higher red meat intake (>70 g/day) and higher TMAO-predicting microbial scores (TMS, β = .045, p = .034), but not among others (pinteraction = .030). TMS significantly modified the positive association between red meat and steatosis (pinteraction = .032), with a stronger association being observed among participants with higher TMS (aOR 1.30, 95% CI 1.07-1.57). CONCLUSIONS The bacterial genera that predicted TMAO levels may jointly modify the association between red meat intake and TMAO levels and the subsequent risk of hepatic steatosis.
Collapse
Affiliation(s)
- Yong Huang
- School of Public Health, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jiawei Zhang
- School of Public Health, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Yaozong Zhang
- School of Public Health, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Wuqi Wang
- School of Public Health, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Meiling Li
- School of Public Health, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Bo Chen
- School of Public Health, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Xiaoyu Zhang
- School of Public Health, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Zhuang Zhang
- School of Public Health, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Jiaqi Huang
- Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yong Jin
- School of Public Health, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Hua Wang
- School of Public Health, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Xuehong Zhang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Shi Yin
- Department of Geriatrics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Wanshui Yang
- School of Public Health, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| |
Collapse
|
23
|
Zhang Y, Wei S, Zhang H, Jo Y, Kang JS, Ha KT, Joo J, Lee HJ, Ryu D. Gut microbiota-generated metabolites: missing puzzles to hosts' health, diseases, and aging. BMB Rep 2024; 57:207-215. [PMID: 38627947 PMCID: PMC11139682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 05/25/2024] Open
Abstract
The gut microbiota, an intricate community of bacteria residing in the gastrointestinal system, assumes a pivotal role in various physiological processes. Beyond its function in food breakdown and nutrient absorption, gut microbiota exerts a profound influence on immune and metabolic modulation by producing diverse gut microbiota-generated metabolites (GMGMs). These small molecules hold potential to impact host health via multiple pathways, which exhibit remarkable diversity, and have gained increasing attention in recent studies. Here, we elucidate the intricate implications and significant impacts of four specific metabolites, Urolithin A (UA), equol, Trimethylamine N-oxide (TMAO), and imidazole propionate, in shaping human health. Meanwhile, we also look into the advanced research on GMGMs, which demonstrate promising curative effects and hold great potential for further clinical therapies. Notably, the emergence of positive outcomes from clinical trials involving GMGMs, typified by UA, emphasizes their promising prospects in the pursuit of improved health and longevity. Collectively, the multifaceted impacts of GMGMs present intriguing avenues for future research and therapeutic interventions. [BMB Reports 2024; 57(5): 207-215].
Collapse
Affiliation(s)
- Yan Zhang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Shibo Wei
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea, Busan 49241, Korea
| | - Hang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, China, Busan 49241, Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea, Busan 49241, Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jongkil Joo
- Department of Obstetrics and Gynecology, Pusan National University Hospital, Busan 49241, Korea
| | - Hyun Joo Lee
- Department of Obstetrics and Gynecology, Pusan National University Hospital, Busan 49241, Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea, Busan 49241, Korea
| |
Collapse
|
24
|
Tang R, Liu R, Zha H, Cheng Y, Ling Z, Li L. Gut microbiota induced epigenetic modifications in the non-alcoholic fatty liver disease pathogenesis. Eng Life Sci 2024; 24:2300016. [PMID: 38708414 PMCID: PMC11065334 DOI: 10.1002/elsc.202300016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/29/2023] [Accepted: 05/22/2023] [Indexed: 05/07/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a growing global health concern that can lead to liver disease and cancer. It is characterized by an excessive accumulation of fat in the liver, unrelated to excessive alcohol consumption. Studies indicate that the gut microbiota-host crosstalk may play a causal role in NAFLD pathogenesis, with epigenetic modification serving as a key mechanism for regulating this interaction. In this review, we explore how the interplay between gut microbiota and the host epigenome impacts the development of NAFLD. Specifically, we discuss how gut microbiota-derived factors, such as lipopolysaccharides (LPS) and short-chain fatty acids (SCFAs), can modulate the DNA methylation and histone acetylation of genes associated with NAFLD, subsequently affecting lipid metabolism and immune homeostasis. Although the current literature suggests a link between gut microbiota and NAFLD development, our understanding of the molecular mechanisms and signaling pathways underlying this crosstalk remains limited. Therefore, more comprehensive epigenomic and multi-omic studies, including broader clinical and animal experiments, are needed to further explore the mechanisms linking the gut microbiota to NAFLD-associated genes. These studies are anticipated to improve microbial markers based on epigenetic strategies and provide novel insights into the pathogenesis of NAFLD, ultimately addressing a significant unmet clinical need.
Collapse
Affiliation(s)
- Ruiqi Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Rongrong Liu
- Center of Pediatric Hematology‐oncologyPediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang ProvinceNational Clinical Research Center for Child HealthChildren's HospitalZhejiang University School of MedicineHangzhouChina
| | - Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yiwen Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| |
Collapse
|
25
|
Pires L, González-Paramás AM, Heleno SA, Calhelha RC. The Role of Gut Microbiota in the Etiopathogenesis of Multiple Chronic Diseases. Antibiotics (Basel) 2024; 13:392. [PMID: 38786121 PMCID: PMC11117238 DOI: 10.3390/antibiotics13050392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic diseases (CD) may result from a combination of genetic factors, lifestyle and social behaviours, healthcare system influences, community factors, and environmental determinants of health. These risk factors frequently coexist and interact with one another. Ongoing research and a focus on personalized interventions are pivotal strategies for preventing and managing chronic disease outcomes. A wealth of literature suggests the potential involvement of gut microbiota in influencing host metabolism, thereby impacting various risk factors associated with chronic diseases. Dysbiosis, the perturbation of the composition and activity of the gut microbiota, is crucial in the etiopathogenesis of multiple CD. Recent studies indicate that specific microorganism-derived metabolites, including trimethylamine N-oxide, lipopolysaccharide and uremic toxins, contribute to subclinical inflammatory processes implicated in CD. Various factors, including diet, lifestyle, and medications, can alter the taxonomic species or abundance of gut microbiota. Researchers are currently dedicating efforts to understanding how the natural progression of microbiome development in humans affects health outcomes. Simultaneously, there is a focus on enhancing the understanding of microbiome-host molecular interactions. These endeavours ultimately aim to devise practical approaches for rehabilitating dysregulated human microbial ecosystems, intending to restore health and prevent diseases. This review investigates how the gut microbiome contributes to CD and explains ways to modulate it for managing or preventing chronic conditions.
Collapse
Affiliation(s)
- Lara Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (S.A.H.)
- Grupo de Investigación en Polifenoles en Alimentos, Implicaciones en la Calidad y en Salud Humana, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Ana M. González-Paramás
- Grupo de Investigación en Polifenoles en Alimentos, Implicaciones en la Calidad y en Salud Humana, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Sandrina A. Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (S.A.H.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (S.A.H.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
26
|
Long C, Zhou X, Xia F, Zhou B. Intestinal Barrier Dysfunction and Gut Microbiota in Non-Alcoholic Fatty Liver Disease: Assessment, Mechanisms, and Therapeutic Considerations. BIOLOGY 2024; 13:243. [PMID: 38666855 PMCID: PMC11048184 DOI: 10.3390/biology13040243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a type of metabolic stress liver injury closely related to insulin resistance (IR) and genetic susceptibility without alcohol consumption, which encompasses a spectrum of liver disorders ranging from simple hepatic lipid accumulation, known as steatosis, to the more severe form of steatohepatitis (NASH). NASH can progress to cirrhosis and hepatocellular carcinoma (HCC), posing significant health risks. As a multisystem disease, NAFLD is closely associated with systemic insulin resistance, central obesity, and metabolic disorders, which contribute to its pathogenesis and the development of extrahepatic complications, such as cardiovascular disease (CVD), type 2 diabetes mellitus, chronic kidney disease, and certain extrahepatic cancers. Recent evidence highlights the indispensable roles of intestinal barrier dysfunction and gut microbiota in the onset and progression of NAFLD/NASH. This review provides a comprehensive insight into the role of intestinal barrier dysfunction and gut microbiota in NAFLD, including intestinal barrier function and assessment, inflammatory factors, TLR4 signaling, and the gut-liver axis. Finally, we conclude with a discussion on the potential therapeutic strategies targeting gut permeability and gut microbiota in individuals with NAFLD/NASH, such as interventions with medications/probiotics, fecal transplantation (FMT), and modifications in lifestyle, including exercise and diet.
Collapse
Affiliation(s)
- Changrui Long
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Sehenzhen 518107, China;
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Xiaoyan Zhou
- Department of Cardiovascular, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China;
| | - Fan Xia
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Sehenzhen 518107, China;
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China
| | - Benjie Zhou
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Sehenzhen 518107, China;
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China
| |
Collapse
|
27
|
Long Q, Luo F, Li B, Li Z, Guo Z, Chen Z, Wu W, Hu M. Gut microbiota and metabolic biomarkers in metabolic dysfunction-associated steatotic liver disease. Hepatol Commun 2024; 8:e0310. [PMID: 38407327 PMCID: PMC10898672 DOI: 10.1097/hc9.0000000000000310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/05/2023] [Indexed: 02/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), a replacement of the nomenclature employed for NAFLD, is the most prevalent chronic liver disease worldwide. Despite its high global prevalence, NAFLD is often under-recognized due to the absence of reliable noninvasive biomarkers for diagnosis and staging. Growing evidence suggests that the gut microbiome plays a significant role in the occurrence and progression of NAFLD by causing immune dysregulation and metabolic alterations due to gut dysbiosis. The rapid advancement of sequencing tools and metabolomics has enabled the identification of alterations in microbiome signatures and gut microbiota-derived metabolite profiles in numerous clinical studies related to NAFLD. Overall, these studies have shown a decrease in α-diversity and changes in gut microbiota abundance, characterized by increased levels of Escherichia and Prevotella, and decreased levels of Akkermansia muciniphila and Faecalibacterium in patients with NAFLD. Furthermore, bile acids, short-chain fatty acids, trimethylamine N-oxide, and tryptophan metabolites are believed to be closely associated with the onset and progression of NAFLD. In this review, we provide novel insights into the vital role of gut microbiome in the pathogenesis of NAFLD. Specifically, we summarize the major classes of gut microbiota and metabolic biomarkers in NAFLD, thereby highlighting the links between specific bacterial species and certain gut microbiota-derived metabolites in patients with NAFLD.
Collapse
|
28
|
Xu H, Feng P, Sun Y, Wu D, Wang D, Wu L, Peng H, Li H. Plasma trimethylamine N-oxide metabolites in the second trimester predict the risk of hypertensive disorders of pregnancy: a nested case-control study. Hypertens Res 2024; 47:778-789. [PMID: 38177285 DOI: 10.1038/s41440-023-01563-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
The relationship between gut microbiota products trimethylamine oxide (TMAO) and related metabolites including betaine, choline and L-carnitine and hypertensive disorders of pregnancy (HDP) is unclear. In order to examine whether plasma TMAO and related metabolites predict the risk of HDP, a nested case-control study was conducted in Chinese women based on a prospective cohort including 9447 participants. 387 pairs of pregnant women (n = 774) were matched and their plasma TMAO, betaine, choline, and L-carnitine at 16-20 gestational weeks were measured by liquid chromatography-mass spectrometry. Odds ratio (OR) and the 95% confidence interval (95% CI) were calculated using the conditional logistic regression, to examine the association between TMAO metabolites and HDP. The findings showed that higher plasma betaine (≥24.94 μmol/L) was associated with a decreased risk of HDP and its subtype gestational hypertension (GH), with adjusted ORs of 0.404 (95% CI: 0.226-0.721) and 0.293 (95% CI: 0.134-0.642), respectively. Higher betaine/choline ratio (>2.64) was associated with a lower risk of HDP and its subtype preeclampsia or chronic hypertension with superimposed preeclampsia (PE/CH-PE), with adjusted ORs of 0.554 (95% CI: 0.354-0.866) and 0.226 (95% CI: 0.080-0.634). Moreover, compared with traditional factors (TFs) model, the TMAO metabolites+ TFs model had a higher predictive ability for PE/CH-PE (all indexes P values < 0.0001). Therefore, it suggests that the detection of plasma betaine and choline in the early second trimester of pregnancy can better assess the risk of HDP.
Collapse
Affiliation(s)
- He Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Pei Feng
- Department of Community Health Care, Kunshan Maternity and Children's Health Care Hospital, Kunshan, China
| | - Yexiu Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Di Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Dandan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Lei Wu
- Department of Maternal and Child Health, Suzhou Industrial Park Center for Disease Control and Prevention, Suzhou, China
| | - Hao Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou, 215123, China.
| | - Hongmei Li
- Department of Epidemiology and Biostatistics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou, 215123, China.
| |
Collapse
|
29
|
Gordon S, Lee JS, Scott TM, Bhupathiraju S, Ordovas J, Kelly RS, Bhadelia R, Koo BB, Bigornia S, Tucker KL, Palacios N. Metabolites and MRI-Derived Markers of AD/ADRD Risk in a Puerto Rican Cohort. RESEARCH SQUARE 2024:rs.3.rs-3941791. [PMID: 38410484 PMCID: PMC10896402 DOI: 10.21203/rs.3.rs-3941791/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Objective Several studies have examined metabolomic profiles in relation to Alzheimer's disease and related dementia (AD/ADRD) risk; however, few studies have focused on minorities, such as Latinos, or examined Magnetic-Resonance Imaging (MRI)-based outcomes. Methods We used multiple linear regression, adjusted for covariates, to examine the association between metabolite concentration and MRI-derived brain age deviation. Metabolites were measured at baseline with untargeted metabolomic profiling (Metabolon, Inc). Brain age deviation (BAD) was calculated at wave 4 (~ 9 years from Boston Puerto Rican Health Study (BPRHS) baseline) as chronologic age, minus MRI-estimated brain age, representing the rate of biological brain aging relative to chronologic age. We also examined if metabolites associated with BAD were similarly associated with hippocampal volume and global cognitive function at wave 4 in the BPRHS. Results Several metabolites, including isobutyrylcarnitine, propionylcarnitine, phenylacetylglutamine, phenylacetylcarnitine (acetylated peptides), p-cresol-glucuronide, phenylacetylglutamate, and trimethylamine N-oxide (TMAO) were inversely associated with brain age deviation. Taurocholate sulfate, a bile salt, was marginally associated with better brain aging. Most metabolites with negative associations with brain age deviation scores also were inversely associations with hippocampal volumes and wave 4 cognitive function. Conclusion The metabolites identifiedin this study are generally consistent with prior literature and highlight the role of BCAA, TMAO and microbially derived metabolites in cognitive decline.
Collapse
|
30
|
Soto A, Spongberg C, Martinino A, Giovinazzo F. Exploring the Multifaceted Landscape of MASLD: A Comprehensive Synthesis of Recent Studies, from Pathophysiology to Organoids and Beyond. Biomedicines 2024; 12:397. [PMID: 38397999 PMCID: PMC10886580 DOI: 10.3390/biomedicines12020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a widespread contributor to chronic liver disease globally. A recent consensus on renaming liver disease was established, and metabolic dysfunction-associated steatotic liver disease, MASLD, was chosen as the replacement for NAFLD. The disease's range extends from the less severe MASLD, previously known as non-alcoholic fatty liver (NAFL), to the more intense metabolic dysfunction-associated steatohepatitis (MASH), previously known as non-alcoholic steatohepatitis (NASH), characterized by inflammation and apoptosis. This research project endeavors to comprehensively synthesize the most recent studies on MASLD, encompassing a wide spectrum of topics such as pathophysiology, risk factors, dietary influences, lifestyle management, genetics, epigenetics, therapeutic approaches, and the prospective trajectory of MASLD, particularly exploring its connection with organoids.
Collapse
Affiliation(s)
- Allison Soto
- Department of Surgery, University of Illinois College of Medicine, Chicago, IL 60607, USA;
| | - Colby Spongberg
- Touro College of Osteopathic Medicine, Great Falls, MT 59405, USA
| | | | - Francesco Giovinazzo
- General Surgery and Liver Transplant Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
31
|
Zou H, Zhou Y, Gong L, Huang C, Liu X, Lu R, Yu J, Kong Z, Zhang Y, Lin D. Trimethylamine N-Oxide Improves Exercise Performance by Reducing Oxidative Stress through Activation of the Nrf2 Signaling Pathway. Molecules 2024; 29:759. [PMID: 38398511 PMCID: PMC10893042 DOI: 10.3390/molecules29040759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Trimethylamine N-oxide (TMAO) has attracted interest because of its association with cardiovascular disease and diabetes, and evidence for the beneficial effects of TMAO is accumulating. This study investigates the role of TMAO in improving exercise performance and elucidates the underlying molecular mechanisms. Using C2C12 cells, we established an oxidative stress model and administered TMAO treatment. Our results indicate that TMAO significantly protects myoblasts from oxidative stress-induced damage by increasing the expression of Nrf2, heme oxygenase-1 (HO-1), NAD(P)H dehydrogenase (NQO1), and catalase (CAT). In particular, suppression of Nrf2 resulted in a loss of the protective effects of TMAO and a significant decrease in the expression levels of Nrf2, HO-1, and NQO1. In addition, we evaluated the effects of TMAO in an exhaustive swimming test in mice. TMAO treatment significantly prolonged swimming endurance, increased glutathione and taurine levels, enhanced glutathione peroxidase activity, and increased the expression of Nrf2 and its downstream antioxidant genes, including HO-1, NQO1, and CAT, in skeletal muscle. These findings underscore the potential of TMAO to counteract exercise-induced oxidative stress. This research provides new insights into the ability of TMAO to alleviate exercise-induced oxidative stress via the Nrf2 signaling pathway, providing a valuable framework for the development of sports nutrition supplements aimed at mitigating oxidative stress.
Collapse
Affiliation(s)
- Hong Zou
- Physical Education Department, Xiamen University, Xiamen 361005, China;
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China; (L.G.); (J.Y.); (Z.K.)
| | - Yu Zhou
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China (X.L.); (R.L.)
| | - Lijing Gong
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China; (L.G.); (J.Y.); (Z.K.)
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen 361021, China;
| | - Xi Liu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China (X.L.); (R.L.)
| | - Ruohan Lu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China (X.L.); (R.L.)
- Affiliated High School of Minnan, Normal University, Zhangzhou 363005, China
| | - Jingjing Yu
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China; (L.G.); (J.Y.); (Z.K.)
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Zhenxing Kong
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China; (L.G.); (J.Y.); (Z.K.)
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Yimin Zhang
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China; (L.G.); (J.Y.); (Z.K.)
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China (X.L.); (R.L.)
| |
Collapse
|
32
|
Florea CM, Rosu R, Moldovan R, Vlase L, Toma V, Decea N, Baldea I, Filip GA. The impact of chronic Trimethylamine N-oxide administration on liver oxidative stress, inflammation, and fibrosis. Food Chem Toxicol 2024; 184:114429. [PMID: 38176578 DOI: 10.1016/j.fct.2023.114429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
TMAO, a gut microbiota derived byproduct, has been associated with various cardiometabolic diseases by promoting oxidative stress and inflammation. The liver is the main organ for TMAO production and chronic exposure to high doses of TMAO could alter its function. In this study, we evaluated the effect of chronic exposure of high TMAO doses on liver oxidative stress, inflammation, and fibrosis. TMAO was administered daily via gastric gavage to laboratory rats for 3 months. Blood was drawn for the quantification of TMAO, and liver tissues were harvested for the assessment of oxidative stress (MDA, GSH, GSSG, GPx, CAT, and 8-oxo-dG) and inflammation by quantification of IL-1α, TNF-α, IL-10, TGF-β, NOS and COX-2 expression. The evaluation of fibrosis was made by Western blot analysis of α-SMA and Collagen-3 protein expression. Histological investigation and immunohistochemical staining of iNOS were performed in order to assess the liver damage. After 3 months of TMAO exposure, TMAO serum levels enhanced in parallel with increases in MDA and GSSG levels in liver tissue and lower values of GSH and GSH/GSSG ratio as well as a decrease in GPx and CAT activities. Inflammation was also highlighted, with enhanced iNOS, COX-2, and IL-10 expression, without structural changes and without induction of liver fibrosis.
Collapse
Affiliation(s)
- Cristian Marius Florea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Radu Rosu
- Fifth Department of Internal Medicine, Cardiology Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Remus Moldovan
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Vlad Toma
- Department of Molecular Biology and Biotechnologies, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania; Department of Experimental Biology and Biochemistry, Institute of Biological Research, branch of NIRDBS, Cluj-Napoca, Romania; Center for Systems Biology, Biodiversity and Bioresources "3B", Babeș-Bolyai University, Cluj-Napoca, Romania.
| | - Nicoleta Decea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Baldea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
33
|
Kaneva AM, Bojko ER. Fatty liver index (FLI): more than a marker of hepatic steatosis. J Physiol Biochem 2024; 80:11-26. [PMID: 37875710 DOI: 10.1007/s13105-023-00991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023]
Abstract
Fatty liver index (FLI) was developed as a simple and accurate marker of hepatic steatosis. FLI is derived from an algorithm based on body mass index, waist circumference, and levels of triglycerides and gamma-glutamyltransferase, and it is widely used in clinical and epidemiological studies as a screening tool for discriminating between healthy and nonalcoholic fatty liver disease (NAFLD) subjects. However, a systematic review of the literature regarding FLI revealed that this index has more extensive relationships with biochemical and physiological parameters. FLI is associated with key parameters of lipid, protein and carbohydrate metabolism, hormones, vitamins and markers of inflammation, or oxidative stress. FLI can be a predictor or risk factor for a number of metabolic and nonmetabolic diseases and mortality. FLI is also used as an indicator for determining the effects of health-related prevention interventions, medications, and toxic substances on humans. Although in most cases, the exact mechanisms underlying these associations have not been fully elucidated, they are most often assumed to be mediated by insulin resistance, inflammation, and oxidative stress. Thus, FLI may be a promising marker of metabolic health due to its multiple associations with parameters of physiological and pathological processes. In this context, the present review summarizes the data from currently available literature on the associations between FLI and biochemical variables and physiological functions. We believe that this review will be of interest to researchers working in this area and can provide new perspectives and directions for future studies on FLI.
Collapse
Affiliation(s)
- Anastasiya M Kaneva
- Institute of Physiology of Кomi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, 50 Pervomayskaya str., 167982, Syktyvkar, Russia.
| | - Evgeny R Bojko
- Institute of Physiology of Кomi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, 50 Pervomayskaya str., 167982, Syktyvkar, Russia
| |
Collapse
|
34
|
Huang W, Hua Y, Wang F, Xu J, Yuan L, Jing Z, Wang W, Zhao Y. Dietary betaine and/or TMAO affect hepatic lipid accumulation and glycometabolism of Megalobrama amblycephala exposed to a high-carbohydrate diet. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:59-75. [PMID: 36580207 DOI: 10.1007/s10695-022-01160-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
A 12-week experiment was conducted to explore the effects of betaine and/or TMAO on growth, hepatic health, gut microbiota, and serum metabolites in Megalobrama amblycephala fed with high-carbohydrate diets. The diets were as follows: CD group (control diet, 28.5% carbohydrate), HCD group (high-carbohydrate diet, 38.2% carbohydrate), HBD group (betaine-added diet, 38.3% carbohydrate + 1.2% betaine), HTD group (TMAO-added diet, 38.2% carbohydrate + 0.2% TMAO), and HBT group (diet added with both betaine and TMAO, 38.2% carbohydrate + 1.2% betaine + 0.2% TMAO). The results showed that the hepatosomatic index (HSI); whole-body crude fat; hepatic lipid accumulation; messenger RNA expression levels of gk, fpbase, g6pase, ahas, and bcat; serum branched-chain amino acids (BCAAs); ratio of Firmicutes-to-Bacteroidetes; and abundance of the genus Aeromonas were all significantly increased, while the abundance levels of the genus Lactobacillus and phyla Tenericutes and Bacteroidetes were drastically decreased in the HCD group. Compared with the HCD group, the HSI; whole-body crude fat; hepatic lipid accumulation; expression levels of fbpase, g6pase, pepck, ahas, and bcat; circulating BCAA; ratio of Firmicutes-to-Bacteroidetes; and abundance levels of the genus Aeromonas and phyla Tenericutes and Bacteroidetes were significantly downregulated in the HBD, HTD, and HBT groups. Meanwhile, the expression levels of pk were drastically upregulated in the HBD, HTD, and HBT groups as well as the abundance of Lactobacillus in the HBT group. These results indicated that the supplementation of betaine and/or TMAO in high-carbohydrate diets could affect the hepatic lipid accumulation and glycometabolism of M. amblycephala by promoting glycolysis, inhibiting gluconeogenesis and biosynthesis of BCAA, and mitigating the negative alteration of gut microbiota. Among them, the combination of betaine and TMAO had the best effect.
Collapse
Affiliation(s)
- Wangwang Huang
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Yizhuo Hua
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Fan Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Jia Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Lv Yuan
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Zhao Jing
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Weimin Wang
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Yuhua Zhao
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
35
|
Mirzababaei A, Mahmoodi M, Keshtkar A, Ashraf H, Abaj F, Soveid N, Hajmir MM, Radmehr M, Khalili P, Mirzaei K. Serum levels of trimethylamine N-oxide and kynurenine novel biomarkers are associated with adult metabolic syndrome and its components: a case-control study from the TEC cohort. Front Nutr 2024; 11:1326782. [PMID: 38321994 PMCID: PMC10844432 DOI: 10.3389/fnut.2024.1326782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Background Epidemiologic research suggests that gut microbiota alteration (dysbiosis) may play a role in the pathogenesis of metabolic syndrome (MetS). Dysbiosis can influence Trimethylamine N-oxide (TMAO) a gut microbiota-derived metabolite, as well as kynurenine pathways (KP), which are known as a new marker for an early predictor of chronic diseases. Hence, the current study aimed to investigate the association between KYN and TMAO with MetS and its components. Methods This case-control study was conducted on 250 adults aged 18 years or over of Tehran University of Medical Sciences (TUMS) Employee's Cohort study (TEC) in the baseline phase. Data on the dietary intakes were collected using a validated dish-based food frequency questionnaire (FFQ) and dietary intakes of nitrite and nitrate were estimated using FFQ with 144 items. MetS was defined according to the NCEP ATP criteria. Serum profiles TMAO and KYN were measured by standard protocol. Result The mean level of TMAO and KYN in subjects with MetS was 51.49 pg/mL and 417.56 nmol/l. High levels of TMAO (≥30.39 pg/mL) with MetS were directly correlated, after adjusting for confounding factors, the odds of MetS in individuals 2.37 times increased (OR: 2.37, 95% CI: 1.31-4.28, P-value = 0.004), also, high levels of KYN (≥297.18 nmol/L) increased odds of Mets+ 1.48 times, which is statistically significant (OR: 1.48, 95% CI: 0.83-2.63, P-value = 0.04). High levels of TMAO compared with the reference group increased the odds of hypertriglyceridemia and low HDL in crude and adjusted models (P < 0.05). Additionally, there was a statistically significant high level of KYN increased odds of abdominal obesity (P < 0.05). Conclusion Our study revealed a positive association between serum TMAO and KYN levels and MetS and some of its components. For underlying mechanisms and possible clinical implications of the differences. Prospective studies in healthy individuals are necessary.
Collapse
Affiliation(s)
- Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahmoodi
- Department of Cellular and Molecular Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbasali Keshtkar
- Department of Disaster and Emergency Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Ashraf
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Abaj
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Neda Soveid
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahya Mehri Hajmir
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Radmehr
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pardis Khalili
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Petrova NN. [Metabolic syndrome in clinical psychiatric practice]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:13-20. [PMID: 39269292 DOI: 10.17116/jnevro202412408113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
A literature review in PubMed and Google databases was performed. Inclusion criteria: randomized clinical trials, meta-analyses and systematic reviews, relevant full-text articles on metabolic syndrome (MS) in patients with schizophrenia. Exclusion criteria: articles of poor quality. The terminology of the article corresponds to that used in the publications included in the review. The review substantiates the relevance of the problem of MS, discloses the concept and discusses its criteria, provides data on the prevalence of MS in patients with schizophrenia, discusses the relationship between MS and schizophrenia, MS and cognitive impairment in schizophrenia, and describes metabolic changes in patients with a first episode of psychosis or early stage schizophrenia. Recommendations on therapeutic tactics in the development of metabolic syndrome in patients with schizophrenia are given.
Collapse
Affiliation(s)
- N N Petrova
- Saint Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
37
|
Liu L, Kaur GI, Kumar A, Kanwal A, Singh SP. The Role of Gut Microbiota and Associated Compounds in Cardiovascular Health and its Therapeutic Implications. Cardiovasc Hematol Agents Med Chem 2024; 22:375-389. [PMID: 38275032 DOI: 10.2174/0118715257273506231208045308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 01/27/2024]
Abstract
It is possible that gut bacteria may have a beneficial effect on cardiovascular health in humans. It may play a major role in the progression of a variety of cardiovascular diseases, including Heart Failure (HF), Atherosclerosis, Coronary Arterial Disease (CAD), Ischemic Heart Disease (IHD), and Others. Dysbiosis of the gut microbiota, along with its direct and indirect impact on gut health, may induce cardiovascular disorders. Although advanced studies have demonstrated the relationship of various metabolites to cardiovascular diseases (CVD) in animals, translating their functional capacity to humans remains a significant area of research. This paper simplifies the demonstration of some compounds, pathways, and components like Trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs), and butyrate production. It demonstrates how a change in eating habits causes TMAO and how the impact of different drugs on gut microbiota species and high consumption of Westernized food causes several heartrelated problems, such as atherosclerosis and inflammation that can even become the cause of heart failure. Modulation of the gut microbiome, on the other hand, is a novel therapeutic measure because it can be easily altered through diet and other lifestyle changes. It could then be used to lower the risk of several CVDs.
Collapse
Affiliation(s)
- Lu Liu
- Endoscopic Diagnosis and Treatment Center, Baoding First Central Hospital, Baoding, China
| | - Guneet Inderjeet Kaur
- Department of Sports Psychology, Central University of Rajasthan, Ajmer, 305817, India
| | - Avinash Kumar
- Department of Sports Biosciences, Central University of Rajasthan, Ajmer, 305817, India
| | | | | |
Collapse
|
38
|
Turpin T, Thouvenot K, Gonthier MP. Adipokines and Bacterial Metabolites: A Pivotal Molecular Bridge Linking Obesity and Gut Microbiota Dysbiosis to Target. Biomolecules 2023; 13:1692. [PMID: 38136564 PMCID: PMC10742113 DOI: 10.3390/biom13121692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Adipokines are essential mediators produced by adipose tissue and exert multiple biological functions. In particular, adiponectin, leptin, resistin, IL-6, MCP-1 and PAI-1 play specific roles in the crosstalk between adipose tissue and other organs involved in metabolic, immune and vascular health. During obesity, adipokine imbalance occurs and leads to a low-grade pro-inflammatory status, promoting insulin resistance-related diabetes and its vascular complications. A causal link between obesity and gut microbiota dysbiosis has been demonstrated. The deregulation of gut bacteria communities characterizing this dysbiosis influences the synthesis of bacterial substances including lipopolysaccharides and specific metabolites, generated via the degradation of dietary components, such as short-chain fatty acids, trimethylamine metabolized into trimethylamine-oxide in the liver and indole derivatives. Emerging evidence suggests that these bacterial metabolites modulate signaling pathways involved in adipokine production and action. This review summarizes the current knowledge about the molecular links between gut bacteria-derived metabolites and adipokine imbalance in obesity, and emphasizes their roles in key pathological mechanisms related to oxidative stress, inflammation, insulin resistance and vascular disorder. Given this interaction between adipokines and bacterial metabolites, the review highlights their relevance (i) as complementary clinical biomarkers to better explore the metabolic, inflammatory and vascular complications during obesity and gut microbiota dysbiosis, and (ii) as targets for new antioxidant, anti-inflammatory and prebiotic triple action strategies.
Collapse
Affiliation(s)
| | | | - Marie-Paule Gonthier
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97410 Saint-Pierre, La Réunion, France; (T.T.); (K.T.)
| |
Collapse
|
39
|
Dongoran RA, Tu FC, Liu CH. Current insights into the interplay between gut microbiota-derived metabolites and metabolic-associated fatty liver disease. Tzu Chi Med J 2023; 35:290-299. [PMID: 38035056 PMCID: PMC10683522 DOI: 10.4103/tcmj.tcmj_122_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/29/2023] [Accepted: 07/11/2023] [Indexed: 12/02/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a prevalent and challenging disease associated with a significant health and economic burden. MAFLD has been subjected to and widely investigated in many studies; however, the underlying pathogenesis and its progression have yet to understand fully. Furthermore, precise biomarkers for diagnosing and specific drugs for treatment are yet to be discovered. Increasing evidence has proven gut microbiota as the neglected endocrine organ that regulates homeostasis and immune response. Targeting gut microbiota is an essential strategy for metabolic diseases, including MAFLD. Gut microbiota in the gut-liver axis is connected through tight bidirectional links through the biliary tract, portal vein, and systemic circulation, producing gut microbiota metabolites. This review focuses on the specific correlation between gut microbiota metabolites and MAFLD. Gut microbiota metabolites are biologically active in the host and, through subsequent changes and biological activities, provide implications for MAFLD. Based on the review studies, gut-liver axis related-metabolites including short-chain fatty acids, bile acids (BAs), lipopolysaccharide, choline and its metabolites, indole and its derivates, branched-chain amino acids, and methionine cycle derivates was associated with MAFLD and could be promising MAFLD diagnosis biomarkers, as well as the targets for MAFLD new drug discovery.
Collapse
Affiliation(s)
- Rachmad Anres Dongoran
- Indonesian Food and Drug Authority, Jakarta, Indonesia
- Center for Chinese Studies, National Central Library, Taipei, Taiwan
- Program in Asia Pacific Regional Studies, Department of Taiwan and Regional Studies, College of Humanities and Social Sciences, National Dong Hwa University, Hualien, Taiwan
| | - Fang-Cen Tu
- Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chin-Hung Liu
- Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Graduate Institute of Clinical Pharmacy, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
40
|
Bestavashvili A, Glazachev O, Ibragimova S, Suvorov A, Bestavasvili A, Ibraimov S, Zhang X, Zhang Y, Pavlov C, Syrkina E, Syrkin A, Kopylov P. Impact of Hypoxia-Hyperoxia Exposures on Cardiometabolic Risk Factors and TMAO Levels in Patients with Metabolic Syndrome. Int J Mol Sci 2023; 24:14498. [PMID: 37833946 PMCID: PMC10572339 DOI: 10.3390/ijms241914498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Along with the known risk factors of cardiovascular diseases (CVDs) constituting metabolic syndrome (MS), the gut microbiome and some of its metabolites, in particular trimethylamine-N-oxide (TMAO), are actively discussed. A prolonged stay under natural hypoxic conditions significantly and multi-directionally changes the ratio of gut microbiome strains and their metabolites in feces and blood, which is the basis for using hypoxia preconditioning for targeted effects on potential risk factors of CVD. A prospective randomized study included 65 patients (32 females) with MS and optimal medical therapy. Thirty-three patients underwent a course of 15 intermittent hypoxic-hyperoxic exposures (IHHE group). The other 32 patients underwent sham procedures (placebo group). Before and after the IHHE course, patients underwent liver elastometry, biochemical blood tests, and blood and fecal sampling for TMAO analysis (tandem mass spectrometry). No significant dynamics of TMAO were detected in both the IHHE and sham groups. In the subgroup of IHHE patients with baseline TMAO values above the reference (TMAO ≥ 5 μmol/l), there was a significant reduction in TMAO plasma levels. But the degree of reduction in total cholesterol (TCh), low-density lipoprotein (LDL), and regression of liver steatosis index was more pronounced in patients with initially normal TMAO values. Despite significant interindividual variations, in the subgroup of IHHE patients with MS and high baseline TMAO values, there were more significant reductions in cardiometabolic and hepatic indicators of MS than in controls. More research is needed to objectify the prognostic role of TMAO and the possibilities of its correction using hypoxia adaptation techniques.
Collapse
Affiliation(s)
- Afina Bestavashvili
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Oleg Glazachev
- Department of Normal Physiology, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Shabnam Ibragimova
- Department of Therapy of the Institute of Professional Education, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Alexander Suvorov
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | - Shevket Ibraimov
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Xinliang Zhang
- Department of Normal Physiology, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Yong Zhang
- The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology, Harbin Medical University, Harbin 150081, China
| | - Chavdar Pavlov
- Department of Therapy of the Institute of Professional Education, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Department of Gastroenterology, Botkin Hospital, 125284 Moscow, Russia
| | - Elena Syrkina
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Abram Syrkin
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Philipp Kopylov
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
41
|
Golubeva JA, Sheptulina AF, Elkina AY, Liusina EO, Kiselev AR, Drapkina OM. Which Comes First, Nonalcoholic Fatty Liver Disease or Arterial Hypertension? Biomedicines 2023; 11:2465. [PMID: 37760906 PMCID: PMC10525922 DOI: 10.3390/biomedicines11092465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and arterial hypertension (AH) are widespread noncommunicable diseases in the global population. Since hypertension and NAFLD are diseases associated with metabolic syndrome, they are often comorbid. In fact, many contemporary published studies confirm the association of these diseases with each other, regardless of whether other metabolic factors, such as obesity, dyslipidemia, and type 2 diabetes mellites, are present. This narrative review considers the features of the association between NAFLD and AH, as well as possible pathophysiological mechanisms.
Collapse
Affiliation(s)
- Julia A. Golubeva
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Anna F. Sheptulina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Anastasia Yu. Elkina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Intermediate Level Therapy, Saratov State Medical University, 410012 Saratov, Russia
| | - Ekaterina O. Liusina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Anton R. Kiselev
- Coordinating Center for Fundamental Research, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Oxana M. Drapkina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| |
Collapse
|
42
|
Witkowska AM, Salem JE. Pharmacological and Nutritional Modulation of Metabolome and Metagenome in Cardiometabolic Disorders. Biomolecules 2023; 13:1340. [PMID: 37759740 PMCID: PMC10526920 DOI: 10.3390/biom13091340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiometabolic disorders are major causes of morbidity and mortality worldwide. A growing body of research indicates that the gut microbiota, whether it interacts favorably or not, plays an important role in host metabolism. Elucidating metabolic pathways may be crucial in preventing and treating cardiometabolic diseases, and omics methods are key to studying the interaction between the fecal microbiota and host metabolism. This review summarizes available studies that combine metabolomic and metagenomic approaches to describe the effects of drugs, diet, nutrients, and specific foods on cardiometabolic health and to identify potential targets for future research.
Collapse
Affiliation(s)
- Anna Maria Witkowska
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Białystok, Poland
| | - Joe-Elie Salem
- Department of Pharmacology, Pitié-Salpêtrière Hospital, Institut National de la Santé et de la Recherche Médicale (INSERM), Clinical Investigation Center (CIC-1901), Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, 75013 Paris, France;
| |
Collapse
|
43
|
Xu Q, Feng M, Ren Y, Liu X, Gao H, Li Z, Su X, Wang Q, Wang Y. From NAFLD to HCC: Advances in noninvasive diagnosis. Biomed Pharmacother 2023; 165:115028. [PMID: 37331252 DOI: 10.1016/j.biopha.2023.115028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has gradually become one of the major liver health problems in the world. The dynamic course of the disease goes through steatosis, inflammation, fibrosis, and carcinoma. Before progressing to carcinoma, timely and effective intervention will make the condition better, which highlights the importance of early diagnosis. With the further study of the biological mechanism in the pathogenesis and progression of NAFLD, some potential biomarkers have been discovered, and the possibility of their clinical application is gradually being discussed. At the same time, the progress of imaging technology and the emergence of new materials and methods also provide more possibilities for the diagnosis of NAFLD. This article reviews the diagnostic markers and advanced diagnostic methods of NAFLD in recent years.
Collapse
Affiliation(s)
- Qinchen Xu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Maoxiao Feng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Yidan Ren
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Huiru Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Zigan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Xin Su
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Qin Wang
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China.
| |
Collapse
|
44
|
Gong H, Zhong H, Xu HM, Liu XC, Li LP, Zhang DK. Insight into increased risk of portal vein thrombosis in nonalcoholic fatty liver disease. Eur J Intern Med 2023; 114:23-34. [PMID: 37330315 DOI: 10.1016/j.ejim.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the leading chronic liver diseases with increased morbidity and mortality rates for extrahepatic diseases (including cardiovascular disease, portal vein thrombosis, etc.). There is an increased risk of thrombosis in both the portal and systemic circulation in patients with NAFLD, independent of traditional liver cirrhosis. However, increased portal pressure, the most critical factor, is frequently observed in NAFLD patients, predisposing them to portal vein thrombosis (PVT). It has been reported that there is an 8.5% incidence of PVT among patients with non-cirrhotic NAFLD in a prospective cohort study. Based on the prothrombotic status of NAFLD itself, patients combined with cirrhosis may accelerate the development of PVT and lead to a poor prognosis. Moreover, PVT has been shown to complicate the procedure and adversely affect the outcome during liver transplantation surgery. NAFLD is in a prothrombotic state, and its underlying mechanisms have not been fully understood so far. Particularly noteworthy is that gastroenterologists currently overlook the higher risk of PVT in NAFLD. We investigate the pathogenesis of NAFLD complicated with PVT from the perspective of primary, secondary, and tertiary hemostasis, and also summarize relevant studies in humans. Some treatment options that may affect NAFLD and its PVT are also explored to improve patient-oriented outcomes.
Collapse
Affiliation(s)
- Hang Gong
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Huang Zhong
- Department of Gastroenterology, Zigong First People's Hospital, Zigong, Sichuan Province, China
| | - Hui-Mei Xu
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Xiong-Chang Liu
- Department of Gastroenterology, Lanzhou Second People's Hospital, Lanzhou, Gansu Province, China
| | - Liang-Ping Li
- Department of Gastroenterology, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan Province, China.
| | - De-Kui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China.
| |
Collapse
|
45
|
Zhang H, Yao G. Significant correlation between the gut microbiota-derived metabolite trimethylamine-N-oxide and the risk of stroke: evidence based on 23 observational studies. Eur J Clin Nutr 2023; 77:731-740. [PMID: 35468932 DOI: 10.1038/s41430-022-01104-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 11/08/2022]
Abstract
The gut microbiota-derived metabolite trimethylamine-N-oxide (TMAO) is regarded as a major risk factor for cardiovascular events and diabetes. However, the association of TMAO with stroke has yet to be fully elucidated. The present meta-analysis was conducted to explore the association between TMAO and stroke. The present meta-analysis quantitatively summarized the results of studies that investigated the association between TMAO and stroke. The PubMed, Embase, Cochrane Library and Web of Science databases were systematically searched from January 1, 2001 to June 1, 2021. All studies that evaluated the association between TMAO and stroke were included in the present systematic review. The present meta-analysis included 30,808 participants and revealed that being in the higher TMAO category increased the odds of stroke by 68% (OR 1.83; 95% CI 1.02-3.29; P = 0.04), and that the mean TMAO concentration in stroke patients was 2.20 μmol/L higher than that of non-stroke controls (MD 2.20; 95% CI 1.23-3.16; P < 0.00001). In addition, TMAO plasma levels was associated with the risk of all-cause mortality, with a pooled HR of 1.89 (95% CI 1.15-3.08; P = 0.01). Both univariate analysis (UVA) and multivariate analysis (MVA) indicated that high TMAO levels significantly increased the risk of major adverse cardiovascular events (MACEs), with pooled RRs of 2.26 (95% CI 2.01-2.54; P < 0.00001) with UVA and 1.55 (95% CI 1.17-2.05; P = 0.002) with MVA respectively. In the current meta-analysis we revealed the positive association between circulating TMAO and stroke. Higher TMAO levels increased the risk of stroke and stroke patients experienced higher mean TMAO concentration. In addition, high TMAO plasma level was one of independent risk factors of MACEs and was associated with all-cause mortality.
Collapse
Affiliation(s)
- Hongmei Zhang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710089, China.
| | - Guifen Yao
- Department of Neurology, Sanming First Hospital, Sanming, 365000, China
| |
Collapse
|
46
|
Liu Y, Zhong W, Li X, Shen F, Ma X, Yang Q, Hong S, Sun Y. Diets, Gut Microbiota and Metabolites. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:268-284. [PMID: 37325710 PMCID: PMC10260722 DOI: 10.1007/s43657-023-00095-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The gut microbiota refers to the gross collection of microorganisms, estimated trillions of them, which reside within the gut and play crucial roles in the absorption and digestion of dietary nutrients. In the past decades, the new generation 'omics' (metagenomics, transcriptomics, proteomics, and metabolomics) technologies made it possible to precisely identify microbiota and metabolites and describe their variability between individuals, populations and even different time points within the same subjects. With massive efforts made, it is now generally accepted that the gut microbiota is a dynamically changing population, whose composition is influenced by the hosts' health conditions and lifestyles. Diet is one of the major contributors to shaping the gut microbiota. The components in the diets vary in different countries, religions, and populations. Some special diets have been adopted by people for hundreds of years aiming for better health, while the underlying mechanisms remain largely unknown. Recent studies based on volunteers or diet-treated animals demonstrated that diets can greatly and rapidly change the gut microbiota. The unique pattern of the nutrients from the diets and their metabolites produced by the gut microbiota has been linked with the occurrence of diseases, including obesity, diabetes, nonalcoholic fatty liver disease, cardiovascular disease, neural diseases, and more. This review will summarize the recent progress and current understanding of the effects of different dietary patterns on the composition of gut microbiota, bacterial metabolites, and their effects on the host's metabolism.
Collapse
Affiliation(s)
- Yilian Liu
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Human Phenome Institute, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433 China
| | - Wanglei Zhong
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Human Phenome Institute, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433 China
| | - Xiao Li
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Human Phenome Institute, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433 China
| | - Feng Shen
- Department of Hepatobiliary Surgery, Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442001 Hubei China
| | - Xiaonan Ma
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Human Phenome Institute, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433 China
| | - Qi Yang
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Human Phenome Institute, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433 China
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Human Phenome Institute, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433 China
| | - Yan Sun
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501 USA
| |
Collapse
|
47
|
Li Z, Jiang Y, Long C, Peng Q, Yue R. The gut microbiota-astrocyte axis: Implications for type 2 diabetic cognitive dysfunction. CNS Neurosci Ther 2023; 29 Suppl 1:59-73. [PMID: 36601656 PMCID: PMC10314112 DOI: 10.1111/cns.14077] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/20/2022] [Accepted: 12/18/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Diabetic cognitive dysfunction (DCD) is one of the most insidious complications of type 2 diabetes mellitus, which can seriously affect the ability to self-monitoring of blood glucose and the quality of life in the elderly. Previous pathological studies of cognitive dysfunction have focused on neuronal dysfunction, characterized by extracellular beta-amyloid deposition and intracellular tau hyperphosphorylation. In recent years, astrocytes have been recognized as a potential therapeutic target for cognitive dysfunction and important participants in the central control of metabolism. The disorder of gut microbiota and their metabolites have been linked to a series of metabolic diseases such as diabetes mellitus. The imbalance of intestinal flora has the effect of promoting the occurrence and deterioration of several diabetes-related complications. Gut microbes and their metabolites can drive astrocyte activation. AIMS We reviewed the pathological progress of DCD related to the "gut microbiota-astrocyte" axis in terms of peripheral and central inflammation, intestinal and blood-brain barrier (BBB) dysfunction, systemic and brain energy metabolism disorders to deepen the pathological research progress of DCD and explore the potential therapeutic targets. CONCLUSION "Gut microbiota-astrocyte" axis, unique bidirectional crosstalk in the brain-gut axis, mediates the intermediate pathological process of neurocognitive dysfunction secondary to metabolic disorders in diabetes mellitus.
Collapse
Affiliation(s)
- Zi‐Han Li
- Hospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Ya‐Yi Jiang
- Hospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Cai‐Yi Long
- Hospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Qian Peng
- Hospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Ren‐Song Yue
- Hospital of Chengdu University of Traditional Chinese MedicineChengduChina
| |
Collapse
|
48
|
Mutengo KH, Masenga SK, Mweemba A, Mutale W, Kirabo A. Gut microbiota dependant trimethylamine N-oxide and hypertension. Front Physiol 2023; 14:1075641. [PMID: 37089429 PMCID: PMC10118022 DOI: 10.3389/fphys.2023.1075641] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
The human gut microbiota environment is constantly changing and some specific changes influence the host's metabolic, immune, and neuroendocrine functions. Emerging evidence of the gut microbiota's role in the development of cardiovascular disease (CVD) including hypertension is remarkable. There is evidence showing that alterations in the gut microbiota and especially the gut-dependant metabolite trimethylamine N-oxide is associated with hypertension. However, there is a scarcity of literature addressing the role of trimethylamine N-oxide in hypertension pathogenesis. In this review, we discuss the impact of the gut microbiota and gut microbiota dependant trimethylamine N-oxide in the pathogenesis of hypertension. We present evidence from both human and animal studies and further discuss new insights relating to potential therapies for managing hypertension by altering the gut microbiota.
Collapse
Affiliation(s)
- Katongo H. Mutengo
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- Schools of Public Health and Medicine, University of Zambia, Lusaka, Zambia
| | - Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- Schools of Public Health and Medicine, University of Zambia, Lusaka, Zambia
| | - Aggrey Mweemba
- Department of Medicine, Levy Mwanawasa Medical University, Lusaka, Zambia
| | - Wilbroad Mutale
- School of Public Health, University of Zambia, Lusaka, Zambia
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
49
|
Salas-Perez F, Assmann TS, Ramos-Lopez O, Martínez JA, Riezu-Boj JI, Milagro FI. Crosstalk between Gut Microbiota and Epigenetic Markers in Obesity Development: Relationship between Ruminococcus, BMI, and MACROD2/ SEL1L2 Methylation. Nutrients 2023; 15:nu15071550. [PMID: 37049393 PMCID: PMC10097304 DOI: 10.3390/nu15071550] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Changes in gut microbiota composition and in epigenetic mechanisms have been proposed to play important roles in energy homeostasis, and the onset and development of obesity. However, the crosstalk between epigenetic markers and the gut microbiome in obesity remains unclear. The main objective of this study was to establish a link between the gut microbiota and DNA methylation patterns in subjects with obesity by identifying differentially methylated DNA regions (DMRs) that could be potentially regulated by the gut microbiota. DNA methylation and bacterial DNA sequencing analysis were performed on 342 subjects with a BMI between 18 and 40 kg/m2. DNA methylation analyses identified a total of 2648 DMRs associated with BMI, while ten bacterial genera were associated with BMI. Interestingly, only the abundance of Ruminococcus was associated with one BMI-related DMR, which is located between the MACROD2/SEL1L2 genes. The Ruminococcus abundance negatively correlated with BMI, while the hypermethylated DMR was associated with reduced MACROD2 protein levels in serum. Additionally, the mediation test showed that 19% of the effect of Ruminococcus abundance on BMI is mediated by the methylation of the MACROD2/SEL1L2 DMR. These findings support the hypothesis that a crosstalk between gut microbiota and epigenetic markers may be contributing to obesity development.
Collapse
Affiliation(s)
| | - Taís Silveira Assmann
- Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Federal University of do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana 22390, Mexico
| | - J Alfredo Martínez
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Carlos III Health Institute, 28029 Madrid, Spain
| | - Jose Ignacio Riezu-Boj
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Fermín I Milagro
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Carlos III Health Institute, 28029 Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
50
|
Luo L, Chang Y, Sheng L. Gut-liver axis in the progression of nonalcoholic fatty liver disease: From the microbial derivatives-centered perspective. Life Sci 2023; 321:121614. [PMID: 36965522 DOI: 10.1016/j.lfs.2023.121614] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/27/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the world's most common chronic liver diseases. However, its pathogenesis remains unclear. With the deepening of research, NAFLD is considered a metabolic syndrome associated with the environment, heredity, and metabolic disorders. Recently, the close relationship between the intestinal microbiome and NAFLD has been discovered, and the theory of the "gut-liver axis" has been proposed. In short, the gut bacteria directly reach the liver via the portal vein through the damaged intestinal wall or indirectly participate in the development of NAFLD through signaling pathways mediated by their components and metabolites. This review focuses on the roles of microbiota-derived lipopolysaccharide, DNA, peptidoglycan, bile acids, short-chain fatty acids, endogenous ethanol, choline and its metabolites, indole and its derivatives, and bilirubin and its metabolites in the progression of NAFLD, which may provide significative insights into the pathogenesis, diagnosis, and treatment for this highly prevalent liver disease.
Collapse
Affiliation(s)
- Lijun Luo
- Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Yongchun Chang
- Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Li Sheng
- Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| |
Collapse
|