1
|
Okonkwo CE, Adeyanju AA, Onyeaka H, Nwonuma CO, Olaniran AF, Alejolowo OO, Inyinbor AA, Oluyori AP, Zhou C. A review on rebaudioside M: The next generation steviol glycoside and noncaloric sweetener. J Food Sci 2024; 89:6946-6965. [PMID: 39323262 DOI: 10.1111/1750-3841.17401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/06/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024]
Abstract
So far, the use of artificial low-calorie sweeteners, like sucralose, saccharin, and so on, to replace the conventional-based sugars has not succeeded due to the long-term adverse health effects, for example, hypertension, and not well-known safety stand. In this review, we discussed the next generation SvGl (rebaudioside M [Reb M]), their biosynthetic pathway in plant, high-yield production via microbial fermentation and enzyme engineering, physicochemical properties, taste modification, kinetic metabolism, application in food and beverages, safety and toxicological evaluation, regulation and dosage recommendation, and health benefits. In stevia, the biosynthesis of stevia glycosides, especially Reb M, is derived from the bifurcation of the pathway leading to gibberellin, followed by subsequent enzymatic modification of rubusoside. Reb M is more economically produced via microbial fermentation of modified yeast Yarrowia lipolytica and enzymatic bioconversion of rebaudioside A (Reb A) or Reb E. Reb M can serve as a suitable alternative to the conventional-based sugars.
Collapse
Affiliation(s)
- Clinton E Okonkwo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain, UAE
| | - Adeyemi A Adeyanju
- Department of Food Science and Microbiology, College of Pure and Applied Science, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Charles Obiora Nwonuma
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Abiola F Olaniran
- Department of Food Science and Microbiology, College of Pure and Applied Science, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Omokolade Oluwaseyi Alejolowo
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Adejumoke A Inyinbor
- Physical Sciences Department, Industrial Chemistry Programme, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Abimbola Peter Oluyori
- Physical Sciences Department, Industrial Chemistry Programme, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Huang C, Wang Y, Zhou C, Fan X, Sun Q, Han J, Hua C, Li Y, Niu Y, Emeka Okonkwo C, Yao D, Song L, Otu P. Properties, extraction and purification technologies of Stevia rebaudiana steviol glycosides: A review. Food Chem 2024; 453:139622. [PMID: 38761729 DOI: 10.1016/j.foodchem.2024.139622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
For health and safety reasons, the search for green, healthy, and low-calorie sweeteners with good taste has become the demand of many consumers. Furthermore, the need for sugar substitutes of natural origin has increased dramatically. In this review, we briefly discussed the safety and health benefits of stevia sweeteners and enumerated some examples of physiological functions of steviol glycosides (SGs), such as anti-inflammatory, anti-obesity, antihypertensive, anti-diabetes, and anticaries, citing various evidence related to their application in the food industry. The latest advances in emerging technologies for extracting and purifying SGs and the process variables and operational strategies were discussed. The impact of the extraction methods and their comparison against the conventional techniques have also been demonstrated. These technologies use minimal energy solvents and simplify subsequent purification stages, making viable alternatives suitable for a possible industrial application. Furthermore, we also elucidated the potential for advancing and applying the natural sweeteners SGs.
Collapse
Affiliation(s)
- Chengxia Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xingyu Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qiaolan Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jingyi Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Chenhui Hua
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yao Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Clinton Emeka Okonkwo
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Deyang Yao
- Jiangsu Teweinong Food Co., Ltd., Xinghua 225700, PR China
| | - Linglin Song
- Jiangsu Teweinong Food Co., Ltd., Xinghua 225700, PR China
| | - Phyllis Otu
- Accra Technical University, P. O. Box GP 561, Barnes Road, Accra, Ghana
| |
Collapse
|
3
|
Higgins KA, Rawal R, Kramer M, Baer DJ, Yerke A, Klurfeld DM. An Overview of Reviews on the Association of Low Calorie Sweetener Consumption With Body Weight and Adiposity. Adv Nutr 2024:100239. [PMID: 39214718 DOI: 10.1016/j.advnut.2024.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Numerous systematic reviews (SR) and meta-analyses (MA) on low calorie sweeteners (LCS) have been published in recent years, concluding that LCS have beneficial, neutral, or detrimental effects on various health outcomes, depending on the review. OBJECTIVES The objective of this overview of reviews was to determine how the methodologies of SR investigating the association between LCS consumption and body weight (BW) influence their findings and whether MA results can provide a consistent estimated effect. METHODS Systematic searches of PubMed, Scopus, and Cochrane Library were conducted in November 2022 to identify SR of randomized controlled trials (RCT) or non-randomized studies (NRS) investigating the association between LCS consumption and BW. The methods, MA results, and conclusions were extracted from each eligible SR. RESULTS Of the 985 search results, 20 SR evaluated the association between LCS and BW, drawing from publications of 75 RCT, 42 prospective cohort studies, and 10 cross-sectional studies. There was a considerable lack of overlap of studies included within each SR attributed, in part, to the inclusion of studies based on design; thus, each SR synthesized results from distinctly different studies. Evidence synthesis methods were heterogeneous and often opaque, making it difficult to determine why results from certain studies were excluded or why disparate results were observed between SR. CONCLUSIONS SR investigating the effect of LCS on BW implement different methodologies to answer allegedly the same question, drawing from a different set of heterogeneous studies, ignoring the basic assumptions required for MA, resulting in disparate results and conclusions. Previous MA show the large effects of study design, which results in inconsistent estimates of the effect of LCS on BW between MA of RCT and NRS. Given the availability of long-term RCT, these studies should be the basis of determining causal relationships (or lack thereof) between LCS and BW. This trial was registered at PROSPERO as CRD42022351200.
Collapse
Affiliation(s)
- Kelly A Higgins
- United States Department of Agriculture (USDA), Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD, United States; Exponent Inc., Chemical Regulatory & Food Safety, Washington, DC, United States.
| | - Rita Rawal
- United States Department of Agriculture (USDA), Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD, United States
| | - Matthew Kramer
- United States Department of Agriculture (USDA), Agricultural Research Service, United States
| | - David J Baer
- United States Department of Agriculture (USDA), Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD, United States
| | - Aaron Yerke
- United States Department of Agriculture (USDA), Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD, United States
| | - David M Klurfeld
- United States Department of Agriculture (USDA), Agricultural Research Service, United States; Indiana University School of Public Health -Bloomington, Bloomington, IN, United States
| |
Collapse
|
4
|
Zare M, Zeinalabedini M, Ebrahimpour-Koujan S, Bellissimo N, Azadbakht L. Effect of stevia on blood glucose and HbA1C: A meta-analysis. Diabetes Metab Syndr 2024; 18:103092. [PMID: 39098209 DOI: 10.1016/j.dsx.2024.103092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND The study investigates substituting non-nutritive sweeteners (NNS) for sugar to address health concerns related to excess sugar intake. It specifically examines how stevia affects insulin and blood glucose levels. The systematic review and meta-analysis aim to evaluate stevia's impact on glycemic indices. METHODS We conducted a systematic review and meta-analysis following PRISMA guidelines, including 26 studies with 1439 participants. The PROSPERO registration number for this research is CRD42023414411. We systematically searched PubMed (MEDLINE), Scopus, Web of Science, and Google Scholar. Additionally, we thoroughly reviewed the reference lists of the articles we extracted and relevant reviews. Two evaluators independently carried out screening, quality assessment, and data extraction. The GRADE (grading of recommendations, assessment, development, and evaluation) approach was utilized to evaluate the certainty of the evidence. RESULTS Stevia consumption was associated with significantly reducing blood glucose levels (WMD: -3.84; 95 % CI: -7.15, -0.53; P = 0.02, low certainty), especially in individuals with higher BMI, diabetes, and hypertension. Dose-response analysis revealed a decrease in blood glucose for ≥3342 mg/day of stevia consumption. Stevia consumption has been shown to reduce blood glucose levels within 1-4 months, as evidenced by dose-response analysis (less than 120 days) and subgroup analysis (more than four weeks). However, stevia did not significantly affect insulin concentration or HbA1C levels (very low and low certainty, respectively). CONCLUSIONS Low certainty evidence showed that stevia improved blood glucose control, especially when consumed for less than 120 days. However, more randomized trials with higher stevia dosages are required.
Collapse
Affiliation(s)
- Marzieh Zare
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mobina Zeinalabedini
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Soraiya Ebrahimpour-Koujan
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nick Bellissimo
- School of Nutrition, Toronto Metropolitan University, Toronto, ON, Canada.
| | - Leila Azadbakht
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Bai X, Qu H, Zhang J, Li L, Zhang C, Li S, Li G. Effect of steviol glycosides as natural sweeteners on glucose metabolism in adult participants. Food Funct 2024; 15:3908-3919. [PMID: 38512280 DOI: 10.1039/d3fo04695h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Steviol glycosides (SGs) are recognized as safe natural sweeteners; however, evidence from randomized controlled trials (RCTs) showed an inconclusive effect of SGs on glucose metabolism in adult participants. We aimed to conduct a systematic review and meta-analysis of RCTs to assess the effect of SGs on glucose metabolism. We systematically searched PubMed, Web of Science and EMBASE to include eligible RCTs. Our primary outcomes were differences between SGs and the control group with respect to changes in blood glucose from the baseline to the end of intervention (including fasting blood glucose [FBG], and HbA1c measurements). A random-effects meta-analysis was conducted for data synthesis to calculate the pooled mean difference (MD). There were twelve RCTs included for analyses with a total of 871 participants (48% females). A significant effect of SGs on FBG (MD = -4.10 mg dl-1, 95% CI -6.55 to -1.65) was found, while no significant difference in HbA1c (MD = 0.01%, 95% CI -0.12% to 0.13%) was observed between SGs and controls. The whole quality of evidence was rated as low. Subgroup analyses demonstrated favorable effects of SGs on FBG in participants aged ≤50 years, those without diabetes mellitus (DM) or hypertension at the baseline, and overweight and obese adults. Sensitivity analyses yielded results largely similar to the main findings. To conclude, SGs are found to produce significant improvement in glucose metabolism in adult participants when compared with the control. More evidence is required to further clarify and support the benefit of SGs as a sugar substitute for glucose metabolism.
Collapse
Affiliation(s)
- Xuerui Bai
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Hongying Qu
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jingyi Zhang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Likang Li
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Changfa Zhang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shuai Li
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guowei Li
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
- Father Sean O'Sullivan Research Centre, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence, and Impact (HEI), McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
6
|
Morissette A, de Wouters d'Oplinter A, Andre DM, Lavoie M, Marcotte B, Varin TV, Trottier J, Pilon G, Pelletier M, Cani PD, Barbier O, Houde VP, Marette A. Rebaudioside D decreases adiposity and hepatic lipid accumulation in a mouse model of obesity. Sci Rep 2024; 14:3077. [PMID: 38321177 PMCID: PMC10847429 DOI: 10.1038/s41598-024-53587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024] Open
Abstract
Overconsumption of added sugars has been pointed out as a major culprit in the increasing rates of obesity worldwide, contributing to the rising popularity of non-caloric sweeteners. In order to satisfy the growing demand, industrial efforts have been made to purify the sweet-tasting molecules found in the natural sweetener stevia, which are characterized by a sweet taste free of unpleasant aftertaste. Although the use of artificial sweeteners has raised many concerns regarding metabolic health, the impact of purified stevia components on the latter remains poorly studied. The objective of this project was to evaluate the impact of two purified sweet-tasting components of stevia, rebaudioside A and D (RebA and RebD), on the development of obesity, insulin resistance, hepatic health, bile acid profile, and gut microbiota in a mouse model of diet-induced obesity. Male C57BL/6 J mice were fed an obesogenic high-fat/high-sucrose (HFHS) diet and orally treated with 50 mg/kg of RebA, RebD or vehicle (water) for 12 weeks. An additional group of chow-fed mice treated with the vehicle was included as a healthy reference. At weeks 10 and 12, insulin and oral glucose tolerance tests were performed. Liver lipids content was analyzed. Whole-genome shotgun sequencing was performed to profile the gut microbiota. Bile acids were measured in the feces, plasma, and liver. Liver lipid content and gene expression were analyzed. As compared to the HFHS-vehicle treatment group, mice administered RebD showed a reduced weight gain, as evidenced by decreased visceral adipose tissue weight. Liver triglycerides and cholesterol from RebD-treated mice were lower and lipid peroxidation was decreased. Interestingly, administration of RebD was associated with a significant enrichment of Faecalibaculum rodentium in the gut microbiota and an increased secondary bile acid metabolism. Moreover, RebD decreased the level of lipopolysaccharide-binding protein (LBP). Neither RebA nor RebD treatments were found to impact glucose homeostasis. The daily consumption of two stevia components has no detrimental effects on metabolic health. In contrast, RebD treatment was found to reduce adiposity, alleviate hepatic steatosis and lipid peroxidation, and decrease LBP, a marker of metabolic endotoxemia in a mouse model of diet-induced obesity.
Collapse
Affiliation(s)
- Arianne Morissette
- Cardiology Axis, Québec Heart and Lung Institute (IUCPQ), Université Laval, Québec, QC, G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada
| | - Alice de Wouters d'Oplinter
- Cardiology Axis, Québec Heart and Lung Institute (IUCPQ), Université Laval, Québec, QC, G1V 0A6, Canada
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Diana Majolli Andre
- Cardiology Axis, Québec Heart and Lung Institute (IUCPQ), Université Laval, Québec, QC, G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada
| | - Marilou Lavoie
- Cardiology Axis, Québec Heart and Lung Institute (IUCPQ), Université Laval, Québec, QC, G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada
| | - Bruno Marcotte
- Cardiology Axis, Québec Heart and Lung Institute (IUCPQ), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Thibault V Varin
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada
| | - Jocelyn Trottier
- Infectious and Immune Diseases Research Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Canada
| | - Geneviève Pilon
- Cardiology Axis, Québec Heart and Lung Institute (IUCPQ), Université Laval, Québec, QC, G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada
| | - Martin Pelletier
- Laboratory of Molecular Pharmacology, Endocrinology and Nephrology Axis, Faculty of Pharmacy, CHU of Québec Research Center, Québec, Canada
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Olivier Barbier
- Infectious and Immune Diseases Research Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Canada
| | - Vanessa P Houde
- Cardiology Axis, Québec Heart and Lung Institute (IUCPQ), Université Laval, Québec, QC, G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada
| | - André Marette
- Cardiology Axis, Québec Heart and Lung Institute (IUCPQ), Université Laval, Québec, QC, G1V 0A6, Canada.
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada.
| |
Collapse
|
7
|
AL-Ishaq RK, Kubatka P, Büsselberg D. Sweeteners and the Gut Microbiome: Effects on Gastrointestinal Cancers. Nutrients 2023; 15:3675. [PMID: 37686707 PMCID: PMC10489909 DOI: 10.3390/nu15173675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Worldwide, the demand for natural and synthetic sweeteners in the food industry as an alternative to refined sugar is increasing. This has prompted more research to be conducted to estimate its safety and effects on health. The gut microbiome is critical in metabolizing selected sweeteners which might affect overall health. Recently, more studies have evaluated the relationship between sweeteners and the gut microbiome. This review summarizes the current knowledge regarding the role played by the gut microbiome in metabolizing selected sweeteners. It also addresses the influence of the five selected sweeteners and their metabolites on GI cancer-related pathways. Overall, the observed positive effects of sweetener consumption on GI cancer pathways, such as apoptosis and cell cycle arrest, require further investigation in order to understand the underlying mechanism.
Collapse
Affiliation(s)
- Raghad Khalid AL-Ishaq
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| |
Collapse
|
8
|
Singh AK, Singh A, Singh R, Joshi SR, Misra A. Non-sugar sweeteners and health outcomes in adults without diabetes: deciphering the WHO recommendations in the Indian context. Diabetes Metab Syndr 2023; 17:102829. [PMID: 37451112 DOI: 10.1016/j.dsx.2023.102829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND AND AIMS A systematic review and meta-analysis conducted by the World Health Organization (WHO) assessed the health outcomes of non-sugar sweeteners (NSS) in randomized controlled trials (RCTs) and prospective cohort studies (PCSs) and reported conflicting findings. We aim to decipher these conflicting findings in RCTs and PCSs by critically reviewing their results, comparing them with previous meta-analyses, and providing a simplified interpretation including the Indian perspective. METHODS We critically reviewed the 210-page dossier of WHO including the full text of most of the key studies of NSS included in this meta-analysis and subsequently compared it with previous meta-analyses to identify similarities and differences to address a few key questions pertaining to health outcomes associated with NSS use in adults. RESULTS Poor health outcomes are often associated with excess sugar intake. While NSS are typically consumed as a sugar replacement, benefits are conflicting. While RCTs found some benefits in the short term, PCSs found harm associated with NSS use in the long term. CONCLUSION The 2022 WHO meta-analysis that assessed the health outcomes of NSS is the most robust and critically analyzed document available to date. Despite the absence of any strong conclusion that suggests NSS consumption increases the risk of cardio-metabolic disorders, no firm evidence also rejects this statement. NSS could be an attractive replacement for sugar in overweight/obese people in the short term, but long-term harm cannot be fully ruled out. We suggest avoiding consuming sugar and restricting NSS intake wherever possible until long-term studies confirm or refute these findings.
Collapse
Affiliation(s)
- Awadhesh Kumar Singh
- G. D Hospital & Diabetes Institute, Kolkata, West Bengal, India; Sun Valley Hospital & Diabetes Research Centre, Guwahati, Assam, India; Horizon Lifeline Multi-specialty Hospital, Kolkata, West Bengal, India.
| | - Akriti Singh
- Jawaharlal Nehru Medical College & Hospital, Kalyani, West Bengal, India
| | - Ritu Singh
- G. D Hospital & Diabetes Institute, Kolkata, West Bengal, India; Horizon Lifeline Multi-specialty Hospital, Kolkata, West Bengal, India
| | | | - Anoop Misra
- Fortis C-DOC Hospital for Diabetes & Allied Sciences, New Delhi, India; National Diabetes, Obesity and Cholesterol Foundation, New Delhi, India; Diabetes Foundation (India), New Delhi, India
| |
Collapse
|
9
|
Munteanu C, Schwartz B. The Effect of Bioactive Aliment Compounds and Micronutrients on Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2023; 12:antiox12040903. [PMID: 37107278 PMCID: PMC10136128 DOI: 10.3390/antiox12040903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/28/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
In the current review, we focused on identifying aliment compounds and micronutrients, as well as addressed promising bioactive nutrients that may interfere with NAFLD advance and ultimately affect this disease progress. In this regard, we targeted: 1. Potential bioactive nutrients that may interfere with NAFLD, specifically dark chocolate, cocoa butter, and peanut butter which may be involved in decreasing cholesterol concentrations. 2. The role of sweeteners used in coffee and other frequent beverages; in this sense, stevia has proven to be adequate for improving carbohydrate metabolism, liver steatosis, and liver fibrosis. 3. Additional compounds were shown to exert a beneficial action on NAFLD, namely glutathione, soy lecithin, silymarin, Aquamin, and cannabinoids which were shown to lower the serum concentration of triglycerides. 4. The effects of micronutrients, especially vitamins, on NAFLD. Even if most studies demonstrate the beneficial role of vitamins in this pathology, there are exceptions. 5. We provide information regarding the modulation of the activity of some enzymes related to NAFLD and their effect on this disease. We conclude that NAFLD can be prevented or improved by different factors through their involvement in the signaling, genetic, and biochemical pathways that underlie NAFLD. Therefore, exposing this vast knowledge to the public is particularly important.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
10
|
Raghavan G, Bapna A, Mehta A, Shah A, Vyas T. Effect of Sugar Replacement with Stevia-Based Tabletop Sweetener on Weight and Cardiometabolic Health among Indian Adults. Nutrients 2023; 15:nu15071744. [PMID: 37049584 PMCID: PMC10097272 DOI: 10.3390/nu15071744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Added sugars contribute to caloric intake in the diet, which may lead to conditions like obesity. Replacing added sugar with a natural sugar substitute like zero-calorie stevia may help in reducing sugar and caloric intake. Methods: An open-label, single-arm pilot study was conducted to evaluate the efficacy and safety of a stevia-based tabletop sweetener among overweight subjects with normal blood sugar levels (n = 24) and overweight prediabetic subjects (n = 21). Subjects were instructed to replace added sugar in their daily diet with the test product over a study period of 90 days. Primary outcomes included change in body weight and waist circumference, while the secondary outcomes included change in blood glucose (PPBG), body mass index (BMI), and lipid parameters evaluated at baseline, 30 days, 60 days, and 90 days. Glycated hemoglobin (HbA1c) was evaluated at baseline and 90 days. Results: When compared with the baseline, a significant reduction in weight (p < 0.001) and waist circumference (p < 0.001) was observed at Day 90 in overweight subjects. Similarly, in overweight prediabetic subjects, a significant reduction in weight (p < 0.001) and waist circumference (p < 0.05) with non-significant change in HbA1c was observed at Day 90 from baseline. In a subgroup analysis, among the subjects who lost weight, 2.12 kg (n = 35) weight loss and 4.78 cm (n = 32) reduction in waist circumference were observed at 90 days. No adverse outcomes were reported throughout the study period. The consumption of steviol glycosides was within the acceptable daily intake (ADI). Conclusions: Replacing added sugar in the daily diet with stevia-based tabletop sweetener, along with a physical activity regimen, promotes weight loss and reduction in waist circumference in overweight subjects with normal blood sugar levels and prediabetic subjects (CTRI/2019/12/022470).
Collapse
Affiliation(s)
- Govindarajan Raghavan
- Zydus Wellness Institute, Zydus Wellness Products Limited, R & D Centre, Plot No. 115/5, TP Scheme No. 51, Near the Bliss & North One Apartment, Off Ambli-Bopal Road, Ahmedabad 380058, India
| | - Arohi Bapna
- Zydus Wellness Institute, Zydus Wellness Products Limited, R & D Centre, Plot No. 115/5, TP Scheme No. 51, Near the Bliss & North One Apartment, Off Ambli-Bopal Road, Ahmedabad 380058, India
| | - Arti Mehta
- Zydus Wellness Institute, Zydus Wellness Products Limited, R & D Centre, Plot No. 115/5, TP Scheme No. 51, Near the Bliss & North One Apartment, Off Ambli-Bopal Road, Ahmedabad 380058, India
| | - Akash Shah
- Zydus Wellness Institute, Zydus Wellness Products Limited, R & D Centre, Plot No. 115/5, TP Scheme No. 51, Near the Bliss & North One Apartment, Off Ambli-Bopal Road, Ahmedabad 380058, India
| | - Tejas Vyas
- Zydus Wellness Institute, Zydus Wellness Products Limited, R & D Centre, Plot No. 115/5, TP Scheme No. 51, Near the Bliss & North One Apartment, Off Ambli-Bopal Road, Ahmedabad 380058, India
| |
Collapse
|
11
|
Targeting PI3K/AKT signaling pathway in obesity. Biomed Pharmacother 2023; 159:114244. [PMID: 36638594 DOI: 10.1016/j.biopha.2023.114244] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Obesity is a disorder with an increasing prevalence, which impairs the life quality of patients and intensifies societal health care costs. The development of safe and innovative prevention strategies and therapeutic approaches is thus of great importance. The complex pathophysiology of obesity involves multiple signaling pathways that influence energy metabolism in different tissues. The phosphatidylinositol 3-kinases (PI3K)/protein kinase B (AKT) pathway is critical for the metabolic homeostasis and its function in insulin-sensitive tissues is described in the context of health, obesity and obesity-related complications. The PI3K family participates in the regulation of diverse physiological processes including but not limited to cell growth, survival, differentiation, autophagy, chemotaxis, and metabolism depending on the cellular context. AKT is downstream of PI3K in the insulin signaling pathway, and promotes multiple cellular processes by targeting a plethora of regulatory proteins that control glucose and lipid metabolism. Natural products are essential for prevention and treatment of many human diseases, including obesity. Anti-obesity natural compounds effect multiple pathophysiological mechanisms involved in obesity development. Numerous recent preclinical studies reveal the advances in using plant secondary metabolites to target the PI3K/AKT signaling pathway for obesity management. In this paper the druggability of PI3K as a target for compounds with anti-obesity potential is evaluated. Perspectives on the strategies and limitations for clinical implementation of obesity management using natural compounds modulating the PI3K/AKT pathway are suggested.
Collapse
|
12
|
Capra ME, Biasucci G, Banderali G, Pederiva C. Nutritional Treatment of Hypertriglyceridemia in Childhood: From Healthy-Heart Counselling to Life-Saving Diet. Nutrients 2023; 15:nu15051088. [PMID: 36904088 PMCID: PMC10005617 DOI: 10.3390/nu15051088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Hypertriglyceridemia is a lipid disorder with a varying prevalence; it is very common if we consider triglyceride plasma values slightly above the threshold, whereas it is extremely rare if only severely elevated triglyceride levels are considered. In most cases, severe forms of hypertriglyceridemia are caused by genetic mutations in the genes that regulate triglyceride metabolism, thus leading to extreme triglyceride plasma values and acute pancreatitis risk. Secondary forms of hypertriglyceridemia are usually less severe and are mainly associated with weight excess, but they can also be linked to liver, kidney, endocrinologic, or autoimmune diseases or to some class of drugs. Nutritional intervention is the milestone treatment for patients with hypertriglyceridemia and it has to be modulated on the underlying cause and on triglyceride plasma levels. In pediatric patients, nutritional intervention must be tailored according to specific age-related energy, growth and neurodevelopment requests. Nutritional intervention is extremely strict in case of severe hypertriglyceridemia, whereas it is similar to good healthy nutritional habits counselling for mild forms, mainly related to wrong habits and lifestyles, and to secondary causes. The aim of this narrative review is to define different nutritional intervention for various forms of hypertriglyceridemia in children and adolescents.
Collapse
Affiliation(s)
- Maria Elena Capra
- Centre for Pediatric Dyslipidemias, Pediatrics and Neonatology Unit, University of Parma, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy
- Department of Translational Medical and Surgical Sciences, University of Parma, 43126 Parma, Italy
- Società Italiana di Nutrizione Pediatrica, 20126 Milan, Italy
| | - Giacomo Biasucci
- Centre for Pediatric Dyslipidemias, Pediatrics and Neonatology Unit, University of Parma, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy
- Società Italiana di Nutrizione Pediatrica, 20126 Milan, Italy
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Correspondence:
| | - Giuseppe Banderali
- Clinical Service for Dyslipidemias, Study and Prevention of Atherosclerosis in Childhood, Pediatrics Unit, ASST-Santi Paolo e Carlo, 20142 Milan, Italy
| | - Cristina Pederiva
- Società Italiana di Nutrizione Pediatrica, 20126 Milan, Italy
- Clinical Service for Dyslipidemias, Study and Prevention of Atherosclerosis in Childhood, Pediatrics Unit, ASST-Santi Paolo e Carlo, 20142 Milan, Italy
| |
Collapse
|
13
|
Wang Y, Luo X, Chen L, Mustapha AT, Yu X, Zhou C, Okonkwo CE. Natural and low-caloric rebaudioside A as a substitute for dietary sugars: A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:615-642. [PMID: 36524621 DOI: 10.1111/1541-4337.13084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/12/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022]
Abstract
For health and safety concerns, traditional high-calorie sweeteners and artificial sweeteners are gradually replaced in food industries by natural and low-calorie sweeteners. As a natural and high-quality sugar substitute, steviol glycosides (SvGls) are continually scrutinized regarding their safety and application. Recently, the cultivation of organic stevia has been increasing in many parts of Europe and Asia, and it is obvious that there is a vast market for sugar substitutes in the future. Rebaudioside A, the main component of SvGls, is gradually accepted by consumers due to its safe, zero calories, clear, and sweet taste with no significant undesirable characteristics. Hence, it can be used in various foods or dietary supplements as a sweetener. In addition, rebaudioside A has been demonstrated to have many physiological functions, such as antihypertension, anti-diabetes, and anticaries. But so far, there are few comprehensive reviews of rebaudioside A. In this review article, we discuss the physicochemical properties, metabolic process, safety, regulatory, health benefits, and biosynthetic pathway of rebaudioside A and summarize the modification methods and state-of-the-art production and purification techniques of rebaudioside A. Furthermore, the current problems hindering the future production and application of rebaudioside A are analyzed, and suggestions are provided.
Collapse
Affiliation(s)
- Yang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiang Luo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Li Chen
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | | | - Xiaojie Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Clinton Emeka Okonkwo
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates.,Department of Agricultural and Biosystems Engineering, College of Engineering, Landmark University, Omu-Aran, Kwara State, Nigeria
| |
Collapse
|
14
|
Aswathiah S, Prabhu SK, Lingaiah R, Ramanna A, Prabhu JS, Pankaj SK, Mehta A, Bapna A, Raghavan G. Effect of a Novel Sugar Blend on Weight and Cardiometabolic Health among Healthy Indian Adults: A Randomized, Open-Label Study. Foods 2022; 11:foods11223545. [PMID: 36429137 PMCID: PMC9689513 DOI: 10.3390/foods11223545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/10/2022] Open
Abstract
Obesity is one of the major factors contributing to noncommunicable diseases (NCDs), which is associated with a high intake of a sugar-rich diet. Sugar blend (a novel combination of sugar and stevia) has half the calories of sugar with the same sweetness at recommended use and offers better compliance. A randomized controlled trial was conducted to evaluate the efficacy and safety of this sugar blend in normal to mildly overweight subjects with a body mass index (BMI) of 23−26 kg/m. Sixty subjects were categorized into Group A: Sugar group (n = 30), and Group B: Sugar blend group (n = 30). The primary outcomes evaluated were weight, waist circumference, hip circumference, waist/hip ratio, BMI, and the secondary outcomes evaluated were lipid profile, random blood sugar, and HbA1c. All these parameters were assessed at baseline, 30 days, 60 days, and 90 days. Group B showed a significantly higher weight loss (p = 0.013) at 90 days compared with Group A. A significant reduction in waist circumference (p < 0.0001) by 4.4 cm was noted at 90 days, in addition to reduction in total cholesterol (p < 0.0001), triglyceride (p = 0.006), LDL cholesterol (p = 0.0490), and VLDL cholesterol (p = 0.006) in Group B compared with the baseline. The study revealed that the sugar blend is an effective formulation in reducing weight, anthropometric factors, and other related metabolic parameters. It has been proven to be well tolerated and promotes weight loss when used in conjunction with a daily balanced diet and exercise plan.
Collapse
Affiliation(s)
| | | | | | | | | | - Shashi Kishor Pankaj
- Zydus Wellness R&D Centre, Zydus Wellness Institute, S.G. Highway, Off Ambli-Bopal Road, Ahmedabad 380058, India
| | - Arti Mehta
- Zydus Wellness R&D Centre, Zydus Wellness Institute, S.G. Highway, Off Ambli-Bopal Road, Ahmedabad 380058, India
| | - Arohi Bapna
- Zydus Wellness R&D Centre, Zydus Wellness Institute, S.G. Highway, Off Ambli-Bopal Road, Ahmedabad 380058, India
| | - Govindarajan Raghavan
- Zydus Wellness R&D Centre, Zydus Wellness Institute, S.G. Highway, Off Ambli-Bopal Road, Ahmedabad 380058, India
- Correspondence: ; Tel.: +91-7226995326 or +91-79-69665902
| |
Collapse
|
15
|
Kjølbæk L, Manios Y, Blaak EE, Martínez JA, Feskens EJM, Finlayson G, Andersen SSH, Reppas K, Navas-Carretero S, Adam TC, Hodgkins CE, Del Álamo M, Lam T, Moshoyiannis H, Halford JCG, Harrold JA, Raben A. Protocol for a multicentre, parallel, randomised, controlled trial on the effect of sweeteners and sweetness enhancers on health, obesity and safety in overweight adults and children: the SWEET project. BMJ Open 2022; 12:e061075. [PMID: 36223962 PMCID: PMC9562305 DOI: 10.1136/bmjopen-2022-061075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION The aim of this randomised controlled trial (RCT) is to investigate whether prolonged consumption of sweeteners and sweetness enhancers (S&SEs) within a healthy diet will improve weight loss maintenance and obesity-related risk factors and affect safety markers compared with sugar. METHODS AND ANALYSIS SWEET (S&SEs: prolonged effects on health, obesity and safety) is a 1-year multicentre RCT including at least 330 adults with overweight (18-65 years, body mass index (BMI) >25 kg/m2) and 40 children (6-12 years, BMI-for-age >85th percentile). In an initial 2-month period, adults will consume a low-energy diet with the aim to achieve ≥5% weight loss. Children are advised to consume a generally healthy diet to maintain body weight, thus reducing their BMI-for-age z-score. In the following 10 months, participants will be randomised to follow a healthy ad libitum diet with or without S&SE products. Clinical investigations are scheduled at baseline, after 2, 6 and 12 months. The primary outcomes are body weight for efficacy and gut microbiota composition (in relation to metabolic health) for safety, both in adults. Secondary outcomes include anthropometry, risk markers for type-2 diabetes and cardiovascular diseases, questionnaires including, for example, food preferences, craving and appetite and tests for allergenicity. ETHICS AND DISSEMINATION The trial protocol has been approved by the following national ethical committees; The research ethics committees of the capital region (Denmark), approval code: H-19040679, The medical ethics committee of the University Hospital Maastricht and Maastricht University (the Netherlands), approval code: NL70977.068.19/METC19-056s, Research Ethics Committee of the University of Navarra (Spain), approval code: 2019.146 mod1, Research Ethics Committee of Harokopio University (Greece), approval code: 1810/18-06-2019. The trial will be conducted in accordance with the Declaration of Helsinki. Results will be published in international peer-reviewed scientific journals regardless of whether the findings are positive, negative or inconclusive. TRIAL REGISTRATION NUMBER NCT04226911 (Clinicaltrials.gov).
Collapse
Affiliation(s)
- Louise Kjølbæk
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, Denmark
| | - Yannis Manios
- Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
- Institute of Agri-food and Life Sciences, Hellenic Mediterranean University Research Centre, Heraklion, Greece
| | - Ellen E Blaak
- Department of Human Biology, Maastricht University, Maastricht, Netherlands
| | - J Alfredo Martínez
- Center for Nutrition Research, University of Navarra, Pamplona, Navarra, Spain
- IMDEA Food Institute, Madrid, Spain
| | - Edith J M Feskens
- Division of Human Nutrition and Health, Wageningen University, Wageningen, Netherlands
| | | | - Sabina S H Andersen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, Denmark
| | - Kyriakos Reppas
- Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Santiago Navas-Carretero
- Center for Nutrition Research, University of Navarra, Pamplona, Navarra, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Tanja C Adam
- Department of Nutrition & Movement Sciences, Maastricht University, Maastricht, Limburg, Netherlands
| | - Charo E Hodgkins
- Food, Consumer Behaviour and Health Research Centre, University of Surrey, Guildford, UK
| | - Marta Del Álamo
- European Clinical Research Infrastructure Network, Paris, France
| | - Tony Lam
- NetUnion sarl, Lausanne, Switzerland
| | | | - Jason C G Halford
- School of Psychology, University of Leeds, Leeds, UK
- Department of Psychology, University of Liverpool, Liverpool, UK
| | - Joanne A Harrold
- Department of Psychology, University of Liverpool, Liverpool, UK
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, Denmark
- Clinical Research, Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
| |
Collapse
|
16
|
Derosa G, D'Angelo A, Maffioli P. The role of selected nutraceuticals in management of prediabetes and diabetes: An updated review of the literature. Phytother Res 2022; 36:3709-3765. [PMID: 35912631 PMCID: PMC9804244 DOI: 10.1002/ptr.7564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 01/05/2023]
Abstract
Dysglycemia is a disease state preceding the onset of diabetes and includes impaired fasting glycemia and impaired glucose tolerance. This review aimed to collect and analyze the literature reporting the results of clinical trials evaluating the effects of selected nutraceuticals on glycemia in humans. The results of the analyzed trials, generally, showed the positive effects of the nutraceuticals studied alone or in association with other supplements on fasting plasma glucose and post-prandial plasma glucose as primary outcomes, and their efficacy in improving insulin resistance as a secondary outcome. Some evidences, obtained from clinical trials, suggest a role for some nutraceuticals, and in particular Berberis, Banaba, Curcumin, and Guar gum, in the management of prediabetes and diabetes. However, contradictory results were found on the hypoglycemic effects of Morus, Ilex paraguariensis, Omega-3, Allium cepa, and Trigonella faenum graecum, whereby rigorous long-term clinical trials are needed to confirm these data. More studies are also needed for Eugenia jambolana, as well as for Ascophyllum nodosum and Fucus vesiculosus which glucose-lowering effects were observed when administered in combination, but not alone. Further trials are also needed for quercetin.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and TherapeuticsUniversity of PaviaPaviaItaly
- Centre of Diabetes, Metabolic Diseases, and DyslipidemiasUniversity of PaviaPaviaItaly
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and AtherosclerosisFondazione IRCCS Policlinico San MatteoPaviaItaly
- Italian Nutraceutical Society (SINut)BolognaItaly
- Laboratory of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Angela D'Angelo
- Department of Internal Medicine and TherapeuticsUniversity of PaviaPaviaItaly
- Laboratory of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Pamela Maffioli
- Centre of Diabetes, Metabolic Diseases, and DyslipidemiasUniversity of PaviaPaviaItaly
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and AtherosclerosisFondazione IRCCS Policlinico San MatteoPaviaItaly
- Italian Nutraceutical Society (SINut)BolognaItaly
| |
Collapse
|
17
|
Steviol Glycoside, L-Arginine, and Chromium(III) Supplementation Attenuates Abnormalities in Glucose Metabolism in Streptozotocin-Induced Mildly Diabetic Rats Fed a High-Fat Diet. Pharmaceuticals (Basel) 2022; 15:ph15101200. [PMID: 36297315 PMCID: PMC9607630 DOI: 10.3390/ph15101200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
Stevia rebaudiana Bertoni and its glycosides are believed to exhibit several health-promoting properties. Recently, the mechanisms of the anti-diabetic effects of steviol glycosides (SG) have been the subject of intense research. The following study aims to evaluate the results of SG (stevioside (ST) and rebaudioside A (RA)) combined with L-arginine (L-Arg) and chromium(III) (CrIII) supplementation in streptozotocin- (STZ) induced mild type 2 diabetic rats fed a high-fat diet (HFD), with particular emphasis on carbohydrate and lipid metabolisms. The experiment was carried out on 110 male Wistar rats, 100 of which were fed an HFD to induce insulin resistance, followed by an intraperitoneal injection of streptozotocin to induce mild type 2 diabetes. After confirmation of hyperglycemia, the rats were divided into groups. Three groups served as controls: diabetic untreated, diabetic treated with metformin (300 mg/kg BW), and healthy group. Eight groups were fed an HFD enriched with stevioside or rebaudioside A (2500 mg/kg BW) combined with L-arginine (2000 or 4000 mg/kg BW) and Cr(III) (1 or 5 mg/kg BW) for six weeks. The results showed that supplementation with SG (ST and RA) combined with L-arg and Cr(III) could improve blood glucose levels in rats with mild type 2 diabetes. Furthermore, ST was more effective in improving blood glucose levels, insulin resistance indices, and very low-density lipoprotein cholesterol (VLDL-C) concentrations than RA. Although L-arg and Cr(III) supplementation did not independently affect most blood carbohydrate and lipid indices, it further improved some biomarkers when combined, particularly with ST. Notably, the beneficial impact of ST on the homeostatic model assessment–insulin resistance (HOMA-IR) and on the quantitative insulin-sensitivity check index (QUICKI) was strengthened when mixed with a high dose of L-arg, while its impact on antioxidant status was improved when combined with a high dose of Cr(III) in rats with mild type 2 diabetes. In conclusion, these results suggest that supplementary stevioside combined with L-arginine and Cr(III) has therapeutic potential for mild type 2 diabetes. However, further studies are warranted to confirm these effects in other experimental models and humans.
Collapse
|
18
|
Simoens C, Philippaert K, Wuyts C, Goscinny S, Van Hoeck E, Van Loco J, Billen J, de Hoon J, Ampe E, Vangoitsenhoven R, Mertens A, Vennekens R, Van der Schueren B. Pharmacokinetics of Oral Rebaudioside A in Patients with Type 2 Diabetes Mellitus and Its Effects on Glucose Homeostasis: A Placebo-Controlled Crossover Trial. Eur J Drug Metab Pharmacokinet 2022; 47:827-839. [PMID: 36057030 PMCID: PMC9440320 DOI: 10.1007/s13318-022-00792-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2022] [Indexed: 12/02/2022]
Abstract
Background and Objectives Rebaudioside A, a steviol glycoside, is deglycosylated by intestinal microflora prior to the absorption of steviol and conjugation to steviol glucuronide. While glucose-lowering properties are observed for rebaudioside A in mice, they have been attributed to the metabolites steviol and steviol glucuronide. We aimed to characterize the pharmacokinetic and pharmacodynamic properties of rebaudioside A and its metabolites in patients with early-onset type 2 diabetes mellitus (T2DM). Methods This randomized, placebo-controlled, open-label, two-way crossover trial was performed in subjects with T2DM on metformin or no therapy at the University Hospitals Leuven, Belgium. Following oral rebaudioside A (3 g), plasma concentrations of rebaudioside A, steviol and steviol glucuronide were determined. The effect on glucose homeostasis was examined by an oral glucose tolerance test (OGTT) performed 19 h following rebaudioside A administration, i.e. the presumed time of maximal steviol and steviol glucuronide concentrations. The primary pharmacodynamic endpoint was the difference in area under the blood glucose concentration–time curve during the first 2 h of the OGTT (AUCGlucose(0–2h)) for rebaudioside A vs. placebo. Results In total, 30 subjects [63.5 (57.8–69.0) years of age, 86.7% male] completed the trial. Rebaudioside A was detected as early as 1 h after administration in nearly all subjects. As expected, steviol and steviol glucuronide reached their maximal concentrations at 19.5 h following rebaudioside A administration. Rebaudioside A did not lower the AUCGlucose(0–2h) compared to placebo (− 0.7 (95% CI − 22.3; 20.9) h·mg/dL, P = 0.95). Insulin and C-peptide concentrations were also comparable between both conditions (P > 0.05). Conclusion Rebaudioside A is readily absorbed after oral administration and metabolized to steviol and steviol glucuronide. However, no effect on glucose nor insulin or C-peptide excursion was observed during the OGTT at the time of maximal metabolite concentrations. Thus, no antidiabetic properties of rebaudioside A could be observed in patients with T2DM after single oral use. Clinical Trial Registration Registered on ClinicalTrials.gov (NCT03510624). Supplementary Information The online version contains supplementary material available at 10.1007/s13318-022-00792-7.
Collapse
Affiliation(s)
- Caroline Simoens
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Koenraad Philippaert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Caroline Wuyts
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Leuven, Belgium
| | | | - Els Van Hoeck
- Chemical and Physical Health Risks, Sciensano, Elsene, Belgium
| | - Joris Van Loco
- Chemical and Physical Health Risks, Sciensano, Elsene, Belgium
| | - Jaak Billen
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Jan de Hoon
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Els Ampe
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Roman Vangoitsenhoven
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Ann Mertens
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Bart Van der Schueren
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Ren HC, Sun JG, A JY, Gu SH, Shi J, Shao F, Ai H, Zhang JW, Peng Y, Yan B, Huang Q, Liu LS, Sai Y, Wang GJ, Yang CG. Mechanism-Based Pharmacokinetic Model for the Deglycosylation Kinetics of 20(S)-Ginsenosides Rh2. Front Pharmacol 2022; 13:804377. [PMID: 35694247 PMCID: PMC9175024 DOI: 10.3389/fphar.2022.804377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Aim: The 20(S)-ginsenoside Rh2 (Rh2) is being developed as a new antitumor drug. However, to date, little is known about the kinetics of its deglycosylation metabolite (protopanoxadiol) (PPD) following Rh2 administration. The aim of this work was to 1) simultaneously characterise the pharmacokinetics of Rh2 and PPD following intravenous and oral Rh2 administration, 2) develop and validate a mechanism-based pharmacokinetic model to describe the deglycosylation kinetics and 3) predict the percentage of Rh2 entering the systemic circulation in PPD form. Methods: Plasma samples were collected from rats after the I.V. or P.O. administration of Rh2. The plasma Rh2 and PPD concentrations were determined using HPLC-MS. The transformation from Rh2 to PPD, its absorption, and elimination were integrated into the mechanism based pharmacokinetic model to describe the pharmacokinetics of Rh2 and PPD simultaneously at 10 mg/kg. The concentration data collected following a 20 mg/kg dose of Rh2 was used for model validation. Results: Following Rh2 administration, PPD exhibited high exposure and atypical double peaks. The model described the abnormal kinetics well and was further validated using external data. A total of 11% of the administered Rh2 was predicted to be transformed into PPD and enter the systemic circulation after I.V. administration, and a total of 20% of Rh2 was predicted to be absorbed into the systemic circulation in PPD form after P.O. administration of Rh2. Conclusion: The developed model provides a useful tool to quantitatively study the deglycosylation kinetics of Rh2 and thus, provides a valuable resource for future pharmacokinetic studies of glycosides with similar deglycosylation metabolism.
Collapse
Affiliation(s)
- Hong-can Ren
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- DMPK and Clinical Pharmacology Group, Hutchison MediPharma Ltd., Shanghai, China
- Department of Biology, GenFleet Therapeutics, Shanghai, China
| | - Jian-guo Sun
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ji-ye A
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- *Correspondence: Ji-ye A, ; Guang-ji Wang, ; Cheng-guang Yang,
| | - Sheng-hua Gu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- School of Pharmacy, Shanghai University of Tranditional Chinese Medicine, Shanghai, China
| | - Jian Shi
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Feng Shao
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hua Ai
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jing-wei Zhang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ying Peng
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Bei Yan
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qing Huang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- NMPA Key Laboratory for Impurity Profile of Chemical Drugs, Jiangsu Institute for Food and Drug Control, Nanjing, China
| | - Lin-sheng Liu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Sai
- DMPK and Clinical Pharmacology Group, Hutchison MediPharma Ltd., Shanghai, China
| | - Guang-ji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- *Correspondence: Ji-ye A, ; Guang-ji Wang, ; Cheng-guang Yang,
| | - Cheng-guang Yang
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Ji-ye A, ; Guang-ji Wang, ; Cheng-guang Yang,
| |
Collapse
|
20
|
Potential of Diterpenes as Antidiabetic Agents: Evidence from Clinical and Pre-Clinical Studies. Pharmacol Res 2022; 179:106158. [PMID: 35272043 DOI: 10.1016/j.phrs.2022.106158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 11/20/2022]
Abstract
Diterpenes are a diverse group of structurally complex natural products with a wide spectrum of biological activities, including antidiabetic potential. In the last 25 years, numerous diterpenes have been investigated for antidiabetic activity, with some of them reaching the stage of clinical trials. However, these studies have not been comprehensively reviewed in any previous publication. Herein, we critically discussed the literature on the potential of diterpenes as antidiabetic agents, published from 1995 to September, 2021. In the period under review, 427 diterpenes were reported to have varying degrees of antidiabetic activity. Steviol glycosides, stevioside (1) and rebaudioside A (2), were the most investigated diterpenes with promising antidiabetic property using in vitro and in vivo models, as well as human subjects. All the tested pimaranes consistently showed good activity in preclinical evaluations against diabetes. Inhibitions of α-glucosidase and protein tyrosine phosphatase 1B (PTP 1B) activities and peroxisome proliferator-activated receptors gamma (PPAR-γ) agonistic property, were the most frequently used assays for studying the antidiabetic activity of diterpenes. The molecular mechanisms of action of the diterpenes include increased GLUT4 translocation, and activation of phosphoinositide 3-kinase (PI3K) and AMP-activated protein kinase (AMPK)-dependent signaling pathways. Our data revealed that diterpenes hold promising antidiabetic potential. Stevioside (1) and rebaudioside A (2) are the only diterpenes that were advanced to the clinical trial stage of the drug discovery pipeline. Diterpenes belonging to the abietane, labdane, pimarane and kaurane class have shown promising activity in in vitro and in vivo models of diabetes and should be further investigated.
Collapse
|
21
|
Stevioside ameliorates hyperglycemia and glucose intolerance, in a diet-induced obese zebrafish model, through epigenetic, oxidative stress and inflammatory regulation. Obes Res Clin Pract 2022; 16:23-29. [PMID: 35031270 DOI: 10.1016/j.orcp.2022.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 09/07/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
Abstract
Obesity is an independent risk factor for type 2 diabetes and epigenetic regulatory mechanisms affect obesity-related mechanisms. Due to weight gain concern in society, artificial sweeteners with no nutritional value have been increasingly consumed. Stevia is a sweet natural glycoside and a calorie-free sweetner extracted from the leaves of Stevia rebaudiana Bertoni and used as a substitute for artificial sweetners. This study evaluates the effects of stevioside on glucose tolerance, epigenetic and metabolic regulators of insulin resistance, oxidant-antioxidant status and tissue histology in a diet-induced obese (DIO) zebrafish model. After 15 days of overfeeding body weight, and fasting blood glucose, lipid peroxidation and nitric oxide levels and the expressions of fbf21, lepa, ll21, tnfα were elevated, where as there was impaired glucose tolerance and lower superoxide dismutase and glutathione S-transferase activities, dnmt3a expression which is an epigenetic tool of insulin resistance. Beneficial effects of stevioside were observed on glucose tolerance, oxidative stress and inflammatory mediators linking obesity to insulin resistance and its epigenetic regulation, in DIO model.
Collapse
|
22
|
Movahedian M, Golzan SA, Ashtary-Larky D, Clark CCT, Asbaghi O, Hekmatdoost A. The effects of artificial- and stevia-based sweeteners on lipid profile in adults: a GRADE-assessed systematic review, meta-analysis, and meta-regression of randomized clinical trials. Crit Rev Food Sci Nutr 2021:1-17. [PMID: 34882023 DOI: 10.1080/10408398.2021.2012641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
It has been posited that Non-nutritive sweeteners (NNS) intake may affect lipid profile. However, its proven effects on lipid profile are unclear, as clinical studies on this topic have produced inconsistent results. To fill this gap in knowledge, this systematic review and meta-analysis of randomized controlled trials (RCTs) sought to evaluate the effects of artificial- and stevia-based sweeteners consumption on lipid profile markers. To identify eligible RCTs, a systematic search up to April 2021 was completed in PubMed/Medline, Scopus, and EMBASE, using relevant keywords. A random-effect model was utilized to estimate the weighted mean difference (WMD) and 95% confidence (95% CI) for TG, TC, and LDL. On the other hand, a fixed-effect model was used to estimate the WMD and 95% CI for HDL. Fourteen RCTs were included in the present meta-analysis. The pooled analysis revealed that NNS did not affect TG (WMD:-1.31, 95% CI:-5.89, 3.27 mg/dl), TC (WMD:-2.27,95% CI:-7.61,3.07 mg/dl), LDL (WMD:1,95% CI: -2.72, 4.71 mg/dl), and HDL (WMD:0.06, 95% CI:-0.62,0.73 mg/dl). Subgroup analysis showed that NNS may be related to a small, but statistically significant, increase in LDL (WMD:4.23, 95% CI:0.50,7.96 mg/dl) in subjects with normal levels of LDL (<100 mg/dl). We found that consumption of artificial- and stevia-based sweeteners is not associated with lipid profile changes in adults. This study has been registered at PROSPERO (registration number: CRD42021250025).
Collapse
Affiliation(s)
- Mina Movahedian
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S Amirhossein Golzan
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, UK
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Kumari S, Sikander M, Malik S, Tripathi MK, Hafeez BB, Yallapu MM, Chauhan SC, Khan S, Jaggi M. Steviol Represses Glucose Metabolism and Translation Initiation in Pancreatic Cancer Cells. Biomedicines 2021; 9:1814. [PMID: 34944630 PMCID: PMC8698284 DOI: 10.3390/biomedicines9121814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/02/2022] Open
Abstract
Pancreatic cancer has the worst prognosis and lowest survival rate among all cancers. Pancreatic cancer cells are highly metabolically active and typically reprogrammed for aberrant glucose metabolism; thus they respond poorly to therapeutic modalities. It is highly imperative to understand mechanisms that are responsible for high glucose metabolism and identify natural/synthetic agents that can repress glucose metabolic machinery in pancreatic cancer cells, to improve the therapeutic outcomes/management of pancreatic cancer patients. We have identified a glycoside, steviol that effectively represses glucose consumption in pancreatic cancer cells via the inhibition of the translation initiation machinery of the molecular components. Herein, we report that steviol effectively inhibits the glucose uptake and lactate production in pancreatic cancer cells (AsPC1 and HPAF-II). The growth, colonization, and invasion characteristics of pancreatic cancer cells were also determined by in vitro functional assay. Steviol treatment also inhibited the tumorigenic and metastatic potential of human pancreatic cancer cells by inducing apoptosis and cell cycle arrest in the G1/M phase. The metabolic shift by steviol was mediated through the repression of the phosphorylation of mTOR and translation initiation proteins (4E-BP1, eIF4e, eIF4B, and eIF4G). Overall, the results of this study suggest that steviol can effectively suppress the glucose metabolism and translation initiation in pancreatic cancer cells to mitigate their aggressiveness. This study might help in the design of newer combination therapeutic strategies for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Sonam Kumari
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (M.S.); (S.M.); (M.K.T.); (B.B.H.); (M.M.Y.); (S.C.C.); (S.K.)
| | - Mohammed Sikander
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (M.S.); (S.M.); (M.K.T.); (B.B.H.); (M.M.Y.); (S.C.C.); (S.K.)
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Shabnam Malik
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (M.S.); (S.M.); (M.K.T.); (B.B.H.); (M.M.Y.); (S.C.C.); (S.K.)
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Manish K. Tripathi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (M.S.); (S.M.); (M.K.T.); (B.B.H.); (M.M.Y.); (S.C.C.); (S.K.)
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Bilal B. Hafeez
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (M.S.); (S.M.); (M.K.T.); (B.B.H.); (M.M.Y.); (S.C.C.); (S.K.)
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M. Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (M.S.); (S.M.); (M.K.T.); (B.B.H.); (M.M.Y.); (S.C.C.); (S.K.)
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (M.S.); (S.M.); (M.K.T.); (B.B.H.); (M.M.Y.); (S.C.C.); (S.K.)
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Sheema Khan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (M.S.); (S.M.); (M.K.T.); (B.B.H.); (M.M.Y.); (S.C.C.); (S.K.)
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (M.S.); (S.M.); (M.K.T.); (B.B.H.); (M.M.Y.); (S.C.C.); (S.K.)
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
24
|
From Lab to Farm: Elucidating the Beneficial Roles of Photosynthetic Bacteria in Sustainable Agriculture. Microorganisms 2021; 9:microorganisms9122453. [PMID: 34946055 PMCID: PMC8707939 DOI: 10.3390/microorganisms9122453] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Photosynthetic bacteria (PSB) possess versatile metabolic abilities and are widely applied in environmental bioremediation, bioenergy production and agriculture. In this review, we summarize examples of purple non-sulfur bacteria (PNSB) through biofertilization, biostimulation and biocontrol mechanisms to promote plant growth. They include improvement of nutrient acquisition, production of phytohormones, induction of immune system responses, interaction with resident microbial community. It has also been reported that PNSB can produce an endogenous 5-aminolevulinic acid (5-ALA) to alleviate abiotic stress in plants. Under biotic stress, these bacteria can trigger induced systemic resistance (ISR) of plants against pathogens. The nutrient elements in soil are significantly increased by PNSB inoculation, thus improving fertility. We share experiences of researching and developing an elite PNSB inoculant (Rhodopseudomonas palustris PS3), including strategies for screening and verifying beneficial bacteria as well as the establishment of optimal fermentation and formulation processes for commercialization. The effectiveness of PS3 inoculants for various crops under field conditions, including conventional and organic farming, is presented. We also discuss the underlying plant growth-promoting mechanisms of this bacterium from both microbial and plant viewpoints. This review improves our understanding of the application of PNSB in sustainable crop production and could inspire the development of diverse inoculants to overcome the changes in agricultural environments created by climate change.
Collapse
|
25
|
Nadolsky KZ. COUNTERPOINT: Artificial Sweeteners for Obesity-Better than Sugary Alternatives; Potentially a Solution. Endocr Pract 2021; 27:1056-1061. [PMID: 34481971 DOI: 10.1016/j.eprac.2021.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Nonnutritive (NNSs) are used in place of sugars to reduce caloric and glycemic intake while providing desired sweetness, commonly replacing sugar-sweetened beverages (SSBs) with "diet" (zero-calorie) alternatives. Concern has developed due to observational data associating NNSs with obesity and adiposity-based chronic disease. This counterpoint argues that, in general, NNSs used in place of added or excess sugars in the diet are likely beneficial. METHODS A literature review was conducted on interventional trials investigating NNSs and obesity or type 2 diabetes mellitus. Key words used in the search included artificial sweeteners, nonnutritive sweeteners, saccharin, sucralose, aspartame, stevia/steviol, acesulfame potassium, meal replacements, type 2 diabetes mellitus, obesity, and weight. RESULTS Interventional data and indirect interventional data consistently showed beneficial effects on weight and cardiometabolic health, including glycemia, when SSBs or other energy-dense foods were replaced by artificially sweetened beverages or artificially sweetened meal replacements. CONCLUSION Although NNSs correlate with obesity and adiposity-based chronic disease, those data are fraught with confounding and error. Plausibility has been suggested on the basis of preclinical research on neuroendocrine control of appetite, satiety, and cravings plus the gut microbiome. However, interventional data reveal that replacing caloric/glycemic energy intake via NNSs creates an energy deficit resulting in weight loss and improvement in disease-especially dysglycemic disease. Intensive dietary intervention using artificially sweetened meal replacements shows a marked clinical benefit without detriment from their NNSs. Furthermore, beverages sweetened with NNSs rather than SSBs have been noted to be a critical component for those succeeding in maintaining weight loss. Although individual responses to the effects of NNSs are always warranted just like in any clinical situation, patients should not be advised to avoid NNSs in the context of dietary intervention to improve quality and energy deficit.
Collapse
Affiliation(s)
- Karl Z Nadolsky
- College of Human Medicine, Michigan State University, Grand Rapids, Michigan; Department of Endocrinology & Diabetes, Spectrum Health West Michigan, Grand Rapids, Michigan.
| |
Collapse
|
26
|
Hegazi NM, Saad HH, Marzouk MM, Abdel Rahman MF, El Bishbishy MH, Zayed A, Ulber R, Ezzat SM. Molecular Networking Leveraging the Secondary Metabolomes Space of Halophila stipulaceae (Forsk.) Aschers. and Thalassia hemprichii (Ehrenb. ex Solms) Asch. in Tandem with Their Chemosystematics and Antidiabetic Potentials. Mar Drugs 2021; 19:279. [PMID: 34069768 PMCID: PMC8157295 DOI: 10.3390/md19050279] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
The Red Sea is one of the most biodiverse aquatic ecosystems. Notably, seagrasses possess a crucial ecological significance. Among them are the two taxa Halophila stipulacea (Forsk.) Aschers., and Thalassia hemprichii (Ehrenb. ex Solms) Asch., which were formally ranked together with the genus Enhalus in three separate families. Nevertheless, they have been recently classified as three subfamilies within Hydrocharitaceae. The interest of this study is to explore their metabolic profiles through ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS/MS) analysis in synergism with molecular networking and to assess their chemosystematics relationship. A total of 144 metabolites were annotated, encompassing phenolic acids, flavonoids, terpenoids, and lipids. Furthermore, three new phenolic acids; methoxy benzoic acid-O-sulphate (16), O-caffeoyl-O-hydroxyl dimethoxy benzoyl tartaric acid (26), dimethoxy benzoic acid-O-sulphate (30), a new flavanone glycoside; hexahydroxy-monomethoxy flavanone-O-glucoside (28), and a new steviol glycoside; rebaudioside-O-acetate (96) were tentatively described. Additionally, the evaluation of the antidiabetic potential of both taxa displayed an inherited higher activity of H. stipulaceae in alleviating the oxidative stress and dyslipidemia associated with diabetes. Hence, the current research significantly suggested Halophila, Thalassia, and Enhalus categorization in three different taxonomic ranks based on their intergeneric and interspecific relationship among them and supported the consideration of seagrasses in natural antidiabetic studies.
Collapse
Affiliation(s)
- Nesrine M. Hegazi
- Department of Phytochemistry and Plant Systematics, Division of Pharmaceutical Industries, National Research Centre, Dokki, Cairo 12622, Egypt; (N.M.H.); (M.M.M.)
| | - Hamada H. Saad
- Department of Phytochemistry and Plant Systematics, Division of Pharmaceutical Industries, National Research Centre, Dokki, Cairo 12622, Egypt; (N.M.H.); (M.M.M.)
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Mona M. Marzouk
- Department of Phytochemistry and Plant Systematics, Division of Pharmaceutical Industries, National Research Centre, Dokki, Cairo 12622, Egypt; (N.M.H.); (M.M.M.)
| | - Mohamed F. Abdel Rahman
- Department of Biology and Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo 72074, Egypt;
| | - Mahitab H. El Bishbishy
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt;
| | - Ahmed Zayed
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany;
- Department of Pharmacognosy, College of Pharmacy, Tanta University, El-Guish Street (Medical Campus), Tanta 31527, Egypt
| | - Roland Ulber
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany;
| | - Shahira M. Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt;
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
27
|
Gatea F, Sârbu I, Vamanu E. In Vitro Modulatory Effect of Stevioside, as a Partial Sugar Replacer in Sweeteners, on Human Child Microbiota. Microorganisms 2021; 9:590. [PMID: 33805627 PMCID: PMC8000329 DOI: 10.3390/microorganisms9030590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
The effect of stevioside on human health is still insufficiently highlighted by recent research. The total or partial replacement of sugar with sweeteners influences the general state of health, especially the human microbiota's response as a determining factor in the onset of type 2 diabetes. The present study aimed to present the long-term (one-year) in vitro effect that regular stevioside consumption had on children's pattern microbiota. A metabolomic response was established by determining the synthesis of organic acids and a correlation with antioxidant status. An increase in the number of bacterial strains and the variation of amount of butyrate and propionate to the detriment of lactic acid was observed. The effect was evidenced by the progressive pH increasing, the reduction of acetic acid, and the proliferation of Escherichia coli strains during the simulations. Synthesis of the main short-chain fatty acids (SCFAs) was interpreted as a response (adaptation) of the microbiota to the stevioside, without a corresponding increase in antioxidant status. This study demonstrated the modulatory role of stevioside on the human microbiota and on the fermentation processes that determine the essential SCFA synthesis in maintaining homeostasis. The protection of the microbiota against oxidative stress was also an essential aspect of reducing microbial diversity.
Collapse
Affiliation(s)
- Florentina Gatea
- Centre of Bioanalysis, National Institute for Biological Sciences, 296 Spl. Independentei, 060031 Bucharest, Romania;
| | - Ionela Sârbu
- Department of Genetics, University of Bucharest, 36-46 Bd. M. Kogalniceanu, 5th District, 050107 Bucharest, Romania;
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, 59 Marasti blvd, 1 District, 011464 Bucharest, Romania
| |
Collapse
|
28
|
Basharat S, Huang Z, Gong M, Lv X, Ahmed A, Hussain I, Li J, Du G, Liu L. A review on current conventional and biotechnical approaches to enhance biosynthesis of steviol glycosides in Stevia rebaudiana. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Gallagher AM, Ashwell M, Halford JCG, Hardman CA, Maloney NG, Raben A. Low-calorie sweeteners in the human diet: scientific evidence, recommendations, challenges and future needs. A symposium report from the FENS 2019 conference. J Nutr Sci 2021; 10:e7. [PMID: 33889390 PMCID: PMC8057368 DOI: 10.1017/jns.2020.59] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Overconsumption of free sugars, particularly from sugar-sweetened beverages (SSB), has potential negative health impacts. Implementation of a range of public health strategies is needed to reduce intakes of free sugars, including reducing portion sizes, promoting healthier dietary choices and reformulating foods and beverages. Although low-calorie sweeteners (LCS) are a useful tool for reducing energy intake and control glucose response when consuming sweet foods and drinks, several opinions persist about the adverse health effects of LCS, many of which are based on poor, little or no scientific evidence. This symposium report summarises key messages of the presentations and related discussions delivered at a scientific symposium at the 13th European Nutrition Conference (FENS 2019). These presentations considered the scientific evidence and current recommendations about the use and potential benefits of LCS for human health, with a particular focus on current evidence in relation to body weight and glycaemic control. Many of the studies to date on LCS have focused on low-calorie sweetened beverages (LCSB); however, the psychological and behavioural factors influencing consumer beliefs and consumption of LCSB need to be further explored. Current recommendations for LCS use are described, including the conclusions from a recent expert consensus report identifying the challenges that remain with LCS research. Finally, existing knowledge gaps and future actions are described, as well as two large ongoing research projects: SWITCH and SWEET.
Collapse
Affiliation(s)
- Alison M. Gallagher
- Nutrition Innovation Centre for Food and Health (NICHE), Biomedical Sciences Research Institute, Ulster University, ColeraineBT52 1SA, Northern Ireland, UK
| | | | | | | | - Niamh G. Maloney
- Department of Psychology, University of Liverpool, Liverpool, UK
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 30, FrederiksbergDK-1958, Denmark
| |
Collapse
|
30
|
Pang MD, Goossens GH, Blaak EE. The Impact of Artificial Sweeteners on Body Weight Control and Glucose Homeostasis. Front Nutr 2021; 7:598340. [PMID: 33490098 PMCID: PMC7817779 DOI: 10.3389/fnut.2020.598340] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
A poor diet is one of the leading causes for non-communicable diseases. Due to the increasing prevalence of overweight and obesity, there is a strong focus on dietary overconsumption and energy restriction. Many strategies focus on improving energy balance to achieve successful weight loss. One of the strategies to lower energy intake is refraining from sugars and replacing them with artificial sweeteners, which maintain the palatability without ingesting calories. Nevertheless, the safety and health benefits of artificial sweeteners consumption remain a topic of debate within the scientific community and society at large. Notably, artificial sweeteners are metabolized differently from each other due to their different properties. Therefore, the difference in metabolic fate of artificial sweeteners may underlie conflicting findings that have been reported related to their effects on body weight control, glucose homeostasis, and underlying biological mechanisms. Thus, extrapolation of the metabolic effects of a single artificial sweetener to all artificial sweeteners is not appropriate. Although many rodent studies have assessed the metabolic effects of artificial sweeteners, long-term studies in humans are scarce. The majority of clinical studies performed thus far report no significant effects or beneficial effects of artificial sweeteners on body weight and glycemic control, but it should be emphasized that the study duration of most studies was limited. Clearly, further well-controlled, long-term human studies investigating the effects of different artificial sweeteners and their impact on gut microbiota, body weight regulation and glucose homeostasis, as well as the underlying mechanisms, are warranted.
Collapse
Affiliation(s)
- Michelle D. Pang
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | | | | |
Collapse
|
31
|
Kurek JM, Król E, Krejpcio Z. Steviol Glycosides Supplementation Affects Lipid Metabolism in High-Fat Fed STZ-Induced Diabetic Rats. Nutrients 2020; 13:nu13010112. [PMID: 33396905 PMCID: PMC7823366 DOI: 10.3390/nu13010112] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/19/2022] Open
Abstract
A number of health-promoting properties of Stevia rebaudiana Bertoni and its glycosides, including the antihyperglycemic activity, have been found. The mechanisms of the antidiabetic action of stevia have not been fully understood. The aim of this study was to evaluate the effects of supplementary steviol glycosides on high-fat fed streptozotocin-induced diabetic rats with particular attention to lipid metabolism. The experiment was conducted on 70 male Wistar rats, of which 60 were fed a high-fat diet for 8 weeks followed by intraperitoneal injection of streptozotocin, to induce type 2 diabetes. Afterwards, rats were divided into six groups and fed a high-fat diet supplemented with pure stevioside or rebaudioside A, at two levels (500 or 2500 mg/kg body weight (b.w.)) for 5 weeks. Three additional groups: diabetic untreated, diabetic treated with metformin, and healthy, served as respective controls. Blood and dissected internal organs were collected for hematological, biochemical, and histopathological tests. It was found that dietary supplementation with steviol glycosides did not affect blood glucose, insulin, and insulin resistance indices, antioxidant biomarkers, but normalized hyperlipidemia and affected the appetite, as well as attenuated blood liver and kidney function indices, and reduced tissular damage in diabetic rats. Steviol glycosides normalize lipid metabolism and attenuate internal organs damage in diabetes.
Collapse
|
32
|
Effects of the Daily Consumption of Stevia on Glucose Homeostasis, Body Weight, and Energy Intake: A Randomised Open-Label 12-Week Trial in Healthy Adults. Nutrients 2020; 12:nu12103049. [PMID: 33036155 PMCID: PMC7600789 DOI: 10.3390/nu12103049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Stevia is a non-nutritive sweetener, providing sweet taste with no calories. This randomised, controlled, open-label 2-parallel arm trial examined the effects of daily stevia consumption on glycaemia in healthy adults. Secondary endpoints included body weight (BW) and energy intake (EI). Healthy participants (n = 28; aged 25 ± 5y, body mass index 21.2 ± 1.7 kg/m2) were randomised into either the stevia group (n = 14)—required to consume a stevia extract daily—or to the control group (n = 14). At weeks 0 and 12, the glucose and insulin responses to an oral glucose tolerance test were measured; BW and EI were assessed at weeks 0, 6, and 12. There was no significant difference in the glucose or insulin responses. There was a significant main effect of group on BW change (F(1,26) = 5.56, p = 0.026), as the stevia group maintained their weight as opposed to the control group (mean weight change at week 12: −0.22 kg, 95%CI [−0.96, 0.51] stevia group, +0.89 kg, 95%CI [0.16, 1.63] control group). The energy intake was significantly decreased between week 0 and 12 in the stevia group (p = 0.003), however no change was found in the control group (p = 0.973). Although not placebo-controlled, these results suggest that daily stevia consumption does not affect glycaemia in healthy individuals, but could aid in weight maintenance and the moderation of EI.
Collapse
|
33
|
Pasqualli T, Chaves PEE, Pereira CLDV, Serpa ÉA, Oliveira LFSD, Machado MM. Steviol, the active principle of the stevia sweetener, causes a reduction of the cells of the immunological system even consumed in low concentrations. Immunopharmacol Immunotoxicol 2020; 42:504-508. [PMID: 32811239 DOI: 10.1080/08923973.2020.1811309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIM Steviol is a natural diterpenoid glycoside isolated from Stevia rebaudiana Bertoni leaves and widely used as a non-caloric sweetener. In addition to their sweet taste, Steviol glycosides may also have some therapeutic benefits. There are few reports on the cytotoxicity of Steviol in human cells. Our objective was to test this sweetener under and at average concentrations of consumption, evaluating parameters of cytotoxicity, genotoxicity, and immunotoxicity. METHODS For this purpose, we made use of lymphocyte cultures and the analysis of their CD3+, CD4+, and CD8+ subpopulations. In a complementary way, the mechanism of action is proposed here by computational methods. RESULTS AND CONCLUSION Our results showed that Steviol reduces the number of lymphocytes due to falls of CD4+, CD8+, and CD4+CD8+ subpopulations. Besides, we observed an increase in the level of DNA damage and a gradual incidence of structural changes in the lymphocyte chromosomal sets. It was possible to propose that Steviol modulates gene expression, mainly interfering with the SESN1, NAP1L1, SOX4, and TREX1 genes. Although Steviol is used globally as a sweetener, its use should be cautious, as our study points out that Steviol has cytotoxic, genotoxic and mutagenic effects in the concentrations and conditions tested in the culture of human lymphocyte cells.
Collapse
Affiliation(s)
- Thaís Pasqualli
- TOXCEL - Grupo de Pesquisa em Toxicologia Celular, Universidade Federal do Pampa, Uruguaiana, Brasil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Uruguaiana, Brasil
| | | | | | - Élvio Adílio Serpa
- TOXCEL - Grupo de Pesquisa em Toxicologia Celular, Universidade Federal do Pampa, Uruguaiana, Brasil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Uruguaiana, Brasil
| | - Luís Flávio Souza de Oliveira
- TOXCEL - Grupo de Pesquisa em Toxicologia Celular, Universidade Federal do Pampa, Uruguaiana, Brasil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Uruguaiana, Brasil
| | - Michel Mansur Machado
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Uruguaiana, Brasil.,Grupo de Imunologia e Genética Aplicada - GIGA, Universidade Federal do Pampa, Uruguaiana, Brasil
| |
Collapse
|
34
|
Stevia rebaudiana Bertoni.: an updated review of its health benefits, industrial applications and safety. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Dewanjee S, Chakraborty P, Mukherjee B, De Feo V. Plant-Based Antidiabetic Nanoformulations: The Emerging Paradigm for Effective Therapy. Int J Mol Sci 2020; 21:E2217. [PMID: 32210082 PMCID: PMC7139625 DOI: 10.3390/ijms21062217] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus is a life-threatening metabolic syndrome. Over the past few decades, the incidence of diabetes has climbed exponentially. Several therapeutic approaches have been undertaken, but the occurrence and risk still remain unabated. Several plant-derived small molecules have been proposed to be effective against diabetes and associated vascular complications via acting on several therapeutic targets. In addition, the biocompatibility of these phytochemicals increasingly enhances the interest of exploiting them as therapeutic negotiators. However, poor pharmacokinetic and biopharmaceutical attributes of these phytochemicals largely restrict their clinical usefulness as therapeutic agents. Several pharmaceutical attempts have been undertaken to enhance their compliance and therapeutic efficacy. In this regard, the application of nanotechnology has been proven to be the best approach to improve the compliance and clinical efficacy by overturning the pharmacokinetic and biopharmaceutical obstacles associated with the plant-derived antidiabetic agents. This review gives a comprehensive and up-to-date overview of the nanoformulations of phytochemicals in the management of diabetes and associated complications. The effects of nanosizing on pharmacokinetic, biopharmaceutical and therapeutic profiles of plant-derived small molecules, such as curcumin, resveratrol, naringenin, quercetin, apigenin, baicalin, luteolin, rosmarinic acid, berberine, gymnemic acid, emodin, scutellarin, catechins, thymoquinone, ferulic acid, stevioside, and others have been discussed comprehensively in this review.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Biswajit Mukherjee
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
36
|
Evolving Nutritional Therapy for Diabetes Mellitus. Nutrients 2020; 12:nu12020423. [PMID: 32041141 PMCID: PMC7071199 DOI: 10.3390/nu12020423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
|